Doc No: SC22/WG21/N1608
J16/04-0048

Date: February 13, 2004
Project: JTC1.22.32

Reply to: Herb Sutter
Microsoft Corp.
1 Microsoft Way
Redmond WA USA 98052
Email: hsutter@microsoft.com

TGs Liaison Report #2

The TG5 (C++/CLI) meeting #2 was held in Kona, HI, USA on January 29-31, 2004.

The following TG5 documents are attached to this liaison report: All current TG5 documents, exclud-
ing unapproved minutes.

Note: See the previous liaison report, N1563, for additional documents.

A B C D E F G H |
Date Raised?]Issue Raiser? Reference [JIssue Type [Owner Comment Other Remarks Resolved? JPostponed?
7-Oct-03|Rex Jaeschke Technical The current CLI spec supports Unicode V?S.O. Peter Brought up during the phone meeting of 10/7. No
Hallam of MS has an action item to see what's
involved in having TG2 (C#) and TG3 (CLI) support
Unicode V4.0. If TG3 makes changes in this direction,
TGS5 should look at how this would affect its spec.
7-0Oct-03|Tom Plum Technical Diagnostics: How should we deal with warnings and |Brought up during the phone meeting of 10/7. No
such?
10-Oct-03|Phone meeting Technical Future directions: Should there be an informative No
annex listing future directions?
Possible entries are:
1. Supporting static members in interfaces
2. Mixed types
3. gcnew of unmanaged types
4. new of managed types
10-Oct-2003|Tom Plum Technical While discussing enums (25.1.3) and wchar_t's not In email on 10/12/2003 Tom Plum wrote: No
being permitted as an underlying type, a discussion
arose w.r.t CLI's requiring wchar_t to have the same [Refining my comments re wchar_t, I see a short-term
representation as System::Char; that is, a 16-bit and a long-term ...
character.
Short-term, there's no need to change anything. The
This needs further investigation. 16-bit unicode type is wchar_t in VC++ and in
C++/CLI.
Possible need to look at/point to the PDTR currently
out from WG11 (ISO C). Long-term, the decision is up to TG5, and depends
upon who participates. My own guess is that TG5 in
fact will be the first group that has to integrate Unicode
3.1 and 4.0 into its language definition. I suspect that
before we're done we'll have four types of character
(and literal and C++ string):
char - has to be 8 bits to integrate with CLI
'x' "str" string = basic_string<char>
wchar_t - implementation's legacy choice of widechar
L'x" L"str" wstring = basic_string<wchar_t>
charl6_t - 16-bit character type, has to be UCS-2 or
UTF-16 for CLI
u'x' u"str" ustring (?) = basic_string<charl6_t> (or
string16?)
char32_t - 32-bit character type, has to be UTF-32 for
CLI
U'x" U"str" Ustring (?) = basic_string<char32_t>
(or string32?)
wchar_t can be the same type as charl6_t or char32_t,
but isn't required to be
10-Oct-2003[Phone meeting Technical Issue of mapping system value types to the No

fundamental types, and interop with the standard

library.

A B C D E F H |
Date Raised?]Issue Raiser? Reference [JIssue Type [Owner Comment Other Remarks Resolved? Postponed?_
21-Oct-03|Rex Jaeschke Technical What is the interaction between the standard 1/0 No

streams and System::Console?

Ecma/TC39-TG5/2004/3

C++/CLI

Language Specification

Working Draft 1.1, Jan, 2004

Publication Time: 1/10/2004 5:25 PM

Table of Contents

Table of Contents

RS Tolo] o 1T PSR UPRPRTRN 1
R O o] o) (0] i 1= 0 [2
I N (0] 1 0 1 Eo YT =Y (=) (= (ST 3
O B L 1 aTL (0] ORI 4
RN o) e o] g F=1 IoTo] 0 V2T a] £ Lo 1T 7
6. ACronymMs and abBDIEVIALIONScc.civiieiiie ettt ettt e s e et e te e e e s beateebesteesaesteaneeseenee e 8
A CT=T 1= = I LTSt o) T S 9
LI Lo U F: o TR 01V = Y 1= USSP 10
8.1 GELLING STAITEMe.eeeeeiieieeie ettt bbbt b bbbt et h e st b ettt e 10
ST Y o= T TP TU P PPTOPRTOT 10
8.2.1 Fundamental types and the CLIcoviiiiiii i s 12
A 0 1 11Y/< €1 T0] o LSO 13
R I AN € £\ YA 1Y 01 PO P TP U R USTUPTUPROP 13
8.2.4 Type SYSLEM UNITICALIONeiiieiiii et ee e ste e ste e sae e s re e sn e st e eneeenteereenree e 13
8.2.5 Pointers, handles, and NUIL...........oouviiiii et s e sb e eb e e s sb e s sbaesabae e 14

ORI - 1141 (=] £ 16
8.4 Automatic MEMOIY MANAGEIMENT.........ciiuiiieeieeseeseeseestre e eteesteesreesreesreeateesteesreesteesseesseeaneeesseeseeenseesseenns 17
SIS R] C=1ST] o] <SSP R 19
I =111 1 0 1=] 1 £ 19
ST L 1o (PSSR 19
8.8 NALIVE ANU TEF CIASSESvveeii ittt ettt e e s e e e s e b e e e s e bbb e e e s ebb b e e e s ebbbessseabbesesabbeesssbbaesssssbbesessnnes 20
R TN R L =] LI =] [0 TSR 20
LIRS T a1 (0] 0] Y 1= (o ST 21
oIS TRC T 1T £ o] IR 21
SRR SRR O o (0] 1= TSSO 21
RS R T A Y/=1 | T 24

R RIS L oo o T=] = (o] S 25
8.8.7 INSTANCE CONSIIUCTOIS. .. .vvvriiiieeii ittt e e e s e eeb et e e et e st b e e e e e e s s et bbb e e e eeessssabbbbeeeeeesessssbbbbeeeeeesessnbrareeesens 26
8.8.7.1 Delegating CONSIIUCTONS.c.viuieiiriiiteitet ettt b ettt bbb et bbb b 26

SRS T B LTS 1 ([0 (0] £ 27
8.8.9 SHALIC CONSLIUCTONS...eiiiieteie ittt e e e e e s bt e e s s eb b e e e s s e bt e e e s sabb e e e s sbbesesssbbeeessbbesesssbbenessssbeneeaas 27
LSRR T O [T = 410U 28
SRR I I I Y T Tod o I oY Z=T g o oo U 28

LR A 4= VTN F= YT 31
ST O 0 T =107 =T 31
SR I = T R 32
8.12 NamesPaCeS AN ASSEIMDIIESouiiiiieie ettt st ste et e e et se e besreeneesaesneeneeseeenes 33
ST R =T £ To] 1o [PPSR 33
I AN {010 (=TS 35

I RSN L=l 1] Ao 36
O I To= 1 IS 10 (ot (U] = 37
LI 0] (=] TR 37
LS00 T [0 (=T o 1= £ 37

C++/CLI Language Specification

TN B YT (0 (o 1SS 37
TR B (=Y | SO 37
SR T R I L= o TU T T | S 38

O T T ol ot a Tol o (OSSR 39
O Y 1= o o= SR 39
10.1.1 ValUue Class MEMDETS.c.oiieiiecie ittt ettt et et e et e s teesa e beareesbesneeseesreanes 39
10.1.2 Delegate MEMDEIS.cuiiiiitiitiit ettt bbbt bt bbbttt b bbb 39
RO Y =T o gl oL Yo o= SRS 40
10.2.1 Declared aCCeSSIDIITYuecueeec e rs 40

I o T o] o[ty | OO U TRV PR PP 41
11.1 Predefined MACIO NAMES........cii et sttt ettt e st e e s be st e et e s be et e beeteesaesbees b e sbenbeereebesseeseenreenes 41
N Y o1 TP TP U PR TTPRORTTRTURPRPROS 42
12,1 FUNAAMENTAL TYPBS ...ttt st e e te e e st e e ss e beeae e e e s beestesaeaseesbenbeaneebesaeeseenreanes 42
12.2 ClaASS TYPBS ..tttk etttk bbb bR R R R bR R e AR R b b et e Rt h b s 43
12.2.0 NALIVE ClASSES....euuieieeiieeieesee st e st st e e e ste e s e e st e e te e e steesteesteesteesseesseesneeasteenteenbeeteesteesneeanneaneeereenres 43
12.2.2 VAIUE CIASSESeviiuieieite ittt ettt ettt ettt e st et e s e st e e bt et e s beesb e beeRe e e e s beesbesbeateesbesteeneentesneeneesreenes 43
12.2.2.1 SIMPIE VAIUE CIASSES ...ttt bbb bbb 43
12.2.2.2 ENUM CLASSES ...vviivveeiieeiteesteesteesteesttesttessteesteeteesteesteesseesseeasteebaesteesteesteeaseesseeeneeeteesteesneesneeseeenees 43
A B =] o £ T3S 43
12.2.4 INTEITACE CIASSES . .veeveiiteiiteecee ettt et s e sttt e be e s be e sbe e sbeesaeesabe s be e be e beesbaesbeesbeesteesteesnreebaenes 43
R B] [T L Y 0Lt TSRS 43
I N £ T SRS 43
R B e Tol F- T L (o g £ 01T SRS 43
12,31 RAW BYBS ...tttk ettt b b et b e R bR R R R R R e R e R Rt Rt b bt ne Rt eenrenre s 43
I oo 1] (=T 1Y 0TSSR 43
R o 1o | L= Y o TSSO 44
12,34 NUIT YR <ttt h bbb bbbttt b e e bbbt b et et e bbbt bt ne e r e 44
R R B =] (e =T Torc § Y o= SRS 44
G T G] (=T o o To L1 (=T SR 45

I 00) 0T o] SR 45
12.3.6.2 Target tYPe FESIIICTIONS.eiuiiie ettt ettt sttt e te st e s eeere e e ste e e e st e saesneeneeseeenes 45
R H T O o= 11 o] TSR 46
12.3.6.4 CONVEISION TUIBS......oetiieeeie sttt ettt ettt s b e e st e ta e st e s be e st e s beere e tesbeensans e besnaeseenreenes 46
R B R R B L 1 W Lol ol ST 46
12.3.6.6 THE thiS POINTET. .. .ceiieiee ettt ettt ettt e s ee s te s e steereenbesteaneestesreenneeeeenes 47
G T A T 0T T o Lo L (=T SR 47
12.3.7. L DEIINITIONS .c.te ettt ettt e e st e e be e s be e e be e st b e erbeeabeebeeebeeabeesaeeereenreees 47
12.3.7.2 Target tYPe FESIIICTIONSiiuiiie ettt ettt sttt st e te s e teene e e sre e e e seeseesneeneeseeenes 48
R T A O o= 11 o] TSR 48
12.3.7.4 CONVEISION TUIES......eitiiee ettt ettt sttt st e st et e s besbe e s b e s beeseestesbeeseans e besneeseenreenes 48
R I R B L 1 W Lol ol RSP 48
12.3.7.6 DUration Of PINMINGcccviiee e e et e e sre e sreesneeaneeeneeenees 49

12.4 Top-level type VISIDIILYccooieeece e et sre e 49
Y =Y g T o] 1= PSSRSO 50
I O] 0171] o] o 1TSS 51
Y - T [0 T o [ot VT £ T o SR 51
14.1.1 HANAIE CONVEISIONScuiiiieiiiteetie sttt ettt te st ettt e st e s ae et e s te et e be s se e st e s be e st e sbeateesbesteeneetesseeseesreenes 51

Table of Contents

14. 1.2 POINTET CONVEISIONS ... vitiiteiestesietieteete sttt sttt et e st stk sb e b st et et e s e e st e bt e b e s bt b e nb et et et e bt e beabe st et e 51
14.1.3 LVAIUE CONVEISIONS .. .vevtiitieiiecieetie e ette sttt te e st e e ste s e steesaesbessaesaesteeseesbeaseenbesseeteeneenesseeneenreanes 51
I 0T o] LT A ol0) 0N =T (Y [0 L ST SR 51
14.2.1 Implicit constant eXpPresSioN CONVEISIONSccveieeveieieeiteseaeestesteessestesseestesseessessesseessessesssessessenses 52
14.2.2 User-defined impliCIt CONVEISIONSoiiiiiiiieiieieeieiee sttt 52
I q o] T | Aot] 1Y =T £ [0 3 LS PSR 52
14.4 BOXING CONVEISIONSvveiuveiureisteesieesteesteeaseeaseeasseesseessesssssssssasseessesssesssssasssasseeseessesssessssssesssssasseaseessesssesans 52
14.5 USEr-0efiNBA CONVEISIONSoiviitiitiieiesieiiete sttt bbbttt b bttt b ettt b e 53
T R @0 413 {1 Tx (0] £ PSR TR TP 53
14.5.2 EXPIICIt CONVEISION TUNCLIONSvveiiieiiecie et sttt e et e e e reenns 53
14.5.3 Static CONVErSION FUNCHIONSo.viieiieiiciiiice bbb 53
14.6 Parameter array CONVETSIONS. uuiuerteteteseetesteatessestesesteseesesse st abesbesbe s e e e s e e s e e b e s b e abe b et e s ese e bt abeabesbe b e s 53
14.7 Compiler-defined eXpliCit CONVEISIONS.........cciiiiiieeee ettt eeseeeneeseeenes 54
14.7.1 UNDOXING CONVEISIONSuveeieeeiiieitesieesteesteesteesseessssasesesseesseessesssesssssssesssseessesssssssesssssassessessssssnsesssessnes 54
14.8 NaMING CONVENTIONS ...ttt et e et s et b bbb b b e e s e e b e e bt e bbb s e e e e bt e bbbt e 54
14.8.1 CLS-compliant CONVErSION TUNCTIONScoiviiieiiieiiisiesie s 55
14.8.2 C++-dependent cONVErsion TUNCLIONSccviiiiiiiiiiee et ns 55
ST o] =] (o] o SO P TSP USO PR PR 56
15.1 FUNCLION MEIMDEISttt ettt ettt e st et e e sbe s e e nbeeneebesreeneeseeenes 56
15.2 PrIMAIY EXPIESSIONS.cuettittitetestet ettt sttt ettt bbbt bbb e e st e b e e bt e bt bbb et e e e e e bt e bt e bbb b e 56
15.3 POSEIIX EXPIESSIONSeeieeeeitesii ettt ettt sttt e e et et e s beeseesbesseestesteemeeseeeseenaesaeeseeseeneeaneeneesneeneenneenes 57
ST T AT o] o] o RS 57
15.3.2 INUEXEU BCCESSvvevitiiite sttt etttk sttt e stk e bbbt b bt e e s e bt e bt bt bt b e bRt e bttt et b et nn e 57
TR T T W 0 o4 o o | SRS 58
15.3.4 Explicit type conversion (functional NOtatioN)..........c.ooeiieiiiiiieie e 58
15.3.5 PSEUAO AESLIUCTON CAIloiviieiiieee et 58
15.3.6 Class MEMIDET BCCESS. . ..vviveiieetieiiese ettt ettt et e st e s e te s e et e ste e e e seeeteesbesaeeseebesseaneentesseeneenreanes 58
15.3.7 INCrement aNd DECTEIMENTc..iii ettt sttt e et e e e te e st e seeeteeneesbeeneeneenneeneeneeseeenes 58
GRS I Y/ T ool o T R 58
15.3.9 TYPE IAENTITICALIONoviieie ettt st et et te e e e besreesrenreenes 59
TR 00 IR - [o LY SRR 60
TG T I (=T [(=T 0] (] =L RS 60
15.3.02 CONSE CAST ...ttt ettt bkttt b e s bt s bt e s bt e st e st e R e e R e e bt e b e e R e e re e e 60
TR T TR 1 - o) SRR 61
15.4 UNGIY EXPIESSTONSeeiveeteeniesteesiesteeteesueateastesteaseestesseaeeseeaseeseeaseeneeseeaseeseaseesseaseaneesaeeseesseseeaseensesneeneeseeanes 61
Tt O L= YA T o 1= =1 (] £ USROS 61
L5.4. 1.1 UNANY &ttt ettt R et R ettt r e 61
L5.4. 1.2 UNGIY oottt ettt s et e st et e et et e e e e st e st e R e e Rt e R e e Re e be et et e Rt e Rt e Rt eReeReenennenreneeeas 61
L5.4. 1.3 UNGIY Y0 oottt ettt ettt ettt et et s et e bt e Rt e b e b e bt b et e s e Rt e Rt e b e e R e bennenrenee e 61
R B U L - T SO UPRTRPPR 62
15.4.2 INCrement aNd DECIEIMENT.......cviiieieie ittt e ettt e st e teeseesbesteesaesteeneeseestesseeeenreenes 62
ISR T 4T | SRS 62
L5.4.4 INBW ...tttk bbbt bR bbb bR bAoA R R R bbb Rt Rt bbbt e 62
TR T D][(SRS 62
15.4.6 THE GCNEW OPEIALONc..eiiieieeeteeeie ettt ettt eseeetees e seeeseebesae e e e sbeemeeseeeteentesaeaseebesbeeneeneeneeneenreenes 63
15.4.6.1 gcnew Object Creation EXPrESSIONSciiuciueiieereeieesteesteesreeseeseesee s e ebeesteesreesseesreesneeeeeseeesees 63
15.4.6.2 Array Creation EXPIESSIONSc.iieiieireiteetesteareetesteassestesteessesteassessesteessesteaseessesteassestestesseessesreases 63
15.5 Explicit type conversion (Cast NOTALION)ocveiiiiiieiiieee ettt nee e enes 63
15.6 POINter-t0-MeMDEr OPEIALOISieiieeiteiiie et eieeseeste e st e s e st e e e e beesreesreesreeabeesbeesaeesseesseesneeeneeenteenseens 64
15.7 MUIRTIPHICALIVE OPBIALOIS. .. .cviivieeiiiteiie sttt sttt sttt st et s b e st et e s te e b e s beaseesteebeesbesbeeneebesaeeneeneeenee 64

C++/CLI Language Specification

SRR Ao [0 [LY=o o 1= - (0] £ ST SSR 64
15.8.1 Delegate COMDINATIONc.iitiiiieiieieiet ettt bbb bbbt nb et 64
15.8.2 DEIBGALE FEMOVALeieiieie ettt ettt sttt e st et e e see et e beseeeneeebenbeeneenbeeneennenreenes 64

RS I (11 100] L= L] ST S 64

15.10 REIATIONAI OPEIALOISecuieiiitietiiteite ettt bbb bbbt bbb et b bbbt 64

TR o U LY o] 1= - L TSR 64
15.11.1 Ref class eqUAlItY OPEIALOFSccveiieeieeie et e see s et e e ste e ste e s e e st e st e st ee e aeeste e teesre e sneesnneeneeereenes 64
15.11.2 Delegate eqQUality OPEIALOrS.ccviiveiieieiteste ettt sttt e s te e e st e s teesbesteereesbesreeneesreenes 64

15.12 BitWiSE AND OPEIALON.cvivertereestesiattete ettt sttt se et b sttt b b e e b se e s e bt btk b et b e et e e en e e bttt b e e 65

15.13 Bitwise eXCIUSIVE OR OPEIALONuiiieeieeiteeitee sttt st e eteesteesteestee st e s e s nte e e e beesteesteesreeeseeenteesreesreesneesneeanes 65

15.14 Bitwise INCIUSIVE OR OPEIALOL.......ccuiciiiiiiieieitectee sttt s ettt et e s teesaesaesta et e sreess e besneesaesreaneeneas 65

15.15 LOGICAI AND OPEIALON.c.viteateseeieeiiete sttt stttk ekttt b et s ettt bbb e e et ettt b e 65

TG oo Tor:] a o] o - o] PSR 65

15.17 CONAItIONAL OPEIALONeiiiieieie et et e st e ese e e steesteesreesseesreesaeeaneeeneeeteenreenns 65

15.18 ASSIGNIMENT OPEIALOISiveiitiiteitetet ettt bbb s et b et bbbt e st b e bbb e bt e ettt b b e 65

15.19 COMIMA OPBIALON ...tttk ettt ettt et be e bt e she e e a bt e s be et e et e e ke e eb e e eh bt e ab e e ke e she e sheesbeesbbeebbeanbeebeenaee e 65

15.20 CONSLANT EXPIESSIONSuveeveeiieesieeiteesiteasteesteesteesteesseesseeaseeasteesteesseesseeaseeasteesseesseesseesseesseesseessseasseessesssesns 65

S e 1<) 1 4[]] OO 67

ST (=] LA T0 IS L (=] 4 1=T 0 C 67
16.1.1 The fOr BaCH STAIEIMENTviie ittt e et e e s et e e e s eb bt e e s st b e e e s st beeesssbbeeessbbesessbbeeessares 67

T I Lo €AY =1 =] 01T o TSR 68

16.3 The checked and UNChECKEd STAtEMENTSeeiiiiiiiii ittt ebbe e e e s eb b e e e saraeeas 68

I - T 0TS 0 1= o OSSR OPR 69
T O PRIy T = L Lo 0 0 1=T] 01T 70

T O Fo TS0 (=l T T 0] U 70

00 O P TX o 3T o L 1= RS 71
I T O N o 51 1 = Tox Ao =Y TR 71
T ST (<o o] Fo Ty 72

18.2 RESEIVEU MEIMDET NAMESvveiieiitteei e ettt e e ettt e s ettt e e e sttt e e e s ebb e e e e s ebbeeeesabbeesssbbasaesbbassssbbesessbaesssssbbenssssbennss 72
18.2.1 Member names reServed fOr PrOPEITIES........viv i e it 72
18.2.2 Member NAMES rESEIVEA TOr BVENLScovviie ettt s st e e s s b e e s s s b b e e s s sabae e e s earns 73
18.2.3 Member names reServed for FUNCHIONS..........ooviii e 73

TR I 4T AT F Y 73
R O /T o g0 Lo {0 (o () TR 74
18.3.2 Sealed fUNCLION MOGITIETccci i e e e s s e e e e s sab e e s s sab b e e e s sabbe e e s eares 77
18.3.3 ADSLract FUNCHION MOGITIEToveieii e s e e e s eab b e e e s earns 78
18.3.4 NEeW TUNCLION MOGITIETveieei ettt ettt e et e e e st e e e s ea b e e e e s sab e e e s sbb e e e ssbbeeessares 78
S RS R W g o4 o] oo V7T 4 [T Vo |1 o RS SR 78
18.3.6 PaAlAMEBLEE AITAYS. ... veeeiieeiteeestee e sttt e stieeste e et eesste e e steeessaeeasteeesateeanteeaseeessteeaabeeeaneeeanteesnteeensseeansenensnnens 78

SRR o (o] 1= (TSRS 80
18.4.1 Static and INSLANCE PrOPEITIES.cviveieiieii ittt b b ettt b b 82
18.4.2 ACCESSOF TUNCLIONS ... vviiiiicieiie ettt ettt s et e e s st e e e s st e e e s sab e e e s s sbb e e e s s abbesessbbesesssbbesesanbbesesasres 82
18.4.3 Virtual, sealed, abstract, and override acCessor fFUNCLIONScocviiiiiiiiii et 84
18.4.4 TrivVial SCAIAr PIrOPEITIESecveiiiitiiteitete ettt ettt bbbt 86

ST V=T] (S 87
18.5.1 StatiC and INSLANCE BVEINLSccciivviiii ittt e s e st e e e s st e e s s s ab e e e s s sbb e e e s s sbbesesssbbesessnbbeeessnrns 88
18.5.2 ACCESSOI TUNCLIONS ... vviiieeie ittt ettt e e et e e bt s st e e s et e e st e e s et b e e sabesesbaeesbbessabesesbbeesabasaabanens 88
18.5.3 Virtual, sealed, abstract, and override acceSSOr FUNCLIONSvvvvieeeeiieieeeeiee e e e e ee e e e e e eeeereeeeeenns 89
R I A VA T I =A T) R 89

