
N3031=10-0021

2010-2-3
Daveed Vandevoorde (daveed@edg.com)

Core issues 743 and 950: Additional decltype(...) uses

Notes
The wording changes proposed in this paper address national body comment JP 8 (Core issue
743) to allow decltype(...) as a name qualifier. In addition, they also address Core issue 950
(allowing decltype(...) as a base-specifier) and the CWG's decision to allow the construct
when forming destructor calls. For consistency's sake, the proposed wording also enabled
decltype(...) for mem-initializer-ids and pseudo-destructor calls.
I made an attempt to fold decltype-specifier into class-name, but that doesn't fit well with
existing uses of that grammar term (which often assume that a class-name is indeed a "name").
In the end, I just modified the grammar terms for the specific constructs that are being
augmented.
The changes are against N3000.

Wording Changes
In 3.4.3 [basic.lookup.qual] paragraph 1 change the first two sentences as follows:
 The name of a class or namespace member or enumerator can be referred to after the ::

scope resolution operator (5.1) applied to a nested-name-specifier that nominatesdenotes
its class, namespace, or enumeration. During the lookup for a name preceding theIf a ::
scope resolution operator, object, function, and enumerator names are ignored in a
nested-name-specifier is not preceded by a decltype-specifier, lookup of the name
preceding that :: considers only namespaces, types, and templates whose
specializations are types.

Add a production to the grammar rule for unqualified-id in the introduction of 5.1.1
[expr.prim.general] as follows:
 ...

 unqualified-id:
 identifier
 operator-function-id
 conversion-function-id
 literal-operator-id
 ~ class-name
 ~ decltype-specifier
 template-id

Core issues 743 and 950: Additional decltype(...) uses! N3031=10-0021

mailto:daveed@edg.com
mailto:daveed@edg.com

Change the indicated sentence in 5.1.1 [expr.prim.general] paragraph 6 as follows:

6 ... A class-name or decltype-specifier prefixed by ~ denotes a destructor; see 12.4.

Add a production to the grammar rule for nested-name-specifier in 5.1.1 [expr.prim.general]
paragraph 6 as follows:
6 ...

 nested-name-specifier:
 type-name ::
 namespace-name ::
 decltype-specifier ::
 nested-name-specifier identifier ::
 nested-name-specifier templateopt simple-template-id ::

Change the first sentence following this grammar rule as follows:
 A nested-name-specifier that namesdenotes a class, optionally followed by the keyword

template ...

In 5.1.1 [expr.prim.general] paragraph 6 insert the following sentence before the final note:
 ... The form ~ decltype-specifier also denotes the destructor, but it shall not be used as

the unqualified-id in a qualified-id.

In 5.1.1 [expr.prim.general] paragraph 8 change the first sentence as follows:
8 A nested-name-specifier that namesdenotes an enumeration ...

In 5.2 [expr.post] paragraph 1, add the following production to the grammar rule for pseudo-
destructor-name:
 pseudo-destructor-name:
 ...
 ~ decltype-specifier

In 5.2.4 [expr.pseudo] paragraph 1 change the first sentence as follows:
1 The use of a pseudo-destructor-name after a dot . or arrow -> operator represents the

destructor for the non-class type nameddenoted by type-name or decltype-specifier.

Core issues 743 and 950: Additional decltype(...) uses! N3031=10-0021

In 5.3.1 [expr.unary.op] paragraph 10, change the following sentence as indicated:

 There is an ambiguity in the unary-expression ~X(), where X is a class-name or
decltype-specifier.

In 7.1.6.2 [dcl.type.simple] paragraph 1 replace the production

 simple-type-specifier:
 ...
 decltype (expression)
by
 simple-type-specifier:
 ...
 decltype-specifier

and add the following rule:
 decltype-specifier:
 decltype (expression)

In 8.3.1 [dcl.meaning] paragraph 1 insert the following sentence before the note:
 The nested-name-specifier of a qualified declarator-id shall not begin with a decltype-

specifier.

