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1. Intr oduction

This is a proposal to describe the built-in operators using overloadings and conversions, much as we describe over-
loaded functions.

The built-in operators are currently described (§5) much as in ISO C. Unfortunately there is no “interface” between
§5 and the extensions to the type system, and to conversions, that C++ makes over C. Tom Plum’s e-mail message
c++std-core-2587 (core issue 178) proposes to address this situation by adding some “master control” paragraphs to
the beginning of §5. However, as I understand it, Tom’s approach does not address conflicts between user-defined and
built-in operators as in examples 2 and 3 below.

Here is a simple example of a use of a built-in operator that “interfaces” with a user-defined conversion:

Example 1

struct A {
operator int(); // An A can become an int.

};
void f(A a) {

a + a; // a.operator int() + a.operator int()
}

Example 1 should obviously use a built-in meaning foroperator+. This is implied by §5/8 of the WP (working
paper), but in a very imprecise way.

The next two examples are more problematic.

Example 2

struct B {};
struct A {

operator int(); // An A can become an int
operator B(); // or a B.

};
B operator+(B, B);
void f(A a) {

a + a; // Should be ambiguous.
}
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Example 3

struct A {
operator int(); // An A can become an int
operator long(); // or a long.

};
void f(A a) {

a + a; // Ambiguous, but by what rule?
}

How are these uses ofoperator+ interpreted? The WP provides no clear guide.

I propose instead a “Unified Model” for built-in operators and user-defined operators and functions (including tem-
plate functions, although I don’t talk much about them in this document). Sections 2, 3, 4 and 5 present the unified
model. Section 6 discusses some subtle issues and presents some examples. Section 7 briefly discusses a related
approach taken by Microsoft C++.

The unified model would be a big change to the WP. I’d prefer to avoid this big change. If anyone can think of a sim-
pler way to define the behavior of the examples above, and the examples in section 6 below, please let me know.

This isnot a proposal for language extensions. I’ve tried to avoid any changes to the language. I’ve had three goals in
specifying things that are not specified in the WP:

• Try for simplicity.

• Make a doubtful expression (such as those in examples 2 and 3) ambiguous so that the compiler can catch more of
the user’s mistakes.

• Follow existing implementations, particularly Cfront 3.0, but also Microsoft Visual C++ 1.0 and Borland’s Turbo
C++ for Windows 3.1.

A point of notation: throughout this paper “§4.1” means section 4.1 of the WP, but “section 4.1” means section 4.1 of
this document.

This paper has been influenced by countless core reflector messages, and particularly by discussions with Jan Gray,
Jonathan Shopiro, Frank Buschmann, Eric Krohn, and Jim Welsch. Ron Guilmette and others have argued that a
scheme like this is necessary. Of course, all the mistakes and omissions are mine.

2. The Unified Model

This section and the next three sections present the unified model. Section 3 revises the standard conversions, placing
them in novel categories and in most cases expressing them more formally than §4 and §13.2. Section 4 shows a
series ofargument contexts that govern which conversions are allowed in various situations (argument to built-in
operator, argument to user-defined function, argument to template function, etc.) and how conversion sequences are
compared. Section 5 restates the built-in operators (§5) asbuilt-in templates.

The major simplification to the language description is that the matching of operator and operands is defined by just
one (admittedly complicated) mechanism, argument matching.

Some things are still missing. This paper is intended to compliment a redefinition of overloading resolution being
worked on by Jon Shopiro and others. I hope a future revision of this paper can build on that foundation.

I have also left out definitions (in section 5) of some difficult built-in operators such as. and casts. In most cases the
operators I’ve left out cannot be overloaded, so their definitions are not central to deciding whether the unified model
can work at all. Two important and difficult exceptions areoperator-> andoperator(); these still need defini-
tions in this framework.
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3. Revised Standard Conversions

Table 1 restates the standard conversions (§4 and §13.2/8) in novel categories.

Table 1: Revised Standard Conversions

From To Constraints

Dereference Conversions

T& T

T[dimensionopt] T* Footnotea.

