
J16/05-0006
WG21/N1746

2004-12-29
J. Stephen Adamczyk

Edison Design Group, Inc.
jsa@edg.com

Adding extended integer types to C++

I propose that we add extended integer types to C++. This is desirable to make C++ more compat-
ible with C99 and with the draft Ecma TG5 C++/CLI standard.

Extended integer types are simply implementation-specific integer types provided in addition to
the standard integer types. They could be bigger than the largest standard type, or have a size
between two standard types. An implementation on an architecture that has 128-bit integers, for
example, could provide an extended integer type that maps to those.

This proposal is part of a set of three related proposals to bring C99 features into C++: first, add-
ing long long, which was covered by my paper N1735; second, adding extended integer types,
which is the subject of the present paper; and third, adding the <stdint.h> header, which is
included in the library group TR1.

Extended integer types are a funny feature, in that there’s no way to use them in a portable pro-
gram. The type specifier representations of such types aren’t standardized (they’re extensions,
after all), so there’s no standard way to name them. So what good is the extension? It provides a
framework that does two things:
• It requires that if implementations add additional integer types they do so in conformance with

certain rules.
• It guarantees that the behavior of standard-conforming programs will not be affected by the

presence of extended integer types in an implementation.

A final point on implementation cost: this extension will probably cause no changes in most com-
pilers. Any compiler that has no integer types other than those mandated by the standard (and
some version of long long, which is mandated by the N1735 change) will likely conform
already.

Detailed Working Draft Changes

Note: in most cases, these changes hit the same places modified by N1735. The “before” wording
shown here is the wording after application of the changes from that paper.

3.9.1 [basic.fundamental] paragraphs 2 and 3 need to be changed as follows to define signed and
unsigned extended integer types and to adjust the definition of signed and unsigned integer types
to include the extended versions. See C99 6.2.5p4, p6, and p7.

Adding extended integer types to C++ (J16/05-0006 = WG21/N1746) 2
There are five standard signed integer types : “signed char”, “short int”, “int”,
“long int”, and “long long int”. In this list, each type provides at least as much storage
as those preceding it in the list. There may also be implementation-defined extended signed
integer types. The standard and extended signed integer types are collectively called
signed integer types. Plain ints have the natural size suggested by the architecture of the
execution environment; the other signed integer types are provided to meet special needs.

For each of the standard signed integer types, there exists a corresponding (but different)
standard unsigned integer type: “unsigned char”, “unsigned short int”,
“unsigned int”, “unsigned long int”, and “unsigned long long int”, each of
which occupies the same amount of storage and has the same alignment requirements (3.9) as
the corresponding signed integer type; that is, each signed integer type has the same object
representation as its corresponding unsigned integer type. Likewise, for each of the extended
signed integer types there exists a corresponding extended unsigned integer type with the
same amount of storage and alignment requirements. The standard and extended
unsigned integer types are collectively called unsigned integer types. The range of nonneg-
ative values of a signed integer type is a subrange of the corresponding unsigned integer type,
and the value representation of each corresponding signed/unsigned type shall be the same.
The standard signed integer types, standard unsigned integer types, and the bool type
are collectively called the standard integer types, and the extended signed integer types
and extended unsigned integer types are collectively called the extended integer types.

2.13.1 [lex.icon] paragraph 3 needs to be changed as follows to consider extended integer types
for integer literals whose values do not fit in the standard integer types. See C99 6.4.4.1p5. Note
that there are no suffixes indicating extended integer types, and an extended integer type smaller
than long long will never be used as the type of an integer literal.

If an integer constant cannot be represented by any type in its list, it may have an
extended integer type, if the extended integer type can represent its value. If all of the
types in the list for the constant are signed, the extended integer type shall be signed. If
all of the types in the list for the constant are unsigned, the extended integer type shall be
unsigned. If the list contains both signed and unsigned types, the extended integer type
may be signed or unsigned. A program is ill-formed if one of its translation units contains an
integer literal that cannot be represented by any of the allowed types.

16.1 [cpp.cond] paragraph 4 needs to be changed as follows to indicate that preprocessing expres-
sions should be evaluated in the largest available integer types. See C99 6.10.1p3, which uses
intmax_t and uintmax_t.

