
Toward Improved Optimization Opportunities in C++0X

Document #: WG21/N1664 = J16/04-0104
Date: July 16, 2004
Revises: None
Project: Programming Language C++
Reference: ISO/IEC IS 14882:2003(E)
Reply to: Walter E. Brown<wb@fnal.gov >

Marc F. Paterno<paterno@fnal.gov >
CEPA Dept., Computing Division
Fermi National Accelerator Laboratory
Batavia, IL 60510-0500

Contents

1 Introduction 1

2 Factors inhibiting optimizations 2

3 Function behaviors 4

4 Analysis of ill-behaved functions 5

5 Introduction to proposed solutions 8

6 Proposal 1 9

7 Proposal 2 13

8 Impact on the standard library 16

9 Prior art 18

10 Discussion 19

11 Summary and conclusion 19

12 Acknowledgments 20

Bibliography 21

The value of a problem is not so much coming up with the answer as in
the ideas and attempted ideas it forces on the would-be solver.

— ISRAEL NATHAN HERSTEIN

1 Introduction

The well-known “new dragon book” [ASU86] presents a number of standard code improvement
transformations. Generally known as “optimizations,” these techniques are widely applicable
and are routinely carried out by most modern compilers. Such transformations include:

• common subexpression elimination,
• copy propagation,
• dead-code elimination,

1

mailto:wb@fnal.gov
mailto:paterno@fnal.gov

2 N1664: Toward Improved Optimization Opportunities in C++0X

• code motion,
• strength reduction,

and many more, singly and in combination. Other optimizations, such as those exploiting paral-
lel architectures, are equally well-known.

However, it has long been generally considered a much more difficult task to generate effi-
cient machine code for C++ programs than it is to generate high-performance code for programs
expressed in such programming languages as Fortran.1 This paper explores some of the reasons
for this comparative difficulty.

Our goal is to propose modest enhancements to the C++ core language that will permit C++
translators to produce code whose run-time performance is far more competitive.

2 Factors inhibiting optimizations

Informally, an optimization is safe if and only if the code transformations involved in perform-
ing the optimization cause no change to the program’s observable behavior. Unfortunately, it
can sometimes be effectively impossible for a C++ compiler to determine whether any particular
optimization can be safely applied in the context of a particular code fragment. In such cases,
the compiler must generally take a conservative approach and forego the optimization in favor of
preserving program correctness.

Two factors seem principally responsible for C++ compilers’ difficulty in evaluating optimiza-
tions’ applicability. Both aliasing and side effects prevent certain kinds of knowledge from cross-
ing a calling interface. While this paper will principally address issues due to side effects, im-
proved C++ code optimization opportunities are ultimately likely to involve both these factors.

2.1 Aliasing

The subject of considerable recent Committee discussion,2 aliasing “is a long-standing problem
both in compiler implementation . . . and in programming language theory” [Pie02, p. 170]. For
our present purposes, we are concerned with aliasing in the context of compiling a function that
takes any pointer or reference parameters:

1 // Listing 1
2 void f (int const & a, int & b) {
3 // ...
4 }

Suppose the compiled body of this function f could produce a performance benefit by copying
the value of a into a high-speed register. However, the compiler can’t always determine that such
a transformation will preserve the original semantics: a call to this function might, after all, take
the form f (x, x) . In such a case, the function’s parameters (a and b), although distinct in name,
both become aliases for a single underlying object, x . If so, it would be generally incorrect to
rely exclusively on a’s value (really x ’s value) as copied into a register whenever the function also
modified b (really modifying x).

Thus, without seeing the call, it is in the general case impossible to determine solely from a
function’s declaration and body whether all its arguments are distinct. The C99 restrict key-
word is intended to help with this aspect of optimization when pointer parameters are involved.

1 “Matching Fortran’s speed remains an unsolved problem. . . . For some problem domains, clever use of template
expressions can allow C++ libraries to . . . run faster than Fortran. However, for simple array crunching, Fortran is likely
to always be king. . . ” [Rob96].

2 See, for example, the extensive thread on the Committee reflector starting with [Sut04].

N1664: Toward Improved Optimization Opportunities in C++0X 3

Broadly speaking, the presence of restrict in a function parameter’s declaration provides
extra information regarding the client’s permitted use of the function. Such additional informa-
tion may then permit a compiler to discount aliasing and thus achieve additional opportunities
for improvement in the code generated for the function body.

In sum, aliasing as an inhibiting factor in code optimization arises due to a lack of information
regarding the arguments furnished to a function at a point of call. Given additional information
(e.g., restrict) regarding constraints on the client’s interface, the compiler may be able to
generate code to improve the function’s performance characteristics.

2.2 Side effects

We have shown that aliasing problems inhibit optimization of a function’s body (the “callee”)
because of a lack of information regarding the arguments furnished (by the “caller”) at a point
of call. In contrast, difficulties due to side effects inhibit optimizing the caller, due to a lack of
knowledge regarding the callee function’s behavior. In particular, it is in general unknown, at a
point of call, whether the called function will commit any relevant side effects.

Such information is traditionally available only by inspecting the body of the callee. Because
function inlining, by definition, makes function bodies visible at the point of call, compilers can
make better decisions regarding both local and global code improvement opportunities relative
to such a call site; such additional knowledge therefore contributes significantly toward the
improved code very often attributed to inlining technology.

