Doc No: N2136=06-0206

Bool_set: multi-valued logic (revision 1)

Hervé Bronnimanh Guillaume Melquiond Sylvain Piort
2006-11-01
Contents
[Contents 1
I [History of changes to this documenit 1

Il [Motivation and Scope|

Il [Impact on the Standard |

IV | Design Decisions

V Proposed Text for the Standar 5
2. € numeric (':aite'g' fy ''' 10

V | Examples of us¢ 13
\A Infervalarthmetic 13
V.2 ernary I0gIC e e e e e e e 13
V.3 Extended tloating-point COMPArisONS v v i vt e e 13
V.4 Mulli-valued boolean algorthms it 14
V.5 Introducing non-determinism into C++ vimol _set| 14

VI | Acknowledgements 15

[Referenceb 15

| History of changes to this document
Since initial version (N2046=06-0116) :

— Removed overload of the short-circuitiagerator | | andoperator&.

Il Motivation and Scope

Multi-valued logic is a natural extension of two-valued binary logic. There are several variants, with ternary
logic (encoding true, false, and a third value representing maybe) being one of the most fundamental,

*CIS, Polytechnic University, Six Metrotech, Brooklyn, NY 11201, UBArepoly. edu
TEcole Normale Supérieure de Lyon, 46 allée d'ltalie, 69364 Lyon cedex 07, F@ncElaume . melquiond@ens-1lyon. fr
*INRIA, BP 93, 06902 Sophia Antipolis cedex, Fran6glvain.Pion@sophia.inria.fr

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2046.pdf
hbr@poly.edu
guillaume.melquiond@ens-lyon.fr
Sylvain.Pion@sophia.inria.fr

explored since the 1400s by William of Occam, and in the 1920s by tukasiewicz [1]. It is used in the
design of ternary circuits, which have the promise of using less power and manipulating larger numbers
than binary circuits (such circuits have been patented and proposed long|ago [7], and a whole ternary
computer been realized in the 1950s by the Soviéts [2]). Itis used in microprocessor chips for embedded
systems (microwaves, etc.).

In the context of the C++ standard library, we have recently had a need for multi-valued logic in our interval
arithmetic proposal |3] to represent the return value of an interval comparison (with empty or overlapping
intervals). There are other cases in applications which could use multi-valued logic, with a third value
representing an indeterminate (several examples come to mind: static analysis to encode if two pointers can
possibly be aliased - yes, no, or maybe; should a window be refreshed - yes, no, or partially; initialization
of boolean variables - true, false, intentionally nothing, or uninitialized; etc.). The SQL language also
provides a three valued logic whose semantic is covered by this proposal.

One may also envision using indeterminates when working with floating point numbers and not-a-number
(NaN). For instance, it could be quite elegant to use a functor returning an indeterminate when comparing a
number with a nan, and could make the treatment of NaNs much more uniform. In fact, it would probably
make even more sense to have floating-point predicates with NaNs return theteriptyget, and have
comparisons of infinities return an indeterminate. See the example section for an illustration.

Why standardize it?

— Because the functionality is beneficial for other parts of the standard library (notably the proposed
interval arithmetic).

— Because there is a strong history of this kind of multi-valued logic, and the potential user base is
large (note that Boost.Tribool is cited several times in “whao’s using Boost?”).

Impact on the Standard

What does it depend on, and what depends on it? Is it a pure extension, or does it require changes to
standard components? Can it be implemented using today’s compilers, or does it require language features
that will only be available as part of C++0x?

It is a pure extension to the standard library.

Design Decisions

Why did you choose the specific design that you did? What alternatives did you consider, and what are the
tradeoffs? What are the consequences of your choice, for users and implementers? What decisions are left
up to implementers? If there are any similar libraries in use, how do their design decisions compare to
yours?

Design overview:

We largely follow the design that we had fiiterval<bool> [3] and the one that is used in Boost.tribool

[5]. We have added the empty set, because it is useful for intervals and makes it mathematically complete
and consistent. Note that, however, the empty set will never be created by the other values under the logical
operations, sdt is possible to useéool_set exactly like atribool as far as boolean operations are
concernedIn fact, the restriction to the two boolean values is also stable under logical operators, so by the
same token it is possible to useol_set exactly like abool but there is little benefit to that.