T(&)(param-types) T(*)(param-types) Footnoteb.

Enreference Conversions

T T&

Qualification Conversions

T& const T& Actually, these are the more
complicated const/vola-
tile pointer and reference
conversions as in §4.6.

T& volatile T&

T* const T*

T* volatile T*

Integral Promotions

char
signed char
unsigned char
short
unsigned short

One of:
int
unsigned int

Implementation-defined

wchar_t
enum E (any enumera-
tion type)

One of:
int
unsigned int
long
unsigned long

Implementation-defined

Usual Integral Conversions

int unsigned int
long

unsigned int One of:
long
no conversion

Conversion iff a long can rep-
resent all the values of an
unsigned int

int
unsigned int
long

unsigned long
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Usual Floating Conversions

float double

double long double Footnotec.

int
long
unsigned int
unsigned long

float
double
long double

Other Arithmetic Conversions

int
unsigned int
long
unsigned long
double
long double

Any arithmetic type A conversion is an Other Arith-
metic Conversion only if it is
not a Usual Integral or Usual
Floating Conversion; so
exclude, eg, int --> long.
Also, there are no conversions
from a type to itself; so exclude,
eg, int --> int.

Miscellaneous Conversions

Constant 0 of type:
int
unsigned int
long
unsigned long

T*
T C::*

T(*)(param-types) One of:
void*
no conversion

Conversion iff a void* can
represent all the values of a
function pointer

cv D& cv B& B is an unambiguous, accessible
base class of D

cv D* cv B* B is an unambiguous, accessible
base class of D

cv T* cv void*

T B::* T D::* B is an unambiguous, accessible
base class of D

Ellipsis Conversions

T ... There are restrictions on T, but
these are not listed here.

Table 1: Revised Standard Conversions (Continued)

From To Constraints
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3.1  Notation

When we write a conversion rule outside of table 1 we use “-->” to separate the source and destination type; for
example, int --> char is one of the Other Arithmetic Conversions.

In these rules cv stands for any combination of cv-qualifiers, or none at all. If it appears on both sides of a rule it is
identical on both sides. Thus a rule such as

cv D& --> cv B&

actually stands for four rules, one for each possible “value” of cv.

A rule with a list on the left and/or right actually stands for the cross-product of the lists. Thus many rules can be
implied by one box in table 1.

3.2  Categories of Conversions

The new categories facilitate the argument contexts defined in section 4.

Here is a list of terms that designate groups of conversions:

Standard conversions
Trivial conversions

Dereference conversions*
Enreference conversions*
Qualification conversions*

Integral promotions
Usual arithmetic conversions

Usual integral conversions*
Usual floating conversions*

Other arithmetic conversions*
Miscellaneous conversions*
Ellipsis conversions*

User-defined conversions

* designates new categories.

One term is indented below another if it refers to a subset of the other term’s conversions. For example, the usual inte-
gral conversions are a subset of the usual arithmetic conversions, which are in turn a subset of the standard conver-
sions.

a. It is perhaps unfortunate that an rvalue array implicitly converts to a pointer, but that’s the way the lan-
guage is now. For example:

// ary-rv1.C, fnc-rv1.C
struct A { int a[10]; };
A f();
int* ip = f().a; // ok, int [10] --> int*
int (*ap)[10] = &f().a; // bad, address of rvalue

Cfront 3.0 and Microsoft C++ agree. (Turbo C++ crashes.)
b. Only lvalue functions (that is, only non-member functions) can convert to pointer. This I express by put-
ting a “reference to function” type on the left-hand side of the conversion.
c. Is there a conversion float --> long double? §4.3 is not clear. I don’t think there should be
such a conversion; instead, we can compose the float --> double and double --> long dou-
ble conversions.
The question can be decided with this fragment:

// flt-ldb1.C
void f(double);
void f(long double);
f(1.0f); // f(double(1.0f)) or ambiguous?

