
C++ Standard Library Defect Reports Page 1 of 25

Doc. no. J16/00-0004
 WG21 N1227
Date: 18 February 2000
Project: Programming Language C++
Reply to: Beman Dawes <beman@esva.net>

C++ Standard Library Defect Report List (Revision 12)
Committee Version

Reference ISO/IEC IS 14882:1998(E)

Also see:

l Table of Contents for all library issues.
l Index by Section for all library issues.
l Index by Status for all library issues.
l Library Active Issues List
l Library Closed Issues List

This document contains only library issues which have been closed by the Library Working Group. That is, issues
which have a status of DR, TC, or RR. See the "C++ Standard Library Active Issues List" for active issues and more
information. The introductory material in that document also applies to this document.

Revision History

l R12 added "and paragraph 5" to the proposed resolution of issue 29.
l R11 added potential defects from Kona (99-0044/N1220), changed the proposed resolution of issue 4 to NAD,

and changed the wording of proposed resolution of issue 38.

Defect Reports

1. C library linkage editing oversight

Section: 17.4.2.2 lib.using.linkage Status: DR Submitter: Beman Dawes Date: 16 Nov 97

The change specified in the proposed resolution below did not make it into the Standard. This change was accepted in
principle at the London meeting, and the exact wording below was accepted at the Morristown meeting.

Proposed Resolution:

Change lib.using.linkage paragraph 2 from:

It is unspecified whether a name from the Standard C library declared with external linkage has either
extern "C" or extern "C++" linkage.

to:

Whether a name from the Standard C library declared with external linkage has extern "C" or extern
"C++" linkage is implementation defined. It is recommended that an implementation use extern "C++"

C++ Standard Library Defect Reports Page 2 of 25

linkage for this purpose.

2. Auto_ptr conversions effects incorrect

Section: 20.4.5.3 lib.auto.ptr.conv Status: DR Submitter: Nathan Myers Date: 4 Dec 97

Paragraph 1 in "Effects", says "Calls p->release()" where it clearly must be "Calls p.release()". (As it is, it seems to
require using auto_ptr<>::operator-> to refer to X::release, assuming that exists.)

Proposed Resolution:

Change lib.auto.ptr.conv paragraph 1 Effects from "Calls p->release()" to "Calls p.release()".

4. Basic_string size_type and difference_type should be implementation defined

Section: 21.3 lib.basic.string Status: DR Submitter: Beman Dawes Date: 16 Nov 97

In Morristown we changed the size_type and difference_type typedefs for all the other containers to implementation
defined with a reference to lib.container.requirements. This should probably also have been done for strings.

Proposed Resolution:

Not a defect. [Originally classified as a defect, later reclassified. See the rationale.]

Rationale:

basic_string, unlike the other standard library template containers, is severely constrained by its use of char_traits.
Those types are dictated by the traits class, and are far from implementation defined.

[Kona: The LWG changed the proposed resolution of this issue for the reason given in the rationale above. The
original resolution had been to make the two typedefs implementation defined.]

5. String::compare specification questionable

Section: 21.3.6.8 lib.string::compare Status: DR Submitter: Jack Reeves Date: 11 Dec 97

At the very end of the basic_string class definition is the signature: int compare(size_type pos1, size_type n1, const
charT* s, size_type n2 = npos) const; In the following text this is defined as: returns
basic_string<charT,traits,Allocator>(*this,pos1,n1).compare(basic_string<charT,traits,Allocator>(s,n2);

Since the constructor basic_string(const charT* s, size_type n, const Allocator& a = Allocator()) clearly requires that s !
= NULL and n < npos and further states that it throws length_error if n == npos, it appears the compare() signature
above should always throw length error if invoked like so: str.compare(1, str.size()-1, s); where 's' is some null
terminated character array.

This appears to be a typo since the obvious intent is to allow either the call above or something like: str.compare(1,
str.size()-1, s, strlen(s)-1);

This would imply that what was really intended was two signatures int compare(size_type pos1, size_type n1, const

C++ Standard Library Defect Reports Page 3 of 25

charT* s) const int compare(size_type pos1, size_type n1, const charT* s, size_type n2) const; each defined in terms of
the corresponding constructor.

Proposed Resolution:

Replace the compare signature in 21.3 lib.basic.string (at the very end of the basic_string synopsis) which reads:

int compare(size_type pos1, size_type n1,
 const charT* s, size_type n2 = npos) const;

with:

int compare(size_type pos1, size_type n1,
 const charT* s) const;
int compare(size_type pos1, size_type n1,
 const charT* s, size_type n2) const;

Replace the portion of 21.3.6.8 lib.string::compare paragraphs 5 and 6 which read:

int compare(size_type pos, size_type n1,
 charT * s, size_type n2 = npos) const;
Returns:
basic_string<charT,traits,Allocator>(*this, pos, n1).compare(
 basic_string<charT,traits,Allocator>(s, n2))

with:

int compare(size_type pos, size_type n1,
 const charT * s) const;
Returns:
basic_string<charT,traits,Allocator>(*this, pos, n1).compare(
 basic_string<charT,traits,Allocator>(s))

int compare(size_type pos, size_type n1,
 const charT * s, size_type n2) const;
Returns:
basic_string<charT,traits,Allocator>(*this, pos, n1).compare(
 basic_string<charT,traits,Allocator>(s, n2))

Editors please note that in addition to splitting the signature, the third argument becomes const, matching the existing
synopsis.

Rationale:

While the LWG dislikes adding signatures, this is a clear defect in the Standard which must be fixed. The same
problem was also identified in issues 7.5 and 87.

7. String clause minor problems

Section: 21 lib.strings Status: DR Submitter: Matt Austern Date: 15 Dec 97

(1) In 21.3.5.4 lib.string::insert, the description of template <class InputIterator> insert(iterator, InputIterator,
InputIterator) makes no sense. It refers to a member function that doesn't exist. It also talks about the return value of a
void function.

(2) Several versions of basic_string::replace don't appear in the class synopsis.