Alternatives and trade-offs:

As for the representation of a multi-valued logic, there are not many alternatives. Using a floating-point
value in [0,1] allows for various degrees of indetermination and can always be done without any addition
to the language, but does not allow the logic operators. We specifically needed a type that extends bool and
has the same operators.

The most sticky point to decide was to allow an implicit conversiondel. Explicit conversions are not
yet part of the language so that was not an option. An alternative would have been to provide a member
functionto_bool (). We considered it and decided against it. See the rationale.

Decisions left to implementers:

The internal representation obaol_set is completely unspecified and left to implementers.

Comparison with existing libraries:

This proposal is similar to Boost.Tribogl|[5]. Similar functionality can also be found inUtitger-
tain<bool> class of CGAL|[[8].

Rationale

— Why introduce bool_set?
The choice was made in the interval proposal [3] to introdbwel _set, which is similar in spirit
to Boost.Tribool, except that it throws an exception for invalid conversiobsda (a ladynamic_-
cast), and also supports the empty value.
Note that the conversion taol shouldthrow for an empty or indeterminat®ol_set (see fourth
item below), but it is possible for the user to test for these cases by hand and avoid exceptions
altogether.
It is primarily used for the result of uncertain comparisons of types where comparisons can return
a trivalent state (e.g., intervals can be compared or overlap), to avoid systematically throwing an
exception when the comparison returns a result otherthaa or false.

— Why introduce bool_set as a separate proposal frominterval<T>?
It can be useful independent of any numerical context. There are many uses for 3-valued boolean
logic, motivating the Boost.Tribool library. Comparing values in a partial order is one of the main
motivations, along with encoding a degree of uncertainty, both of which extend beyond the context
of intervals.

— Why not just three states as in Boost.TribooP
In addition to indeterminate, usage withterval<T> requires an empty state. Moreover, there is
likely no penalty for having a fourth state in current systems, since the possibilities for space savings
by having three instead of four are almost null. If the empty state is not needed, there is no penalty
for not using it, and it will not be created by the other boolean operations. In other words, the algebra
consisting of true, false, and indeterminate states is stable.

— Why a conversion tobool and why does it throw?
bool_set is intended to be used in the same context asd. Thus it makes sense to have some
way to cast aool_set into abool. The big question is what to do for conversion. We decided
to allow an implicit conversion tdool, which throws an exception. In this watpol_set can be
used wherever ool is used and the user can expect the same result except if an exception is raised,
which she then has to handle.
Alternatives: Boost.Tribool has a direct conversioméo1, which does not throw (and maps inde-
terminate to false) and removes the possibility of the tribool to be cast into an int (since only two
levels of implicit conversions are allowed).

Another alternative is not to allow a conversionsieol and let the user add an explicit conversion
(e.g., in testsequals(..., true)) everywhere. The benefits are that the code will not compile
whenbool is changed intool_set and will trigger a code review. The problem is that it may not

be possible for the programmer to modify the code if it belongs to a library (e.g. bdwan set is
returned by an interval comparison in an external library—hence unmodifiable— function templated
by a number type which can be a floating point type or an interval).

Why constructor bool_set (bool) is implicit and not explicit?
There is no danger in the conversion, and we must enable the use of the keywosdmndfalse
as validbool_set values, where the explicit conversion would be heavy.

Why both bool_set::is_indeterminate() and is_indeterminate(bool_set)?
Toallowx.is_indeterminate() aswellasis_indeterminate(x < y) (the code(x < y).is_-
indeterminate () might look very strange to a novice). Furthermore, the latter expression may
return abool_set or abool depending on the types &fandy, precluding a member function call
whereas the free function will work in both cases. Thus, the non-member function is also useful for
writing template code. Note that it is not forbidden (and even encouraged) to ptavidee bool
has_true(bool x) { return x; } for optimization (itis legal by the “as-if” rule as long as the
semantic is the same as a conversiohdol _set).

Why bool_set::is_emptyset () and notbool_set: :empty()?
For uniformity and also to emphasize the fact thab1_set is not a container but still a set.

Why so many functions for testing the value of @&ool_set?

We feel that there should be a single function call for each situation (both for efficiency and for
readability). It is possible to implement. equals(false) by x == false but this involves a
conversion tool which may raise an exception, whereamals will not.