Vi

Table of Contents

18.5.5 EVENE INVOCALION ...ttt bbbttt bbbttt bbbt e 91
18.6 STALIC OPEIALOTS ...tttk kbbbt s bbb bbbt b et b e bbbt e st e bbbt e bt bbb 91
18.6.1 Homogenizing the candidate OVerload Setcoov oot 92
18.6.2 Operators 0N HANAIES...........c.oiiiieie ettt be et e et e sbesreeseesreenes 92
18.6.3 Increment and deCremMENt OPEIALONScvouiiiiiiriere ettt bbb 93
18.6.4 OPEIALOr SYNENESIS.iteiiie it etiee st ee ettt ste et et este e e st e areesteeteeeeseeese e tesaeeneesbesteeneenneaneeneenreenes 95
R ORI T a T T oto] 0)Y7=T 0] o] R 95
18.6.5.1 CLS-COMPIIANT OPEIALOIS ...c.viivieiiitieie ettt re et sbeera et e ste et e besreesnesreanes 95
18.6.5.2 CH+-0EPENUENT OPEIALOIScvveuieiiitieteite sttt sb bbbt s ettt b e 97
18.6.6 Compiler-defined OPEIALOrScivi it e e te e re e sre e s e e eneeenreenrs 99
ST 300 =l [V L SR 99
18.7 INSTANCE CONSTIUCTONSvviiiiieeiie ettt ettt ettt s e e st e e st e e st e e s st e e e beeesaeeesateeesabeeanseeenseeessbeeestneeanreeanreas 99
18.7.1 Delegating CONSIIUCLONScueiteeieieeeteesteeiee e st eseeseeeteeseesteeseeteseeeseesteaseeseeeseeseesaeaseensesseaneensesseeneenreenes 99
18.8 SEALIC CONSIIUCTONS ... veviitieieeie et sttt sttt sttt sttt b e b et be e st e bt e st e b e st e e s eesbeeteeneesbeebeeneeseeeneentennens 101
18.9 LITEIAl TIIUS. .. .ecuie et e e te et e e s te e s bb e st b e et b e et e saeeebeesbeesbeesreesabesareas 102
18.10 INILONIY FIBIAS. ...ttt ettt eae s teete s e s teereeneeseeaneensennenns 103
18.10.1 Using static initonly fields for CONSIANTS.........c.ccciviiii i 104
18.10.2 Versioning of literal fields and static initonly fields...........ccccooeiviieiiiicc e 104
18.11 DeStructors and FINALIZELSc.voiiiie ettt sttt e be e s be e be e sbe e sraesnbeenre s 104
19, INALIVE CIASSES ... ettt sttt sttt e b e b e et e e be e et et e beeRe e ebesbe et e e nbeebeenbeseeeneenbenneans 106
FO.T FUNCLIONS ...ttt ettt ettt ettt e e e s bt ee et e ebees e beeeeem e e ebeem e e e e et e ameeseeeseeseeeneeneeseeeneensennenns 106
S o (o] o 1= TSR ORS 106
RS S L o] o T-T = (o] £ OSSPSR 106
19.4 INSLANCE CONSTIUCTONS ... uvvieiiieeciie ettt ettt s ettt s e st e e et e e st e e e st be e e bae e taeessteeesabeesnteeanteeeasbeeaseeensneeanes 106
19.4.1 Delegating CONSLIUCLONScueeueeteiureeesteeieesteateeseeseeetees e saeeeestesseeseesteeseesaeaseessesaeaneesseaseeneesaeaseeseeaneen 106
19,5 DIBIBYALESc.veveeeeeite ettt ettt ettt st ettt et et e R et et e R e he Rt et e eReen e e beeRe et e ate et t e teereentenreereenreaneens 106
N =] o TSRO 107
20.1 RET ClaSS HECIATALIONScuiiieitietiiiiie e bbbttt bbbttt bbb e 107
20.1.1 Ref class Dase SPECITICALIONcuiiiiiiiiiieiieiee bbb 107
20.2 REf ClaSS MEMDEISottt sttt e et s e teste e s e e beeneesteseeeseeneeseeaneeseeaneas 108
20.2.1 Variable INITIAHZEISciiiiiee ettt bttt e 108
20.3 FUNCLIONSttiitieiie ettt ettt et te st e e s be e sbe e s bt e s tbeeabeebe e ebeesbeesheesaeesabeebeebeeabeesbseeteeenbeebesateesseesneeesbeesees 108
B0 e 0] 1< OSSPSR 109
20.5 EVENES ...tttk bk b bt h e R e e h e bt R e e b e e R R e eR Rt e R Rt e R bt e be e nRe e eRr e e et e nbeenes 109
A I v LU Tl o] 1= - (o £SO SS PSRRI 109
20.7 INSTANCE CONSIIUCTONS ...uviieiiee ittt e sttt e sttt e st e sttt e e te e e ste e e s be e e streesteeesateeessbeessseeanteeessbeeeseeenseeessbeeenseeennneeanns 109
20.7.1 Delegating CONSITUCTIONSvciuiiiiiiiiiie e este e ste e ste e st s et e e e be e te e steesreesraeaneeeeeeteesreesaeesneesneesneens 109
20.8 SEALIC CONSIIUCTONvetiitieieite stttk bbb e bbbt bbb e e bt et b bbb ne s 109
20.9 LITEIAl FIEIUS.eivec ettt sttt e e s be e s be e sae e s abe e be e s beetbeenbeesbeeabeeareeeaeeeteenes 109
P20 O I T3] 01 Y 1 T=] o LSRRI 109
20.11 DeStructors and fINAIIZEIScvi ittt sttt e e b s seeeneas 109
20.12 DEIBGALES ...ttt bbb R h bR R R bR et b et b et b 109
20 WAIUB CIASSES ...ttt ettt ettt ettt ettt ettt e s et e te e s e ebeeme e teeee e e e eeees e e eeeeReeneeeeeeneenbeeneeneeneeenaenreeneas 110
21.1 Value Class AECIAratiONSccviiiiiiiiiiie ettt e st e s be e be e beesbe s sbeesreesneeebeeseis 110
21.1.1 Value Class MOUITIEISeeeiiiiieee ettt et e st st e e e ste et e aeeneenteaneeneenneenes 110
21.1.2 Value class base SPECITICALION..........ccuiiiieie e cee e re e re e be e ae e naeesrnesneeenee s 111
21.2 VAlUE CIaSS MEIMDETS ...ttt bbb bbbt b bbb bbbttt bbb e 111
21.3 Ref class and value Class dIffEIENCES.coi ittt seeeneas 111
21.4 SIMPIE VAIUE CIASSES ... veiiieciie ettt et e e st e e st e sae e s s e an e e s be e teeteesteesreeaneeaneeenees 111

vii

C++/CLI Language Specification

2141 CONSIIUCTOIS ...ttt ettt b bttt et et e bt e e b e eh e e ab e et e e b e e bt e s ke e s bt e b e e nbeenbnenbnennne s 111

22, IMIIXEA ClASSES. ... eteiteestesieeie st ette st s e et e te s et e e s te et esteete et e sae et e teasease e bees e e s beeseesbesbeaseesseneeene e beaseeseeseaeneenrennens 112
P TN -\ T TP RPPROURPTR 113
P T N 4 ¢ YA 1Y L TSROSO R TP 113
23.1.1 Te SYSTEMIIATTAY LY ...ttt btttk b bbbt b bbbt be e 113
W N g -\l - UL o] PSS PRRR 113

B R I N 1 -\ VA= [=] 1o o T oSS 114
23.4 ATTAY MEMDEIS .. .ottt ettt et e st e s te e st e st e et e e besbe e s b e teenee st e sbeataestesteeneesreaneas 114
23.5 ATTAY COVAITANCEeeveiviiieiietesteete ettt bbbt h bbbt bbb e s e b e bt E e bt bbb et e bt bbbt nb e 114

B I N 1 -\ A LT 11T SR 114
24, INEEITACES. ...ttt ettt b bbb s s R Rt bbb bR R Rt R b et R e Rt b bbb e 115
24.1 INErfaCe UECIATALIONS.eiuiiiei ittt sttt sttt et bt s e beese et e ebeebeeseesbeeneeneeaneas 115
24.1.1 Interface base SPECITICALION..........cucii i nreene 115
24.2 INEEITACE MEMIDEIS .. .o.ee et e et e e s e steete e be st e e s e e besse e aesbeasaeneesteeseeneennens 116
24.2.1 INEErTACE TUNCLIONSeiiieiieite ettt sttt ettt ettt e et en e sbeene e e eneeneenteenes 116
W A 1) (-] 1= Tl o1 (0] 1] T USSR 116
P B 1) (= =Tl A o PSS 117

p B 1= =T T USSR 117
24.2.5 INLErTACE MEMDEE GCCESS ... veveeueeteetieie st eteeste st et e ste et e steebe e s e steese e bt s bt e s eesbeaseeseesbeesbesaeaneentesbeeneesbeenes 117
24.3 Fully qualified interface MemDEr NAIMESccoiiiiiiiieee e 117
24.4 Interface iMPIEMENTATIONSoiiiieie ettt sttt et s e e testeereeseeseeeneeseeeneas 117
ST =1 4 0] 0O TP OU PO U PP UPTPO 119
25,1 INALIVE BINUMIS ...ttt sttt ettt e sttt e e s e steetees e eaeese e beem e e see et e emeeseeeEeenteseees e e beameeneenbeaseeneesreeneeseeaneas 119
25.1.1 Native enUM AECIAIALIONS.iiiie ittt st st s e st se et sae e e e saeenes 119
25.1.2 Native eNUM VISIDIILYcviiiiiee e sttt sre e e reenes 119
25.1.3 Native enum UNAEITYING TYP8 ..o ittt resae e e e neeenes 119
25.1.4 NatiVe BNUM MEMDELS .. .ottt sttt ettt sttt ettt s e e bt s st e tesbeeeesbeeseesbeaneensentesbeeneenbeenes 120
25.2 CLI BNUIMS ...t b ekt b ettt e bt e bt e she e she e R bt et e bt e s bt e bt e sbe e ebeeanneeneenns 120
25.2.1 CLI eNUM AECIArAtIONSc.viiiiiiieiiectiee sttt e be st e saestees e sbeene e e entessaeseesreenes 120
25.2.2 CLIenUM VISIDIIITY ..ot neeenes 120
25.2.3 CLI enUM UNAEITYING TYPE ..c.viivieieiticie sttt ettt sttt sttt et te e s beate e besne s e saeste e e e sreenes 120
25.2.4 CLI ENUM MEMDEIS.....tiitiiiete ettt sttt te s e te st e aesteesaesteeteesbesaeeneentesseeneenseenes 121
25.2.5 CLI enum values and OPEFAtIONS.coveieierieierteeie e etee ettt seeeteeseesneene e tesneeneesreenes 121
25.3 The SYSIEM I ENUM TYPE. . .ec ettt e et e et e e s re e sbe e s r e snbe e s teesteenteesreesneeaneeeeeenees 121
BT B L 1= o T USSP SRRSO 122
26.1 Delegate defiNMItIONS.......c.viiii et e e s e st e sae e s s e e an e e rbe e teeteesteeareeaneeereenees 122
26.2 Delegate INSTANTIATIONc.viiiiitiiei bbbttt bbbttt bbb e 124
R B o] T LN [1Yo T LA o] oSSR PRRRR 125
A = (=T o]] L TR PRTRPRURRO 126
27.1 COMIMON EXCEPLION CIASSES.viiteereiiteeiie sttt sttt ettt e st st e e e see s e s besseeseesbeeneesteaseeneeneesreeneeseeaneas 126
28, ATETTDULES ...ttt ettt bttt s e s bt e st e bt e bt e et ebees e ebeeheenbesbeene e beebeenbeseeenbenreeneas 127
28.1 ATIIIDULE ClASSES. ... ettt sttt ettt e b e sb e b et e e been e e besse e st e sbeeseeneesbeeneeseeaneas 127

pA I AN 1 101U VT Vo USSR 127
28.1.2 Positional and Named PAramELEIS.........ccueierieireieieiei ettt 128
28.1.3 ALriDULE ParAMIELE TYPES. . i ieeieiteetie sttt ettt ettt e te et te st et esbeeseeseeeteen e saeeneeneesneeneeneeenes 129
28.2 ALLrDULE SPECITICALIONvviieiecie e e e e e e be e be e te e re e sreesreeaneeaeeenees 129

Table of Contents

28.3 ALITIDULE TNSTANCES ...eeieiieveie ettt e et e ettt e e s ettt esset bt e e s et bt eesaateeee s s beteessbeeeesastaeeesbeeeessasbeeessasreeesaanes 133
28.3.1 Compilation Of N attrIDULEceiiiiiiee e 133
28.3.2 Run-time retrieval of an attribDULE INSTANCE.oooiieeeeeee ettt e et e e e e e s reeareeeees 133

28.4 RESEIVEA QLLIIIULES ...eeiivviee ettt ettt e ettt e e e et e e e sttt e e s et et e e s sbeteessabeeessasbeeessasreeesaasreeessasresenannes 133
28.4.1 The AttributelUsage attriDULE...........cvoiiiiiiiieiee e 133
28.4.2 ThE ODSOIEIE AEITIDULE......eiiiiie ettt ettt e e e e ettt e e e e e e e teeeeeesae e eeteeesssnaerereeeeens 134

28.5 Attributes TOr INtErOPEIALIONccvviiii e e e e be e be e be e te e steesreeaneeeneeenees 135
28.5.1 Interoperation with other CLI-based lanQUAgES...........ccviveieiieiesice e 135

28.5.1.1 The DefaultMembBDer AttlIDULEoooe ittt e e ettt e e e e e e e et eeeeesennees 135
28.5.1.2 The MethodImplOption attribDULEcccveiii i e 135

BAe T =10 0] 0] Fo TSRS RSSO 136
A AN 1 01U (=TT 136

A B Y/ oo (<o (0ot o] o ST SSPSRRSO 136
L =T 1=) [T TP TTTURPRUTRTR 137

30.1 GENEIIC DECIATALIONS ...ttt ettt e e ettt e e et e e ettt teaeeeee st eeteeesesasaseeeeeessaasrsereeeaesenans 137

30.2 GENEIIC CIASSES ...eeeetieeiteet ettt et e ettt e e e et e e ettt tee et ease e eteeesesasesateeeteeesssas s aseeeteeesssassaeeeeeesssassrreeeeeesssnans 137
KO B = T Tl O F- FY Y- TR 138
30.2.2 IVIBIMNDEE A CCESS. . vveeeeiteeeeeseteeeee st eeeeseseeteeses e et essseeeessseeeessse et eesabeeeessasseeessaseeeessaseeeessneeeesssreeserasrees 138
30.2.3 NESTEA TS, .ttt ettt h et b b bbbttt h bbbt b bbbt et b bbb e 139
O] £ L (o B L =AY/ =T 0] 01T TR 140
30.2.5 Other IMIEBMDETS ...vveeeieeteie ettt ettt e s ettt e s sttt e s sbeeeessae et essabe et essseeeessasseeesssseeessaseeeessseeesenasreees 140
30.2.6 OVEITOAAING ...ttt bbbt b bbbttt bbbttt b b e 140
KL A Y/ o O Y= o U [o PSSR 140
30.2.8 Accessibility 0f CONSLIUCIEA TYPESecveeiiee e ieesieste e re e e et e e ae e e sre e sre e sreesnnesneesreeanees 141

30.3 GBNEIIC FUNCIIONS . .ee ettt ettt ettt et e e et e e s et e e s st et e e e sbeeeesabeteessabeeeessabeeeesastaeeesabeeeessasbeeeseasreeenannes 141
TR R Y/ o DT 11T oo PSSR 141

K (NI T g =T g ol AN o U] 1=] SRS 141

30,5 CONSITAINESvveee i ittt e e ettt e ettt e e ettt e e ettt e s seb et eessteeeesasaeeessseeeesassesessbaeeessasseeesansbeesabreeeseasbeeesensrenenannes 142
30.5.1 The CONSITUCTON CONSIIAINT. ... eeeeeeeeeeee e ettt e e e ettt e e e e e ee ettt eeeesese e eeeeeesssass b eeereesessanrereeeeens 143

KL S B =] T T LTSRS 143

LA N (o TU] (=TT 143

30.8 TYPE IAENTITICALIONecvieieceec ettt st e st e teese et e stesraesaesteeneeneeanens 143

IS F=1a (o -1 o O 1o (o MOS [o] - 1 [T oo TTTTRRTUTRTR 144
Y OF I W [1o] - 1 g =TT T TP TTTURPRUTRRR 145
F AN £ g} =1 o] [T Lo [T TR 146
B. DOCUMIENTATION COMIMIENES. .. vuvteiiieeeeieee ettt e e e e et st eteeesssae e eetetesssssassresetetesssasssraeereeesssasbsbeeeeesssssasrrreneeens 147
C. NON-NOIMALIVE FEIEIENCES .ooiiiiiiiecieeiet ettt e e e et e ettt teeetese e e ttetesssas s beeetesesssassbsbeeeeeessssaasrareeeeesessians 148
D. CLI NAMING QUIAEIINES ...ttt e et saeete e s e seeeseeeesteeneesaeeneeneeseeenes 149

D.1 CapitaliZAtION STYIES......ceeeiieiiiiiti ittt bbbttt 149
D20 O A ot Y o] | T PSP 149
DR O T 1= I oF: 1] o ST 149
D.1.3 AL UPPEITASE ...ttt bbb bbbttt b bbbt b bttt b b 149
D.1.4 Capitalization SUMIMAIYoiiiiieie ittt st este e e aeste e e sbeeseeseesteeseesaesaeaneeneenneans 149

[VAT Lo (o [Nod oo T[T PR 150

.3 INBIMESPACES ...eeettiiiiit ettt sttt ettt et e e s bt e s bt e sh b e e e be e ek be e s R b e e e eb b e e aRb e e e b et e eR b e e e nbbe e be e e nRb e e et be e nnbeeenbeas 150

C++/CLI Language Specification

D4 CHASSES ...ttt ekttt stttk bbbt s bbb bbb oA R R R R R bR £ R £ E R R bbbt e Rt Rt Rt bbbt 150
DR 111 (=T 7= T L SRS 151
D 01U] POV P PP 151
D.7 STALIC MEIMDELSevitiieieee et bbb bbbt b b e b e st b bbb e b et e se e st et e ettt ettt 152
DRl o 1= 100 1c] (=] OSSP 152
2R I B o ()3 152
TR0 1] 1= (=TSR 153
DL EVENES ..ttt bbbkt R e R e R e R Rt R Rt R e R e R et R Rt e r e re e re e 153
D.12 CASE SENSITIVITY ...ttt et bbbt bbbt s bbbt s et b bt bt 153
D.13 Avoiding type NAME CONTUSIONcciviiiieiee i st e et e e ee et ste e sae e sreesneeenbeenaeeneeesreenreeans 154
O U (0] o 1] Tox o] OSSR S PSSP P PP 155
E.1 Static Members in INTEITACES ..ot sne e 155
IV DT IR 1Y L= OSSPSR 155
E.3 gCNEW OF UNMANAGEA TYPESc.veuteriiiieiieiieie etttk b bttt eb e bbb b e 155
E.4 NEW OF MANAGEA 1Y PBS . e iueeieie i ittt st st et e et e e e s e e st e sre e sn e e s e e s te e teesbeeateeaseeaneeeteeteesteesseesneeaneens 155
E.5 Unsupported CLS-recommeNnded OPEIALOIScc.eiueiieieiieeeeiese et este s e st ste e saeste e esbesresneesreseesneens 155
T 1 o[- PRSP RRURRPRTORTRRN 156

10

15

20

Introduction

Introduction

This International Standard is based on a submission from Microsoft. It describes a technology, called
C++/CLlI, that is a binding between the Standard C++ programming language and the ECMA and ISO/IEC
CLI Common Language Infrastructure (83). That submission was based on another Microsoft project,
Managed Extensions for C++, the first widely distributed implementation of which was released by
Microsoft in July 2000, as part of its .NET Framework initiative. The first widely distributed beta
implementation of C++/CLI was released by Microsoft in ??.

ECMA Technical Committee 39 (TC39) Task Group 5 (TG5) was formed in October 2003, to produce a
standard for C++/CLI. (Another Task Group, TG3, was formed in September 2000, to produce a standard
for a library and execution environment called Common Language Infrastructure. An ISO/IEC version of
that CLI standard (83) has since been adopted. CL1 is based on a subset of the .NET Framework.)

The goals used in the design of C++/CLI were as follows:
e Provide an elegant and uniform syntax and semantics that give a natural feel for C++ programmers

e Provide first-class support for CLI features (e.g., properties, events, garbage collection, generics) for
all types including existing Standard C++ classes

e Provide first-class support for Standard C++ features (e.g., deterministic destruction, templates) for
all types including CLI classes

e Preserve the meaning of existing Standard C++ programs by specifying pure extensions wherever
possible

The development of this standard started in December 2003.
It is expected there will be future revisions to this standard, primarily to add new functionality.

Xi

Scope

1. Scope

This International Standard specifies requirements for implementations of the C++/CLI binding. The first such
requirement is that they implement the binding, and so this International Standard also defines C++/CLI. Other
requirements and relaxations of the first requirement appear at various places within this International Standard.

C++/CLI is an extension of the C++ programming language as described in ISO/IEC 14882:2003, Programming
languages — C++. In addition to the facilities provided by C++, C++/CLI provides additional keywords,
classes, exceptions, namespaces, and library facilities, as well as garbage collection.

C++/CLI Language Specification

2. Conformance

| Clause 81.4, “Implementation compliance” of the C++ Standard applies to this International Standard.

10

15

Normative references

3. Normative references

The following normative documents contain provisions, which, through reference in this text, constitute
provisions of this Standard. For dated references, subsequent amendments to, or revisions of, any of these
publications do not apply. However, parties to agreements based on this Standard are encouraged to investigate
the possibility of applying the most recent editions of the normative documents indicated below. For undated
references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain
registers of currently valid International Standards.

ISO/IEC 2382.1:1993, Information technology — Vocabulary — Part 1: Fundamental terms.

ISO/IEC 10646 (all parts), Information technology — Universal Multiple-Octet Coded Character Set (UCS).
ISO/IEC 14882:2003, Programming languages — C++.

ISO/IEC 23271:2004, Common Language Infrastructure (CLI), all Partitions.

IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems (previously designated IEC
559:1989). (This standard is widely known by its U.S. national designation, ANSI/IEEE Standard 754-1985,
IEEE Standard for Binary Floating-Point Arithmetic.)

The Unicode Consortium. The Unicode Standard, Version 3.0, defined by: The Unicode Standard, Version 3.0
(Reading, MA, Addison-Wesley, 2000. ISBN 0-201-61633-5), Unicode Annex UAX #15: Unicode
Normalization Forms, and Unicode Annex UAX #19: UTF-32. [[Ed]]

10

15

20

25

30

35

C++/CLI Language Specification

4. Definitions

For the purposes of this Standard, the following definitions apply. Other terms are defined where they appear in
italic type or on the left side of a syntax rule. Terms explicitly defined in this Standard are not to be presumed to
refer implicitly to similar terms defined elsewhere. Terms not defined in this Standard are to be interpreted
according to the C++ Standard, ISO/IEC 14882:2003.

application — Refers to an assembly that has an entry point. When an application is run, a new application
domain is created. Several different instantiations of an application can exist on the same machine at the same
time, and each has its own application domain.

application domain — An entity that enables application isolation by acting as a container for application state.
An application domain acts as a container and boundary for the types defined in the application and the class
libraries it uses. A type loaded into one application domain is distinct from the same type loaded into another
application domain, and instances of objects are not directly shared between application domains. Each
application domain has its own copy of static variables for these types, and a static constructor for a type is run
at most once per application domain. Implementations are free to provide implementation-specific policy or
mechanisms for the creation and destruction of application domains.

assembly —Refers to one or more files that are output by the compiler as a result of program compilation. An
assembly is a configured set of loadable code modules and other resources that together implement a unit of
functionality. An assembly can contain types, the executable code used to implement these types, and references
to other assemblies. The physical representation of an assembly is not defined by this specification. Essentially,
an assembly is the output of the compiler. An assembly that has an entry point is called an application.

attribute — A characteristic of a type and/or its members that contains descriptive information. While the most
common attributes are predefined, and have a specific encoding in the metadata associated with them, user-
defined attributes can also be added to the metadata.

boxing — An explicit or implicit conversion from a value class to type System: :0Object, in which an object
box is allocated and the value is copied into that box. (See also “unboxing”.)

CLS compliance — The Common Lanquage Specification (CLS) defines lanquage interoperability rules, which
apply only to items that are visible outside of their defining assembly. CLS compliance is described in
Partition I of the CLI standard (83).

definition, out-of-class — A synonym for what Standard C++ calls a “non-inline definition”.

delegate — A ref class such that an instance of it can encapsulate one or more functions. Given a delegate
instance and an appropriate set of arguments, one can invoke all of that delegate instance’s functions with that
set of arguments.

event — A member that enables an object or class to provide notifications.

field — A synonym for what Standard C++ calls a “data member”.

function, abstract — A synonym for what Standard C++ calls a “pure virtual function”.

garbage collection — The process by which allocated memory is automatically reclaimed on the CLI heap.

gc-lvalue — An expression that refers to an object or subobject on the CLI heap.

10

15

20

25

30

35

40

Definitions

handle — A handle is called an “object reference” in the CLI specification. For any CLI type T, the

declaration TA h declares a handle h to type T, where the object to which h is capable of pointing resides on the
CLI heap. A handle tracks, is rebindable, and can point to a whole object only. (See also “type, reference,
tracking”.)

heap, CLI — The storage area (accessed by gcnew) that is under the control of the garbage collector of the
Virtual Execution System as specified in the CLI. (See also “heap, native”.)

heap, native — The dynamic storage area (accessed by new) as defined in the C++ Standard (818.4). (See also
“heap, CLI".)

