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Chapter 1 General [intro]

1.1 Scope [intro.scope]

This International Standard specifies requirements for implementations of the C++ programming language. The first
such requirement is that they implement the language, and so this International Standard also defines C++. Other
requirements and relaxations of the first requirement appear at various places within this International Standard.

C++ is a general purpose programming language based on the C programming language as described in ISO/IEC
9899:1990 Programming languages — C (1.2). In addition to the facilities provided by C, C++ provides additional
data types, classes, templates, exceptions, namespaces, inline functions, operator overloading, function name overload-
ing, references, free store management operators, and additional library facilities.

1.2 Normative references [intro.refs]

The following standards contain provisions which, through reference in this text, constitute provisions of this Interna-
tional Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and
parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the
most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid
International Standards.

— Ecma International, ECMAScript Language Specification, Standard Ecma-262, third edition, 1999.
— ISO/IEC 2382 (all parts), Information technology — Vocabulary

— ISO/IEC 9899:1990, Programming languages — C

— ISO/IEC 9899/Amd.1:1995, Programming languages — C, AMENDMENT 1: C Integrity

— ISO/IEC 9899:1999, Programming languages — C

— ISO/IEC 9899:1999/Cor.1:2001, Programming languages — C

— ISO/IEC 9899:1999/Cor.2:2004, Programming languages — C

— ISO/IEC 9945:2003, Information Technology — Portable Operating System Interface (POSIX)

— ISO/IEC TR 10176:2003, Information technology — Guidelines for the preparation of programming language standards

— ISO/IEC 10646-1:1993, Information technology — Universal Multiple-Octet Coded Character Set (UCS) — Part
1: Architecture and Basic Multilingual Plane

— ISO/IEC TR 19769:2004, Information technology — Programming languages, their environments and system
software interfaces — Extensions for the progrmming language C to support new character data types



1.3 Definitions General 2

The library described in clause 7 of ISO/IEC 9899:1990 and clause 7 of ISO/IEC 9899/Amd.1:1995 is hereinafter called
the Standard C Library."

The library described in clause 7 of ISO/IEC 9899:1999 and clause 7 of ISO/IEC 9899:1999/Cor.1:2001 and clause 7 of
ISO/TEC 9899:1999/Cor.2:2003 is hereinafter called the Standard C99 Library.

The library described in ISO/IEC TR 19769:2004 is hereinafter called the C Unicode TR.
The operating system interface described in ISO/IEC 9945:2003 is hereinafter called POSIX.
The ECMAScript Language Specification described in Standard Ecma-262 is hereinafter called ECMA-262.

1.3 Definitions [intro.defs]

For the purposes of this International Standard, the definitions given in ISO/IEC 2382 and the following definitions
apply. 17.1 defines additional terms that are used only in clauses 17 through 27 and Annex D.

Terms that are used only in a small portion of this International Standard are defined where they are used and italicized
where they are defined.

1.3.1 [defns.argument]
argument

an expression in the comma-separated list bounded by the parentheses in a function call expression; a sequence of
preprocessing tokens in the comma-separated list bounded by the parentheses in a function-like macro invocation; the
operand of throw; or an expression, type-id or template-name in the comma-separated list bounded by the angle brackets
in a template instantiation. Also known as an actual argument or actual parameter.

1.3.2 [defns.cond.supp]
conditionally-supported

a program construct that an implementation is not required to support. [ Note: Each implementation documents all
conditionally-supported constructs that it does not support. — end note |

1.3.3 [defns.diagnostic]
diagnostic message
a message belonging to an implementation-defined subset of the implementation’s output messages.

1.34 [defns.dynamic.type]
dynamic type

the type of the most derived object (1.8) to which the lvalue denoted by an Ivalue expression refers. [ Example: if a
pointer (8.3.1) p whose static type is “pointer to class B” is pointing to an object of class D, derived from B (clause 10),
the dynamic type of the expression *p is “D.” References (8.3.2) are treated similarly. — end example ] The dynamic
type of an rvalue expression is its static type.

1.3.5 [defns.ill.formed]

1) With the qualifications noted in clauses 17 through 27, and in C.2, the Standard C library is a subset of the Standard C++ library.
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3 General 1.3 Definitions

ill-formed program
input to a C++ implementation that is not a well-formed program.

1.3.6 [defns.impl.defined]
implementation-defined behavior

behavior, for a well-formed program construct and correct data, that depends on the implementation and that each
implementation documents.

1.3.7 [defns.impl.limits]
implementation limits
restrictions imposed upon programs by the implementation.

1.3.8 [defns.locale.specific]
locale-specific behavior
behavior that depends on local conventions of nationality, culture, and language that each implementation documents.

1.3.9 [defns.multibyte]
multibyte character

a sequence of one or more bytes representing a member of the extended character set of either the source or the execution
environment. The extended character set is a superset of the basic character set (2.2).

1.3.10 [defns.parameter]
parameter

an object or reference declared as part of a function declaration or definition, or in the catch clause of an exception
handler, that acquires a value on entry to the function or handler; an identifier from the comma-separated list bounded
by the parentheses immediately following the macro name in a function-like macro definition; or a template-parameter.
Parameters are also known as formal arguments or formal parameters.

1.3.11 [defns.signature]
signature

the name and the parameter-type-list (8.3.5) of a function, as well as the class or namespace of which it is a member.
If a function or function template is a class member its signature additionally includes the cv-qualifiers (if any) and
the ref-qualifier (if any) on the function or function template itself. The signature of a function template additionally
includes its return type and its template parameter list. The signature of a function template specialization includes
the signature of the template of which it is a specialization and its template arguments (whether explicitly specified or
deduced). [ Note: Signatures are used as a basis for name mangling and linking. — end note ]

1.3.12 [defns.static.type]
static type
the type of an expression (3.9), which type results from analysis of the program without considering execution semantics.
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The static type of an expression depends only on the form of the program in which the expression appears, and does not
change while the program is executing.

1.3.13 [defns.undefined]
undefined behavior

behavior, such as might arise upon use of an erroneous program construct or erroneous data, for which this International
Standard imposes no requirements. Undefined behavior may also be expected when this International Standard omits
the description of any explicit definition of behavior. [ Note: permissible undefined behavior ranges from ignoring the
situation completely with unpredictable results, to behaving during translation or program execution in a documented
manner characteristic of the environment (with or without the issuance of a diagnostic message), to terminating a trans-
lation or execution (with the issuance of a diagnostic message). Many erroneous program constructs do not engender
undefined behavior; they are required to be diagnosed. — end note |

1.3.14 [defns.unspecified]
unspecified behavior

behavior, for a well-formed program construct and correct data, that depends on the implementation. The implementa-
tion is not required to document which behavior occurs. [ Note: usually, the range of possible behaviors is delineated by
this International Standard. — end note |

1.3.15 [defns.well.formed]
well-formed program
a C++ program constructed according to the syntax rules, diagnosable semantic rules, and the One Definition Rule (3.2).

1.4 Implementation compliance [intro.compliance]

1 The set of diagnosable rules consists of all syntactic and semantic rules in this International Standard except for those
rules containing an explicit notation that “no diagnostic is required” or which are described as resulting in “undefined
behavior.”

2 Although this International Standard states only requirements on C++ implementations, those requirements are often
easier to understand if they are phrased as requirements on programs, parts of programs, or execution of programs. Such
requirements have the following meaning:

— If a program contains no violations of the rules in this International Standard, a conforming implementation shall,
within its resource limits, accept and correctly execute? that program.

— If a program contains a violation of any diagnosable rule or an occurrence of a construct described in this Standard
as “conditionally-supported” when the implementation does not support that construct, a conforming implemen-
tation shall issue at least one diagnostic message, except that

— If a program contains a violation of a rule for which no diagnostic is required, this International Standard places
no requirement on implementations with respect to that program.

3 For classes and class templates, the library clauses specify partial definitions. Private members (clause 11) are not
specified, but each implementation shall supply them to complete the definitions according to the description in the
library clauses.

2) “Correct execution” can include undefined behavior, depending on the data being processed; see 1.3 and 1.9.
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For functions, function templates, objects, and values, the library clauses specify declarations. Implementations shall
supply definitions consistent with the descriptions in the library clauses.

The names defined in the library have namespace scope (7.3). A C++ translation unit (2.1) obtains access to these names
by including the appropriate standard library header (16.2).

The templates, classes, functions, and objects in the library have external linkage (3.5). The implementation provides
definitions for standard library entities, as necessary, while combining translation units to form a complete C++ pro-
gram (2.1).

Two kinds of implementations are defined: hosted and freestanding. For a hosted implementation, this International
Standard defines the set of available libraries. A freestanding implementation is one in which execution may take place
without the benefit of an operating system, and has an implementation-defined set of libraries that includes certain
language-support libraries (17.4.1.3).

A conforming implementation may have extensions (including additional library functions), provided they do not alter
the behavior of any well-formed program. Implementations are required to diagnose programs that use such extensions
that are ill-formed according to this International Standard. Having done so, however, they can compile and execute
such programs.

Each implementation shall include documentation that identifies all conditionally-supported constructs that it does not
support and defines all locale-specific characteristics.”

1.5 Structure of this International Standard [intro.structure]

Clauses 2 through 16 describe the C++ programming language. That description includes detailed syntactic specifica-
tions in a form described in 1.6. For convenience, Annex A repeats all such syntactic specifications.

Clauses 18 through 30 and Annex D (the library clauses) describe the Standard C++ library, which provides definitions
for the following kinds of entities: macros (16.3), values (clause 3), types (8.1, 8.3), templates (clause 14), classes (clause
9), functions (8.3.5), and objects (clause 7).

Annex B recommends lower bounds on the capacity of conforming implementations.

Annex C summarizes the evolution of C++ since its first published description, and explains in detail the differences
between C++ and C. Certain features of C++ exist solely for compatibility purposes; Annex D describes those features.

Finally, Annex E says what characters are valid in universal-character names in C++ identifiers (2.10).

Throughout this International Standard, each example is introduced by “[ Example:” and terminated by ““ — end exam-
ple]”. Each note is introduced by “[ Note:” and terminated by “ — end note ]”. Examples and notes may be nested.
1.6 Syntax notation [syntax]

In the syntax notation used in this International Standard, syntactic categories are indicated by italic type, and literal
words and characters in constant width type. Alternatives are listed on separate lines except in a few cases where a
long set of alternatives is presented on one line, marked by the phrase “one of.” An optional terminal or nonterminal
symbol is indicated by the subscript “,; 7, s0

{ expressiongp }

3This documentation also defines implementation-defined behavior; see 1.9.
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2 Names for syntactic categories have generally been chosen according to the following rules:
— X-name is a use of an identifier in a context that determines its meaning (e.g. class-name, typedef-name).
— X-id is an identifier with no context-dependent meaning (e.g. qualified-id).
— X-seq is one or more X’s without intervening delimiters (e.g. declaration-seq is a sequence of declarations).

— X-list is one or more X’s separated by intervening commas (e.g. expression-list is a sequence of expressions
separated by commas).

1.7 The C++ memory model [intro.memory]

1 The fundamental storage unit in the C++ memory model is the byfe. A byte is at least large enough to contain any
member of the basic execution character set and the eight-bit code units of the Unicode UTF-8 encoding form and is
composed of a contiguous sequence of bits, the number of which is implementation-defined. The least significant bit is
called the low-order bit; the most significant bit is called the high-order bit. The memory available to a C++ program
consists of one or more sequences of contiguous bytes. Every byte has a unique address.

2 [ Note: the representation of types is described in 3.9. — end note |

3 A memory location is either an object of scalar type or a maximal sequence of adjacent bit-fields all having non-zero
width. [ Note: Various features of the language, such as references and virtual functions, might involve additional
memory locations that are not accessible to programs but are managed by the implementation. — end note ] Two
threads of execution can update and access separate memory locations without interfering with each other.