Why set default constructedbool_set to false?

By compatibility withbool when zero-initialized. I1bool_set is intended to be used with a default
constructed meaning ‘nothing known’, then it's not clear whether it should be initialized to indeter-
minate or empty instead. We think the performance gain of leaving the default constructed value
undefined is not worth it.

Why no identity semantic for std: : operator== 0nbool_set?

There are two reasonnable definitionsoplerator==, the logical one returning Bool_set (as

a powerset extension @fperator==(bool,bool) and the identity (expressed lyguals). We
decided to provide the former, for consistency with the semantic of all other operatian®bdn-

set which correspond to functions ovebol. ldentity testing is offered as a free and a member
functionsequals.

Why no operator< defined for bool_set?

We believe that theperator< on bool is not used much, so there is very little need to provide
such an operator. However, if we decided to do so, it should have the same kind of semantic as
operator==.

Why no operator&& and operator| | in addition to operator& and operator|?
To preserve the short-circuiting idiom eperator&& andoperator| | which cannot be defined
directly for UDTs. (note : we changed position since initial version of this document)

Why provide /O ?

I/O is already provided with the (throwing) conversiondeol. We provide an I/O which reads

and writes indeterminates and emptysets as well as booleans. This I1/O does not throw. In alpha
mode, a user can easily provide his/her own facet to overrule the default names or even to throw
an exception for non-boolean values in alpha mode, if desired. Another behavior could be to throw
for non-booleans in numerical (non-alphabetical) mode. We have chosen to always allow I/O in
numerical mode.

— Why choose 2 and 3 for the I/O of indeterminate and emptysét
There is no canonical value in addition to 0 and 1ffal se andtrue, although yet many libraries
use the value 2 for indeterminates (other choices are -1, 0 and 1 for false, indeterminate and true, but
this is incompatible wittbool).

V Proposed Text for the Standard

In Chapter 20, General utilities library.
In 20.2/1, add :

/1 20.2.3, bool_set:
class bool_set;

/1 20.2.3.2 bool_set values:

bool contains(bool_set, bool_set);
bool equals(bool_set, bool_set);
bool is_emptyset (bool_set);

bool is_indeterminate(bool_set);
bool is_singleton(bool_set);

bool certainly(bool_set);

bool possibly(bool_set);

/1 20.2.3.3 bool_set set operations:

bool_set set_union(bool, bool_set);
bool_set set_union(bool_set, bool);
bool_set set_union(bool_set, bool_set);

bool_set set_intersection(bool, bool_set);
bool_set set_intersection(bool_set, bool);
bool_set set_intersection(bool_set, bool_set);

bool_set set_complement (bool_set);

/1 20.2.3.4 bool_set logical operators:
bool_set operator!(bool_set);

bool_set operator~(bool, bool_set);
bool_set operator”~(bool_set, bool);
bool_set operator”~(bool_set, bool_set);

bool_set operator|(bool, bool_set);
bool_set operator|(bool_set, bool);
bool_set operator|(bool_set, bool_set);

bool_set operator&(bool, bool_set);
bool_set operator&(bool_set, bool);
bool_set operator&(bool_set, bool_set);

/1 20.2.3.5 bool_set relational operators:

bool_set operator==(bool, bool_set);
bool_set operator==(bool_set, bool);
bool_set operator==(bool_set, bool_set);

bool_set operator!=(bool, bool_set);

bool_set operator!=(bool_set, bool);
bool_set operator!=(bool_set, bool_set);

20.2.3 Boolean set [lib.bool_set]

1 The typebool_set represents the power set of the Boolean set. An object oftype_set represents
therefore a set of boolean values and is thus one of the four distinct values 0 (efdpige}, {true}

A empty false indet. true | empty false indet. true & empty false indet. true
empty | empty empty empty empty| empty | empty empty empty empty| empty | empty empty empty empty
false | empty false indet. true false | empty false indet. true false | empty false false false
indet. | empty indet. indet. indet.| indet. | empty indet. indet. true indet. | empty false indet. indet.
true | empty true indet. false true | empty true true true true | empty false indet. true

Table 1: The semantics operator”, operator| andoperators.

