Doc. No.: J16/97-0023

WG21/N1061
Date: March 11, 1997
Project: PL C++

Ref. Doc.: 96/0174 = N0992

Reply to: William M. Miller
wmm@ziplink.net

Defining Conformance, Rev. 1
l. History and Overview

The referenced paper, 96/0174 = NO9@&ntifies two major flaws inthe current
presentation of the conformano®del for C+Hmplementations angrograms. First, the
existingtext isinconsistent and self-contradictory. Secanghlementationsare required
to “accept and correctly execute” progratimest have certaikinds oferrors, even if those
errors could be detected ampile time, and even if some thiose errorsnay make it
extremely difficult for some implementations to create an executable image.

Because | felthe root of the problemslay inthe complexity ofthe specification, with
competing taxonomies of rules and progrtext, the paper proposed fandamental
simplification, with a singleset of categories for theles of the standard, for program
text, and for the requirements on implementations. When this was discutbs=daataii
meeting, some people feltat it wastoo extensive a change to consider at this date
and some had issues with the specific categories | was proposing.

As a result of theliscussion in Hawaii and subsequent discussionthlCore | working
group, | haveeome up with a narrower proposal (presented beld®am 1) thatesolves
the specific problems identified in my earlipaper without requiring a complete new
framework for the conformanapecification. As a separable issthes discussion also
revealed a desire on tipart of the Core working group tomodify the definitions of
well-formed and ill-formed better to reflect their intuitivaneanings; thisproposal,
presented below in Part 2, is not required, in my opinion, to addretsmental flaws but
would be an improvement over the current draft.

Il. Part 1: Resolving Inconsistencies and Excessive Restrictions

The problems identified in sectiolsA. and I1.B. of the earlier paper can be addressed by
a relativelystraightforward rewriting obnly subclausel.3. Thebasic changes in the
rewrite are:

* Recognize that some syntactic errorsmxdbrequire diagnostics, either because
they areexplicitly so described or because they are described as resulting in
undefined behavior.

» Decouple the requirement tssue a diagnostic frothe various taxonomies
(compile-time versus runtimerrors,well-formed versus ill-formegrograms)
and simply require that violations of diagnosable rules result in a diagnostic.

» Decouple the requirement to accept and correctly execute programs from the
various taxonomies and simply requitkat implementationsaccept and
correctly execute programs that contain no errors.

The specificproposal is to delete 1.315 and replace the first three paragrapBsaath
the following text:

The set of “diagnosable rules” consists all syntactic and semantic rules in this
International Standard except for those rudestaining an explicit notatiothat
“no diagnostic is required” owhich are described as resulting “umdefined
behavior.”

Although this International Standardtates only requirements on C++
implementationsthose requirements are often easier to understatieeyf are
phrased as requirements on programs, parts of programs, or execution of
programs. Such requirements have the following meaning:

Every conforming C++ implementatiahall, within itsresourcdimits, accept and
correctly execut@Footnote: “Correct execution” camclude undefined behavior,
depending on the data being processed; see 1.4 ardeh@ footnotethose C++
programs thatontain no violations of the rulestinis International Standard and
shall issue aleast one diagnostic message when presentecamgtprogram that
contains a violation of any diagnosable rule. If a program contains a violation of a
rule for which no diagnostic isequired, this International Standard places no
requirement on implementations with respect to that program.

lll. Part 2: Refining “well-formed” and “ill-formed”

The consensus among tere | working group was that th@e-Hawaii definition of
“well-formed” and “ill-formed” from1.3 (as opposed to the one in 1.4) was closer to the
intuitive meaning of those terms:

Whenever this Internationgtandard places a requirement on the form of a
program (that is, the characters, tokens, syntactic elements, and types that make up
the program), and a program doest meet thatequirement, the programils
formed...

Thatis, a well-formed program contains campile-time or link-timesrrors;anyerrors in
a well-formed progranare only those thatexhibit incorrect orundefined behavior at
runtime. Although this issue is of less importance than resdli@mconsistencies and
excessive restrictions addressedPart 1, wefeel that thefollowing changesvould be
desirable:

* Replace the definition of “well-formed program” in 1.4 to read,

A C++ program constructed according to the syntacticsentantic rules
of this Standard.

* Rephrase each compile-time lotk-time error that iscurrently described as
resulting in undefined behavior to indicate instded it renders a prograitk
formed but with no diagnostic required:

[Note: The following table is intended to be an exhaustive list of all such errors. If
additional such errors exist, or if any of these are incorrectly categorized, please let me
know. — wmm]

Reference = Summary description

21171 UCN resulting from line splicing

2.191 Source file ending without newline

2111 UCN resulting from character concatenation

2.492 Unterminated string or character literal

2.812 Invalid characters in header names

2.13.213 Undefined escape sequence

2.13.493 Concatenation of narrow and wide string literals

3.295 ODR violation

594 Side effects depending on order of evaluation of subexpressions

5.2.2M7 Non-POD type passed to ellipsis

5.3.194 Address taken of object with incomplete type whose completedipes
operator &()

5.3.595 delete pointer to incomplete type whose complete type ragrivial

destructor or deallocation function
14.6.4.291 Different results of overload resolution considering complete namespace

14.7.1912 Infinite recursion during instantiation

16.174 Generated or unsyntactlefined operator inconditional compilation
directive

16.294 Unsyntactic header nameéfinclude

16.393 Missing macro argument

16.313 Preprocessing directive as macro argument

16.3.292 Invalid string resulting from stringizirdggperator)

16.3.313 Invalid preprocessing token resulting from concaten&tioogerator)

16.493 Line number 0 or >32767#hne directive

16.495 Unsyntactigline directive

16.893 Application offdefine or#undef to predefined macro aefined

