
Concept Implication and Requirement Propagation

Document number: N2646 = 08-0156
Authors: Peter Gottschling, Technische Universität Dresden
Date: 2008-05-16
Project: Programming Language C++, Evolution/Core Working Group
Reply to: Peter.Gottschling@tu-dresden.de

1 Introduction

Concept constraints give the programmer the opportunity to express all type requirements of a
generic function. Only if all these requirements are fulfilled the function can be called. In addition,
the compiler verifies whether or not the required concepts cover all structural requirements of the
template function and all called function. The completeness of semantic requirements on the other
hand cannot be verified by the compiler and the responsibility for it lies entirely in the hands of
the programmers.

A considerable burden in programming with concepts is that each function must specify its
own requirements and the union of all called functions’ requirements. The worst case could be an
exponential grow in constraint definition complexity with respect to the depth of the call tree. So
far, only relatively simple functions were implemented with concepts. It is questionable if large-scale
software, like finite element packages, can be realized with concepts in the context of accumulating
function constraints.

The completeness of structural prerequisites in the template constraints has the huge advantage
that erroneous calls are caught directly with the function call and that readable error messages can
be generated. However, while the programmer is very busy to provide completeness of structural
requirements, the risk increases that semantic requirements will be forgotten!

The necessity of defining the structural requirements in its completeness is problematic for three
reasons:

1. The source becomes increasingly redundant. The fact that a certain type must be assignable or
copy-constructable is already expressed in the function body. Requesting this in the function
constraints is entirely redundant and does not improve the program source. Thus, we tell the
compiler a second time what it already knows.

2. Every constraint of a generic function is repeated in all functions that call it. Thus, we repeat
the compiler arbitrarily often what it already knows.

3. Which semantic requirements are needed by a generic function cannot be determined by the
compiler. This must be specified by the programmer. Thus, after all the repetition of known
facts we risk to forget telling the compiler the really important issues that in turn it does not
know.

1

2

We therefore propose to automate the requirement specification of structural conditions, i.e.

Let the compiler do what it knows better than we do.

The programmer shall focus on requiring semantic conditions.

The programmer writes only semantic requirements but those must be given completely.

2 Examples

The following very simple function (see [lib.power] in Nxxxx) computes the power with respect to a
functor. It uses an implementation for non-negative coefficients. If the coefficient is negative then
the second function is called with the magnitude of the exponent and the inverse of the basis:

template <typename Op, std::Semiregular Element, Integral Exponent>
requires Group<Op, Element>

&& std::Convertible<std::Callable2<Op, Element, Element>::result type, Element>
inline Element power(const Element& a, Exponent n, Op op)
{

return n < 0 ? multiply and square(Element(inverse(op, a)), Exponent(-n), op)
: multiply and square(a, n, op);

}

A slight modification of the source, i.e. removing the explicit conversion to Element and Exponent
forces us to add a large number of additional requirements:

template <typename Op, std::Semiregular Element, Integral Exponent>
requires Group<Op, Element>

&& std::Convertible<std::Callable2<Op, Element, Element>::result type, Element>
&& std::Semiregular<math::Inversion<Op, Element>::result type>
&& std::HasNegate<Exponent>
&& math::Monoid<Op, math::Inversion<Op, Element>::result type>
&& Integral< std::HasNegate<Exponent>::result type>
&& std::Callable2<Op, math::Inversion<Op, Element>::result type,

math::Inversion<Op, Element>::result type>
&& std::Convertible<std::Callable2<Op, math::Inversion<Op, Element>::result type,

math::Inversion<Op, Element>::result type>::result type,
math::Inversion<Op, Element>::result type>

inline Element power(const Element& a, Exponent n, Op op)
{

return n < 0 ? multiply and square(inverse(op, a), -n, op)
: multiply and square(a, n, op);

}

For two lines of code we need 11 lines of requirements. Most of the constraints only repeat what is
already written in the function body.

Another example worth looking at is sort from STL. The STL documentation requires sev-
eral structural and two semantic concepts to be modeled. If we look at the implementation in
ConceptGCC:

template<MutableRandomAccessIterator Iter>
requires LessThanComparable< Iter::value type>

&& CopyAssignable< Iter::reference, Iter::reference>
&& Swappable< Iter::value type>

3

&& CopyConstructible< Iter::value type>
inline void sort(Iter first, Iter last) { /∗ ... ∗/ }

we find all structural requirements but only one semantic condition (MutableRandomAccessIterator).
The point here is not to criticize this implementation — on the contrary, the enrichment of STL
with concepts is a tremendous improvement. We rather want to illustrate the statement from the
introduction that we, the programmers, will put a lot of efforts in the structural requirements and
risk to forget the semantic ones. It should be exactly the opposite, the structural conditions can
be generated automatically and the program source only needs the semantic conditions.