If the resolution is f(double(1.0f)) then there is no float --> long double conversion. If the
resolution is ambiguous then there is such a conversion.
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3.3  Reference-Normal Type

There is some confusion about what a conversion involving reference types means. For example, the conversion I
write as T& --> const T& is written sometimes without the “reference” type modifiers (§13.2/9), sometimes with
them (§13.2/12). Also, we are on the verge of deciding that expressions of reference type “decay” immediately to
non-reference type. If there are (effectively) no expressions of reference type, how can we have implicit conversions
involving reference types?

We can use the T --> T& and T& --> T conversions freely and ignore the problem; but this will not work in my
approach, because I allow certain built-in operators to overload on both T& and T.

We can make sense of this mess by performing conversioons and argument matching on the reference-normal type of
an expression. The reference-normal type of an expression of type T is simply T& if the expression is an lvalue, T oth-
erwise.

The alternative is some cumbersome notation to indicate when a conversion takes and/or yields an lvalue, eg:

{ T, lvalue } --> { const T, lvalue }

{ T (param-types), lvalue } --> T (*)(param-types)

or to indicate the same thing in English, which is tricky to get right.

In the rest of this paper I assume the reference-normal type is used in argument matching. It is essential in allowing
built-in operators such as , and ?: to make fine distinctions between lvalues and rvalues.

3.4  Where is an Lvalue’s Value Extracted?

A side-benefit of the unified model is a solution to problem (G) posed in my 93-0134 / N0341. That problem is that
the WP does not define where an lvalue’s value is extracted, and thus where it is ill-formed to use an expression of
incomplete type. The solution in the unified model is that a lvalue’s value is extracted exactly when the T& --> T
conversion is invoked: it is ill-formed to invoke that conversion if T is an incomplete type.

4. Argument Contexts and Ordering Rules

4.1  Argument Contexts

This section expands the conversion sequence ordering rules in §13.2/11-12 to handle not only user-defined func-
tions, but also function templates (§14.4) and the built-in operators (§5). A function template or a built-in template
(see section 5) is considered to be a set of overloadings.

There are a handful of argument contexts; these govern the conversions that are allowed and how they are ordered.
The conversion contexts are:

• the function context (table 2), for arguments of functions and user-defined operators;

• the template function context (table 3), for arguments of template functions and (user-defined) template operators;

• the built-in operator context (table 4), for arguments of built-in operators; and

• the restricted context (table 5), for the left-hand argument of = . -> .* ->*.
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All of these argument contexts except the built-in operator context are implied in the WP.

The dereference conversion is necessary in the template function context because of our use of reference-normal
type; otherwise a variable of type T would not be a legal argument to a template function expecting a T.

The extensions group will probably add more conversions to the template function context.

Table 2: Function Context

Match with

Exact (no conversions)
Dereference conversions
Enreference conversions

Qualification conversions

Integral Promotions

Usual integral conversions
Usual floating conversions
Other arithmetic conversions
Miscellaneous conversions

User-defined conversions

Ellipsis conversions

Table 3: Template Function Context

Match with

Exact (no conversions)
Dereference conversions

Table 4: Built-in Operator Context

Match with

Exact (no conversions)

Dereference conversions

Enreference conversions

Qualification conversions

Integral Promotions

Usual integral conversions

Usual floating conversions

Miscellaneous conversions

User-defined conversions
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4.2  Ordering Rules for Conversions1

Comparing two conversions in the same argument context is easy. For each context, the respective table defines
which conversions are allowed, in decreasing order of goodness. If one box is above another, the conversions in the
upper box are better than the conversions in the lower box. All the conversions in a box are pairwise unordered, with
one exception. The exception to this unordered-in-a-box rule is for certain miscellaneous conversions such as cv D*
--> cv B*; see §13.2/12 item [3]. This procedure is similar to that in §13.2/12.

However, in a call to a function or operator, one argument can appear in multiple contexts. In the most extreme case
one argument can appear simultaneously in all four contexts! (I call these “four corners” examples; see section 6.)