C++ Standard Library Defect Reports Page 4 of 25

(3) basic_string::push_back appears in the synopsis, but is never described elsewhere. In the synopsis its agument is
const charT, which doesn't makes much sense; it should probably be charT, or possible const charT&.

(4) basic_string::pop_back is missing.

(5) int compare(size_type pos, size_type n1, charT* s, size_type n2 = npos) make no sense. First, it's const charT* in the
synopsis and charT* in the description. Second, given what it says in RETURNS, leaving out the final argument will
always result in an exception getting thrown. This is paragraphs 5 and 6 of 21.3.6.8 lib.string::compare.

(6) In table 37, in section 21.1.1 lib.char.traits.require, there's a note for X::move(s, p, n). It says "Copies correctly even
where p is in [s, s+n)". This is correct as far as it goes, but it doesn't go far enough; it should also guarantee that the
copy is correct even where s in in [p, p+n). These are two orthogonal guarantees, and neither one follows from the other.
Both guarantees are necessary if X::move is supposed to have the same sort of semantics as memmove (which was
clearly the intent), and both guarantees are necessary if X::move is actually supposed to be useful.

Proposed Resolution:

ITEM 1: In 21.3.5.4 [lib.string::insert], change paragraph 16 to

 EFFECTS: Equivalent to insert(p - begin(), basic_string(first, last)).

ITEM 2: Not a defect; the Standard is clear.. There are ten versions of replace() in the synopsis, and ten versions in
21.3.5.6 [lib.string::replace].

ITEM 3: Change the declaration of push_back in the string synopsis (21.3, [lib.basic.string]) from:

 void push_back(const charT)

to

 void push_back(charT)

Add the following text immediately after 21.3.5.2 [lib.string::append], paragraph 10.

 void basic_string::push_back(charT c);
 EFFECTS: Equivalent to append(static_cast<size_type>(1), c);

ITEM 4: Not a defect. The omission appears to have been deliberate.

ITEM 5: Duplicate; see issue 5 (and 87).

ITEM 6: In table 37, Replace:

 "Copies correctly even where p is in [s, s+n)."

with:

 "Copies correctly even where the ranges [p, p+n) and [s, s+n) overlap."

11. Bitset minor problems

Section: 23.3.5 lib.template.bitset Status: DR Submitter: Matt Austern Date: 22 Jan 98

(1) bitset<>::operator[] is mentioned in the class synopsis (23.3.5), but it is not documented in 23.3.5.2.

C++ Standard Library Defect Reports Page 5 of 25

(2) The class synopsis only gives a single signature for bitset<>::operator[], reference operator[](size_t pos). This doesn't
make much sense. It ought to be overloaded on const. reference operator[](size_t pos); bool operator[](size_t pos) const.

(3) Bitset's stream input function (23.3.5.3) ought to skip all whitespace before trying to extract 0s and 1s. The standard
doesn't explicitly say that, though. This should go in the Effects clause.

Rationale:

The LWG believes Item 3 is not a defect. "Formatted input" implies the desired semantics. See 27.6.1.2
lib.istream.formatted.

Proposed Resolution:

ITEMS 1 AND 2:

In the bitset synopsis (23.3.5, [lib.template.bitset]), replace the member function

 reference operator[](size_t pos);

with the two member functions

 bool operator[](size_t pos) const;
 reference operator[](size_t pos);

Add the following text at the end of 23.3.5.2 [lib.bitset.members], immediately after paragraph 45:

bool operator[](size_t pos) const;
Requires: pos is valid
Throws: nothing
Returns: test(pos)

bitset<N>::reference operator[](size_t pos);
Requires: pos is valid
Throws: nothing
Returns: An object of type bitset<N>::reference such that (*this)[pos] == this->test
(pos), and such that (*this)[pos] = val is equivalent to this->set(pos, val);

13. Eos refuses to die

Section: 27.6.1.2.3 lib.istream::extractors Status: DR Submitter: William M. Miller Date: 3 Mar 98

In 27.6.1.2.3, there is a reference to "eos", which is the only one in the whole draft (at least using Acrobat search), so it's
undefined.

Proposed Resolution:

In 27.6.1.2.3 lib.istream::extractors, replace "eos" with "charT()"

14. Locale::combine should be const

Section: 22.1.1.3 lib.locale.members Status: DR Submitter: Nathan Myers Date: 6 Aug 98

C++ Standard Library Defect Reports Page 6 of 25

locale::combine is the only member function of locale (other than constructors and destructor) that is not const. There is
no reason for it not to be const, and good reasons why it should have been const. Furthermore, leaving it non-const
conflicts with 22.1.1 paragraph 6: "An instance of a locale is immutable."

History: this member function originally was a constructor. it happened that the interface it specified had no
corresponding language syntax, so it was changed to a member function. As constructors are never const, there was no
"const" in the interface which was transformed into member "combine". It should have been added at that time, but the
omission was not noticed.

Proposed Resolution:

In 22.1.1 [lib.locale] and also in 22.1.1.3 [lib.locale.members], add "const" to the declaration of member combine:

template <class Facet> locale combine(const locale& other) const;

15. Locale::name requirement inconsistent

Section: 22.1.1.3 lib.locale.members Status: DR Submitter: Nathan Myers Date: 6 Aug 98

locale::name() is described as returning a string that can be passed to a locale constructor, but there is no matching
constructor.

Proposed Resolution:

In 22.1.1.3 [lib.locale.members], paragraph 5, replace "locale(name())" with "locale(name().c_str())".

16. Bad ctype_byname<char> decl

Section: 22.2.1.4 lib.locale.ctype.byname.special Status: DR Submitter: Nathan Myers Date: 6 Aug 98

The new virtual members ctype_byname<char>::do_widen and do_narrow did not get edited in properly. Instead, the
member do_widen appears four times, with wrong argument lists.

Proposed Resolution:

The correct declarations for the overloaded members do_narrow and do_widen should be copied from 22.2.1.3,
[lib.facet.ctype.special].

18. Get(...bool&) omitted

Section: 22.2.2.1.1 lib.facet.num.get.members Status: DR Submitter: Nathan Myers Date: 6 Aug 98

In the list of num_get<> non-virtual members on page 22-23, the member that parses bool values was omitted from the
list of definitions of non-virtual members, though it is listed in the class definition and the corresponding virtual is listed
everywhere appropriate.

