
Lambda expressions and closures for C++
Document no: N1968=06-0038

Jeremiah Willcock Jaakko Järvi Doug Gregor Bjarne Stroustrup
Andrew Lumsdaine

2006-02-26

Abstract

This proposal describes a design for direct support for lambda expressions in C++. The design space for lambda
expressions is large, and involves many tradeoffs. We include a thorough discussion of the benefits and the drawbacks
of our design. In addition, we describe several other viable alternatives that warrant consideration.

1 Introduction
Many programming languages offer support for defining local unnamed functions on-the-fly inside a function or an
expression. These languages include Java, with its inner classes [GJSB05]; C# 3.0 [Csh05]; Python [Fou05]; EC-
MAScript [ECM99]; and practically all functional programming languages, Haskell [PH+99] and Scheme [ADH+98].
Such functions, often referred to as lambda functions, or closures, have many uses: as the arguments to higher-order
functions (such as std::for each in the context of C++), as callbacks for I/O functions or GUI objects, and so forth.
This document discusses the design space of closures for C++, and suggests a possible specification for their syntax
and semantics, and outlines a possible implementation for the specification.

We use the following terminology in this document:

• Lambda expression An expression that specifies an anonymous function object.

• Lambda function This term is used interchangeably with the term “lambda expression.”

• Closure An anonymous function object that is created automatically by the compiler as the result of a lambda
expression. A closure stores those variables from the scope of the definition of the lambda expression that are
used in the lambda expression.

A lambda expression defines an object — not just a function without a name. In addition to its own function
parameters, a lambda expression can refer to local variables in the scope of its definition. Thus, a lambda expression
defines a value that consists of both code as well as the values of the variables referred to in the code — a closure.
Such closures have a natural representation as C++ function objects, as discussed in Section 3.

Even though hand-written function objects can be used in place of the proposed closures, the direct definition and
construction of function objects is cumbersome. To define a function object, an entire class must be defined, in many
cases including member variables and a constructor to initialize them. Furthermore, the class must be named prior
to its use, and defined outside of the function that uses it (unless proposal N1427 [Wil03], to allow local classes as
template arguments, is approved). The following code defines a function object type (and corresponding object) that
stores a copy of the local variable i, and passes the object to an Standard Library algorithm:

struct less than i {
int i;
less than i(int i) : i(i) {}
bool operator()(int x) const {return x < i;}

};

int i = 17;
find if(v.begin(), v.end(), less than i(i));

The lambda expressions described in this proposal are syntactic sugar for defining function object classes, such
as the above, and constructing function objects from them using the contents of (or references to) local variables.

Doc. no: N1968=06-0038 2

1.1 Motivation
The lack of a syntactically light-weight way to define simple function objects is a hindrance to the effective use of
several generic algorithms in the Standard Library. As an example, consider the above call to the find if() function.
The definition of the function object is so verbose that it would be much easier (and likely clearer to readers of the
code) to write a for loop to iterate through a sequence than to define a new function object type, construct an object
using the correct arguments, and then call find if() using it. Similar arguments apply to other simple Standard Library
functions, such as for each() and transform(). This is not obvious from textbook examples of Standard Library use —
in simple cases, such as the example above, the standard function objects and binders suffice:

int i = 17;
find if(v.begin(), v.end(), bind2nd(less<int>(), i));

Though a bit clumsy, the syntax is relatively concise. However, many current C++ programmers would need to bring
out their manuals to find the meanings of bind2nd and less<int>.

The bind library in TR1 introduces a more expressive partial function application mechanism than std::bind1st and
std::bind2nd, expanding the set of cases where explicit definition of function objects can be avoided. Furthermore,
libraries such as the Boost Lambda Library [JP02], FC++ [MS04], and Phoenix [de 02] more or less define little
sublanguages for writing lambda expressions. For example, using the Boost Lambda Library, the above example can
be written as:

int i = 17;
find if(v.begin(), v.end(), 1 < i);

This is actually very close to an ideal: it tersely states the operation to be done in a form similar to what would be
written in the body of an explicit loop. Unfortunately, this elegant solution suffers from serious problems in terms of
usability, implementation complexity, and performance. It also introduces a “magic” meaning to 1: the first argument
to the function object (closure) generated from 1 < i. Note that the type of 1 is deduced from the context of the call:
whatever is used by find if() as an argument to operator()() on its predicate is compared to i using <. This differs
from the way an explicitly written function object (whose operator()() is not a template) is defined; in that case the
argument is coerced into the type expected by operator()(). For example, in the class less than i the stored value
(corresponding to i in the example above) is always compared to an int.

1.1.1 Library problems

There are significant limitations in the library-based solutions. For example:

• A lambda expression using one of these libraries must be written as an expression using user-defined operators.
This rules out using normal C++ syntax for function calls, variable declarations, or control structures. Thus, all
but the simplest lambda expressions look unnatural when written using a library-based solution.

• Compilation times increase substantially when using a lambda library as opposed to a hand-written function
object, and run-time performance can suffer if the compiler fails to fully inline the large number of intermediate
function calls common to these libraries.

• Erroneous uses of lambda libraries typically manifest in extremely long error messages.

• Most importantly, there are many common situations where the behavior of lambda libraries is very difficult for
users to understand, and common situations where the libraries do not work at all.

