Iterator Concepts for the C++0x Standard Library

Douglas Gregor, Jeremy Siek and Andrew Lumsdaine
dgregor @osl.iu.edu, jeremy.siek @colorado.edu, lums @osl.iu.edu

Document number: N2500=08-0010

Revises document number: N2323=07-0183

Date: 2008-02-03

Project: Programming Language C+, Library Working Group
Reply-to: Douglas Gregor <dgregor @osl.iu.edu>

Introduction

This document proposes new iterator concepts in the C+0x Standard Library. It describes a new header <iterator_-
concepts> that contains these concepts, along with concept maps and iterator_traits specializations that provide
backward compatibility for existing iterators and generic algorithms.

This proposal adds new functionality into the Standard Library for concepts. More thorough changes to the Standard
Library will follow in future revisions of the “Concepts for the C++0x Standard Library” proposals.

The concepts in this proposal replace the requirements tables currently in [iterator.requirements]. This leaves the Stan-
dard Library in an interesting (but consistent!) state, where the template requirements of the Standard Library are
described in terms of actual concepts, but the templates themselves are not constrained templates. For example, a type
Iter in a Standard Library algorithm might be stated to be an InputIterator in the current text: previously, that text
referred (implicitly or otherwise) to a requirements table for InputIterator, whereas now it refers to the InputIter-
ator concept itself. When the Standard Library is fully evolved to use concepts, this informally-stated requirement will
be made formal by a requires claus. Thus, the approach of this proposal is designed to provide an evolutionary step
toward complete concepts support in the library, while improving the description of the library and support for concepts
with each step.

Within the proposed wording, text that has been added will be presented in blue and underlined when possible. Text that
has been removed will be presented in red,with-strike-through-when-pessible. Non-editorial changes from the previous
wording are highlighted in green.

Purely editorial comments will be written in a separate, shaded box.

mailto:dgregor@osl.iu.edu
mailto:jeremy.siek@colorado.edu
mailto:lums@osl.iu.edu
mailto:dgregor@osl.iu.edu

Chapter 24 Iterators library [iterators]

2 The following subclauses describe iterator requirementsconcepts, and components for iterator primitives, predefined
iterators, and stream iterators, as summarized in Table[T]

Table 1: Iterators library summary

| Subclause Header(s)
24.1|RequirementsConcepts <iterator_concepts>
D. 10| Iterator primitives <iterator>

?? Predefined iterators
?? Stream iterators

The following section has been renamed from “Iterator requirements” to “Iterator concepts’.

24.1 Iterator concepts [iterator.concepts]

1 The <iterator_concepts> header describes requirements on iterators.

Header <iterator_concepts> synopsis

namespace std {
concept IteratorBase<typename X> see below;

/7 input iterators:

concept InputIterator<typename X> see below;

/7 output iterators:
concept OutputIterator<typename X, typename Value> see below;
concept BasicOutputIterator<typename X> see below;

template<BasicOutputIterator X, typename Value>
requires CopyAssignable<X::reference, Value>
concept_map OutputIterator<X, Value> see below;

V4 Jforward iterators:

concept ForwardIterator<typename X> see below;
concept MutableForwardIterator<typename X> see below;

3 Iterators library 24.1 Iterator concepts

/7 bidirectional iterators:
concept BidirectionalIlterator<typename X> see below;
concept MutableBidirectionallterator<typename X> see below;

V4 random access iterators:

concept RandomAccessIterator<typename X> see below;

concept MutableRandomAccessIterator<typename X> see below;
template<ObjectType T> concept_map MutableRandomAccessIterator<T*> see below;
template<ObjectType T> concept_map RandomAccessIterator<const T*> see below;

V4 swappable iterators:

concept Swappablelterator<typename X> see below;

2 Iterators are a generalization of pointers that allow a C+ program to work with different data structures (containers)
in a uniform manner. To be able to construct template algorithms that work correctly and efficiently on different types
of data structures, the library formalizes not just the interfaces but also the semantics and complexity assumptions of
iterators. All input iterators i support the expression *1i, resulting in a value of some class, enumeration, or built-in type
T, called the value type of the iterator. All output iterators support the expression *i = o where o is a value of some
type that is in the set of types that are writable to the particular iterator type of i. All iterators i for which the expression
(*1) .m is well-defined, support the expression i->m with the same semantics as (*i) .m. For every iterator type X for
which equality is defined, there is a corresponding signed integral type called the difference type of the iterator.