IL — Intermediate Language, the instruction set of the Virtual Execution System.
instance — An instance of a type; synonymous with “object”.
Ivalue — This has the same meaning as that defined in the C++ Standard (83.10).

metadata — Data that describes and references the types defined by the Common Type System (CTS).
Metadata is stored in a way that is independent of any particular programming language. Thus, metadata
provides a common interchange mechanism for use between tools that manipulate programs (such as compilers
and debuggers) as well as between these tools and the Virtual Execution System.

object — An instance of a type; synonymous with “instance”.

pinning — The process of (temporarily) keeping constant the location of an object that resides on the CLI heap,
so that object’s address can be taken and that address remains constant.

property — A member that defines a named value and the functions that access that value. A property
definition defines the accessing contracts on that value. Hence, the property definition specifies the accessing
functions that exist and their respective function contracts.

rebinding —The act of making a handle or pointer refer to the same or another object.
rvalue — This has the same meaning as that defined in the C++ Standard (8§3.10).

tracking — The act of keeping track of the location of an object that resides on the CLI heap; this is necessary
because such objects can move during their lifetime (unlike objects on the native heap, which never move).
Tracking is maintained by the Virtual Execution System during garbage collection. Tracking is an inherent
property of handles and tracking references.

type, boxed — An instance of a value class on the CLI heap, that is always accessed via a handle. A boxed type
is always of the form VA,

type, class, any — Any CLI or native type.
type, class, interface — A type that declares a set of virtual members that an implementing class must define.

An interface class tvpe blnds toa CLI interface type. Artyp&deelaredru&ngqﬂ%epfae&elass@mﬁte#aee

type, class, ref — A type that can contain fields, function members, and nested types. Instances of a ref class

tvpe are allocated on the CLI heap A ref class type binds to a CLI class tvpe Atyp&deel&red—usmgmef—elass

type, class, value — A type that can contain fields, function members, and nested types. Instances of a value

class type are values. Since they directly contain their data, no heap allocation is necessary. A value class type

bindsto a CLI value tvpe A&yp&deelam&usmwa%m—el&s&ewalue%me%ﬂ%te—&#es&ememwe

type, CLI — An interface class, a ref class, or a value class.

10

15

20

25

C++/CLI Language Specification

type, fundamental — The arithmetic types as defined by the C++ Standard (83.9.1), and that map to CLI value
types. (These include bool, char, and wchar_t, but exclude enumerations.)

type, handle — Longhand for “handle”.

type, native — An ordinary C++ class (declared using class, struct, or union). [Note: Unless otherwise
noted, the name N is used as shorthand to refer to a type of this kind. end note]

type, pointer, native — The pointer types as defined by the C++ Standard (88.3.1). (Unlike a handle, a native
pointer doesn’t track, since objects on the native heap never move.)

type, reference, native — The reference types as defined by the C++ Standard (88.3.2).

type, reference, tracking — A tracking reference is a kind of reference that has restrictions as to where it can
be declared. For any type T, the declaration T% r declares a tracking reference r to type T. (See also “handle”.)

type, value, boxed — A boxed value class is an instance of a value class on the CLI heap. For a value class v, a
boxed value class is always of the form VA,

type, value, simple — The subset of value classes that can be embedded in a CLI type. The simple value classes
include the fundamental types. [Note: Unless otherwise noted, the name S is used as shorthand to refer to a type
of this kind. end note]

unboxing — An explicit conversion from type System: :Object to any value class, from VA (the boxed form
of a value class) to v (the value class), or from any interface class to any value class that implements that
interface class. (See also “boxing”.)

Virtual Execution System (VES) — This system implements and enforces the Common Type System (CTS)
model. The VES is responsible for loading and running programs written for the CLI. It provides the services
needed to execute IL and data, using the metadata to connect separately generated modules together at runtime.
For example, given an address inside the code for a function, it must be able to locate the metadata describing
the function. It must also be able to walk the stack, handle exceptions, and store and retrieve security
information. The VES is also known as the “Execution Engine”.

10

15

Notational conventions

5. Notational conventions

Various pieces of text from the C++ Standard appear verbatim in this standard. Additions to such text are
indicated by underlining, and deletions are indicated using strike-through. For example:

The rules for operators remain largely unchanged from Standard C++; however, the following rule in
Standard C++ (8§13.5/6) is relaxed:

“An operator function shall either be a ror-static member function or be a non-member function
and have at least one parameter whose type is a class, a reference to a class, a class handle, an
enumeration, a reference to an enumeration, or an enumeration handle.”

Unless otherwise noted, the following names are used as shorthand to refer to a type of their corresponding kind:
e I for interface class
e N for native type
e R for ref class
o s for simple value class
e vV for value class

The CLI has its own set of naming conventions, some of which differ from established C++ programming
practice. The CLI conventions have been used throughout this Standard, and they are described in 8D.

Many source code examples use facilities provided by the CLI namespace System; however, that namespace is
not explicitly referenced. Instead, there is an implied using namespace System; at the beginning of each of
those examples.

10

C++/CLI Language Specification

6. Acronyms and abbreviations

This clause is informative.

The following acronyms and abbreviations are used throughout this Standard:

BCL — Base Class Library, which provides types to represent the built-in data types of the CLI, simple file
access, custom attributes, security attributes, string manipulation, formatting, streams, and collections.

CLI — Common Language Infrastructure

CLS — Common Language Specification

CTS — Common Type System

IEC — the International Electrotechnical Commission

IEEE — the Institute of Electrical and Electronics Engineers
ISO — the International Organization for Standardization
End of informative text.

10

15

20

General description

7. General description

This Standard is intended to be used by implementers, academics, and application programmers. As such, it
contains a considerable amount of explanatory material that, strictly speaking, is not necessary in a formal
language specification.

This standard is divided into the following subdivisions:

1. Front matter (clauses 1-7);

2. Language overview (clause 8);

3. The language syntax, constraints, and semantics (clauses 9-32);
4. Annexes

Examples are provided to illustrate possible forms of the constructions described. References are used to refer to
related clauses. Notes are provided to give advice or guidance to implementers or programmers. Annexes
provide additional information and summarize the information contained in this Standard.

Clauses 1-5, 7, and 9-32 form a normative part of this standard; and Foreword, Introduction, clauses 6 and 8,
annexes, notes, examples, and the index, are informative.

Except for whole clauses or annexes that are identified as being informative, informative text that is contained
within normative text is indicated in the following ways:

1. [Example: The following example ... code fragment, possibly with some narrative ... end example]
2. [Note: narrative ... end note]
3. [Rationale: narrative ... end rationale]

e : .

10

15

20

25

30

35

C++/CLI Language Specification

8. Language overview

This clause is informative.

This specification is a superset of Standard C++. This clause describes the essential features of this
specification. While later clauses describe rules and exceptions in a detail, this clause strives for clarity and
brevity at the expense of completeness. The intent is to provide the reader with an introduction to the language
that will facilitate the writing of early programs and the reading of later chapters.

8.1 Getting started
The canonical “hello, world” program can be written as follows:

int main() {
) System: :Console::wWriteLine("hello, world");

The source code for a C++/CLI program is typically stored in one or more text files with a file extension of
.cpp, asin helTo. cpp. Using a command-line compiler (called c1, for example), such a program can be
compiled with a command line like

c1l hello.cpp

which produces an application named hel71o.exe. The output produced by this application when it is run is:
hello, world

The CLI library is organized into a number of namespaces, the most commonly used being System. That
namespace contains a ref class called Console, which provides a family of functions for performing

console 1/0. One of these functions is wri teL1ine, which when given a string, writes that string plus a trailing
newline to the console. (Examples from this point on assume that the namespace System has been the subject of
a using declaration.)

8.2 Types

Look at the possibility of rewriting this sub-clause. C++ has many more class types, and a handle type can
include all class types. Keep this placeholder until the type tree diagram has been added. [[BB]]

Value classes differ from handle types in that variables of the value classes directly contain their data, whereas
variables of the handle types store handles to objects. With handle types, it is possible for two variables to
reference the same object, and thus possible for operations on one variable to affect the object referenced by the
other variable. With value classes, the variables each have their own copy of the data, and it is not possible for
operations on one to affect the other.

The example

ref class Classl {
public:
int value;
Class1() {
value = 0;

10

10

15

20

25

30

35

40

45

50

Language overview

int main(Q) {
int vall
int val2 =
val2 = 123;

ClasslA refl gcnew Classl;
ClasslA ref2 refl;
ref2->value = 123;

console::writeLine("values: {0}, {1}", vall, val2);
console::writeLine("Refs: {0}, {1}", refl->value, ref2->value);

0;
vall;

}
shows this difference. The output produced is

values: 0, 123
Refs: 123, 123

The assignment to the local variable val1 does not affect the local variable val2 because both local variables
are of a value class (the type int) and each local variable of a value class has its own storage. In contrast, the
assignment ref2->value = 123; affects the object that both ref1 and ref2 reference.

The lines

Console::writeLine("values: {0}, {1}", vall, val2);
console::writeLine("Refs: {0}, {1}", refl->value, ref2->value);

deserve further comment, as they demonstrate some of the string formatting behavior of

Console: :WriteL1ine, which, in fact, takes a variable number of arguments. The first argument is a string,
which can contain numbered placeholders like {0} and {1}. Each placeholder refers to a trailing argument with
{03} referring to the second argument, {1} referring to the third argument, and so on. Before the output is sent to
the console, each placeholder is replaced with the formatted value of its corresponding argument.

Developers can define new value classes through enum and value class declarations. The example

public enum class Color {
Red, Blue, Green

public value struct Point {
int x, Vy;

public interface class IBase {
void FQ;

public interface class IDerived : IBase {
void GO ;

public ref class A {

protected:

virtual void HQ) {.
console::writeLine("A.H");

}
3
public ref class B : A, IDerived {
public:

void FO {

Console::writeLine("B.F, implementation of IDerived.F");

void GO {)]) . .
Console::writeLine("B.G, implementation of IDerived.G");

11

10

15

C++/CLI Language Specification

virtual protected void H() override {
console::wWriteLine("B.H, override of A.H");

3
};
public delegate void MyDelegate();
shows an example of each kind of type definition. Later clauses describe type definitions in detail.

Types like color, Point, and IBase above, which are not defined inside other types, can have a type visibility
specifier of either pubTic or private. The use of pubTi c in this context indicates that the type will be visible
outside the assembly. Conversely, the private indicates that the type will not be visible outside the assembly.
The default visibility for a type is private.

8.2.1 Fundamental types and the CLI

Each of the fundamental types is shorthand for a CLI-provided type. For example, the keyword int refers to the
value class System: : Int32. As a matter of style, use of the keyword is favored over use of the complete
system type name.

The table below lists the fundamental types and their corresponding CLI-provided type:

Type Description CLI Value class
bool Boolean type; a boo1 value is either true or false System: :Bool
char 8-bit signed/unsigned integral type System::SByte
(with modopt for
NoSignSpecified)
f;:,g?ed 8-bit signed integral type System: :SByte
gﬂ;lgned 8-bit unsigned integral type System::Byte
short 16-bit signed integral type System: :Intl16
gﬂgjﬂ%ned 16-bit unsigned integral type System::UIntl6
int 32-bit signed integral type System::Int32
';_'niigned 32-bit unsigned integral type System: :UInt32
Tong 32-bit signed integral type System::Int32
(with modopt for IsLong)
'{gﬁégned 32-bit unsigned integral type Sy-stem: :UInt32
(with modopt for IsLong)
long long 64-bit signed integral type System: :Intb4
unsigned 64-bit unsigned integral type System::Uint64
long long
float Single-precision floating point type System::Single
doubTe Double-precision floating point type System: :Double

12

10

15

20

25

30

35

Language overview

long double | Double-precision floating point type System: :Double

wchar_t A 16-bit Unicode code unit System::Char

Add description for how fundamental types have the same member functions as those described in the CLI.
[[Ed]]

Although they are not fundamental types, three other types provided in the CLI library are worth mentioning.
They are:

e System::0bject, which is the ultimate base type of all value and handle types
e System::String, asequence of Unicode code units
e System::Decimal, a precise decimal type with 28 significant digits

C++/CLI has no corresponding keyword for these.

8.2.2 Conversions

A number of new kinds of conversion have been defined. These include handle and parameter array conversion,
among others.

8.2.3 Array types

An array in C++/CL1 differs from a native array (88.3.4) in that the former is allocated on the CLI heap, and can
have a rank other than one. The rank determines the number of indices associated with each array element. The

rank of an array is also referred to as the dimensions of the array. An array with a rank of one is called a single-
dimensional array, and an array with a rank greater than one is called a multi-dimensional array.

Throughout this Standard, the term array is used to mean an array in the CLI. A C++-style array is referred to as
a native array whenever the distinction is needed.

Say more, especially w.r.t the template class array<element-type>. [[BB]]

8.2.4 Type system unification

C++/CLI provides a “unified type system”. All value and handle types derive from the type System: :Object.
It is possible to call instance functions on any value, even values of fundamental types such as int. The
example

int main() {
Console::wWriteLine(3.ToString();

calls the instance function ToString from type System: : Int32 on an integer literal, resulting in the
string “3” being output.

The example
int main() {
int i = 123;
ObjectA o = 1i; // boxing
int j = (int) o; // unboxing

is more interesting. An int value can be converted to System: :0bject and back again to int. This example
shows both boxing and unboxing. When a variable of a value class needs to be converted to a handle type, an
object box is allocated to hold the value, and the value is copied into the box. Unboxing is just the opposite.

13

10

15

20

25

30

35

40

45

50

C++/CLI Language Specification

When an object box is cast back to its original value class, the value is copied out of the box and into the
appropriate storage location.

This type system unification provides value classes with the benefits of object-ness without introducing
unnecessary overhead. For programs that don’t need int values to act like objects, int values are simply 32-bit
values. For programs that need 1int values to behave like objects, this capability is available on demand. This
ability to treat value classes as objects bridges the gap between value classes and ref classes that exists in most
languages. For example, a Stack class can provide Push and Pop functions that take and return objectA
values.

public ref class Stack {

pubTic:

ObjectA Pop() {..}
void Push(ObjectA o) {..}

Because C++/CLI has a unified type system, the Stack class can be used with elements of any type, including
value classes like int.

8.2.5 Pointers, handles, and null

Standard C++ supports pointer types and null pointer constants. C++/CLI adds handle and null values. To help
integrate handles, and to have a universal null, C++/CLI defines the keyword nu11ptr. This keyword
represents a literal having the null type. nul1ptr is referred to as the null value constant. (No instances of the
null type can ever be created, and the only way to obtain a null value constant is via this keyword.)

The definition of null pointer constant (which Standard C++ requires to be a compile-time expression that
evaluates to zero) has been extended to include nuT1ptr. The null value constant can be implicitly converted to
any pointer or handle type, in which case it becomes a null pointer value or null value, respectively. This
allows nu1Tptr to be used in relational, equality, conditional, and assignment expressions, among others.

[Example:

ObjectA objl
StringA strl
if (objl == 0);

if (objl == 0L);

if (objl == nullptr);

char* pcl = nullptr;
if (pcl == 0);
if (pcl == 0L);
if (pcl == nullptr);

nullptr; // handle objl has the null value

nullptr; // handle strl has the null value

false (zero is boxed and the two handles differ)
_Fa'l se (13 13 (13 (13 (13
true

pcl is the null pointer value

true as zero is a null pointer value

true [1] 1]

true as nullptr is a null pointer constant

int nl = 0;

nl = nullptr; error, no implicit conversion to int
if (nl == 0); true, performs integer comparison

if (nl == 0L); “ “ “

if (n1 == nullptr);

if (nullptr);
if (nullptr == 0);
if (nullptr == 0L);

error, no implicit conversion to int

error . L. . .
error, no '|mp'|'|c1t conversion to 1nt
[[[

nullptr = 0; error, nullptr is not an Tvalue

nullptr + 2; error, nullptr can’t take part in arithmetic
ObjectA obj2 = 0; obj2 is a handle to a boxed zero

ObjectA obj3 = OL; obj3 “ “ “

StringA str2 = 0; error, no conversion from int to StringA
StringA str3 = OL; “ “ “ “

char* pc2 = 0;

pc2 is the null pointer value
Char* pC3 - OL;] 1] u

pc3

OSSO NN N\~ NN NN
A Y N NN NN

14

10

15

20

25

30

35

40

45

50

Language overview

ObjectA obj4 = expr ? nullptr : nullptr; // obj4 is the null value

ObjectA obj5 = expr ? 0 : nullptr; // error, no composite type

char* pc4 = expr ? nullptr : nullptr; // pc4 is the null pointer value
char* pc5 = expr ? 0 : nullptr; // error, no composite type

int n2 = expr ? nullptr : nullptr; // error, no implicit conversion to int
int n3 = expr ? 0 : nullptr; // error, no composite type
sizeof(nullptr); // error, the null type has no size, per se
typeid(nullptr); // error

throw nullptr; // error

void f(ObjectA); // 1

void f(StringA); // 2

void f(char¥); // 3

void f(int); // 4

f(nullptr); // error, ambiguous (1, 2, 3
possible)

f(0); // calls f(int)

void g(ObjectA, ObjectA); // 1

void g(ObjectA, char¥*); // 2

void g(ObjectA, 1int); // 3

g(nullptr, nullptr); // error, ambiguous (1, 2 possible)
g(nullptr, 0); // calls g(ObjectA, int)

g(0, nullptr); // error, ambiguous (1, 2 possible)

void h(ObjectA, 1int);
void h(char*, ObjectA);

h(nullptr, nullptr); // calls h(char*, ObjectA);

h(nullptr, 2); // calls h(objectA, int);
template<typename T> void k(T t);

k(0); // specializes k, T = int
k(Cnullptr); // error, can’t instantiate null type
k((objectA)nullptr); // specializes k, T = ObjectA
k<int*>(nullptr); // specializes k, T = int*

end example]

Since objects allocated on the native heap do not move, pointers and references to such objects need not track an
object’s location. However, objects on the CLI heap can move, so they require tracking. As such, native pointers
and references are not sufficient for dealing with them. To track objects, C++/CLI defines handles (using the
punctuator A) and tracking references (using the punctuator %). [Example:

N* hn = new N; // allocate on native heap

N& rn = *hn; // bind ordinary reference to native object
RA hr = gcnew R; // allocate on CLI heap

R% rr = *hr; // bind tracking reference to gc-lvalue

end example]
In general, % isto A as & is to *.

Just as Standard C++ has a unary & operator, C++/CLI provides a unary % operator. While &t yields a T* or an
interior_ptr<T> (see below), %t yields a TA.

Rvalues and Ivalues continue to have the same meaning as with Standard C++, with the following rules
applying:
e An entity declared with type T*, a native pointer to T, points to an Ivalue.

e Applying unary * to an entity declared with type T*, dereferencing a T*, yields an Ivalue.

15

5

10

15

20

25

30

35

C++/CLI Language Specification

An entity declared with type T&, a native reference to T, is an Ivalue.
The expression &lvalue yields a T*.

The expression %lvalue yields a TA.

A gc-Ivalue is an expression that refers to an object on the CLI heap, or to a value member contained within
such an object. The following rules apply to gc-lvalues:

Standard conversions exist from “cv-qualified Ivalue of type T” to “cv-qualified gc-Ivalue of type T,”
and from “cv-qualified gc-lvalue of type T” to “cv-qualified rvalue of type T.”

An entity declared with type TA, a handle to T, points to a gc-lvalue.

Applying unary * to an entity declared with type TA, dereferencing a TA, yields a gc-lvalue.
An entity declared with type T%, a tracking reference to T, is a gc-lvalue.

The expression &gc-lvalue yields an interior_ptr<T> (See below.).

The expression %gc-lvalue yields a TA.

The garbage collector is permitted to move objects that reside on the CLI heap. In order for a pointer to refer
correctly to such an object, the runtime needs to update that pointer to the object’s new location. An interior
pointer (which is defined using interior_ptr) is a pointer that is updated in this manner.

8.3 Parameters

A parameter array enables a many-to-one relationship: many arguments can be represented by a single
parameter array. Parameter arrays are a type safe alternative to parameter lists that end with an ellipsis.

A parameter array is declared with a leading . . . punctuator and an array type. There can be only one parameter

array for a given function, and it must always be the last parameter specified. The type of a parameter array is
always a single-dimensional array type. A caller can either pass a single argument of this array type, or any
number of arguments of the element type of this array type. For instance, the example

shows a function F that takes a variable number of int arguments, and several invocations of this function. The

void F(... array<int>A args) {
console::writeLine("# of arguments: {0}", args->Length);
for (int i =0; i < args->Len th; i++)
Console::writeLine("\targs[{0}] = {1}", i, args[il);

3
int main() {
FQ s
F(1);
F(1, 2);
F(1, 2, 3);
; F(gcnew array<int> {1, 2, 3, 4});

output is:

16

10

15

20

25

30

35

40

45

50

of arguments:
of arguments:
args[0] =1
of arguments:
args[0] =1
args[1l] = 2
of arguments:
args[0] =1
args[1l] = 2
args[2] = 3
of arguments:
args[0] =1
args[1] = 2
args[2] = 3
args[3] = 4

Language overview

By declaring the parameter array to be an array of type System: :0bjectA, the parameters can be

heterogeneous; for example:
void G(...

array<ObjectA>A args) { .. }

G(10, “Hello”,

A number of examples presented in this document use the wr1i teL1ine function of the Console class. The
argument substitution behavior of this function, as exhibited in the example

inta=1, b =
Wr1teL1ne(“a = {0}, b = {1}", a, b);

is accomplished using a parameter array. The ConsoTe class provides several overloaded versions of the
writeL1ine function to handle the common cases in which a small number of arguments are passed, and one

console:

general-purpose version that uses a parameter array, as follows:
namespace System {

public ref class oObject {.};
public ref class string {.};
public ref class Console {

pubTic:
static
static
static
static

static

1
}

void
void
void
void

void

writeLine(StringA
WriteLine(StringA
WriteLine(StringA
writeLine(StringA

writeLine(StringA

s) {.}

1.23, ‘X’); // last two arguments are boxed

s, ObjectA a) {..}
s, ObjectA a, ObjectA b) {.}
s, ObjectA a, ObjectA b, ObjectA c) {.}

S,

. array<ObjectA>A args) {..}

[Note: The CLI library specification shows library functions using C# syntax, in which case, the C# keyword
params indicates a parameter array. For example, the declaration of the final writeL1ine function above is
written in C#, as follows:

public static void writeLine(string s,

end note]

8.4 Automatic memory management

The example

public ref class Stack {

NodeA first;

pubTic:

stack() {

first

nullptr;

17

params object[] args)

10

15

20

25

30

35

40

45

50

C++/CLI Language Specification

property bool Empty {
book get() {
return (first == nullptr);

}
ObjectA Pop() {
if (first == nullptr)
] thEow gchew Exception("Can't Pop from an empty Stack.');
else
Object tempA = first->value;
first = first->Next;
return temp;

}

public void Push(ObjectA 0) {
first = gcnew Node(o, first);

ref struct Node {
NodeA Next;
objectA value;
Node(objectA value) : Node(value, nullptr) {}
Node(objectA value, NodeA next) {
Next = next;
value = value;

}
3
shows a Stack class implemented as a linked list of Node instances. Node instances are created in the Push
function and are garbage collected when no longer needed. A Node instance becomes eligible for garbage
collection when it is no longer possible for any code to access it. For instance, when an item is removed from
the stack, the associated Node instance becomes eligible for garbage collection.

The example

int main(Q) {
StackA s = gcnew Stack();
for (int i = 0; i < 10; i++)
s->Push(i);
; s = nullptr;

shows code that uses the Stack class. A stack is created and initialized with 10 elements, and then assigned
the value nul1ptr. Once the variable s is assigned the null value, the Stack and the associated 10 Node

instances become eligible for garbage collection. The garbage collector is permitted to clean up immediately,
but is not required to do so.

The garbage collector underlying C++/CLI can work by moving objects around in memory, but this motion is
invisible to most C++/CLI developers. For developers who are generally content with automatic memory
management but sometimes need fine-grained control or that extra bit of performance, C++/CLI provides the
ability to pin objects, to prevent temporarily the garbage collector from moving them. For example,

void f(int* p) { *p = 100; }

int main(Q {

stdcli::Tlanguage::array<int>A arr =
gcnew _stdcli::language::array<int>(100);

stdcli::language: :pin_ptr<int> pinp = &arr[0]; // pin arr’s Tlocation
f(pinp); // change arr[0]’s value

18

10

15

20

25

30

35

40

Language overview

8.5 Expressions
C++/CLI makes numerous additions and changes with respect to operators. For example:

e The addition of delegates requires the use of the function-call operator to invoke the functions
encapsulated by a delegate.

e Toaccommodate CLI types, a new form of the typeid operator has been added. For example, typeid
<int> results in a handle to an object of type System: : Type, that describes the CLI type int.
(Remember, int is a synonym for the CLI type System: : Int32.)

e The cast operators have been extended to accommodate handle types.
e The safe_cast operator has been added.
e The operator gcnew has been added. This allocates memory from the CLI heap.

e The binary + and - operators have been extended to accommodate delegate addition and removal,
respectively.

o Simple assignment has been extended to accommaodate properties and events as the left operand.

o Compound Aassignment operators are synthesized from the corresponding binary operator. [[BB]]

8.6 Statements

A new statement, for each, has been added. This statement enumerates the elements of a collection, executing
a block for each element of that collection. For example:
void display(array<int>A args) {
for each (int i1 in args)
console::WriteLine(i);

}

A type is said to be a collection type if it implements the System: :Collections.IEnumerabTe interface or
implements some collection pattern by meeting a number of criteria.

