
The Problem with Default Arguments for Templates

Bjarne Stroustrup

AT&T

ABSTRACT

The semantics of default arguments of template functions doesn’t allow the standard
library to work as intented. This note explains the problem and points to a solution.

From a programmer’s perspective, I rate this problem the most serious in the current doc-
ument (of the problems in C++ language and the standard library that we have any hope
of addressing now).

1 The Technical Problem

Consider the following example:

class<template T> Container {
public:

Container(size_t n, T def_val = T()); // n elements with value def_val
// ...

};

Container<string> cs(10); // default value: string()
Container<string> cs2(10,"411"); // default value: string("411")

The Container has a constructor that allocatesn elements and initializes these elements to a default
value. By default, that value is the element type’s default value. If that value is not suitable, the user can
supply a different one.

Now consider a more interesting case:

class Point {
int x, y;

public:
Point(int xx, int yy) : x(xx), y(yy) { }
// ... no default constructor ...

}

Container<Point> cp(10); // error: no default Point()
Container<Point> cp2(19,Point(0,0)); // error: no default Point()

Unfortunately, the WP does not allow this last example. The problem is that a default argument is type
checked when its declaration is seen. Thus, when the declaration forContainer<Point> is generated,
the declaration

Container<Point>::Container(size_t n, Point def_val = Point());

is generated, checked, and fails becausePoint() is an error.
This is a serious problem. Not accepting the definition ofcp2 makesContainer unusable for

objects of a type without default constructors, and the designer ofContainer should not impose unrea-
sonable constraints on element types. Indeed, the writer of a library is rarely in the position to impose any
but the most minimal constraints on element types developed elsewhere. For many types (for example,
Point above, iostreams, and handles), default arguments make little sense. Sometimes, an arbitrary



- 2 -

default argument can be a source of errors because it removes the compiler’s opportunity to catch a missing
or unsuitable initializer. If anything, classes without default constructors ought to be more common than
they are today.

This problem is not restricted to constructors. For example, the standard library uses default arguments
for assign() , insert() , andresize() .

The problem is not restricted to the standard library. Default arguments are the basis for common pro-
gramming techniques and a common way of specifying interfaces. With the current semantics these tech-
niques does not carry over to templates.

2 The Magnitude of the Problem

A default argument can be seen as collapsing two (overloaded) functions into one. For example:

int f(int i);
int f() { return f(0); }

can be seen asalmostthe same as:

int f(int i = 0);

However, it is more than that. By writing:

int f(int i = 0);

we state that there really is just one function, and we specify the meaning of a callf() to bef(0) . Had
we used two functions, this commonality of semantics would have been disguised and there would have
been two functions to maintain. In other words, when using overloading functions, we specify less about
the intented semantics than we do using a default argument in the interface. My experience makes me less
than confident that the two functions would retain the intended degree of commonality after a few rounds of
maintenance.

The difference between two overloaded functions and one function with a default argument can be
observed by taking a pointer to function.

Thus, I consider some uses of default argument good programming (sound software engineering, if you
prefer) and not having that facility available for templates would be a loss. It would be a loss even for peo-
ple who don’t use templates because it would be hard to recommend a technique for functions that does not
extend cleanly to template functions.

There is about 51 distinct uses of default arguments of template functions in the standard library. About
8 of those are for functions that are not constructors. Beman Dawes has the exact count. As written, the
specification of the standard C++ library is not written in C++. This must be resolved somehow.

Fixing the library (however done) solves the problem for a single (but important) case only. Given the
popularity of default arguments, the problem will recur daily for years to come.

3 The Solution

The obvious solution is to check the type of a default argument to a template function only if it is used.
This is the requirement for template member function bodies (as specified in even the first proposal for
templates in 1988).

This is also the requirement for the return type ofoperator->() . Originally, as for default argu-
ments, we adopted the rules for classes for class templates unchanged. Experience then showed that early
checking made it unnecessarily hard to write generic classes. For example, providing-> for smart pointer
classes would not be possible without this relaxation of the rules foroperator->() :



- 3 -

template<class T> class Itor {
T* p;

public:
T* operator->() { return p; }
// ...

};

struct S { int m; };

void f(Itor<int> pi, Itor<S> ps)
{

ps->m = 7; // fine
*pi = 2; // fine, note: pi-> isn’t used

}

Under the rules for classes, the return type ofoperator->() has to be a something to which-> can be
applied. We relaxed this rule for templates that so that the return type is checked only ifoperator->()
is actually used.

Generally, for both C and C++, we try to give errors for actual errors only (rather than for potential
ones). A C example is that we are not required to define an declared function that hasn’t been called or had
its address taken.

As everyone who attended the Nashua meeting and anyone who has dealt with templates semantics
knows, even this minor change is non-trivial. There aren’t any trivial changes at this stage of the proceed-
ings. It is, however, still minor compared to many other things we have done, and I have no doubt that we
can do it well if we set our minds to it. At least one widely-used C++ compiler already implements the
intented semantics (or something close to that) rather than the semantics specified in the WP.

4 The Workarounds

In the absence of a solution to the general problem, the standard library must be fixed. I do not consider it
acceptable to have the C++ standard library specified using declarations that are not C++. In other words, a
statement to the effect that ‘‘use of a default argument in the standard library specification really means that
two functions are declared’’ is not a suitable technique for specifying the library.

