
Prism: A Principle-Based Sequential Memory Model
for Microsoft Native Code Platforms
Working Draft, Version 0.9.1 — September 8, 2006

Herb Sutter, Developer Division (hsutter@microsoft.com)

Note to reviewers: This document is an in-progress snapshot. All input will be much appreciated. Here is a summary
of changes since version 0.8 (July 31, 2006):

• (Principles P3 and P4 merged and now use §4.2 Option 4) In §4.2’s options, both internal and external feedback
is as follows: No support for either Option 1 or Option 2 (both are considered at best prohibitively expensive,
and probably unimplementable), 20% in favor of Option 3, and 80% in favor of Option 4. The main benefit of Op-
tion 3 is that it guarantees that individual memory locations will have values compatible with an SC execution,
which may improve debuggability. However, there can still be word and object tearing, and a major cost of Op-
tion 3 is that it essentially bans compensating updates to shared memory locations, which in turn essentially
bans speculative in-place updates of shared objects. The draft has changed to reflect Option 4 instead. This
changes the answer to Example 3.1.4.

• (Rule R4) Critical regions are now symmetric: Acquiring a lock requires only an acquire fence.

• (Rule R4) Removed lock coarsening: Systems can no longer elide a successive unlock/lock of the same lock, not
even if the system thinks it can prove that eliding the unlock has no side effects (i.e., no other observer is waiting
to acquire the lock and so could tell that the unlock was removed), because volatile reads and writes may not be
elided. This changes the answer to Examples 3.3.3 and 3.3.4.

• Added the generalization in Example 3.2.8 and explanatory text. Compiler writers in particular are strongly en-
couraged to consider this example and the ones preceding it.

Open questions:

• In a race on variable x, what is undefined/unspecified: The value of x, or the whole program? Consider that a
race could produce a wild branch (e.g., the race is on the construction of an object so that another thread sees an
invalid vtable, or the race is on a pointer to function). Can this be prevented?

• Atomic block coarsening: In the current structure, removing the dispensation to perform lock coarsening applies
also to atomic blocks. Atomic block merging is desirable. Is it sufficiently enabled by just R1 (as-if), or is explicit
dispensation required to allow the atomic block coarsening scenarios we consider important?

Thanks! – Herb

Acknowledgments

Special thanks to Hans Boehm, David Callahan, and Jim Hogg for their extensive helpful input and reviews of drafts of this paper as
it evolved. We would also like to thank the following other people and organizations who have graciously provided input and
insights in the form of draft reviews and/or hallway and email discussion, all of which has improved the quality of this document.

Internally at Microsoft:

• Visual Studio: Carol Eidt, Kevin Frei, Kang Su Gatlin, Vinod
Grover, Phil Lucido.

• Microsoft Research: Tim Harris, Leslie Lamport, David Tar-
diti, Yuan Yu.

• Windows: Neill Clift, Jonathan Morrison.

• SQL: Slava Oks, Soner Terek.

• Live: Chris Brumme.

• Office of the CTO: Burton Smith.

Outside Microsoft:

• AMD: Mark Santaniello.

• ARM: Andrew Sloss.

• Google: Lawrence Crowl.

• IBM: Michael Wong, Raul Silvera.

• Intel: Timothy Mattson, Clark Nelson, Arch Robison.

• Sun: Terrence Miller.

• Research: Nick Maclaren, Jeremy Mazner.

• ISO C++ participants: Peter Dimov, Nathan Myers, Jerry Schwarz, Bill Seymour.

Doc No: SC22/WG21/N2075 = J16/06-0145
Date: 2006-09-08
Project: JTC1.22.32

2 Prism 0.9.1

Contents

1 Overview 3
1.1 Motivation 3
1.2 The Elevator Speech Paragraph 4
1.3 Model Scope and Components 4
1.4 Program vs. Hardware Focus 4
1.5 Uniform Treatment of Software and Hardware Optimizations 5
1.6 Sequential Consistency For Correctly Synchronized Programs 5
1.7 Atomic vs. Message Visibility 5

2 Model 6
2.1 Principles 6
2.2 Rules 7

3 Examples 12
3.1 Ordinary Reads and Writes 12
3.2 Loops Containing Only Ordinary Reads and Writes 15
3.3 Interlocked Reads and Writes 20
3.4 Publishing Idioms 21
3.5 Causality 23
3.6 Transactional Memory 25
3.7 Arvind’s Examples 27
3.8 [JSR-133 2004]’s Examples 29
3.9 Selected Language Semantics 31

4 Discussion 33
4.1 Compatibility 33
4.2 Guarantees In the Presence of Races 33
4.3 Finer Granularity 35

5 Related Work 36
5.1 Lamport Happens-Before [Lamport 1978] 36
5.2 Java 5 Memory Model [JSR-133 2004] 37
5.3 Visual Studio 2005 Managed Memory Model [Hogg 2005, Morrison 2005a] 38

6 References 40

Prism 0.9.1 3

1 Overview

1.1 Motivation
A multiprocessing system on a single computer involves problems similar to those of a distributed
system because of the unpredictable order in which certain events can occur. … We have found
that problems often arise because people are not fully aware of this fact and its implications.
— [Lamport 1978]

Chip [and compiler] designers are under so much pressure to deliver ever-faster CPUs [and op-
timizations] that they’ll risk changing the meaning of your program, and possibly break it, in or-
der to make it run faster. — [Sutter 2005]

I personally believe that for mainstream computing, weak memory models will never catch on with
human developers. Human productivity and software reliability are more important than the in-
crement of performance and scaling these models provide. — [Brumme 2003]

The purpose of this paper is to specify a single memory model for all native code on Microsoft platforms,
including the source code, compilers and tools, and supported hardware platforms for Windows XP/Vista
(client and server), Windows Live, Windows Mobile (Smartphone and Pocket PC), and Xbox. Henceforth,
native source code will rely only on the guarantees of this model, and compilers will emit instructions and
barriers as necessary to ensure the model’s guarantees hold on supported target hardware. It is intended
that the .NET managed memory model be implementable in terms of this underlying native code model.

A memory model describes (a) how memory reads and writes may be executed by a processor relative to their
program order, and (b) how writes by one processor may become visible to other processors. Both aspects affect
the valid optimizations that can be performed by compilers, physical processors, and caches, and therefore
a key role of the memory model is to define the tradeoff between programmability (stronger guarantees for
programmers) and performance (greater flexibility for reordering program memory operations).

In the past, Microsoft has had no well-specified memory model for native code; the model has been
whatever the particular combination of compiler(s) and run-time hardware happened to do, which is at
best unreliable and nonportable. The result has been that teams write code that contains latent bugs (in-
cluding potential security vulnerabilities) and/or explicit special-purpose cases for different hardware
which increases testing and porting costs. Similar problems have been encountered and at least partly
addressed for managed code in .NET [Hogg 2005, Morrison 2005, Morrison 2005a] and Java [Pugh 2000,
JSR-133 2004]. Note that today programmers cannot consistently write correct lock-based code when
compiler optimizations invent writes that do not appear in the source code and so cannot be correctly
locked by the programmer (see Example 3.2.1).

This paper proposes a memory model for all Microsoft native code, including source code, compilers and
tools, and hardware platforms, that we believe corrects some fundamental problems, notably that today
we do not have sufficient guarantees to write correct lock-based code, and achieves two key goals: (1) It is
easy to understand for programmers, and equivalent to sequential consistency for race-free code. (2) It is
easy to specify clearly for implementers, and allows greater optimization flexibility than current “strong”
models. In particular, a primary goal is to allow wide (but not maximum) latitude for local optimizations
without global knowledge of the complete program.

There are many well-considered memory models available in the literature and in working implementa-
tions. This section describes the approach we chose for this paper and how it differs from other ap-
proaches. See also §5 for comparisons between this paper and specific related work.

4 Prism 0.9.1

1.2 The Elevator Speech Paragraph
The primary goals of this paper are (1) to support a simple and teachable programming model, (2) that allows
wide (but not maximum) latitude for local optimizations that can be performed without global knowledge of
the complete program, and (3) that is the same across all Microsoft native platform targets (including tools
and hardware). The approach is to guarantee sequential consistency for correctly synchronized programs,
which means sequential consistency at checkpoints marked by special (“interlocked”) operations, includ-
ing locks and transaction boundaries in a transactional memory system.

1.3 Model Scope and Components
We consider a program that is compiled and executed on
one or more processors sharing a single uniform memory.
The memory model focuses on the following:

• Program order: Reads and writes of program objects
specified in program source code.

• Observed execution order: Reads and writes of ac-
tual memory locations in the shared memory, as ob-
served by any entity that can access the shared
memory.

• Transformations from program order to observed
execution order: Transformations that the interme-
diate layers shown in Figure 1 are and are not allowed to perform, individually and in combination.

The memory model abstracts away the effects of intermediate implementation details of a given execu-
tion environment, such as NUMA architectures and cache structures. Compilers are required to maintain
correct semantics for a given target processor by emitting the necessary instructions for that processor,
including processor-specific memory ordering operations (e.g., load-with-acquire, fences).

1.4 Program vs. Hardware Focus
We believe that reasoning should start with the program, not with the hardware. This paper takes the
approach of first coming up with a clear programming model based on simple abstractions, and then
trying to specify the memory model in a way that permits implementations wide optimization latitude.

In particular, we believe that programming models that require programmers to know why and how to
write explicit fences or barriers have proven too difficult for even expert programmers to use reliably, in
part because they require great care at every point of use of a lock-free variable rather than only at the
(single) point of declaration of the variable. See for example [Win32prg 2006], which arose independently
while we were writing this paper, as one current example of how even experienced programmers rou-
tinely encounter difficulty reasoning about even full fences, which are the simplest variety of barrier.

The memory models in academic literature and commercial implementations are largely hardware-
centric, not programmer-centric. Most papers begin with a list of specific optimizations they want to al-
low in the processor, cache, and other hardware, and then describe various “escape hatches” by which
programmers can constrain the hardware’s latitude and opt out of specific effects in specific ways. For
example, [Adve 1995] Figure 8 lists a variety of such escape hatches in commercial systems, ranging from
many flavors of explicit fences and memory barriers to special serialization instructions that require com-
pilers to insert otherwise-redundant reads and writes in baroque ways to preserve intended program
semantics. Not only are these escape hatches inconsistent and incompatible across platforms, but more
seriously they have proven to be too difficult for even expert programmers to use reliably in practice, and

Figure 1: Common sources of transformations

Prism 0.9.1 5

so we do not consider such low-level mechanisms to be viable operations to expose in a programming
model. (We also believe that starting with an explicit list of known optimizations may actually constrain,
not enable, hardware optimization opportunities, because hardwiring current techniques into the mem-
ory model is sometimes done at the expense of flexibility for future ideas.)

1.5 Uniform Treatment of Software and Hardware Optimizations
We believe memory transformations at all of the levels shown in Figure 1 should be treated uniformly,
because the levels are indistinguishable to the programmer. For example, successive reads from a variable
x could be eliminated at level SW (e.g., by a compiler loading the value of x into a register) or at level
HW2 (e.g., by loading the value of x into a processor-local cache), and because they have the same effect
we conclude that for any given case if one is allowed then the other has to be allowed. Similarly, succes-
sive writes to different variables could be reordered at level SW by the compiler or at level HW1 by the
processor, and again in any given case if one is allowed then the other has to be allowed.

Therefore, we will consider only program reads and writes and how they may be transformed to exe-
cuted reads and writes of shared memory as observed by any entity that can access the shared memory.
In practice, the only thing that matters to the programmer is that the system behaves as though: (a) the
order in which memory operations are actually executed is equivalent to some sequential execution ac-
cording to program source order; and (b) each write is visible to all processors at the same time. This pa-
per therefore focuses only on how to maintain that illusion, and does not mention specific caching strate-
gies, barriers, etc., and thereby we also attempt to avoid overspecifying and overconstraining the allowed
optimizations at all of these levels. Compilers conforming to this memory model are required to perform
appropriate code generation to emit any hardware-specific instructions or directives required for correct
execution on a particular architecture.