8.7 Delegates

Delegates enable scenarios that Standard C++ programmers typically address with function adapters from the
Standard C++ Library.

A delegate definition implicitly defines a class that is derived from the class System: :Delegate. A delegate
instance encapsulates one or more functions, each of which is referred to as a callable entity. For instance
functions, a callable entity is an instance and a member function on that instance. For static functions, a callable
entity is just a member function. Given a delegate instance and an appropriate set of arguments, one can invoke
all of that delegate instance’s callable entities with that set of arguments.

Consider the following example:
delegate int MyFunction(int value); // define a delegate type

public ref struct A {
static int Square(int i) { return i * i; }
public ref struct B {
int Cube(int i) { return i * i * i; }
The class function A: : Square parameter types and the instance function B: : Cube both have the same
parameter types and return type as MyFunction, so they can be encapsulated by a delegate of that type. Note

19

10

15

20

25

30

35

40

45

C++/CLI Language Specification

that even though both functions are public, their accessibility is irrelevant when considering their compatibility
with MyFunction. Such functions can also be defined in the same or different classes, as the programmer sees
fit.

int main() {
int result;

MyFunctionA d; // create a delegate reference
d = gcnew MyFunction(&A::Square);

BA b = gcnew B;

d += gcnew MyFunction(b, &B::Cube);

result = d(10); // invoke function via delegate instance
console::WriteLine(s"d(10) result = {0}", result);
console::writeLine(s"d(20) result = {0}", d(20));

}

Also show output of example and reference the clause in the CLI spec re non-deterministic behavior. [[Ed]]

d can be initialized with A: : Square or B: : Cube. The constructor for a delegate needs two arguments when it
is bound to a non-static member function: the first is a handle to a ref class, and the second is the address of the
non-static member function within that ref class’s type. The constructor for a delegate needs only one argument
when it is bound to a static function, the argument is the address of the static member function.

Once a delegate instance has been initialized, it is possible to indirectly call the function it encapsulates just as if
it were called directly, except the delegate instance’s name is used instead. The value (if any) returned by the
encapsulated function is obtained as with a direct function call. If a delegate instance is null and an attempt is
made to call the “encapsulated” function, an exception of type NulT1ReferenceException results.

8.8 Native and ref classes

8.8.1 Literal fields

A literal field is a field that represents a compile-time constant rvalue. The value of a literal field is permitted to
depend on the value of other literal fields within the same program as long as they have been previously defined.
The example
ref class X {
Titeral int A = 1;

public:
Titeral int B

A+ 1;
ref class Y {

pubTic:
Titeral double C = X::B * 5.6;

shows two classes that, between them, define three literal fields, two of which are public while the other is
private.

Even though literal fields are accessed like static members, a literal field is not static and its definition neither
requires nor allows the keyword static. Literal fields can be accessed through the class, as in
int main() {

cout << "B
cout << "C

0o
A
A
—<
A
A
A

=

which produces the following output:

B =2
c =11.2

20

10

15

20

25

30

35

40

Language overview

Literal fields are only permitted in reference, value, and interface classes.

8.8.2 Initonly fields

The initonly identifier declares a field that is an lvalue during construction only, and thereafter is an rvalue.
This is called an initonly field. For example:

public ref class Data {
initonly static double coefficientl;
initonly static double coefficient2;
static Data() {
// read in the value of the coefficients from some source

coefficientl = ..; // ok
) coefficient2 = ..; // ok
pubTic:
static void FO {
coefficientl = ..; // error
coefficient2 = ..; // error

}
3

Assignments to an initonly field can only occur as part of its definition, or in an instance constructor or static
constructor in the same class. (A static initonly field can be assigned to in a static constructor, and a non-static
initonly field can be assigned to in an instance constructor.)

Initonly fields are only permitted in ref and value classes.

8.8.3 Functions

Member functions in CLI types are defined and used just as in Standard C++. However, C++/CLI does have
some differences in this regard. For example:

e The const and volatile qualifiers are not permitted on instance member functions.

e The function modifier override and override specifiers provide the ability to indicate explicit
overriding, to allow selective and multiple overriding, and to have renamed overriding.

e Marking a virtual member function as sealed prohibits that function from being overridden in a
derived class.

e The abstract function modifier provides an alternate way to declare a pure virtual member function.

e The new function modifier ...[[Ed]]

e Type-safe variable-length argument lists are supported via parameter arrays.

8.8.4 Properties

A property is a member that behaves as if it were a field. There are two kinds of properties: scalar and indexed.
A scalar property enables scalar field-like access to an object or class. Examples of scalar properties include
the length of a string, the size of a font, the caption of a window, and the name of a customer. An indexed
property enables array-like access to an object. An example of an index property is a bit-array class.

Properties are an evolutionary extension of fields—both are named members with associated types, and the
syntax for accessing scalar fields and scalar properties is the same, as is that for accessing arrays and indexed
properties. However, unlike fields, properties do not denote storage locations. Instead, properties have accessor
functions that specify the statements to be executed when their values are read or written.

Properties are defined with property definitions. The first part of a property definition looks quite similar to a
field definition. The second part includes a get accessor function and/or a set accessor function. Properties that

21

10

15

20

25

30

35

40

45

50

C++/CLI Language Specification

can be both read and written include both get and set accessor functions. In the example below, the point class
defines two read-write properties, X and Y.

public value class point {
int Xor;
int Yor;

pubTic:
property int X {
int get() return Xor; }
void set(int value) Xor = value; }

A

property int Y {
int get() return Yor; }
void set(int value) Yor = value; }

P

goint() : point(0, 0) { // delegating constructor call

point(int x, int y) {
move(x, Yy);

void move(int x, int y) { // absolute move
X = X;
Y =Y;

%

void translate(int x, int y) { // relative move
X += X;
Y +=Y;

b
The get accessor function is called when the property’s value is read; the set accessor function is called when the
property’s value is written.

The definition of properties is relatively straightforward, but the real value of properties is seen when they are
used. For example, the X and Y properties can be read and written as though they were fields. In the example
above, the properties are used to implement data hiding within the class itself. The following application code
(directly and indirectly) also uses these properties:

point pl; // set to (0,0)
pl.x = 10; // set to (10,0)
pl.Y = 5; // set to (10,5)
pl.move(5, 7); // move to (5,7)
point p2(9, 1); // set to (9,1)

p2.translate(-4, 12); // move 4 Teft and 12 up, to (5,13)

A default indexed property allows array-like access directly on an instance. Whereas properties enable field-like
access, default indexed properties enable array-like access. [Note: Other languages refer to default indexed
properties as “indexers”. end note]

As an example, consider a Stack class. The designer of this class might want to expose array-like access so that
it is possible to inspect or alter the items on the stack without performing unnecessary Push and Pop operations.
That is, class Stack is implemented as a linked list, but it also provides the convenience of array access.

Default indexed property definitions are similar to property definitions, with the main differences being that
default indexed properties can be nameless and that they include indexing parameters. The indexing parameters
are provided between square brackets. The example

22

10

15

20

25

30

35

40

45

50

55

public ref class Sta
public:

ref struct Node {
NodeA Next;

ObjectA value;

Node(ObjectA v

Node(ObjectA v

Next = next

value = val

3
};
private:
NodeA first;
NodeA GetNode(int
NodeA temp =
while (index >
temp = temp
index--;

return temp;

}
bool validIndex(i

public:
property ObjectA
ObjectA get(in
if (lvalidz
throw gc
else
return G

void set(Objec
if (!valid1
throw gc
else
GetNode(
}
3

ObjectA Pop() { ..
void Push(ObjectA

-

int main() {

StackA s = gcnew
s->Push(1);
s->Push(2);
s->Push(3);
s[0] = 33; // Ch
s[1] = 22; // Ch
s[2] = 11; // Ch

}

Language overview

ck {

alue) : Node(value, nullptr) {3}
alue, NodeA next) {

ue;

Jindex) {

first;

0 {

->Next;

nt index) { .. }

default[int] { // default indexed property
t index) {

ndex(index))

new Exception("Index out of range.™);

etNode(index)->Value;

tA value, int index) {
ndex (index))
new Exception("Index out of range.™);

index)->value = value;

3
o) { . }
Stack;

anges the top item from 3 to 33
anges the middle item from 2 to 22
anges the bottom item from 1 to 11

shows a default indexed property for the Stack class.

[Note: A more efficient implementation of Stack would make use of generics. end note]

Default indexed properties can just

public class IntVector {
public:
property int default[int index] {

as easily be defined for native classes; for example:

/[default indexed property

23

10

15

20

25

30

35

40

45

50

C++/CLI Language Specification

int get(int index) { ... }
void set(int index, int value) { ... }

}
Y
int main() {
IntVector iv(7, 5); // define a 7-element vector with all values 5
inti=iv[0]; /I get element O
iv[1] = 55; I/ set element 1
iv[3] -=17; I/ get and set element 3
iv[5] *= 3; Il get and set element 5
}
8.8.5 Events

An event is a member that enables an object or class to provide notifications. A class defines an event by
providing an event declaration (which resembles a field declaration, though with an added event identifier) and
an optional set of event accessor functions. The type of this declaration must be a handle to a delegate type
(88.7).

An instance of a delegate type encapsulates one or more callable entities. For instance functions, a callable
entity consists of an instance and a function on that instance. For static functions, a callable entity consists of
just a function. Given a delegate instance and an appropriate set of arguments, one can invoke all of that
delegate instance’s functions with that set of arguments.

In the example

public delegate void EventHandler(ObjectA sender,
EventArgsA e);

public ref class Button {
pubTic:
event EventHandlerA Click;
void Reset() {
Click = nullptr;

3
}s
the Button class defines a C11 ck event of type EventHandTer. Inside the Button class, the C1ick member
is exactly like a private field of type EventHandler. However, outside the Button class, the C1ick member is
typically only used on the left-hand side of the += and —= operators. The += operator adds a handler for the
event, and the -= operator removes a handler for the event. The example
public ref class Forml {
ButtonA Buttonl;

void Buttonl_Click(ObjectA sender, EventArgsA e) {
console::writeLine("Buttonl was clicked!");

public:
Forml() {
Buttonl = gcnew Button;
// Add Buttonl_Click as an event handler for Buttonl’s Click event
Buttonl->Click += gcnew EventHandler(this, &Buttonl_Click);

void Disconnect() {
Buttonl->Click -= gcnew EventHandler(this, &Buttonl_Click);

24

10

15

20

25

30

35

40

45

50

Language overview

shows a class, Form1, that adds Buttonl_cC11ck as an event handler for Buttonl’s C11ck event. In the
Disconnect function, that event handler is removed.

For a trivial event declaration such as
event EventHandlerA Click;
the compiler automatically provides the default implementations of the accessor functions.

An implementer who wants more control can get it by explicitly providing add and remove accessor functions.
For example, the Button class could be rewritten as follows:

public ref class Button {
EventHandlerA handler;

pubTic:
event EventHandlerA Click {
void add(EventHandlerA e) { Lock<Mutex> 1(m); handler += e; }
; void remove(EventHandlerA e) { Lock<Mutex> 1(m); handler -= e; }
‘s -

This change has no effect on client code, but it allows the Button class more implementation flexibility. For
example, the event handler for C11 ck need not be represented by a field.

8.8.6 Static operators
Add examples for native and value classes. [[Ed]]

In addition to Standard C++ operator overloading, C++/CLI provides the ability to define operators that are
static and/or take parameters of " type.

The following example shows part of an integer vector class:

public ref class Intvector {
int array<int>A values;

pubTic:
property int Length { // property
int get() { return values->Length; }

property int default[int] { // default indexed property
int get(int index) { return values[index];
void set(int index, int value) { values[index] = value; }

IntvVector(int length) : Intvector(length, 0) {}
IntvVector(int Tength, int value);

// unary - (negation)
static IntvVectorA operator-(IntVectorA iv) {
IntVectorA temp = gcnew Intvector(iv->Length);
for (int i = 0; i < iv->Length; ++i) {
temp[i] -iv[i];

return temp;

static IntVectorA operator+(IntVectorA {iv, 1int val) {
IntVectorA temp = gchew IntvVector(iv->Length);
for (int i 0; i < iv->Length; ++i) {
temp[i] iv[i] + val;

return temp;

25

10

15

20

25

30

35

40

45

50

C++/CLI Language Specification

static IntvectorA operator+(int val, IntvectorA iv) {
return iv + val;

-

int main() {
IntVectorA 1ivl
IntVectorA iv2
ivl = -2 + iv2
iv2 = -ivl;

gcnew IntVector(4); // 4 elements with value 0
gcnew Intvector(7, 2); // 7 elements with value 2
S;

+ 0

}

8.8.7 Instance constructors

Unlike Standard C++, C++/CLI, supports static constructors (88.8.9). As such, this specification refers to
constructors as defined by the C++ Standard as being instance constructors. An instance constructor can
directly transfer control to one of its siblings via a delegating constructor, as described in the next subclause.

8.8.7.1 Delegating constructors

When implementing a class, it is not unusual to have a number of constructors share some common code. For
example, consider the case of the following point class:
class point {
int x_;
int y_;
void commonCode();
public:
point();
point(int x, int y);
point(const point& p);

// ...
};
All three constructors need to initialize the two private members, x_ and y_; they might also perform other
actions, some of which they share, and some of which are unique. One approach is as follows:
point::point() : x_(0), y_(0) {

commonCode();
// ... custom code goes here

point::point(int x, int y) : x_(x), y_(y) {
commonCode() ;

point::point(const point& p) : x_(p.-x_), y_(p.y_) {
commoncCode() ;
. custom code goes here

Certainly, the constructor with no parameters can be eliminated by adding default argument values to the
constructor having two. However, that is not an entirely satisfactory approach for all classes. Specifically, it
requires the default values to essentially be compile-time constant expressions (which might not always be
preferable), and it allows the two-argument constructor to be called with only the first argument, but not with
only the second, which, philosophically, is asymmetric.

26

10

15

20

25

30

35

40

45

Language overview

As shown above, a common approach to implementing such a family of constructors is to place their common
code in a private member function, such as commonCode, and have each of them call that function.

C++/CLI helps solve this problem by providing delegating constructors. Simply stated, prior to executing its
body, a delegating constructor can call one of its sibling constructors as though it were a base constructor. That
is, it delegates part of the object’s initialization to another constructor, gets control back, and then optionally
performs other actions as well. Using this approach, the constructors shown earlier can be re-implemented as
follows:

point::point() : point(0, 0) {
// ... custom code goes here

point::point(int x, int y) : x_(x), y_(y) {
// ... common code goes here

point::point(const point& p) : point(p.x_, p.y_) {
// ... custom code goes here

Note how the ctor-initializer construct has been extended to accommodate a call to a sibling constructor, using
the exact same approach as for a call to a base class constructor. The common code statements can now be part
of the body of the second constructor, where they will be executed by calls to all three constructors. When the
first and third constructors are called, they transfer control to the second. When that returns control to its caller,
that caller’s body is executed.

Any constructor can delegate to any of its siblings; however, a class must have at least one non-delegating
constructor (no diagnostic is required), and that constructor can still have a ctor-initializer that calls one or more
base class constructors. A delegating constructor cannot also have a ctor-initializer that contains a comma-
separated list of member initializers.

8.8.8 Destructors
Introduce finalizers. [[BB]]

8.8.9 Static constructors

A static constructor is a ref or value class static member function that implements the actions required to
initialize the static members of a class, rather than the instance members of that class. Static constructors cannot
have parameters, must be private, and they cannot be called explicitly. The static constructor for a class is called
automatically by the runtime. [Note: A static constructor is required to be private to prevent the static
constructor from being invoked more than once. end note]

The example

public ref class Data {
private:
initonly static double coefficientl;
initonly static double coefficient2;
static Data() {
// read in the value of the coefficients from some source
coefficientl = .;
coefficient2 m;

¥,
pubTic:

-

27

10

15

20

25

30

35

40

C++/CLI Language Specification

shows a Data class with a static constructor that initializes two initonly static fields.

8.8.10 Inheritance

When using ref classes, C++/CLI supports single inheritance of ref classes only. However, multiple inheritance
of interfaces is permitted.

8.8.10.1 Function overriding

C++/CLI supports three virtual function-overriding features not available in Standard C++. These features are
available in any class type. They are:

1. Explicit overriding: In Standard C++, given a derived class with a function having the same name and
parameter list as a virtual function in a base class, the derived class function always overrides the one in
the base class, even if the derived class function is not declared virtual. [Example:

struct B {
virtual void fQ;
virtual void gQ;
s%ruct D : B {
virtual void fQ; // D::f overrides B::f
void gQ); // D::g overrides B::g
The virtual specifier on D: : f is optional. end example]
In C++/CLLI, it is possible to state that

a) A derived class function explicitly overrides a base class virtual function having the same name
and parameter list, with the program being ill-formed if no such base class virtual function
exists; and

b) A derived class function explicitly does not override a base class virtual function having the
same name and parameter list.

[Example:

struct B {
virtual void QO
virtual void gQ
virtual void hQ
virtual void jO

struct D : B {

virtual void f() = B::f;// D::f overrides B::f
virtual void g() = B; // D::g overrides B::g
virtual void h() = h; // D::h overrides B::h
virtual void j() new; // D::j doesn’t override B::j, it hides it

The virtual specifiersonD: :f,D::g,D::h,and D: : j, are required. The B: : f in the declaration of
D: : fis referred to as a qualified name. The h in the declaration of D: : h is referred to as an
unqualified name. The B in the declaration of D: : g is simply the base class name without a function
name.

28

10

15

20

25

30

35

40

45

Language overview

struct B {
void fQ;
private:

virtual void h(Q
virtual void jO

struct D : B {

virtual void f() = B::f; // error, B::f is not overridable
virtual void g() = B; // error, B::g does not exist
virtual void hQ; // B::h not visible, but ok
virtual void j(O = B::j // B::j not visible, but ok

};

end example]

Multiple overriding: In Standard C++, the only way that a function in a derived class can override more
than one base class virtual function is if, in the presence of multiple inheritance, more than one base
class provides a virtual function that has the same name and parameter list as the derived class function.
[Example:

struct A {
virtual void fQO;

struct B {
virtual void fQ;

struct C {
virtual void fQ;

struct D : A, B, C {
virtual void fQO; // D::f overrides A::f, B::f, and C::F

The virtual specifier on D: : T is optional. end example]

In C++/CLLI, it is possible to state that a derived class function overrides all or any subset of the
compatible base class virtual functions. [Example:

struct A {
virtual void f(O;

struct B {
virtual void f(O;

struct C {
virtual void f(O;

struct D : A, B, C { // alternative 1
virtual void f() = A::f, B::f, C::f; // D::f overrides all three
// alternative 2
// D::f overrides all three

struct D : A, B, C {
virtual void f() = f;

29

10

15

20

25

30

35

40

45

50

C++/CLI Language Specification

struct D : A, B, C { // alternative 3
virtual void f() = C, A::f; // D::f overrides two

end example]

3. Renamed overriding: In Standard C++, an overriding function must have the same name as the function
it is overriding. In C++/CLI, it is possible for the derived class function to have a different name
(although the two functions must still have the same parameter lists). [Example:

struct A {
virtual void fQ;

struct B {
virtual void fQ;

struct D1 : A, B {

virtual void x() = B::f; // Dl::x overrides B::f
struct D2 : A, B {

virtual void x() = A::f, B::f; // D2::x overrides A::f and B::f
struct D3 : A, B {

virtual void x() = f; // D3::x overrides A::f and B::f
struct D4 : A, B {

virtual void x() = A, B; error, neither A nor B have

/1 . .
) // a virtual function x

end example]

An alternate overriding syntax is available; this involves the identifier override. (This name is not a keyword,;
it is simply a special identifier when used in this context.) [Example:

struct A {
virtual void (O
virtual void g(Q
virtual void h(Q)
virtual void jO

};

struct B {
virtual void f(O;
virtual void g(Q);

struct D : A, B {
virtual void f() override; // D::f overrides A::f and B::f
virtual void g() override = A, B; // D::g overrides A::g and B::g
virtual void h() override = A::h; // D::h overrides A::h
virtual void k() override = A::j; // D::k overrides A::j

};
end example]

An explicit override takes priority over an implicit override. Once a virtual function has been overridden
explicitly, in further class derivations, it shall always be overridden explicitly.

30

10

15

20

25

30

35

40

Language overview

A function shall only be overridden (either implicitly or explicitly) once in any given class.

[Note: If a base class is a template, an explicit override of a virtual function from that template does not happen
until the point of instantiation. end note]

8.9 Value classes

Value classes are similar to ref classes in that the former represent data structures that can contain fields and
function members. However, unlike ref classes, value classes do not require heap allocation. A variable of a
value class directly contains the data of the value class, whereas a variable of a ref class contains a handle to the
data.

Value classes are particularly useful for small data structures that have value semantics. Complex numbers,
points in a coordinate system, or key-value pairs in a dictionary are all good examples of structs. Key to these
data structures is that they have few fields, that they do not require use of inheritance or referential identity, and
that they can be conveniently implemented using value semantics where assignment copies the value instead of
the reference.

The simple types provided by C++/CLlI, such as int, double, and booT, are, in fact, all value classes. Just as
these predefined types are value classes, it is also possible to use value classes and operator overloading to
implement new “primitive” types in this specification.

value struct Point {

int x, Vy;

Point(int x, int y) {
this->x = x;
this->y = vy;

1

8.10 Interfaces

An interface defines a contract. A class that implements an interface must adhere to its contract by implementing
all of the functions, properties, and events that interface declares.

The example

delegate void EventHandler(Object sender,
EventArgsA e);

interface class IExample {
void F(int value);
property bool P { bool get(); }
property double default[int];
event EventHandlerA E;

shows an interface that contains a function F, a read-only scalar property P, a default indexed property, and an
event E.

Interfaces are implemented using inheritance syntax.
interface class 11 { void FQ; }; // F 1is implicitly virtual abstract
ref class R1 : I1 { virtual void FQO { /* implement 11::f */ } };

An interface can require implementation of one or more other interfaces. For example

interface class IControl {
void Paint();

31

10

15

20

25

30

35

40

45

C++/CLI Language Specification

interface class ITextBox : IControl {
void SetText(StringA text);

interface class IListBox : IControl {
void SetItems(array<StringA>A items);

interface class IComboBox : ITextBox, IListBox {};
A class that implements IComboBox must also implement ITextBox, IListBox, and IControl.

Classes can implement multiple interfaces. In the example
interface class IDataBound {
void Bind(BinderA b);
public ref class EditBox : Control, IControl,
public IDataBound {
pubTic:
void Paint() {.}
void Bind(BinderA b) {..}

;
the class Ed1i tBox derives from the class Control and implements both IControl and IDataBound.

In the previous example, interface functions were implicitly implemented. C++/CLI provides an alternative way
of implementing these functions that allows the implementing class to avoid having these members be public.
Interface functions can be explicitly implemented using the override syntax shown in 88.8.10. For example, the
EditBox class could instead be implemented by providing IControTl: :Paint and IDataBound: : Bind
functions.

pubTic ref class EditBox : IControl, IDataBound {

private:

void Paint() = Icontrol {..}
void Bind(BinderA b) = IDataBound {..}

Interface members implemented in this way are called explicit interface members because each member
explicitly designates the interface member being implemented.

int main(QQ {)
EditBoxA editbox = gcnew EditBox;

editbox->Paint(); _// error: Paint 1is private
IControlA control = editbox;)]))
control->Paint(); // calls EditBox’s Paint implementation

8.11 Enums

Standard C++ already supports enumerated types. However, C++/CLI provides some interesting extensions to
this facility. For example:

e Anenum can be declared public or private, so its visibility outside its parent assembly can be controlled.
e The underlying type for an enum can be specified.
e Anenum type and/or its enumerators can have attributes.

e A new syntax is available for defining enums that are strongly typed and thus do not have integral
promotion conversions.

32

10

15

20

25

30

35

40

45

Language overview

8.12 Namespaces and assemblies

The programs presented so far have stood on their own except for dependence on a few system-provided classes
such as System: :Console. It is far more common, however, for real-world applications to consist of several
different pieces, each compiled separately. For example, a corporate application might depend on several
different components, including some developed internally and some purchased from independent software
vendors.

Namespaces and assemblies enable this component-based system. Namespaces provide a logical organizational
system. Namespaces are used both as an “internal” organization system for a program, and as an “external”
organization system—a way of presenting program elements that are exposed to other programs.

Assemblies are used for physical packaging and deployment. An assembly can contain types, the executable
code used to implement these types, and references to other assemblies.

