
Algorithms for permutations and combinations,
with and without repetitions

Document number: N2639=08-0149

Document title: Algorithms for permutations and
combinations, with and without repetitions

Author: Hervé Brönnimann
Contact: hbr@poly.edu
Organization: Polytechnic University and Bloomberg L.P.
Date: 2008-5-16
Number: WG21/N2639
Working Group: Library

Abstract

This proposal adds eight algorithms (std::next_partial_permutation,
next_combination, next_mapping, next_repeat_combination_counts, their
counterparts std::prev_partial_permutation, std::prev_combination, std::prev_-
mapping, std::prev_repeat_combination_counts, with their overloads) to
the header <algorithm>, for enumerating permutations and combinations, with
and without repetitions. They mirror and extend std::next_permutation and
std::prev_permutation. For sizes known at compile-time, these algorithms
can generally be simulated by a number of nested loops.

1 Motivation and Scope

1 This proposal addresses missing functionality in the standard. The standard offers full
permutations of a range (with std::next_permutation), but not partial permutations
or combinations (i.e., selection of a subset of a given size without replacement, also
called without repetitions, where order matters or not). These are standard concepts in
combinatorics, and they can be enumerated easily when the size is known at compile
time. For instance, for enumerating every triplet where order does matter (permutation
of size 3 of [first,last]), the following nested loops will do:

template <typename RandomAccessIter , typename Functor >

void for_each_triplet(RandomAccessIter first ,

RandomAccessIter last ,

Functor f)

N2639 — Algorithms for permutations and combinations — Page 1

{

for (RandomAccessIter i = first; i != last; ++i) {

for (RandomAccessIter j = first; j != last; ++j) {

if (i == j) continue;

for (RandomAccessIter k = first; k != last; ++k) {

if (i == k || j == k) continue;

f(i, j, k);

}

}

}

}

while, if order does not matter (i.e., a triplet should be enumerated once, not once for
each of its six permutations), the following code will do:

template <typename RandomAccessIter , typename Functor >

void for_each_3_subset(RandomAccessIter first ,

RandomAccessIter last ,

Functor f)

{

for (RandomAccessIter i = first; i != last; ++i) {

for (RandomAccessIter j = i + 1; j != last; ++j) {

for (RandomAccessIter k = j + 1; k != last; ++k) {

f(i, j, k);

}

}

}

}

When the size of the subset (i.e., the number of nested loops) is not known at compile
time, however, the implementation becomes a lot harder to get right.

2 We propose to add algorithms to complement std::next_permutation: we wish to
cover (for completeness) permutations and combinations without and with repetitions.
Formally [1, 3]:

• A permutation of size r of a range of size n is a (not necessarily) sorted subsequence
of size r of the total range, i.e., a subsequence of elements at r positions among
the n positions in the range.

• A combination of size r of a range of size n is a sorted subsequence of size r of the
total range, i.e., the ordered (possibly multi-)set of the elements at r positions
among the n positions in the range.

• A permutation or combination is without repetition if the r indices in the respective
definition are distinct (and necessarily r ≤ n), and with repetition otherwise.

3 Combinations and permutations are very useful objects, when you need them, in par-
ticular for testing (enumerating all possible testing cases) and for cheaply deriving
brute-force combinatorial algorithms [4]. They are also interesting for indexing multi-
dimensional data structures (multi-array, data cubes, etc.). In particular, algebraic com-

N2639 — Algorithms for permutations and combinations — Page 2

putations like determinants and permanents, and by extension Grassmann algebra, may
rely on the enumeration of such subsets in a specific order.

4 We do provide examples in this proposal, although they tend to be rather lengthy. See
section 6 for an extensive example.

5 The algorithms we propose (for consistency and ease of use) follow the same in-
terface as std::next_permutation. Unlike the hand-coded loops above, but like
std::next_permutation does, they also correctly handle multiple values in the in-
put range; for instance, if all values compare equal, there is only one combination and
one permutation for any size. As an example of usage, with the appropriate #includes,
we can generalize the two functions above to arbitrary runtime sizes:

template <typename RandomAccessIter , typename Functor >

void for_each_tuple(RandomAccessIter first ,

RandomAccessIter middle ,

RandomAccessIter last , Functor f)

{

std::sort(first , last);

do {

f(first , middle);

} while (next_partial_permutation(first , middle , last));

}

template <typename RandomAccessIter , typename Functor >

void for_each_subset(RandomAccessIter first ,

RandomAccessIter middle ,

RandomAccessIter last , Functor f)

{

std::sort(first , last);

do {

f(first , middle);

} while (next_combination(first , middle , last));

}

2 Impact On the Standard

This proposal defines connected but independent pure library extensions. The commit-
tee may consider any pair of next/prev algorithms separately. That is, the proposal
can be split into four distinct proposals which can be considered independently:

— next/prev_partial_permutation
— next/prev_combination
— next/prev_mapping
— next/prev_repeat_combination_counts

Their addition does not interact with other parts of the standard that I can think of.

N2639 — Algorithms for permutations and combinations — Page 3

3 Design Decisions

1 There are many possible definitions, and we stuck to the most established and least
likely to cause conflict or confusion [1, 3]. Many other variants, e.g., where values
are required to be unique, can be easily derived from the algorithms we propose here
by additional pre- and post-processing. For instance, requiring all permutations/com-
binations of size r without repetitions from a range of size n in which all elements
are unique (even though the elements in the range may not be) is no different from
first removing all duplicates (using std::unique) and, if the resulting size is m < r,
enumerating all the permutations/combinations of r elements out of these m unique el-
ements. Some other variants are harder (see next section), and we do not propose them
for standardization either.

