
Document Numbers: J16/97-0103

WG21/N1141

Date: November 13, 1997
Reply To: Bill Gibbons

bill@gibbons.org

Working Paper Changes for Core-III
(see also J16/97-0101 aka N1139)

Core issue 765

Allow the template keyword in all contexts specified by the text of the working paper.

old:(§5.1)
nested-name-specifier:

class-or-namespace-name:: nested-name-specifieropt

new:
nested-name-specifier:

class-or-namespace-name:: nested-name-specifieropt

class-or-namespace-name:: template nested-name-specifier

old: (§7.1.5.2)
simple-type-specifier:

::opt nested-name-specifieropt type-name
char
...

new:
simple-type-specifier:

::opt nested-name-specifieropt type-name
::opt nested-name-specifiertemplate template-id

char
...

old: (§7.1.5.3)
elaborated-type-specifier:

class-key::opt nested-name-specifieropt identifier
enum ::opt nested-name-specifieropt identifier
typename ::opt nested-name-specifier identifier

typename ::opt nested-name-specifier identifier< template-argument-list>

new:
elaborated-type-specifier:

class-key::opt nested-name-specifieropt identifier
enum ::opt nested-name-specifieropt identifier

typename ::opt nested-name-specifier identifier
typename ::opt nested-name-specifiertemplateopt template-id

old: (§5.2.4)
pseudo-destructor-name:

J16/97-0103 WG21/N1141 Page 1

::opt nested-name-specifieropt type-name:: ~ type-name
::opt nested-name-specifieropt ~ type-name

new:
pseudo-destructor-name:

::opt nested-name-specifieropt type-name:: ~ type-name
::opt nested-name-specifiertemplate template-id:: ~ type-name
::opt nested-name-specifieropt ~ type-name

Core issue 882

Allow the typename keyword in a “constructor call”.

old: (§5.2)
postfix-expression:

primary-expression
postfix-expression[expression]
postfix-expression(expression-listopt)
simple-type-specifier(expression-listopt)
postfix-expression. templateopt id-expression

...
new:

postfix-expression:
primary-expression
postfix-expression[expression]
postfix-expression(expression-listopt)
simple-type-specifier(expression-listopt)
typename ::opt nested-name-specifier identifier(expression-listopt)

typename ::opt nested-name-specifiertemplateopt template-id(expression-listopt)
postfix-expression. templateopt id-expression
...

Core issue 856

Make it clear that an implementation may supply extended type information.

old: (§5.2.8)
The result of a typeid expression is an lvalue of type const std::type_info (_lib.type.info_).

new:
The result of a typeid expression is an lvalue of type const std::type_info (_lib.type.info_)
or const name where nameis an implementation-defined class derived from std::type_info
which preserves the behavior described in _lib.type.info_.

Footnote: The recommended name for such a class is extended_type_info .

Page 2 J16/97-0103 WG21/1141

Core issue 859

Fix the description of reinterpret_cast of a pointer to member function.

old: (§5.2.10)
Calling a member function through a pointer to member that represents a
function type (_dcl.fct_) that differs from the function type specified
on the member function definition results in undefined behavior,
except when calling a virtual function whose function type differs from
the function type of the pointer to member only as permitted by the rules for
overriding virtual functions (_class.virtual_).

new:
Calling a member function through a pointer to member that represents a
function type (_dcl.fct_) that differs from the function type specified
in the original member function declaration from which the pointer to
member was formed (prior to any reinterpret_cast)
results in undefined behavior.

Core issue 908

Fix grammar to allow class template specializations.

old: (§9)
class-head:

class-keyidentifieropt base-clauseopt

class-keynested-name-specifier identifierbase-clauseopt

new:
class-head:

class-keyidentifieropt base-clauseopt

class-keynested-name-specifier identifierbase-clauseopt

class-keynested-name-specifieropt template-idbase-clauseopt

Core issue 781

Remove the accidentally added restriction on class template default arguments.

old: (§14.1)
The set of default template-arguments
available for use with a template in a translation unit shall only be provided
by the first declaration of the template in that translation unit.

new:
The set of default arguments
available for use with a function template in a translation unit shall only be provided
by the first declaration of the template in that translation unit.

J16/97-0103 WG21/N1141 Page 3

Core issue 905

Clarify that template template parameters never match partial specializations.

old: (§14.3.3)
A template-argument for a template template-parameter
shall be the name of class template, expressed as id-expression.

Any partial specializations (_temp.class.spec_) associated with the class template
are considered when a specialization based on the template

new:
A template-argument for a template template-parameter
shall be the name of class template, expressed as id-expression.

