Accredited Standards Committee X3 Doc No: X3J16/95-0051 W21/ N0O651
I nformati on Processing Systens Dat e: March 3, 1995 Page 1 of 15
Operating under the procedures of Project: Programm ng Language C++
Ameri can National Standards Institute Ref Doc:
Reply to: Josee Lajoie
(j osee@net.ibmcom

1. implicit constructor calls ininitializer |ist
In an initializer list, constructor calls can be inplicit.

struct S {
S(int);

s{ruct T {
S s;

i
Tt ={ 91}; /1 ok, equivalent to = {S(9)};

This is already inplied by 12.6.1 [class.expl.init]. Paragraph 2
shows an exanple where an initializer list for an array of classes
initializes the array elements with both inplicit and explicit calls
to the class constructors. 12.6.1 needs to be expanded to take into
account initialization for aggregate classes (and not just for
aggregate arrays).

Pr oposal
An object of a class type T with a user-declared constructor can be
the menber of an aggregate. An initializer list for the aggregate
can provi de an assignment-expression to initialize the menber of type
T. The assignnent-expression can either be an explicit call to one
of T's constructors, be an assi gnnent-expression that can be
treated as an argunent for one of T's constructors,
| or be an assignnent-expression of type T or or of a type that can be
| converted to type T.

2. Wiat is the equivalent formof initialization when an initializer
clause calls a constructor?

struct A {
A(int);
b

struct B {
A a;

b

Bb={1};

The initialization for "a is equivalent to:
Aa =1,

———————— X3J16/95- 0051 - W21/ N0651 ---- Lajoie:lnitialization ---- Page

This is also inplied by 12.6.1 [class.expl.init] which says that:
"each assignnent-expression is treated as an argunent in a
constructor call ... _using the = formof initialization
(8.5 _."

Again, 12.6.1 must be extended to di scuss aggregate cl asses as well

as aggregate arrays.

This inplies that:

1) a constructor declared "explicit" must be called explicitly from
an initializer list; an assignnent-expression will not be taken
as an argunent for an "explicit" constructor.

2) The copy constructor for class A nust be accessible otherw se
the initialization

Bb={1};
is ill-forned.

El i ded braces and anbiguities (the tough one ;-)

struct A {
int i;
operator int();

b
struct B{ A al; A a2; };
A a;
Bbl={1 a}; // does ainitialize a2 or
/] is a.operator int() called to initialize a2.i?

For this issue, the discussions on the reflector didn't converge
towards a particular resolution. Two resolutions were proposed:

Pr oposal s:

3.1 Brace elision only for POD class initializations

This resolution does not quite work since POD cl asses can have
menber functions. Further restrictions are required. Two
restrictions were proposed. |If the core WG decides to adopt option
3.1, it will need to adopt one of the follow ng additiona
restrictions:

a) Change the definition of POD classes to say that they cannot
have nenber functions.

struct A {

int i;

operator int();
}; /1 Ais not a POD class
struct B{ Aal; Aa2; }; // Bis not a POD class

A a;
Bbl={1 a}; /1 error, must be fully braced
B b2 ={ {1}, a}; /[l ainitializes a2

———————— X3J16/95- 0051 - W21/ N0651 ---- Lajoie:lnitialization ---- Page

or:

b) When braces are elided in an initializer list for a POD cl ass,
user-defi ned conversions are not used to convert an assi ghment
expression in the initializer list to the type of the object or
reference being initialized.

struct A {

int i;

operator int();
}; /1 Ais a POD class
struct B{ Aal;, Aa2; }; // Bis a POD class
A a;
Bbl={1 a}; // ainitializes a2

3.2 Brace elision allowed for all aggregate menber initializations

In this case, overload resol ution deci des which nmenber is
initialized by the assignment-expression in the initializer Iist.