To demonstrate the use of namespaces and assemblies, this subclause revisits the “hello, world” program
presented earlier, and splits it into two pieces: a class library that contains a function that displays the greeting,
and a console application that calls that function.

The class library will contain a single class named DisplayMessage. For example:

// DisplayHelloLibrary.cpp
namespace MyLibrary {
public ref struct DisplayMessage {
static void Display() {
console::writeLine("hello, world");

}
1
}

The next step is to write a console application that uses the DisplayMessage class; for example:

// HelloApp.cpp

#using <DisplayHelloLibrary.d11>

int main(Q) {
MyLibrary::Display(Q);

No headers need to be included when using CL1I library classes and functions. Instead library assemblies are
referenced via a #using directive, with the assembly name enclosed in <...>, as shown. The code written can
be compiled into a class library containing the class DisplayMessage and an application containing the
function main. The details of this compilation step might differ based on the compiler or tool being used. A
command-line compiler might enable compilation of a class library and an application that uses that library with
the following command-line invocations:

cl /LD DisplayHelloLibrary.cpp
c1 HelTloApp.cpp

which produce a class library named DispTayHelloLibrary.d11 and an application named Hel1oApp. exe.

8.13 Versioning

Versioning is the process of evolving a component over time in a compatible manner. A new version of a
component is source-compatible with a previous version if code that depends on the previous version can, when
recompiled, work with the new version. In contrast, a new version of a component is binary-compatible if an
application that depended on the old version can, without recompilation, work with the new version.

Consider the situation of a base class author who ships a class named Base. In the first version, Base contains
no function F. A component named Derived derives from Base, and introduces an F. This Derived class,
along with the class Base on which it depends, is released to customers, who deploy to numerous clients and
Servers.

33

10

15

20

25

30

35

40

45

C++/CLI Language Specification

public ref struct Base { // version 1

-

public ref struct Derived : Base {
virtual void FQ {_ _
Cconsole::WriteLine("Derived.F");

1

So far, so good, but now the versioning trouble begins. The author of Base produces a new version, giving it its
own function F.
public ref struct Base { // version 2

virtual void FO { // added in version 2
console::writeLine("Base.F");

}
};
This new version of Base should be both source and binary compatible with the initial version. (If it weren’t
possible simply to add a function then a base class could never evolve.) Unfortunately, the new F in Base makes
the meaning of Derived’s F unclear. Did Der1ived mean to override Base’s F? This seems unlikely, since
when Derived was compiled, Base did not even have an F! Further, if Derived’s F does override Base’s F,
then it must adhere to the contract specified by Base—a contract that was unspecified when Derived was

written. In some cases, this is impossible. For example, Base’s F might require that overrides of it always call
the base. Derived’s F could not possibly adhere to such a contract.

C++/CLI addresses this versioning problem by allowing developers to state their intent clearly. In the original
code example, the code was clear, since Base did not even have an F. Clearly, Derived’s F is intended as a
new function rather than an override of a base function, since no base function named F exists.

If Base adds an F and ships a new version, then the intent of a binary version of Derived is still clear—
Derived’s F is semantically unrelated, and should not be treated as an override.

However, when Derived is recompiled, the meaning is unclear—the author of Derived might intend its F to
override Base’s F, or to hide it. By default, the compiler makes Derived’s F override Base’s F. However, this
course of action does not duplicate the semantics for the case in which Der1ived is not recompiled.

If Derived’s F is semantically unrelated to Base’s F, then Der1ived’s author can express this intent by using
the identifier new in the declaration of F.

public ref struct Base { // version 2
virtual void FQO { // added in version 2
) Console::writeLine("Base.F");

};

public ref struct Derived : Base { // version 2a: new

virtual void F() new { _
Console::WriteLine("Derived.F");

3
};
On the other hand, Der1ived’s author might investigate further, and decide that Derived’s F should override
Base’s F. This intent can be specified explicitly by using the identifier override keyword, as shown below.

public ref struct Base { // version 2
virtual void FO { // added in version 2
console::writeLine("Base.F");

}
1

34

10

15

20

25

30

35

40

45

Language overview

public ref struct Derived : Base { // version 2b: override
virtual void F() override {
Base::F();
console::WriteLine("Derived.F");

};

The author of Derived has one other option, and that is to change the name of F, thus completely avoiding the
name collision. Although this change would break source and binary compatibility for berived, the importance
of this compatibility varies depending on the scenario. If Derived is not exposed to other programs, then
changing the name of F is likely a good idea, as it would improve the readability of the program—there would
no longer be any confusion about the meaning of F.

8.14 Attributes

C++/CLI has certain declarative elements. For example, the accessibility of a function in a class can be specified
by declaring it pubTic, protected, or private. C++/CLI generalizes this capability, so that programmers
can invent new kinds of declarative information, attach this declarative information to various program entities,
and retrieve this declarative information at run-time. Programs specify this additional declarative information by
defining and using attributes.

For instance, a framework might define a HeTpAttribute attribute that can be placed on program elements
such as classes and functions, enabling developers to provide a mapping from program elements to
documentation for them. The example
[AttributeUsage(AttributeTargets::A11)]
public ref class HelpAttribute : Attribute {
StringA url;
public:
HelpAttribute(StringA url) {
) this->url = url;

StringA Topic = nullptr;

property StringA url {
StringA get() { return url; }

1

defines an attribute class named HelpAttribute that has one positional parameter (StringA urT) and one
named parameter (StringA Topic). Positional parameters are defined by the formal parameters for public
instance constructors of the attribute class, and named parameters are defined by public non-static read-write
fields and properties of the attribute class. For convenience, usage of an attribute name when applying an
attribute is allowed to drop the Attribute suffix from the name.

The example

[Help("http://www.mycompany.com/../Classl.htm")]

public ref class Classl {

public:
[Help("http://www.mycompany.com/../Classl.htm", Topic = "F")]
void FO {}

shows several uses of the attribute Help.

Attribute information for a given program element can be retrieved at run-time by using reflection support. The
example

35

10

15

C++/CLI Language Specification

int main(Q) {
TypeA type = typeid<Classl>;
array<ObjectA>A arr =
type->GetCustomAttributes(typeid<HelpAttribute>, true);
if (arr->Length ==
] Co?so1e::WriteLine("C1assl has no Help attribute.");
else

HelpAttributeA ha = (HelpAttributeA) arr[0];
console::writeLine("url = {0}, Topic = {1}", ha->Url, ha->Topic);

}

checks to see if Class1 has a Help attribute, and writes out the associated Topic and ur1 values if that
attribute is present.

8.15 Generics
To be added. [[Ed]]

End of informative text.

36

10

15

20

25

30

35

Lexical structure

0. Lexical structure

A number of issues (such as the CLI Unicode binding) are not yet discussed here. Much of this clause is yet to
be added. [[BB]]

9.1 Tokens

9.1.1 Identifiers

Certain places in the Standard C++ grammar do not allow identifiers. However, C++/CLI allows a defined set of
identifiers to exist in those places, with these identifiers having special meaning. [Note: Such identifiers are
colloquially referred to as context-sensitive keywords; none-the-less, they are identifiers. end note] The
identifiers that carry special meaning are:

abstract delegate event finally
in initonly Titeral override
property sealed where

When referred to in the grammar, these identifiers are used explicitly rather than using the identifier grammar
production. Ensuring that the identifier is meaningful is a semantic check rather than a syntax check.

9.1.2 Keywords
The following keywords are added to those in the C++ Standard (§2.11):

enumiclass enumiistruct foriieach gcnew
generic interfaceiiclass interfaceiistruct nullptr
refiiclass refiistruct valueiiclass valueiistruct

The symbol & is used in the grammar to signify that white-space appears within the keyword. This occurs during
the decomposition into preprocessing tokens, as defined in phase 3 of the Phases of translation (C++ Standard
82.1). Any white-space, including comments and new-lines (but excluding documentation comments), is
permitted in the position signified by the & symbol. Following the decomposition, a keyword with i will appear
as a single preprocessing token. In phase 7 of translation, a preprocessing token containing white-space is
converted to a single token. [Note: The i symbol is only used in the grammar of the language. Examples will
include white-space as is required in a well-formed program. end note]

In some places in the grammar, specific identifiers have special meaning, but are not keywords. [Note: For
example, within a virtual function declaration, the identifiers abstract and sealed have special meaning.
Ordinary user-defined identifiers are never permitted in these locations, so this use does not conflict with a use
of these words as identifiers. For a complete list of these special identifiers, see §9.1.1. end note]

9.1.3 Literals
The grammar for literal in the C++ Standard (82.13) has been extended as follows:
literal:
null-literal

37

C++/CLI Language Specification

9.1.3.1 The null literal

null-literal::
nullptr

The null literal is the keyword nul1ptr, whose type is the null type (812.3.4). null1ptr represents the null
value constant and is unique. This literal is not an Ivalue.

The null value constant can be converted to any handle type, with the result being a null handle. The null value
constant can also be converted to any pointer type, with the result being a null pointer.

38

10

15

20

25

30

Basic concepts

10. Basic concepts

Much of this clause is yet to be added, include application entry point, assembly boundaries, etc. [[BB]]

#using subclause: When importing functions from an assembly, functions with these names shall be renamed
with the appropriate C++ identifier for the conversion function. If such a function does not make sense as a
conversion function (for example, it takes three arguments), the function name is not changed to the internal
conversion function name, and thus the function is callable by the name it has in the assembly. [[BB]]

10.1 Members

10.1.1 Value class members

The members of a value class are the members declared in that value class, and the members inherited from the
value class’s direct base class System: : ValueType and the indirect base class System: :Object.

The members of a fundamental type correspond directly to the members of the value class type aliased by the
fundamental type, as follows:

e The members of signed char are the members of the System: : SByte value class.

e The members of unsigned char are the members of the System: : Byte value class.

e |faplain char is signed, the members of char are the members of the System: : SByte value class;
otherwise, they are the members of the System: : Byte value class.

e The members of short int are the members of the System: : Int16 value class.

e The members of unsigned short are the members of the System: : UInt16 value class.

e The members of int are the members of the System: : Int32 value class.

e The members of unsigned 1int are the members of the System: : UTnt32 value class.

e The members of long long are the members of the System.Int64 value class.

e The members of unsigned long long are the members of the System: : UInt64 value class.

e The members of wchar_t are the members of the System: : Char value class.

e The members of fT1oat are the members of the System: :Single value class.

e The members of double are the members of the System: :Double value class.

e The members of long double are the members of the System::Double value class.

e The members of boo1 are the members of the System: : Boolean value class.

10.1.2 Delegate members

The members of a delegate are the members inherited from class System: :Delegate, in addition to the
members added by the C++ compiler. [Note: The compiler needs to add typedef members to the class so that
template code can use the return type or the parameter types. end note]

39

10

15

20

25

30

35

40

C++/CLI Language Specification

10.2 Member access

10.2.1 Declared accessibility

In the C++ Standard (810), an access-specifier is used to define member access control. This grammar has been
extended to accommodate the notion of assemblies, as follows:

access-specifier:

public private
private public
protected public
public protected
private protected
protected private
pubTic public
protected protected
private private

In the C++ Standard (811/1), member access control for each access-specifier is defined. To accommodate the
addition of assemblies, these definitions have been extended, as follows:

A member of a class can be

e privateorprivate private;thatis, its name can be used only by members and friends of the class
in which it is declared.

e protectedorprotected protected;thatis, its name can be used only by members and friends of
the class in which it is declared, and by members and friends of classes derived from this class.

e publicorpublic public;thatis, its name can be used anywhere without access restriction.

e public privateor private public;thatis, its name can be used in its parent assembly. This is
referred to as assembly access.

e public protectedor protected public;thatis, its name can be used in its parent assembly or by
types derived from the containing class. This is referred to as family or assembly access. .

e private protectedorprotected private; thatis, its name can be used only by types derived
from the containing class within its parent assembly. This is referred to as family and assembly access. .

For access-specifiers containing two keywords, the more restrictive of the two applies outside the parent
assembly while the less restrictive of the two applies within the parent assembly.

An overriding name is allowed to have a different accessibility than the name it is overriding. Clarify the
ordering definition. [[BB]] An ordering is applied to distinguish between greater accessibility. Given the two
accessibilities A and B, A has narrower access than B if A permits the same or less access than A within the
assembly and outside the assembly. A has wider access than B if A permits the same or more access than A
within the assembly and outside the assembly. Narrowing and widening of accessibilities implies a partial
ordering of accessibilities. For example, protected is wider than private, protected is wider than
protected, protected is narrower than publ1ic, protected is narrower than protected, protected
private is narrower than public protected, and no ordering exists between public private and
protected. [Note: In general, widening and narrowing accessibility is not CLS compliant. end note]

40

10

Preprocessor

11. Preprocessor

11.1 Predefined macro names

In addition to the macros specified in the C++ Standard (§16.8), the following macro name shall be defined by
the implementation:

__cplusplus_c1i Thename _cpluspTlus_cTi is defined to the value 200406L when compiling a
C++/CLI translation unit. [Note: It is intended that future versions of this standard will replace the value of this
macro with a greater value. end note]

The value of this predefined macro remains constant throughout the translation unit.

If this pre-defined macro name is the subject of a #define or a #undef preprocessing directive, the behavior is
undefined.

41

10

15

20

25

30

C++/CLI Language Specification

12. Types

Add a picture of a type tree. [[BB]]

The C++ Standard (83.9/10) definition for scalar types has been extended, as follows:

“Arithmetic types (3.9.1), enumeration types, handles, pointer types, and pointer to member types (3.9.2),
and cv-qualified versions of these types (3.9.3) are collectively called scalar types.”

The C++ Standard (87.1.5) definition for type-specifier has been extended, as follows:

type-specifier:

delegate-definition

12.1 Fundamental types
Standard C++ (83.9.1) is augmented by the following:

For all fundamental types (not just character types), all bits of the object representation participate in the

value representation.

An object of type char shall have exactly 8 bits.

There are five signed integer types: “signed char”, “short int”, “int”, “long int”, and “long

long”
For each of the signed integer types, there exists a corresponding (but different) unsigned integer type:

“unsigned char”, “unsigned short int”, “unsigned int”, “unsigned long int”, and
“unsigned long long”

An object of type short 1int shall have exactly 16 bits.

An object of type int shall have exactly 32 bits.

An object of type Tong 1int shall have exactly 32 bits.

An object of type long long shall have exactly 64 bits.

The value of an object having a signed integer type shall be stored using twos-complement

representation.
An object of type wchar_t shall be unsigned and have exactly 16 bits.

An object of type fl1oat is represented using the 32-bit single-precision IEC 60559 format.

An object of type doubTe is represented using the 64-bit double-precision IEC 60559 format.

An object of type Tong double is represented using the 64-bit double-precision IEC 60559 format.

An object of type boo1 shall have exactly 8 bits.

42

10

15

20

25

30

Types

12.2 Class types
12.2.1 Native classes

12.2.2 Value classes
Is there more to say? What about boxing? [[Ed]]
All value class types implicitly inherit from the class System: :valueType, which, in turn, inherits from class

System: :0Object. [Note: System: :vValueType is not itself a value class type. Rather, it is a ref class type,
from which all value class types are automatically derived. end note]

12.2.2.1 Simple value classes
Is this the place to describe the mapping of fundamental types to CLI types? [[Ed]]

12.2.2.2 Enum classes

12.2.3 Ref classes

A ref class defines a data structure that contains fields, function members (functions, properties, events,
operators, instance constructors, destructors, and static constructors), and nested types. Ref classes support
inheritance. Instances of ref classes are created using new-expressions (815.4.6.1).

Ref classes are described in §20.

12.2.4 Interface classes

An interface defines a contract. A ref or value class that implements an interface must adhere to its contract. An
interface can inherit from multiple base interfaces, and a ref or value class can implement multiple interfaces.

Interface classes are described in §24.

12.2.5 Delegate types

A delegate is a data structure that refers to one or more functions, and for instance functions, it also refers to
their corresponding object instances.

Delegate types are described in §826.
12.2.6 Arrays

12.3 Declarator types

12.3.1 Raw types

12.3.2 Pointer types
It is possible to declare a pointer to a function that takes a parameter array (818.3.6). [Example:

void F(double, ... array<int>A);
void (*p)(double, ... array<int>A) = &F;

end example]

A native pointer cannot point to an object on the CLI heap unless that object has been pinned (812.3.7).

43

10

15

20

25

30

35

40

C++/CLI Language Specification

12.3.3 Handle types

For any CLI type T, the declaration TA h declares a handle h to type T, where the object to which h is capable
of pointing resides on the CLI heap. A handle tracks, is rebindable, and can point to a whole object only. [Note:
In general, handles are to the gc heap as pointers are to the native heap. end note]

The default initial value of a handle is nul1ptr.

Objects of CLI type are allocated on the CLI heap via gcnew, and such objects are referred to by handles.
[Example:

RA rl
RA r2

gcnew R; // allocate an object on the CLI heap
rl; // handles rl and r2 point to the same object

end example] If an object allocated using gcnew is never destroyed (using delete or by an explicit destructor
call), that object’s destructor will never be run; however, the garbage collector will reclaim the object’s memory,
and the object’s finalizer (§??), if one exists, will be run. [Example:
// allocate an object on the CLI heap
RA r3 = gcnew R;
// the object will be garbage-collected and
// finalized, but its destructor will not be run
end example]

Unlike pointers, handles track; that is, a handle’s value can change as the object to which it refers gets moved by
the garbage collector. This has the following implications:

e A handle cannot be converted to and from void*. (A handle can, however, be converted to and from
ObjectA.) [Note: There is no voidA. end note]

e A handle cannot be converted to and from an integral type. (A handle cannot be hidden from the
garbage collector.)

e Handles cannot be ordered.

¢ A handle can only point to a whole object.

[Example:
RA r4 = new R;
ObjectA o = r4; // ok
RA r5 = dynamic_cast<RA>(0); // ok, r4 and r5 point to the same object
long 1 = reinterpret_cast<long>(r5); // error, can’t convert to integer
RA r6 = reinterpret_cast<RA>(1); // error, can’t convert from integer
std::set<RA> s; // error, RA’s can’t be compared with less

end example]
All handles to the same object compare equal, even if that object is moved by the garbage collector.

A handle can have any storage duration.

12.3.4 Null type

The null type is a special type that exists solely to support the null literal, nu11ptr (also referred to as the null
value constant). No instances of this type can be created; the only way to obtain a value of this type is via the
nulTptr literal, whose type is the null type.

12.3.5 Reference types
A native reference can bind to any Ivalue.

44

10

15

20

25

30

35

Types

As an object on the CLI heap can be moved by the garbage collector, its location must be tracked. As such, a
reference to such an object is called a tracking reference (%), and it can bind to any gc-lvalue. [Note: Because
there is a standard conversion from Ivalue to gc-lvalue, a tracking reference can therefore bind to any gc-lvalue
or lvalue. end note]

For any type T, the declaration T% r declares a tracking reference r to type T. [Example:
RA h = gcnew R; // allocate on CLI heap

R% r = *h; // bind tracking reference to ref class object
void f(v% r);
f(*gcnew V); // bind tracking reference to value class object

end example]
Like an ordinary reference, a tracking reference is not rebindable; once set, its value cannot be changed.

A program containing a tracking reference that has storage duration other than automatic is ill-formed. [Note:
This limitation directly reflects that of the CLI, because tracking references are in general implemented in terms
of CLI byrefs. This limitation is not inherent in this language design, and can be removed on CLI platforms that
support byrefs that can exist in non-stack locations. end note]

12.3.6 Interior pointers

The garbage collector is permitted to move objects that reside on the CLI heap. In order for a pointer to refer
correctly to such an object, the runtime needs to update that pointer to the object’s new location. An
interior_ptr is a pointer that is updated in this manner.

We need a grammar for this. [[BB]]

The compiler will need to emit a modopt to distinguish interior_ptr<T> from tracking reference to T (T%) in the
metatada.[[BB]]

12.3.6.1 Definitions

When lookup finds the name interior_ptr in the stdc11 : : Tanguage namespace, the compiler interprets
the remainder of the declaration specially.

An interior pointer shall have an implicit or explicit auto storage-class-specifier. An interior_ptr can be
used as a parameter and return type.

An interior pointer shall not be a subobject.
The default initial value for an interior pointer not having an explicit initial value, shall be nu1Tptr.

[Note: An interior pointer to a value class can be implemented as a CLI byref. However, a byref can't refer to a
whole object, so an interior pointer to a ref class can be implemented using an object reference (just like a
handle is implemented); this common implementation need not affect the programmer, who still sees distinct
semantics for interior_ptr<R> and RA. end note]

12.3.6.2 Target type restrictions

An interior pointer shall not point to a ref class object. (However, such a pointer is permitted to point to a handle
to a ref class object.) Other target types are permitted. We need to say which types. For example, what about
pointers to functions? [[BB]] [Example:

45

10

15

20

25

30

35

40

C++/CLI Language Specification

interior_ptr<int> pl; // OK
interior_ptr<int*> p2 = nullptr; // OK
interior_ptr<System: :String> p3; // error, String is a ref class
interior_ptr<System: :StringA> p4; // OK; is a handle to ref class
interior_ptr<interior_ptr<int> > p5; // OK
interior_ptr<intA> p6 = nullptr; // OK

end example]

12.3.6.3 Operations

An interior pointer can be involved in the same set of operations as native pointers, as defined by the
C++ Standard. [Note: This includes comparison and pointer arithmetic. end note]

Cover the dangers of pointer arithmetic and interior_ptrs. [[BB]]

12.3.6.4 Conversion rules
The following conversion rules apply to interior pointers:

Conversion from interior_ptr<T1>to interior_ptr<T2> is allowed if and only if conversion from T1*
to T2* is allowed;

In conversions between types where exactly one type is interior_ptr<T1>, the interior pointer behaves
exactly as if it were “pointer to cv T1”, with two exceptions:

e Conversion to any other type “pointer to cv T1” is not allowed. In particular, conversion from
interior_ptr<T>to T* is not allowed.

e Conversion from the null pointer constant to interior_ptr<T> is not allowed (but conversion from
nullptr is)
[Example:

array<int>A arr = gcnew array<int>(100);
interior_ptr<int> ipi = &arr[0];

jnt*kp = ipi; // error; no conversion from interior to non-interior
int k = ;

ipi = &k; // OK; k is an auto variable

ipi = 0; // error; must use nullptr instead

ipi = nullptr; // OK

ipi = p; // OK

if Gipi) {.} // OK

end example]

12.3.6.5 Data access
An interior pointer exhibits the usual pointer semantics for data access:

e Operator -> is used to access a member of an object pointed to by an interior pointer;

e Operator * is used to dereference an interior pointer.

[Example:
value struct Vv {
int data;
3

46

10

15

20

25

30

35

40

Types

V Vv;

interior_ptr<v> pv = &v;
pv->data = 42;
interior_ptr<int> pi = &v.data;
assert(*pi == 42);

end example]
Taking the address of an interior pointer yields a native pointer.

Interior pointers can point to objects inside the CLI heap. As such, taking the address of an object pointed to by
an interior pointer yields an interior pointer that cannot be converted to T+, as described in §12.3.6.4.

[Example:
value struct Vv {
int data;
};
V Vv;
interior_ptr<v> pv = &v;
V¥* p = &pv; // error
interior_ptr<v>* pi = &pv; // OK, pv is on the stack and so is an lvalue
int* p2 = &(pv->data); // error
int* p3 = &(v.data); // OK, v 1is on the stack, v.data is an Tvalue

end example]

12.3.6.6 The this pointer

In the body of a non-static member-function of a value class v, th1is is an expression of type
interior_ptr<Vv>, whose value is the address of the object for which the function is called.

[Example:
value struct v {
int data;
void fQO;
void V:: T {
interior_ptr<v> pvl = this; // OK
V* pv2 = this; // error

end example]

12.3.7 Pinning pointers

Ordinarily, the garbage collector is permitted to move objects that reside on the CLI heap. However, such
movement can be blocked temporarily, on a per object basis. A pinning pointer is one that prevents the garbage
collector from moving the CLI heap-based object to which that pointer points. This makes it possible for code
not under the control of the runtime to manipulate memory within the bounds of the CLI heap without
corrupting that heap.

Although a pinning pointer can be initialized from an interior pointer, the value of a pinning pointer is never
changed by the runtime.

12.3.7.1 Definitions

When the name pin_ptr is found in the stdc1i : : Tanguage namespace, the compiler interprets the
remainder of the declaration specially.

47

10

15

20

25

30

35

40

45

C++/CLI Language Specification

A pinning pointer shall have an implicit or explicit auto storage-class-specifier. A pin_ptr shall not be used
as a parameter and return type.

We need a grammar for this. [[BB]]

[Note: As a pinning pointer is an interior pointer, the default initial value for a pinning pointer not having an
explicit initial value, is nul1ptr. (812.3.6.1) end note]

12.3.7.2 Target type restrictions
The target type restrictions for pinning pointers are the same as for interior pointers (§12.3.6.2).