How then do we compare two conversions using two different argument contexts? The problem is similar to analyz-
ing one crime that spans two countries: which has jurisdiction? The answer is to try to make the comparison in both
contexts. If one context cannot make the comparison (because one of the conversions is not in that context), then the
other context has jurisdiction. Otherwise, if either context says “ambiguous”, the result is “ambiguous”. Otherwise
both contexts agree on the result. (If they don’t agree, there is an “internal error” in these rules.)

4.3  Ordering Rules for Conversion Sequences

A comparison of two conversion sequences yields “worse than”, “better than”, or “ambiguous”. We compare conver-
sion sequences by comparing the worst conversion in each sequence. There are additional comparison rules. In partic-
ular, something like the rules in §13.2/7-8 is necessary.

4.4  Ordering Rules for Overloadings

There are some rules for comparing overloadings that supplement the rules for comparing conversion sequences.

First, if a template function and an ordinary function are “ambiguous” by comparison of conversion sequences, the
ordinary function is better. This is necessary because the ordinary function may be a specialization of the template
function. This rule is implied by §14.4/3.

Second, for operator, and unary operator& only, if there is any user-defined overloading that is a legal match,
it is better than any built-in match. This is necessary because there are exact built-in matches for all types; if this spe-
cial rule were not present, only exact matches would invoke user-defined overloadings; thus, because calling an
inherited member function requires a conversion, those operators could not be inherited. Cfront, Microsoft, and Bor-
land seem to implement this rule.

4.5  The Built-in Operator Context

The key feature of this whole paper is the many preference levels in the built-in operator context. They allow the

1. The next three sections depend on Jon Shopiro’s new overloading resolution scheme. In fact an understanding of that (unpublished)
scheme is helpful in understanding these sections.

Table 5: Restricted Context

Match with

Exact (no conversions)
Dereference conversions
Enreference conversions

Qualification conversions
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built-in operators to be overloaded on whether an argument is an lvalue, something the function context cannot do.
They also bring the usual arithmetic conversions (a C concept) into the unified model. More specifically:

• Exact match is preferred to dereference conversions so that, given

int i;

The expression 0,i is unambiguously an int& (an lvalue), while 0,5 is unambiguously an int (an rvalue).

• Dereference conversions are preferred to enreference conversions so that

int e, i;

e ? i : 5; // e ? (int)i : 5

won’t be ambiguous, and will yield int rather than int& (an rvalue rather than an lvalue).

• The usual integral conversions are preferred to the usual floating conversions so that

10L + 20U

is unambiguous, and either a long or an unsigned long (the choice depends on the sizes of the types
involved; see §4.5).

• The usual integral conversions are preferred to the miscellaneous conversions so that

0 + 2L

will be (long)0 + 2L; if the miscellaneous conversions were preferred to the usual integral conversions, then
int --> T* would be preferred to int --> long; the arguments would match all instantiations of the built-
in template operator+(T*, I) (see section 5); and the expression would be ambiguous.

• I don’t think the miscellaneous conversions are ever compared to the usual floating conversions, so it doesn’t mat-
ter which box is above the other.

• The other arithmetic conversions are not in the built-in operator context. There seem to be no cases where they
could be unambiguously invoked.

5. The Built-in Operators

We express the built-in operators using built-in templates, written using the pseudo-keyword builtin.1 A built-in
template differs from a real operator template as follows:

• Remove the restriction that one parameter must be a class.

• Remove the restriction (if present for that operator) that the operator must be a member function.

• Definitions of built-in template type parameters are constrained by pseudo-keywords from the following table:

1. These definitions are similar to Ada’s package STANDARD.

Table 6: Pseudo-keywords for builtin type parameters

Pseudo-keyword Types indicated

any Any non-reference type.

class Any class type.

nonclass Any non-class, non-reference type other
than void.
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• Remove the restriction that a parameter of reference type cannot accept a bit-field argument.

• The argument context (see section 5 above) is by default the built-in operator context rather than the template
function context.

• The left-hand operand of operator= and a few others are in a restricted argument context. We express this by
using the keyword

restricted

in declaring that argument. (restricted has nothing to do with the NCEG restrict keyword.)