Conversely, in the absence of inlining, a called function’s body is generally opaque to its
callers. Caller code improvement may therefore be inhibited by such lack of knowledge regarding
callee behavior, especially with respect to side effects. Consider, for example:

1 // Listing 2
2 int g(int f (int), int x) {
3 x * = 2;
4 return f (x) * f (x) * f (x);
5 }

If the function call f (x) is potentially expensive to evaluate, a compiler may choose a performance-
improving transformation such that g evaluates the call to f only once and caches its result for
subsequent use, as if the programmer had instead written:

1 // Listing 3
2 int g(int f (int), int x) {
3 x * = 2;
4 int __temp = f (x); return __temp * __temp * __temp ;
5 }

However, the correctness of such a transformation, whether performed by a programmer or
by a compiler, depends on certain assumptions regarding the behavior of g’s function parameter
f . Suppose, for example, we passed to g the following function:

1 // Listing 4
2 int f1 (int) {
3 static int x = 1
4 return x * = 2;
5 }

Clearly the two versions (caching vs. non-caching) of function g would produce different results
when called via g(f1 ,3) .

In contrast, a function such as:

4 N1664: Toward Improved Optimization Opportunities in C++0X

1 // Listing 5
2 int f2 (int x) {
3 return 16 * x + 8;
4 }

and supplied to g (e.g., as g(f2 ,3)) would be a perfect candidate to be evaluated once within g
and its cached value used in place of subsequent calls.

When functions such as f1 and f2 are inline d, compilers can and routinely do perform the
analysis required to determine applicability of this and even more sophisticated performance-
enhancing transformations. However, in the absence of such complete information as inlining
affords, compilers must be generally conservative in their application of even standard code
improvement techniques.

3 Function behaviors

We will use the term well-behaved to describe any free function or any member function that:

• communicates with client code solely via the function’s argument list and return value, and
• is incapable of side effects.3

Among its other characteristics, a well-behaved function exhibits results that are reproducible:
no matter how often such a function is called, its results will be identical so long as all values
obtained via its argument list remain unchanged.

In contrast, a function that is not well-behaved is said to be ill-behaved. An ill-behaved
function may violate the above strictures by permitting such behaviors as:

• relying on the value of an object outside its argument list,
• modifying the value of an object outside its argument list,
• throwing an exception without catching it,
• modifying and relying on the value of a local static variable,
• failing to return4, or
• calling any ill-behaved function.

The ability to discriminate between well- and ill-behaved functions seems very important for
the generation of high-performance code at and near a call site: If it can be determined at a point
of call that the callee is well-behaved (and thus that its results are reproducible), additional caller
optimizations may be applicable. Selected optimizations may be applicable even if a callee is ill-
behaved, but in such a case the safe application of optimizing code transformations generally
requires more detailed knowledge regarding callee behavior.

3.1 Free functions and static member functions

A well-behaved free function will exhibit the following characteristics and behaviors of interest,
as will a well-behaved static member function:

1. It takes arguments passed:

a) by value, or
b) by const indirection (e.g., by const reference or by pointer-to-const).

2. It uses a modifiable lvalue to refer to (any part of) an object only if that object:

3 “[S]ide effects . . . are changes in the state of the execution environment” [ISO03, clause 1.9 ¶7].
4 For example, by calling exit , terminate , or longjmp .

N1664: Toward Improved Optimization Opportunities in C++0X 5

a) is local to the function, and
b) has auto matic lifetime (storage class).

3. It uses either a non-modifiable lvalue or an rvalue to refer to (any part of) an object only if
that object is non-volatile and:

a) is an argument of the function, or
b) is local to the function and has auto matic lifetime, or
c) is local to the function and has static lifetime and is declared const .

4. It respects all const qualifications.
5. It permits no exceptions to escape.
6. It returns control to the point of invocation.
7. It calls other functions (or member functions; see below) only if such functions are likewise

well-behaved.

3.2 Non-static member functions

A well-behaved non-static member function shares the same characteristics and behaviors
exhibited by a well-behaved free function. In addition:

8. It is always declared const so that its invoking object is always passed by pointer-to-const
(i.e., this will always have a pointer-to-const type).

9. It respects all const qualifications, even in the presence of a mutable declaration.

4 Analysis of ill-behaved functions

We now explore the behaviors of functions that do not qualify as well-behaved. Derived from the
preceding chapter, we focus on the following categories of disqualifying behaviors that, singly or
in combination, prevent a function from being deemed well-behaved: updating, writing, reading,
or throwing.

A code-analysis tool (such as a compiler) can often ascertain the presence of these charac-
teristics by inspecting the body of each relevant function. As pointed out earlier, the result of
such inspection is potentially very valuable in the context of call site optimization opportunities,
as it can permit a compiler to generate better-performing code. However, such inspection need
not be conclusive: for example, a function that is ill-behaved only because it calls an ill-behaved
function can in general not be correctly classified in isolation from its callee.

4.1 Updating behavior

A function that takes arguments other than as permitted for a well-behaved function (e.g., ar-
guments declared volatile or passed by non-const indirection) is said to engage in or permit
updating behavior. It is updating behavior that subsumes traditional side effects, altering the
value of a function argument. Arguments passed by value are, of course, immune to updating,
as a callee function receives a copy and thus has no access to the actual argument.

Updating behavior has been long enshrined, for example, in both the C and C++ standard
libraries. Indeed, functions such as memcpy, scanf , qsort , and the C++ operator << and
operator >> overloads engage in updating behavior as their principal raisons d’être.