If it finds that the assignnment-expression can initialize both the
menber of class type and that nmenber’s first menber

| (or, if this first menber is itself of class type, the first

| nmenber’'s first nenber, and so on) there is an anbiguity.

struct A {
int i;
operator int();
b
struct B{ A al; A a2; };
A a;

Bbl={1 a}; /1 error: anbi guous
/[l a can initialize a2 and a2.

4. Redundant braces around scalar initializers

i;
{1 }; /] allowed in C. allowed in C++?

int j =
int j =
In C, redundant braces can be provided (I believe) for the
initializers of struct nenbers of scalar type as well.
i.e.
struct S {

int i;

int j;
Ps={{{ 1}, {2}) /XK

The resol ution adopted for this issue should match the resol ution we
choose for issue 3 (eliding braces):

Pr oposal s:

4.1 (to match 3.1): redundant braces limted to initialization for
"Clike' objects:

———————— X3J16/95- 0051 - W21/ N0651 ---- Lajoie:lnitialization ---- Page

The expression initializing an object of scalar type can be
optionally enclosed in braces only if the object is a conplete
obj ect or a subobject of a POD cl ass.

or:
4.2 (to match 3.2): redundant braces allowed for any scal ar object:

The expression initializing an object of scalar type can be
optionally enclosed in braces.

enpty initializer |ist

Currently, initialization lists are only allowed for aggregates.
Wth the current wording [8.5.1, dcl.init.aggr], one can assune
that enpty initializer lists can initialize any aggregate

struct A{ int x; };
={}; /Il ok
void f() {
Aa={}; /Il ok
}
class B {
A a;
nt i;

Py b={{}, 5} /lok

class X { };
class C {
X X;
int i;
}yce={{}, 5%}; //ok, (as per core WG notion)

Pr oposal
An enpty initializer list can be specified as the initializer for
any aggregate. The senmantics for an enpty initializer list are the
sane as the semantics for any aggregate initializer list that
contains fewer initializers than there are nenbers in the aggregate:
8.5.1 pl:
" then the aggregate is padded with O of the appropriate type"
[More on this below. See issue 8].

aggregate with private and protected nmenbers

8.5.1 says:

"An aggregate is an array or an object of a class with ... no
private or protected nenbers, "

Should this refer to _nonstatic data_ nenmbers only?

class A {
static int s;
public:
int i;
}a={ 01}, /1 ok?

4

------ X3J16/95- 0051 - W21/ N0651 ---- Lajoie:lnitialization ---- Page

class B {
int i; [l i is private
}b={ 01}, /] definitely ill-formed
Pr oposal

"no private or protected nenbers" should be changed to "no private
or protected _nonstatic data_ nenbers”. Relaxing this rule ensures
that the restriction applies only to nenbers affected by the
initialization.

aggregates can have static nmenbers

An aggregate can have static nenbers (either data or function).
However, initializer list are not used to initialize the aggregate
static data nmenbers. The static data nenmber nust be defined and
initialized as described in 9.5.2 [class.static.data].

struct A {
int i;
static int s;
int j;
}a={0 51}

The initializer list initializes "a.i’ to 0 and "a.j’ to 5.

When an aggregate is initialized with an initializer clause, if
sone nmenbers are initialized with constant expressions and ot her
nmenbers are initialized with dynamic initialization, in which phase

of initialization (3.6.2) are the nmenbers initialized?

Pr oposal

o The nmenbers initialized with constant expressions are initialized
before any dynami c initialization takes pl ace.

o The members initialized with dynamic initialization are
initialized when the dynamic initialization for the conplete
obj ect takes pl ace.

Default initialization to zero for objects of static storage duration

VWhat does initialization to zero nean for nmenbers of classes with a
user -decl ared constructor?

class A {

int i;

float f;
public:

A() - i(88) {}

————— X3J16/95-0051 - WE21/N0651 ---- Lajoie:lnitialization ---- Page

class C {
int j;
A a;

b

Cc;

VWhat is the result of the default initialization to zero for "¢’ ?
Is 'j’ guaranteed to be initialized to 0?
Is 'f’ guaranteed to be initialized to 0.07

What does initialization to zero nean for nenbers of classes with
a non-trivial constructor?

class X {
float f;
public:
virtual void f();

b
X X;

X has an inplicitly-declared default constructor that is non-trivia
(because X has a virtual nenmber function). Wat is the result of the
default initialization to zero for 'x’? 1s 'f' guaranteed to be
initialized to 0.07?