1.6 Sequential Consistency For Correctly Synchronized Programs
Fundamentally, programmers assume sequential consistency (SC) [Lamport 1979], where each processor
executes its memory operations in program order, and only one processor at a time executes an operation
on the monolithic shared memory. Two consequences are that: (a) each memory operation becomes in-
stantaneously visible to all processors, and (b) in any execution, memory operations executed by different
processors are interleaved.

This memory model is designed to preserve the expected sequentially consistent behavior for correctly
synchronized programs. (This approach is similar to models like DRF0. [Adve 1990]) In particular, “cor-
rectly synchronized” means that every mutable object that is visible to multiple threads is either: (a) cor-
rectly protected by a lock (or, in a transactional memory system, by an atomic block); or else (b) declared as
interlocked (similar to volatile in Java, .NET, and Visual C++; we deliberately use a different term herein to
avoid confusion with other naming issues). For a discussion of guarantees in the presence of races, see §4.2.

1.7 Atomic vs. Message Visibility
This memory model does not make the assumption that writes are atomically visible,1 because we want
this memory model to be applicable to clusters and other message-based environments. Therefore this
model permits writes to be treated as asynchronous messages without violating sequential consistency
and Rule R6. In other models, including the managed memory model, atomic visibility of writes is neces-
sary to guarantee causality for Examples 3.5.1 to 3.5.3, which in this model are preserved by R6.

1 Usually the term “atomic” is used to describe a read or write of a variable or memory location, and means that no interme-
diate value will be observable by other processors. Occasionally, as here, “atomic” is used to describe the visibility of a write,
and means that a given write becomes visible to all other processors simultaneously (which this model does not require).

6 Prism 0.9.1

2 Model

2.1 Principles
The intent of this memory model is to enable a simple statement of the programmer’s responsibility that
developers can understand and use to reason reliably about the meaning of their programs, supported by
an underlying model that is easy to specify clearly and implement correctly at all levels and that allows
for local optimizations without global knowledge of the whole program.

2.1.1 Correctness
But I also knew, and forgot, Hoare’s dictum that premature optimization is the root of all evil in
programming. — [Knuth 1989]

It is far easier to make a correct program fast than it is to make a fast program correct. — Various

The principal question is, “what do we teach programmers?” The answer has to be simple. We propose:

Principle P1: Enable a teachable programming model. The programmer shall ensure that
every object that is simultaneously visible to multiple threads and mutable is either: (a) cor-
rectly protected by a lock (e.g., manipulated while holding a traditional lock, or within an
atomic block in a transactional memory system); or else (b) declared as interlocked with
atomic, read-acquire, write-release, and in-order semantics. If these conditions are met, any
execution shall be sequentially consistent with no races.

A programmer who follows P1 does not need to know anything further about this memory model, and
can stop reading here. We believe that programming models more complex than P1 (e.g., requiring ex-
plicit fences) have been proven in practice to be too difficult for even experienced systems programmers
to use reliably. Even with this simple model, the vast majority of programmers should use only part (a).

Principle P2: Enable a simple specification. The memory model shall be built on the inter-
locked write as the key primitive that acts as a checkpoint to guarantee a set of ordinary
writes shall become visible to another thread or processor that performs a corresponding in-
terlocked read. An interlocked read or write can be used directly on an interlocked program
object, or indirectly by acquiring or releasing a lock.

Informally, an interlocked read enters a critical region, and an interlocked write exits a critical region;
reads and writes can move into, but not out of, the region. A write event of interest is either a single inter-
locked write or a group of ordinary writes made visible by the next interlocked write by the same ob-
server in program order, and the memory model guarantees sequential consistency for all write events in
a correctly synchronized program while allowing wide latitude for local optimization within a group.

2.1.2 Causality
The concept of time is fundamental to our way of thinking. It is derived from the more basic con-
cept of the order in which events occur. — [Lamport 1978]

The physical universe is an orderly system of events and observers based on causality, and causality is
necessary for a system that humans can reason about reliably. In particular, in the physical universe:

Principle P3: Causality. An event is an individual interlocked read or write, or a batch of or-
dinary reads and writes performed by the same observer between successive interlocked
writes. An observer shall not observe an event before any other event that causally precedes

Prism 0.9.1 7

it (its cause or potential cause). All observers shall observe causally related events in the same
order. Only in a race, an observer may observe a distorted batch whose writes appear to be
performed in a different order than in a sequentially consistent execution.

Even though relativistic and quantum effects introduce strange complications, they do not violate these
simple guarantees. For example, time dilation can cause different observers to observe causally related
events as happening at different times and speeds, but observers can never observe causally related
events as happening in different orders. There is reordering latitude: Different observers can, and rou-
tinely do, observe causally unrelated events in different orders. Further, events have reordering restric-
tions only with respect to observers and frames of reference that can observe them, and “private” unob-
served events may experience an uncertainty that does not affect causality. Finally, in some situations
(e.g., lensing), an event can be observed with limited local distortion that is different for different observ-
ers.

These ideas apply directly to shared-memory computing, which likewise is a system of events and observ-
ers, where some memory events are private and some are causally related to other events. Only in races,
incomplete events can be observed with limited local distortion (for detailed discussion of this design
point, see §4.2).

This memory model derives from the basic principles P1-P3, and like the physical universe it allows
causally related events (writes) to become visible to different observers at different times but not in differ-
ent orders, and even in races events may be distorted but not have values that never existed.

2.2 Rules

2.2.1 Correctness
First, we define the “as if” rule for race-free programs:

Rule R1: As if. In a program that does not contain a race, any transformation that does not
change the program’s effects and cannot be detected by the program is valid.

Informally, if no valid program that relies only on the guarantees set out in this memory model can tell
the difference, then there is no difference. For example, optimizers can eliminate unreachable code (code
that is never executed) and dead code (ordinary writes that are never read by any observer, including that
the write is not read by any program thread, not read by any other process via shared memory, not part of
memory-mapped I/O, etc.).

Note that in this paper we do not consider reads and writes of unshared memory locations, which corre-
spond to physical events that cannot be observed by other observers; these may be reordered subject to
normal sequential optimization constraints (notably R1 applied to sequential code, including that sequen-
tial data and control dependencies are satisfied).

2.2.2 Ordinary and Interlocked Operations
A program always refers to the program source code. A bitfield is a variable that is explicitly specified in
the program to be represented in memory using a specific number of bits. An object (or, equivalently, vari-
able) is a single type instance declared in the program that is not a bitfield, or any sequence of bitfields
declared contiguously in the program. Informally, an object is any single object or variable expressed in
the source code, except that adjacent bitfields are considered to be a single object. An interlocked object is
an object that is specially designated as such by the programmer. A program read or write is a write that
appears in the program and is performed on a specific object.

8 Prism 0.9.1

An observer is a sequential portion of a program (e.g., a thread) whose program reads and writes have a
total ordering according to the program’s source code. 2 Informally, an observer is a piece of sequential
code with a single consistent frame of reference.3 A shared object is an object that is declared interlocked or
that can be the target of program reads or writes performed by more than one observer; conservatively,
every object is considered shared unless it is not interlocked and can be proved to be accessible to only
one observer (e.g., through language-specific programmer annotations, or through escape analysis or
other deduction).

A memory location is an atomically updatable region of memory. A shared memory location is a memory loca-
tion that is visible to more than one observer. Every object is stored in one or more memory locations, and
no memory location stores any parts of two different objects.

An interlocked memory location is a memory location that is used to store an interlocked object. An inter-
locked read or write is a read or write of an interlocked memory location, and is generated from a single
program read or write of an interlocked object. Per P1, we require:

Rule R2 (=P1.b): Interlocked atomicity. An interlocked object is stored in exactly one shared
memory location. Corollaries: Every interlocked read and write is atomic. An interlocked ob-
ject is suitable for use with atomic operations including compare-and-swap (a_cas) and ex-
change (a_swap).

An ordinary read or write is a read or write of a non-interlocked shared memory location, and is generated
from a single program read or write of a shared object. A batch of ordinary reads and writes is a sequence
of ordinary reads and/or writes executed by the same observer with no intervening interlocked writes in
program order. Every batch shall be finite, followed by either the next interlocked operation or the end of
that observer’s execution; in particular, a loop consisting only of ordinary operations is assumed to be
finite (see Example 3.2.1).

We require that interlocked reads and writes behave as though each interlocked operation directly ac-
cesses main memory, and supports the requirements of P1:

Rule R3 (=P1): Interlocked reads and writes. Interlocked reads and writes by the same ob-
server shall be executed in program order. An interlocked read shall be executed before all
ordinary reads and writes by the same observer that follow it in program order (“acquire se-
mantics”), and shall not be eliminated unless it is immediately followed by another inter-
locked read or write of the same memory location. An interlocked write shall be executed af-
ter all reads and writes by the same observer that precede it in program order (“release se-
mantics”), and shall not be eliminated unless it is immediately followed by another inter-
locked write to the same memory location.

A lock is used to ensure mutual exclusion to a set of shared objects. In this paper, a lock refers to either a
traditional lock acquired and released explicitly by the programmer, or to a system-generated lock sur-
rounding critical regions that are acquired and released automatically in a transactional memory system
(e.g., to implement begin, commit, retry, and rollback operations; see also Examples 3.6.1 and 3.6.2). A
lock can be held by a single observer at a time; an observer holds a lock after acquiring it until releasing it.

2 Examples: A thread is an observer. Any subset of the code in the same thread is an observer. The set of all fibers on a thread
is an observer because the fibers are scheduled cooperatively (during any interval wherein the set of fibers sharing the
thread does not change due to migration of a fiber from or to another thread). An individual fiber is an observer.
3 The term “observer” does not imply that it does not perform writes — by definition, it can. We adopt this term from the
domain of physics as a neutral term for generality, in order to avoid implying that it is necessarily a thread, a fiber, a process,
or any other particular system-specific entity.

Prism 0.9.1 9

A lock acquire operation blocks indefinitely until the observer successfully acquires the lock, and a lock
try-acquire operation returns without blocking indefinitely and reports whether or not the lock was suc-
cessfully acquired. A lock can be released by the observer that acquired it, after which another observer can
acquire the lock. Lock implementations are permitted to select among different semantics compatible
with the foregoing; in particular, a given type of lock may or may not permit nested acquisition of the
same lock by an observer who already holds it, and if so then a release may release only the last acquisi-
tion or all existing acquisitions. Per P2, we require:

Rule R4 (=P2): Interlocked locks. Each lock is implemented using a distinct interlocked con-
trol variable. A lock acquire or try-acquire operation performs an interlocked read on the
lock’s control variable. A lock release operation performs an interlocked write on the lock’s
control variable.

Note that acquiring a lock is required to perform only an interlocked read, although implementations will
typically also perform a write (not necessarily interlocked).

The programmer cannot apply P1 and write the correct synchronization if he does not control all writes to
shared variables. Therefore P1 implies that the system cannot invent writes to shared variables. Further,
programming languages must also be able to create additional data, such as vptrs, that are associated
with program-declared objects, but the programmer cannot perform correct locking if he is not able to see
where all writes to the conceptual object (including additional hidden data) can occur. Therefore we re-
quire:

Rule R5 (=P1): Translating program writes. Every ordinary or interlocked write shall corre-
spond to a valid program write, such that the set of all such program writes is possible in
some execution wherein all are executed in program order. A program write to a shared ob-
ject s shall not result in executing ordinary or interlocked writes to any memory location
holding a program object other than s. If the system creates a hidden shared object h associ-
ated with a specific a shared program object s, then h is part of s, a read (or write) of a mem-
ory location holding a part of h can be generated adjacent to a read (or write) of a memory lo-
cation holding a part of s, and reads and writes of h must obey all rules pertaining to reads
and writes of s (including interlockedness).

The second sentence of R5 implies that: (a) a program write to an object a may not create an ordinary or
interlocked write to the bits of any other object b (see Example 3.1.2); and (b) an ordinary or interlocked
read or write cannot be invented that does not occur as part of a valid program read or write (see Exam-
ple 3.2.1, and see also Example 3.2.5).