== empty

false indet. true

empty | empty
false | empty
indet. | empty
true empty

empty empty empty

true indet. false

indet. indet. indet.

false indet. true

Table 2: The semantics operator==.

and{false,true}. The singletons are identified with their boolean value. The vl se,true} is
used to represent an unknown boolean and is naméawlaterminate

2 bool_set shares the interface dbol as much as possible, with the general semantic of functions being
naturally extended to the operations on sets. The semantics of the Ibgidalset operations are given
in Table].

3 bool_set also supports some query functions as well as set operations. Equality as set is offered by the
equals function, while the equality operator follows the extended semantic by returringla set, see

Table[2.

4 None of the member functions throws, nor do value and operation functions, except for the conversion to
bool.

namespace std {

struct bool_set

{

};

bool_
bool_

bool
bool
bool
bool
bool

set ();
set (bool t);

contains(bool_set b) const;
equals (bool_set b) const;
is_emptyset () const;
is_indeterminate () const;
is_singleton() const;

operator bool() const;

static bool_set emptyset ();
static bool_set indeterminate();

} /I of namespace std

bool_set constructors

bool_set ();

5 Effects: Constructs a falsbool_set.
6 Postcondition: equals(false) == true.

[lib.bool_set.ctors]

10

11

12

13
14

15

16

17

bool_set (bool b);

Effects: Constructs a boolean-valuedol_set equal tob.
bool_set member functions

bool contains(bool_set b) const;

Returns: true iff *this contains the set of boolean values heldbby

bool equals(bool_set b) const;

Returns: true iff *this andb contain the same state.

bool is_emptyset() const;

Returns: true iff *this is the empty set.

bool is_indeterminate () const;

Returns: true iff *this is the indeterminate set.

bool is_singleton() const;

Returns: true iff *this contains onlytrue or only false.
bool_set conversion tobool

operator bool() const;

Effects: Returnsp if this->equals(b), with b being a boolean value.
Throws: std: :bad_cast () otherwise.

bool_set set operations:

bool_set set_union(bool_set lhs, bool_set rhs);
bool_set set_union(bool_set lhs, bool rhs);
bool_set set_union(bool lhs, bool_set rhs);

Returns: the union ofLlhs andrhs when viewed as a set dbols.

bool_set set_intersection(bool_set lhs, bool_set rhs);
bool_set set_intersection(bool_set lhs, bool rhs);
bool_set set_intersection(bool 1lhs, bool_set rhs);

Returns: the intersection ofhs andrhs when viewed as a set dbols.

bool_set set_complement (bool_set x);

Returns: the complement of when viewed as a set dbols.

bool_set values

[lib.bool_set.members]

[lib.bool_set.conversion]

[lib.bool_set.set.operations]

[lib.bool_set.free]

18

19

20

21

22

23

24

25

26

27

bool contains(bool_set a, bool_set b);

Returns: a.contains(b).

bool equals(bool_set a, bool_set b);

Returns: a.equals(b).

bool is_emptyset(bool_set a);

Returns: a.is_emptyset ().

bool is_indeterminate(bool_set a);

Returns: a.is_indeterminate().

bool is_singleton(bool_set a);

Returns: a.is_singleton().

bool certainly(bool_set a);

Returns: 'a.contains(false).

bool possibly(bool_set a);

Returns: a.contains(true).

bool_set logical operators [lib.bool_set.operators]

bool_set operator!(bool_set x);

Returns: x if x is empty or indeterminate, amol_set (!bool(x)) otherwise.

bool_set operator ~(bool_set lhs, bool_set rhs);
bool_set operator”~(bool_set 1lhs, bool rhs);
bool_set operator ~(bool lhs, bool_set rhs);

Returns: an emptybool_set if any of 1hs or rhs is empty, an indeterminateol _set if any of 1hs or
rhs is indeterminate, elseool (1hs) ~ bool(rhs). See Tablg]l.

bool_set operator|(bool_set lhs, bool_set rhs);
bool_set operator|(bool_set lhs, bool rhs);
bool_set operator|(bool 1lhs, bool_set rhs);

Returns: an emptybool_set if any of 1hs or rhs is empty, elserue if any of 1hs or rhs is true,false
if both 1hs or rhs are false, and an indeterminateol_set otherwise. See Tabfé 1.