12.3.7.3 Operations
The operations that can be formed on pinning pointers are the same as for interior pointers (§12.3.6.3).

12.3.7.4 Conversion rules
The following conversion rules apply to interior pointers:

Conversion from pin_ptr<T1l>to pin_ptr<T2> is allowed if and only if conversion from T1* to T2* is
allowed:;

In conversions between types where exactly one type is cv pin_ptr<T>, the pinning pointer behaves exactly as
if it were “pointer to cv T”, with the exception that conversion from a null pointer constant to pin_ptr<T> is
not allowed (but conversion from nu1Tptr is). [Note: In particular, conversion from pin_ptr<T> to T* is
allowed as a standard conversion. end note]

[Example:

array<int>A arr = gcnew array<int>(100);
pin_ptr<int> ppi = &arr[0];

int* p = ppi; // OK

int k = 10;

ppi = &k; // OK; k is an auto variable

ppi = 0; // error; must use nullptr instead
ppi = nullptr; // OK

pin_ptr<int> ppi2 = p; // OK
end example]

12.3.7.5 Data access

With two exceptions, pinning pointers follow the same data access semantic as interior pointers (812.3.6.5).
Since a pinning pointer points to an unmovable object inside the CLI heap, a pin_ptr<T> can be converted to
T* (812.3.7.4). Dereferencing a pinning pointer yields an lvalue. [Example:

value struct Vv {

int data;
void fQ;
void v::f() {
int* pi;
interior_ptr<v> ipv = this;
pi = &(ipv->data); // error
pin_ptr<v> ppv = this;
pi = &(ppv->data); // OK
V¥ pv;
pv = ipv; // error
pvV = ppv; // OK

48

10

15

20

25

30

35

40

Types

V v;

pin_ptr<v> pv = &v;

V** p = &pVv; // error
int* pi = &pv->data; // OK

end example]

12.3.7.6 Duration of pinning

As soon as a pinning pointer is initialized or assigned the address of an object, that object is guaranteed to
remain at its location on the CLI heap. If the pinning pointer is then made to point to another object, that object
is guaranteed to remain at its location on the CLI heap, and the object previously pointed to is no longer
considered pinned, allowing the garbage collector to move it. If a pinning pointer is assigned the value
nullptr, the object previously pointed to (if any) is no longer considered pinned

When the block in which a pinning pointer is defined exits, any object pointed to by that pinning pointer is no
longer considered pinned by that pinning pointer; however, it might still be pinned by another pinning pointer.
[Example:

ref struct R {
int data;

RA r = gcnew R;

pin_ptr<int> ppi = &r->data; // object referenced by r is pinned
}

// ppi’s parent block has exited, so object is free to move
end example]

12.4 Top-level type visibility

A non-nested class, interface, delegate, or enum definition can optionally specify the accessibility of the class,
interface, delegate, or enum:

top-level-type-visibility:
public
private

The pubTi c top-level-type-visibility specifier indicates that the non-nested class, interface, delegate, or enum
will be visible outside the assembly. Conversely, the private top-level-type-visibility specifier indicates that
the class, interface, delegate, or enum will not be visible outside the assembly. However, private types are
visible within the same assembly. The default visibility for a class, interface, delegate, or enum is private.
[Example:

pubTic class VvisibleClass {}; // visible outside the assembly
private class InternalClass {}; // visible only within the assembly

end example]

Those class, interface, delegate, or enum definitions nested within another type definition have the accessibility
specified within that type. The use of a top-level-type-visibility modifier on a nested type definition causes the
program to be ill-formed.

49

C++/CLI Language Specification

13. Variables

To be added.

50

10

15

20

25

30

Conversions

14. Conversions

14.1 Standard conversions
The standard conversions in the C++ standard apply to C++/CLI. The following standard conversions are added:

14.1.1 Handle conversions

A handle conversion is similar to a pointer conversion as defined in the C++ Standard (84.10). A handle
conversion has conversion rank.

An rvalue of type “handle to cv D,” where D is a type, can be converted to an rvalue of type “handle to cv B,”
where B is a base class of D. If B is an inaccessible or ambiguous base class of D, a program that necessitates this
conversion is ill-formed. The result of the conversion is a handle to the base class sub-object of the derived class
object.

Since the type voidA is ill-formed, there is no handle conversion to it.

A handle to a type array<SA, n> has a handle conversion to a handle to type array<TA, n> provided SA
has a handle conversion to TA and n (the rank of both arrays) is the same. Such a conversion is better than
Consider separating the list of conversions from the order of preference (such as how Standard C++ separates
Standard Conversions from overload resolution). a conversion from type array<SA, n>to

System: :ArrayA.

The null value constant can be converted to any handle type; the result is a handle with null value of that type,
and is distinguishable from every other value that is a handle to an object. Two null values of the same handle
type shall compare equal.

14.1.2 Pointer conversions
The definition of null pointer constant in the C++ Standard (84.10/1) has been extended, as follows:

“A null pointer constant is either an integral constant expression rvalue of integer type that evaluates to zero,
or the null value constant nu11ptr.”

[Note: The implication of this is that the null value constant can be converted to any pointer type. end note]

Need to say more here. Possibly move “Interior pointer conversion rules” (812.3.6.4) and “Pinning pointer
conversion rules” (812.3.7.4) here. [[Ed]]

14.1.3 Lvalue conversions

There is a standard conversion for each of the following: “cv-qualified Ivalue of type T” to “cv-qualified gc-
Ivalue of type T,” and “cv-qualified gc-lvalue of type T” to “cv-qualified rvalue of type T.”

14.2 Implicit conversions
The C++ Standard (84.12) text that describes Boolean conversions has been extended, as follows:

“An rvalue of arithmetic, enumeration, pointer, pointer to member type, or handle can be converted to an
rvalue of type bool. A zero value, null pointer value, null member pointer value, or null value is converted
to false; any other value is converted to true.”

51

10

15

20

25

30

35

C++/CLI Language Specification

14.2.1 Implicit constant expression conversions
The following implicit constant expression conversions are permitted:

o The null value constant can be converted to any pointer type.

e The null value constant can be converted to any handle type.
14.2.2 User-defined implicit conversions

14.3 Explicit conversions
The following explicit conversions are permitted:

o The null value constant can be converted to any pointer type.

e The null value constant can be converted to any handle type.

14.4 Boxing conversions

The boxing conversion applies only to value classes (including the simple value classes). The boxing conversion
cannot be rewritten by the user and is reserved to the implementation.

The boxing conversion is modeled as a preferred UDC. The text of this section should be revised to address
concerns from the updated conversion proposal. [[BB]]

A boxing conversion follows the exact same sequence of operations as user-defined conversions (C++ Standard
813.3.3.1.2). Boxing conversions are considered before user-defined conversions, and a boxing conversion
sequence never invokes a user-defined conversion. In other words, given a choice between applying a boxing
conversion or a user-defined conversion, the boxing conversion is selected. Thus, §13.3.3.2 of the C++ Standard
is revised, as follows:

We should start off the conversions clause with “Conversion Sequences”, which would cover this adjustment to
the C++ Standard. That makes Boxing conversions shorter and prevents us from introducing parameter array
conversions in a sub-clause where it doesn’t belong. [[BB]]

“When comparing the basic forms of implicit conversion sequences (as defined in 13.3.3.1)

— astandard conversion sequence (13.3.3.1.1) is a better conversion sequence than a boxing
conversion sequence, a user-defined conversion sequence, a parameter array conversion
sequence, or an ellipsis conversion sequence, and

— a boxing conversion sequence is a better conversion sequence than a user-defined conversion
sequence, a parameter array conversion sequence, or an ellipsis conversion sequence, and

— a user-defined conversion sequence (13.3.3.1.2) is a better conversion sequence than a
parameter array conversion sequence or an ellipsis conversion sequence (13.3.3.1.3).

— a parameter array conversion sequence is a better conversion sequence than an ellipsis
conversion sequence (13.3.3.1.3).”

The boxing conversion for a value class Vv is an implicit conversion from v to VA. As stated above, a standard
conversion is permitted to follow a boxing conversion, and thus a handle conversion is able to convert VA to
System: :0bjectA or a handle to an interface that v implements. The conversion occurs as follows:

The compiler selects the boxing conversion and emits the BOX instruction as specified in the CLI Standard,
Partition 111, 84.1. This causes a runtime bitwise copy of the value class instance to an object on the CLI heap.

All value classes must be copyable. That is, a value class shall not have a non-public default constructor.

52

10

15

20

25

30

35

Conversions

Ref classes have an explicit conversion from R to RA. (This is described later in §??.)

14.5 User-defined conversions

14.5.1 Constructors

All constructors in ref and value classes are explicit (C++ Standard, §12.3.1). Using the exp 11 cit keyword on
a constructor in a ref class or value class is permitted, but it is redundant.

The meaning of an explicit constructor is unchanged from Standard C++. [Note: That is, an explicit constructor
is permitted in direct-initialization syntax (C++ Standard, §8.5) and casts (C++ Standard, 85.2.9, 85.4). end
note]

14.5.2 Explicit conversion functions

C++/CLI allows the exp1icit keyword on conversion functions. Thus, C++ Standard, 87.1.2 is changed, as
follows:

“The exp1icit specifier shall be used only in declarations of constructors within a class declaration, or on
declarations of conversion functions within a class declaration; see 12.3.1.”

A conversion function that is declared with the exp11cit keyword is known as an explicit conversion
function. A conversion function that is declared without the exp11cit keyword (i.e., every conversion function
in Standard C++) is known as an implicit conversion function.

An explicit conversion function, like an explicit constructor, can only be invoked by direct-initialization syntax
(C++ Standard 88.5) and casts (C++ Standard §5.2.9, §5.4).

A type shall not contain an implicit conversion function and an explicit conversion function that perform the
same conversion. Only one of these is allowed.

It is possible to write a class that has both an explicit converting constructor and a conversion function that can
perform the same conversion. In this case, the explicit conversion function is preferred.

Add an example. [[Ed]]

14.5.3 Static conversion functions

C++/CLI allows conversion functions, both implicit and explicit, to be static. Conversion functions shall not
have namespace scope. A static conversion function shall take only one parameter, which is the type to convert
from (a non-static member conversion function shall have no parameters). Neither static nor non-static
conversion functions shall specify return types.

Either the source type (parameter type) or the target type (type-specifier-seq) is required to be T, TA, T&, or T%,
where T is the type of the containing class. (T* is not allowed because conversions are not looked up through
pointers.)

Implicit conversions can now be found in more than one place: the scope of the type of the source expression
and the scope of all potential target types. If overload resolution results in a set of conversion functions (and
possibly converting constructors) that can perform the same conversion, the program is ambiguous and ill-
formed.

14.6 Parameter array conversions

The parameter array conversion sequence occurs when overload resolution chooses a function that takes a
parameter array as its last argument. Such overloads are preferred to C-style variable-argument functions, and
are not preferred to any other overloads.

53

10

15

20

25

30

35

40

C++/CLI Language Specification

A parameter array overload is chosen by overload resolution. For the purpose of overload resolution, the
compiler creates signatures for the parameter array functions by replacing the parameter array argument with

n arguments of the array’s element type, where n matches the number of arguments in the function call. These
synthesized signatures have higher cost than other non-synthesized signatures, and they have lower cost than
functions whose parameter-declaration-clause terminates with an ellipsis. This is similar to the tiebreaker rules
for template-functions and non-template functions. It would be useful to reference those somehow. [[Ed]]

For example, for the function call f(varl, var2, .., varm, vall, val2, .., valn)

void f(Tl argl, T2 arg2, .., Tm argm, ... array<T>A arr)
is replaced with
void f(T1 argl, T2 arg2, .., Tm argm, T tl1, T t2, .., T tn)

Overload resolution is performed with the set containing the synthesized signatures according to the rules of
Standard C++. If overload resolution selects a C-style variable-argument conversion, it means that none of the
synthesized signatures was chosen.

If overload resolution selects one of the synthesized signatures, the conversion sequences needed for each
argument to satisfy the call is performed. For the synthesized parameter array arguments, the compiler
constructs a CLI array of length n and initializes it with the converted values. Then the function call is made
with the constructed parameter array.

14.7 Compiler-defined explicit conversions

14.7.1 Unboxing conversions

The unboxing conversion allows a conversion to an unboxed value class directly from a handle to one of the
following:

= System::0Object

= System::valueType

= an interface that the value class implements
= the value class itself

The conversion from the boxed form a value class (VA) to the value class (V) can be done using a dereference
(i.e., operator®). It can also be done by any cast notation that invokes user-defined conversions.

The unboxing conversion can be done with any cast notation that invokes user-defined conversions.

14.8 Naming conventions

Conversion functions shall conform to a particular naming convention. (The names required of conversion
functions are given by the CLS guidelines.) While all conversion functions have the CLS required name, not all
conversion functions are CLS-conversion functions.

During compilation, the name of the conversion function is the C++ identifier used in source code for that
function. For example, the conversion function from A to B could be the static member function of either A or B,
operator B(A), or the instance function of A, operator B(). The identifier used for the operator function in
an assembly shall have the CLS name as specified in §14.8.1 and §14.8.2.

A conversion function inside a native class shall have the names used in 814.8.1 and §14.8.2 prefixed with < and
suffixed with >. Otherwise, the name specified in these subclauses is unchanged. A C++ program shall not
declare nor define a function within a CLI type using one of the CLS names referred to herein.

A program shall not refer to the CLS-compliant name given to the conversion function.

54

10

15

20

Conversions

All conversion functions, regardless of whether they are CLS-compliant functions or not shall be marked as
SpecialName functions in the metadata.

14.8.1 CLS-compliant conversion functions
A conversion function is CLS-compliant when the following conditions occur:

1. The conversion function is a static member of a ref class or a value class.

2. Ifavalue class is a parameter or a target value of the conversion function, the value class shall not be
passed by reference nor passed by pointer or handle.

3. Ifarefclass is a parameter or a target value of the operator function, the ref class shall be passed by
handle. The handle shall not be passed by reference.

If the above criteria are not met, the conversion function is C++-dependent. Table 14-1 lists the name to give to
the function used to represent the operator function in an assembly.

Table 14-1: CLS Conversion Functions

Function Name in Assembly C++ Conversion Function
T op_Implicit(s) operator T(S)
T op_Explicit(s) explicit operator T(S)

The operators op_Implicitand op_Explicit are permitted to be overloaded on their return type.

14.8.2 C++-dependent conversion functions

If a conversion function does not match the criteria for CLS compliance, as listed in §14.8, the conversion
function is C++-dependent. The names in Table 14-1 are also used for C++-dependent conversion functions in
an assembly.

Both op_Impl1icitand op_ExpTicit are allowed to be overloaded on their return type.

Converting constructors are emitted as constructors, never as converting functions. (Constructors in CLI classes
are always explicit.)

55

10

15

20

25

C++/CLI Language Specification

15. Expressions

15.1 Function members

The following function member kinds are added to those defined by Standard C++:
e Properties (both scalar and default indexed)
e Events

The statements contained in these function members are executed through function member invocations. The
actual syntax for writing a function member invocation depends on the particular function member category.

Invocations of default indexed properties employ overload resolution to determine which of a candidate set of
function members to invoke.

[Note: The following table summarizes the processing that takes place in constructs involving these three
categories of function members that can be explicitly invoked. In the table, e, x, y, and value indicate
expressions classified as variables or values, T indicates an expression classified as a type, F is the simple
name of a function, and P is the simple name of a property.

Construct Example Description
Property access P P::getQ)
P=value P::set(value)
Event access E += value E::add(value)
E -=value E::remove(value)
Default indexed | e[X, Y] E::get(x, y)
property access e[x, y] =value E::set(x, y, value)

The rewrite rules for e[x] (default indexed accesses) are different where there is only one index. This is because
there is a potential ambiguity with the C++ operator[]. Is this mentioned elsewhere? [[BB]]

end note]

15.2 Primary expressions

To accommodate the addition of properties, the “Primary expressions” subclause of the C++ Standard (85.1) has
been extended, as follows:

“A static property or event is not associated with any instance of a class, and a program is ill-formed if it
refers to this in the accessor functions of a static property or event.”

“An instance property or event is associated with a specific instance of a class, and that instance can refer to
this in the accessor functions of that instance property or event.”

56

10

15

20

25

30

35

40

45

Expressions

15.3 Postfix expressions

To accommodate the addition of default indexed properties and arrays (which are accessed using subscript-like
expressions), the C++ Standard grammar (85.2) for postfix-expression has been extended, as follows:

postfix-expression:

postfix-expression [expression]
indexed-access

Indexed access is described in §15.3.2.

15.3.1 Subscripting

Given a class instance X, of a type having a default indexed property and operator[], an expression of the
form x[1] is ambiguous. In such cases, the operator[] function or default indexed property accessor function
must be called directly, as appropriate. If a derived class defines only one of operator[] or a default indexed
property, lookup will use that function rather than making the program ambiguous.

15.3.2 Indexed access

An indexed-access consists of an indexed-designator, followed by a “[” token, followed by an expression-list,
followed by a “]” token. The expression-list consists of one or more expressions, separated by commas.

indexed-access:
indexed-designator [expression-list]

indexed-designator shall designate an instance that has one or more default indexed properties that are
applicable with respect to the expression-list of the indexed-access.

An indexed-access is interpreted as follows: Each default indexed property with only one indexing parameter
has an associated operator[] synthesized. For the property property int default[int], the synthesized
“operator[] (int)” is created. Overload resolution for the appropriate operator[] is done for indexed-
access expressions where the expression list is not comma-separated. If a class has two operator[] operators
with the same signature, the expression is ambiguous and the program is ill-formed. Otherwise, the rewrite rules
for properties and events are used for indexed-access expressions.

Need to consider how these expressions are interpreted in templates. [[BB]]

Commas in expression-list are treated as a special case—they are considered punctuators. However, if an
expression in that list is enclosed in parentheses, any commas inside that expression are interpreted as operators
(and behave as described in §5.18/2 of the C++ Standard).

struct s {
property int default[int index] { .. } // indexed property 1
property int default[string idx1l, int idx2] { .. } // indexed property 2

void f(S& s, string& x, int j) {
s[x,7] = ; // ok, uses indexed property 2
s[1,3j] = 42; // error (tries to use indexed property 2,
// but there is a type mismatch;
/ no comma operator 1is used)
42; // ok, uses indexed property 1 with j as the argument

s[(1,3)] .
42; // ok, uses indexed property 2

s[(1,x),]]

[Note: Given a class instance X, of a type having a default indexed property and operator[], an expression of
the form X[i] can be ambiguous. In such cases, the operator[] function or default indexed property accessor
function must be called directly, as appropriate. end note]

57

10

15

20

25

30

35

C++/CLI Language Specification

15.3.3 Function call

The C++ Standard (85.2.2/1) states, “A function call is a postfix expression followed by parentheses containing
a possibly empty, comma-separated list of expressions which constitute the arguments to the function.”

C++/CLI contains support for delegates (826). As such, the postfix expression can be a delegate type, in which
case, the whole expression is a delegate invocation (§26.3), and the argument list is passed to each function
encapsulated by the delegate.

15.3.4 Explicit type conversion (functional notation)
15.3.5 Pseudo destructor call

15.3.6 Class member access

A named indexed property is accessed like any other member of a class. [Note: As expected, an expression of
the form p->NamedIndexer[index] is equivalent to (*p) .NamedIndexer[index]. end note]

If a program attempts to access a default indexed property via a pointer to an object having that default indexed
property, and the arrow operator, that program is ill-formed. [Note: Although p->[index] is ill-formed, the
expression (*p) [index] is permitted. end note]

15.3.7 Increment and decrement

15.3.8 Dynamic cast

For the expression dynamic_cast<T>(e), in addition to the rules specified by the C++ Standard (85.2.7), the
following also applies:

If T is neither a handle nor a pointer, it is possible for dynamic cast expressions to invoke an unboxing
conversion. If T is a value class, and e has type TA or a type UA (where there is a handle conversion from TA
to UA), the dynamic cast invokes the UNBOX instruction from the CLI Standard, Partition I11. If T is a v% for a
value class v, and e has type VA or a type UA (where there is a handle conversion from VA to UA), the dynamic
cast invokes the UNBOX instruction as well. If the unboxed type is not of type T, then an exception of type
System: :InvalidCastException isthrown. cv-qualification needs to be considered. [[BB]]

Otherwise, if T is a native reference to a value class, and e has type UA, the program is ill-formed. [Rationale:
This can open a gc hole in the program as native references do not track what they refer to during garbage
collection. end rationale]

Otherwise, if T is VA (where V is a value class) or UA (where there is a handle conversion from VA to UA), and e
has a type Vv or reference to v, then the expression invokes a boxing conversion sequence.

Otherwise, if T is a handle type, e shall be an rvalue of a handle to complete class type, and the result is an
rvalue of type T.

If the value of e is a null value, the result is the null value of type T.

If T is “handle to cvl B” and e has type “handle to cv2 D” such that B is a base class of D, the result is a handle
to B such that it refers to the same object as e. The cv-qualification for cv1 shall be the same as or greater than
that for cv2.0therwise, a runtime check is required.

If a run-time check is applied to the cast, and T is a handle or reference to a CLI type, the run-time check is
performed using the ISINST CIL instruction from the CLI Standard, Partition 11, §4.6.

If T is either a handle or a pointer to any type other than a native class, and the cast fails, the result is the null
value or the required result type. If T is a reference to any type other than a native class and the cast fails, then

58

10

15

20

25

30

35

40

45

Expressions

the expression throws System: : InvalidCastException. When T is a native class, the rules of
Standard C++ 85.2.7/9 apply.

15.3.9 Type identification

In the C++ Standard (85.2), the type-identification operator, typeid, is defined to be written in two ways.
C++/CLI adds a third way, as follows:

postfix-expression:
typeid (expression)

typeid (type-id)
typeid < type-id >

The first two ways are known collectively as the ()-form of typeid. C++/CLI requires that this form shall not
be used with the nul1ptr literal.

The third way is known as the <>-form of type-id. The result of this form is an lvalue of static type

System: : TypeA. There is only one System: : Type object for any given type. [Note: This means that for

type T, typeid<T> == typeid<T> isalways true. end note] As this form is a compile-time expression, it can
be used as an argument to an attribute constructor.

The type-id expression in the <>-form of typeid shall be a raw type or a pointer to a raw type.
Check if typeid<long> and typeid<char> are allowed (and if so, what do they mean). [[BB]]

Add a note that discourages the practice of using the result of typeid<T> to guard static members with a lock.

[[Ed]]

The <>-form provides convenient syntactic access to the functionality of the System: : Type: :GetType ()
library function. Whereas GetType () must be called on an object of the given type, typeid<> can take an
abstract-declarator as its operand, and consequently does not require an object to be created. [Example:

using namespace System::Reflection;
using stdcli::language::array;

ref class X { /* ... */ };

Cconsole::writeLine(typeid<X>); // typeid<> does not require an object
XA pX = gchew X;

TypeA pType = pX->GetType(); // GetType requires an object

Cconsole::writeLine(pType);

Console::WriteLine(typeid<int>);
Console::WriteLine(typeid<array<int> >);
Console::WriteLine(typeid<void>);

TypeA t = typeid(String);
Console::WriteLine(t->BaseType);

array<MethodinfoA>A functions = t->GetMethods();
for each_(MethodInfo mi in functions)
console::WriteLine(mi);

The output produced is:
X

X

System.Int32
System.Single[]
System.void

System.Object

59

10

15

20

25

30

35

40

C++/CLI Language Specification

System.String ToString(System.IFormatProvider)
System.TypeCode GetTypeCode()
System.Object Clone()

gystem.String IsInterned(System.String)
System.CharEnumerator GetEnumerator()
System.Type GetType()

end example]
It might be useful to add an example showing the use of the <>-form with a custom attribute.

What about handles and tracking references? We still need to make sure we have a design for standard typeid
(that returns std::type_info) in addition to the new typeid (that returns System:: Type). [[BB]]

15.3.10 Static cast

The rules of specified by the C++ Standard (85.2.9) apply. For the expression, static_cast<T>(e), the
following also applies.

Unboxing and boxing are described as preferred user-defined conversions. Nothing important about these needs
to be mentioned in static cast, but those UDCs are not completely specified yet.

A static cast can invoke a user-defined conversion function as described in the C++ Standard (85.2.9/2). All of
the following are considered: explicit conversion functions, implicit conversion functions, explicit converting
constructors, and implicit converting constructors.

The cast expression discussed in the C++ Standard (85.2.9/3) is allowed also on tracking references.
The conversion discussed in the C++ Standard (85.2.9/7) is allowed for both native and CLI enumerations.

An rvalue of type “handle to cvl B”, where B is a type, can be converted to an rvalue of type “handle to cv2 D”,
where D is a class derived from B, if a valid standard conversion from “handle to D” to “handle to B” exists
(814.1.1), and cv2 is the same cv-qualification as, or greater cv-qualification than, cvl. The null value is
converted to the null value of the destination type. This can be unverifiable and might cause a gc hole.