The third sentence implies that: (c) h is interlocked if and only if s is interlocked; and (d) the system may
not create a read or write of h where no program read or write of s appears. Once created, these reads and
writes of h can be reordered subject to R3 and R4.

2.2.3 Causality
For the purpose of P3, an event of interest is an individual interlocked read or write, or a batch of ordinary
reads and writes. An event a is observed by the observer that performs a immediately upon completion of
a, and by a different observer when the value(s) written by a are available to be read by that observer.
Note that in a correctly synchronized program all writes performed in the same event become visible
atomically with respect to another observer.

We define a causally-precedes relation → c to define a partial ordering of events according to which events
could causally affect other events. The relation → c on the events of a program execution is the smallest
relation satisfying the following conditions: (1) For events a and b performed by the same observer, if a

10 Prism 0.9.1

precedes b in program order then a → c b. (2) For events a and b, if b observes a then a → c b. (3) For events
a and b that write different values to the same memory location m, and an observer o that observes both a
and b and then in program order reads m, if o reads the value written by b, then a → c b. (4) For events a
and b, if some observer performs a and then observes b, then a → c b. (5) If a → c b and b → c c then a → c c.

Two events a and b are causally related if and only if a → c b or b → c a; otherwise, they are causally unrelated
(alternatively, concurrent). Note that a → c / a for any event a. Therefore → c is an irreflexive partial ordering
on the set of events in the program.

Note: Other work defines relations that are closely related to causally-precedes as defined above. For exam-
ple, [Lamport 1978], [Adve 1990], [Manson 2005], and [Arvind 2006] define similar happens-before rela-
tions for Lamport clocks, the DRF0 memory model, the happens-before relation for the Java memory
model, and the is-before relation for serializability and store atomicity, respectively. See §5 of this paper
for a discussion of differences with other formulations.

We can now adopt P3 directly as an additional rule that further constrains the reordering and visibility of
events:

Rule R6 (=P3): Causality. An event is an individual interlocked read or write, or a batch of
ordinary reads and writes performed by the same observer between successive interlocked
writes. An observer shall not observe an event before any other event that causally precedes
it (its cause or potential cause). All observers shall observe causally related events in the or-
der defined by → c . When an observer executes a read of a memory location, the result is the
value written by the event most recently observed that included a write to that location. Only
in a race, an observer may observe a distorted batch whose writes appear to be performed in
a different order than in a sequentially consistent execution.

A race exists when, for any shared object s, there are two causally unrelated events a and b where a per-
forms an ordinary write to s and b performs a read or write of s. Only in a race, an observer may observe
“batch tearing.”

Finally, per P1.a, the only rule that places a requirement on the programmer is that the programmer elimi-
nate races using locks (or, alternatively, by designating a shared object to be interlocked):

Rule R7 (=P1.a): Correct locking. For every noninterlocked shared object s, if any observer
can perform an ordinary write to any part of s and a different observer can perform an ordi-
nary read or ordinary write of any part of s, then the program shall have one lock associated
with that object and both observers shall perform their actions only while holding that lock.

Note that, because no other rule prevents it, by Rule 1 an implementation is permitted to freely apply
local optimizations that reorder, create, and remove ordinary reads and writes performed by the same
observer, subject only to the constraints that they not move ahead of an interlocked read, move after an
interlocked write, or violate normal sequential data and control dependencies. Global knowledge of the
whole program and other threads is not required to perform such optimizations.

2.2.4 Language Semantics
Programming languages do not always precisely define the exact ordering of memory operations on pro-
gram variables. For example, this often arises when a single expression in the language automatically
generates multiple calls to other functions. Where languages do permit latitude, the compiler must trans-
late the program as conservatively as possible to avoid performing an interlocked read later, or an inter-
locked write earlier, than necessary. (See also Example 3.9.1.)

Prism 0.9.1 11

Rule R8: Conservative interpretation of language semantics. Given a set M of memory op-
erations performed by the same observer that corresponds to a particular program expression
or statement, where the programming language permits latitude in compiler translation of
the ordering of operations in M: The compiler shall translate the program so that every inter-
locked read in M precedes all possible ordinary reads and writes in M, and every interlocked
write in M follows all possible ordinary reads and writes in M, to the extent permitted by
language semantics.

12 Prism 0.9.1

3 Examples
In these examples, unless otherwise noted, all initial values are 0, all variables whose names start with r
are unshared (representing unshared memory locations, e.g., in local variables, registers, and caches), and
all other variables are ordinary shared variables (not interlocked). Where possible, we mention the source
where we first encountered the example.

3.1 Ordinary Reads and Writes

3.1.1 Basic Reordering
This example was supplied by Kang Su Gatlin.

Consider the following code, where initially x = y = 0 and threads T1 and T2 are the only observers ma-
nipulating x and y:

// thread T1
x = 1; // a
y = 1; // b

// thread T2
if(y == 1) // c
 --x; // d

This code contains a race because both x and y can be concurrently read and written and there is no syn-
chronization. How the race can manifest for y is obvious; it can manifest for x because lines a and b can be
reordered.

Incidentally, note that even if x and y have type int, the programmer cannot rely on program writes to
actually be atomic (e.g., ints are not guaranteed to be aligned), and in general under this memory model
atomicity is not an inherent property of any type, not even char, unless the variable is declared inter-
locked.

P1 tells the programmer how to remove the race. There are two ways, either of which is sufficient:

• Use a lock: If both code fragments are protected using the same traditional lock or protected in an
atomic { … } block, there is no race because of mutual exclusion.

• Make y interlocked: If y is interlocked, then there is no race on y because it is atomically updatable,
and there is no race on x because a → c b → c d.

3.1.2 Masking and Object Layout
This example was supplied by Intel (see [Boehm 2006a]). Consider the following code, assuming 8-bit
chars and that S’s members are laid out contiguously so that sizeof(S) == 4:

// program source
struct S {
 char a;
 int b : 9; // note: bitfields
 int c : 7;
 char d;
};
S s;
s.b = 1;

Consider the transformation that reads s in a single operation, writes only to the bits corresponding to b,
and writes s back:

Prism 0.9.1 13

// transformation
struct S {
 char a;
 int b : 9;
 int c : 7;
 char d;
};
S s;
char tmp[4];
memcpy(&tmp[0], &s, 4);
… in tmp, write to only the bits corresponding to b …
memcpy(&s, &tmp[0], 4);

If s is not a shared object, then this transformation is legal. If s is a shared object, this transformation is
illegal by R5 because it creates ordinary writes to a and d that are not present in the program source. (The
creation of an ordinary write to the bits of c is valid because b and c are contiguous bitfields and are
therefore the same object.)

3.1.3 Condition-Write
Consider the following code, where x is an ordinary shared variable, as usual with initial value 0:

// program source
if(cond)
 x = 42;

Assuming this code contains no interlocked operations, may this be transformed as follows (e.g., if the
compiler or profile-guided optimizer determines that cond is expected to be true):

// transformation
x = 42;
if(!cond)
 x = 0;

The answer is no. The transformation is disallowed by R5 for two reasons: (1) The write x = 42; does not
correspond to a program write and so cannot be invented. (2) If cond is false the value 0 would be writ-
ten, which is a valid program write in any sequentially consistent execution of the program code.

See also Example 3.1.4.

3.1.4 Write-Condition-Write
Consider the following code, where x is an ordinary shared variable:

// program source
x = 0;
if(cond)
 x = 42;

Assuming this code contains no interlocked operations, may this be transformed as follows (e.g., if the
compiler or profile-guided optimizer determines that cond is expected to be true):

// transformation
x = 42;
if(!cond)
 x = 0;

14 Prism 0.9.1

The answer is yes, because every sequentially consistent execution contains a write to x.

3.1.5 Read Elision
Consider this example, where x is not interlocked:

// program source
x = 2; // a
r1 = x; // b

Is it legal to transform this as follows to eliminate the redundant read of x?

// transformation
x = 2; // a
r1 = 2; // b’

This is legal, because it obeys R1. (Note that R5 only forbids the invention of reads and writes not visible
in the source code, not their elision when doing so does not introduce new behaviors.) Even in a race, this
local transformation only reduces the set of possible behaviors, by making b’ be unable to see a racing
update on another thread, which it cannot rely on seeing anyway. Once this transformation is performed,
line b’ could further be reordered ahead of line a.

Note that if x were interlocked, this transformation would be disallowed by R3, which does not permit
this elision of an interlocked read.

3.1.6 Write Elision
This example was supplied by Vinod Grover. Consider this code, where x is not interlocked:

// program source
x = 1; // a
if(cond) {
 x = 2; // b
}

Is it legal to transform this as follows to eliminate the redundant write of x in the case where cond is true?

// transformation
if(cond) {
 x = 2; // b
} else {
 x = 1; // a’
}

This is legal, because it does not violate any rules; in particular, every executed write is one that would
have occurred in an SC execution.

Note that if x were interlocked, this transformation would be disallowed by R3, which does not permit
this elision of an interlocked write.

3.1.7 Dead Write Elision
Consider this example, where x is not interlocked:

// program source
x = 1; // a

Prism 0.9.1 15

Is it legal to eliminate line a? By R1, the answer is yes if and only if the program cannot tell that the write
was eliminated. In particular, to eliminate this write the system must prove that x will not be read by any
other observer, including that x will not be read by any other thread in the process, that if x is in shared
memory it will not be read by another process which can see x, and that x is not participating in memory-
mapped I/O.

Note that if x were interlocked, this transformation would be disallowed by R3, which does not permit
this elision of an interlocked write.

3.1.8 Read Invention
Consider the following code, where initially x = 0 and threads T1 and T2 are the only observers manipu-
lating x and y:

// thread T1
x = 1; // a

// thread T2
r1 = x; // b
r2 = 0;
if(r1 == 1) { // c
 r2++;
// later
if(r1 == 1) { // d
 r2++;

This code contains a race. Is r2 == 1 a possible outcome? The answer is yes, because another read of x can
be invented beside line b and then moved between lines c and d.

3.2 Loops Containing Only Ordinary Reads and Writes

3.2.1 Nonterminating Loops
This example was supplied by [Boehm 2006a]. Consider the following code, which contains no synchro-
nization (locks or interlocked variables):

// program source
for(T* p = q; p != 0; p = p->next) { … }
x = 42;

Can any of the write to x be moved ahead of the loop? In particular, if the loop is potentially nonterminat-
ing, could an observer on another thread see a value for x even when the assignment to x could never be
executed according to program order?

The answer is yes. All of the code is part of the same batch, and R6 permits the reordering of writes
within a batch. R5 does not prohibit moving a valid write within a batch, and the write x = 42; must oc-
cur because the batch is required to be finite (if the loop is infinite then this code violates the requirement
that a batch must be finite).

In particular, this choice makes it illegal for surrounding/calling code to take a lock protecting x if and
only if the loop will terminate, as in the following example provided by Carol Eidt:

if(ConsultOracleWillLoopTerminate()) { lock(); } // take lock protecting x iff necessary?
for(…) { … }
x = 1;
if(ConsultOracleWillLoopTerminate()) { unlock(); } // release lock protecting x iff necessary?

16 Prism 0.9.1

If any other observer reads or writes x, whether under a lock or not, then the above code contains a race
because a write to x can occur without holding the lock.

3.2.2 Merging Successive Loops
This motivation for this example was provided by David Callahan. Consider the following loops, where
there are no interlocked operations:

// program source
for(i = 0; i < max; ++i) { c[i] = a[i] + b[i]; }
for(i = 0; i < max; ++i) { d[i] = a[i] * b[i]; }
for(i = 0; i < max; ++i) { e[i] = sqrt(a[i]*a[i] + b[i]*b[i]); }

The question is, if the bodies are free of other side effects, can an optimizer merge the loops and transform
this into the following (e.g., for better locality on the shared arrays a and b)?