concept IteratorBase<typename X> {
typename value_type = typename X::value_type;
MoveConstructible reference = typename X::reference;
MoveConstructible pointer = typename X::pointer;

}

3 Since iterators are an abstraction of pointers, their semantics is a generalization of most of the semantics of pointers in
C+. This ensures that every function template that takes iterators works as well with regular pointers. This International
Standard defines five-categeries-of-iteratorsnine iterator concepts, according to the operations defined on them: input
iterators, output iterators, forward iterators, mutable forward iterators, bidirectional iterators, mutable bidirectional
iterators, random access iterators, ané mutable random access iterators, and swappable iterators, as shown in Table

Table 2: Relations among iterator eategeriesconcepts
Random Access — Bidirectional — Forward — Input

T T T

Mutable Random Access — Mutable Bidirectional — Mutable Forward — Output

4 Forward iterators satisfy all the requirements of the input and-eutput iterators and can be used whenever eitherkindan
input iterator is specified. Mutable forward iterators satisfy all the requirements of forward and output iterators, an can
be used whenever either kind is specified. Bidirectional iterators also satisfy all the requirements of the forward iterators
and can be used whenever a forward iterator is specified. Random access iterators also satisfy all the requirements of
bidirectional iterators and can be used whenever a bidirectional iterator is specified.

Draft

24.1 Iterator concepts Iterators library 4

%@epre@%}eﬂ%her%&mkva}uwequeek The mutable variants of the forward, bldlrectlonal and random access

iterator concepts satisfy the requirements for output iterators, and can be used wherever an output iterator is required.
Non-mutable iterators are referred to as constant iterators.

Just as a regular pointer to an array guarantees that there is a pointer value pointing past the last element of the array, so
for any iterator type there is an iterator value that points past the last element of a corresponding container. These values
are called past-the-end values. Values of an iterator i for which the expression *i is defined are called dereferenceable.
The library never assumes that past-the-end values are dereferenceable. Iterators can also have singular values that are
not associated with any container. [Example: After the declaration of an uninitialized pointer x (as with int* x;), x
must always be assumed to have a singular value of a pointer. — end example] Results of most expressions are undefined
for singular values; the only exceptions are destroying an iterator that holds a singular value and the assignment of a
non-singular value to an iterator that holds a singular value. In this case the singular value is overwritten the same way
as any other value. Dereferenceable values are always non-singular.

An iterator j is called reachable from an iterator i if and only if there is a finite sequence of applications of the expression
++1 that makes i == j. If j is reachable from i, they refer to the same container.

Most of the library’s algorithmic templates that operate on data structures have interfaces that use ranges. A range is a
pair of iterators that designate the beginning and end of the computation. A range [i,1i) is an empty range; in general, a
range [i, j) refers to the elements in the data structure starting with the one pointed to by i and up to but not including
the one pointed to by j. Range [i,j) is valid if and only if j is reachable from i. The result of the application of
functions in the library to invalid ranges is undefined.

All the e&&egeﬁe%e#ﬁefa{emltm ator conce

pts require
constant time (amortized). b

only those

functions that are realizable fe%&gwefrea{egeity in

Destruction of an iterator may invalidate pointers and references previously obtained from that iterator.

An invalid iterator is an iterator that may be singularm

24.1.1 Input iterators [input.iterators]

A class or a built-in type X satisfies the requlrements of an 1nput iterator for the value type T if the-followingexpressions
-it meets the syntactic and semantic

rcqu1rcmcnts of thc InputIterator concept.

concept InputIlterator<typename X> : IteratorBase<X>, Semiregular<X>, EqualityComparable<X> {
SignedIntegrallike difference_type = typename X::difference_type;

requires IntegerType<difference_type>
&& Convertible<reference, value_type>;

DThis definition applies to pointers, since pointers are iterators. The effect of dereferencing an iterator that has been invalidated is undefined.