Only primary class templates are considered when matching the template template
argument with the corresponding parameter; partial specializations are not
considered even if their parameter lists match that of the template template
argument.

Any partial specializations (_temp.class.spec_) associated with the primary class template
are considered when a specialization based on the template

Core issue 906

Clarify handling of member template conversion functions.

old: (§14.5.2)
If more than one conversion template can produce the required type,
the partial ordering rules (_temp.func.order_) are used to select the
“most specialized” version of the template that can produce the
required type.
As with other conversion functions, the type of the implicit this
parameter is not considered.
[Note: members
of base classes are considered equally with members of the derived
class, except that a derived class conversion function hides a base
class conversion function that converts to the same type.]

new:
Overload resolution (_over.ics.rank_) and partial ordering
(_temp.func.order_) are used to select the best conversion function
among multiple template conversion functions and/or non-template
conversion functions.

Page 4 J16/97-0103 WG21/1141

Core issue 927

Clarify where friend templates may be defined.

old: (§14.5.3)
A friend template may be declared within a non-template class.
A friend function template may be defined within a non-template class.
In these cases, all specializations of the class or function template
are friends of the class granting friendship.
...
When a function is defined in a friend function declaration in a class
template, the function is defined when the class template is first instantiated.
The function is defined even if it is never used.

new:
A friend template may be declared within a class or class template.
A friend function template may be defined within a class or class
template, but a friend class template may not be defined in a class
or class template.
In these cases, all specializations of the friend class or friend function
template are friends of the class or class template granting friendship.
...
When a function is defined in a friend function declaration in a class
template, the function is defined at each instantiation of the class
template.
The function is defined even if it is never used.
The same restrictions on multiple declarations and definitions which apply
to non-template function declarations and definitions also apply to these
implicit definitions.

Editorial box #9 issue

Specify how template template parameters are handled when determining the partial ordering of two templates.

Additional text:

For each template template parameter, synthesize a unique class template and
substitute that for each occurrence of that parameter in the
function parameter list,
or for a template conversion function, in the return type.

J16/97-0103 WG21/N1141 Page 5

Core issue 909

Clarify the use of a partial specialization name within the definition.

old: (§14.6.1)
Within the scope of a class template specialization, when the name of the
template is neither qualified nor followed by <,
it is equivalent to the name of the template
followed by the template-argument s enclosed in <> .

new:
Within the scope of a class template specialization or partial specialization,
when the name of the
template is neither qualified nor followed by <,
it is equivalent to the name of the template
followed by the template-argument s enclosed in <> .

Core issues 910 and 928

Clarify the effect of implicit instantiation of a class template on its members.

old: (§14.7.1)
The implicit instantiation of a class template specialization does not cause
the implicit instantiation of the definitions of the class member functions,
member classes, static data members or member templates.

new:
The implicit instantiation of a class template specialization causes
the implicit instantiation of the declarations, but not the definitions or
default arguments, of the class member functions,
member classes, static data members and member templates; and it causes the
implicit instantiation of the definition of member anonymous unions.

Page 6 J16/97-0103 WG21/1141

Core issue 912

Add missing type deduction forms for pointers to members.

old: (§14.8.2.4)
type(*)(T)
T(*)()
T(*)(T)
typeT::*
T type::*
T (type::*)()
type(T::*)()
type(type::*)(T)
type[i]

new:
type(*)(T)
T(*)()
T(*)(T)
T type::*
typeT::*
T T::*
T (type::*)()
type(T::*)()
type(type::*)(T)
type(T::*)(T)
T (type::*)(T)
T (T::*)()
T (T::*)(T)
type[i]

J16/97-0103 WG21/N1141 Page 7

Other

Fix the description of the “specialization would have been used if in scope” error to say that no diagnostic is required.

old:(§14.7.3)
If a template is partially specialized then that partial specialization shall be
declared before the first use of that partial specialization that would cause an
implicit instantiation to take place, in every translation unit in which such a
use occurs.

new:
If a template is partially specialized then that partial specialization shall be
declared before the first use of that partial specialization that would cause an
implicit instantiation to take place, in every translation unit in which such a
use occurs; no diagnostic is required.

old: (§14.5.4)
If a template, a member template or the member of a class template is explicitly
specialized then that specialization shall be declared before the first use of
that specialization that would cause an implicit instantiation to take place,
in every translation unit in which such a use occurs.

new:
If a template, a member template or the member of a class template is explicitly
specialized then that specialization shall be declared before the first use of
that specialization that would cause an implicit instantiation to take place,
in every translation unit in which such a use occurs;
no diagnostic is required.

Page 8 J16/97-0103 WG21/1141