Regarding the last point, based on abundant feedback from the users of the Boost Lambda and Bind libraries (see Fig-
ure 1 for an example), it is clearly difficult for programmers to grasp what these situations are, and a lot of development
time is wasted in trying to bend the libraries to do what they cannot do. For example, Figure 1 shows an attempt to
capture a member function call in a lambda function, where the object argument is a parameter of the lambda function:
1.size(). This syntax follows naturally from how the rest of the library works, but cannot be supported. A library

such as tr1::bind would allow this kind of lambda expression to be emulated as bind(&list<list<int> >::size, 1). As
one can see, this is quite verbose.

The verbosity is worse with overloaded functions or function templates. For example, assume a member function
foo() of some class X. If foo() is overloaded, &X::foo requires a cast (to a member function pointer type, not often
used by beginning C++ programmers) to select the correct member function; if foo() is a member template, &X::foo
is not a value at all, and thus foo() would need to be explicitly instantiated prior to taking its address. The code in
these cases becomes hard to read, and it is not easy to understand the reasons for the explicit instantiations or casts,
and thus when they are needed. The following two examples demonstrate this problem; the first assumes foo() is a
two-argument overloaded member function, the second that it is a two-argument member function template with one
type parameter:

Doc. no: N1968=06-0038 3

I’m trying to use Boost.Lambda to count the total number of elements in a list of lists. This example shows
what I’m trying to do:

int main()
{

int count = 0;
list<list<int> > ll;
for each(ll.begin(), ll.end(), var(count)+=(1).size());

}

This will not compile:

(13): error C2039: ’size’: is not a member of ’boost::lambda::lambda functor<T>’

Is this possible to do?

Figure 1: A portion of a typical support query from a Boost Lambda Library user (shown here with the permission of
the poster, Daniel Lidström). The erroneous part is the expression 1.size(), which cannot be supported by a lambda
library.

bind((int(X::∗)(int, double))(&X::foo), 1, 2, 3)
bind(&X::foo<int>, 1, 2, 3)

The confusion is amplified even further in the case of objects such as std::endl, which is a template but is not un-
derstood as one by most users. As the result, the first line below is a valid lambda expression, but the second line
produces a compile-time error:

cout << 1 << ”\n”
cout << 1 << endl // error

In addition to the problems related to expressing actions as lambda expressions, the library solutions are getting
so complex that optimizers cannot manage to deliver acceptable performance. We have measured a simple algorithm
(find if() using a simple <) to take 2.5 times longer when using the Boost Lambda Library than using a hand-coded
function object or a hand-coded loop. Lambda libraries also have scalability problems. Some use cases involve
function objects which are too large and/or too complicated for a user-level library. There are a few options in those
cases:

• Continue to use a lambda library, creating messy code for large lambda expressions where those libraries are
inappropriate.

• Write function objects by hand.

• Write explicit loops, instead of using higher-order functions.

In sum, explicitly defined function object types can be used instead of the proposed lambda expressions, but they
can be inconvenient to define. This leads people to experiment with increasingly elaborate techniques aimed at a more
concise and conventional notation. These techniques often alleviate the verbosity, but are also themselves a source of
complexity, confusion, and even other forms of verbosity.

What do we want? Something like:

find if(v.begin(), v.end(), 1 < i);

is “the gold standard.” We can compare this with the explicit for loop:

for (auto p = v.begin(); p != v.end(); ++p)
if (∗p < i) break;

This code communicates its intent less directly than the call to find if(), but is significantly shorter than using find if()
with an explicit function object. Replacing a call to for each() with a loop is even easier:

for (auto p = v.begin(); p != v.end(); ++p)
cout << ∗p << endl;

With another planned C++0x feature, this becomes even more concise:

Doc. no: N1968=06-0038 4

for each (auto x : v)
cout << x << endl;

Whatever lambda/closure mechanism we come up with, for it to be practical to use with the simpler Standard
Library algorithms, it must be significantly less verbose than defining explicit function objects, not significantly more
verbose than explicit loops, and clearer and more intuitive than explicit loops.

Importantly, the loop variants are trusted to be efficient. Library-generated function objects carry a run-time cost
that is largely unknown. Their performance can be equivalent to that of loops, but that cannot be guaranteed for
library implementations of lambda expressions. Thus, performance can be an argument for direct language support.

Obviously, loops are not a reasonable alternative to every use of lambda expressions. For callbacks in event-based
systems or function objects used in complicated algorithms, such as sort(), the real alternative is hand-written function
objects. For callbacks that are complicated (so that their specification is ugly if placed at the point of use) or reusable
(so that their function object can be written once and used in several places), such explicit closures have an advantage.

We can summarize the design goals for C++ lambda functions as follows:

• Efficiency For many uses, lambda expressions and STL-style algorithms compete directly with explicit loops,
where the body of the lambda expression is written as the body of the loop. Therefore, simple uses of a lambda
expression with algorithms must equal their equivalent hand-written loops in time and space. In particular,
inlining of simple lambda expressions is essential.

• Notation For many uses, lambda expressions and STL-style algorithms compete directly with explicit loops and
with explicitly named function objects. Therefore, simple uses of a lambda expression with algorithms must
not be significantly more verbose than their equivalent hand-written loops and hand-written function objects.
Simple uses must be very simple.

• Code sharing Complicated operations are best designed for repeated use; that is, to be called from many places
in a program. Thus, there is a distinct value to named, non-local functions and classes. Lambda expression are
not intended to compete with such uses and there is no reason to make long lambda expressions particularly
easy to write.

• Implementation The ideal is for a simple, transparent, translation model. Such a model would allow for simple
implementations (both in the front end and the back end) and for users to easily comprehend both the meaning
and the cost implications of uses of a lambda expression.