Modern compilers can determine, by inspecting a non-defining declaration of a callee, whether
that callee permits updating behavior. This assumes, of course, that the function abides by
its declaration and does not employ a const_cast or other means to circumvent the declared

6 N1664: Toward Improved Optimization Opportunities in C++0X

const ness of any argument. However, the remaining disqualifying behaviors are not similarly
discernible at a call site, under even the most favorable assumptions.

4.2 Writing behavior

A function that uses a modifiable lvalue in any manner other than as permitted for a well-behaved
function is said to engage in or permit writing behavior. Such writing behavior encompasses, for
example, side effects on non-local objects that are not part of the function’s argument list. The
following code is representative of such behavior:

1 // Listing 6
2 extern int z;
3 // ...
4 int f (int x) {
5 ++z; // writing
6 return 7 * x;
7 }

Numerous functions in both the C and C++ standard libraries have writing side effects by
design; examples include math functions (e.g., sqrt) that report errors by modifying errno . In
addition, there are standard functions (such as malloc , set_terminate , and operator new)
that modify system-level and/or extra-linguistic objects whose lifetimes are static or longer.

Objects that are targets of a function’s writing behavior are effectively a part of that function’s
interface. While they do not appear in the function’s declaration, they may be impacted each
time the function is called (and may, in turn, influence future behavior; see the description of
reading behavior, below).

Note that the scope of a target object’s name is not relevant for our purposes. Whether local
to the callee function or not, a target object is not necessarily visible at a point of call.

4.3 Reading behavior

A function that uses either a non-modifiable lvalue or an rvalue in any manner other than as
permitted for a well-behaved function is said to engage in reading behavior. The following code
is representative of this category of behavior:

1 // Listing 7
2 extern int z;
3 // ...
4 int g(int x) {
5 return z * x; // reading
6 }

Reading behaviors have long been generally considered a questionable programming practice,
(as are writing behaviors; see, for example, the classic [WS73]). They are nonetheless permitted
by C++ rules, and so compilers must be prepared to cope with them. Unfortunately, these behav-
iors are difficult or impossible to detect at a point of call, given only a non-defining declaration of
the callee function:

N1664: Toward Improved Optimization Opportunities in C++0X 7

1 // Listing 8
2 extern int z;
3 int g(int);
4 // ...
5 int h(int x) {
6 int result = 0;
7 for(int i = 0; i != 1000; ++ i)
8 result += ++z * g(x); // g’s result affected by reading z?
9 return result ;

10 }

Here, the mere possibility of a reading behavior in g can inhibit certain optimizing transforma-
tions in h; the (otherwise innocuous) call to g can’t be safely hoisted out of the loop and its result
cached, thus foregoing any performance benefit from using a single call in place of 1000 calls.

4.4 Throwing behavior

A function is said to engage in throwing behavior if it permits an exception to escape. Such
behavior is well-known as problematic in the context of calls to a class’s destructor.5 However,
throwing behavior is also problematic with respect to optimization opportunities:

1 // Listing 9
2 int f (int);
3 // ...
4 int h(int x) {
5 int i , result = 0;
6 while(cin >> i) {
7 try { result += i * f (x); }
8 catch (...) { cerr << " Skipped " << i << ’ \ n’ ; }
9 }

10 return result ;
11 }

Assuming f were known to give reproducible results6, careful optimization could today produce
code as if h had been written:

1 // Listing 10
2 int f (int);
3 // ...
4 int h(int x) {
5 int i , result = 0;
6 bool __first_time = true;
7 int __cached_value ;
8 while(cin >> i) {
9 if(__first_time) {

10 try { __cached_value = f (x); }
11 catch (...) { cerr << " Skipped " << i << ’ \ n’ ; }
12 __first_time = false;
13 }
14 result += i * __cached_value ;
15 }
16 return result ;
17 }

5 See, for example, [Sut00, Item 16].
6 Reproducibility includes not only the value returned, but also encompasses such side effects as throw n exceptions.

8 N1664: Toward Improved Optimization Opportunities in C++0X

However, were f further known not to engage in throwing behavior, the code generated near
the point of call could be further improved. Not only could the call itself be factored (hoisted)
completely out of the loop, but the catch clause could be recognized as unreachable (dead) code
and entirely eliminated:

1 // Listing 11
2 int f (int);
3 // ...
4 int h(int x) {
5 int i , result = 0;
6 int __cached_value = f (x);
7 while(cin >> i)
8 result += i * __cached_value ;
9 return result ;

10 }

5 Introduction to proposed solutions

In subsequent sections, we present two alternative proposals for addressing the above-articulated
problems that accompany ill-behaved functions. Each proposal allows the programmer, in the
context of a function’s declaration, the option to specify additional information about that func-
tion’s behavior. In turn, a compiler can:

1. validate and make use of such additional information while compiling the function’s body,
and

2. use such additional information at each of that function’s points of call to determine appli-
cability of additional optimizing transformations.

In the first proposal, a function declaration may indicate the function’s possible behaviors
with rather fine granularity. As appropriate to the function, the declaration may indicate, in any
combination:

1. that the function engages in writing behavior, naming each object in the set of objects to
which it may write;

2. that the function engages in reading behavior, naming each object in the set of objects
from which it may read; and

3. that the function engages in throwing behavior, naming the type of each exception it may
allow to escape.

In contrast, the second proposal allows much less granularity. A function’s declaration may
specify, in any combination as appropriate, only:

1. that the function does not allow any exception to escape, and/or
2. that the function does not engage in any reading, writing, or updating behavior.