// transformation
for(i = 0; i < max; ++i) {
 c[i] = a[i] + b[i];
 d[i] = a[i] * b[i];
 e[i] = sqrt(a[i]*a[i] + b[i]*b[i]);
}

The answer is yes. All of the code is part of the same batch, and R6 permits the reordering of writes
within a batch. R5 does not prohibit moving a valid write within a batch, and the writes must occur be-
cause the batch is required to be finite (if the loop is infinite then this code violates the requirement that a
batch must be finite).

3.2.3 Inverting Nested Loops
Consider the following loops, where there are no interlocked operations:

// program source
for(j = 0; j < jmax; ++j) {
 for(i = 0; i < imax; ++i) {
 b[i] += a[i][j] * 2;
 }
}

The question is, if the bodies are free of other side effects, can an optimizer rearrange the loops and trans-
form this into the following (e.g., for better locality on the shared arrays a and b)?

// transformation
for(i = 0; i < imax; ++i) {
 for(j = 0; j < jmax; ++j) {
 b[i] += a[i][j] * 2;
 }
}

The answer is yes. All of the code is part of the same batch, and R6 permits the reordering of writes
within a batch. R5 does not prohibit moving a valid write within a batch, and the writes must occur be-
cause the batch is required to be finite (if the loop is infinite then this code violates the requirement that a
batch must be finite).

Prism 0.9.1 17

3.2.4 Register Allocation Without Dirty Check
This example was supplied by Kevin Frei from actual code, and based on a similar example in [Boehm
2006a]. Consider the following code, where object x is protected by a lock:

// program source
if(cond)
 lock(); // more generally, “initialize resource”
for(…)
 if(cond && other_cond) {
 ++x; // more generally, “use resource”
 }
if(cond)
 unlock(); // more generally, “release resource”

This pattern arises in a function that optionally performs additional work (here, optional work that in-
volves updating x), where the flag used to control whether the extra work should be done (here cond) is
typically passed as a parameter to the function. In this case, the programmer knows the lock is only
needed if the optional work will be done and x could be updated, so the lock is only taken if the optional
additional work involving x will actually be performed.

If x is not a shared object, then this may be legally transformed as follows to enregister x:

// transformation
if(cond)
 lock();
r1 = x;
for(…)
 if(cond && other_cond) {
 ++r1;
 }
x = r1;
if(cond)
 unlock();

But if x is a shared object, this transformation is illegal by R5 because it can create an ordinary write that
is not present in the program source, for example whenever cond is false.

Example 3.2.5 shows how to change this transformation to make it legal.

3.2.5 Register Allocation With Inefficient Dirty Check
Consider again the original code in Example 3.2.4:

// program source
if(cond)
 lock();
for(…)
 if(cond && other_cond) {
 ++x; // more generally, “use resource”
 }
if(cond)
 unlock();

18 Prism 0.9.1

The following transformation to enregister x will be legal whether or not x is a shared object:

// transformation
if(cond)
 lock();

r1 = x;
bDirty = false;
for(…)
 if(cond && other_cond) {
 ++r1;
 bDirty = true;
 }
if(bDirty)
 x = r1;

if(cond)
 unlock();

If x is a shared object, this transformation does not violate R5 the way that Example 3.2.1 does, because
here the transformed code writes the register back to x only if there is a program write to x. Therefore this
transformation amounts to combining all the loop’s ordinary writes to x and moving them after the loop,
and it is legal if and only if that combination and motion is legal.

3.2.6 Register Allocation With Efficient Dirty Check
Consider again the original code in Example 3.2.4:

// program source
if(cond)
 lock();
for(…)
 if(cond && other_cond) {
 ++x; // more generally, “use resource”
 }
if(cond)
 unlock();

The following transformation to enregister x will be legal whether or not x is a shared object:

// transformation
if(cond)
 lock();

r1 = 0; // r1 has the same type as x
for(…)
 if(cond && other_cond) {
 ++r1;
 }
if(r1 != 0) // note: !=, not <
 x += r1; // increment x once

if(cond)
 unlock();

Prism 0.9.1 19

If x is a shared object, this transformation does not violate R5 the way that Example 3.2.1 does, because
here the transformed code writes to x only if there is a program write to x. Therefore this transformation
amounts to combining all the loop’s ordinary writes to x and moving them after the loop, and it is legal if
and only if that combination and motion is legal.

Note: The only case in which r1 could be updated but would not update x is if r1 overflowed to 0 (one or
more times), but then the same number of increments of x would also overflow to x’s original value, so
the transformation remains correct.

3.2.7 Register Allocation Without Dirty Check (II)
This variant of Example 3.2.4 supplied by Jim Hogg. Consider the following code, where object x is pro-
tected by a lock:

// program source
if(a.length() > 0)
 lock(); // more generally, “initialize resource”
for(int i = 0; i < a.length(); ++i)
 ++x; // more generally, “use resource”
if(a.length() > 0)
 unlock(); // more generally, “release resource”

If x is not a shared object, then this may be legally transformed as follows to enregister x:

// transformation
if(a.length() > 0)
 lock(); // more generally, “initialize resource”
r1 = x;
for(int i = 0; i < a.length(); ++i)
 ++r1; // more generally, “use resource”
x = r1;
if(a.length() > 0)
 unlock(); // more generally, “release resource”

But if x is a shared object, this transformation is illegal by R5 because it can create an ordinary write that
is not present in the program source, for example whenever a.length() <= 0 is false.

Example 3.2.5 shows how to change this transformation to make it legal.

3.2.8 Generalization: Conditional Writes
The foregoing examples lead to the following generalization, noted by Jim Larus: Because any arbitrary
piece of code could be called both inside and outside a lock, therefore any shared variable s that is written
to in a conditionally executed block (including an explicit conditional branch, or in the body of a loop that
may not be executed) cannot safely be enregistered without a check to ensure that the transformation
does not invent a write to s when no write could occur in a sequentially consistent execution.

Consider:

// program source
…
if(cond)
 ++x;

20 Prism 0.9.1

for(…)
 ++y;
…

Enregistering either x or y is not legal in general:

// program source
…
r1 = x;
if(cond)
 ++r1;
r2 = y; // a
for(…)
 ++r2;
…
x = r1;
y = r2; // b

Line a is not legal because it invents a write to x when cond is false. Line b is not legal unless the system
can prove the loop would be executed at least once, because it invents a write to y when the loop is never
executed.

See Examples 3.2.5 through 3.2.7 for legal variants where the enregistration is done correctly.

3.3 Interlocked Reads and Writes

3.3.1 Interlocked Read, Interlocked Write
Consider this example, where x and y are interlocked:

r1 = x; // interlocked read
y = r2; // interlocked write

By R3, these operations may not be reordered.

3.3.2 Interlocked Write, Interlocked Read
Consider this example, where x and y are interlocked:

x = r1; // interlocked write
r2 = y; // interlocked read

By R3, these operations may not be reordered.

3.3.3 Lock Coarsening
Consider this example, where a_lock is a lock and x and y are shared:

// program source
a_lock.lock(); // a
x = 42; // b
a_lock.unlock(); // c
y = 53; // d

Prism 0.9.1 21

a_lock.lock(); // e
x = 64; // f
a_lock.unlock(); // g

Can this legally be transformed to the following?

// transformation
a_lock.lock();
x = 64;
y = 53;
a_lock.unlock();

The answer is no. It is legal to move line d after f, so that the last four lines look like the transformation.
But it is not legal to then remove lines a through c, nor is it legal to elide the now-adjacent unlock/lock
pair, because interlocked reads and writes may not be elided.

3.3.4 Locks As Barriers
Consider this example, supplied by Hans Boehm, where x and y may or may not be interlocked, but if not
interlocked assume they are atomically updated:

// thread T1
x = 1; // a
lock(l1); unlock(l1);
lock(l1); unlock(l1);
r1 = y; // b

// thread T2
y = 1; // c
lock(l2); unlock(l2);
lock(l2); unlock(l2);
r2 = x; // d

The question is: Can r1 == r2 == 0? The answer is no, because this would require reordering lines a and
b and lines c and d, and that is impossible because unlock followed by lock acts as a full fence. Formally:
In all cases, a → c b and c → c d. If r1 == 0 then b → c c → c d, but if r2 == 0 then d → c b, which is a contradic-
tion and so both cannot be true.

3.3.5 Lock Acquire As Publishing Events
The following example is adapted from the example for Theorem 6.1 in [Boehm 2005a]. This code demon-
strates why lock acquisition could be viewed as a “publishing” event if there is a try_lock operation that
can make lock acquisition observable on another thread. Here v1 is noninterlocked:

// thread T1
x = 1; // a
lock(l1); // b

// thread T2
while(try_lock(l1)) { // c
 unlock(l1);
}
r2 = x; // d ?= 1

This code contains a race, and we do not guarantee the result r2 == 1. In particular, lines a and b may be
reordered. Informally, this model does not choose to support treating lock acquisition as an observable
event so as to manipulate a noninterlocked shared variable like x outside a lock; per P1, noninterlocked
shared variables should be manipulated while holding a lock.

3.4 Publishing Idioms
These examples are variants of the general case where one observer creates (or in isolation mutates)
shared objects and then makes them visible to the rest of the system with an atomic operation, which in
this memory model means an interlocked write.

22 Prism 0.9.1

3.4.1 Create and Publish New Object
Consider the following code, where p is an interlocked pointer to an ImmutableObject:

// thread T1 (publisher)
p = new ImmutableObject();

// threads T2..n (readers)
DoSomethingWith(p);

This program is correct and race-free because p is interlocked and after construction *p is shared but im-
mutable. Note that R8 requires that in line 1 the write to p must occur last even if the language allows
flexibility in the ordering of line 1’s subactions. (See also Example 3.9.1.) Therefore readers of a non-null p
see the fully constructed object. (If the object is mutable, further locking may be required, but the code
above is sufficient for this example of constructing an object that is thereafter immutable.)

3.4.2 Create and Publish Queue Items
This example is taken from [Adve 1995] Figure 1. Consider the following code, where thread T1 builds up
a singly-linked list of tasks and then publishes the list via an interlocked head pointer, and other threads
wait for the publishing to be complete and then each take one queue item from the queue (using a lock to
serialize the readers with respect to each other). Initially all pointers are null and all integers are 0, and
head is the publishing variable:

// thread T1 (publisher)
while(there are more tasks) {
 task = GetFromFreeList(); // read task
 task->data = …; // set values
 … insert task in queue …
}
head = head of task queue;

// threads T2..n (readers)
while(myTask == null) {
 lock_list();
 if(head != null) {
 myTask = head; // take task
 head = head->next; // remove it
 }
 unlock_list();
}
… = myTask->data;

This program is correct and race-free. Because head is interlocked, all the work in T1 must be visible to
any other thread that sees a non-null value of head. After T1 publishes the list, it is protected by a lock.

3.4.3 Internally Versioned Objects Using Immutable Slices
Consider the following Versioned class whose instances are safe to use without locking because state is
never updated in place, but rather internal state is maintained in immutable slices accessed via an inter-
locked pState pointer:

// program source
class Versioned {
private:
 State *interlocked pState; // pointer to current immutable “slice”/”version” of this object’s state
 …
 void EveryReader() { // every reader method of this class must follow the pattern that
 State* pOld = pState; // “taking a local copy of the state pointer” must come first
 … use *pOld, not *pState… // and then only pOld is used to access the object’s state
 }
 void EveryMutator() { // every mutator method of this class must follow the pattern that
 while(true) {
 State* pOld = pState; // like every method it first takes a copy of the state pointer

Prism 0.9.1 23

 State* pNew = new State; // and then creates a new State with new values, and then
 … set values of *pNew from values of *pOld and other sources, but not pState …
 if(a_cas(&pState, pOld, pNew)) {
 break; // finally overwrites pState to publish the new state
 } else {
 … undo work and delete pNew …
 }
 }
 }
};

This program is correct and race-free. Because pState is interlocked, all the work to initialize a new slice
must be visible to any other thread that sees the result of the new pointer stored with a_cas.

Note that the above code elides the details of memory management to free old slices when they are no
longer referenced by any readers.