Proposed Resolution:

C++ Standard Library Defect Reports Page 7 of 25

Add at the beginning of 22.2.2.1.1 [lib.facet.num.get.members] another get member for bool&, copied from the entry in
22.2.2.1 [lib.locale.num.get].

20. Thousands_sep returns wrong type

Section: 22.2.3.1.2 lib.facet.numpunct.virtuals Status: DR Submitter: Nathan Myers Date: 6 Aug 98

The synopsis for numpunct<>::do_thousands_sep, and the definition of numpunct<>::thousands_sep which calls it,
specify that it returns a value of type char_type. Here it is erroneously described as returning a "string_type".

Proposed Resolution:

In 22.2.3.1.2 [lib.facet.numpunct.virtuals], above paragraph 2, change "string_type" to "char_type".

22. Member open vs. flags

Section: 27.8.1.7 lib.ifstream.members Status: DR Submitter: Nathan Myers Date: 6 Aug 98

The description of basic_istream<>::open leaves unanswered questions about how it responds to or changes flags in the
error status for the stream. A strict reading indicates that it ignores the bits and does not change them, which confuses
users who do not expect eofbit and failbit to remain set after a successful open. There are three reasonable resolutions: 1)
status quo 2) fail if fail(), ignore eofbit 3) clear failbit and eofbit on call to open().

Proposed Resolution:

In 27.8.1.7 [lib.ifstream.members] paragraph 3, _and_ in 27.8.1.10 [lib.ofstream.members] paragraph 3, under open()
effects, add a footnote:

A successful open does not change the error state.

23. Num_get overflow result

Section: 22.2.2.1.2 lib.facet.num.get.virtuals Status: DR Submitter: Nathan Myers Date: 6 Aug 98

The current description of numeric input does not account for the possibility of overflow. This is an implicit result of
changing the description to rely on the definition of scanf() (which fails to report overflow), and conflicts with the
documented behavior of traditional and current implementations.

Users expect, when reading a character sequence that results in a value unrepresentable in the specified type, to have an
error reported. The standard as written does not permit this.

Proposed Resolution:

In 22.2.2.1.2 [lib.facet.num.get.virtuals], paragraph 11, second bullet item, change

The sequence of chars accumulated in stage 2 would have caused scanf to report an input failure.

to

C++ Standard Library Defect Reports Page 8 of 25

The sequence of chars accumulated in stage 2 would have caused scanf to report an input failure, or the
value of the sequence cannot be represented in the type of _val_.

24. "do_convert" doesn't exist

Section: 22.2.1.5.2 lib.locale.codecvt.virtuals Status: DR Submitter: Nathan Myers Date: 6 Aug 98

The description of codecvt<>::do_out and do_in mentions a symbol "do_convert" which is not defined in the standard.
This is a leftover from an edit, and should be "do_in and do_out".

Proposed Resolution:

In 22.2.1.5 [lib.locale.codecvt], paragraph 3, change "do_convert" to "do_in or do_out". Also, In 22.2.1.5.2
[lib.locale.codecvt.virtuals], change "do_convert()" to "do_in or do_out".

25. String operator<< uses width() value wrong

Section: 21.3.7.9 lib.string.io Status: DR Submitter: Nathan Myers Date: 6 Aug 98

In the description of operator<< applied to strings, the standard says that uses the smaller of os.width() and str.size(), to
pad "as described in stage 3" elsewhere; but this is inconsistent, as this allows no possibility of space for padding.

Proposed Resolution:

Change 21.3.7.9 lib.string.io paragraph 4 from:

 "... where n is the smaller of os.width() and str.size(); ..."

to:

 "... where n is the larger of os.width() and str.size(); ..."

27. String::erase(range) yields wrong iterator

Section: 21.3.5.5 lib.string::erase Status: DR Submitter: Nathan Myers Date: 6 Aug 98

The string::erase(iterator first, iterator last) is specified to return an element one place beyond the next element after the
last one erased. E.g. for the string "abcde", erasing the range ['b'..'d') would yield an iterator for element 'e', while 'd' has
not been erased.

Proposed Resolution:

In 21.3.5.5 [lib.string::erase], paragraph 10, change:

Returns: an iterator which points to the element immediately following _last_ prior to the element being
erased.

to read

C++ Standard Library Defect Reports Page 9 of 25

Returns: an iterator which points to the element pointed to by _last_ prior to the other elements being
erased.

28. Ctype<char>is ambiguous

Section: 22.2.1.3.2 [lib.facet.ctype.char.members] Status: DR Submitter: Nathan Myers Date: 6 Aug 98

The description of the vector form of ctype<char>::is can be interpreted to mean something very different from what
was intended. Paragraph 4 says

Effects: The second form, for all *p in the range [low, high), assigns vec[p-low] to table()[(unsigned
char)*p].

This is intended to copy the value indexed from table()[] into the place identified in vec[].

Proposed Resolution:

Change 22.2.1.3.2 [lib.facet.ctype.char.members], paragraph 4, to read

Effects: The second form, for all *p in the range [low, high), assigns into vec[p-low] the value table()
[(unsigned char)*p].

29. Ios_base::init doesn't exist

Section: 27.3.1 lib.narrow.stream.objects Status: DR Submitter: Nathan Myers Date: 6 Aug 98

Sections 27.3.1 and 27.3.2 [lib.wide.stream.objects] mention a function ios_base::init, which is not defined. Probably it
means basic_ios<>::init, defined in 27.4.4.1 [lib.basic.ios.cons], paragraph 3.

Proposed Resolution:

[R12: modified to include paragraph 5.]

In 27.3.1 [lib.narrow.stream.objects] paragraph 2 and 5, change

ios_base::init

to

basic_ios<char>::init

Also, make a similar change in 27.3.2 [lib.wide.stream.objects] except it should read

basic_ios<wchar_t>::init

30. Wrong header for LC_*

C++ Standard Library Defect Reports Page 10 of 25

Section: 22.1.1.1.1 [lib.locale.category] Status: DR Submitter: Nathan Myers Date: 6 Aug 98

Paragraph 2 implies that the C macros LC_CTYPE etc. are defined in <cctype>, where they are in fact defined
elsewhere to appear in <clocale>.