• Evaluation order is unusual for some operators. For example, order of evaluation (and whether evaluation occurs
at all) is unusual for arguments of operator,and operator&&.

• Certain operators such as ?: have built-in templates even though they cannot be user-defined operators.

Here we go:

builtin <any T, bigintegral I> T* operator[](T*, I);
builtin <any T, bigintegral I> T* operator[](I, T*);

// function calling is a special case

// simple-type-specifier ( args ) is a special case

// dynamic_cast is a special case.

// . and -> are special cases.

integral Any integral type.

bigintegral Any of the following types:
int
unsigned int
long
unsigned long

arithmetic Any arithmetic type.

bigarithmetic Any of the following types:
int
unsigned int
long
unsigned long
float
double
long double

scalar Any arithmetic or pointer or pointer-to-
member type.

object Any non-cv-qualified, non-reference,
non-void, non-function type.

function Any function type.

Table 6: Pseudo-keywords for builtin type parameters (Continued)

Pseudo-keyword Types indicated
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// Prefix ++.
// For the first overloading, the result is a bit-field
// if the argument is.
builtin <integral I> I& operator++(restricted I&);
builtin <any T> T*& operator++(restricted T*&);

// Postfix ++.
builtin <integral I> I operator++(restricted I&, int);
builtin <any T> T* operator++(restricted T*&, int);

// The two forms of -- are just like the two forms of ++.
// Not written out here.

builtin <any T> T& operator*(T*);

// Unary & is a very special case.

builtin <any T> T* operator+(T*);
builtin <bigarithmetic A> A operator+(A);

builtin <bigarithmetic A> A operator-(A);

builtin <scalar B> int operator!(B);

builtin <bigintegral I> I operator~(I);

// sizeof.
// The result is Constant. Argument is not evaluated.
// We need the two overloadings because you can take the size of an
// lvalue or an rvalue.
builtin <any T> size_t sizeof(T&);
builtin <any T> size_t sizeof(T);

// sizeof (type-id) is a special case; it yields a Constant
// of type size_t.

// operator new and operator new[] is a special case.

builtin <any T> void operator delete(T*&); // May zero out arg
builtin <any T> void operator delete(T*);

builtin <any T> void operator delete[](T*&); // May zero out arg
builtin <any T> void operator delete[](T*);

// casts are a special case

// In the following definitions of .* and ->*, cv1 and cv2 are either nothing, const, volatile,
// or const volatile. cv12 is the union of cv1 and cv2 (combining the cv-qualifiers from both).

builtin <class C, object T> cv12 T& operator.*(cv1 C&, cv2 T C::*);
builtin <class C, object T> cv12 T operator.*(cv1 C, cv2 T C::*);
builtin <class C, function T> cv2 T operator.*(cv1 C&, cv2 T C::*);
builtin <class C, function T> cv2 T operator.*(cv1 C, cv2 T C::*);

builtin <class C, object T> cv12 T& operator->*(cv1 C*, cv2 T C::*);
builtin <class C, function T> cv2 T operator->*(cv1 C*, cv2 T C::*);

builtin <bigarithmetic A> A operator*(A, A);

builtin <bigarithmetic A> A operator/(A, A);

builtin <bigintegral I> I operator%(I, I);

builtin <bigarithmetic A> A operator+(A, A);
builtin <any T, bigintegral I> T* operator+(T*, I);
builtin <any T, bigintegral I> T* operator+(I, T*);

builtin <bigarithmetic A> A operator-(A, A);
builtin <any T, bigintegral I> T* operator-(T*, I);
builtin <any T> ptrdiff_t operator-(restricted T*, restricted T*);
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builtin <bigintegral I1, bigintegral I2> I1 operator<<(I1, I2);

builtin <bigintegral I1, bigintegral I2> I1 operator>>(I1, I2);

builtin <scalar S> int operator<(S, S);

// Likewise for > <= >=.

builtin <nonclass A> int operator==(A, A);
builtin <any T> int operator==(T*, T*);
builtin <any T, class C> int operator==(T C::*, T C::*);

// Likewise for !=.

builtin <bigintegral I> I operator&(I, I);

builtin <bigintegral I> I operator|(I, I);

builtin <bigintegral I> I operator^(I, I);

builtin <scalar B1, scalar B2> int operator&&(B1, B2);
// 2nd arg may not be evaluated.