• Generality A lambda expression has aspects of a function (it performs an action) and an object (it has state).
The primary aim is for lambda expressions to serve as “actions” for STL algorithms (the way function objects
have traditionally been used) and similar “callback” mechanisms. The simplicity and efficiency of lambda
expressions should not be compromised by attempting to generalize them beyond these uses.

• Integration The implementation of lambda functions must not complicate the definition of other C++0x fea-
tures (such as concepts), must interact well with all C++ features (new and old), and not gratuitously duplicate
existing features.

2 Proposal
We propose to extend the C++ language with lambda expressions, and define the semantics of these unnamed local
functions via translation to closures: function objects implemented using local classes. The essence of our proposal
is thus a concise syntax for defining a particular class of function objects. This translation directly suggests (but does
not require) an implementation approach that retains the same performance as that of hand-written function objects.

The elements that define the behavior of a closure are:

• full signature of operator()(),

• the body of operator()(),

• types and names of member variables, and

• the expressions with which member variables are initialized.

Current C++ allows the programmer to control all these aspects, but with the verbose syntax of defining a class with
its member variables, function call operator, and constructor, and then constructing an object of that type. We set our
goal to be less verbose than that. The suggested design is thus the result of analyzing which of the above components
can be given meaningful defaults and be left out when defining closures. We describe our current best effort in finding
the sweet spot in this design space, and justify our decisions. We start from simple lambda expressions, where only

Doc. no: N1968=06-0038 5

the function parameter list is relevant, and describe their translation, and end with lambda expressions where most of
the above components need to be controlled.

The proposed lambda functions are primary-expressions, and thus can be written directly where they are used.
The body of a lambda function can refer to local variables from its enclosing context, which the user can choose to
store by reference or by copy in the newly created function object. Unlike in some library techniques, which support
templated lambda functions, the proposed lambda functions are monomorphic: the parameter types must be defined
and be non-generic. Thus, in the function object resulting from the translation, the function call operation is not a
template. This is in some ways a step back from the library-based lambda expressions, which construct function
objects with a templated function call operator. These polymorphic lambda functions, without significant additional
machinery, would conflict with modular type-checking of concept-constrained generic functions. We justify the
design choice of monomorphic lambda expressions in detail in Section 5.1.

Lambda functions are defined with the following syntax:

lambda-function:
<> (parameter-declaration-clause) -> type-id

local-var-clauseopt exception-specificationopt compound-statement
<> (parameter-declaration-clause)

local-var-clauseopt exception-specificationopt compound-statement

local-var-clause:
extern (local-var-listopt)

local-var-list:
local-var
local-var-list , local-var

local-var:
identifier
∗this

A diamond (written as <>) introduces a lambda expression, and is followed by a standard function parameter list
(possibly including default values for parameters). After this is optionally an arrow (written as ->) and the function
return type, as in the decltype/auto proposal N1705 [JSD04]. If these are omitted the return type is deduced from the
body of the function. Section 2.1 explains when this is possible; in the examples below we always specify the return
type explicitly. After the return type follows an optional list of local variables (that need to be accessed by reference
in the closure) in parentheses and preceded by the keyword extern. Note that reusing an existing keyword, which
already has a different meaning in the language, may not be ideal. Other syntactic options to consider here might, for
example, include punctuation characters. The special syntax ∗this is also allowed, indicating that the current object
(if the enclosing context of the lambda expression is a member function) should be kept by pointer in the closure.
The pointer this itself will always be copied into the closure, and by default the entire object will be copied, with the
stored this pointer pointing to the new copy. The body of the lambda expression follows; as in any other function
definition, the body is required to be enclosed in braces.

A lambda expression defines a new function object of unspecified type. This object has a compiler-generated
copy constructor (if all stored local variables are copyable, just as for any other class type), a move constructor (if
that proposal is approved, and if all stored variables are movable and/or copyable), and a function call operator whose
parameter list and return type are those specified by the lambda expression.

As an example, consider the lambda expression:

〈〉(int x, int y) → int {return x + y;}

The behavior of this expression is the same as the behavior of the following class:

class new class name {
public:
int operator()(int x, int y) const {return x + y;}

};
... new class name() ...

If the proposed lambda functions are implemented via translation to function objects of a local class type, the new
generated class is inserted immediately before the statement containing the lambda expression, and the construction
of an object of that class replaces the lambda expression itself. For example, the code:

Doc. no: N1968=06-0038 6

int i = 1, j = 2;
if (〈〉 (int x, int y) → int {return x + y;} (i, j) == 3) ...

thus has the same behavior as:

int i = 1, j = 2;
class new class name { /∗ definition as above ∗/ };
if (new class name()(i, j) == 3) ...

Note that the newly created closure is an rvalue, not an lvalue. Thus, it can be passed to functions which accept
their arguments by copy, const reference, or rvalue reference (if that is approved). It cannot be passed to a function
which takes its argument by non-const reference, even if this function is a template. Explicitly casting each closure to
a const reference when it is constructed would allow this to work, but at the cost of forbidding move constructors from
being used. At least one function in the Standard Library, random shuffle(), accepts a function object by non-const
reference; the rvalue reference proposal N1690 [HAD04] suggests changing this to an rvalue reference specifically to
allow newly-constructed function objects to be used.