In 8.3.3 [dcl.mptr] paragraph 1 change the following phrase as indicated:
 the nested-name-specifier namesdenotes a class
(one occurrence).

In 10 [class.derived] paragraph 1, replace the grammar rule for base-specifier:
 base-specifier:
 ::opt nested-name-specifieropt class-name attribute-specifieropt

 virtual access-specifieropt ::opt nested-name-specifieropt class-name

 attribute-specifieropt

 access-specifier virtualopt ::opt nested-name-specifieropt class-name

 attribute-specifieropt

Core issues 743 and 950: Additional decltype(...) uses! N3031=10-0021

by

 base-specifier:
 base-type-specifier attribute-specifieropt

 virtual access-specifieropt base-type-specifier attribute-specifieropt

 access-specifier virtualopt base-type-specifier attribute-specifieropt

 class-type-specifier:
 ::opt nested-name-specifieropt class-name

 decltype-specifier

 base-type-specifier:
 class-type-specifier

In 10 [class.derived] paragraph 2, change the first sentence as follows:
2 The class-name in a base-specifiertype denoted by a base-type-specifier shall not be a

class type that is not an incompletely defined class (Clause 9); this class is called a
direct base class for the class being defined.

In 11.2 [class.access.base] paragraph 5 change the following phrase as indicated:
 class nameddenoted by the nested-name-specifier
(one occurrence).

In 11.5 [class.protected] paragraph 1 change the following phrase as indicated:
 the nested-name-specifier shall namedenote
(one occurrence).

In 12.4 [class.dtor] paragraph 10, change the first sentence as follows:
10 In an explicit destructor call, the destructor name appears as a ~ followed by a type-

name or decltype-specifier that namesdenotes the destructor’s class type.

In 12.6 [class.base.init] paragraph 1, change the grammar rule for mem-initializer-id as
follows:

Core issues 743 and 950: Additional decltype(...) uses! N3031=10-0021

 mem-initializer-id:
 ::opt nested-name-specifieropt class-name

 class-type-specifier
 identifier

In 12.6 [class.base.init] paragraph2, change the first sentence as follows:

2 Names in a mem-initializer-id (that do not appear in a decltype-specifier or a template-
argument-list) are looked up in the scope of the constructor’s class and, ...

In 12.6 [class.base.init] paragraph 3, change the first sentence as follows:

3 A mem-initializer-list can initialize a base class using any nameclass-type-specifier that
denotes that base class type.

In 12.6 [class.base.init] paragraph 6, change the first sentence as follows:

6 A mem-initializer-list can delegate to another constructor of the constructor’s class
using any nameclass-type-specifier that denotes the constructor’s class itself.

In 12.6 [class.base.init] paragraph 7, change the following sentence as indicated:

 A mem-initializer where the mem-initializer-id namesdenotes a virtual base class is
ignored during execution of a constructor of any class that is not the most derived class.

In 12.6 [class.base.init] paragraph 8, change the first sentence as follows:

8 If a given non-static data member or base class is not nameddesignated by a mem-
initializer-id ...

In 12.6 [class.base.init] paragraph 10, change the first bullet as follows:

— First, and only for the constructor of the most derived class (1.8), virtual base
classes are initialized in the order they appear on a depth-first left-to-right
traversal of the directed acyclic graph of base classes, where “left-to-right” is the
order of appearance of the base classes names in the derived class base-specifier-
list.

Core issues 743 and 950: Additional decltype(...) uses! N3031=10-0021

In 12.9 [class.inhctor] paragraph 8 change the following phrase as indicated:

 the base class nameddenoted in the nested-name-specifier
(one occurrence).

In 14.7.2.4 [temp.dep.temp] change paragraph 4 as follows:

4 A template template-argument is dependent if it names a template-parameter or is a
qualified-id with a nested-name-specifier which contains a class-name or a decltype-
specifier that namesdenotes a dependent type.

Core issues 743 and 950: Additional decltype(...) uses! N3031=10-0021