Proposed Resolution:

In 22.1.1.1.1 [lib.locale.category], paragraph 2, change "<cctype>" to read "<clocale>".

33. Codecvt<> mentions from_type

Section: 22.2.1.5.2 [lib.locale.codecvt.virtuals] Status: DR Submitter: Nathan Myers Date: 6 Aug 98

In the table defining the results from do_out and do_in, the specification for the result _error_ says

encountered a from_type character it could not convert

but from_type is not defined. This clearly is intended to be an externT for do_in, or an internT for do_out.

Proposed Resolution:

In 22.2.1.5.2 [lib.locale.codecvt.virtuals], paragraph 4, replace the definition in the table for the case of _error_ with

encountered a character in [from,from_end) that it could not convert.

34. True/falsename() not in ctype<>

Section: 22.2.2.2.2 [lib.facet.num.get.virtuals] Status: DR Submitter: Nathan Myers Date: 6 Aug 98

In paragraph 19, Effects:, members truename() and falsename are used from facet ctype<charT>, but it has no such
members. Note that this is also a problem in 22.2.2.1.2, addressed in (4).

Proposed Resolution:

In 22.2.2.2.2 [lib.facet.num.get.virtuals], paragraph 19, in the Effects: clause for member put(...., bool), replace the
initialization of the string_type value s as follows:

const numpunct& np = use_facet<numpunct<charT> >(loc);
string_type s = val ? np.truename() : np.falsename();

35. No manipulator unitbuf in synopsis

Section: 27.4 [lib.iostreams.base] Status: DR Submitter: Nathan Myers Date: 6 Aug 98

In 27.4.5.1, [lib.fmtflags.manip], we have a definition for a manipulator named "unitbuf". Unlike other manipulators,
it's not listed in sysopsis. Similarly for "nounitbuf".

Proposed Resolution:

C++ Standard Library Defect Reports Page 11 of 25

Add to the synopsis for <ios> in 27.4 [lib.iostreams.base], after the entry for "nouppercase", the prototypes:

ios_base& unitbuf(ios_base& str);
ios_base& nounitbuf(ios_base& str);

36. Iword & pword storage lifetime omitted

Section: 27.4.2.5 [lib.ios.base.storage] Status: DR Submitter: Nathan Myers Date: 6 Aug 98

In the definitions for ios_base::iword and pword, the lifetime of the storage is specified badly, so that an implementation
which only keeps the last value stored appears to conform. In particular, it says:

The reference returned may become invalid after another call to the object's iword member with a different index ...

This is not idle speculation; at least one implementation was done this way.

Proposed Resolution:

Add in 27.4.2.5 [lib.ios.base.storage], in both paragraph 2 and also in paragraph 4, replace the sentence:

The reference returned may become invalid after another call to the object's iword [pword] member with
a different index, after a call to its copyfmt member, or when the object is destroyed.

with:

The reference returned is invalid after any other operations on the object. However, the value of the
storage referred to is retained, so that until the next call to copyfmt, calling iword [pword] with the same
index yields another reference to the same value.

substituting "iword" or "pword" as appropriate.

37. Leftover "global" reference

Section: 22.1.1 [lib.locale] Status: DR Submitter: Nathan Myers Date: 6 Aug 98

In the overview of locale semantics, paragraph 4, is the sentence

If Facet is not present in a locale (or, failing that, in the global locale), it throws the standard exception
bad_cast.

This is not supported by the definition of use_facet<>, and represents semantics from an old draft.

Proposed Resolution:

In 22.1.1 [lib.locale], paragraph 4, delete the parenthesized expression

(or, failing that, in the global locale)

C++ Standard Library Defect Reports Page 12 of 25

38. Facet definition incomplete

Section: 22.1.2 [lib.locale.global.templates] Status: DR Submitter: Nathan Myers Date: 6 Aug 98

It has been noticed by Esa Pulkkinen that the definition of "facet" is incomplete. In particular, a class derived from
another facet, but which does not define a member _id_, cannot safely serve as the argument _F_ to use_facet<F>(loc),
because there is no guarantee that a reference to the facet instance stored in _loc_ is safely convertible to _F_.

Proposed Resolution:

In the definition of std::use_facet<>(), replace the text in paragraph 1 which reads:

Get a reference to a facet of a locale.

with:

Requires: Facet is a facet class whose definition contains the public static member id as defined in
(22.1.1.1.2, [lib.locale.facet]).

[Kona: strike as overspecification the text "(not inherits)" from the resolution, which read "... whose definition contains
(not inherits) the public static member id ..."]

39. istreambuf_iterator<>::operator++(int) definition garbled

Section: 24.5.3.4 [lib.istreambuf.iterator::op++] Status: DR Submitter: Nathan Myers Date: 6 Aug 98

Following the definition of istreambuf_iterator<>::operator++(int) in paragraph 3, the standard contains three lines of
garbage text left over from a previous edit.

istreambuf_iterator<charT,traits> tmp = *this;
sbuf_->sbumpc();
return(tmp);

Proposed Resolution:

In 24.5.3.4 [lib.istreambuf.iterator::op++], delete the three lines of code at the end of paragraph 3.

40. Meaningless normative paragraph in examples

Section: 22.2.8 [lib.facets.examples] Status: DR Submitter: Nathan Myers Date: 6 Aug 98

Paragraph 3 of the locale examples is a description of part of an implementation technique that has lost its referent, and
doesn't mean anything.

Proposed Resolution:

Delete 22.2.8 [lib.facets.examples] paragraph 3 which begins "This initialization/identification system depends...", or (at
the editor's option) replace it with a place-holder to keep the paragraph numbering the same.

C++ Standard Library Defect Reports Page 13 of 25

46. Minor Annex D errors

Section: D.7 depr.strstreambuf, depr.strstream Status: DR Submitter: Brendan Kehoe Date: 1 Jun 98

See lib-6522, edit- 814.