3.4.4 Double-Checked Locking (DCL)
Consider the classic Double-Checked Locking pattern, where the first thread to call GetPointer lazily ini-
tializes the singleton T object pointed to by the interlocked pointer p:

// program source
T* GetPointer() {
 if(p == 0) { // a: interlocked read (p)
 p_lock.lock(); // b: interlocked read (p_lock.var)
 if(p == 0) { // c: interlocked read (p)
 p = new T; // d: ordinary reads/writes + interlocked write (p)
 }
 p_lock.unlock(); // e: interlocked write (p_lock.var)
 }

 return p; // f: interlocked read
}

This code is correct and race-free:

• By R3 and R4, lines a, b, and c cannot be reordered and must precede d, e, and f.
• By R8, in line d the ordinary reads/writes are performed first (and may be reordered with respect

to each other) before the interlocked write to p. This is necessary to ensure that another thread exe-
cuting lines a and f will not see a partly-constructed object.

• By R4, line d must precede lines e and f.

Note that lines e and f can be reordered. (See also Example 3.3.2.)

See also Example 3.9.2 for an alternative equivalent to DCL for initialization that does not require tradi-
tional locks.

3.5 Causality

3.5.1 Canonical Example
This example comes from many sources, including [Adve 1995] and Hans Boehm. Consider the following
code, notably where each thread runs on a different processor or core. In this example, x and y are inter-
locked, and initially x = y = 0:

24 Prism 0.9.1

// thread T1
x = 1; // event a

// thread T2
if(x == 1) // observe a
 y = 1; // event b

// thread T3
if(y == 1) // observe b
 assert(x == 1); // observe a

The assertion is required to succeed by R6 because a → c b and so T3 cannot observe b (y == 1) without
also observing a (x == 1).

The same is true in the equivalent case with locks:

// thread T1
lock();
x = 1; // event a
unlock();

// thread T2
lock();
if(x == 1) // observe a
 y = 1; // event b
unlock();

// thread T3
lock();
if(y == 1) // observe b
 assert(x == 1); // observe a
unlock();

Note: Although each unlock() has release semantics, the release semantics are only sufficient to require
that the program writes that appear earlier in the same thread be both performed and visible before the
unlock() is performed and visible; release semantics alone does not govern transitivity of writes observed
from other threads, without the additional requirements set out by R6 and the → c relation.

3.5.2 Initialization (I)
In [Boehm 2006c], Hans Boehm provided the following example, where p and q are interlocked and ini-
tially p = q = null:

// thread T1
construct X; // a
p = pointer to X; // b

// thread T2
r2 = p; // c
q = r2; // d

// thread T3
r3 = q; // e
if(r3 != null) {
 q->foo(); // f
}

If T3 sees r3 != null, then q must refer to a fully-constructed X object. Here r3 != null implies d → c e, r2 !=
null, and c → c d, therefore a → c b → c e → c f. By R3, all ordinary writes performed by X’s constructor (which
by R5 include compiler-generated writes to set up the vtable, the vptr member, and initonly or literal
members), must be visible to f. For example, if X is a type with immutable instances like System::String,
T3 must not be able to observe the string’s value changing asynchronously. See also Example 3.9.1.

3.5.3 Initialization (II)
Similarly to Example 3.5.2, consider this code (adapted from [Boehm 2006c]), where p_initialized and
q_initialized are interlocked:

// thread T1
p = new X; // a
p_initialized = true; // b

// thread T2
while(!p_initialized) // c
 { ; }
q = new Y(p); // d
q_initialized = true; // e

// thread T3
while(!q_initialized) // f
 { ; }
access *p via *q // g

If T3 sees q_initialized == true, then q must refer to a fully-constructed Y object which in turn refers to a
fully-constructed X object. Here q_initialized == true in line f implies e → c f, and since also by construc-
tion b → c d, therefore a → c b → c f → c g. By R3, all ordinary writes performed by X’s and Y’s constructors
(which by R5 include compiler-generated writes to set up the vtable, the vptr member, and initonly or
literal members), must be visible to g.

Prism 0.9.1 25

3.5.4 Hand-Rolled Locks
Boehm provides the following example, where initially x = y = lck = 0, and lck is interlocked:

// thread T1
x = 17;
lck = 1; // a

// thread T2
while(lck == 0) { ; }

r1 = x;
y = r1;
lck = 2; // b

// thread T3
while(lck < 2) { ; }

r2 = y; // c

By R6, a → c b → c c, and so the result is that r1 == r2 == 17.

3.6 Transactional Memory

3.6.1 Optimistic Versioning (I)
This example is adapted from [Harris 2006], as sample code that could be found in a software transac-
tional memory (STM) system. Consider the following code, where w is an interlocked write-control vari-
able storing a version number or write-lock flag, w protects object x, multiple readers can execute concur-
rently and commit as long as no writers are in progress (w == WRITELOCK) or completed since (w was
incremented), and threads T1 and T2 are the only observers manipulating w and x:

// thread T1 (reader)
do {
 w1 = w; // a: read version #
 if(w1 != WRITELOCK) {
 local = x; // b: read from x
 … other work …
 }
}
while(w1 == WRITELOCK ||
 !a_cas(&w, w1, w1)); // c: check v#

// thread T2 (writer)
while(
 (w2 = a_swap(&w, WRITELOCK)) // d: r+w
 == WRITELOCK
) { ; } // spin
x = … ; // e: write to x
… other work …
w = w2 + 1; // f: write new v#

This code is correct and race-free because lines a through c must be performed in that order on T1, and d
through f must be performed in that order on T2:

• Because line a has acquire semantics, lines b and c correctly cannot move ahead of a.

• Because line c has release semantics, line c correctly cannot move ahead of line a or c.

• Because line c has acquire semantics, it ensures that line c’s check will detect any in-progress or
completed writes during the execution of T1’s loop body.

• Because line d has acquire semantics (actually a full fence thanks to a_swap), lines e and f correctly
cannot move ahead of d.

• Because line f has release semantics, line f correctly cannot move ahead of line d or e.

3.6.2 Optimistic Versioning (II)
This example is adapted from [Harris 2006], as sample code that could be found in a software transac-
tional memory (STM) system. Consider the following program code, where none of the variables are in-
terlocked:

// program code
…
int x = g_x;

26 Prism 0.9.1

int y = g_y;
…

In the above code, the two assignments can be reordered.

An STM implementation may transform the above program code as follows to add instrumentation:

// STM transformation — from [Harris 2006]
…
OpenForRead(&g_x, …); // a: performs an interlocked read of some g_x.tmw
int x = g_x; // b
OpenForRead(&g_y, …); // c: performs an interlocked read of some g_y.tmw
int y = g_y; // d
…

The requirements here are that (a) line a must precede line b, and (b) line c must precede line d. To ensure
this ordering, it is sufficient to make OpenForRead contain a read of an interlocked variable associated
with the particular memory location passed to the function.

Note that this guarantee is more restrictive than strictly necessary to achieve the desired semantics fro this
example, in that line a does not need to precede line c or d. This memory model does not provide a direct
way to express the less restrictive ordering that would permit line c and/or line d to be reordered before
line a, but this memory model does allow looser models to be implemented at higher levels that would
permit such reorderings. For further discussion, see §4.3.

3.6.3 Atomic Block Coarsening
Consider the following example, provided by Tim Harris [Harris 2006a], where initially x = y = 0 and x
and y are noninterlocked:

// thread T1
atomic {
 x = 1; // a
}
atomic {
 y = 2; // b
}

// thread T2
atomic {
 r1 = y; // c
}
atomic {
 r2 = x; // d
}

In all cases, if r1 == 2 then r2 == 1. Having r1 == 2 and r2 == 0 is not a valid result.

3.6.4 Partially Synchronized Program (I)
Consider the following example, proposed by Tim Harris [Harris 2006a] as a variant of Example 3.6.3,
where again initially x = y = 0 and x and y are noninterlocked:

// thread T1
atomic {
 x = 1; // a
}
y = 2; // b

// thread T2
r1 = y; // c
atomic {
 r2 = x; // d
}

In all cases, r2 is either 0 or 1. However, this program violates R7 because it contains a race on y, and so r1
can contain any value.

Prism 0.9.1 27

The following doesn’t change the answer, but for completeness we note that the only legal transformation
is that line b could move into T1’s atomic block, and possibly move ahead of a within the block.

3.6.5 Partially Synchronized Program (II)
Consider the following example, proposed by Tim Harris [Harris 2006a] as a variant of Example 3.6.3,
where again initially x = y = 0 and x and y are noninterlocked:

// thread T1
y = 2; // part of an event a
atomic {
 x = 1; // b
}

// thread T2
atomic {
 r2 = x; // c
}
r1 = y; // part of an event d

The question is: If r2 ==1, are we guaranteed that r1 == 2? The answer is yes, because if r2 ==1 then c
observed d, so a → c b → c c → c d, so in line d r1 == 2. Note that there is no race, and it does not matter
whether or not an optimizer chooses to move the read of y into the atomic block(s).

3.6.6 Intervening Atomic Block
Consider the following example, proposed by Tim Harris [Harris 2006a] as a variant of Example 3.6.3,
where again initially x = y = 0 and x and y are noninterlocked:

// thread T1
x = 1; // a
atomic { }
y = 2; // b

// thread T2
atomic {
 r1 = y; // c
}
atomic {
 r2 = x; // d
}

This program violates R7 because it contains races on both x and y, and so r1 and r2 can contain any values.

The following doesn’t change the answer, but for completeness we note that the only legal transformation
is that line b could move into the atomic block. Although that transformation would remove the race on
y, the programmer cannot rely on such transformations happening.

3.7 Arvind’s Examples

3.7.1 [Arvind 2006a] Figure 3
This example is adapted from [Arvind 2006a] Figure 3, and by R7 we make x and y interlocked instead of
writing explicit fences as in the original example:

// thread T1
x = 1; // a
y = 2; // b
r1 = y; // c == 3

// thread T2
y = 3; // d
x = 4; // e
r2 = x; // f ?= 1

Note that, in this example, each thread’s reads and writes must be performed in program order because
of the interlocked semantics and data dependencies.

28 Prism 0.9.1

The question is, it is possible to have r1 == 3 and r2 == 1? The answer is no, because this result would
require two observers to disagree on the order of causally related events, which violates R6. The contra-
diction is that r1 == 3 implies b → c d, whereas r2 == 1 implies d → c b. Expanding slightly:

• If r1 == 3, then line c observed d, and so b → c d.

• If r2 == 1, then line f observed a, and so e → c a, and so d → c e → c a → c b.

3.7.2 [Arvind 2006a] Figure 4
This example is adapted from [Arvind 2006a] Figure 4, and by R7 we make x and y interlocked instead of
writing explicit fences as in the original example:

// thread T1
x = 1; // a
x = 2; // b
r1 = y; // c == 3

// thread T2
y = 3; // d
y = 5; // e
r2 = x; // f ?= 1

Note that, in this example, each thread’s reads and writes must be performed in program order because
of the interlocked semantics and data dependencies.

The question is, it is possible to have r1 == 3 and r2 == 1? The answer is no, because this result would
require two observers to disagree on the order of causally related events, which violates R6. The contra-
diction is that r1 == 3 implies b → c e, whereas r2 == 1 implies e → c b.

Expanding slightly:

• If r1 == 3, then line c observed d but not e, and so b → c c → c e.

• If r2 == 1, then line f observed a but not b, and so e → c a → c b.

3.7.3 [Arvind 2006a] Figure 5
This example is adapted from [Arvind 2006a] Figure 5, and by R7 we make x and y interlocked instead of
writing explicit fences as in the original example:

// thread T1
x = 1; // a
r1 = y; // b == 2
r2 = y; // c == 4

// thread T2
y = 2; // d

// thread T3
y = 4; // e
x = 8; // f
r4 = x; // g ?= 1

Note that, in this example, each thread’s reads and writes must be performed in program order because
of the interlocked semantics and data dependencies.