4 [ Note: Thus a bit-field and an adjacent non-bit-field are in separate memory locations, and therefore can be concurrently
updated by two threads of execution without interference. The same applies to two bit-fields, if one is declared inside
a nested struct declaration and the other is not, or if the two are separated by a zero-length bit-field declaration, or if
they are separated by a non-bit-field declaration. It is not safe to concurrently update two bit-fields in the same struct if
all fields between them are also bit-fields, no matter what the sizes of those intervening bit-fields happen to be. — end
note |

5 [ Example: A structure declared as

struct {
char a;
int b:5,
c:11,
:0,
d:8;
struct {int ee:8;} e;

contains four separate memory locations: The field a and bit-fields d and e . ee are each separate memory locations, and
can be modified concurrently without interfering with each other. The bit-fields b and c together constitute the fourth

memory location. The bit-fields b and ¢ cannot be concurrently modified, but b and a, for example, can be. —end
example ]
1.8 The C++ object model [intro.object]

1 The constructs in a C++ program create, destroy, refer to, access, and manipulate objects. An object is a region of
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storage. [ Note: A function is not an object, regardless of whether or not it occupies storage in the way that objects do.
— end note ] An object is created by a definition (3.1), by a new-expression (5.3.4) or by the implementation (12.2) when
needed. The properties of an object are determined when the object is created. An object can have a name (clause 3). An
object has a storage duration (3.7) which influences its lifetime (3.8). An object has a type (3.9). The term object type
refers to the type with which the object is created. Some objects are polymorphic (10.3); the implementation generates
information associated with each such object that makes it possible to determine that object’s type during program
execution. For other objects, the interpretation of the values found therein is determined by the type of the expressions
(clause 5) used to access them.

Objects can contain other objects, called subobjects. A subobject can be a member subobject (9.2), a base class subobject
(clause 10), or an array element. An object that is not a subobject of any other object is called a complete object.

For every object x, there is some object called the complete object of x, determined as follows:
— If x is a complete object, then x is the complete object of x.
— Otherwise, the complete object of x is the complete object of the (unique) object that contains x.

If a complete object, a data member (9.2), or an array element is of class type, its type is considered the most derived
class, to distinguish it from the class type of any base class subobject; an object of a most derived class type or of a
non-class type is called a most derived object.

Unless it is a bit-field (9.6), a most derived object shall have a non-zero size and shall occupy one or more bytes of
storage. Base class subobjects may have zero size. An object of trivial or standard-layout type (3.9) shall occupy
contiguous bytes of storage.

[ Note: C++ provides a variety of built-in types and several ways of composing new types from existing types (3.9).
—end note |

1.9 Program execution [intro.execution]

The semantic descriptions in this International Standard define a parameterized nondeterministic abstract machine. This
International Standard places no requirement on the structure of conforming implementations. In particular, they need
not copy or emulate the structure of the abstract machine. Rather, conforming implementations are required to emulate
(only) the observable behavior of the abstract machine as explained below.*)

Certain aspects and operations of the abstract machine are described in this International Standard as implementation-
defined (for example, sizeof (int)). These constitute the parameters of the abstract machine. Each implementation
shall include documentation describing its characteristics and behavior in these respects.”’ Such documentation shall
define the instance of the abstract machine that corresponds to that implementation (referred to as the “corresponding
instance” below).

Certain other aspects and operations of the abstract machine are described in this International Standard as unspecified
(for example, order of evaluation of arguments to a function). Where possible, this International Standard defines a set

4 This provision is sometimes called the “as-if”” rule, because an implementation is free to disregard any requirement of this International Standard
as long as the result is as if the requirement had been obeyed, as far as can be determined from the observable behavior of the program. For instance,
an actual implementation need not evaluate part of an expression if it can deduce that its value is not used and that no side effects affecting the
observable behavior of the program are produced.

3This documentation also includes conditonally-supported constructs and locale-specific behavior. See 1.4.
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of allowable behaviors. These define the nondeterministic aspects of the abstract machine. An instance of the abstract
machine can thus have more than one possible execution sequence for a given program and a given input.

Certain other operations are described in this International Standard as undefined (for example, the effect of derefer-
encing the null pointer). [ Note: this International Standard imposes no requirements on the behavior of programs that
contain undefined behavior. — end note |

A conforming implementation executing a well-formed program shall produce the same observable behavior as one
of the possible execution sequences of the corresponding instance of the abstract machine with the same program and
the same input. However, if any such execution sequence contains an undefined operation, this International Standard
places no requirement on the implementation executing that program with that input (not even with regard to operations
preceding the first undefined operation).

The observable behavior of the abstract machine is its sequence of reads and writes to volatile data and calls to library
I/0 functions.®

When the processing of the abstract machine is interrupted by receipt of a signal, the values of objects which are neither
— of type volatile std::sig_atomic_t nor
— lock-free atomic objects (29.2)

are unspecified, and the value of any object not in either of these two categories that is modified by the handler becomes
undefined.

An instance of each object with automatic storage duration (3.7.2) is associated with each entry into its block. Such an
object exists and retains its last-stored value during the execution of the block and while the block is suspended (by a
call of a function or receipt of a signal).

The least requirements on a conforming implementation are:
— Access to volatile objects are evaluated strictly according to the rules of the abstract machine.

— At program termination, all data written into files shall be identical to one of the possible results that execution of
the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place in such a fashion that prompting messages
actually appear prior to a program waiting for input. What constitutes an interactive device is implementation-
defined.

[ Note: more stringent correspondences between abstract and actual semantics may be defined by each implementation.
—end note |

[ Note: operators can be regrouped according to the usual mathematical rules only where the operators really are asso-
ciative or commutative.” For example, in the following fragment

int a, b;
VR 74
a =a + 32760 + b + b;

% An implementation can offer additional library I/O functions as an extension. Implementations that do so should treat calls to those functions as
“observable behavior” as well.
7 Overloaded operators are never assumed to be associative or commutative.
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the expression statement behaves exactly the same as

a = (((a + 32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of the sum (a + 32760) is next added to b,
and that result is then added to 5 which results in the value assigned to a. On a machine in which overflows produce an
exception and in which the range of values representable by an int is [-32768,+32767], the implementation cannot
rewrite this expression as

a = ((a + b) + 32765);

since if the values for a and b were, respectively, -32754 and -15, the sum a + b would produce an exception while the
original expression would not; nor can the expression be rewritten either as

a ((a + 32765) + b);

or

(a + (b + 32765));

[
1

since the values for a and b might have been, respectively, 4 and -8 or -17 and 12. However on a machine in which over-
flows do not produce an exception and in which the results of overflows are reversible, the above expression statement
can be rewritten by the implementation in any of the above ways because the same result will occur. — end note |

A full-expression is an expression that is not a subexpression of another expression. If a language construct is defined to
produce an implicit call of a function, a use of the language construct is considered to be an expression for the purposes
of this definition. A call to a destructor generated at the end of the lifetime of an object other than a temporary object is
an implicit full-expression. Conversions applied to the result of an expression in order to satisfy the requirements of the
language construct in which the expression appears are also considered to be part of the full-expression.

[ Example:

struct S {
S(int i): I(i) { }
int& v() { return I; }

private:
int I;
};
S s1(1); // full-expression is call of S::S(int)
S s2 = 2; // full-expression is call of S::S(int)
void £() {
if (8(3).v()) // full-expression includes Ivalue-to-rvalue and
// int to bool conversions, performed before
// temporary is deleted at end of full-expression
{32
}

—end example ]
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[ Note: the evaluation of a full-expression can include the evaluation of subexpressions that are not lexically part of the
full-expression. For example, subexpressions involved in evaluating default argument expressions (8.3.6) are considered
to be created in the expression that calls the function, not the expression that defines the default argument. — end note |

Accessing an object designated by a volatile lvalue (3.10), modifying an object, calling a library I/O function, or
calling a function that does any of those operations are all side effects, which are changes in the state of the execution
environment. Evaluation of an expression (or a sub-expression) in general includes both value computations (including
determining the identity of an object for lvalue evaluation and fetching a value previously assigned to an object for
rvalue evaluation) and initiation of side effects. When a call to a library I/O function returns or an access to a volatile
object is evaluated the side effect is considered complete, even though some external actions implied by the call (such
as the I/O itself) or by the volatile access may not have completed yet.

Sequenced before is an asymmetric, transitive, pair-wise relation between evaluations executed by a single thread, which
induces a partial order among those evaluations. Given any two evaluations A and B, if A is sequenced before B, then the
execution of A shall precede the execution of B. If A is not sequenced before B and B is not sequenced before A, then A
and B are unsequenced. [ Note: The execution of unsequenced evaluations can overlap. — end note ] Evaluations A and
B are indeterminately sequenced when either A is sequenced before B or B is sequenced before A, but it is unspecified
which. [ Note: Indeterminately sequenced evaluations cannot overlap, but either could be executed first. — end note |

Every value computation and side effect associated with a full-expression is sequenced before every value computation
and side effect associated with the next full-expression to be evaluated.®.

Except where noted, evaluations of operands of individual operators and of subexpressions of individual expressions are
unsequenced. [ Note: In an expression that is evaluated more than once during the execution of a program, unsequenced
and indeterminately sequenced evaluations of its subexpressions need not be performed consistently in different evalua-
tions. — end note | The value computations of the operands of an operator are sequenced before the value computation
of the result of the operator. If a side effect on a scalar object is unsequenced relative to either a different side effect on
the same scalar object or a value computation using the value of the same scalar object, the behavior is undefined.

[ Example:
i = v[i++]; // the behavior is undefined
i=7, i++, i++; // i becomes 9
i=++i + 1; // the behavior is undefined
i=1+1; // the value of 1 is incremented

— end example |

When calling a function (whether or not the function is inline), every value computation and side effect associated with
any argument expression, or with the postfix expression designating the called function, is sequenced before execution of
every expression or statement in the body of the called function. [ Note: Value computations and side effects associated
with different argument expressions are unsequenced. — end note ] Every evaluation in the calling function (including
other function calls) that is not otherwise specifically sequenced before or after the execution of the body of the called
function is indeterminately sequenced with respect to the execution of the called function.”’ Several contexts in C++
cause evaluation of a function call, even though no corresponding function call syntax appears in the translation unit.

8 As specified in 12.2, after a full-expression is evaluated, a sequence of zero or more invocations of destructor functions for temporary objects
takes place, usually in reverse order of the construction of each temporary object.
91n other words, function executions do not interleave with each other.

Draft
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[ Example: Evaluation of a new expression invokes one or more allocation and constructor functions; see 5.3.4. For
another example, invocation of a conversion function (12.3.2) can arise in contexts in which no function call syntax
appears. — end example ] The sequencing constraints on the execution of the called function (as described above) are
features of the function calls as evaluated, whatever the syntax of the expression that calls the function might be.

1.10 Multi-threaded executions and data races [intro.multithread]

Under a hosted implementation, a C++ program can have more than one thread of execution (ak.a. thread) running
concurrently. The execution of each thread proceeds as defined by the remainder of this standard. The execution of
the entire program consists of an execution of all of its threads. [ Note: Usually the execution can be viewed as an
interleaving of all its threads. However, some kinds of atomic operations, for example, allow executions inconsistent
with a simple interleaving, as described below. — end note | Under a freestanding implementation, it is implementation-
defined whether a program can have more than one thread of execution.

The value of an object visible to a thread T at a particular point might be the initial value of the object, a value assigned to
the object by T, or a value assigned to the object by another thread, according to the rules below. [ Note: In some cases,
there may instead be undefined behavior. Much of this section is motivated by the desire to support atomic operations
with explicit and detailed visibility constraints. However, it also implicitly supports a simpler view for more restricted
programs. — end note ]

Two expression evaluations conflict if one of them modifies a memory location and the other one accesses or modifies
the same memory location.