The body of the lambda expression can refer to the parameters of the lambda expression, global variables, and
local variables from its enclosing expression context. In the case of local variables, copies of the values of these
variables are automatically added as (hidden) member variables of the closure object. These member variables are
private to the class, and their names are not visible except in the lambda expression body. For example, the following
code uses a lambda expression which refers to a local variable (y) from the enclosing scope:

void f() {
int y = 3;
g(〈〉 (int x) → int {return x + y;});

}

Based on the translation semantics, this code has the same behavior as the following code:

void f() {
int y = 3;
class new class name {

int y;
public:
new class name(const int& y): y(y) {}
new class name(const new class name& o): y(o.y) {}
int operator()(int x) const {return x + y;}

};
g(new class name(y));

}

Storing the variables as members in the closure allows them to be referenced from within the function call operator
of the closure object, even if the object outlives the original local variables. Storing these members by copy differs
from closures in languages, such as Scheme, where closures must effectively store references to local variables which
are modified by the lambda expression. Scheme, however, is garbage collected. Without garbage collection, closures
that store references to local variables can be dangerous, easily leading to dangling references, and thus undefined
behavior. This happens if a closure lives longer than a local variable to which it stores a reference. For example, one
can store a closure into a tr1::function defined outside of the scope where the closure is defined, and outside of the
scope of the local variable. The following example demonstrates this behavior. Here we use special syntax extern(y)
to force the closure to store a reference to y, instead of storing its value by copy:

tr1::function<int(int)> callback;
void f() {

int y = 3;
callback = 〈〉(int x) → int extern(y) {return x + y;};

}
...
f();
callback(5); // undefined behavior

Since the closure stores a reference to y, by the time f() returns, y’s lifetime is over, but callback still holds a reference
to it. Invoking (or even copying) callback thus leads to undefined behavior.

Doc. no: N1968=06-0038 7

The following is another example of a callback which would contain a dangling reference, if references to local
variables were stored instead of copies:

void init gui() {
...
label∗ l = new label(”Hello”);
button∗ b = new button(”Change label”);
b → set on push callback(〈〉() → void {l → set text(”World”);});
...

}

The pointer l is saved by copy inside the new closure, allowing the label’s text to be changed by this callback even
after the function init gui() returns.

If a variable is stored in the closure by copy, each copy of the closure will have its own copy of the variable (with
the same lifetime as that particular copy of the closure), and no dangling references to the variable can result. We thus
make this safer design choice the default, and provide an explicit syntax for declaring that the closure should, instead
of a copy, store a reference to a local variable. This is done by listing the variables following the extern keyword, as
demonstrated by the above example.

In many cases, storing variables by reference in closures is desirable, or even necessary. In the following code,
for example, each call to the lambda function modifies the local variable sum as a side-effect:

void f() {
int sum = 0;
for each(a.begin(), a.end(),

〈〉(int x) → int extern(sum) {return sum += x;});
}

The semantically equivalent translated code for this example is:

void f() {
int sum = 0;
class new class name {

int& sum; // reference, rather than const value
public:
new class name(int& sum): sum(sum) {}
new class name(const new class name& o): sum(o.sum) {}
int operator()(int x) const {return sum += x;}

};
for each(a.begin(), a.end(), new class name(sum));

}

Note that local variables are stored as non-mutable members. This is to make code that tries to modify a local variable
stored by copy to fail. Consider the above example again without the extern clause:

void f() {
int sum = 0;
for each(a.begin(), a.end(),

〈〉(int x) → int {return sum += x;});
}

Now the sum member will not be mutable or a reference, and thus sum += x will generate a compile-time error (as the
closure’s operator()() is const). Storing sum as a mutable member would keep the code legal, but the assignments
would modify the sum member variable in the closure, and their effect would not be observable outside of the closure.
Thus, the code would compile but likely not behave as the programmer expected.

2.1 Omitting the return type
The return type of a lambda expression can be omitted if the body of the lambda function contains at most one return
statement. If no return statements are present, the return type of a lambda expression is void, otherwise the return
type is the decltype of the returned expression. For example, the lambda function:

〈〉(int x, double y) {return x + y;}

Doc. no: N1968=06-0038 8

is semantically equivalent to the function:

〈〉(int x, double y) → decltype(x + y) {return x + y;}

2.2 Syntactic savings compared to function objects
We state in the introduction of this proposal that lambda expressions are essentially syntactic sugar for defining
function object classes and constructing function objects. Comparing the proposed lambda expressions to explicitly
writing function objects, we can observe the following syntactic “savings:”

• The closure object does not need to be explicitly constructed.

• The types of the members (referenced local variables) do not need to be specified.

• If members are stored as copies, their names do not need to be specified.

• The return type of the function call operator does not need to be specified in many cases.

• A constructor to initialize the members of the closure does not need to be defined.

3 Implementation issues
This proposal does not specify any particular implementation for lambda expressions or the closures they create.
However, there is an intended implementation strategy which leads to lambda expressions with performance com-
parable to hand-written function objects, possibly at the expense of compilation time. In this strategy, each lambda
expression becomes a new local class, along with the creation of a new object of this class. This translation assumes
that references to references are legal (Core Defect 106 and proposal N1245 [Str00]), and that the lambda expression
is not inside a member function:

void f() {
func(
〈〉(type1 param1, type2 param2, ...) → return type
extern(local1, ...) { body which uses other local vars var1, var2, ...}):

}
// becomes
void f() {

class some unique name {
const typename remove reference<decltype(var1)>::type var1;
const typename remove reference<decltype(var2)>::type var2; ...
decltype(local1)& local1; ...