15.3.11 Reinterpret cast

The rules of specified by the C++ Standard (85.2.10) apply. A reinterpret cast expression that attempts to cast
from or to a handle type is ill-formed.

A reinterpret cast will never invoke an unboxing conversion or a boxing conversion sequence.

15.3.12 Const cast

The rules specified by the C++ Standard (85.2.11) apply. For the expression, const_cast<T>(v), the
following also applies.

Where the C++ Standard discusses the application of const_cast to pointers, the rules shall also apply to
handles.

An lvalue of type T1 can be explicitly converted to an lvalue of type T2 using the cast const_cast<T2%> if a
pointer or handle to T1 can be explicitly converted to the type pointer or handle to T2 using a const_cast. The
result of a reference const_cast refers to the original object.

A null value is converted to the null value of the destination type. A program in which v in the const cast
expression is the nuT1ptr literal is ill-formed.

A const cast will never invoke an unboxing conversion or a boxing conversion sequence.

60

10

15

20

25

30

35

Expressions

15.3.13 Safe cast

Safe cast performs the optimal cast for CLI frameworks. The name safe_cast is located within the
stdc1i::Tanguage namespace. The compiler processes a safe_cast expression as follows:

e The compiler performs a lookup in the current context for the name safe_cast.

o If the name refers unambiguously to : : stdc1i : : Tanguage: : safe_cast, then the expression is
processed by the compiler according to the following grammar and interpreted according to the rules
specified herein.

safe_cast < type-id > (expression)

The type of the operand and the target type shall be a value class, a handle to a value class, a handle to a ref
class, or a handle to an interface class. Otherwise, the expression is ill-formed.

Include the specification for safe_cast from the revised casting proposal. [[BB]]

15.4 Unary expressions
15.4.1 Unary operators

15.4.1.1 Unary &
Since a discussion of Ivalue, rvalue, and gc-lvalue has now been included, the above statement is generalized by
saying that the application of & to an rvalue or a gclvalue is ill-formed. (Is this still true?) [[BB]]

When applied to an Ivalue of type T, & yields a T* (see Standard C++ §??). When applied to a gc-Ivalue of type
T, &yields an interior_ptr<T> (12.3.6).

A program that attempts to apply the built-in unary & operator to a literal field, or to a property, or to an initonly
field outside of the class’s constructor, is ill-formed.

15.4.1.2 Unary *

The C++ Standard (85.3.1/1) has been extended to allow for indirection on handles. Specifically, the following
text:

‘The unary * operator performs indirection: the expression to which it is applied shall be a pointer to an
object type, or a pointer to a function type and the result is an Ivalue referring to the object or function to
which the expression points. If the type of the expression is “pointer to T,” the type of the result is “T.””

has been replaced with:

“The unary * operator performs indirection: the expression to which it is applied shall be one of the
following:

o If the expression is a pointer to an object type or a pointer to a function type, then the result is an Ivalue
referring to the object or function to which the expression points. If the type of the expression is
“pointer to T,” the type of the result is “T.”

e If the expression is a handle to an object type, then the result is a gc-lvalue referring to the object to
which the expression points. If the type of the expression is “handle to T,” the type of the result is “T.

Dereferencing a TA yields a gc-Ivalue of type T.

15.4.1.3 Unary %
When applied to an Ivalue of type T or a gc-lvalue of type T, % yields a TA. [Example:

61

C++/CLI Language Specification

ref class R { };
void f(System::0bjectA);
R r;
f%r); // ok
end example]

This operator results in a boxing operation. [Note: All handles to the same object compare equal. For value
classes, because % is a boxing operation, multiple applications of % results in a handles that do not compare
equal. end note]

15.4.1.4 Unary »

No such operator exists; should it? [[All]] The only major asymmetry between %/ and &/* is that unary * is
used to dereference both * and », which allows for the writing of templates that can deal with both pointer and
handle types using a common syntax; however, there is no unary . People new to the syntax often expect to
dereference a ” using a unary . Should unary ” be allowed as a synonym for unary *? Doing so might introduce
needless redundancy by having two unary operators with identical semantics. We might also be closing a door if
we later discover a valid distinct meaning for unary ” vs. unary *—we can't think of any meaning but the single
"dereference" meaning, but maybe we're just not imaginative enough.)

15.4.2 Increment and decrement

15.4.3 Sizeof
The C++ Standard (85.3.3/1) has been extended, as follows:

“The sizeof operator shall not be applied to an expression that has function or incomplete type, or to an
enumeration type before all its enumerators have been declared, or to the parenthesized name of such types,
or to an Ivalue that designates a bit-field, or to an expression that has null type, or to a handle, or to a
tracking reference, or to a ref class. sizeof(char), sizeof(signed char) and sizeof(unsigned

char‘) arel, Ae-fresy a a¥a alalaliVala ik faW-TalVAraldala HAgaRepnta ViaTs .. MRoemepntaton-ge Reg-

Notae: inn 1200 hoo nd-sizeo veh e implemantation-defined
0 D a s sisis G O D OR-6 G-

sizeof(short)isZ,sizeof(int)iS4,sizeof(1ondSis4,sizeof(|onq|onq)is8,
sizeof(float) is 4, sizeof(double) is 8, sizeof (1ong double) is 8, sizeof (wchar_t) is 2,
sizeof(bool) is1.”

The following paragraph is inserted after C++ Standard (85.3.3/2):

“When applied to a value class type, the result is not a compile-time constant expression.”

15.4.4 New

A program is ill-formed if it attempts to allocate memory using new for an object of CLI type other than a
simple value class.

15.4.5 Delete

The C++ Standard (85.3.5/1) has been extended to allow for deletion of objects allocated on the CLI heap, as
follows:

“The operand shall have a pointer type, a handle type, or a class type having a single conversion function
(12.3.2) to a pointer type.”

“In the first alternative (delete object), the value of the operand of deTete shall be a pointer or handle to a
non-array object or a pointer to a sub-object (1.8) representing a base class of such an object (clause 10). If
not, the behavior is undefined.”

62

10

15

20

25

30

35

Expressions

“If the delete-expression calls the implementation deallocation function (3.7.3.2), and if the operand of the
delete expression is not the null pointer constant, the deallocation function will deallocate the storage
referenced by the pointer or handle thus rendering the pointer or handle invalid.”

The array form of deTete cannot be used on a handle type.

15.4.6 The gcnew operator

The gcnew operator is similar to the new operator, except that the former creates an object on the CLI heap. The
type of the result of the gcnew operator is a handle to the type of the object allocated. In out-of-memory
situations, gcnew throws System: : outofMemoryException.

There is no array form of gcnew. There is no placement form of gcnew. The gcnew operator cannot be
overloaded or replaced. There is no class-specific form of gcnew.

A program is ill-formed if it attempts to allocate memory for an object of native type using gcnew.

15.4.6.1 gcnew object creation expressions

In the C++ Standard (85.3.4), a new-expression is used to allocate memory for an object at runtime. This
grammar has been extended to accommodate the addition of the gcnew operator, as follows:

new-expression:

gcnew new-type-id new-initializeryy
gcnew (type-id) new-initializeryy

Add the array case to this grammar. [[BB]]
The type of the object being allocated shall not be an abstract class type. The type shall not be incomplete.
[Note: The gcnew operator applied to a value class creates a boxed value class. end note]

15.4.6.2 Array creation expressions
Does new-initializer need to be changed? [[BB]]

15.5 Explicit type conversion (cast notation)

The rules in the C++ Standard (85.4/5) have been extended for C++/CLI by including safe casts before static
casts.

e aconst_cast
e asafe_cast

e asafe_cast followed by a const_cast

e astatic_cast
e astatic_cast followed by a const_cast

e areinterpret_cast

areinterpret_cast followed by a const_cast

[Note: Standard C++ programs remain unchanged by this, as safe casts are ill-formed when either the expression
type or target type is a native class. end note]

Provide background on the expected behavior and rationale. (Get this from the updated casting proposal.) [[Ed]]

63

10

15

20

25

30

35

C++/CLI Language Specification

15.6 Pointer-to-member operators
15.7 Multiplicative operators
15.8 Additive operators

15.8.1 Delegate combination
Every delegate type provides the following predefined operator, where D is the delegate type:
static DA operator +(DA x, DA y);
The binary + operator performs delegate combination when both operands are of the same delegate type D. The
result of the operator is the result of calling System: :Delegate: : Combine on both arguments, and casting

the result to DA. [Note: For examples of delegate combination, see §15.8.2 and §26.3. Since
System: :Delegate is not a delegate type, operator+ is not defined for it. end note]

15.8.2 Delegate removal
Every delegate type provides the following predefined operator, where D is the delegate type:
static DA operator -(DA x, DA y);
The binary - operator performs delegate removal when both operands are of the same delegate type D. The
result of the operator is the result of calling System: :Delegate: :Remove(x, y), and casting the result

to DA. [Note: the += and -= operator are defined via assignment operator synthesis. end note] [Example: For
example:

delegate void D(int x);
ref struct Test {
static void M1(int i) { /* .. */ }
static void M2(int i) { /* .. */ }
int main() {

DA cdl = gcnew D(&Test::M1);
DA cd2 = gcnew D(&Test::M2);

DA cd3 = cdl + cd2;
cd3 -= cdil;

cd3 += cdi;
; cd3 = cd3 - (cdl + cd2);

end example]

15.9 Shift operators

15.10 Relational operators
15.11 Equality operators

15.11.1 Ref class equality operators
Add support for handle equality comparison, and handle ==/!= nullptr, and vice versa. [[BB]]

15.11.2 Delegate equality operators
Every delegate type provides the following predefined comparison operators:

64

10

15

20

25

30

35

Expressions

bool operator ==(DelegateA x, DelegateA y);
bool operator !=(DelegateA x, DelegateA y);

These are implemented in terms of System: :Delegate: : Equals.

15.12 Bitwise AND operator

15.13 Bitwise exclusive OR operator
15.14 Bitwise inclusive OR operator
15.15 Logical AND operator

15.16 Logical or operator

15.17 Conditional operator
With regard to expressions of the following forms
e ?p : nullptr

e ? nullptr : p
e ? h : nullptr
e ? nullptr : h

where e is an expression that can be implicitly converted to booT, p has pointer type, and h has handle type, the
C++ Standard (85.16/6) is changed to

“The second and third operands have pointer type, or one has pointer type and the other is a null pointer
constant or null value constant; pointer conversions and qualification conversions are performed to bring
them to their composite pointer type. The result is of the composite pointer type. If either the second or the
third operands have a handle type, and the other operand is the null value constant, the result is of the handle

type.”

15.18 Assignment operators
Add words here to discuss assignment for properties and events from the point of view of the rewrite rules.

[[BBI]

The left operand of an assignment shall be an Ivalue or a gclvalue.

15.19 Comma operator

15.20 Constant expressions

The C++ Standard (85.19/2) provides a list of “Other expressions [that] are considered constant-expressions
only for the purpose of non-local static object initialization.” That list has been extended by the addition of the
following:

e the null value constant.

A literal field can be used in any context that permits a literal of the same type. As such, a literal field can be
present in a compile-time constant expression.

To accommodate the addition of literal fields, the following is inserted in the C++ Standard, after §5.19/3:

“A literal constant expression includes arithmetic constant expression, string literals of type
System: :String, and the null value constant nullptr.”

65

C++/CLI Language Specification

Investigate whether string literals include compile-time expressions, such as string concatenation. [[BB]]

66

10

15

20

25

30

35

Statements

16. Statements

Unless stated otherwise in this clause, all existing statements are supported and behave as specified in the
C++ Standard (86).

16.1 lteration statements

In addition to the three iteration statements specified by Standard C++ (86.5), the iteration-statement production
has been extended to include foreach-statement.

iteration-statement:

foreach-statement

16.1.1 The for each statement

The for each statement enumerates the elements of a collection, executing the statement for each element of
that collection.

foreach-statement:
for each (type ??- declaratoropt identifier in expression) statement

The type, declarator, and identifier of a for each statement declare the iteration variable of the statement.
The iteration variable corresponds to a local variable with a scope that extends over the substatement. During
execution of a for each statement, the iteration variable represents the collection element for which an
iteration is currently being performed. The program is ill-formed if the substatement attempts to assign to the
iteration variable or to pass the iteration variable by reference.

The type of expression shall be a collection type (as defined below), and an explicit conversion (§??) must exist
from the element type of the collection to the type of the iteration variable. If expression has the null value a
System: :NulTReferenceException is thrown.

A type C is said to be a collection type if it implements the System: :Collections.IEnumerabTe interface
or implements the collection pattern by meeting all of the following criteria:

e (Ccontains a pub1i c instance function with the signature GetEnumerator (), that returns a struct-type,
class-type, or interface-type, which is called E in the following two points.

e E contains a pub1i c instance function with the signature MoveNext () and the return type bool.

e E contains a pub1ic instance property named Current that permits reading the current value. The type
of this property is said to be the element type of the collection type.

A type that implements IEnumerabTe is also a collection type, even if it doesn't satisfy the conditions above.
(This is possible if it implements TEnumerabe via explicit interface member implementations.)

The system: :Array type (§23.1.1) is a collection type, and since all CLI array types derive from

System: :Array, any CLI array type expression is permitted in a for each statement. For single-dimensional
CLI arrays, the for each statement enumerators traverses the array elements in increasing order, starting with
index 0 and ending with index Length - 1. For multi-dimensional CLI arrays, elements are traversed such
that the indices of the rightmost dimension are increased first, then the next left dimension, and so on to the left.

A for each statement is executed as follows:

67

10

15

20

25

C++/CLI Language Specification

o The collection expression is evaluated to produce an instance of the collection type. This instance is
referred to as c in the following.

e An enumerator instance is obtained by evaluating the function invocation c.GetEnumerator(). The
returned enumerator is stored in a temporary local variable, in the following referred to as e. It is not
possible for the statement to access this temporary variable.

e The enumerator is advanced to the next element by evaluating the function invocation e .MoveNext ().
e If the value returned by e.MoveNext () is true, the following steps are performed:

o0 The current enumerator value is obtained by evaluating the property access e.Current, and the
value is converted to the type of the iteration variable by an explicit conversion (§??). The resulting
value is stored in the iteration variable such that it can be accessed in the statement.

o Control is transferred to the statement. When and if control reaches the end point of the statement
(possibly from execution of a continue statement), another for each iteration is performed,
starting with the step above that advances the enumerator.

If the value returned by e.MoveNext () is false, control is transferred to the end point of the for
each statement.

Add some examples. [[Ed]]

16.2 The try statement
A program that attempts to throw nullptr is ill-formed.

16.3 The checked and unchecked statements

Should statements exist to control the overflow-checking context for integral-type arithmetic operations and
conversions? [[All]]

68

Namespaces

17. Namespaces

To be added. [[BB]]

69

C++/CLI Language Specification

18. Classes and members

This clause specifies the features of a class that are new in C++/CLI. However, not all of these features are
available to all classes. The class-related features that are supported by native classes (819), ref classes (§20),
value classes (821), and interfaces (824), are specified in the clauses that define those types. [Note: A summary
of that support is shown in the following table:

TODO: This table and corresponding sections should include Special Member Functions (SMFs) like
destructors, copy constructors, default constructors, assignment operators, conversion to special bool, handle
equality. Many of these are not supported for value classes.

Feature Native class Ref class Value class Interface

Class modifier X X X

Reserved member names X X X X
Function modifiers X X X n/a
Override specifier X X X n/a
Parameter arrays X X X X
Properties X X X
Events X X X
Static operators X X X X
Delegating instance X X X n/a
constructors

Static constructor X X X
Literal field X X X
Initonly field X X X
Delegate definitions X X X X
Member of delegate type X X

end note]

18.1 Class definitions

In the C++ Standard (89), a class-specifier is used to define a class. This grammar has been extended to
accommodate the addition of public and private classes, as follows:

class-specifier:
top-level-type-visibility,,: class-head { member-specificationy, 3

top-level-type-visibility is described in 812.4

To accommodate the addition of initonly and literal fields, delegates, events, and properties, the syntactic class
member-declaration in the C++ Standard (89.2) has been extended, as follows:

70

10

15

20

25

30

35

40

Classes and members

member-declaration:
attributes, _initonly-or-literal,,: decl-specifier-seqq,x member-declarator-listyy, ;

delegate-definition
event-definition
property-definition

initonly-or-literal:
initonly
Titeral

Attributes are described in 828, initonly fields are described in §18.10, literal fields in §18.9, delegates in §26,
events in §18.5, and properties in §18.4.

18.1.1 Class modifiers

To accommodate the addition of sealed and abstract classes, the grammar for class-head in the C++ Standard
(89) has been extended to include an optional sequence of class modifiers, as follows:

class-head:
class-key identifiery, class-modifiersq,: base-clauseqp
class-key nested-name-specifier identifier class-modifiers,, base-clauseqy
class-key nested-name-specifierqyy template-id class-modifiersyy,: base-clauseqp

class-modifiers:
class-modifier
class-modifiers class-modifier

class-modifier:
abstract
sealed

If the same modifier appears multiple times in a class definition, the program is ill-formed.

[Note: abstract and sealed can be used together; that is, they are not mutually exclusive. As non-member
functions are not CLS-compliant, a substitute is to use an abstract sealed class, which can contain static member
functions. This is the utility class pattern. end note]

The abstract and sealed modifiers are discussed in §18.1.1.1 and §18.1.1.2, respectively.

18.1.1.1 Abstract classes
An abstract class follows the rules of Standard C++ for abstract classes (810.4); however, a class definition
containing the abstract class modifier need not contain any abstract functions. [Example:

struct B abstract {
void fO { }

struct D : B { };

int main() {
; // error: B is abstract
) D d; // ok

end example]

71

10

15

20

25

30

35

40

C++/CLI Language Specification

18.1.1.2 Sealed classes

The sealed modifier is used to prevent derivation from a class. The program is ill-formed if a sealed class is
specified as the base class of another class. [Example:

struct B sealed {

L
struct D : B { // error, cannot derive from a sealed class

end example]

Whether or not a class is sealed has no effect on whether or not any of its member functions are, themselves,
sealed.

[Note: The sealed modifier is primarily used to prevent unintended derivation, but it also enables certain
runtime optimizations. In particular, because a sealed class is known never to have any derived classes, it is
possible to transform virtual function member invocations on sealed class instances into non-virtual invocations.
end note]

18.2 Reserved member names

To facilitate the underlying C++/CLI runtime implementation, for each member definition that is a property or
event, the implementation must reserve several names based on the kind of the member definition (§18.2.1,
818.2.2). A program is ill-formed if it contains a class that declares a member whose name matches any of these
reserved names, even if the underlying runtime implementation does not make use of these reservations. If a
particular name is reserved within a class, that name is also reserved in all classes that derive from that class.

The reserved names do not introduce definitions, thus they do not participate in member lookup.

[Note: The new modifier cannot be used to circumvent the restriction that a member with a reserved name shall
not be declared. end note]

[Note: The reservation of these names serves several purposes:

o To allow other languages to interoperate using an ordinary identifier as a function name for get or set
access.

e Partition | of the CLI standard requires these names for CLS-producer languages.
end note]

In order to accommodate the CLI notion of finalizers, several names are reserved for functions (818.2.3).

18.2.1 Member names reserved for properties
For a scalar or named indexed property P (818.4), the following names are reserved:

get_P
set_P

Both names are reserved, even if the scalar or named indexed property is read-only or write-only.

[Example:
ref struct A {
property int P {
int get() { return 123; }

}
1

72

10

15

20

25

30

35

40

Classes and members

ref struct B : A {
int get_PQ { // error
return 456;

};
end example]

For a default indexed property (818.4), the following names are reserved:

get_Item
set_Item

Both names are reserved, even if the default indexed property is read-only or write-only.

Need to address the following: C++/CLI uses the System::Reflection::DefaultMemberAttribute attribute to
specify that something other than the default name, “Item”, should be used. Given that, the text describes what
happens if no name is chosen; that is, Item is used by default. Once the name has been set with DefaultMember,
it cannot be changed in a derived class. If two interfaces have different DefaultMember attributes, implementing
both interfaces is ill-formed.

18.2.2 Member names reserved for events
For an event E (818.5), the following names are reserved:

add_E
remove_E
raise_E

18.2.3 Member names reserved for functions
For CLI types, the following name is reserved:
Finalize

18.3 Functions
Extend the grammar to accommodate attributes on functions.

The addition of overriding specifiers and function modifiers requires a change to the Standard C++ grammar for
direct-declarator. [Note: The two new optional syntax productions, function-modifier and override-specifier,
appear in that order, after exception-specification, but before function-body or function-try-block. end note]

One of the productions for the Standard C++ grammar for member-declarator (89.2) has been extended, as
follows:

override-specifier should support O for compatibility with pure-specifier.

member-declarator:
declarator function-modifiers,, override-specifieryy

function-modifiers:
function-modifier
function-modifiers function-modifier

function-modifier:
abstract
new
override
sealed

73

10

15

20

25

30

35

40

C++/CLI Language Specification

function-modifiers are discussed in the following subclauses: abstract in §18.3.3, new in §18.3.4, override
in 818.3.1, and sealed in 818.3.2. override-specifier is discussed in §18.3.1.

A member function declaration containing any of the function-modifiers abstract, override, or sealed, or
an override-specifier, shall explicitly be declared virtual. [Rationale: A major goal of this new syntax is to let
the programmer state his intent, by making overriding more explicit, and by reducing silent overriding. The
virtual keyword is required on all virtual functions, except in the one case where backwards compatibility
with Standard C++ allows the virtual keyword to be optional. end rationale]

If a function contains both abstract and sealed modifiers, or it contains both new and override modifiers,
it is ill-formed.

An out-of-class member function definition shall not contain a function-modifier or an override-specifier.

The Standard C++ grammar for parameter-declaration-clause (88.3.5) has been extended to include support for
passing parameter arrays, as follows:

parameter-declaration-clause:

parameter-array
parameter-declaration-list , parameter-array

There shall be only one parameter array for a given function or instance constructor, and it shall always be the
last parameter specified.

Parameter arrays are discussed in §18.3.6.

18.3.1 Override functions

The Standard C++ grammar for direct-declarator has been extended (see §18.2.3) to allow the function modifier
override aswell as override specifiers.

override-specifier:
= overridden-name-list

overridden-name-list:
id-expression
overridden-name-list , id-expression

[Note: In Standard C++, given a derived class with a function that has the same name and parameter list of a
virtual function in a base class, the derived class function always overrides the one in the base class, even if the
derived class function is not declared virtual. end note]

With the addition of the function modifier override and override specifiers, C++/CLI provides the ability to
indicate explicit overriding, to allow selective and multiple overriding, and to have renamed overriding.

If either the function-modifier override or an override-specifier, or both, are present in the derived class
function declaration, no implicit overriding takes place. [Example:

struct A {]
virtual void f() abstract;

’
struct B {]
virtual void f() abstract;

struct D : A, B {
virtual void fQ; // overrides A::f and B::f

74

10

15

20

25

30

35

40

45

Classes and members

struct E : A
\Y

, B {
virtual void f() = B::f; // overrides B::f only, E is abstract
struct F : A, B {

virtual void f() override; // overrides A::f and B::f

struct G : A, B {
virtual void f() override = B::f; // overrides B::f only

end example]

Explain the difference between using ‘override’ and ‘= function-name’; one creates an .override directive in
CIL, the other does not. [[BB]]

[Note: A member function declaration containing the function-modifier override or an override-specifier shall
explicitly be declared virtual (818.2.3). end note]

An override-specifier contains a comma-separated list of names designating the virtual functions from one or
more direct or indirect base classes that are to be overridden.

An id-expression that designates an overridden name can be a qualified function name. Such a name designates
a single function to be overridden. That function shall have the same name and same parameter list as the
overriding function, and the return types of the two functions shall be covariant.