The principal advantage of the first proposal is that its finer granularity may allow additional
opportunities for optimization. Many of the functions in <cmath > provide important examples,
since many set errno to indicate error status. If the declarations of these functions were modified
so as to detail their respective behaviors in this regard, compilers would likely find call site
optimization opportunities that they can not in general detect under the current standard. The
disadvantage is that the lists of objects and types can become very large, possibly so large as to
be unwieldy.

The advantage of the second proposal is that the declaration is much simpler and cleaner,
yet still seems to obtain most of the gains of the first proposal. However, many of the functions

N1664: Toward Improved Optimization Opportunities in C++0X 9

in the standard library can not be said to be well-behaved, because of such side effects as their
writing behavior toward errno . Because opportunities for call site optimization will not arise
when calling such functions, the second proposal will include additional features to address
such legacy circumstances.

6 Proposal 1

6.1 Overview

We propose that function declaration syntax, including member function declaration syntax, be
extended with three new qualifiers7, each optional, so as to permit declarations such as:

1 // Listing 12
2 int f (int) reading () writing () throwing ();

These new qualifiers have been selected to correspond to the function behaviors (a) that were
previously identified as bearing on call site optimization, yet (b) that are not generally deducible
from current function declarations. The qualifiers are thus intended to convey the extent to which
a declared function is well- or ill-formed, and so to provide a compiler with better information to
judge the efficacy of a call site’s potential optimizing code transformations. Since the qualifiers
are optional, when they are not used (e.g., in legacy code) there is no information beyond what
is available today; thus a compiler can make the same determinations as it would make today,
and so call site optimization is no worse than it is today.

The following additional examples will clarify the usage and intent of the proposed function
qualifiers. We first show the relationship between client code and library code in the context
of a function that exhibits writing behavior on a single nonlocal variable, and exhibits neither
reading nor throwing behavior:

1 // Listing 13
2 // client code:
3 #include <cerrno>
4 int f (int x) reading () writing (errno) throwing ();

6 // library code:
7 #include <cerrno>
8 int f (int x) reading () writing (errno) throwing () {
9 errno = 0;

10 return 7 * x;
11 }

The following example illustrates a function that exhibits only reading behavior:

1 // Listing 14
2 // client code:
3 extern int z;
4 int g(int x) reading (z) writing () throwing ();

6 // library code:
7 extern int z;
8 int g(int x) reading (z) writing () throwing () {
9 return z * x;

10 }

7 Specific keywords are, of course, open for discussion; suggestions are certainly welcomed.

10 N1664: Toward Improved Optimization Opportunities in C++0X

The next example presents a function that exhibits reading , writing , and throwing behav-
ior:

1 // Listing 15
2 // client code:
3 extern int z;
4 int f (int x) reading (z) writing (z) throwing (int);

6 // library code:
7 extern int z;
8 int f (int x) reading (z) writing (z) throwing (int) {
9 if (++ z) throw z;

10 return 7 * x;
11 }

A function that exhibits reading and/or writing behavior on a local static object poses an
interesting problem, since local names are not in the scope of any caller. As the next example
shows, we might reuse the keyword this to denote such localized activity:

1 // Listing 16
2 // client code:
3 int h(int x) reading (this) writing (this) throwing ();

5 // library code:
6 int h(int x) reading (this) writing (this) throwing () {
7 static int k = 0;
8 return ++ k * x;
9 }

Our last example in this section demonstrates a function that manipulates a device’s control
register. To indicate that a function engages in such behavior, we might reuse the keyword
register :

1 // Listing 17
2 // client code:
3 void go() reading (register) writing (register) throwing ();

5 // library code:
6 void go() reading (register) writing (register) throwing () {
7 typedef unsigned status_word ;
8 * static_cast< status_word * >(0 xFFFF7738) |= 1 u; // set "go" bit
9 }

6.2 Impact on the type system

We intend these new qualifiers to be part of the declared function’s type:

1 // Listing 18
2 typedef
3 int F(int) reading () writing () throwing ();
4 // ...
5 F * pf = &f ;

N1664: Toward Improved Optimization Opportunities in C++0X 11

1 // Listing 19
2 typedef
3 double Integrand (double) reading () writing () throwing ();
4 // ...
5 double integrate (Integrand f , double lbnd , double ubnd , double eps) {
6 // ... implementation which calls the Integrand function f
7 }

We intend, however, that these new qualifiers not be part of the function’s signature; i.e., that
this additional information not be used in overload resolution. This is because no comparable
information is part of a function call.

To maintain type safety, we must be careful when copying pointers-to-qualified-functions:

1 // Listing 20
2 typedef
3 int (* F)(int) reading () writing () throwing ();
4 typedef
5 int (* G)(int) reading () throwing ();
6 F fp = & ...;
7 G gp = & ...;
8 gp = fp ; // ok
9 fp = gp; // error

6.3 Impact on function compilation

An additional implication of the proposed syntax, if the programmer employs it, is the exposure of
a function’s complete interface. By this, we mean that a function declaration can make known all
the details of its behaviors: all non-local objects read and/or written, all local static objects read
and/or written, and all types thrown. As pointed out above, this information is of great relevance
and utility to a compiler in producing high-performance code at and near a call site. We intend
this information to be checked for consistency when compiling the function’s definition.

1 // Listing 21
2 extern int z;
3 // ...
4 int f (int x) reading () writing () throwing () {
5 ++z; // error; inconsistent with f ’s declaration
6 return 7 * x;
7 }

6.4 A throwing qualifier is not a throw -specification

Two important features of the proposed throwing qualifier distinguish it from the current throw -
specification:

• A throwing qualifier, unlike a throw -specification, is part of a function’s type.
• A throwing qualifier, unlike a throw -specification, is enforced by the compiler.