Proposed Resolution:

Change D.7.1 depr.strstreambuf (since streambuf is a typedef of basic_streambuf<char>) from:

 virtual streambuf<char>* setbuf(char* s, streamsize n);

to:

 virtual streambuf* setbuf(char* s, streamsize n);

In D.7.4 depr.strstream insert the semicolon now missing after int_type:

 namespace std {
 class strstream
 : public basic_iostream<char> {
 public:
 // Types
 typedef char char_type;
 typedef typename char_traits<char>::int_type int_type
 typedef typename char_traits<char>::pos_type pos_type;

47. Imbue() and getloc() Returns clauses swapped

Section: 27.4.2.3 lib.ios.base.locales Status: DR Submitter: Matt Austern Date: 21 Jun 98

Section 27.4.2.3 specifies how imbue() and getloc() work. That section has two RETURNS clauses, and they make no
sense as stated. They make perfect sense, though, if you swap them. Am I correct in thinking that paragraphs 2 and 4
just got mixed up by accident?

Proposed Resolution:

In 27.4.2.3 lib.ios.base.locales swap paragraphs 2 and 4.

48. Use of non-existent exception constructor

Section: 27.4.2.1.1 lib.ios::failure Status: DR Submitter: Matt Austern Date: 21 Jun 98

27.4.2.1.1, paragraph 2, says that class failure initializes the base class, exception, with exception(msg). Class exception
(see 18.6.1) has no such constructor.

Proposed Resolution:

Replace 27.4.2.1.1 [lib.ios::failure], paragraph 2, with

EFFECTS: Constructs an object of class failure.

C++ Standard Library Defect Reports Page 14 of 25

51. Requirement to not invalidate iterators missing

Section: 23.1 lib.container.requirements Status: DR Submitter: David Vandevoorde Date: 23 Jun 98

The std::sort algorithm can in general only sort a given sequence by moving around values. The list<>::sort() member
on the other hand could move around values or just update internal pointers. Either method can leave iterators into the
list<> dereferencable, but they would point to different things.

Does the FDIS mandate anywhere which method should be used for list<>::sort()?

A committee member [Matt Austern, lib-6528] comments:

I think you've found an omission in the standard.

The library working group discussed this point, and there was supposed to be a general requirement saying that list, set,
map, multiset, and multimap may not invalidate iterators, or change the values that iterators point to, except when an
operation does it explicitly. So, for example, insert() doesn't invalidate any iterators and erase() and remove() only
invalidate iterators pointing to the elements that are being erased.

I looked for that general requirement in the FDIS, and, while I found a limited form of it for the sorted associative
containers, I didn't find it for list. It looks like it just got omitted.

The intention, though, is that list<>::sort does not invalidate any iterators and does not change the values that any
iterator points to. There would be no reason to have the member function otherwise.

The issues list maintainer [Beman Dawes] comments:

This was US issue CD2-23-011; it was accepted in London but the change was not made due to an editing oversight.
The wording in the proposed resolution below is somewhat updated from CD2-23-011, particularly the addition of the
phrase "or change the values of"

Proposed Resolution:

Add a new paragraph at the end of 23.1:

Unless otherwise specified (either explicitly or by defining a function in terms of other functions),
invoking a container member function or passing a container as an argument to a library function shall
not invalidate iterators to, or change the values of, objects within that container.

52. Small I/O problems

Section: 27.4.3.2 lib.fpos.operations Status: DR Submitter: Matt Austern Date: 23 Jun 98

First, 27.4.4.1 lib.basic.ios.cons table 89. This is pretty obvious: it should be titled "basic_ios<>() effects", not "ios_base
() effects".

[The second item is a duplicate; see issue 6 for resolution.]

Second, 27.4.3.2 lib.fpos.operations table 88 . There are a couple different things wrong with it, some of which I've
already discussed with Jerry, but the most obvious mechanical sort of error is that it uses expressions like P(i) and p(i),

C++ Standard Library Defect Reports Page 15 of 25

without ever defining what sort of thing "i" is.

(The other problem is that it requires support for streampos arithmetic. This is impossible on some systems, i.e. ones
where file position is a complicated structure rather than just a number. Jerry tells me that the intention was to require
syntactic support for streampos arithmetic, but that it wasn't actually supposed to do anything meaningful except on
platforms, like Unix, where genuine arithmetic is possible.)

Proposed Resolution:

Change 27.4.4.1 lib.basic.ios.cons table 89 title from "ios_base() effects" to "basic_ios<>() effects".

54. Basic_streambuf's destructor

Section: 27.5.2.1 lib.streambuf.cons Status: DR Submitter: Matt Austern Date:25 Jun 98

The class synopsis for basic_streambuf shows a (virtual) destructor, but the standard doesn't say what that destructor
does. My assumption is that it does nothing, but the standard should say so explicitly.

Proposed Resolution:

Add after 27.5.2.1 lib.streambuf.cons paragraph 2:

virtual ~basic_streambuf();

Effects: None.

55. Invalid stream position is undefined

Section: 27 lib.input.output Status: DR Submitter: Matt Austern Date:26 Jun 98

Several member functions in clause 27 are defined in certain circumstances to return an "invalid stream position", a
term that is defined nowhere in the standard. Two places (27.5.2.4.2, paragraph 4, and 27.8.1.4, paragraph 15) contain
a cross-reference to a definition in _lib.iostreams.definitions_, a nonexistent section.

I suspect that the invalid stream position is just supposed to be pos_type(-1). Probably best to say explicitly in (for
example) 27.5.2.4.2 that the return value is pos_type(-1), rather than to use the term "invalid stream position", define
that term somewhere, and then put in a cross-reference.

The phrase "invalid stream position" appears ten times in the C++ Standard. In seven places it refers to a return value,
and it should be changed. In three places it refers to an argument, and it should not be changed. Here are the three
places where "invalid stream position" should not be changed:

27.7.1.3 [lib.stringbuf.virtuals], paragraph 14
27.8.1.4 [lib.filebuf.virtuals], paragraph 14
D.7.1.3 [depr.strstreambuf.virtuals], paragraph 17

Proposed Resolution:

In 27.5.2.4.2 [lib.streambuf.virt.buffer], paragraph 4, change "Returns an object of class pos_type that stores an invalid
stream position (_lib.iostreams.definitions_)" to "Returns pos_type(off_type(-1))".