The library defines a number of atomic operations (clause 29) and operations on locks (clause 30) that are specially
identified as synchronization operations. These operations play a special role in making assignments in one thread visible
to another. A synchronization operation is either a consume operation, an acquire operation, o a release operation, or
both an acquire and release operation, on one or more memory locations; the semantics of these are described below.
In addition, there are relaxed atomic operations, which are not synchronization operations, and atomic read-modify-
write operations, which have special characteristics, also described below. [ Note: For example, a call that acquires a
lock will perform an acquire operation on the locations comprising the lock. Correspondingly, a call that releases the
same lock will perform a release operation on those same locations. Informally, performing a release operation on A
forces prior side effects on other memory locations to become visible to other threads that later perform a consume or
an acquire operation on A. We do not include “relaxed” atomic operations as synchronization operations although, like
synchronization operations, they cannot contribute to data races. — end note ]

All modifications to a particular atomic object M occur in some particular total order, called the modification order of M.
If A and B are modifications of an atomic object M, and A happens before B, then A shall precede B in the modification
order of M, which is defined below. [ Note: This states that the modification orders must respect happens before. — end
note | [ Note: There is a separate order for each scalar object. There is no requirement that these can be combined into a
single total order for all objects. In general this will be impossible since different threads may observe modifications to
different variables in inconsistent orders. — end note |

A release sequence on an atomic object M is a maximal contiguous sub-sequence of side effects in the modification
order of M, where the first operation is a release, and every subsequent operation

— is performed by the same thread that performed the release, or

— is a non-relaxed atomic read-modify-write operation.
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An evaluation A that performs a release operation on an object M synchronizes with an evaluation B that performs
an acquire operation on M and reads a value written by any side effect in the release sequence headed by A. [ Note:
Except in the specified cases, reading a later value does not necessarily ensure visibility as described below. Such a
requirement would sometimes interfere with efficient implementation. — end note ] [ Note: The specifications of the
synchronization operations define when one reads the value written by another. For atomic variables, the definition is
clear. All operations on a given lock occur in a single total order. Each lock acquisition “reads the value written” by the
last lock release. — end note |

An evaluation A carries a dependency to an evaluation B if

— the value of A is used as an operand of B, unless:

— Bis an invocation of any specialization of std: :kill_dependency (29.1), or

— A is the left operand of a built-in logical AND (°&&’, see 5.14) or logical OR (’ | | 7, see 5.15) operator, or

— A is the left operand of a conditional (’?’, see 5.16) operator;

or

— A writes a scalar object or bit-field M, B reads the value written by A from M, and A is sequenced before B, or

— for some evaluation X, A carries a dependency to X, and X carries a dependency to B.

[ Note: ‘Carries a dependency to’ is a subset of ‘is sequenced before’, and is similarly strictly intra-thread. — end note |

An evaluation A is dependency-ordered before an evaluation B if

— A performs a release operation on an atomic object M, and B performs a consume operation on M and reads a
value written by any side effect in the release sequence headed by A, or

— for some evaluation X, A is dependency-ordered before X and X carries a dependency to B.

[ Note: The relation ‘is dependency-ordered before’ is analogous to ‘synchronizes with’, but uses release/consume in
place of release/acquire. — end note |

An evaluation A inter-thread happens before an evaluation B if

— A synchronizes with B, or

— A is dependency-ordered before B, or

— for some evaluation X

— A synchronizes with X and X is sequenced before B, or

— A is sequenced before X and X inter-thread happens before B, or

— A inter-thread happens before X and X inter-thread happens before B.

[ Note: The ‘inter-thread happens before’ relation describes arbitrary concatenations of ‘sequenced before’, ‘synchro-
nizes with’ and ‘dependency-ordered before’ relationships, with two exceptions. The first exception is that a concate-
nation is not permitted to end with ‘dependency-ordered before’ followed by ‘sequenced before’. The reason for this
limitation is that a consume operation participating in a ‘dependency-ordered before’ relationship provides ordering only
with respect to operations to which this consume operation actually carries a dependency. The reason that this limita-
tion applies only to the end of such a concatenation is that any subsequent release operation will provide the required
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ordering for a prior consume operation. The second exception is that a concatenation is not permitted to consist entirely

of ‘sequenced before’. The reasons for this limitation are (1) to permit ‘inter-thread happens before’ to be transitively

closed and (2) the ‘happens before’ relation, defined below, provides for relationships consisting entirely of ‘sequenced

before’. — end note |

An evaluation A happens before an evaluation B if:
— A is sequenced before B, or
— forsome-evaluationX; A inter-thread happens before X-and-X-happens-before B.
A visible side effect A on an object M with respect to a value computation B of M satisfies the conditions:
— A happens before B, and
— there is no other side effect X to M such that A happens before X and X happens before B.

The value of a non-atomic scalar object M, as determined by evaluation B, shall be the value stored by the visible side
effect A. [ Note: If there is ambiguity about which side effect to a non-atomic object is visible, then there is a data race,
and the behavior is undefined. —end note] [ Note: This states that operations on ordinary variables are not visibly
reordered. This is not actually detectable without data races, but it is necessary to ensure that data races, as defined
here, and with suitable restrictions on the use of atomics, correspond to data races in a simple interleaved (sequentially
consistent) execution. — end note |

The visible sequence of side effects on an atomic object M, with respect to a value computation B of M, is a maximal
contiguous sub-sequence of side effects in the modification order of M, where the first side effect is visible with respect
to B, and for every subsequent side effect, it is not the case that B happens before it. The value of an atomic object M, as
determined by evaluation B, shall be the value stored by some operation in the visible sequence of M with respect to B.
Furthermore, if a value computation A of an atomic object M happens before a value computation B of M, and the value
computed by A corresponds to the value stored by side effect X, then the value computed by B shall either equal the value
computed by A, or be the value stored by side effect ¥, where Y follows X in the modification order of M. [ Note: This
effectively disallows compiler reordering of atomic operations to a single object, even if both operations are “relaxed”
loads. By doing so, we effectively make the “cache coherence” guarantee provided by most hardware available to C++
atomic operations. — end note ] [ Note: The visible sequence depends on the happens before relation, which depends
on the values observed by loads of atomics, which we are restricting here. The intended reading is that there must exist
an association of atomic loads with modifications they observe that, together with suitably chosen modification orders
and the happens before relation derived as described above, satisfy the resulting constraints as imposed here. — end
note |

The execution of a program contains a data race if it contains two conflicting actions in different threads, at least one of
which is not atomic, and neither happens before the other. Any such data race results in undefined behavior. [ Note: It
can be shown that programs that correctly use simple locks to prevent all data races, and use no other synchronization op-
erations, behave as though the executions of their constituent threads were simply interleaved, with each observed value
of an object being the last value assigned in that interleaving. This is normally referred to as “sequential consistency”.
However, this applies only to race-free programs, and race-free programs cannot observe most program transformations
that do not change single-threaded program semantics. In fact, most single-threaded program transformations continue
to be allowed, since any program that behaves differently as a result must perform an undefined operation. — end note ]

[ Note: Compiler transformations that introduce assignments to a potentially shared memory location that would not be
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modified by the abstract machine are generally precluded by this standard, since such an assignment might overwrite
another assignment by a different thread in cases in which an abstract machine execution would not have encountered
a data race. This includes implementations of data member assignment that overwrite adjacent members in separate
memory locations. We also generally preclude reordering of atomic loads in cases in which the atomics in question may
alias, since this may violate the “visible sequence” rules. — end note |

[ Note: Transformations that introduce a speculative read of a potentially shared memory location may not preserve the
semantics of the C++ program as defined in this standard, since they potentially introduce a data race. However, they
are typically valid in the context of an optimizing compiler that targets a specific machine with well-defined semantics
for data races. They would be invalid for a hypothetical machine that is not tolerant of races or provides hardware race
detection. — end note |
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in Chapter R (Reference Manual) of Stroustrup: The C++ Programming Language (second edition, Addison-Wesley
Publishing Company, ISBN 0-201-53992-6, copyright ©)1991 AT&T). That, in turn, is based on the C programming
language as described in Appendix A of Kernighan and Ritchie: The C Programming Language (Prentice-Hall, 1978,
ISBN 0-13-110163-3, copyright ©)1978 AT&T).

Portions of the library clauses of this International Standard are based on work by P.J. Plauger, which was published as
The Draft Standard C++ Library (Prentice-Hall, ISBN 0-13-117003-1, copyright (©1995 P.J. Plauger).

All rights in these originals are reserved.
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Chapter 2 Lexical conventions [lex]

The text of the program is kept in units called source files in this International Standard. A source file together with all
the headers (17.4.1.2) and source files included (16.2) via the preprocessing directive #include, less any source lines
skipped by any of the conditional inclusion (16.1) preprocessing directives, is called a translation unit. [ Note: a C++
program need not all be translated at the same time. — end note |

[ Note: previously translated translation units and instantiation units can be preserved individually or in libraries. The
separate translation units of a program communicate (3.5) by (for example) calls to functions whose identifiers have ex-
ternal linkage, manipulation of objects whose identifiers have external linkage, or manipulation of data files. Translation
units can be separately translated and then later linked to produce an executable program (3.5). — end note ]

2.1 Phases of translation [lex.phases]

The precedence among the syntax rules of translation is specified by the following phases.'”

1. Physical source file characters are mapped, in an implementation-defined manner, to the basic source character set
(introducing new-line characters for end-of-line indicators) if necessary. The set of physical source file characters
accepted is implementation-defined. Trigraph sequences (2.3) are replaced by corresponding single-character
internal representations. Any source file character not in the basic source character set (2.2) is replaced by the
universal-character-name that designates that character. (An implementation may use any internal encoding, so
long as an actual extended character encountered in the source file, and the same extended character expressed in
the source file as a universal-character-name (i.e. using the \uXXXX notation), are handled equivalently.)

2. Each instance of a backslash character (\) immediately followed by a new-line character is deleted, splicing phys-
ical source lines to form logical source lines. Only the last backslash on any physical source line shall be eligible
for being part of such a splice. If, as a result, a character sequence that matches the syntax of a universal-character-
name is produced, the behavior is undefined. If a source file that is not empty does not end in a new-line character,
or ends in a new-line character immediately preceded by a backslash character before any such splicing takes
place, the behavior is undefined.

3. The source file is decomposed into preprocessing tokens (2.4) and sequences of white-space characters (including
comments). A source file shall not end in a partial preprocessing token or in a partial comment.'" Each comment
is replaced by one space character. New-line characters are retained. Whether each nonempty sequence of white-
space characters other than new-line is retained or replaced by one space character is implementation-defined.

10) Implementations must behave as if these separate phases occur, although in practice different phases might be folded together.

D" A partial preprocessing token would arise from a source file ending in the first portion of a multi-character token that requires a terminating
sequence of characters, such as a header-name that is missing the closing " or >. A partial comment would arise from a source file ending with an
unclosed /* comment.
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2.2

The process of dividing a source file’s characters into preprocessing tokens is context-dependent. [ Example: see
the handling of < within a #include preprocessing directive. — end example |

. Preprocessing directives are executed, macro invocations are expanded, and _Pragma unary operator expressions

are executed. If a character sequence that matches the syntax of a universal-character-name is produced by token
concatenation (16.3.3), the behavior is undefined. A #include preprocessing directive causes the named header
or source file to be processed from phase 1 through phase 4, recursively. All preprocessing directives are then
deleted.

. Each source character set member and universal-character-name in a character literal or a string literal, as well

as each escape sequence in a character literal or a non-raw string literal, is converted to the corresponding mem-
ber of the execution character set (2.13.2, 2.13.4); if there is no corresponding member, it is converted to an
implementation-defined member other than the null (wide) character.'?

. Adjacent literal tokens are concatenated.

. White-space characters separating tokens are no longer significant. Each preprocessing token is converted into a

token. (2.6). The resulting tokens are syntactically and semantically analyzed and translated as a translation unit.
[ Note: The process of analyzing and translating the tokens may occasionally result in one token being replaced
by a sequence of other tokens (14.2). —end note ] [ Note: Source files, translation units and translated translation
units need not necessarily be stored as files, nor need there be any one-to-one correspondence between these
entities and any external representation. The description is conceptual only, and does not specify any particular
implementation. — end note ]

. Translated translation units and instantiation units are combined as follows: [ Note: some or all of these may be

supplied from a library. — end note ] Each translated translation unit is examined to produce a list of required
instantiations. [ Note: this may include instantiations which have been explicitly requested (14.7.2). —end
note ] The definitions of the required templates are located. It is implementation-defined whether the source of
the translation units containing these definitions is required to be available. [ Note: an implementation could
encode sufficient information into the translated translation unit so as to ensure the source is not required here.
— end note | All the required instantiations are performed to produce instantiation units. [ Note: these are similar
to translated translation units, but contain no references to uninstantiated templates and no template definitions.
— end note ] The program is ill-formed if any instantiation fails.

. All external object and function references are resolved. Library components are linked to satisfy external refer-

ences to functions and objects not defined in the current translation. All such translator output is collected into a
program image which contains information needed for execution in its execution environment.

