
Doc No: SC22/WG21/N1945=06-0015
Project: JTC1.22.32
Date: 2006-02-24
Reply To: Anthony Williams

Just Software Solutions Ltd
Email: anthony@justsoftwaresolutions.co.uk

Names, Linkage, and Templates

1 Background

My previous paper on this topic (N1427) met a lukewarm reception when I presented it to the EWG
at the Oxford meeting in 2003 — some people were strongly for this proposal, and others not so.
Brief discussions with a selection of compiler writers indicated to me that they all thought this was
implementable, though for some this was more of an issue than others. Subsequently, I understand
that this was further discussed at the Redmond meeting in 2004, and lacking sufficient support was
put aside in favour of other proposals.

The issue was raised again in discussions on the cxxstd-core reflector, particularly the thread fol-
lowing cxxstd-core-10977, in August/September 2005. Whereas the original proposal was purely to
cover the use of local types with templates, these messages indicate to me that the issue is wider than
that, and includes unnamed types (such as enums) declared at namespace scope. I believe this led to
a brief discussion on the matter at the October 2005 meeting.

This proposal also has direct bearing on Core Issue 488, where the current proposed resolution would
make passing a local type as an argument to template function a type deduction failure.

There are two key drivers behind this proposal: consistency, and ease of use.

1.1 Consistency

From the point of view of a C++ programmer, there is little difference between a class declared at
function scope, and a class declared at namespace or class scope; it is thus surprising to find that
there is such a difference in behaviour — the class defined at namespace scope can be used as a
template argument, whereas the class defined at function scope cannot.

template<typename T>
void foo(T const& t){}

struct X{};

int main()
{

struct Y{};
foo(X()); // well-formed
foo(Y()); // ill-formed

}



SC22/WG21/N1945=06-0015 2

Likewise, it is surprising to find that an unnamed enum declared at namespace scope is excluded
from template type deduction, whereas a named enum is permitted.

template<typename T>
void foo(T const& t){}

enum X { x };
enum { y };

int main()
{

foo(x); // well-formed
foo(y); // ill-formed

}

Under this proposal, both these examples would be well-formed.

1.2 Ease of Use

Much of the functionality provided by the Standard Library, and popular third-party libraries such
as Boost, is provided by means of templates, whether they be containers such asstd::vector ,
algorithms such asstd::for each , or general purpose utilities such astr1::shared ptr .

There are many cases where a class is only needed for the scope of a function, whether it is because
it is used to group data, or to provide a predicate for the application of an algorithm, or whatever.
It would therefore be most convenient to define such a class at function scope, rather than class
or namespace scope. Indeed, if the function in question is a member function, then there may be
impediments to defining the class at namespace scope, due to use of private members of the enclosing
class, which would force the new class to be defined at class scope. If this class definition is shared
between translation units, then this causes additional coupling between them due to the exposure of
what is essentially an implementation detail of a member function.

It is for such reasons that programmers often resort to usingfor loops in favour of algorithms from
the Standard Library, as the overhead is just too great for all but trivial cases.

Under this proposal, these problems would evaporate, and local types and unnamed types would
work with template-based algorithms and containers. There would be no substantive difference
compared to namespace- and class-scope types, or named types, in these circumstances.

2 Proposal Summary

The key part of the proposal is that the restrictions on which types can be used as template type
parameters from 14.3.1 paragraph 2 be lifted. In order to facilitate this, it is proposed that all local
types and unnamed types have a “name for linkage purposes” created by the compiler, much the
same as unnamed namespaces have a unique name that is created by the compiler. Many of those
entities which currently fall under the category of “no linkage” in section 3.5 of the C++ Standard,
would now qualify for external linkage:



SC22/WG21/N1945=06-0015 3

— Unnamed enumerations

— Enumerators belonging to unnamed enumerations

— Names declared in a local scope

In order to avoid unnecessary complexity, local types have the same linkage as their enclosing func-
tion, and unnamed types have the same linkage they would have if they were named. In particular,
this means that types declared within namespace-scopestatic functions still have no linkage —
if this is inconvenient for the programmer, the function can easily be moved inside an unnamed
namespace instead. As this use ofstatic is deprecated in Standard C++ anyway, going to a lot of
trouble for such a corner case does not seem justified.