C++ Standard Library Defect Reports Page 16 of 25

In 27.5.2.4.2 [lib.streambuf.virt.buffer], paragraph 6, change "Returns an object of class pos_type that stores an invalid
stream position" to "Returns pos_type(off_type(-1))".

In 27.7.1.3 [lib.stringbuf.virtuals], paragraph 13, change "the object stores an invalid stream position" to "the return
value is pos_type(off_type(-1))".

In 27.8.1.4 [lib.filebuf.virtuals], paragraph 13, change "returns an invalid stream position (27.4.3)" to "returns
pos_type(off_type(-1))"

In 27.8.1.4 [lib.filebuf.virtuals], paragraph 15, change "Otherwise returns an invalid stream position
(_lib.iostreams.definitions_)" to "Otherwise returns pos_type(off_type(-1))"

In D.7.1.3 [depr.strstreambuf.virtuals], paragraph 15, change "the object stores an invalid stream position" to "the return
value is pos_type(off_type(-1))"

In D.7.1.3 [depr.strstreambuf.virtuals], paragraph 18, change "the object stores an invalid stream position" to "the return
value is pos_type(off_type(-1))"

56. Showmanyc's return type

Section: 27.5.2 lib.streambuf Status: DR Submitter: Matt Austern Date:29 Jun 98

The class summary for basic_streambuf<>, in 27.5.2, says that showmanyc has return type int. However, 27.5.2.4.3 says
that its return type is streamsize.

Proposed Resolution:

Change showmanyc's return type in the 27.5.2 lib.streambuf class summary to streamsize.

57. Mistake in char_traits

Section: 21.1.3.2 lib.char.traits.specializations.wchar.t Status: DR Submitter: Matt Austern Date:1 Jul 98

21.1.3.2, paragraph 3, says "The types streampos and wstreampos may be different if the implementation supports no
shift encoding in narrow-oriented iostreams but supports one or more shift encodings in wide-oriented streams".

That's wrong: the two are the same type. The <iosfwd> summary in 27.2 says that streampos and wstreampos are,
respectively, synonyms for fpos<char_traits<char>::state_type> and fpos<char_traits<wchar_t>::state_type>, and,
flipping back to clause 21, we see in 21.1.3.1 and 21.1.3.2 that char_traits<char>::state_type and
char_traits<wchar_t>::state_type must both be mbstate_t.

Proposed Resolution:

Remove the sentence in 21.1.3.2 lib.char.traits.specializations.wchar.t paragraph 3 which begins "The types streampos
and wstreampos may be different..." .

59. Ambiguity in specification of gbump

C++ Standard Library Defect Reports Page 17 of 25

Section: 27.5.2.3.1 lib.streambuf.get.area Status: DR Submitter: Matt Austern Date:28 Jul 98

27.5.2.3.1 says that basic_streambuf::gbump() "Advances the next pointer for the input sequence by n."

The straightforward interpretation is that it is just gptr() += n. An alternative interpretation, though, is that it behaves as
if it calls sbumpc n times. (The issue, of course, is whether it might ever call underflow.) There is a similar ambiguity in
the case of pbump.

Jerry reports that the AT&T implementation used the former interpretation.

Proposed Resolution:

Change 27.5.2.3.1 lib.streambuf.get.area paragraph 4 gbump effects from:

Effects: Advances the next pointer for the input sequence by n.

to:

Effects: Adds n to the next pointer for the input sequence.

Make the same change to 27.5.2.3.2 lib.streambuf.put.area paragraph 4 pbump effects.

62. Sync's return value

Section: 27.6.1.3 lib.istream.unformatted Status: DR Submitter: Matt Austern Date:6 Aug 98

The Effects clause for sync() (27.6.1.3, paragraph 36) says that it "calls rdbuf()->pubsync() and, if that function returns -
1 ... returns traits::eof()."

That looks suspicious, because traits::eof() is of type traits::int_type while the return type of sync() is int.

Proposed Resolution:

In 27.6.1.3 lib.istream.unformatted, paragraph 36, change "returns traits::eof()" to "returns -1".

64. Exception handling in basic_istream::operator>>(basic_streambuf*)

Section: 27.6.1.2.3 lib.istream::extractors Status: DR Submitter: Matt Austern Date:11 Aug 98

27.6.1.2.3, paragraph 13, is ambiguous. It can be interpreted two different ways, depending on whether the second
sentence is read as an elaboration of the first.

Proposed Resolution:

Replace 27.6.1.2.3 lib.istream::extractors, paragraph 13, which begins "If the function inserts no characters ..." with:

If the function inserts no characters, it calls setstate(failbit), which may throw
ios_base::failure (27.4.4.3). If it inserted no characters because it caught an exception thrown
while extracting characters from sb and failbit is on in exceptions() (27.4.4.3), then the caught

C++ Standard Library Defect Reports Page 18 of 25

exception is rethrown.

66. Strstreambuf::setbuf

Section: D.7.1.3 depr.strstreambuf.virtuals Status: DR Submitter: Matt Austern Date:18 Aug 98

D.7.1.3, paragraph 19, says that strstreambuf::setbuf "Performs an operation that is defined separately for each class
derived from strstreambuf". This is obviously an incorrect cut-and-paste from basic_streambuf. There are no classes
derived from strstreambuf.

Proposed Resolution:

D.7.1.3 depr.strstreambuf.virtuals, paragraph 19, replace the setbuf effects clause which currently says "Performs an
operation that is defined separately for each class derived from strstreambuf" with:

Effects: implementation defined, except that setbuf(0,0) has no effect.

68. Extractors for char* should store null at end

Section: 27.6.1.2.3 lib.istream::extractors Status: DR Submitter: Angelika Langer Date: 14 Jul 98

Extractors for char* (27.6.1.2.3) do not store a null character after the extracted character sequence whereas the
unformatted functions like get() do. Why is this?