Draft

6

10

5 TIterators library 24.1 Iterator concepts

&% Convertible<pointer, const value_type*>;

MoveConstructible postincrement_result;
requires Dereferenceable<postincrement_result> &&
Convertible<Dereferenceable<postincrement_result>::reference, value_type>;

reference operator*(X const&);

pointer operator—>(X const&) ;

X& operator++(X&);

postincrement_result operator++(X&, int);

In-Table-95In the InputIterator concept, the term the domain of == is used in the ordinary mathematical sense to
denote the set of values over which == is (required to be) defined. This set can change over time. Each algorithm places
additional requirements on the domain of == for the iterator values it uses. These requirements can be inferred from
the uses that algorithm makes of == and !=. [Example:the call f£ind(a,b,x) is defined only if the value of a has the
property p defined as follows: b has property p and a value i has property p if (¥*i==x) or if (*i!=x and ++i has
property p). — end example |

[[Remove Table 96: Input iterator requirements]|

[Note: For input iterators, a == b does not imply ++a == ++b. (Equality does not guarantee the substitution property
or referential transparency.) Algorithms on input iterators should never attempt to pass through the same iterator twice.

They should be single pass algorithms. Value-type-T-is-notrequired-to-be-an-Assignable-type-(23-1H- These algorithms

can be used with istreams as the source of the input data through the istream_iterator class. — end note]

reference operator*(X const& a);

Requires: a is dereferenceable.
Returns: the value referenced by the iterator

Remarks: If b is a value of type X, a == b and (a, b) is in the domain of == then *a is equivalent to *b.

pointer operator->(X const& a);
Returns: a pointer to the value referenced by the iterator

If two iterators a and b of the same type are equal, then either a and b are both dereferenceable or else neither is
dereferenceable.

If two iterators a and b of the same type are both dereferenceable, then a == b if and only if *a and *b are the same
object.

X& operator++(X& r);
Precondition: r is dereferenceable

Postcondition: r is dereferenceable or r is past-the-end. any copies of the previous value of r are no longer required
either to be dereferenceable or in the domain of ==.

postincrement_result operator++(X&, int);

Draft

24.1 [Iterator concepts Iterators library 6

Effects: ++r
24.1.2 QOutput iterators [output.iterators]
A class or a built-in type X satisfies the requ1rements of an output iterator if meepyeeﬂs&ue&bl&@@%—and

J6meets the syntactic and

semantic requ1rements of the Output Iterator or BasmOutput Iterator concepts

[[Remove Table 97: Output iterator requirements]]

[Note: The only valid use of an operatorx* is on the left side of the assignment statement. Assignment through the
same value of the iterator happens only once. Algorithms on output iterators should never attempt to pass through the
same iterator twice. They should be single pass algorithms. Equality and inequality might not be defined. Algorithms
that take output iterators can be used with ostreams as the destination for placing data through the ostream_iterator
class as well as with insert iterators and insert pointers. — end note |

The OutputIterator concept describes an output iterator that may permit output of many different value types.

concept OutputIterator<typename X, typename Value> : CopyConstructible<X> {
typename reference;
requires CopyAssignable<reference, Value>;

typename postincrement_result;

requires Dereferenceable<postincrement_result&> &&
Convertible<postincrement_result, const X&> &&
CopyAssignable<Dereferenceable<postincrement_result&>::reference, Value>;

reference operatorx*(X&);
X& operator++(X&) ;
postincrement_result operator++(X&, int);

}

X& operator++(X& r);

Postcondition: &r == &++r
postincrement_result operator++(X& r, int);

Effects: equivalent to
{ X tmp =
++r;
return tmp; }

The BasicOutputIterator concept describes an output iterator that has one, fixed value type. Unlike OutputIter-
ator, BasicOutputIterator is a part of the iterator refinement hierarchy.

concept BasicOutputIterator<typename X> : IteratorBase<X>, CopyConstructible<X> {
requires CopyAssignable<reference, value_type>;

typename postincrement_result;

requires Dereferenceable<postincrement_result&>,
CopyAssignable<Dereferenceable<postincrement_result&>::reference, value_type>,

Draft

7 Iterators library 24.1 Iterator concepts

Convertible<postincrement_result, const X&>;

reference operator* (X&) ;
X& operator++(X&) ;
postincrement_result operator++(X&, int);

}

X& operator++(X& r);

Postcondition: &r == &++r

postincrement_result operator++(X& r, int);
Effects: equivalent to
{ X tmp = r;

++r;

return tmp; }

Every BasicOutputIterator is an OutputIterator for value types CopyAssignable to its reference type.

template<BasicOutputIterator X, typename Value>
requires CopyAssignable<X::reference, Value>
concept_map OutputIterator<X, Value> {

typedef X::reference reference;
typedef X::postincrement_result postincrement_result;
}
24.1.3 Forward iterators [forward.iterators]

A class or a built-in type X satisfies the requirements of a forward iterator if the-folewing-expressions-are-valid—as

shewn-in—Table-97-it meets the syntactic and semantic requirements of the ForwardIterator or MutableForwardlIterator
concepts.