28

29

30

31

32

bool_set operator&(bool_set lhs, bool_set rhs);
bool_set operator&(bool_set lhs, bool rhs);
bool_set operator&(bool 1lhs, bool_set rhs);

Returns: an emptybool_set if any of 1hs or rhs is empty, els€alse if any of 1hs or rhs is false,true
if both 1hs or rhs are true, and an indeterminateol_set otherwise. See Tab[é 1.

bool_set relational operators [lib.bool_set.rel]

bool_set operator==(bool_set lhs, bool_set rhs);
bool_set operator==(bool_set lhs, bool rhs);
bool_set operator==(bool lhs, bool_set rhs);

Returns: an emptybool_set if any 1hs or rhs is empty, else an indeterminateol_set if any of 1hs
or rhs is indeterminate, anbool (1hs) == bool(rhs) otherwise. See Tabfé 2.

bool_set operator!=(bool_set lhs, bool_set rhs);
bool_set operator!=(bool_set lhs, bool rhs);
bool_set operator!=(bool lhs, bool_set rhs);

Returns: ' (1hs == rhs)

bool_set static value operations [lib.bool_set.static.values]

static bool_set emptyset();

Returns: an emptybool_set.

static bool_set indeterminate();

Returns: an indeterminat®ool_set.

22.2.2 The numeric category [lib.category.numeric]

In Section 22.2.2.1, synopsis, add after the corresponging& overload:

iter_type get(iter_type in, iter_type end , ios_basek,
ios_base::iostate& err, bool_set& v) const;

/1 ... and later, in: // virtual

virtual iter_type do_get(iter_type, iter_type, ios_basek,
ios_base::iostate& err, bool_set& v) const;

Likewise, add in Section 22.2.2.1.1, immediately after the correspomgdisitg overload:

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, bool_set& val) const;

And at the end of Section 22.2.2.2.1:

virtual iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, bool_set& val) const;

10

10 Effects:If (str.flags() & ios_base::boolalpha) == 0then input proceeds as it would fobaol
except that if a value is being stored intal, the value is determined according to the following: If the
value to be stored is O thefalse is stored. If the value is 2 thésvol_set: :indeterminate () is stored.

If the value is 1 thertrue is stored. If the value is 3 theésbol_set: :emptyset () is stored. Otherwise
err |= ios_base::failbit is performed and no value is stored.

11 Otherwise target sequences are determined “as if” by calling the mefdbkssname (), truename (),
emptysetname (), andindeterminatename () of the facet obtained byse_facet<numpunct<charT>
>(str.getloc()). Successive characters in the rarige, end) (see 23.1.1) are obtained and matched
against corresponding positions in the target sequences in the same fashion and with the same behavior.

12 Returns: in

In Section 22.2.2.2, synopsis, add after the corresportgtingy overload:

iter_type put(iter_type s, ios_base& f, char_type fill, bool_set v) const;
/1 ... and later, in: // virtual
virtual iter_type do_put(iter_type, ios_base&, char_type £fill,

bool_set v) const;

Likewise, add in Section 22.2.2.2.1, immediately after the correspomdieiy overload:

iter_type put(iter_type out, ios_base& str, char_type fill,
bool_set val) const;

And at the end of Section 22.2.2.2.1:

virtual iter_type do_put(iter_type, ios_base&, char_type £fill,

bool_set v) const;

7 Returns: If (str.flags() & ios_base::boolalpha) == O returnsdo_put(out , str , fill ,
is_singleton(val) ? bool(val) : (is_indeterminate(val) ? 2 : 3)),otherwise obtains
a strings as if by

string_type s = val.equals(true) 7?7 use_facet<ctype<charT> >(loc).truename ()
val.equals(false) 7 use_facet<ctype<charT> >(loc).falsename ()
is_indeterminate(val) 7 use_facet<ctype<charT> >(loc).indeterminatename ()
/x is_emptyset(val)x/ : use_facet<ctype<charT> >(loc).emptysetname ();

and then inserts each charactef s into out viaxout++ = c and returnsut.

22.2.3.1.1 numpunct members [lib.facet.numpunct.members]

Change paragraph:

string_type truename() const;
string_type falsename () const;
string_type indeterminatename () const;
string_type emptysetname () const;

4 Returns: do_truename (), do_falsename(), do_indeterminatename () Or do_emptysetname (), re-
spectively.

22.2.3.1.2 numpunct virtual functions [lib.facet.numpunct.virtuals]

Change paragraph:

string_type do_truename () const;
string_type do_falsename () const;
string_type do_indeterminatename () const;
string_type do_emptysetname () const;

11

Returns: A string representing the name of the boolean valtee or false, or thebool_set values
bool_set::indeterminate() Orbool_set: :emptyset () respectively.