Character sets [lex.charset]

The basic source character set consists of 96 characters: the space character, the control characters representing hori-

zontal tab, vertical tab, form feed, and new-line, plus the following 91 graphical characters:

13)

abcdefghijklmnopgrstuvwzxyz

12 An implementation need not convert all non-corresponding source characters to the same execution character.

9The glyphs for the members of the basic source character set are intended to identify characters from the subset of ISO/IEC 10646 which
corresponds to the ASCII character set. However, because the mapping from source file characters to the source character set (described in translation
phase 1) is specified as implementation-defined, an implementation is required to document how the basic source characters are represented in source

files.
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ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789
SAYIT#C)<>dh ey o2 x+ -/ T8~ =, "

The universal-character-name construct provides a way to name other characters.

hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit
universal-character-name:

\u hex-quad
\U hex-quad hex-quad

The character designated by the universal-character-name \UNNNNNNNN is that character whose character short name
in ISO/IEC 10646 is NNNNNNNN; the character designated by the universal-character-name \uNNNN is that character
whose character short name in ISO/IEC 10646 is 0000NNNN. If the hexadecimal value for a universal-character-name
corresponds to a surrogate code point (in the range 0xD800—-0xDFFF, inclusive), the program is ill-formed. Additionally,
if the hexadecimal value for a universal-character-name outside a character or string literal corresponds to a control
character (in either of the ranges 0x00-0x 1F or 0x7F-0x9F, both inclusive) or to a character in the basic source character
set, the program is ill-formed.

The basic execution character set and the basic execution wide-character set shall each contain all the members of the
basic source character set, plus control characters representing alert, backspace, and carriage return, plus a null character
(respectively, null wide character), whose representation has all zero bits. For each basic execution character set, the
values of the members shall be non-negative and distinct from one another. In both the source and execution basic
character sets, the value of each character after O in the above list of decimal digits shall be one greater than the value
of the previous. The execution character set and the execution wide-character set are supersets of the basic execution
character set and the basic execution wide-character set, respectively. The values of the members of the execution
character sets are implementation-defined, and any additional members are locale-specific.

2.3 Trigraph sequences [lex.trigraph]

Before any other processing takes place, each occurrence of one of the following sequences of three characters (“trigraph
sequences”) is replaced by the single character indicated in Table 1.

Table 1: trigraph sequences
] trigraph  replacement \ trigraph  replacement \ trigraph  replacement \

?7= # 77( [ ?77< {
77/ \ 77) ] 77> }
777 - 771 | 77— ~

[ Example:

becomes
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#define arraycheck(a,b) alb] || b[al

— end example ]

No other trigraph sequence exists. Each 7 that does not begin one of the trigraphs listed above is not changed.

2.4 Preprocessing tokens [lex.pptoken]

preprocessing-token:
header-name
identifier
pp-number
character-literal
string-literal
preprocessing-op-or-punc
each non-white-space character that cannot be one of the above
Each preprocessing token that is converted to a token (2.6) shall have the lexical form of a keyword, an identifier, a
literal, an operator, or a punctuator.

A preprocessing token is the minimal lexical element of the language in translation phases 3 through 6. The cate-
gories of preprocessing token are: header names, identifiers, preprocessing numbers, character literals, string literals,
preprocessing-op-or-punc, and single non-white-space characters that do not lexically match the other preprocessing
token categories. If a ’ or a " character matches the last category, the behavior is undefined. Preprocessing tokens can
be separated by white space; this consists of comments (2.7), or white-space characters (space, horizontal tab, new-line,
vertical tab, and form-feed), or both. As described in clause 16, in certain circumstances during translation phase 4,
white space (or the absence thereof) serves as more than preprocessing token separation. White space can appear within
a preprocessing token only as part of a header name or between the quotation characters in a character literal or string
literal.

If the input stream has been parsed into preprocessing tokens up to a given character, the next preprocessing token is
the longest sequence of characters that could constitute a preprocessing token, even if that would cause further lexical
analysis to fail.

[ Example: The program fragment 1Ex is parsed as a preprocessing number token (one that is not a valid floating or
integer literal token), even though a parse as the pair of preprocessing tokens 1 and Ex might produce a valid expression
(for example, if Ex were a macro defined as +1). Similarly, the program fragment 1E1 is parsed as a preprocessing
number (one that is a valid floating literal token), whether or not E is a macro name. — end example |

[ Example: The program fragment x+++++y is parsed as x ++ ++ + y, which, if x and y are of built-in types, violates

a constraint on increment operators, even though the parse x ++ + ++ y might yield a correct expression. — end
example ]
2.5 Alternative tokens [lex.digraph]

Alternative token representations are provided for some operators and punctuators.'®

9 These include “digraphs” and additional reserved words. The term “digraph” (token consisting of two characters) is not perfectly descriptive,
since one of the alternative preprocessing-tokens is %:%: and of course several primary tokens contain two characters. Nonetheless, those alternative
tokens that aren’t lexical keywords are colloquially known as “digraphs”.
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In all respects of the language, each alternative token behaves the same, respectively, as its primary token, except for its
spelling.!> The set of alternative tokens is defined in Table 2.

Table 2: alternative tokens
] alternative  primary \ alternative  primary \ alternative  primary ‘

<% { and && and_eq &=
%> } bitor | or_eq |=
<: [ or |l xor_eq ~=
1> ] xor - not !
VR # compl ~ not_eq I=
Hoith: ## bitand &
2.6 Tokens [lex.token]
token:

identifier

keyword

literal

()pemt()r

punctuator

There are five kinds of tokens: identifiers, keywords, literals, ' operators, and other separators. Blanks, horizontal and
vertical tabs, newlines, formfeeds, and comments (collectively, “white space”), as described below, are ignored except as
they serve to separate tokens. [ Nofe: Some white space is required to separate otherwise adjacent identifiers, keywords,
numeric literals, and alternative tokens containing alphabetic characters. — end note ]

2.7 Comments [lex.comment]

The characters /* start a comment, which terminates with the characters */. These comments do not nest. The characters
// start a comment, which terminates with the next new-line character. If there is a form-feed or a vertical-tab character
in such a comment, only white-space characters shall appear between it and the new-line that terminates the comment;
no diagnostic is required. [ Note: The comment characters //, /*, and */ have no special meaning within a // comment
and are treated just like other characters. Similarly, the comment characters // and /* have no special meaning within
a /* comment. — end note |

2.8 Header names [lex.header]

header-name:
< h-char-sequence >
" g-char-sequence "
h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except new-line and >

15 Thus the “stringized” values (16.3.2) of [ and <: will be different, maintaining the source spelling, but the tokens can otherwise be freely
interchanged.
16) Literals include strings and character and numeric literals.
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q-char-sequence:
g-char
q-char-sequence g-char

q-char:
any member of the source character set except new-line and "

Header name preprocessing tokens shall only appear within a #include preprocessing directive (16.2). The sequences
in both forms of header-names are mapped in an implementation-defined manner to headers or to external source file
names as specified in 16.2.

If either of the characters ’ or \, or either of the character sequences /* or // appears in a g-char-sequence or a

h-char-sequence, or the character " appears in a h-char-sequence, the behavior is undefined.!”
2.9 Preprocessing numbers [lex.ppnumber]
pp-number:
digit
. digit

pp-number digit
pp-number nondigit
pp-number e sign
pp-number E sign
pp-number .

Preprocessing number tokens lexically include all integral literal tokens (2.13.1) and all floating literal tokens (2.13.3).

A preprocessing number does not have a type or a value; it acquires both after a successful conversion (as part of
translation phase 7, 2.1) to an integral literal token or a floating literal token.

2.10 Identifiers [lex.name]

identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit

identifier-nondigit:
nondigit
universal-character-name
other implementation-defined characters

nondigit: one of
abcdefghijklm
nopgrstuvwvzxyz
ABCDEFGHIJKLM
NOPQRSTUVWXYZ_
digit: one of
0123456789
An identifier is an arbitrarily long sequence of letters and digits. Each universal-character-name in an identifier shall
designate a character whose encoding in ISO 10646 falls into one of the ranges specified in Annex E. Upper- and

1) Thus, sequences of characters that resemble escape sequences cause undefined behavior.
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lower-case letters are different. All characters are significant.'®

2 In addition, some identifiers are reserved for use by C++ implementations and standard libraries (17.4.3.2.2) and shall
not be used otherwise; no diagnostic is required.

2.11 Keywords [lex.key]

1 The identifiers shown in Table 3 are reserved for use as keywords (that is, they are unconditionally treated as keywords
in phase 7):

Table 3: keywords

alignas continue friend reinterpret_cast typedef
alignof decltype goto return typeid
asm default if short typename
auto delete inline signed union
bool double int sizeof unsigned
break do long static_assert using
case dynamic_cast mutable static_cast virtual
catch else namespace static void
char enum new struct volatile
charl6_t explicit nullptr switch wchar_t
char32_t export operator template while
class extern private this

const false protected throw

constexpr float public true

const_cast for register try

2 Furthermore, the alternative representations shown in Table 4 for certain operators and punctuators (2.5) are reserved
and shall not be used otherwise:

Table 4: alternative representations

and and_eq bitand bitor compl not
not_eq or or_eq xor xor_eq
2.12 Operators and punctuators [lex.operators]

1 The lexical representation of C++ programs includes a number of preprocessing tokens which are used in the syntax of
the preprocessor or are converted into tokens for operators and punctuators:

18)0n systems in which linkers cannot accept extended characters, an encoding of the universal-character-name may be used in forming valid external
identifiers. For example, some otherwise unused character or sequence of characters may be used to encode the \u in a universal-character-name.
Extended characters may produce a long external identifier, but C++ does not place a translation limit on significant characters for external identifiers.
In C++, upper- and lower-case letters are considered different for all identifiers, including external identifiers.
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preprocessing-op-or-punc: one of

{ } [ ] # ## ( )

<: > <% %> %: bhith: ; :

new delete ? H . Lk

+ - * / % - & | ~
| = < > += -= *= = %=
= &= = << >> >>= <<= == 1=
<= >= && | ++ - s —>% ->
and and_eq bitand bitor compl not not_eq

or or_eq Xor xor_eq

Each preprocessing-op-or-punc is converted to a single token in translation phase 7 (2.1).

2.13 Literals [lex.literal]

There are several kinds of literals.'?

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal
pointer-literal

2.13.1 Integer literals [lex.icon]

integer-literal:
decimal-literal integer-suffixop
octal-literal integer-suffixop
hexadecimal-literal integer-suffixop;

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
123456789

octal-digit: one of
01234567

hexadecimal-digit: one of
0123456789
abcdef
ABCDEF

19) The term “literal” generally designates, in this International Standard, those tokens that are called “constants” in ISO C.
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integer-suffix:
unsigned-suffix long-suffixop
unsigned-suffix long-long-suffixop
long-suffix unsigned-suffixop;
long-long-suffix unsigned-suffixop
unsigned-suffix: one of
ulU
long-suffix: one of
1L
long-long-suffix: one of
11 LL
1 An integer literal is a sequence of digits that has no period or exponent part. An integer literal may have a prefix
that specifies its base and a suffix that specifies its type. The lexically first digit of the sequence of digits is the most
significant. A decimal integer literal (base ten) begins with a digit other than 0 and consists of a sequence of decimal
digits. An octal integer literal (base eight) begins with the digit 0 and consists of a sequence of octal digits.’? A
hexadecimal integer literal (base sixteen) begins with Ox or 0X and consists of a sequence of hexadecimal digits, which
include the decimal digits and the letters a through f and A through F with decimal values ten through fifteen. [ Example:
the number twelve can be written 12, 014, or 0XC. — end example |

2 The type of an integer literal is the first of the corresponding list in Table 5 in which its value can be represented.

Table 5: Types of Integer Constants

3

Suffix Decimal Constant Octal or Hexadecimal Constant
none int int
long int unsigned int
long long int long int
unsigned long int
long long int
unsigned long long int
uorU unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int | unsigned long long int
lorL long int long int
long long int unsigned long int
long long int
unsigned long int
BothuorU unsigned long int unsigned long int
andlorL unsigned long long int | unsigned long long int
1llorLL long long int long long int
unsigned long int
BothuorU unsigned long long int | unsigned long long int
and 11 or LL

If an integer literal cannot be represented by any type in its list and an extended integer type can represent its value, it

20) The digits 8 and 9 are not octal digits.
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may have that extended integer type. If all of the types in the list for the literal are signed, the extended integer type shall
be signed. If all of the types in the list for the literal are unsigned, the extended integer type shall be unsigned. If the list
contains both signed and unsigned types, the extended integer type may be signed or unsigned. A program is ill-formed
if one of its translation units contains an integer literal that cannot be represented by any of the allowed types.