Jerry Schwarz: There is apparently an editing glitch. You'll notice that the last item of the list of what stops extraction
doesn't make any sense. It was supposed to be the line that said a null is stored.

Proposed Resolution:

27.6.1.2.3 lib.istream::extractors, paragraph 7, change the last list item from:

A null byte (charT()) in the next position, which may be the first position if no characters were extracted.

to become a new paragraph which reads:

Operator>> then stores a null byte (charT()) in the next position, which may be the first position if no characters were
extracted.

69. Must elements of a vector be contiguous?

Section: 23.2.4 lib.vector Status: DR Submitter: Andrew Koenig Date: 29 Jul 1998

The issue is this:

 Must the elements of a vector be in contiguous memory?

(Please note that this is entirely separate from the question of whether a vector iterator is required to be a pointer; the
answer to that question is clearly "no," as it would rule out debugging implementations)

C++ Standard Library Defect Reports Page 19 of 25

Proposed Resolution:

Add the following text to the end of 23.2.4 [lib.vector], paragraph 1.

The elements of a vector are stored contiguously, meaning that if v is a vector<T, Allocator> where
T is some type other than bool, then it obeys the identity &v[n] == &v[0] + n for all 0 <= n <
v.size().

Rationale:

The LWG feels that as a practical matter the answer is clearly "yes". There was considerable discussion as to the best
way to express the concept of "contiguous", which is not directly defined in the standard. Discussion included:

l An operational definition similar to the above proposed resolution is already used for valarray (26.3.2.3).
l There is no need to explicitly consider a user-defined operator& because elements must be copyconstructible

(23.1 para 3) and copyconstructible (20.1.3) specifies requirements for operator&.
l There is no issue of one-past-the-end because of language rules.

70. Uncaught_exception() missing throw() specification

Section: 18.6 lib.support.exception, 18.6.4 lib.uncaught Status: DR Submitter: Steve Clamage Date:

In article 3E04@pratique.fr, Valentin Bonnard writes:

uncaught_exception() doesn't have a throw specification.

It is intentionnal ? Does it means that one should be prepared to handle exceptions thrown from uncaught_exception() ?

uncaught_exception() is called in exception handling contexts where exception safety is very important. >

Proposed Resolution:

In 18.6 lib.support.exception and 18.6.4 lib.uncaught add "throw()" to uncaught_exception().

71. Do_get_monthname synopsis missing argument

Section: 22.2.5.1 [lib.locale.time.get] Status: DR Submitter: Nathan Myers Date: 13 Aug 98

The locale facet member time_get<>::do_get_monthname is described in 22.2.5.1.2 [lib.locale.time.get.virtuals]
with five arguments, consistent with do_get_weekday and with its specified use by member get_monthname. However,
in the synopsis, it is specified instead with four arguments. The missing argument is the "end" iterator value.

Proposed Resolution:

In 22.2.5.1 [lib.locale.time.get], add an "end" argument to the declaration of member do_monthname as follows:

 virtual iter_type do_get_monthname(iter_type s, iter_type end, ios_base&,
 ios_base::iostate& err, tm* t) const;

C++ Standard Library Defect Reports Page 20 of 25

74. Garbled text for codecvt::do_max_length

Section: 22.2.1.5.2 lib.locale.codecvt.virtuals Status: DR Submitter: Matt Austern Date: 18 Sep 98

The text of codecvt::do_max_length's "Returns" clause (22.2.1.5.2, paragraph 11) is garbled. It has unbalanced
parentheses and a spurious n.

Proposed Resolution:

Replace 22.2.1.5.2 lib.locale.codecvt.virtuals paragraph 11 with the following:

Returns: The maximum value that do_length(state, from, from_end, 1) can return for any
valid range [from, from_end) and stateT value state. The specialization codecvt<char, char,
mbstate_t>::do_max_length() returns 1.

75. Contradiction in codecvt::length's argument types

Section: 22.2.1.5 lib.locale.codecvt Status: DR Submitter: Matt Austern Date: 18 Sep 98

The class synopses for classes codecvt<> (22.2.1.5) and codecvt_byname<> (22.2.1.6) say that the first parameter of
the member functions length and do_length is of type const stateT&. The member function descriptions,
however (22.2.1.5.1, paragraph 6; 22.2.1.5.2, paragraph 9) say that the type is stateT&. Either the synopsis or the
summary must be changed.

If (as I believe) the member function descriptions are correct, then we must also add text saying how do_length
changes its stateT argument.

Proposed Resolution:

In 22.2.1.5 [lib.locale.codecvt], and also in 22.2.1.6 [lib.locale.codecvt_byname], change the stateT argument type on
both member length() and member do_length() from

const stateT&

to

stateT&

In 22.2.1.5.2 [lib.locale.codecvt.virtuals], add to the definition for member do_length a paragraph:

Effects: The effect on the state argument is ``as if'' it called do_in(state, from, from_end,
from, to, to+max, to) for to pointing to a buffer of at least max elements.

78. Typo: event_call_back

Section: 27.4.2 lib.ios.base Status: DR Submitter: Nico Josuttis Date: 29 Sep 98

typo: event_call_back should be event_callback

C++ Standard Library Defect Reports Page 21 of 25

Proposed Resolution:

In the 27.4.2 lib.ios.base synopsis change "event_call_back" to "event_callback".

79. Inconsistent declaration of polar()

Section: 26.2.1 lib.complex.synopsis, 26.2.7 lib.complex.value.ops Status: DR Submitter: Nico Josuttis Date: 29
Sep 98

In 26.2.1 lib.complex.synopsis polar is declared as follows:

 template<class T> complex<T> polar(const T&, const T&);

In 26.2.7 lib.complex.value.ops it is declared as follows:

 template<class T> complex<T> polar(const T& rho, const T& theta = 0);

Thus whether the second parameter is optional is not clear.