2 We designed the interface to be most efficient. Requiring the range [middle, last)
to be sorted is a good compromise because it does not force the algorithm to do it
(unnecessarily so if this is already the case), it makes the algorithm more efficient and
is maintained by the natural implementation of the algorithm, and it is easy enough for
the user to precondition the range to meet the requirement (via standard algorithms).

3 We also provide generic variants as overload of next_mapping and prev_mapping,
accepting an additional functor (the incrementor) used to increment the value of the
mapping. We include them into this proposal for completeness (since we also in-
clude overloads of the permutations and combination without repetitions for compari-
son functors).

4 We decided to not require an explicit representation of the combinations with repeti-
tions, in order to avoid (1) potentially expensive multiple copies of the same repeated
instance, and (2) algorithmic costs of merely counting the number of repetitions of an
instance at every application of the algorithms. The representation we propose instead,
simply gives the multiplicities of each element, hence the ..._counts name scheme.

5 The names ..._without_repetitions or ..._with_repetitions would just be
too long for standardization. The permutations of size r < n are still called per-
mutations, but we named the function with the idiom partial permutations because
"partial" is already used in the C++ standard (partial_sort, with the same inter-
face: (first,middle,last)), and to avoid overloading ambiguities with the exist-
ing next_permutation algorithm for certain template parameters. We could have
kept the same names for the versions with repetitions, except that the most useful in-
terfaces did not manipulate these permutations or combinations with repetitions per se,
but rather the mappings or combination counts, hence the naming.

6 The reference implementation included below convinced us of the usefulness of this
proposal, given that the implementation can be succinct and very efficient, but non-
trivial, and would take valuable resource to re-derive and test for correctness by each
developer.

N2639 — Algorithms for permutations and combinations — Page 4

4 Possible extensions

We did not cover in this proposal the following variants. We personally feel that they
belong in a more specialized library (e.g., a future Boost.permutation library [5]), but
offer them here to show the richness of the topic:

— next/prev_cyclic_permutation: all cyclic permutations are considered equiv-
alent. If any element is distinct, say *first, simply enumerate all the permutations
of [++first,last) keeping *first fixed. Complications occur, however, if *first
is repeated, or if cyclic permutations must be enumerated in lexicographical order and
the minimum element is repeated, and the corresponding algorithm becomes highly
non-trivial.

— next/prev_partial_cyclic_permutation: same with permutations of r among
n elements. I’m not sure how complicated the algorithm is... but it’s certainly no longer
a simple extension like the full cyclic permutation. For one thing, fixing every first
element of the partial permutation to each element in turn will enumerate partial per-
mutations twice. I think requiring the first element of the partial permutation to be the
minimum of these, thus taking every iterator middle in the range [first, last-r)
and enumerating the partial permutations of [++middle, last) of size r− 1 would
enumerate them in lexicographic order, if all the elements are distinct. Not sure what
happens with equal elements, perhaps just skipping over the middle such that *middle
== *(middle-1) might do the trick. In any case, while easy to describe, this is not an
easy algorithm.

— next/prev_reverse_permutation: a permutation and its reversal are considered
equivalent. The difficulty here seems not to enumerate them (you could skip a permu-
tation if, e.g., the first is greater than the last element, or if the permutation is greater
than its reversal if you also wish to take care of equal values). The difficulty seems
to enumerate them in lexicographic order with at most (last - first) swaps and
comparisons (the previously proposed algorithm has no upper bound on the number
of operations needed to obtain the next reverse permutation). I think a tweaked im-
plementation of next_permutation must be written, it doesn’t seem possible to just
combine the existing algorithms. For that reason, it would deserve to be a standalone
algorithm. Minor point: the name is not a good one, must come up with a better one.

— next/prev_partial_reverse_permutation: same with permutations of r among
n elements.

Just to be clear, once again, we are not proposing to standardize these extensions.

5 Proposed Text

In the header <algorithm> synopsis, rename section 25.3.9 (currently: “permuta-
tions”) to “combinatorial enumeration”, keep the next_permutation and prev_-
permutation, and add:

N2639 — Algorithms for permutations and combinations — Page 5

/ / 25.3.9, combinatorial enumeration:
/ / . . .
template <class BidirectionalIterator >

bool next_partial_permutation(BidirectionalIterator first ,

BidirectionalIterator middle ,

BidirectionalIterator last);

template <class BidirectionalIterator , class Compare >

bool next_partial_permutation(BidirectionalIterator first ,

BidirectionalIterator middle ,

BidirectionalIterator last , Compare comp);

template <class BidirectionalIterator >

bool prev_partial_permutation(BidirectionalIterator first ,

BidirectionalIterator middle ,

BidirectionalIterator last);

template <class BidirectionalIterator , class Compare >

bool prev_partial_permutation(BidirectionalIterator first ,

BidirectionalIterator middle ,

BidirectionalIterator last , Compare comp);

template <class BidirectionalIterator >

bool next_combination(BidirectionalIterator first ,

BidirectionalIterator middle ,

BidirectionalIterator last);

template <class BidirectionalIterator , class Compare >

bool next_combination(BidirectionalIterator first ,

BidirectionalIterator middle ,

BidirectionalIterator last , Compare comp);

template <class BidirectionalIterator >

bool prev_combination(BidirectionalIterator first ,

BidirectionalIterator middle ,

BidirectionalIterator last);

template <class BidirectionalIterator , class Compare >

bool prev_combination(BidirectionalIterator first ,

BidirectionalIterator middle ,

BidirectionalIterator last , Compare comp);

