
ANSI X3J16/95-0047, ISO WG21/N0647

Memory Allocation: Proposed Working Paper Changes

Gregory Colvin
Information Management Research

gregor@netcom.com

This paper reviews the Standard C++ library memory allocation facilities for inconsistencies and
unspecified behavior. It is organized by Section number (pre-Valley Forge draft) and symbolic name. I
propose that:
• operator new be specified to report failure by throwing bad_alloc, and never to return a null pointer;
• a special operator new (const nothrow&) be specified to report failure by returning a null pointer;

18.4.1.1.1 operator new [lib.op.new]

This operator new function is only partially specified. The A.R.M. specifies that
operator new will return zero if no memory can be allocated and no new_handler is set,
but the working paper leaves this behavior implementation defined. I have proposed
already (94-0167/N0554) that this function be specified to throw bad_alloc. Thus I
recommend the following wording:

void* operator new(size_t size) throw(bad_alloc);

The allocation function (3.6.3.1) called by a new-expression (5.3.4) to allocate size bytes of
storage suitably aligned to represent any object of that size.

Replaceable: a C++ program may define a function with this function signature that displaces the
default version defined by the Standard C++ library.

Required behavior: return a pointer to dynamically allocated storage (3.6.3) or else throw a
bad_alloc exception.

Default behavior:
• executes a loop. Within the loop, the function first attempts to allocate the requested storage.

Whether the attempt involves a call to the Standard C library function malloc is unspecified.
• Returns a pointer to the allocated storage if the attempt is successful. Otherwise, if the last

argument to set_new_handler() was a null pointer, throw bad_alloc.
• Otherwise, the function calls the current new_handler (_lib.new.handler_). If the called

function returns, the loop repeats.
• The loop terminates when an attempt to allocate the requested storage is succesful or when a

called new_handler does not return.

The working paper, in footnote 92, states that "A common extension when
new_handler is a null pointer is for operator new(size_t) to return a null pointer, in
accordance with many earlier implementations of C++". This footnote is intended to
provide a transistion path for older code, but instead just leaves it uncertain whether or
not a operator new may yield a null pointer, and whether or not set-new-handler(0) is
defined. This footnote should be removed, as the above changes ensure that operator
new(size_t) may not return a null pointer. The intent of providing a transition path for
old code can be satisfied by specifying a special operator:

1

ANSI X3J16/95-0047, ISO WG21/N0647

class nothrow {};
void* operator new(size_t size,const nothrow&) throw();

Allocate size bytes of storage suitably aligned to represent any object of that size.

Replaceable: a C++ program may define a function with this function signature that displaces the
default version defined by the Standard C++ library.

Required behavior: return a pointer to dynamically allocated storage (3.6.3) or else return a null
pointer.

Default behavior:
• executes a loop. Within the loop, the function first attempts to allocate the requested storage.

Whether the attempt involves a call to the Standard C library function malloc is unspecified.
• Returns a pointer to the allocated storage if the attempt is successful. Otherwise, if the last

argument to set_new_handler() was a null pointer, return a null pointer.
• Otherwise, the function calls the current new_handler (_lib.new.handler_). If the called

function returns, the loop repeats.
• The loop terminates when an attempt to allocate the requested storage is succesful or when a

called new_handler does not return. If the called new_handler terminates by throwing a
bad_alloc exception the function returns a null pointer.

18.4.1.1.2 operator delete [lib.op.delete]

In accordance with the above changes to operator new(), the operator delete() function
should be specified as:

void operator delete(void* ptr) throw();

The deallocation function (3.6.3.2) called by a delete-expression to render the value of ptr
invalid.

Replaceable: a C++ program may define a function with this function signature that displaces the
default version defined by the Standard C++ library.

Required behavior: accept a value of ptr that is null or that was returned by an earlier call to
operator new().

Default behavior:
• For a null value of ptr, do nothing.
• Any other value of ptr shall be a value returned by an earlier call to a default operator new()

function. For such a non-null value of ptr, reclaims storage allocated by the earlier call to
operator new().

It is unspeficied under what conditions part or all of such reclaimed storage is allocated by a
subsequent call to operator new() or any of malloc, calloc, or realloc, declared in <cstdlib>.

2

ANSI X3J16/95-0047, ISO WG21/N0647

18.4.1.3 operator new[] [lib.op.new.array]

18.4.1.4 operator delete[] [lib.op.delete.array]

These functions need throw specifications:

void* operator new[] (size_t size) throw(bad_alloc);
void operator delete[] (void* ptr) throw();

Also, a nothrow version of array new is needed:

void* operator new[] (size_t size,const nothrow&) throw();

18.4.1.5.1 Placement operator new [lib.placement.op.new]

18.4.1.5.2 Placement operator new[] [lib.placement.op.new.array]

These functions need throw specifications:

void* operator new (size_t size, void* ptr) throw();
void* operator new[] (size_t size, void* ptr) throw();

18.4.2.2 Type new_handler [lib.new.handler]

Given the changes to operator new() no default new-handler is needed, so paragraph 3,
reading "Default behavior: ..." can be removed.

20.3.1 The default allocator [lib.default.allocator]

It is unspecified how this class obtains and invalidates memory. I recommend that the
allocator::allocate() function allocate memory by calling operator new(size_t) and that
the allocator::deallocate() function reclaim memory by calling operator delete(). This
template is still changing, so I will not attempt to give exact wording.

20.3.3.1 allocate [lib.allocate]

20.3.3.2 deallocate [lib.deallocate]

It is unspecified how these functions obtain and invalidate memory. If they are to be
retained at all I recommend that the allocate() function allocate memory by calling
operator new(size_t) and that the deallocate() function reclaim memory by calling
operator delete().

3