In the following section we show how to automate the structural constraints.

3 Concept Implication [concept.impl]

We propose to add the new keyword imply concept in order to automatically generate constraints
for structural requirements. The extended list of concepts from N2501 is therefore:

asm continue goto register throw
auto default if reinterpret cast true
axiom delete imply concept requires try
bool do inline return typedef
break double int short typeid
case dynamic cast late check signed typename
catch else long sizeof union
char enum mutable static unsigned
char16 t explicit namespace static assert using
char32 t export new static cast virtual
class extern operator struct void
concept false private switch volatile
concept map float protected template wchar t
const for public this while
const cast friend

Table 1: Keywords

3.1 Starting Point: Unsatisfied Structural Requirements [impl.unsat]

As mentioned before, the compiler knows already which structural requirements are needed from
the analysis of the function body. We exemplify this statement with a simplistic scenario:

auto concept C<typename T> {}
template <typename T> requires C<T> T f(T x) { T y(x); return y; }
f(3);

The concept C is not really needed; it only serves to enable concept checking. Compiling this code
with ConceptGCC yields the following error message:

imply_test.cpp: In function ’T f(T)’ :
imply_test.cpp:15: error: constructor ’T::T(const T&)’ is inaccessible
imply_test.cpp:15: error: constructor ’T::T(const T&)’ is inaccessible

4

Apparently, the compiler recognizes correctly the missing structural requirement. The only remain-
ing task is to associate this requirement with a suitable concept.

3.2 Association Between Structural Requirements and Concepts [impl.assoc]

In order to associate an unsatisfied structural requirement with an appropriate concept, we propose
declaration similar to the friend declaration. For the example above, the solution can be to associate
the templated signature with the concept CopyAssignable:

template <typename T>
T::T(const T&)

imply concept std::CopyConstructable<T>;

Discussion: The addition of any concept that contains copy construction to the list of constraints
will cover the structural requirements. For the sake of genericity, the added constraints shall increase
the number of requirements only minimally.

imply concept declarations are in principle the dual entity of concept declarations. While the
latter relate a concept to requirements, the former conversely relate a requirement in terms of a
signature to a concept.

3.3 Explicit Usage of Requirement Implication [impl.expl]

Programmers shall have control when constraint template functions use implicit requirement gen-
eration and when all requirements are forced to be declared explicitly. Analogously to implicit
concept maps for structural concepts, we suggest to use the keyword auto to enable the require-
ment implication.

The example above will read:

template <typename T>
auto requires

T f(T x)
{ T y(x); return y; }

With the imply concept declaration above this is equivalent to:

template <typename T>
requires std::CopyConstructable<T>

T f(T x)
{ T y(x); return y; }

5

3.4 Template Requirements with Implication [temp.req.impl]

The inclusion of the keyword auto in the requirement clause modifies the the specification from
[temp.req] in N2501 to:

requires-clause:
autoopt requires requirement-listopt
autoopt requires (requirement-list)

requirement-list:
requirement ...opt && requirement-list
requirement ...opt

requirement:
::opt nested-name-specifieropt concept-id
! ::opt nested-name-specifieropt concept-id

For cases of entirely generated requirements, the requirement-list is optional in our proposal.

To do: BNF for imply concept.

4 More Declarations of Concept Implications [concept.impl.decl]

Disclaimer: The declaration in this section are not meant to be complete or sufficient; it is rather
intended as starting point. Defining a sound set of declarations might need a separate proposal.

The need for a less-than operator implies:

template <typename T, typename U>
bool operator<(const T&, const U&)

imply concept LessThanComparable<T, U>;

The following three definitions are arguable because the operators’ default implementations in
LessThanComparable are wrong for partial ordering.1 For now we refer only to the requirement that
the operators exist, not to their default implementations.

template <typename T, typename U>
bool operator>(const T&, const U&)

imply concept LessThanComparable<T, U>;

template <typename T, typename U>
bool operator<=(const T&, const U&)

imply concept LessThanComparable<T, U>;

template <typename T, typename U>
bool operator>=(const T&, const U&)

imply concept LessThanComparable<T, U>;

Similarly we imply EqualityComparable:
1The concept should either remove the auto attribute or the default implementations because strict weak order

cannot be guaranteed in general. On the other hand, one can argue that partial ordering are rarely used and that in
such a rare case the operators still can be defined explicitly. At the very least, the wording of this standard concepts
needs a warning regarding partial orders.

