
Generalized Pointer Types for Allocators J16/97-0009 = WG21/N1047
Greg Colvin. Information Management Research.

I propose here a set of requirements for generalized pointer types. These are not the only
possible requirements, but I believe them to be reasonable, consistent with existing
practice, implementable by allocators, and usable by containers.

Changes to 20.1.5 [lib.allocator.requirements]

In the table "Descriptive variable definitions", change the definition of variable u and
define a variable v, as follows:

u a value of type Y::pointer obtained by calling Y::allocate , or else 0. |
v a value of type Y::const_pointer obtained by conversion from a value u.

In the table "Allocator requirements", replace the reference to u with v, change the
requirements for construct and destroy, and add requirements for assignment and copy
construction as follows:

a.allocate(n,v) |
a.construct(p,t) (not used) Post: *p == T(t) |
a.destroy(p) (not used) Effect: p->~T() |
u = p Y::pointer Pre: T* can be implicitly converted to U*

Post: u == p
v = p Y::const_pointer Pre: T* can be implicitly converted to U*

Post: v == p
v = q Y::const_pointer Pre: T* can be implicitly converted to U*

Post: v == q
Y::pointer w(p); Pre: T* can be implicitly converted to U*

Post: w == p
Y::const_pointer x(p); Pre: T* can be implicitly converted to U*

Post: x == p
Y::const_pointer x(q); Pre: T* can be implicitly converted to U*

Post: x == q

Replace paragraphs 4 and 5 with the following sentence:
The semantics of containers and algorithms when allocator instances compare non-equal, are
implementation defined.

I would much prefer the stronger requirement, and existing practice, that the complexity
of operations involving non-equal allocator instances be linear, but that requirement is
controversial, and would require changes to every swap and splice operation in the draft.

Changes to 21.3.1 [lib.string.cons]

Append the following sentence to paragraph 1:
The Allocator argument must meet the further requirement that the typedef members pointer ,
const_pointer , size_type , and difference_type be charT* , const charT* ,
size_t , and ptrdiff_t , respectively.

Changes not made

The draft, in 20.1.5, requires the result of Allocator::allocate to be a random access
iterator; I see no need for further requirements on Allocator::pointer semantics. If such
need is demonstrated then I expect it will be iterators that require tighter specification.
Neither have I attempted to generalize reference types, given the impossiblity of defining a
member access operator, and given the definition in 24.1.1 of iterator member access in
terms of reference member access.