template <class BidirectionalIterator , class T>

bool next_mapping(BidirectionalIterator first ,

BidirectionalIterator last ,

T first_value , T last_value);

template <class BidirectionalIterator , class T, class Incrementor >

bool next_mapping(BidirectionalIterator first ,

BidirectionalIterator last ,

T first_value , T last_value , Incrementor increment);

template <class BidirectionalIterator , class T>

bool prev_mapping(BidirectionalIterator first ,

BidirectionalIterator last ,

N2639 — Algorithms for permutations and combinations — Page 6

T first_value , T last_value);

template <class BidirectionalIterator , class T, class Decrementor >

bool prev_mapping(BidirectionalIterator first ,

BidirectionalIterator last ,

T first_value , T last_value , Decrementor decrement);

template <class BidirectionalIterator >

bool next_repeat_combination_counts(BidirectionalIterator first ,

BidirectionalIterator last);

template <class BidirectionalIterator >

bool prev_repeat_combination_counts(BidirectionalIterator first ,

BidirectionalIterator last);

In section 25.3,9 [alg.permutation.generators], add:

template <class BidirectionalIterator >

bool next_partial_permutation(BidirectionalIterator first ,

BidirectionalIterator middle ,

BidirectionalIterator last);

template <class BidirectionalIterator , class Compare >

bool next_partial_permutation(BidirectionalIterator first ,

BidirectionalIterator middle ,

BidirectionalIterator last , Compare comp);

8 Effects: next_partial_permutation takes a sequence defined by the range [first,last)
such that [first,middle) stores a partial permutation, i.e., a permutation of some
subsequence of [first,last), and permutes it such that [first,middle) stores the
next partial permutation of the same size from [first,last), and [middle,last)
is sorted. The next partial permutation is found by assuming that the set of all par-
tial permutations of a given size from [first,last) is lexicographically sorted with
respect to operator< or comp. If the next partial permutation does not exist, it trans-
forms [first,middle) into the smallest partial permutation, leaving the entire range
sorted.

9 Returns: true if the next partial permutation exists, false otherwise.
10 Requires: The type of *first shall satisfy the Swappable requirements (37). The

range [middle,last) shall be sorted in ascending order.
11 Remarks: Upon returning false, [first,middle) is back to the smallest partial per-

mutation, that is, the prefix of the ascendingly sorted range, and the requirements met
for another application of next_partial_permutation.

12 Complexity: At most (last - first) comparisons and (last - first) swaps.
13 [Note:In order to prepare the range [first,last) for an enumeration of all partial

permutations in lexicographic order, std::sort(first,last) or std::sort(first,last,comp).
— end Note]

template <class BidirectionalIterator >

bool prev_partial_permutation(BidirectionalIterator first ,

N2639 — Algorithms for permutations and combinations — Page 7

BidirectionalIterator middle ,

BidirectionalIterator last);

template <class BidirectionalIterator , class Compare >

bool prev_partial_permutation(BidirectionalIterator first ,

BidirectionalIterator middle ,

BidirectionalIterator last , Compare comp);

14 Effects: prev_partial_permutation takes a sequence defined by the range [first,last)
such that [first,middle) stores a partial permutation, i.e., a permutation of some
subsequence of [first,last), and permutes it such that [first,middle) stores
the previous partial permutation of the same size from [first,last), and [mid-
dle,last) is sorted. The previous partial permutation is found by assuming that the
set of all partial permutations of a given size from [first,last) is lexicographically
sorted with respect to operator< or comp. If the previous partial permutation does not
exist, it sorts the entire range in reverse order and then applies std::reverse(middle,
last).

15 Returns: true if the previous partial permutation exists, false otherwise.
16 Requires: The type of *first shall satisfy the Swappable requirements (37). The

range [middle,last) shall be sorted in ascending order.
17 Remarks: Upon returning false, [first,middle) is back to the largest partial per-

mutation, that is, the prefix of the descendingly sorted range, and the requirements met
for another application of prev_partial_permutation.

18 Complexity: At most (last - first) comparisons and (last - first) swaps.
19 [Note:In order to prepare the range [first,last) for an enumeration of all partial

permutations in reverse lexicographic order, sort(first,last) or sort(first,last,comp)
and then std::reverse(first,last) followed by std::reverse(middle,last).
— end Note]

template <class BidirectionalIterator >

bool next_combination(BidirectionalIterator first ,

BidirectionalIterator middle ,

BidirectionalIterator last);

template <class BidirectionalIterator , class Compare >

bool next_combination(BidirectionalIterator first ,

BidirectionalIterator middle ,

BidirectionalIterator last , Compare comp);

20 Effects: next_combination takes a sequence defined by the range [first,last)
such that [first,middle) stores a combination, i.e., some sorted subsequence of
[first,last), and permutes it such that [first,middle) stores the next combina-
tion of the same size from [first,last), and [middle,last) is sorted. The next
combination is found by assuming that the set of all combinations of a given size from
[first,last) is lexicographically sorted with respect to operator< or comp. If
the next combination does not exist, it transforms [first,middle) into the smallest
combination, leaving the entire range sorted.

N2639 — Algorithms for permutations and combinations — Page 8

21 Returns: true if the next combination exists, false otherwise.
22 Requires: The type of *first shall satisfy the Swappable requirements (37). The

ranges [first,middle) and [middle,last) shall both be sorted in ascending or-
der.

23 Remarks: Upon returning false, [first,middle) is back to the smallest combina-
tion, that is, the prefix of the ascendingly sorted range, and the requirements met for
another application of next_combination.