3 Required Changes

3.5 Program and Linkage [basic.link]

Add a new paragraph after paragraph 4:

An unnamed class (or enum) defined at namespace scope, and not covered by paragraph
4, is assigned an identifier by the implementation for linkage purposes, which is not the
same as any other identifier in the program. This identifier, and the class or enumeration
it identifies, shall have external linkage.

Add two new paragraphs following the existing paragraph 5:

Inside a function which itself has external linkage, a name has external linkage if it is
the name of:

— a named class (or enum) defined at block scope; or

— an unnamed class (or enum) defined in a typedef declaration at block scope, in which
the class (or enum) has the typedef name for linkage purposes.

and

Unnamed classes and enumerations not covered by the preceding paragraphs are as-
signed an identifier by the implementation, which shall not be the same as any other
identifier in the program. This identifier, and the class or enumeration so-named, shall
have external linkage if, and only if, it would have had external linkage when specified
directly in the source. [Example:

template<typename T>
void f(T t);

void g()
{



SC22/WG21/N1945=06-0015 4

enum { x }; // equivalent to enum unique_1 { x };
// g() has external linkage,
// therefore unique_1, and x, have external linkage
f(x); // well-formed

}

static void h()
{

enum { y }; // equivalent to enum unique_2 { y };
// h() has internal linkage,
// therefore unique_2, and y, have no linkage
f(y); // ill-formed

}

enum { z }; // equivalent to enum unique_3 { z };
// unique_3 and z have external linkage

void j()
{

f(z); // well-formed
}

—end example] [Note: Where such a unique identifier is assigned at namespace scope,
the same definition in another translation unit will yield a distinct name.]

Change paragraph 8 from:

Names not covered by these rules have no linkage. Moreover, except as noted, a name
declared in a local scope (3.3.2) has no linkage. A name with no linkage (notably, the
name of a class or enumeration declared in a local scope (3.3.2)) shall not be used to
declare an entity with linkage. If a declaration uses a typedef name, it is the linkage of
the type name to which the typedef refers that is considered. [Example:

void f()
{

struct A { int x; }; // no linkage
extern A a; // ill-formed
typedef A B;
extern B b; // ill-formed

}

—end example] This implies that names with no linkage cannot be used as template
arguments (14.3).

to:



SC22/WG21/N1945=06-0015 5

Names not covered by these rules have no linkage. Moreover, except as noted, a name
declared in a local scope (3.3.2) has no linkage. A name with no linkage shall not be
used to declare an entity with linkage. If a declaration uses a typedef name, it is the
linkage of the type name to which the typedef refers that is considered. [Example:

static void f() // internal linkage
{

struct A { int x; }; // no linkage
extern A a; // ill-formed
typedef A B;
extern B b; // ill-formed

}

—end example]

14.3.1 Template type arguments [temp.arg.type]

Modify paragraph 2 to allow local types and unnamed types to be template arguments, and remove
the example:

[Remove: A local type,]a type with no linkage[Remove: , an unnamed type]or a type
compounded from any of these types shall not be used as a template-argument for a
template type-parameter.[Remove: [Example:

template <class T> class X { /* ... */ };
void f()
{

struct S { /* ... */ };
X<S> x3; // error: local type

// used as template-argument
X<S*> x4; // error: pointer to local type

// used as template-argument
}

—end example] ][Note: a template type argument may be an incomplete type (3.9). ]

4 Acknowledgements

Thanks to those who have read and commented on drafts of this proposal.


	Background
	Consistency
	Ease of Use

	Proposal Summary
	Required Changes
	Acknowledgements