public: // But hidden from user
some unique name(const decltype(var1)& var1, const decltype(var2)& var2, ...,
some unique name(decltype(local1)& local1, ...)
: var1(var1), var2(var2), ..., local1(local1), ... {}

public: // Accessible to user
some unique name(const some unique name& o)
: var1(o.var1), var2(o.var2), ..., local1(o.local1), ... {}

return type operator()(type1 param1, type2 param2, ...) const
{ body }

};
func(some unique name(var1, var2, ..., local1, ...));

}

In this translation, some unique name is a new name, not used elsewhere in the program in a way that would cause
conflicts with its use as a closure type. This name, and the constructor for the class, do not need to be exposed to the
user — the only features that the user can rely on in the closure type are a copy constructor (and a move constructor if
that proposal is approved) and the function call operator. Closure types do not need default constructors, assignment
operators, or any other means of access beyond function calls. It may be worthwhile for implementability to forbid
creating derived classes from closure types. The metafunction remove reference converts reference types to their
underlying value types. This is done for consistency, so that members are stored in closures by reference only if
explicitly requested using the extern variable list.

Doc. no: N1968=06-0038 9

One potential issue is in a lambda expression inside a non-static member function: uses of the this keyword and
unqualified accesses to member variables and functions must be changed to be relative to the enclosing class, not the
newly created closure. The this pointer should effectively be treated as a local variable, and so must be stored in the
closure object if it is used in the lambda expression’s body. Also, the object pointed to by this will also be copied into
the closure by default, and uses of this inside the lambda expression should point to that copy.

4 Relationship to other proposals
This proposal relies on other previously proposed language changes. First, allowing local classes to be used as
template arguments, as proposed in N1427 [Wil03] enables a notably simpler implementation for lambda functions.
The suggested implementation of a lambda expression is as a local class (see Section 3), and such classes must be
allowed as template arguments for closures to be used as function objects in calls to generic algorithms. This should
not be a major change to the language, other than that name mangling may need to be adjusted to create mangled
names for local classes if they do not have them already. If local classes are not allowed as template arguments,
lambda functions would need to be translated to classes defined in namespace scope, which is possible but more
difficult, especially with nested lambda functions or when the enclosing function is a function template.

Lambda expressions as such are much more useful with the decltype extension proposed in N1705 [JSD04],
and in particular, inferring the return type from the return expression is defined in terms of decltype. The function
declaration syntax in which the return type follows the parameter list (separated by an arrow) also originates from
that proposal. Deducing the type of a variable from its initializer expression, also in N1705, would allow lambda
expressions, whose types are not otherwise named, to be stored directly into variables when they are defined.

The current proposal supersedes the bind function templates proposed in N1455 [DGJP03], and which are now
part of TR1. The lambda expressions and closure objects provided in this proposal cover all features provided by
N1455, with the exception of polymorphic lambda functions, and use much cleaner and more direct syntax to do
so. A partial application of a function, as provided by tr1::bind, is a restricted form of a lambda expression, and
full lambda expressions include all of the functionality of standard binders plus much more flexibility and safety.
Moreover, complex expressions written using TR1 binders result in heavily nested template instantiations, which
tend to consume a lot of compilation resources. On the other hand, binders do not require names or types to be given
for their parameters (they are implicitly numbered in sequence and fully polymorphic), and have a syntax optimized
to their specific application.

5 Design issues
There are several aspects of the design of this extension which are subject to debate. This section attempts to explain
the various decisions which were made, as well as other alternatives which may be worth considering.

5.1 Why lambda functions are not templates?
We anticipate a very common use for lambda expressions to be as function objects to be passed to Standard Library
algorithms. Libraries, such as the Boost Lambda Library [JP02], or tr1::bind in more limited cases, cater to this need.
Though not a general solution, in the cases where these libraries apply, they provide two benefits over the solution
proposed here:

1. Very concise syntax: Compare, for example, the following function written using the Boost Lambda Library:

prod ∗= 1

and with the syntax we propose (omitting the return type):

〈〉(int x) extern(prod) {prod ∗= x;}

2. Polymorphism: In the library-based lambda expressions, it is not necessary to specify the formal parameter
types of the lambda function, or its return type. In particular, the parameter types in generic code may be
quite verbose, and thus awkward. For example, making the multiply list() function generic results in a fairly
cumbersome lambda expression:

template <typename InputIterator>
typename iterator traits<InputIterator>::value type
multiply list(InputIterator begin, InputIterator end) {

Doc. no: N1968=06-0038 10

typename iterator traits<InputIterator>::value type prod = 1;
std::for each(begin, end,
std::for each(〈〉(typename std::iterator traits<InputIterator>::value type x)
std::for each(〈〉(→ void extern(prod) {prod ∗= x;});

}

Defining a typedef and omitting the return type can improve on this a little:

template <typename InputIterator>
typename iterator traits<InputIterator>::value type
multiply list(InputIterator begin, InputIterator end) {

typedef typename iterator traits<InputIterator>::value type vt;
vt prod = 1;
std::for each(begin, end, 〈〉(vt x) extern(prod) {prod ∗= x;});

}

We considered the possibility of supporting polymorphic lambda functions, whose parameter types need not be
specified. Such a lambda function would implicitly be an unconstrained template, accepting any argument types; the
body would be checked against the particular argument types used when the call to the lambda function is instantiated.
Such functions would not create significant difficulties for the proposed translation model. A lambda expression
whose parameter types were not specified would simply be translated to a function object whose function call operator
is a template. Such lambda functions would, however, clash with the modular type-checking which we attempt to
introduce to C++ via concepts [SD05, GSW+05].