2.13.2 Character literals [lex.ccon]

character-literal:
’ c-char-sequence ’
u’ c-char-sequence ’
U’ c-char-sequence ’
L’ c-char-sequence °’
c-char-sequence:
c-char
c-char-sequence c-char

c-char:

any member of the source character set except

the single-quote ’, backslash \, or new-line character

escape-sequence

universal-character-name
escape-sequence:

simple-escape-sequence

octal-escape-sequence

hexadecimal-escape-sequence
simple-escape-sequence: one of

VoA N7\

\a \b \f \n \r \t \v
octal-escape-sequence:

\ octal-digit

\ octal-digit octal-digit

\ octal-digit octal-digit octal-digit
hexadecimal-escape-sequence:

\x hexadecimal-digit

hexadecimal-escape-sequence hexadecimal-digit

A character literal is one or more characters enclosed in single quotes, as in >x’, optionally preceded by one of the letters
u,U,orL,asinu’y’,U’z’, or L’x’, respectively. A character literal that does not begin with u, U, or L is an ordinary
character literal, also referred to as a narrow-character literal. An ordinary character literal that contains a single c-char
has type char, with value equal to the numerical value of the encoding of the c-char in the execution character set. An
ordinary character literal that contains more than one c-char is a multicharacter literal. A multicharacter literal has type
int and implementation-defined value.

A character literal that begins with the letter u, such as u’y?’, is a character literal of type char16_t. The value of a
char16_t literal containing a single c-char is equal to its ISO 10646 code point value, provided that the code point
is representable with a single 16-bit code unit. (That is, provided it is a basic multi-lingual plane code point.) If the
value is not representable within 16 bits, the program is ill-formed. A char16_t literal containing multiple c-chars
is ill-formed. A character literal that begins with the letter U, such as U’z’, is a character literal of type char32_t.
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The value of a char32_t literal containing a single c-char is equal to its ISO 10646 code point value. A char32_t
literal containing multiple c-chars is ill-formed. A character literal that begins with the letter L, such as L’x’, is a
wide-character literal. A wide-character literal has type wchar_t.?! The value of a wide-character literal containing a
single c-char has value equal to the numerical value of the encoding of the c-char in the execution wide-character set.
The value of a wide-character literal containing multiple c-chars is implementation-defined.

3 Certain nongraphic characters, the single quote ’, the double quote ", the question mark 7, and the backslash \, can
be represented according to Table 6. The double quote " and the question mark 7, can be represented as themselves or
by the escape sequences \" and \? respectively, but the single quote ’ and the backslash \ shall be represented by the
escape sequences \’ and \\ respectively. Escape sequences in which the character following the backslash is not listed
in Table 6 are conditionally-supported, with implementation-defined semantics. An escape sequence specifies a single
character.

Table 6: escape sequences

new-line NL(LF) \n
horizontal tab  HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
alert BEL \a
backslash \ A\
question mark ~ ? \7?
single quote ’ \’
double quote " \"
octal number 000 \ooo
hex number hhh \xhhh

4 The escape \ooo consists of the backslash followed by one, two, or three octal digits that are taken to specify the
value of the desired character. The escape \xhhh consists of the backslash followed by x followed by one or more
hexadecimal digits that are taken to specify the value of the desired character. There is no limit to the number of digits in
a hexadecimal sequence. A sequence of octal or hexadecimal digits is terminated by the first character that is not an octal
digit or a hexadecimal digit, respectively. The value of a character literal is implementation-defined if it falls outside of
the implementation-defined range defined for char (for literals with no prefix), char16_t (for literals prefixed by *u’),
char32_t (for literals prefixed by *U?), or wchar_t (for literals prefixed by ’L?).

5 A universal-character-name is translated to the encoding, in the execution character set, of the character named. If
there is no such encoding, the universal-character-name is translated to an implementation-defined encoding. [ Note: in
translation phase 1, a universal-character-name is introduced whenever an actual extended character is encountered in
the source text. Therefore, all extended characters are described in terms of universal-character-names. However, the
actual compiler implementation may use its own native character set, so long as the same results are obtained. — end
note |

2D They are intended for character sets where a character does not fit into a single byte.
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2.13.3 Floating literals [lex.fcon]

floating-literal:
fractional-constant exponent-part,, floating-suffixop;
digit-sequence exponent-part floating-suffixop;

fractional-constant:
digit-sequencegp, . digit-sequence
digit-sequence .
exponent-part:
e signgp digit-sequence
E signgp, digit-sequence
sign: one of
+ -
digit-sequence:
digit
digit-sequence digit
Sfloating-suffix: one of
f1FL
A floating literal consists of an integer part, a decimal point, a fraction part, an e or E, an optionally signed integer
exponent, and an optional type suffix. The integer and fraction parts both consist of a sequence of decimal (base ten)
digits. Either the integer part or the fraction part (not both) can be omitted; either the decimal point or the letter e (or
E ) and the exponent (not both) can be omitted. The integer part, the optional decimal point and the optional fraction
part form the significant part of the floating literal. The exponent, if present, indicates the power of 10 by which the
significant part is to be scaled. If the scaled value is in the range of representable values for its type, the result is
the scaled value if representable, else the larger or smaller representable value nearest the scaled value, chosen in an
implementation-defined manner. The type of a floating literal is double unless explicitly specified by a suffix. The
suffixes f and F specify float, the suffixes 1 and L specify long double. If the scaled value is not in the range of
representable values for its type, the program is ill-formed.

2.13.4 String literals [lex.string]

string-literal:

" s-char-sequenceop, "
u8" s-char-sequenceqp, "
u" s—char—sequenceo,,t "
g" s-char—sequenceap; "
L" s-char-sequenceyp; '
R raw-string
u8R raw-string
uR raw-string
UR raw-string
LR raw-string

s-char-sequence:
s-char
s-char-sequence s-char
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s-char:
any member of the source character set except
the double-quote ", backslash \, or new-line character
escape-sequence
universal-character-name

raw-string:
" d-char-sequencegp; [ r-char-sequenceqp; 1 d-char-sequenceqp; "

r-char-sequence:
r-char
r-char-sequence r-char

r-char:
any member of the source character set, except
(1), a backslash \ followed by a u or U, or
(2), aright square bracket ] followed by the initial d-char-sequence
(which may be empty) followed by a double quote ".
universal-character-name

d-char-sequence:
d-char
d-char-sequence d-char

d-char:
any member of the basic source character set except:
space, the left square bracket [, the right square bracket ],
and the control characters representing horizontal tab,
vertical tab, form feed, and newline.

A string literal is a sequence of characters (as defined in 2.13.2) surrounded by double quotes, optionally prefixed by
R, u8, uSR, u, uR, U, UR, L, or LR, as in "...", R"...", u8"..." u8R"s*x[...]*x" u"..." uR"s~ [...]%~ ",
u"...",UR"zzz[...]zzz",L"...", orLR"[...]", respectively.

A string literal that has an R in the prefix is a raw string literal. The terminating d-char-sequence of a raw-string is the
same sequence of characters as the initial d-char-sequence. A d-char-sequence shall consist of at most 16 characters.

[ Note: A source-file new-line in a raw string literal results in a new-line in the resulting execution string-literal, unless
preceded by a backslash. Assuming no whitespace at the beginning of lines in the following example, the assert will
succeed:

const char *p = R"[a\

b

cl";

assert(std::strcmp(p, "ab\nc") == 0);

—end note |

A string literal that does not begin with u8, u, U, or L is an ordinary string literal, and is initialized with the given
characters.

A string literal that begins with u8, such asu8"asdf", is a UTF-8 string literal and is initialized with the given characters
as encoded in UTF-8.
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Ordinary string literals and UTF-8 string literals are also referred to as narrow string literals. A narrow string literal has
type “array of n const char”, where n is the size of the string as defined below, and has static storage duration (3.7).

A string literal that begins with u, such as u"asdf", is a char16_t string literal. A char16_t string literal has type
“array of n const char16_t”, where n is the size of the string as defined below; it has static storage duration and is
initialized with the given characters. A single c-char may produce more than one char16_t character in the form of
surrogate pairs.

A string literal that begins with U, such as U"asdf", is a char32_t string literal. A char32_t string literal has type
“array of n const char32_t”, where n is the size of the string as defined below; it has static storage duration and is
initialized with the given characters.

A string literal that begins with L, such as L"asdf", is a wide string literal. A wide string literal has type “array of n
const wchar_t”, where n is the size of the string as defined belowit has static storage duration and is initialized with
the given characters.

Whether all string literals are distinct (that is, are stored in nonoverlapping objects) is implementation-defined. The
effect of attempting to modify a string literal is undefined.

In translation phase 6 (2.1), adjacent string literals are concatenated. If both string literals have the same prefix, the
resulting concatenated string literal has that prefix. If one string literal has no prefix, it is treated as a string literal
of the same prefix as the other operand. If a UTF-8 string literal token is adjacent to a wide string literal token, the
program is ill-formed. Any other concatenations are conditionally supported with implementation-defined behavior.
[ Note: This concatenation is an interpretation, not a conversion. — end note | [ Example: Here are some examples of
valid concatenations:

Table 7: string literal concatenations
source means source means source means
ullall ullbll ulla n Ullall Ullbll Ullabll Lllall LIIblI Lllabll
ullall llbll ullabll Ullall llbll Ullabll Lllall Ilbll Lllabll
llall ull'bll ulla n llall Ullbll Ullabll llall Lllbll Lllabll

— end example |
Characters in concatenated strings are kept distinct.
[ Example:
"\xA" "B"
contains the two characters >\xA’ and B’ after concatenation (and not the single hexadecimal character > \xAB?).
—end example |

After any necessary concatenation, in translation phase 7 (2.1), >\0? is appended to every string literal so that programs
that scan a string can find its end.

Escape sequences in non-raw string literals and universal-character-names in string literals have the same meaning as
in character literals (2.13.2), except that the single quote ’ is representable either by itself or by the escape sequence
\’, and the double quote " shall be preceded by a \. In a narrow string literal, a universal-character-name may map
to more than one char element due to multibyte encoding. The size of a char32_t or wide string literal is the total
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number of escape sequences, universal-character-names, and other characters, plus one for the terminating U’\0’ or
L’\0’. The size of a char16_t string literal is the total number of escape sequences, universal-character-names, and
other characters, plus one for each character requiring a surrogate pair, plus one for the terminating u’\0’. [ Note:
The size of a char16_t string literal is the number of code units, not the number of characters. — end note ]| Within
char32_t and char16_t literals, any universal-character-names shall be within the range 0x0 to 0x10FFFF. The size
of a narrow string literal is the total number of escape sequences and other characters, plus at least one for the multibyte
encoding of each universal-character-name, plus one for the terminating >\0°’.

2.13.5 Boolean literals [lex.bool]

boolean-literal:
false
true

The Boolean literals are the keywords false and true. Such literals have type bool. They are not lvalues.
2.13.6 Pointer literals [lex.nullptr]

pointer-literal:
nullptr

The pointer literal is the keyword nullptr. It is an rvalue of type std: :nullptr_t.
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Chapter 3 Basic concepts [basic]

[ Note: this clause presents the basic concepts of the C++ language. It explains the difference between an object and
a name and how they relate to the notion of an /value. It introduces the concepts of a declaration and a definition
and presents C++’s notion of type, scope, linkage, and storage duration. The mechanisms for starting and terminating
a program are discussed. Finally, this clause presents the fundamental types of the language and lists the ways of
constructing compound types from these. — end note |

[ Note: This clause does not cover concepts that affect only a single part of the language. Such concepts are discussed
in the relevant clauses. — end note |

An entity is a value, object, : variable, reference, function, instance-ofa
fanetion; enumerator, type, class member, template template specialization, namespace, or parameter pack.

A name is a use of an identifier (2.10), operator- func m)n ld (13. 5) conversion-func lmn id (12 3 2) or templa[e ld (14 2)
that denotes an entity or label (6.6.4, 6.1).

clepeta hoelioen

Every name that denotes an entity is introduced by a declaration. Every name that denotes a label is introduced either
by a goto statement (6.6.4) or a labeled-statement (6.1).

A variable is introduced by the declaration of an object. The variable’s name denotes the object.