12 N1664: Toward Improved Optimization Opportunities in C++0X

1 // Listing 22
2 int f (int) throw() {
3 throw 2; // compiles; ultimately calls unexpected()
4 }

6 int g(int) throwing () {
7 throw 2; // fails to compile: inconsistent with g’s declaration
8 }

These differences in semantics alleviate the brittleness inherent in today’s throw -specifications.
In particular, unlike the current language, changing a called function so that it throw s a new
type of object will never lead to a run-time error. Rather, such a change will produce a compile-
time error when the caller is next recompiled, or a link-time error (induced by type mismatch) if
the caller has not been recompiled.

Further, because the throwing qualifier is part of a function’s type, current C++ rules will
permit overloading when such a type appears in the context of a parameter. In the following
example, cube () is overloaded based on the type of its first argument (and not based on its own
throwing qualifier):

1 // Listing 23
2 typedef
3 int might_throw (int);
4 typedef
5 int does_not_throw (int) throwing ();

7 int cube (might_throw f , int x) {
8 return f (x) * f (x) * f (x);
9 }

11 int cube (does_not_throw f , int x) throwing () {
12 return f (x) * f (x) * f (x);
13 }

6.5 Qualified blocks

As part of this Proposal 1, we also recommend the introduction of a new C++ core language con-
struct, tentatively known as a qualified-block. This recommendation is made largely to facilitate
coping with legacy code.

Today’s C++ has a mechanism, the try -block, that allows a function to trap the throwing
behavior of functions that it calls. However, we foresee the need for a comparable mechanism to
allow a function to adapt to ill-behavior on the part of other functions that it calls.

For example, many of the <cmath > functions, under certain conditions, carry out writing
behavior by setting errno . However, a client function may know (perhaps because it carries out
its own error-checking, or perhaps because of its underlying logic) that such writing behavior
will not occur for one or more particular calls. The otherwise well-behaved client function would
nonetheless be considered ill-formed if it called such a <cmath > function:

1 // Listing 24
2 float hypotenuse (float s1 , float s2) writing () {
3 return sqrt (s1 * s1 + s2 * s2); // error; sqrt writes to errno
4 }

N1664: Toward Improved Optimization Opportunities in C++0X 13

We therefore recommend introducing a new C++ construct, the qualified-block. Used at the
programmer’s discretion, a qualified-block asserts that the indicated behavior is local to the block
it qualifies:

1 // Listing 25
2 float hypotenuse (float s1 , float s2) reading () writing () {
3 writing (errno) {
4 return sqrt (s1 * s1 + s2 * s2);
5 }
6 }

This same function could even use a qualified-block in combination with a try -block to ensure
that it can be declared as well-behaved:

1 // Listing 26
2 float hypotenuse (float s1 , float s2) reading () writing () throwing () {
3 try {
4 writing (errno) {
5 return sqrt (s1 * s1 + s2 * s2);
6 }
7 }
8 catch(...) { }
9 }

We note that injudicious use of a qualified-block can lead to undefined behavior. For example,
via a qualified-block, a function that has side effects could be made to masquerade as well-
behaved and thus well-formed. A compiler, seeing only the function’s declaration, would likely
optimize the function’s call sites; any resulting behavior on the part of such an optimized caller
is therefore unpredictable.

7 Proposal 2

Unlike the fine granularity of the previous proposal, this second proposal considers only two
degrees of ill-behavior:

1. throwing behavior, and
2. (as a group) reading, writing, or updating behavior.

We will denote a function as nothrow if and only if it engages in no throwing behavior. Similarly,
we will denote a function as pure if and only if it engages in no reading, no writing, and no
updating behavior.

7.1 Overview

We propose that function declaration syntax, including member function declaration syntax, be
extended with two new qualifiers, each optional, so as to permit declarations such as:

1 // Listing 27
2 int f (int) pure nothrow ;

These qualifiers are intended to convey, in broad terms, the degree to which a declared function
is known to be well-formed.

Compilers today must typically assume, pessimistically, that called functions are ill-behaved.
The presence of either or both of these proposed qualifiers would thus permit future compilers to

14 N1664: Toward Improved Optimization Opportunities in C++0X

perform additional optimizing code transformations at call sites. In the qualifiers’ absence (e.g.,
in legacy code), call site optimizations will be limited to precisely those currently available.

7.2 Impact on the type system

As in Proposal 1, we intend these new qualifiers to be part of the declared function’s type:

1 // Listing 28
2 typedef
3 int F(int) pure nothrow ;
4 F * pf = &f ;

1 // Listing 29
2 typedef
3 double Integrand (double) pure nothrow ;
4 // ...
5 double integrate (Integrand f , double lbnd , double ubnd , double eps) {
6 // ... implementation which calls the Integrand function f
7 }

Also as in Proposal 1, we intend that these new qualifiers not be part of the function’s signature
and thus not impact overload resolution of functions to which they are applied.

As before, to maintain type safety, we must be careful when copying pointers-to-qualified-
functions. In addition to the requirements that [ISO03] already imposes on function pointer
assignments, we would deem any function pointer assignment ill-formed if:

• its target (left-hand) type is pointer-to-pure -qualified-function but its source (right-hand)
function pointer type is not pure -qualified, or

• its target function pointer type is pointer-to-nothrow -qualified-function but its source func-
tion pointer type is not nothrow -qualified.