24 Complexity: At most (last - first) comparisons and (last - first) swaps.
25 [Note:In order to prepare the range [first,last) for an enumeration of all combina-

tions in lexicographic order, std::sort(first,last) or std::sort(first,last,comp).
— end Note]

template <class BidirectionalIterator >

bool

prev_combination(BidirectionalIterator first ,

BidirectionalIterator middle ,

BidirectionalIterator last);

template <class BidirectionalIterator , class Compare >

bool

prev_combination(BidirectionalIterator first ,

BidirectionalIterator middle ,

BidirectionalIterator last , Compare comp);

26 Effects: prev_combination takes a sequence defined by the range [first,last)
such that [first,middle) stores a combination, i.e., some sorted subsequence of
[first,last), and permutes it such that [first,middle) stores the previous com-
bination of the same size from [first,last), and [middle,last) is sorted. The
previous combination is found by assuming that the set of all combinations of a given
size from [first,last) is lexicographically sorted with respect to operator< or
comp. If the previous combination does not exist, it transforms [first,middle) into
the largest combination, leaving [middle,last) sorted.

27 Returns: true if the previous combination exists, false otherwise.
28 Requires: The type of *first shall satisfy the Swappable requirements (37). The

ranges [first,middle) and [middle,last) shall both be sorted in ascending or-
der.

29 Remarks: Upon returning false, [first,middle) is back to the largest combination,
that is, the reversed prefix of the descendingly sorted range, and the requirements met
for another application of prev_combination.

30 Complexity: At most (last - first) comparisons and (last - first) swaps.
31 [Note:In order to prepare the range [first,last) for an enumeration of all combina-

tions in reverse lexicographic order, sort(first,last) or sort(first,last,comp)
and then std::reverse(first,last) followed by std::reverse(middle,last).
— end Note]

template <class BidirectionalIterator , class T>

N2639 — Algorithms for permutations and combinations — Page 9

bool next_mapping(BidirectionalIterator first ,

BidirectionalIterator last ,

T first_value , T last_value);

template <class BidirectionalIterator , class T, class Incrementor >

bool next_mapping(BidirectionalIterator first ,

BidirectionalIterator last ,

T first_value , T last_value , Incrementor increment);

32 Effects: next_mapping takes a mapping, i.e., a range [first,last) from which
each value belongs to the range [first_value,last_value), and transforms this
sequence into the next mapping from [first,last) onto [first_value,last_-
value). The next mapping is found by assuming that the set of all mappings is lex-
icographically sorted with respect to the values in the range [first_value,last_-
value). If such a mapping does not exist, it transforms the mapping into the lexico-
graphically smallest mapping, that is, each value in [first,last) equals first_-
value.

33 Returns: true if the next mapping exists, false otherwise.
34 Requires: T shall meet the requirements of CopyConstructible (34) and Assignable

(23.1) types. In the first form, T shall have an operator++; in the second form, In-
crementor shall meet the requirements of CopyConstructible (34) types; last_-
value shall be reachable from first_value by a finite positive number of evalua-
tions of ++first_value or increment(first_value). [Note:T is not required to
be LESSTHANCOMPARABLE, instead the order is induced by the increment operator,
with each value x less than ++x. — end Note]

35 Complexity: At most (last - first) decrements of BidirectionalIterator
and (last - first) increments of T.

template <class BidirectionalIterator , class T>

bool prev_mapping(BidirectionalIterator first ,

BidirectionalIterator last ,

T first_value , T last_value);

template <class BidirectionalIterator , class T, class Incrementor >

bool prev_mapping(BidirectionalIterator first ,

BidirectionalIterator last ,

T first_value , T last_value , Incrementor increment);

36 Effects: prev_mapping takes a mapping, i.e., a sequence defined by the range [first,last)
where each value in this range belongs to the range [first_value,last_value),
and transforms this sequence into the previous mapping from [first,last) onto
[first_value,last_value). The previous mapping is found by assuming that the
set of all mappings is lexicographically sorted with respect to the values in the range
[first_value,last_value). If such a mapping does not exist, it transforms the
mapping into the lexicographically smallest mapping, that is, each value in [first,last)
equals first_value.

37 Returns: true if the previous mapping exists, false otherwise.

N2639 — Algorithms for permutations and combinations — Page 10

38 Requires: T shall meet the requirements of CopyConstructible (34) and Assignable
(23.1) types. In the first form, T shall have an operator--; in the second form, Decre-
mentor shall meet the requirements of CopyConstructible (34) types; first_-
value shall be reachable from last_value by a finite positive number of evalua-
tions of --last_value or decrement(last_value). [Note:T is not required to be
LESSTHANCOMPARABLE, instead the order is induced by the increment operator, with
each value x less than ++x. — end Note]

39 Complexity: At most (last - first) decrements of BidirectionalIterator
and (last - first) decrements of T.

template <class BidirectionalIterator >

bool next_repeat_combination_counts(BidirectionalIterator first ,

BidirectionalIterator last);

40 Effects: next_repeat_combination_counts takes a sequence defined by the range
[first,last) where each value in this range is a combination count and the sum of
all counts in this range equals some total_size (or 0 if [first,last) is empty), and
transforms this sequence into the next combination counts of the same total_size.
The next combination counts are found by assuming that the set of all combination
counts whose sums equal total_size is lexicographically sorted with respect to the
values in the range [first,last). If such a mapping does not exist, it transforms
the combination counts into the lexicographically smallest combination counts, that is,
0 for each iterator in [first,last) except total_size for the last such iterator (if
any).