Proposed Resolution:

In 26.2.1 lib.complex.synopsis change:

 template<class T> complex<T> polar(const T&, const T&);

to:

 template<class T> complex<T> polar(const T& rho, const T& theta = 0);

80. Global Operators of complex declared twice

Section: 26.2.1 lib.complex.synopsis, 26.2.2 lib.complex Status: DR Submitter: Nico Josuttis Date: 29 Sep 98

Both 26.2.1 and 26.2.2 contain declarations of global operators for class complex. This redundancy should be removed.

Proposed Resolution:

Reduce redundancy according to the general style of the standard.

90. Incorrect description of operator >> for strings

Section: 21.3.7.9 lib.string.io Status: DR Submitter: Nico Josuttis Date: 29 Sep 98

The effect of operator >> for strings containe the following item:

 isspace(c,getloc()) is true for the next available input character c.

C++ Standard Library Defect Reports Page 22 of 25

Here getloc() has to be replaced by is.getloc().

Proposed resolution:

In 21.3.7.9 lib.string.io paragraph 1 Effects clause replace:

isspace(c,getloc()) is true for the next available input character c.

with:

isspace(c,is.getloc()) is true for the next available input character c.

106. Numeric library private members are implementation defined

Section: 26.3.5 lib.template.slice.array, etc. Status: DR Submitter: AFNOR Date: 7 Oct 98

This is the only place in the whole standard where the implementation has to document something private.

Proposed Resolution:

Remove the comment which says "// remainder implementation defined" from:

l 26.3.5 lib.template.slice.array
l 26.3.7 lib.template.gslice.array
l 26.3.8 lib.template.mask.array
l 26.3.9 lib.template.indirect.array

110. istreambuf_iterator::equal not const

Section: 24.5.3 [lib.istreambuf.iterator], 24.5.3.5 [lib.istreambuf.iterator::equal] Status: DR Submitter: Nathan Myers
Date: 15 Oct 98

Member istreambuf_iterator<>::equal is not declared "const", yet 24.5.3.6 [lib.istreambuf.iterator::op==] says that
operator==, which is const, calls it. This is contradictory.

Proposed Resolution:

In 24.5.3 [lib.istreambuf.iterator] and also in 24.5.3.5 [lib.istreambuf.iterator::equal], replace:

bool equal(istreambuf_iterator& b);

with:

bool equal(const istreambuf_iterator& b) const;

124. ctype_byname<charT>::do_scan_is & do_scan_not return type should be const charT*

Section: 22.2.1.2 lib.locale.ctype.byame Status: DR Submitter: Judy Ward Date: 15 Dec 1998

C++ Standard Library Defect Reports Page 23 of 25

In Section 22.2.1.2 lib.locale.ctype.byame ctype_byname<charT>::do_scan_is() and do_scan_not() are declared to
return a const char* not a const charT*.

Proposed Resolution:

Change Section 22.2.1.2 lib.locale.ctype.byame do_scan_is() and do_scan_not() to return a const charT*.

125. valarray<T>::operator!() return type is inconsistent

Section: 26.3.2 lib.template.valarray Status: DR Submitter: Judy Ward Date: 15 Dec 1998

In Section 26.3.2 lib.template.valarray valarray<T>::operator!() is declared to return a valarray<T>, but in Section
26.3.2.5 lib.valarray.unary it is declared to return a valarray<bool>. The latter appears to be correct.

Proposed Resolution:

Change in Section 26.3.2 lib.template.valarray the declaration of operator!() so that the return type is
valarray<bool>.

126. typos in Effects clause of ctype::do_narrow()

Section: 22.2.1.1.2 lib.locale.ctype.virtuals Status: DR Submitter: Judy Ward Date: 15 Dec 1998

Proposed Resolution:

In Section 22.2.1.1.2 lib.locale.ctype.virtuals change:

 do_widen(do_narrow(c),0) == c

to:

 do_widen(do_narrow(c,0)) == c

and change:

 (is(M,c) || !ctc.is(M, do_narrow(c),dfault))

to:

 (is(M,c) || !ctc.is(M, do_narrow(c,dfault)))

132. list::resize description uses random access iterators

Section: 23.2.2.2 lib.list.capacity Status: DR Submitter: Howard Hinnant Date: 6 Mar 99

The description reads:

-1- Effects:

C++ Standard Library Defect Reports Page 24 of 25

 if (sz > size())
 insert(end(), sz-size(), c);
 else if (sz < size())
 erase(begin()+sz, end());
 else
 ; // do nothing

Obviously list::resize should not be specified in terms of random access iterators.

Proposed Resolution:

Change 23.2.2.2 paragraph 1 to:

Effects:

 if (sz > size())
 insert(end(), sz-size(), c);
 else if (sz < size())
 {
 iterator i = begin();
 advance(i, sz);
 erase(i, end());
 }

[Dublin: The LWG asked Howard to discuss exception safety offline with David Abrahams. They had a discussion and
believe there is no issue of exception safety with the proposed resolution.]

133. map missing get_allocator()

Section: 23.3.1 lib.map Status: DR Submitter: Howard Hinnant Date: 6 Mar 99

The title says it all.

Proposed Resolution:

Insert in 23.3.1 [lib.map], paragraph 2, after operator= in the map declaration:

 allocator_type get_allocator() const;

139. Optional sequence operation table description unclear

Section: 23.1.1 lib.sequence.reqmts Status: DR Submitter: Andrew Koenig Date: 30 Mar 99

The sentence introducing the Optional sequence operation table (23.1.1 paragraph 12) has two problems:

A. It says ``The operations in table 68 are provided only for the containers for which they take constant time.''

That could be interpreted in two ways, one of them being ``Even though table 68 shows particular operations as being
provided, implementations are free to omit them if they cannot implement them in constant time.''

B. That paragraph says nothing about amortized constant time, and it should.

Proposed Resolution:

C++ Standard Library Defect Reports Page 25 of 25

Replace the wording in 23.1.1 paragraph 12 which begins ``The operations in table 68 are provided only..." with:

Table 68 lists sequence operations that are provided for some types of sequential containers but not
others. An implementation shall provide these operations for all container types shown in the ``container''
column, and shall implement them so as to take amortized constant time.

----- End of document -----