Pr oposal
The default initialization to zero initializes all scalar nmenbers
of an object of class type to zero converted to the appropriate
type (and this recursively, for the scalar menbers of base and
nested cl ass nenbers).

That is, in the exanples above, ¢c's nenbers j and i are
initialized to 0 and f is initialized to 0.0, and x’s nenber f is
initialized to 0.0.

Question
Do we need to define default initialization to zero for references
and pointer to nenbers?

Pr oposal
The default initialization to zero gives a pointer to nenber the
nul | nenber pointer value of that type.

How is an inconplete initializer Iist conpleted?

8.5.1 [dcl.init.aggr] says:

“If there are fewer initializers in the list than there are nmenbers
in the aggregate, then the aggregate is padded with zeros of the
appropriate types."

------ X3J16/95- 0051 - W21/ N0651 ---- Lajoie:lnitialization ---- Page

VWhat does "padded to O of the appropriate type" nean?

ANS|I C says (3.5.7):

"If there are fewer initializers in the brace-encl osed |i st
than there are nmenbers of an aggregate, the renmi nder of the
aggregate shall be initialized inplicitly the same as objects
that have static storage duration."”

Therefore, both initialization to zero (see 9.) and initialization
by default constructors should be take place as the result of an
i nrconpl ete initializer |ist.

Gven the resolution to i ssue 2 above, | believe the right nodel for
this is as foll ows:

struct A {
Tl m
T2 n;
b

struct B {
A a;
T3 o;
} b={ {99} }; [/l identical to { { 99, T2() }, B() }

Pr oposal

[This is a bit hard to describe in plain english ;-)]

[Yes, human | anguages are worst than C++!

If there are fewer initializers in the list than there are nenbers
in the aggregate, the renmni nder of the aggregate shall be initialized
implicitly the same as objects that have static storage duration
that is, the default initialization to O first takes place to
initialize the uninitialized nmenbers of the aggregate (and this
recursively for the nenbers bases and nenbers) and then dynam c
initialization takes place for these nmenbers. The dynam c
initialization takes place as follows: if the inconplete initializer
list | eaves a subaggregate inconpletely initialized, the
uninitialized nmenbers of the subaggregate are initialized as if the
initializer list was conpleted with expressions of the form’'T()’
for each uninitialized menber of the subaggregate (where 'T
represents the type of the uninitialized nmenber); the remaining
menbers of the aggregate are then initialized as if the initializer
list was conmpleted with expressions of the form’'T()' for each
uninitialized nmenber of the aggregate.

That is, given the type Cdefined in 9., the initialization
Cc={ 221},
is equivalent to:

{ 22, AO) };

11.

12.

————— X3J16/95-0051 - WE21/N0651 ---- Lajoie:lnitialization ---- Page

and after the initialization c.j holds the value 22, c.i holds the
val ue 88 and c.f holds the value 0.0.

VWhat is the neaning of T()?

5.2.3 [expr.type.conv] says:

"A sinmple-type-specifier followed by an enpty pair of parentheses
constructs a value of the specified type. |If the type is a class
with a user-decl ared default constructor, that constructor wll be
called; otherwise the result is the default value given to a static
obj ect of the specified type."

G ven the class type C defined in 7.

)
I's nmenber 'f' guaranteed to be initialized to 0.0?

Here again, | believe the initialization caused by the syntax T()
shoul d behave consistently with the initialization of an object of
static storage duration.

Pr oposal
An expression that is
a sinple-type-specifier followed by an enpty pair of parentheses
constructs a value of the specified type; the result is the default
val ue given to an object of static storage duration of the
speci fied type.