// likewise for ||

builtin <scalar B, any T> T& operator ?:(B, T&, T&);
builtin <scalar B, any T> T operator ?:(B, T, T);
builtin <scalar B, any T> T operator ?:(B, void, void);
// Only one of the 2nd and 3rd args is evaluated.
// We need both overloadings because the result is an lvalue iff both
// arguments are.
// For the T& overloading, the result is a bit-field if both arguments
// are.

builtin <nonclass T> T& operator=(restricted T&, T);
// The first arg is in the restricted context.
// class types have no builtin assignment operator. (Many have a
// default assignment operator, though; see 12.8.)

builtin <arithmetic A1, bigarithmetic A2>
A1& operator*=(restricted A1&, A2);

// The other op= operators are similar to *= and
// are not written out here.

builtin <any T> void operator throw(T);
builtin <any T> void operator throw(T&);

builtin <any T1, any T2> T2& operator,(T1, T2&);
builtin <any T1, any T2> T2 operator,(T1, T2);
// Need both overloadings because the result is an lvalue iff the
// second arg is.
// Unlike every other operator except unary &, any user-defined match
// is preferred to any built-in match.

The following subsections note additional rules. These may seem like too many special cases; but please remember
that we are specifying a whole new area (user-defined conversions with built-in operators) that the WP does not deal
with; in addition, §5 (which this document restates a good deal of) contains a host of special cases itself.

5.1   Attributes of (Sub)expressions

Please see N0365 = 93-0158 for more information on expression attributes. Attributes of the result have the default
value unless otherwise indicated. For example, a comment next to the definition of operator++ indicates that the
result is a bit-field (has the bit-field attribute) if the argument is a bit-field.
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5.2  Conversions for the Relational, Equality, and Conditional Operators1

The last expression below is allowed by my overloading rules. It must be banned by a special-case rule.

// relop1.C
int* ip;
double* dp;
void* vp;

void f() {
vp < dp; // ok; vp < (void*)dp
ip < vp; // ok; (void*)ip < vp
ip < dp; // ill-formed

}

It’s okay for one argument to be converted to void* ; why isn’t it okay for both arguments? Because if we allow it,
there is no type-checking at all for pointer arguments to the relational and equality operators; almost any pointer type
can be converted to void* .

Similar problems arise for the second and third arguments of ?: . ISO C and §5.16 don’t allow expressions like

condition ? ip : dp

I suggest a rule something like this for the operators < > <= >= == != , and for the second and third arguments of
the conditional operator:

If the conversion sequences for both arguments includes the cv T* --> cv void*
conversion, the resulting operator invocation is not well-formed.

 For ?: , some restriction on user-defined conversions may also be desired. Cfront 3.0 disallows all user-defined con-
versions; Microsoft C++ and Borland C++ allow a user-defined conversion for one argument, but not both.

5.3  Conversions and Pointer Subtraction

The argument contexts for pointer subtraction are restricted  in order to disallow the following:

struct A { ... };
struct B { ... };
struct D : A, B { ... };
B* bp;
D* dp;

0 - dp; // Bad. (D*)0 - dp would be incorrect.
bp - dp; // Bad. bp - (B*)dp would be incorrect, since the array

// which bp and dp point into is presumably an array
// of D’s, not of B’s.

However, the restricted  context also disallows user-defined conversions. This may be too drastic a restriction on
pointer subtraction. If we want to allow user-defined conversions, we need to define a special context just for pointer
subtraction.