41 Returns: true if the next combination counts exist, false otherwise.
42 Requires: The type of *first shall satisfy the Swappable requirements (37), and be

a numeric type (26.1) which can be incremented and decremented. [Note:This type is
not required to have an operator+ to compute total_size. The invariance of the
total_size mentioned in the effects rule is achieved by applying an equal number of
increments and decrements. — end Note]

43 Complexity: At most (last - first) decrements of BidirectionalIterator
and one increment and one decrement of the type of *first.

44 [Note:The underlying combinations with repetitions computed from the combination
counts are not enumerated in lexicographic order. — end Note]

template <class BidirectionalIterator >

bool prev_repeat_combination_counts(BidirectionalIterator first ,

BidirectionalIterator last);

45 Effects: prev_repeat_combination_counts takes a sequence defined by the range
[first,last) where each value in this range is a combination count and the sum of
all counts in this range equals some total_size (or 0 if [first,last) is empty),
and transforms this sequence into the previous combination counts of the same to-
tal_size. The previous combination counts are found by assuming that the set of all
combination counts whose sums equal total_size is lexicographically sorted with

N2639 — Algorithms for permutations and combinations — Page 11

respect to the values in the range [first,last). If such a mapping does not ex-
ist, it transforms the combination counts into the lexicographically largest combination
counts, that is, 0 for each iterator in [first,last) except total_size for first (if
different from last).

46 Returns: true if the previous combination counts exist, false otherwise.
47 Requires: The type of *first shall satisfy the Swappable requirements (37), and be

a numeric type (26.1) which can be incremented and decremented. [Note:This type is
not required to have an operator+ to compute total_size. The invariance of the
total_size mentioned in the effects rule is achieved by applying an equal number of
increments and decrements. — end Note]

48 Complexity: At most (last - first) decrements of BidirectionalIterator
and one increment and one decrement of the type of *first.

49 [Note:The underlying combinations with repetitions computed from the combination
counts are not enumerated in reverse lexicographic order. — end Note]

6 Illustration

We decided to include this section into the proposal, despite its significant length com-
mitment, for the obvious benefits of clarifying the concepts involved.

6.1 Examplifying next_partial_permutation

Given a set {0,1, . . .n− 1} of size n, we wish to enumerate all the permutations of
size r ≤ n that have no repetitions. We know before-hand that there are n!/(n− r)!
such permutations. Enumerating them is easy using the next_partial_permutation
algorithm:

const int r = 3, n = 6;

std::vector <int > v(n);

for (int i = 0; i < n; ++i) v[i] = i;

int N = 0;

do {

++N;

std::cout << "[" << v[0];

for (int j = 1; j < r; ++j) { std::cout << ", " << v[j]; }

std::cout << "] ";

} while (next_partial_permutation(v.begin(), v.begin() + r, v.end ()));

std::cout << "\nFound " << N << " permutations of size 3 without repetitions"

<< " from a set of size 5." << std::endl;

This code will print out (abridged, broken on several lines):

[0, 1, 2] [0, 1, 3] [0, 1, 4] [0, 1, 5] [0, 2, 1]

[0, 2, 3] [0, 2, 4] . . . [5, 3, 2]

N2639 — Algorithms for permutations and combinations — Page 12

[5, 3, 4] [5, 4, 0] [5, 4, 1] [5, 4, 2] [5, 4, 3]

Found 120 permutations of size 3 without repetitions from a set of size 5.

The situation is a bit more complex to understand when the original sequence has dupli-
cate values, because the notion of permutation without repetitions in this case consists
of the subsequences indexed by all collections of *distinct* r indices among the n in-
dices, with identical such subsequences enumerated only once. Suppose for instance
that v contains the sequence {0,1,2,0,1,3}. In order to start the enumeration, the se-
quence must first be sorted into {0,0,1,1,2,3}, then all the sequence of distinct three
indices (permutations of size r of {0, ...n−1}) are applied to the above sequence, but
notice for instance that the first two sequence of indices generate the same permuta-
tion [0,0,1] since the original sequence has the same element at indices 2 and 3. This
subsequence is enumerated only once. Here is the code (identical, except for the ini-
tialization of v):

v[0] = 0; v[1] = 1; v[2] = 2; v[3] = 0; v[4] = 1; v[5] = 3;

std::sort(v.begin(), v.end ());

N = 0; / / note: r and n are still 3 and 6, respectively
do {

++N;

std::cout << "[" << v[0];

for (int j = 1; j < r; ++j) { std::cout << ", " << v[j]; }

std::cout << "] ";

} while (next_partial_permutation(v.begin(), v.begin() + r, v.end ()));

std::cout << "\nFound " << N << " permutations of size 3 without repetitions"

<< " from a (multi)set of size 5." << std::endl;

This time, the code outputs the much shorter (again, broken on several lines):

[0, 0, 1] [0, 0, 2] [0, 0, 3] [0, 1, 0] [0, 1, 1] [0, 1, 2]

[0, 1, 3] [0, 2, 0] [0, 2, 1] [0, 2, 3] [0, 3, 0] [0, 3, 1]

[0, 3, 2] [1, 0, 0] [1, 0, 1] [1, 0, 2] [1, 0, 3] [1, 1, 0]

[1, 1, 2] [1, 1, 3] [1, 2, 0] [1, 2, 1] [1, 2, 3] [1, 3, 0]

[1, 3, 1] [1, 3, 2] [2, 0, 0] [2, 0, 1] [2, 0, 3] [2, 1, 0]

[2, 1, 1] [2, 1, 3] [2, 3, 0] [2, 3, 1] [3, 0, 0] [3, 0, 1]

[3, 0, 2] [3, 1, 0] [3, 1, 1] [3, 1, 2] [3, 2, 0] [3, 2, 1]

Found 42 permutations of size 3 without repetitions of a (multi)set of size 5.