That is the default initialization to zero (see 9.) takes place. |If
the sinple-type-specifier represents a class type, the class default
constructor is also invoked to initialize the object.

For the exanpl e above, C() creates an object of type C with nenber
c.j holding the value O, nmenber c.i holding the value 88 and nenber
c.f holding the value 0.0.

t() inmeminitializer allowed for all types
M ke Anderson sent ne the follow ng issue:

struct A {
A();
~A() ;
b

/1 non-tenpl ate exanple
struct XA {
A a;
XA() : a() {} /1l a(): clearly |lega

———————— X3J16/95-0051 - WE21/N0651 ---- Lajoie:lnitialization ---- Page 9

struct Xi {
int i;
Xi() : i() {} /1 i(): is this legal?

/1 tenplate exanple
tenmpl ate <class T> struct X {
Tt;
X<T>() : t() {} [l "T()' valid; is "t()’ valid ???

X<A> XA
X<int> Xi;

M ke indicated that for the sane reasons we decided to give meaning
to the syntax T() (so that it can be used in tenplate definitions),
we should also extend the neminitializers syntax to allow "t()’' for
a nenber t of any type so that this syntax can be used in a tenplate
definition.

There are two possi bl e meanings that could be given to the syntax
RIORE

Pr oposal s:

10.1 only performs dynami c initialization

"In a meminitializer, the syntax "t()’ can be used for a nmenber t
of any type T. |If T is a class type, the default constructor for T
is called; otherwise t has an undeterm nate val ue."

The argurment in favor of 10.1 is:
Since a meminitializer is part of a constructor and since a
constructor is responsible for the dynamic initialization of an
object, default initialization to zero should never happen during
dynamic initialization, that is, should never be triggered by a
meminitializer (because possibly very expensive) unless
explicitly required by the user, that is, unless "t(T())’ is
speci fi ed.

or:
10. 2 sane semantics as default initialization to zero for statics

"In a meminitializer, the syntax "t()’ for a nenber t of type T
nmeans that t receives the sane initial value as an object of
static storage duration of type T."

The argurent in favor of 10.2 is:
The call to a class default constructor always takes place for
subobj ects of class type whether the user explicitly calls the
constructor with a meminitializer or not. So currently, there
is no difference in semantics whether "t()’' appears in the
ctor-initializer or not. One could assume that if the user

13.

————— X3J16/95-0051 - WE21/N0651 ---- Lajoie:lnitialization ---- Page

wites "t()', the user wants the default initialization to zero
to take place in addition to the dynamc initialization

Also, if T has an inaccessible copy constructor then the syntax:
t(T())

cannot be used to initialize "t’ with the initial value given to

an object of type T with static storage duration.

Initial value of a new expression

[Jerry Schwarz, core-5185]:
Does it nmake sense to have T() inply initialization but new T() not?
Consi der what | expect to be noderately comon tenpl ate code.
T* array = (T*)mal |l oc(sizeof (T)*10) ;
for (int i =0; i <9; ++i) {
new (&array[i]) T() ;
array[i] = T() ; // needed to get initialization

The special casing we’'ve done for the cast T() seens inconplete.
In fact, on closer exam nation of 5.3.4 [expr.new] doesn't provide
any semantics for the above if T isn't a class.

There are two possi bl e neanings that could be given to the syntax
"new T()':

Pr oposal s:

11.1 sane semantics as default initialization to zero for statics

The syntax new T() neans that the object created by new receives
the sane initial value as an object of static storage duration of
type T.

or:
11.2 only perfornms dynamc initialization

For the expression

new T()
if Tis aclass type, the default constructor for T is call ed;
otherwi se t has an undeterm nate val ue.

[Andrew Koenig, core-5190]:

| can imagi ne drawing the distinction that "new T;" inplies the
initialization of an auto variable and "new T();" inplies the
initialization of a static one. The only argunment | can see agai nst
that one is that it is too clever.