Expressed another way, a function pointer assignment (or initialization) is well-formed if and
only if the underlying function type of the source pointer is at least as qualified as the underlying
function type of the target pointer.

Similarly, a virtual function in a derived class is well-formed, overriding the corresponding
function in its base class, only if the type of the derived class’s function is at least as qualified as
the type of the corresponding base class’s function. This rule follows directly from the preceding
rule governing the copying of pointers-to-qualified-functions, and can perhaps be most clearly
understood by considering vtable construction, in significant part, as a sequence of pointer-to-
function initializations.

7.3 Impact on function compilation

As before, we intend a function’s declared qualifiers to be checked for consistency when compiling
the function’s definition. A function that is declared nothrow is ill-formed if it engages in throwing
behavior. A function that is declared pure is ill-formed if it:

• engages in any reading behavior, or
• engages in any writing behavior, or
• engages in any updating behavior, or
• calls any function that is not declared pure .

As an optional part of this proposal, the semantics of the nothrow qualifier may be extended
such that a function declared nothrow would be deemed ill-formed if it failed to return control
to its calling client via normal flow of control.

N1664: Toward Improved Optimization Opportunities in C++0X 15

7.4 Distinguishing nothrow from throw()

A function declared with an empty throw -specification (i.e., throw()) shares one important char-
acteristic with a similar function declared with the proposed nothrow qualifier: neither function
will throw any exception that client code could catch . Nonetheless, there are significant techni-
cal differences between the two, leading to differences in compilation requirements and behavior.

In today’s C++, a function declared with an empty throw -specification must call unexpected ()
to deal with any exception the function is not itself prepared to catch . Such throwing behavior
is detected and dealt with at runtime, requiring that a compiler generate code accordingly. In
contrast, a function declared with the proposed nothrow qualifier is ill-formed if it engages in
throwing behavior, i.e., permits any exception to escape. Since such analysis is carried out at
compile time, a compiler need generate no exception-handling code at all for this circumstance.

Finally, a nothrow qualifier is part of a function’s type. In contrast, a throw -specification is
not. As pointed out during discussion of our Proposal 1, this affects overloading when a function
parameter has function type.

7.5 Traits

As part of this Proposal 2, we recommend the introduction of two new traits templates. Ten-
tatively named is_pure and is_nothrow , the presence of these traits in the core language will
permit metaprogramming technology to discriminates among functions (including member func-
tions) based on the presence or absence of the respective pure and nothrow qualifiers.

Such discrimination is desirable, since it may be possible to employ improved algorithms (and
thus obtain improved runtime performance) when it is known that certain dependent functions
have pure and/or nothrow characteristics. An example is sketched later in this paper.

7.6 pure -blocks

As part of this Proposal 2, we also recommend the introduction of a new C++ core language
construct, tentatively known as a pure -block. This recommendation is made to facilitate coping
with legacy code.

Today’s C++ has a mechanism, the try -block, that allows a function to trap the throwing
behavior of functions that it calls. However, we foresee the need for a comparable mechanism to
allow a function to adapt to impure behavior on the part of other functions that it calls.

For example, many of the <cmath > functions could not be declared pure because, under
certain conditions, they carry out writing behavior by setting errno . However, a client function
may know (perhaps because it carries out its own error-checking, or perhaps because of its
underlying logic) that such impure writing behavior will not occur for one or more particular
calls. The otherwise pure client function would nonetheless be considered ill-formed if it called
such a <cmath > function:

1 // Listing 30
2 float hypotenuse (float s1 , float s2) pure {
3 return sqrt (s1 * s1 + s2 * s2); // error; sqrt is not pure
4 }

We therefore recommend introducing a new C++ construct, the pure -block. A pure -block,
used at the programmer’s discretion, can permit a pure -qualified function to be deemed well-
formed even if its body does call a function that is not pure :

16 N1664: Toward Improved Optimization Opportunities in C++0X

1 // Listing 31
2 float hypotenuse (float s1 , float s2) pure {
3 pure {
4 return sqrt (s1 * s1 + s2 * s2);
5 }
6 }

This same function could even use pure -blocks in combination with try -blocks to ensure that it
can be declared as well-behaved:

1 // Listing 32
2 float hypotenuse (float s1 , float s2) pure nothrow {
3 try {
4 pure {
5 return sqrt (s1 * s1 + s2 * s2);
6 }
7 }
8 catch(...) { }
9 }

We note that injudicious use of a pure -block can lead to undefined behavior. A function
can be made to masquerade as pure , for example, even though it has side effects. A compiler,
seeing only the function’s declaration, would likely optimize the function’s call sites; any resulting
behavior on the part of such an optimized caller is therefore unpredictable.

8 Impact on the standard library

As an optional but desirable part of either proposal, we recommend that qualifiers (Proposal 1:
reading , writing , throwing ; Proposal 2: pure , nothrow) be applied as appropriate to the
declarations of all functions in the C++ standard library, including the C legacy functions. This
will permit standard compiler technology to optimize these functions’ call sites with no additional
effort by a programmer.

In some cases, additional design effort may be warranted. Consider, for example, vector <T, A>
in the context of our Proposal 2: it may be desirable to produce an implementation whose de-
structor is declared nothrow if and only if the destructors of both T and A were declared nothrow .