Note that if we had wanted the permutations that had no repetitions of values (as op-
posed to repetitions of indices), we could simply have removed the duplicates from v,
yielding a short sequence of m values, and enumerated the permutations of r elements
taken from these m values without repetitions. Here m would be 4, and there would be
four such permutations.

N2639 — Algorithms for permutations and combinations — Page 13

6.2 Examplifying next_combination

Given a set {0,1, ...n−1}, we wish to enumerate all the subsets of size r ≤ n. This is
easy using the next_combination algorithm that takes three or four arguments:

const int r = 3, n = 10;

std::vector <int > v_int(n);

for (int i = 0; i < n; ++i) { v_int[i] = i; }

int N = 0;

do {

++N;

std::cout << "[" << v_int [0];

for (int j = 1; j < r; ++j) { std::cout << ", " << v_int[j]; }

std::cout << "] ";

} while (next_combination(v_int.begin(), v_int.begin() + r, v_int.end ()));

std::cout << "\nFound " << N << " combinations of size " << r << " without repetitions"

<< " from a set of " << n << " elements." << std::endl;

This code will print out:

[0, 1, 2] [0, 1, 3] [0, 1, 4] [0, 1, 5] [0, 1, 6]

[0, 1, 7] [0, 1, 8] [0, 1, 9] [0, 2, 3] . . .

[5, 8, 9] [6, 7, 8] [6, 7, 9] [6, 8, 9] [7, 8, 9]

Found 120 combinations of size 3 without repetitions from a set of 10 elements.

Had some elements been equal, e.g., v = 0, 1, 2, 3, 1, 2, 3, 1, 2, 3 , we
would have had the following output instead (the discussion is the same as for permu-
tations without repetitions, except that the sequences in the output must be sorted):

[0, 1, 1] [0, 1, 2] [0, 1, 3] [0, 2, 2] [0, 2, 3] [0, 3, 3]

[1, 1, 1] [1, 1, 2] [1, 1, 3] [1, 2, 2] [1, 2, 3] [1, 3, 3]

[2, 2, 2] [2, 2, 3] [2, 3, 3] [3, 3, 3]

Found 16 combinations of size 3 without repetitions from a (multi)set of 10 elements.

Suppose we have a slightly different requirement, with a type that cannot be swapped,
either because it isn’t efficient, or because the sequence cannot be permuted (if it is
passed const, for instance). For expository purposes, we use a non-modifiable vector
of std::string. In this case we can apply the previous solution with an extra level
of indirection, and apply next_combination to a vector that holds iterators into our
non-modifiable vector of strings (note that the iterators are in sorted order):

const char *strings [] = {

"one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten"

};

const int m = sizeof strings / sizeof *strings;

std::vector <std::string > v_strings(strings , strings + m);

std::vector <std::vector <std::string >:: const_iterator > w(m);

for (int i = 0; i < m; ++i) { w[i] = v_strings.begin() + i; }

N2639 — Algorithms for permutations and combinations — Page 14

N = 0; / / note: r and n are still 3 and 10, respectively
do {

++N;

std::cout << "[" << *w[0];

for (int j = 1; j < r; ++j) { std::cout << ", " << *w[j]; }

std::cout << "]" << std::endl;

} while (next_combination(w.begin(), w.begin() + r, w.end ()));

std::cout << "\nFound " << N << " combinations of size " << r << " without repetition"

<< " from a set of " << n << " elements." << std::endl;

This prints out, while never modifying the value of v:

[one , two , three] [one , two , four] [one , two , four] [one , two , five]

[one , two , seven] [one , two , eight] [one , two , nine] [one , two , ten]

[one , three , four] . . . [seven , eight , nine] [seven , eight , ten]

[seven , nine , ten] [eight , nine , ten]

Found 120 combinations of size 3 without repetitions from a set of 10 elements.

6.3 Examplifying next_mapping

Given a set {0,1, ...n−1} of size n, we wish to enumerate all the permutations of size
r that possibly have repetitions. (Note that r and n can be in any relation, larger or
smaller.) We know before-hand that there are nr such permutations. Each permutation
with repetition is simply an assignment of r variables x[0] . . . x[r] into the
set {0,1, ...n−1}. Enumerating them is easy using the next_mapping algorithm:

const int r = 5, n = 3;

std::vector <int > v_int(r, 0);

int N = 0;

do {

++N;

std::cout << "[" << v_int [0];

for (int j = 1; j < r; ++j) { std::cout << ", " << v_int[j]; }

std::cout << "] ";

} while (next_mapping(v_int.begin(), v_int.end(), 0, n));

std::cout << "\nFound " << N << " mappings from " << n

<< " positions to a set of " << r << " elements." << std::endl;

This code will print out:

[0, 0, 0, 0, 0] [0, 0, 0, 0, 1] [0, 0, 0, 0, 2] [0, 0, 0, 1, 0]

[0, 0, 0, 1, 1] [0, 0, 0, 1, 2] [0, 0, 0, 2, 0] [0, 0, 0, 2, 1]

[0, 0, 0, 2, 2] [0, 0, 1, 0, 0] [0, 0, 1, 0, 1] [0, 0, 1, 0, 2]

. [2, 2, 2, 1, 1]

[2, 2, 2, 1, 2] [2, 2, 2, 2, 0] [2, 2, 2, 2, 1] [2, 2, 2, 2, 2]

Found 243 mappings from 3 positions to a set of 5 elements.