6

template <typename T, typename U>
bool operator==(const T&, const U&)

imply concept EqualityComparable<T, U>;

template <typename T, typename U>
bool operator!=(const T&, const U&)

imply concept EqualityComparable<T, U>;

Types that can be default-constructed imply:

template <typename T>
T::T()

imply concept DefaultConstructible<T>;

Types that can be move-constructed imply:

template <typename T>
T::T(const T&)

imply concept MoveConstructible<T>;

Types that can be copy-constructed imply:

template <typename T>
T::T(const T&)

imply concept std::CopyConstructable<T>;

Types that are move-assignable imply:

template <typename T, typename U>
auto T::operator=(U&&)

imply concept MoveAssignable<T, U>;

Types that are copy-assignable imply:

template <typename T, typename U>
auto T::operator=(U&)

imply concept CopyAssignable<T, U>;

Types that are swappable imply:

template <typename T>
void swap(T&, T&)

imply concept Swappable<T>;

Types with new operator imply:

template <typename T>
void∗ T::operator new(size t size)

imply concept Newable<T>;

Types with delete operator imply:

template <typename T>
void T::operator delete(void∗)

imply concept Deletable<T>;

Types with array-new operator imply:

template <typename T>
void∗ T::operator new[](size t size)

imply concept ArrayNewable<T>;

7

Types with array-delete operator imply:

template <typename T>
void T::operator delete[](void∗)

imply concept ArrayDeletable<T>;

Converting type T in type U implies:

template <typename T, typename U>
operator U(const T&)

imply concept Convertible<T, U>;

Types that need addition of l-values — e.g., x + y or x + (y∗= z) — imply:

template <typename T, typename U>
auto operator+(const T&, const U&)

imply concept HasPlus<T, U>;

The addition of an l-value and an r-value — e.g., x + f(y), x + y∗z or the first addition in x + (y + z)
— implies:

template <typename T, typename U>
auto operator+(const T&, U&&)

imply concept HasPlus<T, U>;

Types that need addition of an r-value and an l-value — e.g., f(x) + y, x∗y + z, or the second
addition in x + y + z — imply:

template <typename T, typename U>
auto operator+(T&&, const U&)

imply concept HasPlus<T, U>;

Types that need addition of r-values — e.g., f(x) + g(y) — imply:

template <typename T, typename U>
auto operator+(T&&, U&&)

imply concept HasPlus<T, U>;

Automatically generating constraints for structural requirements eliminates the major part of dec-
laration redundancy in constrained template functions. In the next section, we will show how the
remainder of redundant requirements in the constraining clauses can be removed.

5 Propagation of Semantic Requirements [req.prop]

Semantic requirements cannot be generated automatically like structural ones. Constraining func-
tions with concepts that contain semantic properties is per se not redundant. Redundancy is created
when a function, say f, with semantic conditions is called by other constrained functions. Then, all
callers of f must include f’s semantic concepts in their requirement list for the sake of completeness.

We propose that semantic requirements are automatically propagated to calling template func-
tions when the latter have an auto requires clause. For instance:

template <typename T>
requires Semantic<T> // some semantic concept

T f(T x) { /∗ ... ∗/ }

template <typename T>
auto requires // Semantic<T> is propagated from f

T f2(T x) { f(x); /∗ ... ∗/ }

8

The type specification is adapted to the context of the calling function, e.g.:

template <typename T>
requires Semantic<T> // some semantic concept

T f(T x) { /∗ ... ∗/ }

template <ForwardIterator Iter>
auto requires // Semantic<Iter::value type> is propagated from f

T f2(Iter p) { f(∗p++); /∗ ... ∗/ }

Resuming, every semantic requirement must be defined. But only once! The repetition of these
requirements in all calling template functions can be generated automatically.

6 Impact on the Example Functions

Applying the new techniques to the introductory examples reduces their code complexity dramat-
ically. The power function for Groups now reads:

template <typename Op, typename Element, Integral Exponent>
auto requires Group<Op, Element>

inline Element power(const Element& a, Exponent n, Op op)
{

return n < 0 ? multiply and square(inverse(op, a), -n, op)
: multiply and square(a, n, op);

}

The semantic prerequisite math::Monoid<Op, math::Inversion<Op, Element>::result type> is prop-
agated from the calling function and all other requirements were purely structural and can be
generated by concept implication.