Some names denote types;-elasses;-enamerations; or templates. In general, it is necessary to determine whether or not a
name denotes one of these entities before parsing the program that contains it. The process that determines this is called
name lookup (3.4).

Two names are the same if
— they are identifier s composed of the same character sequence; or

— they are the-names-of-overloaded-operatorfunetions operator-function-ids formed with the same operator; or
— they are the-names-of-user-defined-conversion-funetions conversion-function-ids formed with the same type-, or

— they are template-ids that refer to the same class or function (14.4).

An-identifier A name used in more than one translation unit can potentially refer to the same entity in these translation
units depending on the linkage (3.5) of the identifier name specified in each translation unit.

3.1 Declarations and definitions [basic.def]

A declaration (clause 7) introduces names into a translation unit or redeclares names introduced by previous declarations.
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int a;
extern const int c = 1;
int f(int x) { return x+a; }
struct S { int a; int b; };
struct X {

int x;

static int y;

XO: x(0) {1}
};
int X::y = 1;
enum { up, down };
namespace N { int d; }
namespace N1 = N;
X anX;

whereas these are just declarations:

extern int a;
extern const int c;
int f(int);

struct S;

typedef int Int;
extern X anotherX;
using N::d;

— end example ]

#include <string>

struct C {
std::string s;
};
int main() {
C a;
Cb=a;
b = a;
}

A declaration specifies the interpretation and attributes of these names.

[ Example: all but one of the following are definitions:

// defines a

// defines c

// defines £ and defines x

// defines S, S: :a, and S: :b

// defines X

// defines non-static data member x
// declares static data member y

// defines a constructor of X

// defines X: :y

// defines up and down
// defines N and N: :d
// defines N1

// defines anX

// declares a

// declares c

// declares £

// declares S

// declares Int

// declares anotherX
// declares N: :d

// std: :string is the standard library class (clause 21)

22) Appearing inside the braced-enclosed declaration-seq in a linkage-specification does not affect whether a declaration is a definition.

Draft

A declaration is a definition unless it declares a function without specifying the function’s body (8.4), it contains the
extern specifier (7.1.1) or a linkage-specification® (7.5) and neither an initializer nor a function-body, it declares a
static data member in a class definition (9.4), it is a class name declaration (9.1), or it is a typedef declaration (7.1.3),
a using-declaration (7.3.3), or a using-directive (7.3.4).

[ Note: in some circumstances, C++ implementations implicitly define the default constructor (12.1), copy construc-
tor (12.8), assignment operator (12.8), or destructor (12.4) member functions. [ Example: given
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the implementation will implicitly define functions to make the definition of C equivalent to

struct C {
std::string s;
cO: sO {1}

C(const C& x): s(x.s) { }
C& operator=(const C& x) { s = x.s; return *this; }
cO {1}

};

—end example ] — end note |
[ Note: a class name can also be implicitly declared by an elaborated-type-specifier (7.1.6.3). — end note |
A program is ill-formed if the definition of any object gives the object an incomplete type (3.9).

3.2 One definition rule [basic.def.odr]

No translation unit shall contain more than one definition of any variable, function, class type, enumeration type or
template.

An expression is potentially evaluated unless it is an unevaluated operand (clause 5) or a subexpression thereof. An
object or non-overloaded function whose name appears as a potentially-evaluated expression is used unless it is an object
that satisfies the requirements for appearing in a constant expression (5.19) and the Ivalue-to-rvalue conversion (4.1) is
immediately applied. A virtual member function is used if it is not pure. An overloaded function is used if it is selected
by overload resolution when referred to from a potentially-evaluated expression. [Note: this covers calls to named
functions (5.2.2), operator overloading (clause 13), user-defined conversions (12.3.2), allocation function for placement
new (5.3.4), as well as non-default initialization (8.5). A copy constructor is used even if the call is actually elided by the
implementation. — end note ] An allocation or deallocation function for a class is used by a new expression appearing
in a potentially-evaluated expression as specified in 5.3.4 and 12.5. A deallocation function for a class is used by a delete
expression appearing in a potentially-evaluated expression as specified in 5.3.5 and 12.5. A non-placement allocation
or deallocation function for a class is used by the definition of a constructor of that class. A non-placement deallocation
function for a class is used by the definition of the destructor of that class, or by being selected by the lookup at the point
of definition of a virtual destructor (12.4).>® A copy-assignment function for a class is used by an implicitly-defined
copy-assignment function for another class as specified in 12.8. A default constructor for a class is used by default
initialization or value initialization as specified in 8.5. A constructor for a class is used as specified in 8.5. A destructor
for a class is used as specified in 12.4.

Every program shall contain exactly one definition of every non-inline function or object that is used in that program; no
diagnostic required. The definition can appear explicitly in the program, it can be found in the standard or a user-defined
library, or (when appropriate) it is implicitly defined (see 12.1, 12.4 and 12.8). An inline function shall be defined in
every translation unit in which it is used.

Exactly one definition of a class is required in a translation unit if the class is used in a way that requires the class type
to be complete. [ Example: the following complete translation unit is well-formed, even though it never defines X:

struct X; // declare X as a struct type
struct Xx x1; // use X in pointer formation
X* x2; // use X in pointer formation

23) An implementation is not required to call allocation and deallocation functions from constructors or destructors; however, this is a permissible
implementation technique.

Draft



3.2 One definition rule Basic concepts 34

— end example ] [ Note: the rules for declarations and expressions describe in which contexts complete class types are
required. A class type T must be complete if:

an object of type T is defined (3.1), or

a non-static class data member of type T is declared (9.2), or

T is used as the object type or array element type in a new-expression (5.3.4), or

an lvalue-to-rvalue conversion is applied to an Ivalue referring to an object of type T (4.1), or

an expression is converted (either implicitly or explicitly) to type T (clause 4, 5.2.3, 5.2.7,5.2.9, 5.4), or

an expression that is not a null pointer constant, and has type other than void *, is converted to the type pointer
to T or reference to T using an implicit conversion (clause 4), a dynamic_cast (5.2.7) or a static_cast (5.2.9),
or

a class member access operator is applied to an expression of type T (5.2.5), or

the typeid operator (5.2.8) or the sizeof operator (5.3.3) is applied to an operand of type T, or
a function with a return type or argument type of type T is defined (3.1) or called (5.2.2), or

a class with a base class of type T is defined (10), or

an lvalue of type T is assigned to (5.17), or

the type T is the subject of an alignof expression (5.3.6) or an alignas specifier (7.1.7).

—end note |

There can be more than one definition of a class type (clause 9), enumeration type (7.2), inline function with external
linkage (7.1.2), class template (clause 14), non-static function template (14.5.6), static data member of a class tem-
plate (14.5.1.3), member function of a class template (14.5.1.1), or template specialization for which some template
parameters are not specified (14.7, 14.5.5) in a program provided that each definition appears in a different translation
unit, and provided the definitions satisfy the following requirements. Given such an entity named D defined in more than
one translation unit, then

each definition of D shall consist of the same sequence of tokens; and

in each definition of D, corresponding names, looked up according to 3.4, shall refer to an entity defined within
the definition of D, or shall refer to the same entity, after overload resolution (13.3) and after matching of partial
template specialization (14.8.3), except that a name can refer to a const object with internal or no linkage if the
object has the same literal type in all definitions of D, and the object is initialized with a constant expression (5.19),
and the value (but not the address) of the object is used, and the object has the same value in all definitions of D;
and

in each definition of D, the overloaded operators referred to, the implicit calls to conversion functions, constructors,
operator new functions and operator delete functions, shall refer to the same function, or to a function defined
within the definition of D; and

in each definition of D, a default argument used by an (implicit or explicit) function call is treated as if its token
sequence were present in the definition of Dj; that is, the default argument is subject to the three requirements
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described above (and, if the default argument has sub-expressions with default arguments, this requirement applies
recursively).”?

— if D is a class with an implicitly-declared constructor (12.1), it is as if the constructor was implicitly defined in
every translation unit where it is used, and the implicit definition in every translation unit shall call the same
constructor for a base class or a class member of D. [ Example:

// translation unit 1:
struct X {
X(int);
X(int, int);
};
X::X(Ant =0) { }
class D: public X { };
D d2; //X(int) called by D()

// translation unit 2:

struct X {
X(int);
X(int, int);
};
X::X(@(int = 0, int = 0) { }
class D: public X { }; //X(int, int) called byD();
//D(Q)’s implicit definition
// violates the ODR

— end example |

If D is a template and is defined in more than one translation unit, then the last four requirements from the list above
shall apply to names from the template’s enclosing scope used in the template definition (14.6.3), and also to dependent
names at the point of instantiation (14.6.2). If the definitions of D satisfy all these requirements, then the program shall
behave as if there were a single definition of D. If the definitions of D do not satisfy these requirements, then the behavior
is undefined.

3.3 Declarative regions and scopes [basic.scope]

Every name is introduced in some portion of program text called a declarative region, which is the largest part of the
program in which that name is valid, that is, in which that name may be used as an unqualified name to refer to the
same entity. In general, each particular name is valid only within some possibly discontiguous portion of program text
called its scope. To determine the scope of a declaration, it is sometimes convenient to refer to the potential scope of
a declaration. The scope of a declaration is the same as its potential scope unless the potential scope contains another
declaration of the same name. In that case, the potential scope of the declaration in the inner (contained) declarative
region is excluded from the scope of the declaration in the outer (containing) declarative region.

[ Example: in

int j = 24;
int main() {

248 3.6 describes how default argument names are looked up.
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int 1 = j, j;
j = 42;
}

the identifier j is declared twice as a name (and used twice). The declarative region of the first j includes the entire
example. The potential scope of the first j begins immediately after that j and extends to the end of the program, but
its (actual) scope excludes the text between the , and the }. The declarative region of the second declaration of j (the j
immediately before the semicolon) includes all the text between { and }, but its potential scope excludes the declaration
of i. The scope of the second declaration of j is the same as its potential scope. — end example ]

The names declared by a declaration are introduced into the scope in which the declaration occurs, except that the
presence of a friend specifier (11.4), certain uses of the elaborated-type-specifier (7.1.6.3), and using-directives (7.3.4)
alter this general behavior.

Given a set of declarations in a single declarative region, each of which specifies the same unqualified name,
— they shall all refer to the same entity, or all refer to functions and function templates; or

— exactly one declaration shall declare a class name or enumeration name that is not a typedef name and the other
declarations shall all refer to the same object or enumerator, or all refer to functions and function templates; in
this case the class name or enumeration name is hidden (3.3.8). [ Note: a namespace name or a class template
name must be unique in its declarative region (7.3.2, clause 14). — end note |

[ Note: these restrictions apply to the declarative region into which a name is introduced, which is not necessarily
the same as the region in which the declaration occurs. In particular, elaborated-type-specifiers (7.1.6.3) and friend
declarations (11.4) may introduce a (possibly not visible) name into an enclosing namespace; these restrictions apply
to that region. Local extern declarations (3.5) may introduce a name into the declarative region where the declaration
appears and also introduce a (possibly not visible) name into an enclosing namespace; these restrictions apply to both
regions. — end note ]

[ Note: the name lookup rules are summarized in 3.4. — end note |

3.3.1 Point of declaration [basic.scope.pdecl]

The point of declaration for a name is immediately after its complete declarator (clause 8) and before its initializer (if
any), except as noted below. [ Example:

int x = 12;
{ int x = x; }
Here the second x is initialized with its own (indeterminate) value. — end example ]

[ Note: a nonlocal name remains visible up to the point of declaration of the local name that hides it.[ Example:

const int i = 2;
{ int il[il; }

declares a local array of two integers. — end example ] — end note |

The point of declaration for a class first declared by a class-specifier is immediately after the identifier or simple-
template-id (if any) in its class-head (clause 9). The point of declaration for an enumeration is immediately after the
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identifier (if any) in its enum-specifier (7.2). The point of declaration of a template alias immediately follows the
identifier for the alias being declared.