N2639 — Algorithms for permutations and combinations — Page 15

Note that this exactly enumerates the coordinates of a point in a r-dimensional cubical
grid whose side has length n. Also note that there isn’t any special treatment for the
range values, they are simply consecutive values in the sense that one goes from one
value to the next by using operator++. Note that first_value is not necessarily
an iterator, because there is no requirement on a dereferencing operator*. However,
an iterator can be used. Note that the values pointed to by these iterators, or their
orderings, are irrelevant. We demonstrate this here using instead of the range [0, r)
a range [w.begin(), w.end()) into some vector of fruits.

const char *strings [] = { "banana", "peach", "apple" };

std::vector <std::string > W(strings , strings + n);

const std::vector <std::string >& w = W;

std::vector <std::vector <std::string >:: const_iterator > v_iter(r, w.begin ());

N = 0; / / note: r and n are still 5 and 3, respectively
do {

++N;

std::cout << "[" << *v_iter [0];

for (int j = 1; j < r; ++j) { std::cout << ", " << *v_iter[j]; }

std::cout << "]" << std::endl;

} while (next_mapping(v_iter.begin(), v_iter.end(), w.begin(), w.end ()));

std::cout << "\nFound " << N << " mappings from " << n

<< " positions to a set of " << r << " fruits." << std::endl;

This code then outputs:

[banana , banana , banana , banana , banana] [banana , banana , banana , banana , peach]

[banana , banana , banana , banana , apple] [banana , banana , banana , peach , banana]

[banana , banana , banana , peach , peach] [banana , banana , banana , peach , apple]

[banana , banana , banana , apple , banana] [banana , banana , banana , apple , peach]

[banana , banana , banana , apple , apple] [banana , banana , peach , banana , banana]

[banana , banana , peach , banana , peach] [banana , banana , peach , banana , apple]

. [apple , apple , apple , peach , peach]

[apple , apple , apple , peach , apple] [apple , apple , apple , apple , banana]

[apple , apple , apple , apple , peach] [apple , apple , apple , apple , apple]

Found 243 mappings from 5 positions to a set of 3 fruits.

6.4 Examplifying next_combination_counts

Given a set {0,1, ...n− 1}, we wish to enumerate all the combinations of size r of
elements in the set, taken with repetitions. This is easy using the next_combina-
tion_counts algorithm that takes only two arguments. Instead of copying (possibly
multiple repetitions of) elements into a range, we simply require a range holding the
multiplicities of each instance in the original set. The lexicographically first assignment
of multiplicities with a total multiplicity of size r is {0, ...0,r}.
const int r = 5, n = 3;

std::vector <int > multiplicities(n, 0);

N2639 — Algorithms for permutations and combinations — Page 16

multiplicities.back() = r;

int N = 0;

do {

++N;

std::cout << "[" << multiplicities [0];

for (int j = 1; j < n; ++j) { std::cout << ", " << multiplicities[j]; }

std::cout << "]" << std::endl;

} while (next_combination_counts(multiplicities.begin(), multiplicities.end ()));

std::cout << "Found " << N << " combinations of size " << r

<< " with repetitions from a set of " << n << " elements." << std::endl;

This code will print out:

[0, 0, 5] [0, 1, 4] [0, 2, 3] [0, 3, 2] [0, 4, 0] [0, 5, 0]

[1, 0, 4] [1, 1, 3] [1, 2, 2] [1, 3, 1] [1, 4, 0] [2, 0, 3]

[2, 1, 2] [2, 2, 1] [2, 3, 0] [3, 0, 2] [3, 1, 1] [3, 2, 0]

[4, 0, 1] [4, 1, 0] [5, 0, 0]

Found 21 combinations of size 5 with repetitions from a set of 3 elements.

Note that it isn’t hard to actually display the sequence itself. Given a value of multi-
plicities, e.g., {1,3,1}, we can copy into a container w the combination with repetition
of a vector v.

const char *strings [] = { "banana", "peach", "apple" };

std::vector <std::string > v(strings , strings + n);

multiplicities [0] = 1; multiplicities [1] = 3; multiplicities [2] = 1;

assert(r == multiplicities [0] + multiplicities [1] + multiplicities [2]);

std::vector <std::string > w;

for (int i = 0; i < n; ++i) {

for (int j = 0; j < multiplicities[i]; ++j) {

w.push_back(v[i]);

}

}

assert(r == w.size ());

Printing the container holding the repeated values produces:

[banana , peach , peach , peach , apple]

7 Reference implementation

We offer a reference implementation to show both that the implementation is not overly
difficult, but that it is also far from trivial. We limit ourselves to the non-predicated
version. The first implementation is a gem of simplicity, building on std::next_-
permutation:

N2639 — Algorithms for permutations and combinations — Page 17

template <class BidirectionalIterator >

bool next_partial_permutation(BidirectionalIterator first ,

BidirectionalIterator middle ,

BidirectionalIterator last)

{

reverse (middle , last);

return next_permutation(first , last);

}

template <class BidirectionalIterator >

bool prev_partial_permutation(BidirectionalIterator first ,

BidirectionalIterator middle ,

BidirectionalIterator last)

{

bool result = prev_permutation(first , last);

reverse (middle , last);

return result;

}

It is especially nice to standardize such tricks as many developers will likely come up
with a much more complicated (and slower) solution.