In the base class implementation these namestarge", "false", "indeterminate", and"emptyset",
OrL"true",L"false",L"indeterminate",andL"emptyset"

12

V Examples of use

V.1 Interval arithmetic

In interval arithmetic, an intervat = [x,X] represents the set of numbgits: x <t < X}. We use the
functions infx) = x and sugx) = X. Interval comparisons may be done in a number of ways.

One comparison scheme is the ‘possibly’ or ‘certainly’ comparison, with the senfanix,v € y,u < v

for possibly, and/u € x,v € y,u < v for certainly. Both can be handled uniformly by a single comparison
operator returning &ocol_set. Such an interval comparisoarxy returns an emptpool _set if either x

ory is empty,true if sup(x) < inf(y), false if inf (y) < supx), and an indeterminate otherwise. With
this comparisoncertainly_1t(x,y) is simply implemented asquals(x<y, true) andpossibly_-
1t(x,y) ascontains(x<y, true). Many other comparison schemes can be implemented in terms of
this operator< with various negations, combinations, and parameter swapping. This is the original moti-
vation behind having a typgool_set as return type of interval comparisons.

V.2 Ternary logic

This example is taken from Semple, a static analysis tool developed at Rensselaer Polytechnic Insti-
tute [6]. Semple usesoost: :tribool, which isbool_set without the empty state, in several places.
TheAbstractInterpreter class uses 3-state boolean values to represent the values of boolean variables
and to report the results of evaluating conditionals. Among the functions returbsuga: : tribool are:

semple: :analysis::pointer::TrivialPointsTo: :null(Pointer p) whichreturnsaribool en-

coding whether the pointer is always null, never null, or may be null. Another one in the same class
iS semple: :analysis::pointer::TrivialPointsTo::aliasing(Pointer p, Pointer q) which
determines the aliasing relationship between two pointers: if either of the pointer is unknown, then they
may alias, otherwise, the pointers are either equivalent (and therefore must alias) or distinct (and therefore
must not alias).

V.3 Extended floating-point comparisons

Suppose one desires a floating point comparison that takes into account exceptional values such as infinities,
NaNs, or signed zeroes, where these concepts are used to represent a set of numbers (those larger—for
infinities—or smaller—for signed zeroes—in magnitude than representable numbers, and empty sets for
NaNs). Following a constructivist point of view that O is never defined because we do not have infinite time

to verify all the decimals, we treat 0 ag-0 For instance, one may desire thigdo == +c or 0— ==

return an indeterminate, rather tharue, rather than a single number. With this semantic, one may code:

template <class FloatingPointType>
struct extended_less {
typedef FloatingPointType first_argument_type;
typedef FloatingPointType second_argument_type;
typedef bool_set result_type;
result_type operator () (first_argument_type, second_argument_type) const;

};

which obeys the following semantic whexeandy are positive, finite, representable numbers of type
FloatingPointType:

13

V.4

V.5

extended_less(a,b) | b=nan b=-o0 b=-x b=0- b=0 b=y b=+4w
a=nan empty empty empty empty empty empty empty
a=—ow empty indet. true true true true true
a=—Xx empty false indet. true true true true
a=0- empty false false indet. indet. true true
a=0 empty false false indet. indet. true true
a=y empty false false false false indet. true
a=+ow empty false false false false false indet.

Using this operator, one may write robust code (in the sense of the constructive theory of the reals) with
floating point values, by handling special cases when a decision comes to an empty or indeterminates. For
instance, one may trigger higher precision evaluation of the numbers, until all comparisons come out as
boolean.