In today’s C++, this could be accomplished via an extra, bool , template parameter used as a
basis for specialization. The following code outline illustrates one such approach:

N1664: Toward Improved Optimization Opportunities in C++0X 17

1 // Listing 33
2 template< class T, class A = ...
3 , bool = is_nothrow <T::˜ T>:: value
4 && is_nothrow <A::˜ A>:: value
5 >
6 class vector { // general case: throwing
7 // ...
8 ˜ vector ();
9 // ...

10 };

12 template< class T, class A >
13 class vector <T, A,true> { // specialization: nothrow
14 // ...
15 ˜ vector () nothrow ;
16 // ...
17 };

This approach seems potentially unwieldy, since it would require a new specialization for
each combination of qualifiers. To avoid such combinatorial explosion of specializations, it might
instead be possible to specialize only selected member templates instead of specializing the entire
class template. However, this might necessitate reconsideration of today’s rule that “A destructor
shall not be a member template” [ISO03, clause 14.5.2 ¶2] in order to permit such code as:

1 // Listing 34
2 template< class T, class A >
3 class vector {
4 // ...
5 template< bool = is_nothrow <T::˜ T>:: value
6 && is_nothrow <A::˜ A>:: value
7 >
8 ˜ vector ();

10 template<>
11 ˜ vector <true>() nothrow ;
12 // ...
13 };

It is certainly undesirable to permit any class template to instantiate multiple destructors, likely
one important factor underlying today’s restriction as cited above. However, the above example
code seems not to violate this need, as any instantiation of vector <T, A> clearly produces exactly
one destructor.

A third alternative would permit direct dependence of one function’s qualifiers upon the qual-
ifiers of one or more other functions:

1 // Listing 35
2 template< class T, class A >
3 vector <T, A>:: iterator
4 vector <T, A>:: erase (iterator)
5 nothrow_if (is_nothrow <T::˜ T>:: value
6 && is_nothrow <T::operator== >:: value
7)
8 {
9 // ...

10 }

18 N1664: Toward Improved Optimization Opportunities in C++0X

In this example, nothrow_if (true) would be a construct that is synonymous with our previ-
ously proposed nothrow . While this seems to be a step forward in that it permits clear expression
of a function’s qualifiers, it does not address the more general situation in which one may wish
to implement a function via distinct algorithms, depending upon another function’s qualifiers.

Code such as shown above demonstrates the utility of the proposed is_nothrow trait. How-
ever, such effective use is predicated upon the ability to call upon the trait with an unambiguous
template argument. This is difficult when the desired argument, a specific function, is a member
of an overload set, for the function name alone merely identifies the set, and not any specific
function.

However, this situation is not new. For example, “The address of an overloaded function . . .
can be taken only in a context that uniquely determines which version of the overloaded func-
tion is referred to. . . ” [ISO03, clause 5.3.1 ¶5]. In that situation, among others, “The func-
tion selected is the one whose type matches the target type required in the context” [ISO03,
clause 13.4 ¶1]. Unfortunately, our traits provide insufficient “context” to apply such a solution.
A function’s complete signature (rather than merely its name) seems needed for disambiguation,
yet C++ precedent seems to have steered away from permitting its use in analogous circum-
stances. Therefore, this issue remains open for now.

9 Prior art

To our knowledge, at least two existing C++ compiler vendors provide implementations that en-
compass extensions substantively corresponding to our Proposal 2 above. The Metroworks and
gcc compilers each support the optional function attributes known as __attribute__ ((pure))
and __attribute__ ((nothrow)) .

Analysis of their semantics shows that these attributes closely approximate our proposed
pure and nothrow attributes, respectively. As described in [St04, §5.25: “Declaring Attributes
of Functions”] with respect to gcc, “The nothrow attribute is used to inform the compiler that
a function cannot throw an exception.” Similarly, “[functions that] have no effects except the
return value should be declared with the attribute pure .” It is our understanding that the
Metroworks versions share substantively identical intent and semantics.

This prior art, developed independently of this paper’s proposals, differs in one important
respect from our proposals herein: In the prior art, the extended attributes are considered as
advisory “hints” to the compiler, while our proposal would treat them as declarative (prescriptive)
requirements to be verified, with violations diagnosed, at compile-time. We believe the latter to be
a superior approach, as evidenced by the widespread lack of use of today’s throw -specification.
Nonetheless, it is our understanding that even these advisory qualifiers have successfully led
to improvements in generated code when consistently applied to a substantial portion of the
standard library.

It can be argued that the proposed attribute declarations are redundant in the sense that
whole-program interprocedural analysis can determine these properties. However, we believe
that such analysis is often not feasible and sometimes not possible. For example, pre-compiled
code, dynamically-linked libraries, and other time-sensitive compilation issues each provide chal-
lenges to the methods underlying interprocedural analysis.

We also understand, informally, that there has been some additional experimentation with
compiler extensions that are at least somewhat similar to our Proposal 1 above. However, we
are unable to offer further comment since the features are undocumented and the experimental
results are unpublished to date.

N1664: Toward Improved Optimization Opportunities in C++0X 19

10 Discussion

In several respects, adding our proposed qualifiers to a function’s declaration resembles adding
a const and/or a volatile qualifier to a variable’s declaration. Upon inspection, our proposed
rules for pointer-to-qualified-function assignment, for example, turn out to be a direct analog of
current rules for pointer-to-cv-qualified-object assignment.

The historical debate between declarations based on logical constness versus those based on
physical constness has analogs in our proposed contexts, too. For example, in our Proposal 2,
one can consider function declarations based on logical purity versus those based on physical
purity.