6. Examples

Example 4

struct A {
operator void*();

};

1. Thanks to Jan Gray for this example.
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void f(A a) {
return a == 0; // a.operator void*() == (void*)0

}

6.1  The ?: Operator and D& --> B& Conversions

Example 5

// quecol1.C
#include <stdio.h>

struct B {
B() {}
virtual char* type() { return "B"; }

};
struct D : B {

D() {}
virtual char* type() { return "D"; }

};

main() {
B b;
D d;
B& br = b;
D& dr = d;
printf("Lvalues: %s %s\n",

(1 ? b : d).type(),
(0 ? b : d).type());

printf("References: %s %s\n",
(1 ? br : dr).type(),
(0 ? br : dr).type());

printf("Rvalues: %s %s\n",
(1 ? B() : D()).type(),
(0 ? B() : D()).type());

return 0;
}

For this one the results of different compilers are worth looking at.

Cfront 3.0 prints:

Lvalues: B D
References: B D
Rvalues: B D

Microsoft C++ prints:

Lvalues: B B
References: B B
Rvalues: B B

Borland C++ prints (folding in compile-time errors):

Lvalues: Compile-time error, two operands must evaluate to the same type
References: B D
Rvalues: Compile-time error, two operands must evaluate to the same type

(I think Borland is the only one that implements §5.16 as written.)

The unified model produces the following result:

Lvalues: B D
References: B D
Rvalues: Ill-formed

The rvalue case is ill-formed because the second and third operands undergo conversions as follows:
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B --> B&
D --> D& --> B&

They satisfy the operator?:(int, B&, B&) overloading. However, rvalues have been used to initialize non-
const references, so the expression is ill-formed.

6.2  Incomplete Types

Some built-in overloadings are errors if actually matched. For example:

struct A;
ptrdiff_t f(A* p) {

return p - p;// Error.
}

For binary - (and perhaps other operators), it is an error for the argument to be of type pointer-to-incomplete-type or
pointer-to-function-type

But there is a subtle question remaining. Does an argument of that type match the builtin template or not? Here is how
we check:

Example 6

// incompl2.C
struct Incomplete;
struct Complete {};
struct A {

operator Incomplete*();
operator Complete*();

};
void f(A a) {

a - a; // Ambiguous or
// a.operator Complete*() - a.operator Complete*()

}

Cfront, Microsoft C++, and Borland C++ say this is ambiguous; so I conclude that (quite properly) the builtin tem-
plate for unary operator* accepts pointer-to-incomplete-type in type matching. (Confusingly, this example is not
allowed at all unless we allow user-defined conversions for pointer subtraction, as suggested in section 5.3.)

6.3  A Simple “Four Corners” Example

Example 7

// 4corner2.C
// Template function, member function, regular function,
// and built-in operator all compete for the same operands.

struct A { void operator-(A); };
struct B {};
void operator-(B, B);
template <class T> void operator-(T, T);
struct C {};

void f(A a, B b, C c) {
a - a; // A::operator-(A)
b - b; // operator-(B, B)
c - c; // template instantiation operator-(C, C)
5 - 5; // built-in operator-(int, int)

}

There are no ambiguities in this example. But all examples of operator ambiguities are essentially perturbations of
this example (introducing user-defined conversions, introducing inheritance relationships, using a different operator,
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using pointer types instead of class types, etc.). I leave these an exercises for future papers.

7. A Related Approach: Microsoft C++

As I understand it, Microsoft C++ implements the built-in operators using overloadings, but they do not have a sepa-
rate argument context for built-in operators. Instead, they use a large number of overloadings, for example defining
overloadings for binary + on all 144 combinations of arithmetic types. Although this approach works, and it has the
advantage of relying a bit less on intricate conversion behavior, I think it is not suitable for a standard; there are too
many overloadings. They also convey less information. For example, the expression

s + 5 // s is a short

(assuming 16-bit shorts and 32-bit ints) results in s being sign-extended to 32 bits before the addition takes place.
My scheme conveys this fact by invoking a conversion from short to int and matching the int+int overload-
ing. But Microsoft C++ has an overloading short+int; so the sign-extending behavior must be expressed as part
of the definition of that overloading.