VWhat does initialization mean?
There are currently many sections in the working paper that

di scuss initialization. However, the term’initialization neans
different things in these different sections.

10

------ X3J16/95- 0051 - W21/ N0651 ---- Lajoie:lnitialization ---- Page

(1) 8.5 [dcl.init] p5 distinguishes between "being initialized" and
"having a constructor” or "starting off as zero"

(2) 6.7 [stmt.dcl] p4 distinguishes between "default initialization
to zero" and "any other initialization".

(3) 12.6 [class.init] pl refers to default construction as a kind of
initialization.

(4) 5.3.4 [expr.new] pl4 refers to construction as initialization for
obj ects created by new expressions.

Pr oposal

There are 2 steps in the initialization of objects of static
storage duration:

1. default initialization to zero
(see 9. for greater discussion on default initialization to

zZer o)
2. user-defined initialization
two forns:
o explicit - with initializers
or:

oinmplicit - user-declared or inplicitly-declared default
constructor calls

An object of static storage duration is considered initialized
once both default initialization to zero and user-defined
initialization have conpl et ed.

For objects with automatic storage duration, objects with dynam c
storage durations and tenporary objects, only the user-defined
initialization takes place. This neans the initialization of
these objects will be considered conpl ete even though these

obj ects may have undeterninate val ues.

8.5 p5 first sentence should be replaced with:

"For objects with static storage duration (3.7), default
initialization to zero takes place before any user-defined
initialization takes place."

The rest of 8.5 describes the initializers a user can specify for
explicit user-defined initialization.

6.7 p4 first sentence should be replaced with:
"The default initialization to zero of all |ocal objects with
static storage duration (3.7) takes place before any user-defined
initialization takes place."

12.6 pl should be replaced wth:
"Default initialization to O takes place for all class objects with
static storage duration.

An object of a class type T with a user-declared constructor but
wi thout a default constructor mnmust be explicitly initialized. The

11

15.

b

————— X3J16/95-0051 - WE21/N0651 ---- Lajoie:lnitialization ---- Page

initializer for an object of type T can be of the form= or ();
however, depending on the properties of T s constructors, sone
restrictions apply on the formof initializer that can be used,
see 8.5. The initializer for a new expression creating an object
of type T nmust be of the form (), see 5.3.4. If T does not have a
default constructor, a tenporary object of type T can only be
created by using T's copy constructor (if accessible (11)) to
copy an object already existing, see 12.2.

For an object of a class type T" with a default constructor, if
T is an aggregate class type, an object of type T can be
initialized with an initializer list. Definitions and new
expressions can initialize an object of type T" with an explicit
call to T's default constructor. See 8.5 and 5.3.4. If an
object of type T' is created by a definition or a new expression
that does not explicitly initialize the object, T s default
constructor is inplicitly called. A tenporary object of type T's
can also be created by calling T's default constructor. |In any
of these situations, If T s default constructor cannot be
implicitly defined (12.1) or if it is not accessible (11), the
programis ill-forned.

5.3.4 pl4 should be replaced wth:

Initializations in a new expression are of the form () (8.5).

For objects created by a new expression of the form’'new T' or
"new T()', if Tis a class type, T's default constructor is call ed;
ot herwi se the object starts with an undeterm nate val ue [the exact
wordi ng for this depends on the resolution for issue 13]. Wen
creating an object of type T, the newinitializer can specify a
singl e expression of type T or of a type that can be converted to
T. If Tis a class type with a user-declared constructors, the
new initializer can specify a list of expressions that is taken as
an argunent list for one of T's constructor.

.5 p5 should be split to describe which senantics apply to

initialization of the form= and which semantics apply to
initialization of the form ().

For exanple pl0, bullets 2, 3, 4 describe initialization that
can take place only when the = formof initialization is used,
bull et 5 describes initialization that can take place only when
the () formof initialization is used, while initialization
described by bullets 1, 6 and 7 can take place with both forns
of initialization.