Consider a function that acquires, uses, and disposes of a resource: The following sketch
employs auto_ptr to manage a memory resource in this fashion:

1 // Listing 36
2 double f (...) pure {
3 auto_ptr <MyType> ap = new MyType(...);
4 // ... use * ap
5 }

The question, of course, is whether it is appropriate to declare such a function pure .

On the one hand, the function does preserve logical purity: after all, the acquired resource
is guaranteed proper disposition, and the net result is effectively invisible to client code. On
the other hand, the function may fail to preserve physical purity: depending on the algorithms
underlying operator new and operator delete , certain data structures may well differ in their
states before and after a call to such a function. This issue is important to resolve: both our
proposals would require a compiler to verify the qualified function declarations, yet verification
based on a logical view could conceivably give results that differ from those produced on the
basis of a physical perspective.

Similar considerations apply to resource management in general. However, there may be re-
sources so pervasive as to fall below the horizon. Devices (a floating-point processor, for example)
typically have control registers as well as status registers. A user setting a control register is al-
most certainly an instance of writing behavior. But should the device’s response (e.g., setting its
status register) be considered a side effect that affects a function’s declaration?

While we do not, in this paper, propose solutions to such issues, we respectfully recommend
that such matters be addressed in the context of whichever proposal is more favorably received.

11 Summary and conclusion

In this paper, we have analyzed the reasons for missed code improvement opportunities in the
context of C++ function calls. We have paid particular attention to the present state of affairs,
in which code improvements are often foregone because compilers have insufficient information
available at call sites to non-inlined functions.

We have also presented two distinct proposals for C++ core language extensions to address the
present situation. The proposals are similar in that each would add to a compiler’s knowledge
of the behavior of a called function, and would hence permit the compiler to apply that extra
knowledge for the purpose of improving the generated code.

The proposals differ in their respective levels of information granularity. The first proposal
provides highly detailed information that a compiler might exploit, but does so at the expense
of an equally detailed declarative syntax and (potentially) considerable effort by programmers to
exploit the syntax. The second proposal reflects a lower level of granularity, but still provides

20 N1664: Toward Improved Optimization Opportunities in C++0X

significantly improved optimization opportunities at a considerably lower cost to programmers.
In addition, our second proposal encompasses two additional function traits, as well as a new
construct, the pure -block, for programmer use.

Finally, we have described prior compiler art that substantively incorporates a significant
fraction of our second proposal. We also alluded to unpublished work that may provide prior art
analogous to our first proposal.

Of our two alternative proposals, we favor the second. We respectfully urge the C++ standards
body to consider our recommendations on a time scale consistent with that of the forthcoming
C++0X.

12 Acknowledgments

We would like to thank our Fermilab colleagues Mark Fischler and Jim Kowalkowski for the
helpful conversations that sparked the writing of this paper and that aided our development
of the ideas herein. We gained additional insights via discussions and/or correspondence with
Bob Campbell, Lois Goldthwaite, Howard Hinnant, Andreas Hommel, and Fred Peterson, and we
sincerely appreciate their significant and knowledgeable input.

We also thank the Fermi National Accelerator Laboratory’s Computing Division, sponsor of
our participation in the C++ standards effort, for its support.

N1664: Toward Improved Optimization Opportunities in C++0X 21

Bibliography

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, Reading, MA, USA, 1986. ISBN 0-201-10088-6. x + 796
pp. LCCN QA76.76.C65 A371 1986. Known as the “new dragon book”; see also its
predecessor [AU77].

[AU77] Alfred V. Aho and Jeffrey D. Ullman. Principles of Compiler Design. Addison-Wesley,
Reading, MA, USA, 1977. ISBN 0-201-00022-9. x + 604 pp. LCCN QA76.6 .A285 1977.
Known as the “dragon book”; see also the much expanded [ASU86].

[ISO03] Programming Languages — C++, International Standard ISO/IEC 14882:2003(E). Inter-
national Organization for Standardization, Geneva, Switzerland, 2003. 757 pp. Known
informally as C++03.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT Press, Cambridge, MA,
USA, 2002. ISBN 0-262-16209-1. x + 604 pp.

[Rob96] Arch D. Robison. C++ gets faster for scientific computing. Computers in Physics, 10:
458–462, 1996. A slightly updated version, dated March 7 1997, has been circulated
online.

[St04] Richard Stallman and the GCC Developer Community. Using the GNU compiler col-
lection (GCC). Online: http://gcc.gnu.org/onlinedocs/gcc-3.4.1/gcc/ , May 23
2004.

[Sut00] Herb Sutter. Exceptional C++: 47 Engineering Puzzles, Programming Problems, and So-
lutions. Addison-Wesley, Reading, MA, USA, 2000. ISBN 0-201-61562-2. xiii + 208 pp.
LCCN QA76.73.C153.S88 1999.

[Sut04] Herb Sutter. restrict in C++. C++ extensions reflector message c++std-ext-6735, Febru-
ary 17 2004.

[WS73] W[illiam] Wulf and Mary Shaw. Global variables considered harmful. ACM SIGPLAN
Notices, 8(2):28–34, February 1973.

http://gcc.gnu.org/onlinedocs/gcc-3.4.1/gcc/

	1 Introduction
	2 Factors inhibiting optimizations
	3 Function behaviors
	4 Analysis of ill-behaved functions
	5 Introduction to proposed solutions
	6 Proposal 1
	7 Proposal 2
	8 Impact on the standard library
	9 Prior art
	10 Discussion
	11 Summary and conclusion
	12 Acknowledgments
	Bibliography