[[Remove Table 98: Forward iterator requirements.]]

concept ForwardIterator<typename X> : InputIterator<X>, Regular<X> {
requires Convertible<postincrement_result, const X&>;

}
concept MutableForwardIterator<typename X> : ForwardIterator<X>, BasicOutputIterator<X> {7

The ForwardIterator concept here provides weaker requirements on the reference and pointer types than the
associated requirements table in C++03, because these types do not need do not need to be true references or pointers to
value_type. This change weakens the concept, meaning that C++03 iterators (which meet the stronger requirements)
still meet these requirements, but algorithms that relied on these stricter requirements will no longer work just with the
iterator requirements: they will need to specify true references or pointers as additional requirements. By weakening
the requirements, however, we permit proxy iterators to model the forward, bidirectional, and random access iterator
concepts.

2This allows algorithms specified with QutputIterator (the less restrictive concept) to work with iterators that have concept maps for the more
common BasicOutputIterator concept.

Draft

24.1 [Iterator concepts Iterators library 8

[Note: The condition thata == b implies ++a == ++b (which is not true for input and output iterators) and the removal
of the restrictions on the number of the assignments through the iterator (which applies to output iterators) allows the
use of multi-pass one-directional algorithms with forward iterators. — end note |

24.1.4 Bidirectional iterators [bidirectional.iterators]

Aclassora bu11t -in type X satlsﬁes the requlrements ofa b1d1rect10nal 1terator if Aﬁaé%m%s&ﬂsﬁymg&}efeqmremenﬁ

8-it meets the syntactic and semantic

requlrements of the Bldlrectlonallterator or MutableB1d1rect10nallterat0r concept

[[Remove Table 99: Bidirectional iterator requirements.]]

concept Bidirectionallterator<typename X> : ForwardIterator<X> {
MoveConstructible postdecrement_result;
requires Dereferenceable<postdecrement_result> &&
Convertible<Dereferenceable<postdecrement_result>::reference, value_type> &&
Convertible<postdecrement_result, const X&>;

X& operator--(X&) ;
postdecrement_result operator--(X&, int);

}

concept MutableBidirectionalIlterator<typename X>
: Bidirectionallterator<X>, MutableForwardIterator<X> { }

[Note: Bidirectional iterators allow algorithms to move iterators backward as well as forward. — end note |

X& operator--(X& r);
Precondition: there exists s such that r == ++s.
Postcondition: r is dereferenceable.

Effects: == (++1)
--r == --simpliesr == s.
&r == &--r.

postdecrement_result operator--(X& r, int);

Effects: equivalent to

{ X tmp =
—r;
return tmp; }

24.1.5 Random access iterators [random.access.iterators]

A class or a bu11t -in type X satlsﬁes the requlrements of a random access iterator 1f ﬂHd%@i&—t@%ﬁﬁsﬁymg—the
e-99-it meets the syntactic
and semantic requirements of the RandomAccessIterator or MutableRandomAccessIterator concept.

concept RandomAccessIterator<typename X> : Bidirectionallterator<X>, LessThanComparable<X> {
X& operator+=(X&, difference_type);

Draft

10

9 Iterators library

24.1

Iterator concepts

X operator+ (X const&, difference_type);
X operator+ (difference_type, Xconst&);
X& operator-=(X&, difference_type);

X operator- (X const&, difference_type);

difference_type operator-(X const&, X const&);
reference operator[] (X const&, difference_type);

concept MutableRandomAccessIterator<typename X>
: RandomAccessIterator<X>, MutableBidirectionalIterator<X> { }

[[Remove Table 100: Random access iterator requirements.]]