The question is, if r1 == 2 and r2 == 4, is it possible to have r4 == 1? The answer is no, because this re-
sult would require two observers to disagree on the order of causally related events, which violates R6.
The contradiction is that having both r1 == 2 and r2 == 4 implies a → c h, whereas r4 == 1 implies h → c a.

Expanding slightly:

• If r1 == 2 and r2 == 4, then d → c b → c e → c c, and in turn b → c e implies a → c f.
• If r4 == 1, then f → c a.

3.7.4 [Arvind 2006a] Figure 7
This example is adapted from [Arvind 2006a] Figure 7, and by R7 we make x and y interlocked instead of
writing explicit fences as in the original example:

Prism 0.9.1 29

// thread T1
x = 1; // a
y = 3; // b
r1 = y; // c

// thread T2
y = 4; // d
r2 = x; // e

// thread T3
x = 2; // f

Note that, in this example, each thread’s reads and writes must be performed in program order because
of the interlocked semantics and data dependencies.

The question is, if r1 == 4 and r2 == 2, what if anything can we say about the relationship between
events a and f? If r1 == 4, then b → c d, and so a → c e. If also r2 == 2, then a → c f → c e. Therefore, if r1 == 4
and r2 == 2, then a → c f.

3.7.5 [Arvind 2006a] Figure 8: Speculative Execution
This example is adapted from [Arvind 2006a] Figure 8, and by R7 we make w, x, y, and z interlocked in-
stead of writing explicit fences as in the original example (note that this affects the answer to the question
posed in the original and considered below). Note that w, x, and z are pointers containing the address of
another memory location, and unary * denotes deference:

// thread T1
x = w; // a
y = 2; // b
y = 4; // c
x = z; // d

// thread T2
r1 = y; // e = 2
r6 = x; // f
*r6 = 7; // g
r8 = y; // h

The first question is: If r1 == 2, can h observe either b or c (r8 == 2 or 4)? The answer is yes. If r1 == 2,
then b → c e → c c. There is no causal ordering between c and h, so r8 == 2 and r8 == 4 are legal outcomes.

The second question is: Can line g be reordered after line h? (Clearly line g cannot be reordered to pre-
cede line f, because of the data dependency.) The answer does not depend on the memory model, but
only on local sequential data and control flow rules: Lines g and h can be reordered if and only if r6 does
not contain the address of y. As noted in [Arvind 2006a], this restricts speculative execution. If line h is
executed speculatively as written before line f, then the speculation will have to be thrown away if it is
discovered that r6 contains the address of y. On the other hand, if line h is speculatively executed as r8 =
7, then the speculation will have to be thrown away if it is discovered that r6 does not contain the address
of y.

3.8 [JSR-133 2004]’s Examples

3.8.1 [JSR-133 2004] Figure 6
This example is adapted from [JSR-133 2004] Figure 6, and x and y are ordinary shared variables:

// thread T1
r1 = x; // a
if(r1 != 0)
 y = 1; // b

// thread T2
r2 = y; // c
if(r2 != 0)
 x = 1; // d

By R5 and R7, this code is correctly synchronized and the result is r1 == r2 == 0. R5 does not permit
either thread’s reads and writes of x and y to be reordered, because there is no sequentially consistent
execution where line b or line d will be executed.

30 Prism 0.9.1

3.8.2 [JSR-133 2004] Figure 7
This example is adapted from [JSR-133 2004] Figure 7, and x and y are ordinary shared variables:

// thread T1
r1 = x; // a
y = r1; // b

// thread T2
r2 = y; // c
x = r2; // d

By R7, this code is not correctly synchronized. Even though there is a race, if x and y each occupies a sin-
gle memory location (and therefore each read and write is atomic) then we can make the statement that
the result is r1 == r2 == x == y == 0 because there is no sequentially consistent execution where any
variable could have a nonzero value.

3.8.3 [JSR-133 2004] Figure 8
This example is adapted from [JSR-133 2004] Figure 8, and x and y are ordinary shared variables:

// thread T1
r1 = x; // a
r2 = x; // b
if(r1 == r2)
 y = 2; // c

// thread T2
r3 = y;
x = r3;

By R7, this code is not correctly synchronized. Given that there is a race, the question is: Is r1 == r2 == r3
== 2 possible? The answer is yes. As described in [JSR-133 2004], one valid transformation is to remove
the redundant read of x in line a:

// thread T1 (valid transformation)
r1 = x; // a
r2 = r1; // b’
if(r1 == r2)
 y = 2; // c

// thread T2
r3 = y; // d
x = r3; // e

After this, the condition is always true and can be eliminated, and line c can be moved ahead of lines a
and b’.

3.8.4 [JSR-133 2004] Figure 12
This example is adapted from [JSR-133 2004] Figure 12, and x is an ordinary shared variable:

// thread T1
r1 = x; // a
x = 1; // b

// thread T2
r2 = x; // c
x = 2; // d

By R7, this code is not correctly synchronized. Given that there is a race, the question is: Is r1 == 2 and r2
== 1 possible? The answer is yes. [JSR-133 2004] permits this, saying that “the behavior r1 == 2 and r2
== 1 might be allowed by a processor architecture that performs the writes early, but in a way that they
were not visible to local reads that came before them in program order. This behavior, while surprising, is
allowed by the Java memory model.” No rule in this memory model prohibits such an implementation.

3.8.5 [JSR-133 2004] Figure 14
This example is adapted from [JSR-133 2004] Figure 14, and x and y are ordinary shared variables:

Prism 0.9.1 31

// thread T1
r1 = x; // a
if(r1 == 1)
 y = 1; // b

// thread T2
r2 = y; // c
if(r2 == 1)
 x = 1; // d
else
 x = 1; // e

By R7, this code is not correctly synchronized. Given that there is a race, the question is: Is r1 == r2 == 1
possible? The answer is yes. The reason is that T2’s assignment to x will be performed regardless of the
value of r2, and so lines d and e can be merged and moved before the conditional test (which can then be
eliminated because nothing remains in either branch), and then before line c.

3.9 Selected Language Semantics
todo: this section under development, quite a bit more needs to come here

3.9.1 new

Consider the following C++ statement that contains a new-expression, where p is interlocked:

// program code
p = new T();

Conceptually, the compiler actually allocates raw memory, constructs the object, and stores the pointer
into p — in some order. The following is a translation that conforms to ISO C++ rules and to R8:

// transformation
void *__temp = /* T */ ::operator new(sizeof(T)); // allocate raw memory
new (__temp) T(); // call constructor
p = __temp; // copy pointer

The following translation also conforms to ISO C++ rules, but is invalid according to this memory model:

// transformation
p = (T*) /* T */ ::operator new(sizeof(T)); // allocate raw memory
new ((void*)p) T(); // call constructor

Even in the absence of C++ language rules, the latter translation is invalid because it violates R8.

It also invalid by C++ language rules. Because there is a sequence point at the end of the constructor call,
the compiler must first translate it into a constructor call followed by the assignment to p, and then can-
not reorder the write to p upwards because it is an interlocked store.

3.9.2 Shared Function Static Objects (C++)
In C++, a static local object is shared across all executions of the function, but is not initialized until its
first use:

void f() {
 static X x; // dynamically initialized

 …
}

32 Prism 0.9.1

To implement the language’s required semantics correctly, the C++ compiler must ensure that initializa-
tion of x is race-free (unless it can prove that f can never be called concurrently by two different observ-
ers).

One option is to have the compiler generate code like that for Double-Checked Locking to protect x’s
initialization (see Example 3.4.4).

A second option is to generate code similar to the following:

void f() {
 static X x; // statically uninitialized
 static interlocked char flag = 0; // statically initialized to 0
 if(flag != DONE) { // (for efficiency)
 if(a_cas(&flag, 0, CONSTRUCTING)) { // if I get to be the one constructing
 new (&x) X; // then construct
 flag = DONE;
 } else {
 while(flag == CONSTRUCTING)
 ; // spin
 }
 }
 …
}

In either case, x is guaranteed to be initialized without a race. (If the program later uses x in a way that
could cause a race, it must correctly synchronize access to x.)

Prism 0.9.1 33

4 Discussion

4.1 Compatibility
For backward compatibility, the/an old memory model can be explicitly requested by the developer, or
used automatically by default for code that can be recompiled dynamically (e.g., JIT compilation) and that
was originally developed under a previous memory model.

In our next tool chain release that implements this memory model by default:

• Compilers will add a tag to every binary/assembly produced using the new memory model.

• A developer can opt out of the new model and select the old model via some syntax (e.g., #pragma)
to be defined by individual languages.

• Any JIT-like compiler will check the tag, and if the new memory model does not apply to the code
being compiled it will disable optimizations as needed to comply with the older memory model.

todo: barriers around calls across new/old code? barrier on thread create? destroy?

4.2 Guarantees In the Presence of Races
Some safety guarantees should be provided even in the presence of program races, notably where needed
to strengthen runtime system integrity (e.g., memory safety) and language feature semantics (e.g., initiali-
zation of initonly/final fields should be made safe without external explicit synchronization; see §Error!
Reference source not found.).

For the programmer’s own invariants, however, what guarantees should hold even in programs with
races? The potential answers range widely, and this is perhaps the area of most debate. From most to least
restrictive, the major options include the following, where “transformation” includes the reordering, eli-
sion, and/or invention of memory operations. Note that these deal only with ordinary reads and writes
of shared variables, and deals only with additional guarantees (we always assume ordinary sequential
dependencies are satisfied):

1. Allow no transformations, require full sequential consistency? This option would seriously in-
hibit optimizations, especially compiler code motion and memory latency hiding.

2. Allow transforming reads, but not writes? It is conjectured that allowing read reordering while
prohibiting write reordering would enable most of the desirable optimizations. Prohibiting write
reordering is also conjectured to improve debuggability of races and eliminate some classes of inva-
lid state, by reducing the set of possible surprising behaviors in a race. Chris Brumme [Brumme
2006] in particular makes a persuasive argument that, because races cannot in general be prevented
or diagnosed with perfect accuracy even at test time, performing writes in program order can sig-
nificantly help programmers to figure out what is going wrong when debugging a race.

3. Allow transforming both reads and writes, but every write to a memory location must write a
value that would be written in a sequentially consistent execution? This allows latitude for most
local optimizations, while prohibiting the creation of “impossible” values in individual (atomically
updated) memory locations; see Example 3.1.4. The main benefit is that it guarantees that individ-
ual memory locations will have values compatible with an SC execution, which may improve de-
buggability even though there can still be word and object tearing. Importantly, a major cost is that
this option essentially bans compensating updates to shared memory locations, which in turn es-
sentially bans speculative in-place updates of shared objects.

34 Prism 0.9.1

4. Allow all transformations. This would follow the philosophy of permitting full local optimizations
and relying on the programmer to always correctly synchronize his program so that the optimiza-
tions cannot be detected.

The Whidbey managed memory model chooses approximately #2. [Hogg 2005] (See also §5.3.) The Java
memory model chooses approximately #3. [Manson 2005]

This paper chooses #3, and the rest of this section makes an argument for this choice. For the program-
mer’s own invariants, we believe that only a few useful guarantees are possible in the presence of races.
Although enforcing strict sequential consistency could make races somewhat easier to reason about dur-
ing debugging, which is attractive, we believe that this path is probably unfruitful for the following rea-
sons:

• The stronger guarantees, even #1 (SC), don’t matter unless there is a race. The surprising values
can only be observed in a race condition, and so the extra guarantees don’t matter for a correctly
synchronized program.

• The stronger guarantees, even #1 (SC), don’t help much when there is a race. In general, in a race
a program can observe the same kinds of surprising values anyway. For example, even under #1
(full SC), in a race even a plain int variable can be observed with “impossible” values (e.g., due to
word tearing), and in general nearly any invariant that involves multiple variables (e.g., the state of
an object, which depends on the values of its member variables) is liable to be broken in a race
when the program fails to perform correct synchronization.