To show this, consider the following broken definition of a function multiply list(), using a concept-enabled C++,
and invented syntax for a polymorphic lambda function:

template <typename Iter> where {InputIterator<Iter>}
value type multiply list(Iter begin, Iter end) {

value type prod = 1;
std::for each(begin, end, 〈〉(x) extern(prod) {prod ∗= x;});

}

This definition is incorrect because there is no requirement that the value type of the iterator supports an operator∗().
Without the lambda expression, for example using an explicit loop over the input range, this error would be caught
before multiply list() is instantiated. With a monomorphic lambda function:

〈〉(const value type& x) extern(prod) {prod ∗= x;}

the error would also be caught before instantiation time, as the compiler would know that x has type value type, which
may not necessarily have an operator∗(). With the unconstrained polymorphic lambda function, however, the error
in the definition of multiply list() would not be caught until it is instantiated on a particular iterator type whose value
type does not have operator∗() defined. This behavior occurs because the type of x is an unconstrained template
parameter, and so all operations are allowed until the template is instantiated. Thus, implicitly polymorphic lambda
expressions break the level of separate type checking provided by concepts, or at least, complicate separate type
checking significantly. Explicitly polymorphic lambda expressions (with their own where clauses) would not have
this problem, but would be very verbose, and the polymorphism they provide would only rarely be used.

Note that it would be possible to leave the parameter types of the lambda function unspecified, and try to deduce
them from the use of the lambda function. In the above example, the lambda function is passed to the for each()
function, whose signature in concept-enabled C++ would constrain F, the type of the function object, to model
Callable1<F, value type>, where value type is short for InputIterator<Iter>::value type. Thus, the argument type
value type in constraint using the Callable1 concept would be used as the argument type of the lambda expression.
This constraint would then be used to attempt to type-check the body of the lambda, and this check would fail. To
make the code type-check, we could rewrite it as:

template <typename Iter> where {InputIterator<Iter>, Multipliable<value type>}
value type multiply list(Iter begin, Iter end) {

value type prod = 1;
std::for each(begin, end, 〈〉(x) extern(prod) {prod ∗= x;});

}

Note, however, that the resulting closure passed to for each() would not have a templated function call operator. This
mechanism would thus only allow a more convenient way to define monomorphic lambda functions. We have not
explored this approach in detail; it would at the least require special handling of the Callable∗ concepts in the compiler.

Doc. no: N1968=06-0038 11

A possible argument in favor of providing polymorphic lambda functions is that the existing bind and lambda
libraries only provide (unconstrained) polymorphic lambda functions. Although this is true, most actual uses of
these libraries involve lambda functions which are only called on one particular set of argument types. The libraries
allow polymorphism only because it would be very inconvenient for them to require parameter types to be given.
A language-based lambda extension does not have these limitations, and so the greater type safety of monomorphic
lambda expressions with explicit parameter types is preferred.

5.2 Using variables from the enclosing scope
An important design decision in creating a language extension for creating locally-defined functions is whether vari-
ables from the enclosing scope can be used in the body of the lambda expression, and if so, how they should be
stored in the closure object. We have chosen to allow such uses, as many uses of lambda expressions (such as in
the multiply list() example above) require this feature. An alternative would be to completely disallow use of local
variables, in which case no support for closures would be necessary, only local classes. We consider the loss in ex-
pressiveness severe enough to not pursue this alternative. Another alternative, suggested by Jeremy Siek, would be
to require all local variables to be stored in the closure to be declared or listed explicitly using some syntax in the
signature of the lambda function. We discuss this approach further in Section 5.3.

Given that local variables can be used transparently within the body of a lambda expression, another question is
how to store them in the closure object. We allow changing the default storage mode from a const copy to storing a
reference. Note that the actual implementation need not keep a reference to each particular local variable, if there is
a way to keep a pointer to the stack frame or an equivalent instead.

Both ways of storing variables into closures, by copy and by reference, are problematic in their own ways. Stor-
ing local variables by reference leads to closure objects being second-class: unusable outside the function which
created them. This would be a dangerous default, since one of the anticipated common uses of lambda expressions
is callbacks. A lambda expression which does not refer to any non-copied local variables is usable in any program
context.

Storing local variables by copy has other problems. For example, it is possible to create lambda functions which
cannot be used outside their enclosing function, even if copies of the variables are stored in the closures. One
example of this is if a local variable used (and stored by copy) in the closure is a pointer to another local variable.
The pointee’s lifetime is shorter than the lifetime of the closure, and so a dangling pointer if the closure escapes its
enclosing function. References do not have this problem, because the object referred to is copied into the closure if
the reference is used in the lambda expression’s body. Slicing is also a possible problem, as a reference can refer to
an object of a dynamic type derived from its static type; copying the referenced object using its static type would lead
to only some of the actual object being copied. Copying of certain kinds of objects can also be very slow, which may
not be expected to occur just from referring to a variable inside a lambda expression.

Note that some lambda functions will not compile with our chosen default. For example, streams are non-copyable
types, and thus the following code is erroneous:

ofstream os(”file.txt”);
〈〉(int i) {os << i;}

The correct definition is:

ofstream os(”file.txt”);
〈〉(int i) extern(os) {os << i;}

Another kind of variable-like object that must be handled is the object ∗this inside a member function. We
currently choose to copy the entire object, but storing it be reference is allowed with an optional declaration. The
enclosing object has a weaker argument for being stored by copy than other local variables, but we copy it for
consistency with the other design choices we have made.