X& operator+=(X&, difference_type);
Effects: equivalent to

{ difference_type m = n;
if (m >= 0) while (m—-) ++r;
else while (m++) --r;
return r; }

X operator+(X const& a, difference_type n);
X operator+(difference_type n, X const& a);
Effects: equivalent to

{ X tmp = a;

return tmp += n; }

Postcondition: a + n == n + a

X& operator-=(X& r, difference_type n);
Returns: r += -n
X operator-(X const&, difference_type);

Effects: equivalent to

{ X tmp = a;
return tmp -= n; }

difference_type operator—(X const& a, X const& b);

Precondition: there exists a value n of difference_type such thata + n ==
Effects:b == a + (b - a)
Returns: (a < b) ? distance(a,b) : -distance(b,a)

Pointers are mutable random access iterators with the following concept map

Draft

b.

24.1 [Iterator concepts Iterators library 10

namespace std {
template<ObjectType T> concept_map MutableRandomAccessIterator<T*> {
typedef T value_type;
typedef std::ptrdiff_t difference_type;
typedef T& reference;
typedef T* pointer;
}
}

and pointers to const are random access iterators

namespace std {
template<ObjectType T> concept_map RandomAccessIterator<const T*> {
typedef T value_type;
typedef std::ptrdiff_t difference_type;
typedef const T& reference;
typedef const T* pointer;

_ far such that the difference of two

11 [Note: If there is an additional pointer type _far is of type long, an imple-

mentation may define

template <ObjectType T> concept_map MutableRandomAccessIterator<T __far*> {
typedef long difference_type;
typedef T value_type;
typedef T _ _far* pointer;
typedef T __far& reference;
}

template <ObjectType T> concept_map RandomAccessIterator<const T __far*> {
typedef long difference_type;
typedef T value_type;
typedef const T __far* pointer;
typedef const T __far& reference;

—end note |
Add the following new section
24.1.6 Swappable iterators [swappable.iterators]

1 A class or built-in type X satisfies the requirements of a swappable iterator if it meets the syntactic and semantic
requirements of the SwappableIterator concept.

auto concept Swappablelterator<typename X> {
void iter_swap(X const&, X const&);

}

void iter_swap(X const& a, X const& b);

Draft

11 Iterators library 24.1 Iterator concepts

2 Swaps the elements referenced by iterators a and b.

Draft

Appendix D
(normative)
Compatibility features [depr]

D.10 Iterator primitives [depr.lib.iterator.primitives]

To simplify the task-ef-defining-iteratorsuse of iterators and provide backward compatibility with previous C++ Standard
Libraries, the library provides several classes and functions.

The iterator_traits and supporting facilities described in this section are deprecated. [Note: the iterator concepts
4.1) provide the equivalent functionality using the concept mechanism. — end note]

D.10.1 Iterator traits [iterator.traits]

articula 3 at-iflterator traits pr0v1de an auxiliary mechanism
for accessing the associated types of an iterator. If Iterator is the type of an iterator, the types

iterator_traits<Iterator>::difference_type
iterator_traits<Iterator>::value_type
iterator_traits<Iterator>::iterator_category

shall be defined as the iterator’s difference type, value type and iterator category (24.3.3), respectively. In addition, the
types

iterator_traits<Iterator>::reference
iterator_traits<Iterator>::pointer

shall be defined as the iterator’s reference and pointer types, that is, for an iterator object a, the same type as the type of

xa and a->, respectlvely {B—Gheeas%f—a&e&epu&ﬁera{er—eh%types

1

13 Compatibility features D.10 Iterator primitives

iterator_traits is specialized for any type Iterator for which there is a concept map for any of the iterator concepts

24.1) and Iterator meets the requirements stated in the corresponding requirements table of ISO/IEC 14882:2003.

[Note: these specializations permit forward compatibility of iterators, allowing those iterators that provide only concept

maps to be used through iterator_traits. They can be implemented via class template partial specializations such

as the following.

template<InputIterator Iterator> struct iterator_traits<Iterator> {

typedef Iterator::difference_type difference_type;
typedef Iterator::value_type value_type;
typedef Iterator::pointer pointer;
typedef Iterator::reference reference;
typedef input_iterator_tag iterator_category;
};
template<BasicOutputIterator Iterator> struct iterator_traits<Iterator> {
typedef Iterator::difference_type difference_type;
typedef Iterator::value_type value_type;
typedef Iterator::pointer pointer;
typedef Iterator::reference reference;
typedef output_iterator_tag iterator_category;
};
—end note |
D.10.2 Basic iterator [iterator.basic]

We deprecated the basic iterator template because it isn’t really the right way to specify iterators any more. Even
when using this template, users should write concept maps so that (1) their iterators will work when iterator_traits
and the backward-compatibility models go away, and (2) so that their iterators will be checked against the iterator
concepts as early as possible.