Initialization of const objects

7.1.5.1/p2 [dcl.type.cv]:

"Unl ess explicitly declared extern, a const object does not have
external |inkage and shall be initialized (8.5, 12.1)."

struct A {

int i;
int j;

12

———————— X3J16/95- 0051 - W21/ N0651 ---- Lajoie:lnitialization ---- Page

const A a; // well-forned?
A has a trivial default constructor that does nothing. Does A's
trivial default constructor count as initialization?

struct B {

int i;

virtual int f();
}

const B b; // well-fornmed?

B has a default constructor that is not trivial (because B has a
virtual function). However, B s constructor does not initialize B's
nonstatic data nenber i. 1s the definition of b’ well-formed?

struct C {
int i;
int j;
C() : 1(99) { /* does nothing */ }
cbnst Cc;
C has a default constructor that is user-declared. However, Cs

constructor does not initialize Cs nonstatic data nenbers i and j.
Is the definition of "¢’ well-forned?

That is, can we assune that:

1

2.

3.

after an inplicitly-declared trivial constructor has conpl eted,
the object is initialized?

after an inplicitly-declared non-trivial constructor has

conpl eted, the object is initialized?

after a user-declared constructor has conpleted, the object is
initialized?

13.1 njects that are not of class type

The refl ector discussions converged towards the foll ow ng
resol ution for objects that are not of class type:

Pr oposa

a const object of a type that is not a class type nust be
explicitly initialized with an initializer

That is,
const Tt ; [// ill-formed
const Tt =T() ; [/ well-forned

if Tis not a class type.

13

————— X3J16/95-0051 - WE21/N0651 ---- Lajoie:lnitialization ---- Page

This means that, for a declaration at nanespace scope of an
object of a type that is not a class type, the declaration nust
specify an explicit initializer; the "default initialization to
zero" is not sufficient initialization for this object.

const int zero ; // ill-forned, must be explicitly initialized

13.2 bj ects of class type

Pr oposal s:

13.2.1 7.1.5.1 p2 is a syntactic constraint for objects of class type

[Jerry Schwarz, core-5199]:

I think we should interpret this constraint as a sinple syntactic
one rather than trying to distinguish cases in which the object is
semantically initialized. | would revise this to:

"Unl ess explicitly ... and its declarator shall contain an
initializer (8.5)."

This would result in:
const Tt ; // always ill-forned

const Tt =T() ; [/ well-forned
/1 (provided copy and default construction are
/1 all owed)

or:
13.2.2 Any default constructor is initialization

[Bill G bbons, core-5224]:
Const objects of class type nust be explicitly initialized OR
nmust have a default constructor (either user- or inplicitly-
decl ared).

1a1, ’b’ and 1 1

This inplies that the definitions of ¢’ in the

exanpl es above are well-formed.

or:
13.2.3 An inmplicitly-declared default constructor is not

initialization

[Fergus Henderson, core-5237]:

A class type is said to have inmplicit user-declared default

initialization if either

- the class has a user-decl ared default constructor or

- all its bases that are of a class with nonstatic data nenbers
have a user-declared default constructor and all its
non-static data nmenbers are of class types (or array thereof)
with inplicit user-declared default initialization.

Const objects of class type nust be explicitly initialized unless
the class type has inplicit user-declared default initialization

14

———————— X3J16/95-0051 - W21/ N0651 ---- Lajoie:lnitialization ---- Page 15

| This inplies that the definition 'c’ in the exanples above is
| wel | -forned while the definitions of "a’ and 'b’ are ill-forned.

16. |Is the user required to initialize a const volatile object?

|

L | |

| i nt const ci ; [l ill-formed
| int const volatile cvi ; /2

|

| Proposal

const volatile objects are not required to be initialized.

the program the | anguage should not require that volatile or const

|
. | | | |
| Since volatile objects can have their value set in ways unknown to
|
| volatile objects be initialized.