In case of the sort function we add the semantic requirement that operator< constitutes a strict
weak ordering. On the other hand, we remove all purely structural conditions:

template<MutableRandomAccessIterator Iter>
auto requires LessThanThanStrictWeakOrdering< Iter::value type>

inline void sort(Iter first, Iter last) { /∗ ... ∗/ }

In fact, a short look at the implementation reveals that even these two requirements can be prop-
agated from the called functions so that we can omit all explicit concept requirements:

template<typename Iter> auto requires
inline void sort(Iter first, Iter last) { /∗ ... ∗/ }

For the sake of better source code documentation, we nevertheless favor the first implementation
with explicit declaration of semantic prerequisites.

7 Open Questions

Are similar techniques useful for constraining template classes?

With all the automatic constraint generation, introspection is desirable. Is this feasi-
ble?

9

8 Conclusions

We proposed two mechanism in this document: concept implication from unsatisfied structural
requirements and requirement propagation to calling functions. These two techniques allow us to
use the compiler to generate all purely structural requests and to require each semantic condition
only once. The entire redundancy of function constraints can be eliminated. Stating important
deductible requirements in the requires clause can be still desirable for the sake of source code
documentation.

9 Acknowledgments

The author thanks Andrew Lumsdaine from Indiana University and Axel Voigt from Technische
Universtität Dresden for supporting this work on concepts for the sake of the scientific computing
community.

10

A Ordering Concepts [concept.order]

The most general ordering is a partial order. It is rarely used directly but its requirements belong
to all order relations.

concept PartialOrdering<typename Comparison, typename T>
{

axiom Irreflexivity(Comparison cmp, T x) {
!cmp(x, x);

}
axiom AntiSymmetry(Comparison cmp, T x, T y) {

!(cmp(x, y) && cmp(y, x));
}
axiom Transitivity(Comparison cmp, T x, T y, T z) {

if (cmp(x, y) && cmp(y, z))
cmp(x, z);

}
}

Strict weak ordering additionally requires that the complementary relation is transitive. This allows
for introducing an equivalence relation where two elements x and y belong to the same equivalence
class when neither cmp(x, y) nor cmp(y, x):

concept StrictWeakOrdering<typename Comparison, typename T>
: PartialOrdering<Comparison, T>

{
axiom ComplementaryTransitivity(Comparison cmp, T x, T y, T z) {

if (!cmp(x, y) && !cmp(y, z))
!cmp(x, z);

}

// Implies the following definition of equivalence classes
bool equivalent(T x, T y) {

return !cmp(x, y) && !cmp(y, x);
}

}

Alternatively one can first define the relation of incomparable elements and then require the tran-
sitivity of this relation (the STL documentation is written in this form). StrictWeakOrdering is
required by generic sorting methods in STL.

The strictest form of ordering is total ordering that requires for two elements that they equal
when they are not comparable:

concept TotalOrdering<typename Comparison, typename T>
: StrictWeakOrdering<Comparison, T>

{
axiom Trichotomy(Comparison cmp, T x, T y) {

// Can we request that x == y is defined appropriately?
cmp(x, y) || cmp(y, x) || x == y;

}
}

The concept LessThanPartialOrdering defines the same requirements as PartialOrdering with respect
to the operator <:

11

concept LessThanPartialOrdering<typename T>
{

axiom Irreflexivity(T x) {
!(x < x);

}
axiom AntiSymmetry(T x, T y) {

!(x < y && y < x);
}
axiom Transitivity(T x, T y, T z) {

if (x < y && y < z)
x < z;

}
}

Adding the requirement of complementary transitivity yields:

concept LessThanStrictWeakOrdering<typename T>
: LessThanPartialOrdering<T>

{
axiom ComplementaryTransitivity(T x, T y, T z) {

if (!(x < y) && !(y < x))
!(x < z);

}

// Implies the following definition of equivalence classes
bool equivalent(T x, T y) {

return !(x < y) && !(y < x);
}

}

Analogously defined is the total order:

concept LessThanTotalOrdering<typename T>
: LessThanStrictWeakOrdering<T>

{
axiom Trichotomy(T x, T y) {

// Can we request that x == y is defined appropriately?
x < y || y < x || x == y;

}
}

All intrisic types (see [concept.intrinsic]) with an operator< are totaly ordered:

template <Intrinsic T>
requires LessThanComparable<T>

concept map LessThanTotalOrdering<T> {}

Accordingly, intrinsic types establish a total order with the less functor from STL:

template <Intrinsic T>
requires LessThanComparable<T>

concept map TotalOrdering<less<T>, T> {}

Thus, adding the semantic requirement of strict weak ordering to STL’s generic sort functions does
not require additional declaration effort from the user for sorting intrinsics.