The iterator template may be used as a base class to ease the definition of required types for new iterators.

namespace std {
template<class Category, class T, class Distance = ptrdiff_t,
class Pointer = T*, class Reference = T&>
struct iterator {
typedef T value_type;
typedef Distance difference_type;
typedef Pointer pointer;
typedef Reference reference;
typedef Category iterator_category;
};
}

D.10.3 Standard iterator tags [std.iterator.tags]

D.10 Iterator primitives Compatibility features 14

introduces category tag classes which are used as compile time tags fer-algorithm-seleetion-to distinguish the different
iterator concepts when using the iterator_traits mechanism. They are: input_iterator_tag, output_iter-
ator_tag, forward_iterator_tag, bidirectional_iterator_tag and random_access_iterator_tag. For
every iterator of type Iterator, iterator_traits<Iterator>::iterator_category shall be defined to be the
most specific category tag that describes the iterator’s behavior.

namespace std {
struct input_iterator_tag {};
struct output_iterator_tag {};
struct forward_iterator_tag: public input_iterator_tag {};
struct bidirectional_iterator_tag: public forward_iterator_tag {};
struct random_access_iterator_tag: public bidirectional_iterator_tag {};

}

[[Remove this paragraph: It gives an example using iterator_traits, which we no longer encourage.]]
D.10.4 Iterator backward compatibility [iterator.backward]

The library provides concept maps that allow iterators specified with iterator_traits to interoperate with algorithms
that require iterator concepts.

The associated types difference_type, value_type, pointer and reference are given the same values as their
counterparts in iterator_traits.

These concept maps shall only be defined when the iterator_traits specialization contains the nested types dif-
ference_type, value_type, pointer, reference and iterator_category.

[Example: The following example is well-formed. The backward-compatbility concept map for InputIterator does
not match because iterator_traits<int> fails to provide the required nested types.

template<Integral T> void f(T);
template<InputIterator T> void £(T);

void g(int x) {
f£(x); // okay
}

— end example |

The library shall provide a concept map InputIterator for any type Iterator with
iterator_traits<Iterator>::iterator_category convertible to input_iterator_tag.

The library shall provide a concept map OutputIterator for any type Iterator with
iterator_traits<Iterator>::iterator_category convertible to output_iterator_tag. [Note: the refer-
ence type of the OutputIterator must be deduced, because iterator_traits specifies that it will be void. —end
note |

The library shall provide a concept map ForwardIterator for any type Iterator with
iterator_traits<Iterator>::iterator_category convertible to forward_iterator_tag.

The library shall provide a concept map MutableForwardIterator for any type Iterator with
iterator_traits<Iterator>::iterator_category convertible to forward_iterator_tag for which the ref-
erence type is CopyAssignable from the value_type.

Draft

15 Compatibility features D.10 Iterator primitives

The library shall provide a concept map BidirectionalIterator for any type Iterator with
iterator_traits<Iterator>::iterator_category convertible to bidirectional_iterator_tag.

The library shall provide a concept map MutableBidirectionalIterator for any type Iterator with
iterator_traits<Iterator>::iterator_category convertible to bidirectional_iterator_tag for which
the reference type is CopyAssignable from the value_type.

The library shall provide a concept map RandomAccessIterator for any type Iterator with
iterator_traits<Iterator>::iterator_category convertible to random_access_iterator_tag.

The library shall provide a concept map MutableRandomAccessIterator for any type Iterator with
iterator_traits<Iterator>::iterator_category convertible to random_access_iterator_tag for which
the reference type is CopyAssignable from the value_type.

Acknowledgments

Thanks to Beman Dawes for alerting us to omissions from the iterator concepts.
Bibliography

[1] Douglas Gregor and Bjarne Stroustrup. Proposed wording for concepts (revision 1). Technical Report N2307=07-
0167, ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Programming Language C++, July 2007.

Draft

	Iterators library
	Iterator concepts

	Compatibility features
	Iterator primitives