Multi-valued boolean algorithms

Asbool_set is the powerset of bool, this is the natural result when applying a predicate to every element
of a set. The following algorithm returns true if each element of the set satisfies the predicate, false if none
of the elements satisfies it, and indeterminate if some elements satisfy it while others do not.

template<typename Inputlterator, typename Predicate>
bool_set check_if (InputIterator first, InputlIterator last, Predicate pred) {
bool_set result = bool_set::emptyset();

for (; first !'= last; ++first) {
result = set_union(result, pred(xfirst));
if (result.is_indeterminate()) break;

}

return result;

}

The same feature could be achieved by usiegnt_if STL algorithm and then comparing its result with
zero and with the size of the set. But the program would be a bit awkward and not as efficient since
it would require applying the predicate to all the elements, even when the result is already known to be
indeterminate.

Introducing non-determinism into C++ via bool_set

One intriguing possibility to introduce non-determinism usirgl_set is to define a conversion from a
bool_set b to bool returns abool if b.is_singleton(), raises an exception ¥.is_emptyset (),

and which forks in case of indeterminate and returns true in one instantiation of the program and false in
the other. Hence all execution paths with indeterminates would run in parallel and all possible execution
paths would be eventually followed. This could be quite interesting for some applications (e.g. symbolic
computations where the sign of a symbolic variable could not be formally determined at runtime, etc.)

One may even envision a language extension where a conversion in the context of a hfarn@wvol _-

set x) then A; else B; would execute A ifx.equals(true), B if x.equals(false), and neither

or both ifx is empty or indeterminate. Unlike the situation in the previous paragraph which can already
be simulated in current C++, it is not clear how to simulate such a four-branch non-determinism. But this
raises intriguing possibilities. This could require either to hawel_set as a builtin type and special
treatment ofif statements, or the more general possibility to “overload” the behaviof.of

14

VI

Acknowledgements

We are grateful to the Boost community for its support, and the deep peer review of the Boost.Interval
library, together with the reliable computing community, all of whose comments led to this proposal. We
also would like to thank Douglas Gregor as author of the Boost. Tribool library.

References

[1] Anonymous. Ternary Logic - Wikipedia, the free encyclopedigttp://en.wikipedia.org/
wiki/Ternary_logic

[2] Anonymous. Setun - - Wikipedia, the free encyclopetietp: //en.wikipedia.org/wiki/Setun

[3] H. Brénnimann, G. Melquiond, and S. Pion. A Proposal to add Interval Arithmetic to the C++
Standard Library. JTC1/SC22/WG21 - The C++ Standards Committee, Doc No: N1843=05-0103.
http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2005/n1843.pdf

[4] H. Bronnimann, G. Melquiond, and S. Pion. The Boost interval arithmetic libratytp: //www.
boost.org/libs/numeric/interval/doc/interval.htm

[5] Douglas Gregor. Boost.Tribochttp://boost.org/doc/html/tribool.html

[6] Douglas Gregor. Semple Analysis Engine Documentatibtitp: //wuw.cs.rpi.edu/ gregod/
Semple/main.html

[7] Various authors. Several U.S. patents of interest:
#3,129,340 (04/14/64): Logical and Memory Circuits Utilizing Tri-Level Signals.
#3,176,154 (03/30/65): Three State Memory Device.
#3,207,922 (09/21/65): Three Level Inverter and Latch Circuits.
#3,660,678 (05/02/72): Basic Ternary Logic Circuits.
#3,671,763 (06/20/72): Ternary Latches.
#3,671,764 (06/20/72): Auto-Reset Latches.
#3,909,634 (09/30/75): Three State Latch.

[8] CGAL. Computational Geometry Algorithms Libraigttp: //www.cgal.org/

15

http://en.wikipedia.org/wiki/Ternary_logic
http://en.wikipedia.org/wiki/Ternary_logic
http://en.wikipedia.org/wiki/Setun
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1843.pdf
http://www.boost.org/libs/numeric/interval/doc/interval.htm
http://www.boost.org/libs/numeric/interval/doc/interval.htm
http://boost.org/doc/html/tribool.html
http://www.cs.rpi.edu/~gregod/Semple/main.html
http://www.cs.rpi.edu/~gregod/Semple/main.html
http://www.cgal.org/

	Contents
	History of changes to this document
	Motivation and Scope
	Impact on the Standard
	Design Decisions
	Proposed Text for the Standard
	Boolean set
	The numeric category

	Examples of use
	Interval arithmetic
	Ternary logic
	Extended floating-point comparisons
	Multi-valued boolean algorithms
	Introducing non-determinism into C++ via bool_set
	Acknowledgements

	References