5.3 Can we avoid all default behavior?
The major design issue with lambda expressions is how to handle references to variables defined outside of the body
of the lambda expression. Both of the design choices discussed above (storing the variables either by copy or by
reference) have their problems. Another viable design choice is to disallow references to local variables defined
outside of the lambda function’s body altogether, and allow the member variables of the closure to be explicitly
declared and initialized as part of the definition of the lambda expression. In this approach, lambda expressions are
very direct syntactic sugar for defining function objects. We demonstrate with an example, using invented syntax:

Doc. no: N1968=06-0038 12

pair<int, int> p;
int s;
...
func(〈〉 (int x) → void
func(: {int& sum = s; auto factor = 2 ∗ p.first;}
func({sum += factor ∗ x;});

Here, the block following the colon defines the member variables to be stored in the closure, and the expressions used
to initialize them in the construction of the closure. Note that it would be possible to avoid explicitly defining the
types of the member variables using auto.

The above definition would be translated to:

class new name {
int& sum;
int factor;

public:
new name(int& sum, int factor) : sum(sum), factor(factor) {}

void operator()(int x) {
sum += factor ∗ x;

}
};
func(new name(s, 2 ∗ p.first));

This design is possibly the one with the fewest surprises and the greatest flexibility. On the other hand, it provides
relatively little benefit for programmers over explicitly defining local classes for their function objects, and we are
uneasy with how verbose it can be.

5.4 The type of a closure
We have purposely left the types of closures unspecified to allow a variety of possible implementations. One possibil-
ity is to create a new local class for each lambda expression appearing in the program, as explained in more detail in
Section 3. Each separate lambda expression would then have its own type, and so it would be statically known which
lambda expression is being used at each call site. Thus, using a generic algorithm with a lambda expression in this
model allows the body of the lambda expression to be inlined into the generic algorithm’s body. It is possible to get
rid of this exact static knowledge with library techniques in current C++, if it is not desirable for a particular situation
(for example, when assigning one of several possible lambda expressions to a callback variable). A lambda expres-
sion can be used to initialize a tr1::function object, which involves a conversion that reduces the type information of
the lambda expression to only its parameter and return types, giving more run-time flexibility but possibly losing the
ability to inline calls to the expression. Another issue related to the types of closures is whether they are full classes,
with the ability for users to create subtypes (derived classes) of them. This is probably not harmful, but the local
variables in the closure are private, meaning that inheriting from a closure type has little benefit to the programmer.

Another design alternative would be to require that a lambda expression produces an object whose type is required
to be an appropriate instance of tr1::function. This would allow functions to be easily stored in variables, and is similar
to what many other languages with first-class functions use for their implementations. However, it would mean that
a lambda expression would be similar to a function pointer in that the exact function called would not be expressed
in its type; thus, generic algorithms would not be instantiated separately for each possible function used with them.
This is likely to prevent compiler optimization in many cases.

5.5 Nested functions and inner classes
In our current design, all lambda expressions define anonymous functions of unspecified type. One possible change
to this is to provide syntax for defining an explicitly named nested function (as provided by the GNU C Compiler).
Named lambda functions can be simulated with our current proposal using a declaration such as

auto f = 〈〉(int x) → int {...};

A direct syntax may, however, also be useful. Direct syntax may also allow nested functions to be explicitly templated.
Adding named nested functions would be a relatively small change to the proposal, and should not present any
implementation difficulties.

Another possible addition is inner classes, as provided by Java. An inner class is similar to a normal class, except
that the class’s methods can directly access the function’s local variables. Effectively, an inner class is similar to

Doc. no: N1968=06-0038 13

a group of lambda expressions which share a set of local variables, but may also have other members. In C++,
inner classes could, for example, be useful as multi-function callbacks, such as the visitors for algorithms in the
Boost Graph Library. Inner classes can be implemented using a similar translation to local classes as is used for
lambda expressions; local variable access would likely be implemented through hidden members in the translated
inner classes, and so may present more difficulties than for single lambda functions. Also, exactly when an object
of inner class type can be constructed is an important semantic issue, especially when many algorithms require that
visitors used as their arguments are copyable in any context. More study is needed to assess how useful, and how
implementable, inner classes are in the context of C++.

6 Alternative approaches
In addition to the lambda libraries for C++, several authors have designed limited forms of lambda or nested function
functionality for C++. The closest to ours is by Oleg Kiselyov [Kis00], which uses a macro which expands to a local
class and an instance of it, which is close to the translation in our proposal. However, his implementation does not
allow local variables to be referenced in lambda expression bodies, and the operations that can be used on lambda
expressions are very limited.

One article [Bre88] and proposal N0295 to the C++ committee [SH93] suggest adding nested functions to C++.
Nested functions are similar to lambda expressions, but are defined as statements within a function body, and the
resulting closure cannot be used unless that function is active. These proposals also do not include adding a new type
for each lambda expression, but instead implementing them more like normal functions, including allowing a special
kind of function pointer to refer to them. Both of these proposals predate the addition of templates to C++, and so do
not mention the use of nested functions in combination with generic algorithms. Also, these proposals have no way
to copy local variables into a closure, and so the nested functions they produce are completely unusable outside their
enclosing function.