The point of declaration for an enumerator is immediately after its enumerator-definition.[ Example:
const int x = 12;
{enum {x=x13} 1}

Here, the enumerator x is initialized with the value of the constant x, namely 12. — end example |

After the point of declaration of a class member, the member name can be looked up in the scope of its class. [ Note:
this is true even if the class is an incomplete class. For example,

struct X {
enum E { z = 16 };
int b[X::z]; // OK
};
—end note |
The point of declaration of a class first declared in an elaborated-type-specifier is as follows:
— for a declaraton of the form
class-key identifier ;
the identifier is declared to be a class-name in the scope that contains the declaration, otherwise
— for an elaborated-type-specifier of the form

class-key identifier

if the elaborated-type-specifier is used in the decl-specifier-seq or parameter-declaration-clause of a function
defined in namespace scope, the identifier is declared as a class-name in the namespace that contains the decla-
ration; otherwise, except as a friend declaration, the identifier is declared in the smallest non-class, non-function-
prototype scope that contains the declaration. [ Note: These rules also apply within templates. — end note ]
[ Note: Other forms of elaborated-type-specifier do not declare a new name, and therefore must refer to an exist-
ing type-name. See 3.4.4 and 7.1.6.3. — end note ]

The point of declaration for an injected-class-name (9) is immediately following the opening brace of the class definition.

The point of declaration for a function-local predefined variable (8.4) is immediately before the function-body of a
function definition.

[ Note: friend declarations refer to functions or classes that are members of the nearest enclosing namespace, but they
do not introduce new names into that namespace (7.3.1.2). Function declarations at block scope and object declarations
with the extern specifier at block scope refer to delarations that are members of an enclosing namespace, but they do
not introduce new names into that scope. — end note |

[ Note: For point of instantiation of a template, see 14.6.4.1. — end note ]
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3.3.2 Local scope [basic.scope.local]

A name declared in a block (6.3) is local to that block. Its potential scope begins at its point of declaration (3.3.1) and
ends at the end of its declarative region.

The potential scope of a function parameter name (including one appearing in a lambda-parameter-declaration-clause)
or of a function-local predefined variable in a function definition (8.4) begins at its point of declaration. If the function
has a function-try-block the potential scope of a parameter or of a function-local predefined variable ends at the end of
the last associated handler, otherwise it ends at the end of the outermost block of the function definition. A parameter
name shall not be redeclared in the outermost block of the function definition nor in the outermost block of any handler
associated with a function-try-block.

The name in a catch exception-declaration is local to the handler and shall not be redeclared in the outermost block of
the handler.

Names declared in the for-init-statement, and in the condition of if, while, for, and switch statements are local to the
if, while, for, or switch statement (including the controlled statement), and shall not be redeclared in a subsequent
condition of that statement nor in the outermost block (or, for the if statement, any of the outermost blocks) of the
controlled statement; see 6.4.

3.3.3 Function prototype scope [basic.scope.proto]

In a function declaration, or in any function declarator except the declarator of a function definition (8.4), names of
parameters (if supplied) have function prototype scope, which terminates at the end of the nearest enclosing function
declarator.

3.3.4 Function scope [basic.funscope]

Labels (6.1) have function scope and may be used anywhere in the function in which they are declared. Only labels have
function scope.

3.3.5 Namespace scope [basic.scope.namespace]

The declarative region of a namespace-definition is its namespace-body. The potential scope denoted by an original-
namespace-name is the concatenation of the declarative regions established by each of the namespace-definitions in
the same declarative region with that original-namespace-name. Entities declared in a namespace-body are said to be
members of the namespace, and names introduced by these declarations into the declarative region of the namespace
are said to be member names of the namespace. A namespace member name has namespace scope. Its potential scope
includes its namespace from the name’s point of declaration (3.3.1) onwards; and for each using-directive (7.3.4) that
nominates the member’s namespace, the member’s potential scope includes that portion of the potential scope of the
using-directive that follows the member’s point of declaration. [ Example:

namespace N {
int i;
int g(int a) { return a; }
int jO;
void q(Q);
}
namespace { int 1=1; }
// the potential scope of 1 is from its point of declaration
// to the end of the translation unit
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namespace N {

int g(char a) { /overloadsN::g(int)

return l+a; // 1 is from unnamed namespace
}
int i; // error: duplicate definition
int jO; // OK: duplicate function declaration
int O { // OK: definition of N: : 30
return g(i); //callsN: :g(int)
}
int qQ); // error: different return type
}

—end example |

A namespace member can also be referred to after the : : scope resolution operator (5.1) applied to the name of its
namespace or the name of a namespace which nominates the member’s namespace in a using-directive; see 3.4.3.2.

The outermost declarative region of a translation unit is also a namespace, called the global namespace. A name declared
in the global namespace has global namespace scope (also called global scope). The potential scope of such a name
begins at its point of declaration (3.3.1) and ends at the end of the translation unit that is its declarative region. Names

with

global namespace scope are said to be global.

3.3.6 Class scope [basic.scope.class]

The following rules describe the scope of names declared in classes.

1Y)

2)

3)

4)

5)

The potential scope of a name declared in a class consists not only of the declarative region following the name’s
point of declaration, but also of all function bodies and default arguments in that class (including such things in
nested classes).

A name N used in a class S shall refer to the same declaration in its context and when re-evaluated in the completed
scope of S. No diagnostic is required for a violation of this rule.

If reordering member declarations in a class yields an alternate valid program under (1) and (2), the program is
ill-formed, no diagnostic is required.

A name declared within a member function hides a declaration of the same name whose scope extends to or past
the end of the member function’s class.

The potential scope of a declaration that extends to or past the end of a class definition also extends to the regions
defined by its member definitions, even if the members are defined lexically outside the class (this includes static
data member definitions, nested class definitions, member function definitions (including the member function
body and any portion of the declarator part of such definitions which follows the identifierdeclarator-id, including
a parameter-declaration-clause and any default arguments (8.3.6).[ Example:

typedef int c;
enum { i =1 };

class X {
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char vl[il; // error: i refersto ::i
// but when reevaluated is X: : i
int f() { return sizeof(c); } //OK:X::c

char c;
enum { i = 2 };
};
typedef char* T;
struct Y {
T a; // error: T refers to : : T

// but when reevaluated is Y: : T
typedef long T;
T b;
}s

typedef int I;
class D {
typedef I I; // error, even though no reordering involved
};
— end example |
2 The name of a class member shall only be used as follows:
— in the scope of its class (as described above) or a class derived (clause 10) from its class,
— after the . operator applied to an expression of the type of its class (5.2.5) or a class derived from its class,

— after the —> operator applied to a pointer to an object of its class (5.2.5) or a class derived from its class,

— after the : : scope resolution operator (5.1) applied to the name of its class or a class derived from its class.

3.3.7 Enumeration scope [basic.scope.enum]

1 The name of a scoped enumerator (7.2) has enumeration scope. Its potential scope begins at its point of declaration and
terminates at the end of the enum-specifier.

3.3.8 Name hiding [basic.scope.hiding]
1 A name can be hidden by an explicit declaration of that same name in a nested declarative region or derived class (10.2).

2 A class name (9.1) or enumeration name (7.2) can be hidden by the name of an object, function, or enumerator declared
in the same scope. If a class or enumeration name and an object, function, or enumerator are declared in the same scope
(in any order) with the same name, the class or enumeration name is hidden wherever the object, function, or enumerator
name is visible.

3 In a member function definition, the declaration of a local name hides the declaration of a member of the class with the
same name; see 3.3.6. The declaration of a member in a derived class (clause 10) hides the declaration of a member of
a base class of the same name; see 10.2.
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During the lookup of a name qualified by a namespace name, declarations that would otherwise be made visible by
a using-directive can be hidden by declarations with the same name in the namespace containing the using-directive;
see (3.4.3.2).

If a name is in scope and is not hidden it is said to be visible.
3.4 Name lookup [basic.lookup]

The name lookup rules apply uniformly to all names (including typedef-names (7.1.3), namespace-names (7.3) and
class-names (9.1)) wherever the grammar allows such names in the context discussed by a particular rule. Name lookup
associates the use of a name with a declaration (3.1) of that name. Name lookup shall find an unambiguous declaration
for the name (see 10.2). Name lookup may associate more than one declaration with a name if it finds the name to be a
function name; the declarations are said to form a set of overloaded functions (13.1). Overload resolution (13.3) takes
place after name lookup has succeeded. The access rules (clause 11) are considered only once name lookup and function
overload resolution (if applicable) have succeeded. Only after name lookup, function overload resolution (if applicable)
and access checking have succeeded are the attributes introduced by the name’s declaration used further in expression
processing (clause 5).

A name “looked up in the context of an expression” is looked up as an unqualified name in the scope where the expression
is found.

The injected-class-name of a class (clause 9) is also considered to be a member of that class for the purposes of name
hiding and lookup.

[ Note: 3.5 discusses linkage issues. The notions of scope, point of declaration and name hiding are discussed in 3.3.
—end note |

3.4.1 Ungqualified name lookup [basic.lookup.unqual]

In all the cases listed in 3.4.1, the scopes are searched for a declaration in the order listed in each of the respective
categories; name lookup ends as soon as a declaration is found for the name. If no declaration is found, the program is
ill-formed.

The declarations from the namespace nominated by a using-directive become visible in a namespace enclosing the
using-directive; see 7.3.4. For the purpose of the unqualified name lookup rules described in 3.4.1, the declarations from
the namespace nominated by the using-directive are considered members of that enclosing namespace.

The lookup for an unqualified name used as the postfix-expression of a function call is described in 3.4.2. [ Note: for
purposes of determining (during parsing) whether an expression is a postfix-expression for a function call, the usual
name lookup rules apply. The rules in 3.4.2 have no effect on the syntactic interpretation of an expression. For example,

typedef int f;
namespace N {
struct A {
friend void f(A &);
operator int();
void g(A a) {
int i = f(a); // £ is the typedef, not the friend
// function: equivalent to int (a)
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Because the expression is not a function call, the argument-dependent name lookup (3.4.2) does not apply and the friend
function £ is not found. — end note |

4 A name used in global scope, outside of any function, class or user-declared namespace, shall be declared before its use
in global scope.

5 A name used in a user-declared namespace outside of the definition of any function or class shall be declared before its
use in that namespace or before its use in a namespace enclosing its namespace.

6 A name used in the definition of a function following the function’s declarator-id®> that is a member of namespace N
(where, only for the purpose of exposition, N could represent the global scope) shall be declared before its use in the
block in which it is used or in one of its enclosing blocks (6.3) or, shall be declared before its use in namespace N or, if
N is a nested namespace, shall be declared before its use in one of N ’s enclosing namespaces. [ Example:

namespace A {
namespace N {

void f£();
}
}
void A::N::f() {
i = 5;

// The following scopes are searched for a declaration of i:
// 1) outermost block scope of A: :N: :£, before the use of i
// 2) scope of namespace N

// 3) scope of namespace A

// 4) global scope, before the definition of A::N: :f

—end example |

7 A name used in the definition of a class X outside of a member function body or nested class definition?® shall be
declared in one of the following ways:

— before its use in class X or be a member of a base class of X (10.2), or

— if X is a nested class of class Y (9.7), before the definition of X in Y, or shall be a member of a base class of Y (this
lookup applies in turn to Y ’s enclosing classes, starting with the innermost enclosing class),>” or

— if X is a local class (9.8) or is a nested class of a local class, before the definition of class X in a block enclosing
the definition of class X, or

— if X is a member of namespace N, or is a nested class of a class that is a member of N, or is a local class or a nested
class within a local class of a function that is a member of N, before the definition of class X in namespace N or in
one of N ’s enclosing namespaces.

[ Example:

25)This refers to unqualified names that occur, for instance, in a type or default argument expression in the parameter-declaration-clause or used in
the function body.

26) This refers to unqualified names following the class name; such a name may be used in the base-clause or may be used in the class definition.

21 This lookup applies whether the definition of X is nested within Y ’s definition or whether X ’s definition appears in a namespace scope enclosing
Y ’s definition (9.7).
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namespace M {
class B { };

}

namespace N {
class Y : public M::B {

class X {
int alil;

}s;

};

}

// The following scopes are searched for a declaration of 1i:
// 1) scope of class N: :Y: : X, before the use of i

// 2) scope of class N: :Y, before the definition of N: :Y: :X
// 3) scope of N: :Y’s base class M: :B

// 4) scope of namespace N, before the definition of N: :Y
//'5) global scope, before the definition of N

— end example ] [ Note: when looking for a prior declaration of a class or function introduced by a friend declaration,
scopes outside of the innermost enclosing namespace scope are not considered; see 7.3.1.2. — end note ] [ Note: 3.3.6
further describes the restrictions on the use of names in a class definition. 9.7 further describes the restrictions on the use
of names in nested class definitions. 9.8 further describes the restrictions on the use of names in local class definitions.
—end note ]

A name used in the definition of a member function (9.3) of class X following the function’s declarator-id *® shall be
declared in one of the following ways:

— before its use in the block in which it is used or in an enclosing block (6.3), or

shall be a member of class X or be a member of a base class of X (10.2), or

if X is a nested class of class Y (9.7), shall be a member of Y, or shall be a member of a base class of Y (this lookup
applies in turn to Y’s enclosing classes, starting with the innermost enclosing class),”” or

if X is a local class (9.8) or is a nested class of a local class, before the definition of class X in a block enclosing
the definition of class X, or

if X is a member of namespace N, or is a nested class of a class that is a member of N, or is a local class or a nested
class within a local class of a function that is a member of N, before the member function definition, in namespace
N or in one of N ’s enclosing namespaces.