There does not appear to be a significant practical difference between: (a) a corrupted object containing an
invalid combination of bits because of a program race, even in a sequentially consistent execution; and (b)
a corrupted object containing a different invalid combination of bits because of a program race and other
effects such as write reordering. Once an object is in such a state, it is not possible in general to safely use
the object, not even to safely destroy or finalize it.

So our position is not that we choose not to make guarantees for programs with races, but rather that few
useful guarantees are possible, and that trying to provide guarantees for a program with races at best
gives the programmer a false sense of security.

In contrast, consider choice #2 above: The managed memory model follows #2 and attempts to reduce
invalid values even in races by prohibiting write reordering, and the managed environment aggressively
aligns some fundamental types (including int) to guarantee that simple reads and writes are atomic by
default on popular hardware platforms. For example, the following code will behave in a sequentially
consistent manner on .NET even if x is a plain int without any synchronization (not even volatile), and x
will end up being either -1 or 1:

// thread T1
x = -1;

// thread T2
x = 1;

However, even with prohibiting all write reordering (per #1) plus strong alignment for x, this seems to be
only a partial illusion of safety. Even slight code changes will break this sequentially consistent façade
and allow “impossible” values, for example by: (a) changing the type of x to be Double or Decimal which
are too large to be updated atomically; or (b) changing T1’s code to x--; which is not atomic (note that
although code like x-- could be made atomic using a compare-and-swap technique, doing so is impracti-
cally expensive). We wonder whether choosing #2 would have a net effect of improving or worsening the
problem; on the one hand, #2 stands improve the programmer’s ability to debug detected races; on the
other hand, it could degrade the ability to discover races, providing a false sense of security by masking
some kinds of latent races in some circumstances.

Prism 0.9.1 35

There has been much debate about the actual performance value of relaxed memory models. [Adve 1995,
Hill 1998, Adve 2000, Hill 2003, JSR-133 2004]). The academic literature typically focuses on hardware
optimizations, not software (compiler) optimizations. This is unfortunate, because routine compiler op-
timizations are known to have significant benefits up to order-of-magnitude improvements, whereas in
hardware it is argued that techniques like scouting and other speculative execution have closed the gap
between SC and relaxed models to 20% or less. [Hill 1998, Hill 2003] We assert that memory models that
allow both read and write reordering are essential in order to take advantage of common techniques like
register allocation and common subexpression evaluation that are known to be important and useful
compiler optimization techniques.

Consider this code adapted from [Adve 2000], where initially x = y = flag = 0 and flag is interlocked:

// processor P1
for(…) {
 …
 x++;
 …
 y += …;
 …
}
flag = 1;

// processor P2
while(flag != 1) ;
…
r1 = x;
r2 = y;

First, this memory model permits reordering ordinary writes. Compilers can therefore apply common
optimizations like register allocation and CSE to shared variables like x and y. Without such optimiza-
tions, loops like P1’s can be significantly slower (e.g., a June 2006 internal mail thread reported a 400%
performance difference for just such a loop, where x had type int and y had type float [Clrperfe 2006]).

Second, in P2’s frame of reference, this memory model allows P1’s writes to x and y to be postponed until
as late as P2’s reads of x and y. Adve observes that hardware implementations can exploit this latitude
with “lazy invalidations [and] lazy release consistency on software DSMs.” [Adve 2000]

4.3 Finer Granularity
This memory model uses the conventional notion of interlocked reads and writes having acquire and
release semantics. This is known to be somewhat coarse-grained, but we use it because it is difficult to get
much finer-grained without seriously complicating the model. This model permits languages to define
additional fine-grained semantics that will be preserved by this model.

In particular, when a program performs an interlocked write (e.g., lock release) to publish a set of ordi-
nary writes or to exit a critical region, the interlocked write is often publishing or protecting some, but not
all, of the reads and writes in the preceding batch (see Example 3.6.2). But it is not known exactly which
reads and writes the programmer intended to protect, and so this model therefore prevents any memory
operation from moving past an interlocked write, in case that access was part of what was to be pub-
lished or protected.

By knowing exactly which ordinary reads and writes are associated with a given interlocked variable, we
could enable optimizations to move unrelated ordinary reads and writes across the interlocked write
without affecting program semantics.

Although this memory model does not require a way to associate a given ordinary read or write with a
given interlocked variable, it does allow languages and tools to let such relationships to be declared (e.g.,
by the programmer in programming model extensions) and/or deduced (e.g., through whole program
analysis), and then to make use of the looser semantics in optimizations at higher levels (e.g., compiler
optimizations). Optimizations at lower levels that are unaware of the looser semantics will apply the

36 Prism 0.9.1

stricter semantics in this memory model. This correctly preserves the finer-grained semantics as long as
they are strictly looser than the guarantees of this model, and so any looser models built on top of this
memory model must not add any additional guarantees not present in this model (unless it implements
them in terms of the guarantees of this model, e.g., by generating appropriate use of interlocked reads
and writes).

5 Related Work
There are three main pieces of commercial software existing practice that this proposal should consider or
coordinate with. In chronological order, they are.

• Java 5 memory model (2004): Before Java 5, Java’s memory model was known to be deficient in a
number of ways. [Pugh 2000] Java 5 then specified a new memory model that provided more con-
sistent guarantees to programmers. [JSR-133 2004]

• Visual Studio 2005 managed memory model (2005): During the VS 2005 product cycle, the Phoenix
and CLR teams specified a CLR memory model for managed code. [Hogg 2005; Morrison 2005;
Morrison 2005a] (Note that Ecma/ISO CLI also specifies a memory model; this paper will not con-
sider that model because it is known to be looser than what CLI implementations actually imple-
ment and therefore untestable. It also arguably places an unreasonable burden of responsibility on
programmers. [Brumme 2003])

• ISO C++ memory model (under development, ETA 2007): The ISO C++ standards committee is
now working to define an international standard for a cross-platform native memory model.
[C++MM 2006] This work has gained momentum during 2006, and is expected to be finalized in
2007.

We also note similarities between this model and the following academic work in particular:

• Lamport’s happens-before relation (1978): For message-passing systems, and used to implement
Lamport clocks. [Lamport 1978]

• Adve and Hill’s DRF0 memory model (1990): The model in this paper was independently derived,
and is similar to DRF0. [Adve 1990]

• Gharachorloo’s RC memory model (1990): Release consistency. [Gharachorloo 1990]

This section considers the above in chronological order, and discusses how this paper’s goals and choices
differ from the above designs and provides a rationale for those choices.

5.1 Lamport Happens-Before [Lamport 1978]
Applying Lamport’s formulation directly to memory operations considers an individual ordinary read
(message send) or ordinary write (message receive) to be an event, in that the write sends information
that can propagate and be subsequently read by another process (observer):

A single process is defined to be a set of events with an a priori total ordering. … We assume that
sending or receiving a message is an event in a process. …

The relation ‘→’ on the set of events of a system is the smallest relation satisfying the following
three conditions: (1) If a and b are events in the same process, and a comes before b, then a → b.
(2) If a is the sending of a message by one process and b is the receipt of the same message by an-
other process, then a → b. (3) If a → b and b → c then a → c. — [Lamport 1978]

Prism 0.9.1 37

This formulation can be directly applied to specify a memory model, but it is not sufficient to guarantee
causality (Principle P3 = Rule R6) without one additional guarantee, described below.

Consider Figure 2, an interaction diagram showing three
processors P1-P3 where time increases upward. Two
writes a and b are performed by processors P1 and P2,
respectively. Each dashed arrow begins at a write per-
formed by one processor, and points to when the write
becomes observable by another specific target processor.

In particular, if P2 observes a at a2 and then performs b, is
it possible for processor P3 to observe b at b3 before it is
able to observe a at a3?

According to this memory model, if a and b are events and
a → c b, then the red edge is illegal by R6 because P3 cannot
observe b before being able to observe a. (Imagine that P1,
P2, and P3 are physical observers who observe events
through telescopes. It is not possible for a light signal to
travel from P1 to P2 to P3 in less time than it can travel
directly from P1 to P3.)

According to the [Lamport 1978] rules, each individual read and write is considered to be a distinct event,
and we see that the red edge is legal because a → a2 → b → b2 → a3 and a → a3 are both legal paths in the
happens-before graph. The problem is that reads like a2 and a3 that are observations of the same write event
become decoupled and treated independently, so that the above rules are insufficient to govern the order-
ing in which dependent writes performed by two different observers become visible to third parties.

What is needed is an additional requirement that a message not travel “faster than light.” For example:

(4) If a and b are the sendings of two messages by two different processes, a’ and b’ are the
receipt of a and b by a third process, and a → b, then a’ → b’.

With this additional rule, and interpreting “event” as defined in this paper (an interlocked read or write,
or a batch of ordinary reads and writes), we believe the Lamport happens-before relation → is closer to
causally-precedes → c for the purpose of specifying Rule R6 and preserving causality.

5.2 Java 5 Memory Model [JSR-133 2004]
The Java 5 memory model (henceforth Java model) has many strengths. We feel there are two main
weaknesses in this model. The first is that it is complex and hard to understand.

The second is that it is unclear and inconsistent about causality, a notion that is central but is not well
defined or enforced in the Java model. The paper frequently falls back on case-by-case analysis of code
examples that it interprets as apparently violating causality and surprising programmers, and then some-
what arbitrarily declares some to be illegal and others to be legal (the latter several times accompanied by
handwringing that it’s unfortunate that the cases are surprising to programmers but that allowing them is
necessary to enable important optimizations).

We strongly agree that the theme of causality is important, but the reason the Java model doesn’t answer
these questions well is because its notion of causality not well-defined. In particular, this paper’s model:
(a) defines the unit of “an event” to be an interlocked operation or a batch of ordinary operations between
interlocked writes; (b) rigorously defines causality; and then (c) rigorously guarantees causality for those
units of work which allows full local optimizations that do not violate acquire/release boundaries.

Figure 2: A “faster-than-light”

causality violation

38 Prism 0.9.1

Under this memory model, all of the causality “problem examples” in [JSR-133 2004] come out the same
way they do in the Java model, but with a much stronger rationale and without special fudging or arbi-
trary case-by-case rules. We believe this paper gives a more powerful definition and a better model to
achieve what both papers agree are the right answers for these examples. See §3.8 for detailed examples.

5.3 Visual Studio 2005 Managed Memory Model [Hogg 2005, Morrison 2005a]
The Whidbey managed memory model (henceforth “managed model”) was designed to target currently
shipping IA32- and IA64-compatible hardware. Therefore, in addition to its explicit rules, it also includes
implicit rules based on assumptions that happen to be true on that hardware. In particular, the managed
model assumes that every shared write (whether ordinary or interlocked) will become visible to all other
processors at the same time.

The managed model also defines the following explicit rules:

Rule-1. Shared-writes have release semantics

Rule-2. May coalesce adjacent shared-reads or shared-writes

Rule-3. Interlocked accesses have acquire/release semantics; adjacent merging is not allowed

Rule-4. Cannot introduce or remove non-adjacent shared-reads; ditto for shared-writes

Notes: …

• Note that all of the reads and writes discussed in this spec are assumed atomic.

— [Hogg 2005]

This memory model differs mainly in its treatment of ordinary reads and writes. We allow much greater
latitude for the reordering/creation/elision of ordinary reads and writes, and permit a strict superset of
the transformations permitted under the managed model. Specifically:

• Rule-1 is not required in this paper’s model. (Rule-1 is discussed in further detail below.)

• Rule-2 agrees with this paper, and is covered by R1, R3, and R4.

• Rule-3 mostly agrees with this paper, and is covered by R3 and R4. However, R3, and R4 do permit
some elision/merging of interlocked operations.

• Rule-4 mostly agrees with this paper, and is covered mainly by R5.

• The atomicity note above is covered for interlocked objects by Rule R2.

Rule-1 does not exist in this memory model. Note that Rule-1 could be restated as “writes cannot be reor-
dered.” The rule is stated in terms of release semantics because, on current Intel platforms, emitting every
write as a st.rel is observed to be sufficient to both perform each processor’s stores in order and to make
them visible in that order to other processors; that is, the execution environment is processor consistent
(PC) so that writes performed in order will be observed in order by even ordinary reads because all writes
are assumed to be visible atomically at the same time to all other processors. (A general acquire/release
model would additionally need all reads to have acquire semantics, and then Rule-1 would have to be
formulated differently because that would additionally prohibit read reordering which the managed
model does not want to prohibit.)

