
X3J16/96-0085

WG21/N0903

Exception-Speci�cations of Implicitly Declared Functions

R. Michael Anderson

Edison Design Group

rma@edg.com

March 29, 1996

The Issue

When a constructor, destructor, or copy assignment operator is implicitly declared, what is its

exception-speci�cation? For example,

struct A { A() throw(X); }

struct B { B() throw(X,Y); };

struct D : public A, public B { };

Here the default constructor D::D() will be implicitly declared | but the Working Paper does

not specify what its exception-speci�cation should be. Several possibilities have been mentioned

on the re
ector:

1. There should be no exception-speci�cation | the generated function will throw anything.

) implicit declaration is: D::D();

2. The exception-speci�cation is the union of the exception-speci�cations of corresponding func-

tions of base classes and members.

) implicit declaration is: D::D() throw(X,Y);

3. The exception-speci�cation is the intersection of the exception-speci�cations of corresponding

functions of base classes and members.

) implicit declaration is: D::D() throw(X);

4. The exception-speci�cation will throw nothing.

) implicit declaration is: D::D() throw();

A Solution

The suggestion that makes most sense to me is option 2. In other words, an implicitly declared

function f will be implicitly speci�ed to throw a given exception T if and only if T is among the

exceptions that will be thrown by the functions directly invoked when f is implicitly de�ned. The

rationale is common sense: if a function f calls several other functions f1, f2, : : :fn and if f does

not itself catch any exceptions the latter might throw, f may be assumed to (re)throw anything f1
or f2 or f3, etc., might throw.

An objection is that, if the implicitly declared function is a virtual destructor, the common-

sense approach can result in a violation of a constraint in WP 15.4 [except.spec] para 2:



X3J16/96-0085, WG21/N0903 2

If a virtual function has an exception-speci�cation, all declarations, including the def-

inition, of any function that overrides that virtual function in any derived class shall

have an exception-speci�cation at least as restrictive as that in the base class.

In other words, this would seem to require that the exception-speci�cation on an implicitly declared

virtual destructor be (at most) the intersection (and certainly not the union) of the exception-

speci�cations of the destructors of the base classes. For example:

struct A { virtual ~A() throw(X); };

struct B { virtual ~B() throw(X,Y); };

class D : public A, public B { };

By option 2 the implicit declaration would be D::~D() throw(X,Y), but by the constraint quoted

above it must be either D::~D() throw(X) or D::~D() throw().

My proposal is that this example be treated as an error. If a virtual destructor is implicitly de-

clared, then (1) its implicit exception-speci�cation shall be the union of the exception-speci�cations

of destructors from base classes and members (in accord with option 2); and (2) if the resulting

exception-speci�cation violates the constraint in 15.4 para 2, the program is ill-formed.

Wording for the Working Paper

The Working Paper should be changed by adding the following paragraph to 15.4 [except.spec]:

An implicitly declared function shall have an exception-speci�cation. If f is an implicitly

declared default constructor, copy constructor, destructor, or copy assignment operator,

it is implicitly speci�ed to throw exceptions of type T if and only if T belongs to the

exception-speci�cation of a function directly invoked when f is implicitly de�ned; f

shall allow all exceptions if any function it directly invokes allows all exceptions, and

f shall allow no exceptions if every function it directly invokes allows no exceptions.

[Example:

struct A {

A();

A(const A&) throw();

~A() throw(X);

}

struct B {

B() throw();

B(const B&) throw();

~B() throw(X,Y);

};

struct D : public A, public B {

// Implicit declaration of D::D();

// Implicit declaration of D::D(const D&) throw();

// Implicit declaration of D::~D() throw (X,Y);

};

Furthermore, if A::~A() or B::~B() were virtual, D::~D() would be virtual as well,

but since its exception-speci�cation would not be as restrictive as that of A::~A(), the

program would be ill-formed. |end example]