The next one is the hardest to get, and emphasizes the value of standardizing these
components, as this code is probably too hard or costly to write, even for seasoned
developers:

namespace {

template <class BidirectionalIterator >

bool next_combination(BidirectionalIterator first1 ,

BidirectionalIterator last1 ,

BidirectionalIterator first2 ,

BidirectionalIterator last2)

{

if ((first1 == last1) || (first2 == last2)) {

return false;

}

BidirectionalIterator m1 = last1;

BidirectionalIterator m2 = last2; --m2;

while (--m1 != first1 && !(*m1 < *m2)) {

}

bool result = (m1 == first1) && !(* first1 < *m2);

if (! result) {

while (first2 != m2 && !(*m1 < *first2)) {

++ first2;

}

N2639 — Algorithms for permutations and combinations — Page 18

first1 = m1;

std:: iter_swap (first1 , first2);

++ first1;

++ first2;

}

if ((first1 != last1) && (first2 != last2)) {

m1 = last1; m2 = first2;

while ((m1 != first1) && (m2 != last2)) {

std:: iter_swap (--m1, m2);

++m2;

}

std:: reverse (first1 , m1);

std:: reverse (first1 , last1);

std:: reverse (m2, last2);

std:: reverse (first2 , last2);

}

return !result;

}

} / / namespace

template <class BidirectionalIterator >

bool next_combination(BidirectionalIterator first ,

BidirectionalIterator middle ,

BidirectionalIterator last)

{

return detail :: next_combination(first , middle , middle , last);

}

template <class BidirectionalIterator >

inline

bool prev_combination(BidirectionalIterator first ,

BidirectionalIterator middle ,

BidirectionalIterator last)

{

return detail :: next_combination(middle , last , first , middle);

}

The following is equivalent to n identical nested loops, but with a dynamic (run-
time) value for n. The algorithm is somewhat simple, and used to enumerate multi-
dimensional indices in hypercubes:

template <class BidirectionalIterator , class T>

bool

next_mapping(BidirectionalIterator first ,

BidirectionalIterator last ,

N2639 — Algorithms for permutations and combinations — Page 19

T first_value , T last_value)

{

if (last == first) {

return false;

}

do {

if (++(*(-- last)) != last_value) {

return true;

}

*last = first_value;

} while (last != first);

return false;

}

template <class BidirectionalIterator , class T>

bool

prev_mapping(BidirectionalIterator first ,

BidirectionalIterator last ,

T first_value , T last_value)

{

if (last == first) {

return false;

}

--last_value;

do {

if (*(--last) != first_value) {

--(*last);

return true;

}

*last = last_value;

} while (last != first);

return true;

}

The last one is not too hard to obtain, at least forward. Backward is a little bit more
difficult. Clearly, again, deriving these correctly requires some effort, and it would be
better to have those algorithms standardized.

template <class BidirectionalIterator >

bool

next_repeat_combination_counts(BidirectionalIterator first ,

BidirectionalIterator last)

{

BidirectionalIterator current = last;

while (current != first && *(--current) == 0) {

}

if (current == first) {

if (first != last && *first != 0)

std:: iter_swap(--last , first);

return false;

N2639 — Algorithms for permutations and combinations — Page 20

}

--(*current);

std:: iter_swap(--last , current);

++(*(-- current));

return true;

}

template <class BidirectionalIterator >

bool

prev_repeat_combination_counts(BidirectionalIterator first ,

BidirectionalIterator last)

{

if (first == last)

return false;

BidirectionalIterator current = --last;

while (current != first && *(--current) == 0) {

}

if (current == last || current == first && *current == 0) {

if (first != last)

std:: iter_swap(first , last);

return false;

}

--(*current);

++ current;

if (0 != *last) {

std:: iter_swap(current , last);

}

++(* current);

return true;

}

8 Acknowledgements

Thanks to Phil Garofalo, for starting the topic on the Boost mailing list in 2002, to Ben
Bear for reviving the topic in November 2007 with his Gacap library, and for helping
to test our implementation, to Howard Hinnant for his early contributions and to Jens
Seidel for an earlier reading of this proposal.

References

[1] Knuth, D.E. The Art of Computer Programming. Volume 4, Fascicle 3, "Generat-
ing All Combinations and Partitions", Addison-Wesley Professional, 2005. ISBN
0-201-85394-9.

N2639 — Algorithms for permutations and combinations — Page 21

[2] T. Cormen, C. Leiserson, R. Rivest and C. Stein. Introduction to algorithms (2nd
edition). The MIT Press, 2004.

[3] Wikipedia. Combinatorics. http://en.wikipedia.org/wiki/
Combinatorics

[4] Howard Hinnant. Combinations and Permutations. http://home.twcny.rr.
com/hinnant/cpp_extensions/combinations.html

[5] Hervé Brönnimann. Proposition for Boost.permutation library (in preparation).
http://photon.poly.edu/~hbr/boost/combinations.html

N2639 — Algorithms for permutations and combinations — Page 22

http://en.wikipedia.org/wiki/Combinatorics
http://en.wikipedia.org/wiki/Combinatorics
http://home.twcny.rr.com/hinnant/cpp_extensions/combinations.html
http://home.twcny.rr.com/hinnant/cpp_extensions/combinations.html
http://photon.poly.edu/~hbr/boost/combinations.html

	Motivation and Scope
	Impact On the Standard
	Design Decisions
	Possible extensions
	Proposed Text
	Illustration
	Examplifying next_partial_permutation
	Examplifying next_combination
	Examplifying next_mapping
	Examplifying next_combination_counts

	Reference implementation
	Acknowledgements
	References