Rule-1 was adopted in part to make certain classes of existing bugs be legal, by assuming that all writes
might be releases. One motivation for Rule-1 was backward compatibility with existing code that will be
recompiled in the field with a new JIT compiler, because it would be impossible in general to require all
shipped code to first be fixed (to use locks or interlocked) before it is recompiled. As noted in the man-
aged model’s specification:

Prism 0.9.1 39

In some cases, the original code is technically wrong – it doesn’t follow CLR rules for use of inter-
locked (as specified in the ECMA/ISO spec; Partition I, Section 12). In other cases it assumes that
execution will slavishly follow source code, with no optimization being performed by the JIT. Put
another way, if the author had made correct use of locks and interlocked references, it would
have worked correctly on all platforms – past, present and future.

Going forward, Microsoft might simply state that such code is wrong, and must be fixed. How-
ever, the CLR team feels this creates an unacceptable user experience. (It’s slightly worse than this:
some of our own .NET Framework library code, already shipped, contains these defects. A cus-
tomer might see breakages if he simply re-ran existing code on a multi-processor Itanium). —
[Hogg 2005]

But this compatibility goal is inconsistent with the rationale for Snippet-4 in [Hogg 2005], which states
that changes to shipped code are nevertheless required:

The CLR team shall check that any spin-locks in managed library code are written correctly to
keep working, by ensuring that reads on g are marked as ordered (ie, having acquire semantics).
The alternative, of having JITs treat every shared-read as ordered is estimated as too costly to run-
time performance of managed code. — [Hogg 2005]

Rule-1 prevents some optimizations that may be desirable, including some kinds of common subexpres-
sion elimination and register allocation. For example, Rule-1 prevents any optimization of loops like for(
i=0; i<1000000; i++) { count++; count2++; } where count and count2 might be shared. Recent internal
mail threads have complained about 400% performance differences between managed and native code in
such examples [Clrperfe 2006], although that appears to be a worst case because the loop is not doing any
other work which would reduce or swamp this overhead. The managed model paper itself notes this for
Snippet-9:

“The two shared-writes are not adjacent, and so cannot be coalesced by Rule-2. Moreover, the JIT
cannot advance [3] above [2] in an attempt to make them adjacent – that is disallowed by Rule-1.
Not allowing the JIT to perform this optimization is unfortunate. However, in general, we cannot
be sure that another thread is spinning on g2 – when set, it signals that g1 can be accessed.” —
[Hogg 2005]

In that example, the shared variables g1 and g2 are neither protected by a lock or declared interlocked.
The problem arises that, because the managed model essentially treats every shared variable as a poten-
tial flag (but does so incompletely; see below) it cannot optimize the vast majority that are not. In this
paper’s model, g2 would be declared interlocked if it were such a flag, and the optimization would be
allowed in the majority of cases where it is not.

Finally, note that as of this writing Rule-1 is not enforced consistently in our JIT compilers (notably JIT64),
which appears to perform such optimizations anyway in violation of the managed model.

This paper does not currently adopt Rule-1, mainly because Rule-1 is not necessary to achieve sequential
consistency in race-free programs, and prevents compiler optimizations that could benefit from moving
ordinary writes. However, if preventing store ordering is considered important (see §4.2), then such a rule
should be adopted (but it should probably not be specified in terms of st.rel semantics).

40 Prism 0.9.1

6 References
[Adve 1990] S. Adve and M. Hill. “Weak Ordering—A New Definition” (Proceedings of the 27th Annual
International Symposium on Computer Architecture, p. 2-14, May 1990).

[Adve 1998] S. Adve and M. Hill. “Retrospective: Weak Ordering—A New Definition” (25 Years of the
International Symposia on Computer Architecture (selected papers), p. 63-66, Barcelona, Spain, 1998).

[Adve 2000] S. Adve. “Memory Consistency Models” (slides from 2000 Java Workshop talk).

[Arvind 2006] Arvind. “Memory Model = Instruction Reordering + Store Atomicity” (Microsoft Research
Lecture, May 15, 2006).

[Arvind 2006a] Arvind and J-W. Maessen. “Memory Model = Instruction Reordering + Store Atomicity”
(33rd Annual International Symposium on Computer Architecture, Boston, MA USA, June 17-21, 2006).

[Boehm 2005] H. Boehm et al. “Memory Model for Multithreaded C++: Issues” (ISO C++ committee pa-
per ISO/IEC JTC1/SC22/WG21 N1777, March 2005).

[Boehm 2005a] H. Boehm. “Reordering Constraints for Pthread-Style Locks” (HP Technical Report HPL-
2005-217, November 2005).

[Boehm 2006] H. Boehm. “A Memory Model for C++: Strawman Proposal” (ISO C++ committee paper
ISO/IEC JTC1/SC22/WG21 N1942, February 2006).

[Boehm 2006a] H. Boehm. “Memory Model Overview” (ISO C++ committee paper ISO/IEC
JTC1/SC22/WG21 N2010, April 2006).

[Boehm 2006b] H. Boehm and N. Maclaren. “Should volatile Acquire Atomicity and Thread Visibility
Semantics?” (ISO C++ committee paper ISO/IEC JTC1/SC22/WG21 N2016, April 2006).

[Boehm 2006c] H. Boehm, private communication.

[Brumme 2003] C. Brumme. “Memory model” (Blog article, May 2003).

[Brumme 2006] C. Brumme, private communication.

[C++MM 2006] H. Boehm et al. “Threads and Memory Model for C++” (ISO C++ subgroup working site).

[Clrperfe 2006] “Case SRX060601603077: C++ vs C# performance” (CLR Performance Discussions discus-
sion thread, June 2006).

[Dijkstra 1968] E. W. Dijkstra. “Cooperating Sequential Processes” (Programming Languages (F. Genuys,
Ed.), Academic Press, 1968).

[Fraser 2004] K. Fraser and T. Harris. “Concurrent Programming Without Locks” (University of Cam-
bridge Computer Laboratory, 2004).

[Gharachorloo 1990] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy.
“Memory Consistency and Event Ordering in Scalable Shared-Memory Multiprocessors” (Proceedings of
the 17th Annual International Symposium on Computer Architecture, p. 15-26, Seattle, Washington, United
States, 1990).

[Gharachorloo 1991] K. Gharachorloo, A. Gupta, and J. Hennessy. “Performance Evaluation of Memory
Consistency Models for Shared-Memory Multiprocessors” (Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, p. 245-257, April 1991).

Prism 0.9.1 41

[Gharachorloo 1991a] K. Gharachorloo and P. Gibbons. “Detecting Violations of Sequential Consistency”
(Proceedings of the 3rd ACM Symposium on Parallel Algorithms and Architectures, p. 316-326, 1991, Hilton
Head, South Carolina, United States).

[Gharachorloo 1992] K. Gharachorloo, A. Gupta, and J. Hennessy. “Hiding Memory Latency Using Dy-
namic Scheduling in Shared-Memory Multiprocessors” (Proceedings of the 19th Annual International Sympo-
sium on Computer Architecture, p. 22-33, May 1992).

[Gharachorloo 1995] K. Gharachorloo. “Memory Consistency Models for Shared-Memory Multiproces-
sors” (PhD thesis, Stanford University, 1995).

[Gharachorloo 1998] K. Gharachorloo. “Retrospective: Memory Consistency and Event Ordering in Scal-
able Shared-Memory Multiprocessors” (25 Years of the International Symposia on Computer Architecture (se-
lected papers), p. 67-70, Barcelona, Spain, 1998).

[Harris 2006] T. Harris, M. Plesko, A. Shinnar, D. Tarditi. “Optimizing Memory Transactions” (PLDI’06,
Ottawa, Ontario, Canada, June 2006)

[Harris 2006a] T. Harris, private communication.

[Herlihy 1990] M. Herlihy and J. M. Wing. “Linearizability: A Correctness Condition for Concurrent Ob-
jects ” (ACM Transactions on Programming Languages and Systems, 12(3):463-492, 1990).

[Herlihy 1991] M. Herlihy. “Wait-Free Synchronization” (ACM Transactions on Programming Languages and
Systems, 13(1):124-149, 1991).

[Herlihy 1993] M. Herlihy. “A Methodology for Implementing Highly Concurrent Data Objects” (ACM
Transactions on Programming Languages and Systems, 15(5):745-770, 1993).

[Herlihy 2003] M. Herlihy, V. Luchangco, and M. Moir. “Obstruction-Free Synchronization: Double-Ended
Queues as an Example” (Proceedings of the 23rd International Conference on Distributed Computing Systems,
IEEE Computer Society, 2003).

[Hill 1998] M. Hill. “Multiprocessors Should Support Simple Memory Consistency Models” (IEEE Com-
puter, August 1998).

[Hill 2003] M. Hill. “Revisiting ‘Multiprocessors Should Support Simple Memory Consistency Models’”
(retrospective of [Hill 1998], Dagstuhl, 2003).

[Hoare 1978] C. A. R. Hoare. “Communicating Sequential Processes” (Communications of the ACM, 21(8),
August 1978).

[Hogg 2005] J. Hogg et al. “CLR Memory Model” (Microsoft internal Whidbey spec, 2005).

[Intel TBB] Intel. Reference for Threading Building Blocks, version 1.0, April 2006.

[JSR-133 2004] J. Manson, W. Pugh, and S. Adve. “JSR-133: Java™ Memory Model and Thread Specifica-
tion” (Java Community Process, 2004).

[JSR-133 FAQ 2004] J. Manson and B. Goetz. “JSR 133 (Java Memory Model) FAQ” (February 2004).

[Knuth 1989] D. Knuth. “The Errors of TeX” (Software—Practice & Experience, 19(7), July 1989).

[Lamport 1978] L. Lamport. “Time, Clocks, and the Ordering of Events in a Distributed System.” (Com-
munications of the ACM, 21(7):558-565), July 1978).

[Lamport 1979] L. Lamport. “How to make a multiprocessor computer that correctly executes multiproc-
ess programs.” (IEEE Transactions on Computers, 28(9):690–691, September 1979).

42 Prism 0.9.1

[Lamport 1997] L. Lamport. “How to Make a Correct Multiprocess Program Execute Correctly on a Mul-
tiprocessor.” (IEEE Transactions on Computers, 46(7):779-782, 1997).

[Lea 2005] D. Lea. “The JSR-133 Cookbook for Compiler Writers” (2005).

[Magruder 2006] M. Magruder, private communication.

[Manson 2005] J. Manson, W. Pugh, and S. Adve. “The Java Memory Model” (Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, p.378-391, January 12-14, 2005,
Long Beach, California, USA).

[Morrison 2005] V. Morrison. “What Every Dev Must Know About Multithreaded Apps” (MSDN Maga-
zine, August 2005).

[Morrison 2005a] V. Morrison. “Understand the Impact of Low-Lock Techniques in Multithreaded Apps”
(MSDN Magazine, October 2005).

[Morrison 2005b] J. Morrison. “Effects of Compiler and Processor Reordering on Lock-Free Operating
System and Application Code” (Windows Reliability, Microsoft internal).

[N1942] H. Boehm et al. “A Memory Model for C++: Strawman Proposal” (ISO/IEC JTC1/SC22/WG21
N1942, February 2006).

[Pugh 2000] W. Pugh. “The Java Memory Model is Fatally Flawed” (Concurrency—Practice and Experience,
12(1):1-11, 2000).

[Sutter 2005] H. Sutter. “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software”
(Dr. Dobb’s Journal, 30(3), March 2005).

[Sutter 2005a] H. Sutter and J. Larus. “Software and the Concurrency Revolution” (ACM Queue, Septem-
ber 2005).

[Win32prg 2006] “InterlockedIncrement()” (Windows 32-bit Sys Prgrmmg Questions discussion thread, June
2006).