Herb Sutter suggests a way of simulating nested functions by changing the enclosing function into a class and its
constructor, with the nested functions as member functions of that class [Sut99]. Multiple layers of nesting become
quite difficult in this implementation, however, and the new classes created are not really functions. Our proposal, on
the other hand, uses a language extension to create real closures even inside a normal function, and lambda expressions
can be nested arbitrarily.

7 Conclusion
Anonymous functions within other functions, with access to local variables, are an important feature in many pro-
gramming languages. They are also used in C++, as shown by the several libraries providing simulated lambda
expression functionality [JP02, MS04, de 02]. This proposal presents a language extension to C++ to directly support
this feature in a way that fits in with current practice, and with the rest of the language design. A suggested implemen-
tation strategy for this feature is also described. With this strategy, lambda expressions have the same performance
characteristics as users expect from hand-created function objects. Thus, adopting this proposal as a part of C++0x
will provide substantial convenience for users, with a reasonable implementation cost.

8 Acknowledgments
The authors wish to thank Jeremy Siek for suggesting the use of explicit declarations of which local variables will
be used inside the lambda expression body and how to store them in the closure. Thanks also to Daniel Lidström for
permission to use his post about Boost.Lambda as an example. Valentin Samko and Gabriel Dos Reis gave several
detailed comments that notably improved the proposal. This work was supported by NSF grant EIA-0131354, a
grant from the Lilly Endowment, and the first author was supported by a Department of Energy High Performance
Computer Science Fellowship.

References
[ADH+98] H. Abelson, R. K. Dybvig, C. T. Haynes, G. J. Rozas, N. I. Adams Iv, D. P. Friedman, E. Kohlbecker,

Jr. G. L. Steele, D. H. Bartley, R. Halstead, D. Oxley, G. J. Sussman, G. Brooks, C. Hanson, K. M.
Pitman, and M. Wand. Revised5 report on the algorithmic language Scheme. Higher-Order and Symbolic
Computation, 11(1):7–105, 1998.

Doc. no: N1968=06-0038 14

[Bre88] Thomas M. Breuel. Lexical closures for C++. In USENIX C++ Conference, pages 293–304, October
1988. http://people.debian.org/∼aaronl/Usenix88-lexic.pdf.

[Csh05] Microsoft Corporation. C# Version 3.0 Specification, September 2005. http://msdn.microsoft.
com/vcsharp/future/default.aspx.

[de 02] Joel de Guzman. Phoenix v1.2.1. Boost, September 2002. http://www.boost.org/libs/
spirit/phoenix/index.html.

[DGJP03] P. Dimov, D. Gregor, J. Järvi, and G. Powell. A proposal to add an enhanced binder to the library techni-
cal report. Technical Report N1455=03-0038, ISO/IEC JTC 1, Information Technology, Subcommittee
SC 22, Programming Language C++, 2003. http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2003/n1455.htm.

[ECM99] ECMA. ECMAScript Language Specification, 3rd edition, December 1999. http://www.
ecma-international.org/publications/standards/Ecma-262.htm.

[Fou05] Python Software Foundation. Python 2.4.1 documentation. http://www.python.org/doc/2.
4.1, 2005.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification, Third Edition.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.

[GSW+05] Douglas Gregor, Jeremy Siek, Jeremiah Willcock, Jaakko Järvi, Ronald Garcia, and Andrew Lumsdaine.
Concepts for C++0x (revision 1). Technical Report N1849=05-0109, ISO/IEC JTC 1, Information Tech-
nology, Subcommittee SC 22, Programming Language C++, August 2005.

[HAD04] Howard E. Hinnant, Dave Abrahams, and Peter Dimov. A proposal to add an rvalue reference to the
C++ language. Technical Report N1690=04-0130, ISO/IEC JTC 1, Information technology, Subcommit-
tee SC 22, Programming language C++, September 2004. http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2004/n1690.html.

[JP02] Jaakko Järvi and Gary Powell. The Boost Lambda Library, 2002. www.boost.org/libs/lambda.

[JSD04] J. Järvi, B. Stroustrup, and G. Dos Reis. Decltype and auto (revision 4). Technical Report N1705=04-
0145, ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Programming Language C++,
September 2004. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/
n1705.pdf.

[Kis00] Oleg Kiselyov. Genuine lambda-abstractions in C++. http://okmij.org/ftp/c++-digest/
#lambda-abstr, April 2000.

[MS04] Brian McNamara and Yannis Smaragdakis. Functional programming with the FC++ library. Journal of
Functional Programming, 14(4):429–472, July 2004.

[PH+99] Simon Peyton Jones, John Hughes, et al. Haskell 98: A Non-strict, Purely Functional Language, Febru-
ary 1999. http://www.haskell.org/onlinereport/.

[SD05] Bjarne Stroustrup and Gabriel Dos Reis. A concept design (rev. 1). Technical Report N1782=05-0042,
ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Programming Language C++, May
2005.

[SH93] John Max Skaller and Fergus Henderson. A proposal for nested functions. Technical Report
N0295=93-0088, ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Programming Lan-
guage C++, 1993. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/1993/
N0295.pdf.

[Str00] Bjarne Stroustrup. Binder problem and reference proposal (revised). Technical Report N1245=00-0022,
ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Programming Language C++, 2000.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2000/n1245.ps.

[Sut99] Herb Sutter. GotW #58: Nested functions. http://www.gotw.ca/gotw/058.htm, July 1999.

[Wil03] Anthony Williams. Making local classes more useful. Technical Report N1427=03-0009, ISO/IEC
JTC 1, Information Technology, Subcommittee SC 22, Programming Language C++, February 2003.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1427.pdf.

