
ISO Doc No: WG21/N0829

ANSI Doc No: X3J16/96-0011

Date: January 29, 1996

Reply To: Erwin Unruh

erwin.unruh@mch.sni.de

Some operator new Topics

Erwin Unruh

Siemens Nixdorf Informatiossysteme AG

Department of Software Development Systems

C/C++ Front-End Laboratory LoB BS2000 SD 21

Otto-Hahn-Ring 6

D{81739 M�unchen

Germany

1 Introduction

In my early days of C++ I read the ARM and realized the problem of operator

new. I even wrote an email to one of the committee members. I did not get an

answer, but the problem remain in my head (and under a thick layer of other

papers).

When the topic of placement new came up, I took note and did re-organize

my thaughts. Here are a few messages from the re
ektor, which relate to the

topic. The �rst gives the rationale, the second some proposlas and the third a

comment from Bill Gibbons.

2 Message 6228

The current WP mixes two independent problems:

First: The language expressions new and delete should be de�ned to just

call a few functions. There are requirements about the accessibility and scoping

of these functions, but no more.

So: new (place) T (init) does the following: lookup operator new by

looking in the class T (if it is a class), otherwise in the global scope. A set of

1



magic ones is considered to be declared at �le scope for purpose of this lookup.

Then do overload resolution and accessibility check for these operators. Do

overload resolution on the constructors. Check whether an operator delete

is necessary for exception handling. These are all checked at compile time.

At run time, the operator new is called. After that the constructor is

called. If the operator new returns zero, the constructor is not called (or

the behaviour is implementation de�ned). There is no requirement about the

operator new yielding a storage disjunct from other objects. Problems with

that sort of allocation is covered by the object model.

Second: There is a set of requirements which hold for the library version

of operator new and operator delete. Here it is described that a pointer

given to the (::STD) ::operator delete must be a pointer eventually cre-

ated by a call to (::STD) ::operator new(size t) or (::STD) ::operator

new(size t,nothrow).

There is also a requirement that allocation done by the standard library

imposes some restrictions on the allocation function.

If some other operator delete is called (a user de�ned) it is up to the pro-

grammer to state its own requirements. If his operator delete does nothing,

there would be no requirement on the pointer at all.

Third: There should be a non-normative section about usual behaviour

of allocation functions. There may even be some normative rules about them,

but any violation must be taken as unde�ned behaviour. A compiler is not able

to detect behaviour of user-written functions.

As a conseqence, the following program would be well-formed:

class A {

static A mya;

A(const A&);

A& operator=(const A&);

public:

int i;

A() : i(0) {}

~A() {}

void* operator new(size_t) { return &A::mya; }

void operator delete(size_t) {}

};

This class lays all heap objects on the same place. Since constructor and

destructor are quite trivial and the class is a POD, it is allowed to call the

constructor over the same object again and again. So allocating a bunch of A

objects would just give you the same object every time.

If this class is ill-formed, show an algorithm detecting it!

2



3 Message 6306

When the discussion of operator new (size t, nothrow) came up, I argued

for a more general approach. After having a more detailed look at the WP I

realized that most of the rules are already in the right place. There are however

a few necessary changes and some new issues.

I enumerate the small topics I cover and give WP changes and rationale.

3.1 calling allocation with less than sizeof(T)

The WP does not allow the compiler to allocate more than sizeof(T) bytes

when allocating storage for an object of type T. It does however allow to allocate

less storage. For

struct X { inta; char b;}; new X;

it may call the allocation function with the value of 5 since 5 Bytes are enough

to �t a X in. The sizeof(X) however is 8 since it must account alignment.

Issue: is this intentional? The example in paragraph 12 indicates that the

allocated storage must be exactly sizeof(T) for objects.

WP change [expr.new] 5.3.4/9 change text in parenthesis to:

which shall be no less than the size of the object and be greater than

the size only if the object is an array.

3.2 requirements to allocation function

The current rules for allocation outlaws some usefull allocation techniques,

where a big object is allocated from ::operator new and little chunks are

given to a much smaller class. The problems of overlapping objects are dealt

with in the object model. The requirements to an allocation function are much

less strict. They are:

1. return a pointer p

2. it must be suitably aligned (implementation de�ned)

3. the pointers p through p+n-1 must be valid pointers and must be deref-

erencable

4. For arrays: p+n must be a valid pointer

The other rules are either too strict or are covered by other rules:

5. disjoint allocation: see object model

6. zero will be unique: violation will create "the same object"

WP change [basic.stc.dynamic.allocation] 3.7.3.1/2 needs some work.

3



3.3 deleting pointers obtained with placement

The rule that deleting an object obtained via a placement new is simply wrong.

The real issue is that the library delete will cover storage obtained via library

new, but not library placement void* new. If a user writes his own new and

delete, he may do something reasonable. The behavior of the library delete is

already described in chapter 18.

WP change [expr.delete] 5.3.5/2 twice remove the words

without a new-placement speci�cation.

3.4 (editorial) add new(nothrow) to replacables

WP change [basic.stc.dynamic] 3.7.3 add operator new(nothrow) and its array

version to the list of replaceable functions

3.5 allocation returning zero

3.7.3.1/4 says: If the allocation function returns the null pointer the result is

implementation de�ned.

This means that any use of new(nothrow) directly depends on implementa-

tion de�ned behaviour. This surely is an issue and I would like the behaviour

of an allocation function returning null being the new expression yielding null.

4 Message 6310

From Bill Gibbons

(In core-6306, Erwin Unruh discusses new/delete.)

I agree completely. Now that we have a memory model, the semantics of a

new-expression and delete-expression should be described entirely in terms of

what functions are called (various forms of operator new/delete, constructors

and destructors).

The constraints on the arguments to the functions belong in the library

clauses. The constraints on the use of memory belong in the memory model.

Other than describing what functions are called, the description of new-

expressions and delete-expressions should have a non-normative note saying that

if any user-written operator new/delete is called, it's the user's responsibility to

ensure that it will obey the memorymodel and operator new/delete constraints.

For example, if a pointer returned by a user-written operator new is eventually

passed to the default operator delete, it's the user's responsibility to ensure that

the call will work.

4