The resulting tokens comprise the controlling constant expression which is evaluated accord-
ing to the rules of 5.19 using arithmetic that has at least the ranges specified in 18.2, except
that all signed and unsigned integer types act as if they have the same representation as,
respectively, long long int and unsigned long long int the largest signed integer
type or unsigned integer type.

4.5 [conv.prom] paragraph 1 needs to be changed as follows to define integral promotions for

Adding extended integer types to C++ (J16/05-0006 = WG21/N1746) 3
small extended integer types. This uses the concept of “rank” introduced below. See C99
6.3.1.1p2.

An rvalue of type char, signed char, unsigned char, short int, or unsigned
short int an integer type whose integer conversion rank (4.13 conv.rank) is less than
the rank of int can be converted to an rvalue of type int if int can represent all the values
of the source type; otherwise, the source rvalue can be converted to an rvalue of type
unsigned int.

Add a new section 4.13 [conv.rank] as follows to provide the definition of “integer conversion
rank.” See C99 6.3.1.1. (The text below is the C99 wording almost unchanged.)

4.13 Integer conversion rank

Every integer type has an integer conversion rank defined as follows:
• No two signed integer types shall have the same rank, even if they have the same rep-

resentation.
• The rank of a signed integer type shall be greater than the rank of any signed integer

type with a smaller size.
• The rank of long long int shall be greater than the rank of long int, which

shall be greater than the rank of int, which shall be greater than the rank of short
int, which shall be greater than the rank of signed char.

• The rank of any unsigned integer type shall equal the rank of the corresponding
signed integer type, if any.

• The rank of any standard integer type shall be greater than the rank of any extended
integer type with the same size.

• The rank of char shall equal the rank of signed char and unsigned char.
• The rank of bool shall be less than the rank of all other standard integer types.
• The rank of any enumerated type shall equal the rank of its underlying type (7.2

dcl.enum).
• The rank of any extended signed integer type relative to another extended signed

integer type with the same size is implementation-defined, but still subject to the
other rules for determining the integer conversion rank.

• For all integer types T1, T2, and T3, if T1 has greater rank than T2 and T2 has
greater rank than T3, then T1 has greater rank than T3.

[Note: The integer conversion rank is used in the definition of the integral promotions
(4.5 conv.prom) and the usual arithmetic conversions (5 expr). -- end note]

In 5 [expr] paragraph 9, the text from the fourth bullet on is changed from

• Otherwise, the integral promotions (4.5) shall be performed on both operands.
• Then, if either operand is unsigned long long int, the other shall be converted to

unsigned long long int.
• Otherwise, if one operand is long long int and the other unsigned long int or

unsigned int, then if a long long int can represent all the values of the unsigned

Adding extended integer types to C++ (J16/05-0006 = WG21/N1746) 4
operand type, the unsigned operand shall be converted to long long int; otherwise
both operands shall be converted to unsigned long long int.

• Otherwise, if either operand is long long int, the other shall be converted to long
long int.

• Otherwise, if either operand is unsigned long the other shall be converted to
unsigned long.

• Otherwise, if one operand is a long int and the other unsigned int, then if a long
int can represent all the values of an unsigned int, the unsigned int shall be
converted to a long int otherwise both operands shall be converted to unsigned
long int.

• Otherwise, if either operand is long, the other shall be converted to long.
• Otherwise, if either operand is unsigned, the other shall be converted to unsigned.
[Note: otherwise, the only remaining case is that both operands are int -- end note]

to (see C99 6.3.1.8):

• Otherwise, the integral promotions (4.5) shall be performed on both operands. Then the
following rules are applied to the promoted operands:

• If both operands have the same type, then no further conversion is needed.
• Otherwise, if both operands have signed integer types or both have unsigned integer

types, the operand with the type of lesser integer conversion rank is converted to the
type of the operand with greater rank.

• Otherwise, if the operand that has unsigned integer type has rank greater or equal to
the rank of the type of the other operand, then the operand with signed integer type
is converted to the type of the operand with unsigned integer type.

• Otherwise, if the type of the operand with signed integer type can represent all of the
values of the type of the operand with unsigned integer type, then the operand with
unsigned integer type is converted to the type of the operand with signed integer
type.

• Otherwise, both operands are converted to the unsigned integer type corresponding
to the type of the operand with signed integer type.

	Detailed Working Draft Changes