[ Example:

class B { };
namespace M {
namespace N {

28) That is, an unqualified name that occurs, for instance, in a type or default argument expression in the parameter-declaration-clause or in the
function body.

29 This lookup applies whether the member function is defined within the definition of class X or whether the member function is defined in a
namespace scope enclosing X’s definition.
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class X : public B {

void £(Q);
};
}
}
void M::N::X::f() {
i = 16;
}

// The following scopes are searched for a declaration of i:

// 1) outermost block scope of M: :N: :X: : £, before the use of i
// 2) scope of class M: :N: : X

// 3) scope of M: :N: :X’s base class B

// 4) scope of namespace M: :N

//'5) scope of namespace M

// 6) global scope, before the definition of M: :N: :X::f

— end example | [ Note: 9.3 and 9.4 further describe the restrictions on the use of names in member function definitions.
9.7 further describes the restrictions on the use of names in the scope of nested classes. 9.8 further describes the
restrictions on the use of names in local class definitions. — end note ]

Name lookup for a name used in the definition of a friend function (11.4) defined inline in the class granting friendship
shall proceed as described for lookup in member function definitions. If the friend function is not defined in the class
granting friendship, name lookup in the friend function definition shall proceed as described for lookup in namespace
member function definitions.

In a friend declaration naming a member function, a name used in the function declarator and not part of a femplate-
argument in a template-id is first looked up in the scope of the member function’s class. If it is not found, or if the name
is part of a remplate-argument in a template-id, the look up is as described for unqualified names in the definition of the
class granting friendship. [ Example:

struct A {
typedef int AT;
void f1(AT);
void f2(float);

3
struct B {
typedef float BT;
friend void A::f1(AT); // parameter type is A: : AT
friend void A::f2(BT); // parameter type is B: :BT
};

—end example |

During the lookup for a name used as a default argument (8.3.6) in a function parameter-declaration-clause or used
in the expression of a mem-initializer for a constructor (12.6.2), the function parameter names are visible and hide the
names of entities declared in the block, class or namespace scopes containing the function declaration. [ Note: 8.3.6
further describes the restrictions on the use of names in default arguments. 12.6.2 further describes the restrictions on
the use of names in a ctor-initializer. — end note |
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During the lookup of a name used in the constant-expression of an enumerator-definition, previously declared enumer-
ators of the enumeration are visible and hide the names of entities declared in the block, class, or namespace scopes
containing the enum-specifier.

A name used in the definition of a static data member of class X (9.4.2) (after the qualified-id of the static member) is
looked up as if the name was used in a member function of X. [ Note: 9.4.2 further describes the restrictions on the use
of names in the definition of a static data member. — end note |

If a variable member of a namespace is defined outside of the scope of its namespace then any name used in the definition
of the variable member (after the declarator-id) is looked up as if the definition of the variable member occurred in its
namespace. [ Example:

namespace N {
int i = 4;
extern int j;

}
int i = 2;
int N::j = i; //N::j ==

— end example |

A name used in the handler for a function-try-block (clause 15) is looked up as if the name was used in the outermost
block of the function definition. In particular, the function parameter names shall not be redeclared in the exception-
declaration nor in the outermost block of a handler for the function-try-block. Names declared in the outermost block
of the function definition are not found when looked up in the scope of a handler for the function-try-block. [ Note: but
function parameter names are found. — end note |

[ Note: the rules for name lookup in template definitions are described in 14.6. — end note ]

3.4.2 Argument-dependent name lookup [basic.lookup.argdep]

When an unqualified name is used as the postfix-expression in a function call (5.2.2), other namespaces not considered
during the usual unqualified lookup (3.4.1) may be searched, and in those namespaces, namespace-scope friend function
declarations (11.4) not otherwise visible may be found. These modifications to the search depend on the types of the
arguments (and for template template arguments, the namespace of the template argument).

For each argument type T in the function call, there is a set of zero or more associated namespaces and a set of zero
or more associated classes to be considered. The sets of namespaces and classes is determined entirely by the types of
the function arguments (and the namespace of any template template argument). Typedef names and using-declarations
used to specify the types do not contribute to this set. The sets of namespaces and classes are determined in the following
way:

— If T is a fundamental type, its associated sets of namespaces and classes are both empty.

— If Tis aclass type (including unions), its associated classes are: the class itself; the class of which it is a member, if
any; and its direct and indirect base classes. Its associated namespaces are the namespaces of which its associated
classes are members. Furthermore, if T is a class template specialization, its associated namespaces and classes
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also include: the namespaces and classes associated with the types of the template arguments provided for tem-
plate type parameters (excluding template template parameters); the namespaces of which any template template
arguments are members; and the classes of which any member templates used as template template arguments
are members. [ Note: Non-type template arguments do not contribute to the set of associated namespaces. — end
note |

— If T is an enumeration type, its associated namespace is the namespace in which it is defined. If it is class member,
its associated class is the member’s class; else it has no associated class.

— If T is a pointer to U or an array of U, its associated namespaces and classes are those associated with U.

— If T is a function type, its associated namespaces and classes are those associated with the function parameter
types and those associated with the return type.

— If T is a pointer to a member function of a class X, its associated namespaces and classes are those associated with
the function parameter types and return type, together with those associated with X.

— If T is a pointer to a data member of class X, its associated namespaces and classes are those associated with the
member type together with those associated with X.

If an associated namespace is an inline namespace (7.3.1), its enclosing namespace is also included in the set. If an
associated namespace directly contains inline namespaces, those inline namespaces are also included in the set. In
addition, if the argument is the name or address of a set of overloaded functions and/or function templates, its associated
classes and namespaces are the union of those associated with each of the members of the set: the namespace in which the
function or function template is defined and the classes and namespaces associated with its (non-dependent) parameter
types and return type.

Let X be the lookup set produced by unqualified lookup (3.4.1) and let Y be the lookup set produced by argument
dependent lookup (defined as follows). If X contains

— adeclaration of a class member, or
— ablock-scope function declaration that is not a using-declaration, or
— adeclaration that is neither a function or a function template

then Y is empty. Otherwise Y is the set of declarations found in the namespaces associated with the argument types as
described below. The set of declarations found by the lookup of the name is the union of X and Y. [ Note: the namespaces
and classes associated with the argument types can include namespaces and classes already considered by the ordinary
unqualified lookup. — end note | [ Example:

namespace NS {
class T { };
void f(T);
void g(T, int);
}
NS::T parm;
void g(NS::T, float);
int main() {

f (parm) ; // OK: calls NS: : £
extern void g(NS::T, float);
g(parm, 1); // OK: calls g(NS::T, float)

}
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— end example ]

4 When considering an associated namespace, the lookup is the same as the lookup performed when the associated name-
space is used as a qualifier (3.4.3.2) except that:

— Any using-directives in the associated namespace are ignored.

— Any namespace-scope friend functions or friend function templates declared in associated classes are visible
within their respective namespaces even if they are not visible during an ordinary lookup (11.4).

— All names except those of (possibly overloaded) functions and function templates are ignored.

3.4.3 Qualified name lookup [basic.lookup.qual]

1 The name of a class or namespace member or enumerator can be referred to after the : : scope resolution operator (5.1)
applied to a nested-name-specifier that nominates its class, namespace, or enumeration. During the lookup for a name
preceding the : : scope resolution operator, object, function, and enumerator names are ignored. If the name found does
not designate a namespace or a class, enumeration, or dependent type, the program is ill-formed.[ Example:

class A {
public:
static int n;
}
int main() {
int A;
A::n = 42; // OK
A b; // ill-formed: A does not name a type
}

— end example |

2 [Note: Multiply qualified names, such as N1: :N2: :N3: :n, can be used to refer to members of nested classes (9.7) or
members of nested namespaces. — end note ]

3 Inadeclaration in which the declarator-id is a qualified-id, names used before the qualified-id being declared are looked
up in the defining namespace scope; names following the qualified-id are looked up in the scope of the member’s class
or namespace. [ Example:

class X { };
class C {
class X { };
static const int number = 50;
static X arr[number];
};
X C::arr[number];  /ill-formed:
// equivalent to: : :X C: :arr[C: :number] ;
//notto: C::XC::arr[C: :number] ;

— end example |

4 A name prefixed by the unary scope operator : : (5.1) is looked up in global scope, in the translation unit where it is
used. The name shall be declared in global namespace scope or shall be a name whose declaration is visible in global
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scope because of a using-directive (3.4.3.2). The use of :: allows a global name to be referred to even if its identifier
has been hidden (3.3.8).

A name prefixed by a nested-name-specifier that nominates an enumeration type shall represent an enumerator of that
enumeration.

If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier, the type-names are looked up as types in the scope
designated by the nested-name-specifier. Similarly, in a qualified-id of the form:

1 1 opt Nested-name-specifieryp, class-name : : ~ class-name
the second class-name is looked up in the same scope as the first. [ Example:

struct C {

typedef int I;

};

typedef int I1, I2;

extern int* p;

extern int* q;

p—>C::I::7"I0); // T is looked up in the scope of C

q->I1::"120); // 12 is looked up in the scope of
// the postfix-expression

struct A {
“A0;
};
typedef A AB;
int main() {
AB *p;
p->AB::"ABQ); // explicitly calls the destructor for A
}

—end example | [ Note: 3.4.5 describes how name lookup proceeds after the . and -> operators. — end note |

3.4.3.1 Class members [class.qual]

If the nested-name-specifier of a qualified-id nominates a class, the name specified after the nested-name-specifier is
looked up in the scope of the class (10.2), except for the cases listed below. The name shall represent one or more
members of that class or of one of its base classes (clause 10). [Note: a class member can be referred to using a
qualified-id at any point in its potential scope (3.3.6). — end note ] The exceptions to the name lookup rule above are
the following:

— adestructor name is looked up as specified in 3.4.3;

— a conversion-type-id of an eperatorconversion-function-id is looked up both in the scope of the class and in the
context in which the entire postfix-expression occurs and shall refer to the same type in both contexts;

— the names in a template-argument of a template-id are looked up in the context in which the entire postfix-
expression occurs.

— the lookup for a name specified in a using-declaration (7.3.3) also finds class or enumeration names hidden within
the same scope (3.3.8).
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In a lookup in which the constructor is an acceptable lookup result and the nested-name-specifier nominates a class C:

— if the name specified after the nested-name-specifier, when looked up in C, is the injected-class-name of C
(clause 9), or

— if the name specified after the nested-name-specifier is the same as the identifier or the simple-template-id’s
template-name in the last component of the nested-name-specifier,

the name is instead considered to name the constructor of class C. [ Note: For example, the constructor is not an ac-
ceptable lookup result in an elaborated-type-specifier so the constructor would not be used in place of the injected-
class-name. — end note ] Such a constructor name shall be used only in the declarator-id of a declaration that names a
constructor or in a using-declaration. [ Example:

struct A { AQ; };
struct B: public A { BO); };

A::AQ {3}

B::BO { }

B::A ba; // object of type A

A::A a; // error, A: : A is not a type name
struct A::A a2; // object of type A

— end example |

A class member name hidden by a name in a nested declarative region or by the name of a derived class member can
still be found if qualified by the name of its class followed by the : : operator.

3.4.3.2 Namespace members [namespace.qual]

If the nested-name-specifier of a qualified-id nominates a namespace, the name specified after the nested-name-specifier
is looked up in the scope of the namespace, except that the names in a template-argument of a template-id are looked
up in the context in which the entire postfix-expression occurs.

Given X: :m (where X is a user-declared namesp