4.1 Adding Overloads
To eliminate default arguments for template functions in the standard library, we have to add about 60 func-
tions. Each function needs a declaration and a specification of its semantics. This implies a minimum of
120 distinct changes scattered over the container, string, and numerics clauses. The minimum number of
lines will be on the order of 180 plus blank lines (one declaration plus two lines of semantics per default
argument). In a sense we are lucky; had we used default arguments systematically (as I guess we ought to
have done), the algorithms clause would have been somewhat shorter and essentially every algorithm
would have been affected.

These changes are systematic (just replace every default argument with a function overload), but they
are not pretty. For example, without default arguments, the constructors formap takes a whole page to
declare that way (looking at the SGI implementation).

I do not consider this rewrite an acceptable solution, so I will not dig deep into obscure technical prob-
lems. However, please note that adding function overloads does change the set of well-formed programs
and silently changes the meaning of some programs that would be well-formed either way:

[1] Adding overloads change the way you can/cannot take pointers to functions.
[2] Moving a call into the body of an overload changes the point of instantiation beyond even the first

use of what used to be a default argument. This opens the possibility for different name bindings.

4.2 Rewriting the Default:
It was considered to rewrite default arguments like this:



- 4 -

class <template T> T def_fct() { return T(); }

class<template T> Container {
public:

Container(size_t n, T def_val = def_fct<T>());
// ...

};

This apparently solves the problem by postponing the checking ofT() until def_fct<T>() is used.
After all, template class member functions are not analyzed unless used– exactly to avoid requiring every
template argument to provide the same set of operations. Surprisingly, this is not supported by the current
WP text:

Container<Point> cp; // error: no default T()
Container<Point> cp2(Point(0,0)); // error: no default T(),

// a declaration of a default
// argument is considered a use

We ought to fix the definition ofuseso that a call of a function in a default argument of a template function
isn’t considered a use unless that default argument is used. However, doing so in a general fashion will
make the curiousdef_fct() unnecessary by allowing the originalT() .

Note that this workaround solves the problem only for default arguments that are default values of a
template parameter type. Note every occurrence of the problem in the standard library is of this form. In
general, many default arguments are not of this form. Requiring circumlocution would add yet another
arcane technique to the list of required knowledge of C++ programmers and another burden on teachers.

5 Could we Ignore the Problem?

So what if the standard containers doesn’t work with types without default constructors? Then people
would have to:

[1] add default constructors (where possible) and thereby limit checking of proper initialization, or
[2] use containers of pointers and thereby increase the amount of free store use, or
[3] avoid the standard containers in favor of some non-standard alternative.

My guess is that
[1] people will add default arguments and their users will get burned, and
[2] this will lead to a burst of pundits explaining the pitfall and deem default arguments fundamentally

flawed, and
[3] people will try to add default constructors to every class to make them acceptable as template argu-

ment types.
The net effect will be yet another useless debate over an individual language feature that will divert
people’s attention from major programming issues. The ‘‘myths’’ that will inevitable arise from this will
confuse people for years and make them nervous. Yet, this will not stop people writing interfaces using
default arguments and thereby getting caught by template argument types without default constructors the
way the designers of the standard library were.

I don’t consider this acceptable, and I note that this will happen even if we ‘‘fix’’ the standard library
but leave the language unchanged.

6 How Did We Get Into This Mess?

The library was designed based on the assumption that a default argument of a template was checked only
if it was used. I was there, and examples like theContainer<Point> one were presented and assumed
to work.

What happened was that we did not review the general language rules systematically enough when tem-
plates were added. When designing templates, I spotted the general problem– the rule delaying checking
the definitions of used function only reflects that. However, the problem with the return type of operator
-> , and the problem with default arguments took experience to spot.

Once discovered, no action was taken because:
[1] Some people considered the problem unimportant. The extreme version of this argument is ‘‘I don’t



- 5 -

like default arguments anyway,’’ but several people simply didn’t connect the rule about default
arguments with the standard library and general programming techniques.

[2] Some people spotted the problem and its relationship to the standard library and thought it obvious
that the necessary language change would be made to make the library work as specified.

[3] Some people saw the problem but considered it obvious that the standard library should be changed
to fit the language (rather than the other way around).

Basically, everybody thought it was a minor problem that somebody else would easily fix until it is now
almost too late to do anything. My impression is that few people (if any) appreciated the whole problems
and therefore underestimated it.

The problem was only recently discovered when the WP was clarified so that the wording in section on
function arguments was for the first time explicitly related to templates. My guess is that had we spotted
the general problem at the time of ‘‘the clarification,’’ the clarification would have been to require checking
only if used.

7 The Political Problem

From a technical standpoint, a change to the language along the lines presented in §2 is the obviously cor-
rect approach to dealing with the default argument problem. Checking default arguments to templates only
if used has no negative effects for users. However, this is very late in the standards process.

A change to the standard library will be larger than a change to the language in terms of number of WP
lines added and the number of different places touched. However, it ought to be a logically simple change.
On the other hand, fixing the standard library simply leaves the problem for users to face in the future. The
standard library is an important part of the C++ world but it is only a minute part of the total set of inter-
faces people design and use.

CD1 and all WPs after that specified the library using default arguments. That represents a promise to
users. Secondary documentation based on existing versions of the WP exists and will continue to exist for
years to come. This argues against a change to the library because such a change would be much more
widespread and prominent than a change to the language making the library definitions valid as written.

8 The Suggested Resolution

Express the rule ‘‘a default argument to a template function is checked only if used’’ in proper standardese
in the document we hope to vote out as CD2 in London.

Martin O’Riordan (Ireland) and Erwin Unruh (Germany) did a first cut of this in Nashua (X97-
0024R1,N1062R1), and Martin volunteered to work on this further before London.