[Example:

struct A {
virtual void f(O;

struct B {
virtual void f(O;

’
struct D : A, B {

virtual void O A::f, B::f; // override A::f and B::f

’
struct E : A, B {
virtual

<
o
-
o
_h
~
()
Il

B::f; // override B::f only
end example]

An id-expression that designates an overridden name can be an unqualified function name, which designates,
via a member function name, one or more functions to be overridden. Those functions shall have the same name
and same parameter list as the overriding function, and the return types of all those functions and the overriding
function shall be covariant. As no explicit base class name is specified, all direct and indirect base classes of the
class containing the overriding function are implied. [Example:
struct A {
virtual void QO
virtual void g()
struct B {
virtual void fQ;
virtual void g(Q);
struct C {
virtual void gQ;

75

10

15

20

25

30

35

40

45

C++/CLI Language Specification

struct D : A, B, C {
virtual void f() = f; // override A::f, B::f
virtual void g() = g; // override A::g, B::g, and C::g

end example]

An id-expression that designates an overridden name can be a base class name only, which designates one
function to be overridden. As no explicit member function name is specified, the one function in the base class
having the same name and same parameter list, and whose return type is covariant with that of the overriding
function, is implied. [Example:
struct A {]
virtual void f(Q)
virtual void gQ
struct B {
virtual void fQ;
virtual void g(Q);

struct D : A, B {
virtual void f() = A; // override A::f
virtual void g() = A, B; // override A::g, B::g

end example]

[Note: The same overriding behavior can sometimes be achieved in different ways. For example, given a base
class A with a virtual function f, an overriding function might have an override-specifier of A: : f or A, have no
override specifier or override function modifier, have the function-modifier override, or a combination of
the two, asin override = A::fandoverride = A. All override A::f.end note]

The name of the overriding function need not be the same as that being overridden. [Example:

struct A {
virtual void QO
virtual void g
struct B {
virtual void f(Q
virtual void gQ

struct D : A, B {
virtual void x() = A::f; // X overrides A:;f
virtual void y() = g; // y overrides A::g and B::g

end example]
A derived class shall not override the same virtual function more than once. [Example:

struct A {
virtual void fQ;

3
struct B {
; virtual void fQ;

76

10

15

20

25

30

35

40

45

Classes and members

struct D : A, B {

virtual void = B::f;

virtual void ; // e rror would override A::f and B::f, but
) // B is already overridden

end example]

It is invalid for a class to have multiple functions with the same name and parameter list even if they override
different inherited virtual functions. [Example:
struct D : B1l, B2 {
void f() = Bl::f { /*.%/ } // ok
void f() = B2::f { /*.*/ } // error, duplicate declaration
end example]

A member function that is an explicit override cannot be called directly (except with explicit qualification) or
have its address taken. [Example:

struct I {]
virtual void v(Q;

’
struct 3 {
virtual void w(Q);
’
struct A : I, J {
virtual void fO = I::v, J::w;

struct ¢ : A {
virtual void g() = I::v;
v1rtua1 void () = J::w;
void Test(A* pa) { // pa could point to an A, a C, or something else
pa->f(); // ambiguous: I::v or J::w?
pa->v(); // ok, virtual call

pa->w(); // ok, virtual call

pa->I::v(Q); // ok if I::v is implemented, nonvirtual call to I::v
pa->J::w(Q); // ok if J::w is implemented, nonvirtual call to J::w
pa->A::v(Q); // ok if I::v is imp]emented, nonvirtual call to I::v
pa->A::w(); // ok if J::w is implemented, nonvirtual call to J::w
pa->A::fQ); // ok (classes derived from A might need to do this

// and there’s no ambiguity in this case)

}

end example][Rationale: Even though technically it is possible to allow a call to such an f when the type of the
object is statically known to be an A, for example in:

A a;
a.fQ; // ambiguous (even though it could work)

there does not seem to be sufficient utility to offset the user confusion about “When can | do this and when
can’t 1?” end rationale]

If a destructor or finalizer (§??) contains an override specifier, the program is ill-formed.

18.3.2 Sealed function modifier

A virtual member function marked with the function-modifier sealed cannot be overridden in a derived class.
[Example:

77

10

15

20

25

30

35

40

C++/CLI Language Specification

struct B {
virtual int f() sealed;

struct D : B {]]
virtual int fQ; // error: cannot override a sealed function

end example]

[Note: A member function declaration containing the function-modifier sealed shall explicitly be declared
virtual (818). end note] If there is no virtual function to implicitly override in the base class, the derived
class introduces the virtual function and seals it.

Whether or not any member functions of a class are sealed, has no effect on whether or not that class itself is
sealed.

An implicit or explicit override can succeed as long as there is a non-sealed virtual function in at least one of the
bases. [Example: Consider the case in which A: : f is sealed, but B: : f is not. If C inherits from A and B, and
tries to implement f, it will succeed, but will only override B: : f. end example]

18.3.3 Abstract function modifier

Standard C++ permits virtual member functions to be declared abstract by using a pure-specifier. C++/CLI
provides an alternate approach via the function-modifier abstract. The two approaches are equivalent; using
both is well-formed, but redundant.” [Example: A class shape can declare an abstract function draw in any of
the following ways:

virtual void draw() = 0; // Standard C++ style
virtual void draw() abstract; // function-modifier style
virtual void draw() abstract = 0; // okay, but redundant

end example]

[Note: A member function declaration containing the function-modifier abstract shall be declared virtual
(818). end note]

18.3.4 New function modifier
The function-modifier new neither requires nor implies that the function is virtual (818).

A member function declaration containing the function-modifier new shall not contain an override-specifier.

Describe in more detail the semantics of new, including its use on static member functions (currently new only
applies to overriding, not to hiding). [BB]]

18.3.5 Function overloading
The C++ Standard (813.3.2) has been extended to incorporate parameter arrays (§18.3.6), as follows:

“For every parameter array function, two signatures are submitted to the overload candidate set: the
expanded form and the exact signature.”

18.3.6 Parameter arrays

Standard C++ supports variable-length argument lists for both member and non-member functions; however, the
approach used is not type-safe. C++/CLI adds a type-safe way using parameter arrays. A parameter array is
defined as follows:

parameter-array:
attributes,y . .. parameter-declaration

78

10

15

20

25

30

35

40

45

50

Classes and members

Re the following: For functions outside CLI types, if they happen to have a parameter array, it is okay to have a
default parameter. That parameter can be any array -- the parameter array part of it is just ignored and instead
for the purposes of the default parameter is just a plain array.

A parameter-array consists of an optional set of attributes (§28), an ellipsis punctuator, and a parameter-
declaration. A parameter array declares a single parameter of the given array type with the given name. The
array type of a parameter array must be a single-dimensional C++/CL1I array type (823.1). In a function
invocation, either a parameter array permits a single argument of the given array type to be specified, or it
permits zero or more arguments of the array element type to be specified. The program is ill-formed if the
parameter-declaration contains an assignment-expression.

void f(... array<ObjectA>A);
int main() {

(nullptr);
(1, 2);
f(nullptr, nullptr);
f(gcnew array<oObjectA>(1));
; f(gcnew array<ObjectA>(1), gcnew array<ObjectA>(2));

end example]

[Example:

void F1(... array<StringA>A Tlist) {
for (int i =0 ; i < list->Length ; i++)
Console::write(“{0} 7, Tist[il);
console::writeLine();

void F2(... array<ObjectA>A Tist) {
for each (ObjectA element in 1list)
console::write(“{0} ”, element);
console::writeLine();

int main(Q) {
Fl(“l”, uzu’ n3u);
F2(1, ‘a’, “test”);
array<StringA>A myarray
= gcnew array<String> {“a”, “b”, “c” };
) Fl(myarray);

The output produced is as follows:

123
1 a test
abc

end example]

When a function with a parameter array is invoked in its expanded form, the invocation is processed exactly as
if an array creation expression with an array initializer (8??) was inserted around the expanded parameters.
[Example: For example, given the declaration

void F(int x, int y, ... array<ObjectA>A args);
the following invocations of the expanded form of the function

F(10, 20);
F(10, 20, 30, 40);
F(10, 20, 1, "hello", 3.0);

79

10

15

20

25

30

35

40

C++/CLI Language Specification

correspond exactly to

F(10, 20, nullptr);
F(10, 20, gcnew array<System::0bjectA> {30, 40});
F(10, 20, gcnew array<System::0bjectA> {1, "hello", 3.0});

In particular, nuTTptr is passed when there are zero arguments given for the parameter array. end example]

Parameter array parameters can be passed to functions that take non-parameter array arguments of the
corresponding type. [Example:

void f(array<int>A pArray); // not a parameter array
void g(double value, ... array<int>A p) {
f(p; // ok

end example]

An argument of type array<type> can be passed to a function having a parameter ... array<type>. Inthe
case of passing an array<ObjectA> argument A to a parameter P (declared using ... array<objectA>),
P binds to A (that is, P is not an array whose first ObjectA element refers to A).

Parameter arrays can contain either native or CLI type elements. [Example:

void g(... array<ObjectA>% v); // CLI type held by A
g(1, 2, “abc”); // creates a container of 3 boxed
// objects, having type Int32,
// Int32, and String.
void h(... array<std::string>% a); // native type held by value
h(“abc”, “def”, “xyzzy”, string2); // creates a container of 4 strings

end example]

18.4 Properties

A property is a member that behaves as if it were a field. There are two kinds of properties: scalar and indexed.
A scalar property enables scalar field-like access to an object or class. Examples of scalar properties include
the length of a string, the size of a font, the caption of a window, and the name of a customer. An indexed
property enables array-like access to an object. An example of an index property is a bit-array class.

Properties are an evolutionary extension of fields—both are named members with associated types, and the
syntax for accessing scalar fields and scalar properties is the same, as is that for accessing arrays and indexed
properties. However, unlike fields, properties do not denote storage locations. Instead, properties have accessor
functions that specify the statements to be executed when their values are read or written.

Properties are defined using property-definitions:
Extend declarator-id’s by adding a new production that allows default. [[BB]]

property-definition:
attributes,,: property-modifiers simple-type-specifier declarator
property-indexesy,: function-modifiersyy: override-specifieryy
{ accessor-specification }
attributes,,: property-modifiers simple-type-specifier declarator
function-modifierse,: Override-specifieroy

property-modifiers:
property-modifier
property-modifiers property-modifier

80

10

15

20

25

30

35

40

Classes and members

property-modifier:
property
static
virtual

property-indexes:
[indexer-parameter-list]

indexer-parameter-list:
indexer-parameter-declaration
indexer-parameter-list , indexer-parameter-declaration

indexer-parameter-declaration:
type-specifier

The grammar for indexer-parameter-declaration does not allow handles or pointers, but full declarators are not
needed. The grammar should allow a simpler sequence of ptr-operator. [[BB]]

A property-definition can include a set of attributes (§28), property-modifiers (§18.4.1, 818.4.3), property-
indexes, function-modifiers (818.2.3), and an override-specifier (818.3.1). It must include the property-modifier
property.

A property-definition that does not contain a property-indexes is a scalar property, while a property-definition
that contains a property-indexes is an indexed property.

A property-definition ending with a semicolon (as opposed to brace-delimited accessor-specification) defines a
trivial scalar property (818.4.4). [Note: There is no such thing as a trivial indexed property. end note]

Property definitions are subject to the same rules as function declarations with regard to valid combinations of
modifiers, with the one exception being that the static modifier is not permitted on a default indexed property
definition. (Default indexed properties are introduced later in this subclause.)

The simple-type-specifier of a scalar property definition specifies the type of the scalar property introduced by
the definition, and the identifier specifies the name of the scalar property. The simple-type-specifier of an
indexed property definition specifies the element type of the indexed property introduced by the definition.

property-name specifies the name of the property. For an indexed property, if property-name is default, that
property is a default indexed property. If property-name is identifier, that property is a named indexed
property.

We probably should say something about the reserved names get_Item and set_Item, and their relationship with
default indexed properties. Also, add a forward pointer to the corresponding attribute.

The accessor-specification declares the accessor functions (818.4.2) of the property. The accessor functions
specify the executable statements associated with reading and writing the property. An accessor function,
qualified with the property name, is considered a member of the class. For a default indexed property, the parent
property name is default. As such, the full names of the accessor functions for this indexed property are
default::get and default::set.

The address of an accessor function can be taken and yields a pointer-to-member of the enclosing type.
However, it is not possible to bind a pointer-to-member value to a property. [Note: A property is a group of one
or more accessor functions, not an object. end note]

An indexed property cannot have the same name as a scalar property. Overloading of indexed properties on
different index parameters is allowed, as long as none has the same name as a scalar property.

81

10

15

20

25

30

35

40

C++/CLI Language Specification

18.4.1 Static and instance properties

When a property definition includes a static modifier, the property is said to be a static property. [Note: An
indexed property cannot be static. end note] When no stat1ic modifier is present, the property is said to be an
instance property. All accessor functions in a static property are static, and writing static on such a function
is allowed but redundant. All accessor functions in an instance property are instance accessor functions.
[Example:

struct C {
static property C* Instance { /* .. */ } // static property
property int default[int k] { /* .. */ }; // instance property

end example]

[Note: Like a field, when a static property is referenced using the form E: :M, E must denote a type that has a
property M. When an instance property is referenced using the form E .M, E must denote an instance having a
property M. When an instance property is referenced through a pointer or handle, the form E->M is used. end
note]

18.4.2 Accessor functions

The accessor-specification of a property specifies the executable statements associated with reading and writing
that property.

accessor-specification:
accessor-declaration accessor-specificationgy
access-specifier : accessor-specificationgy

accessor-declaration:
decl-specifier-seqo,: member-declarator-listo,: ;
function-definition ;

A property must have at least one accessor function. The name of a property accessor function must be either
get or set. A property shall have no more than one get accessor function and no more than one set accessor
function. An accessor function of a property can be defined inline with the property definition, or out-of-class.

If a property has the static modifier, all of its accessor functions are implicitly static; nevertheless,
declaring static on one or more of those accessor functions is allowed but redundant.

If a property is abstract, the accessor functions of the property can be abstract. If an accessor function is not
declared abstract, it must be defined. If any accessor function of a property is declared abstract, the property
must also be declared abstract.

The get accessor function of a scalar property takes no parameters and its return type shall match exactly the
type of the property, simple-type-specifier. A get accessor function shall not return a C-style array. For an
indexed property, the parameters of the get accessor function shall correspond exactly to the types of the
property’s property-indexe.

This subclause only covers how the accessor functions must be defined. The expressions clause needs to cover
the rewrite rules that call these functions. [[BB]]

The set accessor function of a scalar property has one parameter that corresponds exactly to the type of the
property, simple-type-specifier. For an indexed property, the parameters of the set accessor function shall
correspond exactly to the types of the property’s property-indexes, followed by the last parameter, which shall
correspond exactly to the type of the property, simple-type-specifier. The return type of the set accessor function
for both scalar and indexed properties shall be void.

Based on the presence or absence of the get and set accessor functions, a property is classified as follows:

82

10

15

20

25

30

35

40

45

Classes and members

e A property that includes both a get accessor function and a set accessor function is said to be a read-
write property.

e A property that has only a get accessor function is said to be a read-only property.
e A property that has only a set accessor function is said to be a write-only property.

Like all class members, a property has an explicit or implicit access-specifier. Either or both of a property’s
accessor functions can also have an access-specifier, which specifies a narrower access than the property’s
accessibility for that accessor function. access-specifiers on accessor functions specify access for those accessor
functions only; they have no effect on the accessibility of members in the parent class subsequent to the parent
property. The accessibility following the property is the same as the accessibility before the property.

[Note: If the get and set accessor functions in a read-write property have different implicit or explicit access-
specifiers, that property is not CLS-compliant. end note]

[Example: In the example

public ref class Button : Control {
private: _
StringA caption;

pubTic:
property StringA Caption {
StringA get() {
return caption;

void set(StringA value) {

if (caption != value) {
caption = value;
Repaint();

}
}
};

the Button control declares a public Caption property. This property does nothing more than a field except
when the property is set, in which case, the control is repainted when a new value is supplied.

Given the Button class above, the following is an example of use of the Caption property:

ButtonA okButton = gcnew Button;]
okButton->Caption = "OK"; // Invokes set accessor function
StringA s = okButton->Caption; // Invokes get accessor function

Here, the set accessor function is invoked by assigning a value to the property, and the get accessor function is
invoked by referencing the property in an expression. end example]

In the paragraph above, add a cross-reference to the rewrite rules for properties and events. (They will be
somewhere in the expressions clause.) [[Ed]]

When a derived class declares a property by the same name as an inherited property, the derived property hides
the inherited property with respect to both reading and writing. [Example: In the example
struct A {

property int P {
void set(int value) {.}

}
};

83

10

15

20

25

30

35

40

45

C++/CLI Language Specification

struct B : A {
property int P {
int get() {.}

};
the P property in B hides the P property in A with respect to both reading and writing. Thus, in the statements
B b;
b.Pp =1; // Error, B.P is read-only
b.A::P = 1; // Ok, reference to A.P

the assignment to b . P causes the program to be ill-formed, since the read-only P property in B hides the write-
only P property in A. Note, however, that a cast can be used to access the hidden P property. end example]

[Note: Exposing state through properties is not necessarily less efficient than exposing fields directly. In
particular, accesses to a property are the same as calling that property’s accessor functions. When appropriate,
an implementation can inline these function calls. Using properties is a good mechanism for maintaining binary
compatibility over several versions of a class. end note]

Add some discussion of how accesses to properties are rewritten into accessor functions. This should be covered
in rewrite rules in the expressions clause. Note that access checking for whether a property can be written to or
read to is done after rewriting and overload resolutions. [[BB]]
Accessor functions can be defined inline or out-of-class. [Example:

pubTic class point {

private:
int Xor;
int Yor;
pubTic:
property int X {
int get() { return Xor; } // inTine definition
void set(int value); // declaration only

property int Y {
int get(); // declaration only
void set(int value) { return Yor = value; } // inline definition

-
void point::X::set(int value) { Yor = value; }
int point::Y::get() { return Yor; }

end example]

The qualified name of a property needs to be described somewhere. Once that happens, how an out-of-class
definition is done will already be covered by existing rules. [[BB]]

18.4.3 Virtual, sealed, abstract, and override accessor functions

A virtual property definition specifies that the accessor functions of the property are virtual. Declaring
virtual on an accessor function of a virtual property is allowed but redundant. If the vi rtual modifier
appears on every accessor function in a property not itself having such a modifier, then that modifier applies
implicitly to the property.

A sealed property definition specifies that the accessor functions of the property are sealed. A property
definition containing the function-modifier seaTed shall explicitly be declared virtual. Use of this modifier
prevents a derived class from further overriding the property. Declaring sealed on an accessor function of a

84

10

15

20

25

30

35

40

45

Classes and members

sealed property is allowed but redundant. If the sealed modifier appears on every accessor function in a
property not itself having such a modifier, then that modifier applies implicitly to the property.

An abstract property definition specifies that the accessor functions of the property are abstract and virtual,
but does not provide an actual implementation of the accessor functions. Instead, non-abstract derived classes
are required to provide their own implementation for the accessor functions by overriding the property. A
property definition containing the function-modifier abstract shall explicitly be declared virtual. All of the
accessor functions of an abstract property can also individually contain an abstract and/or virtual modifier;
however, such modifiers are redundant. If the abstract modifier appears on every accessor function in a
property not itself having such a modifier, then that modifier applies implicitly to the property. A virtual
property can have abstract accessor functions, and the property need not be explicitly declared abstract.

[Example:
struct B {
virtual property string Name { // virtual property
) virtual string get() abstract; // property is implicitly abstract
};

struct D : B {]]
virtual property string Name sealed { /*.*/ } // Name is now sealed

end example]

Any properties defined in an interface are implicitly abstract. However, those properties can redundantly contain
the virtual and/or abstract modifiers, and a pure-specifier. [Example:
interface class X abstract {] o
property int Size { /*.*/ }; // (implicit) abstract property
virtual property string Name abstract = 0 { /*.*/ };

// “virtual”, abstract” and “= 0”
// permitted but are redundant

end example]

A property definition that includes the abstract modifier as well as an override modifier or an override-
specifier, specifies that the property is abstract and overrides a base property. The accessor functions of such a
property are also abstract.

[Note: Abstract property definitions are only permitted in abstract classes (§18.1.1.1). end note]

The accessor functions of an inherited virtual property can be overridden in a derived class by including a
property definition that specifies an override modifier or an override-specifier (818.3.1). This is known as an
overriding property definition. An overriding property definition does not declare a new property. Instead, it
simply specializes the implementations of the accessor functions of an existing virtual property. [Example:
struct Bl {
virtual property string Name { /*.*/ }
struct B2 {
virtual property string MyName { /*.*/ }
struct D : B1l, B2 {
// override both]
virtual property string HelloIAm = Name, MyName { /*.%/ }

end example]

85

10

15

20

25

30

35

40

45

C++/CLI Language Specification

An accessor function can override accessor functions in other properties; it can also override non-accessor
functions. [Example:
struct B {)
virtual property string Name {

string get(Q);
void set(string value);

3
};
struct C {
virtual string getLabel();

struct D : B, C {
virtual property string MyName = Name {
string get() = getLabel; // implicitly overrides Name::get and
) } // explicitly overrides C::getLabel
end example]

An overriding property definition must specify wider accessibility modifiers and exactly the same type and
name as the inherited property. If the inherited property is a read-only or write-only property, the overriding
property must be a read-only or write-only property respectively, or a read-write property. If the inherited
property is a read-write property, the overriding property must be a read-write property.

A trivial scalar property shall not override another property.

Except for differences in definition and invocation syntax, virtual, sealed, override, and abstract accessor
functions behave exactly like virtual, sealed, override, and abstract functions, respectively. Specifically, the
rules described in the C++ Standard (810.3) and §18.3.2, 818.3.1, and §18.3.3 of this Standard apply as if
accessor functions were functions of a corresponding form:

[Example: In the example

class A abstract {
int y;

pubTic:
virtual property int X {
int get() { return 0; }

virtual property int Y {
int get() { return y; }
void set(int value) { y = value; }

virtual property int z abstract { int get(); void set(int value); }

X is a virtual read-only property, Y is a virtual read-write property, and z is an abstract read-write property.

18.4.4 Trivial scalar properties

A trivial scalar property is defined by a property-definition ending with a semicolon (as opposed to a brace-
delimited accessor-specification). [Example:

struct s {
property int P;

end example]

86

10

15

20

25

30

35

40

45

Classes and members

A trivial scalar property is read-write and has implicitly defined accessor functions. The implied access-specifier
for these accessor functions is the same as for the parent property. Private backing storage for a trivial scalar
property is automatically allocated with the name of that storage being unspecified, but in the implementer’s
namespace. [Example: A compiler might treat the above trivial scalar property definition as if it was written like
the following:
struct S {
property int P {
int get() { return __P;
void set(int value) {

o

= value; }

private:
int __P;

end example]

18.5 Events

An event is a member that enables an object or class to provide notifications. Clients can add a delegate to an
event, so that the object will invoke that delegate. Events are declared using event-definitions:

event-definition:
attributes,,: event-modifiers event-type identifier
function-modifierso,: Override-specifieroyy { accessor-specification }
attributes,,: event-modifiers event-type identifier
function-modifiersy,: override-specifieroy

event-modifiers:
event-modifier
event-modifiers event-modifier

event-modifier:
event
static
virtual

An event-definition can include a set of attributes (828), property-modifiers (§18.4.1, §18.4.3), function-
modifiers (818.2.3, §18.4.3), and an override-specifier (818.3.1). It must include the event-modifier event.

The event-type of an event definition shall be a delegate type, and that type shall be at least as accessible as the
event itself. identifier designates the name of the event.

The production event-type has not yet been defined. The syntactic category of this element needs to be
reviewed.

The accessor-specification declares the accessor functions (§18.5.2) of the event. The accessor functions specify
the executable statements associated with adding handlers to, and removing handlers from, the event, as well as
raising that event.

An event-definition ending with a semicolon (as opposed to a brace-delimited accessor-specification) defines a
trivial event (818.5.4). The three accessor functions for a trivial event are supplied automatically by the
compiler along with a private backing store. An event-definition ending with a brace-delimited accessor-
specification defines a non-trivial event.

[Example: The following example shows how event handlers are attached to instances of the Button class:

public delegate void EventHandler(ObjectA sender,
EventArgsA e);

87

10

15

20

25

30

35

40

45

C++/CLI Language Specification

public ref struct Button : Control {
event EventHandlerA Click;

public ref class LoginDialog : Form

ButtonA OkButton;
ButtonA CancelButton;

public:
LoginDialog() {
okButton = gcnew Button(..);
okButton->Click += gcnew EventHandler (&kButtonClick);
CancelButton = gcnew Button(..);
CancelButton->Click += gcnew EventHandler(&CancelButtonClick);

void OkButtonClick(ObjectA sender, EventArgsA e) {
// Handle OkButton->Click event

void CancelButtonClick(ObjectA sender, EventArgsA e) {
// Handle CancelButton->Click event

};

Here, the LoginD1ialog constructor creates two Button instances and attaches event handlers to the C11ck
events. end example]

The address of an event accessor function can be taken and bound to a suitably typed pointer-to-member
function (subject to the usual C++ rules, such as that the calling code must have access to the function’s name).
However, it is not possible to bind a pointer-to-member object to an event. [Note: An event is a group of one or
more accessor functions, not an object. end note]

18.5.1 Static and instance events

When an event declaration includes a static modifier, the event is said to be a static event. When no static
modifier is present, the event is said to be an instance event.

18.5.2 Accessor functions

The accessor-specification for an event specifies the executable statements associated with adding handlers to,
and removing handlers from, the event, as well as raising that event.

The accessor-specification for an event shall contain no more than three function-definitions:

It is a bit strange to define grammar productions for these functions. We probably should either make these
terms (and change the style accordingly) or just call them the add function, remove function, and raise function.

e one for a function called add, herein called the add-accessor-function,
e one for a function called raise, herein called the raise-accessor-function, and
e one for a function called remove, herein called the remove-accessor-function.

A non-trivial event shall contain both an add-accessor-function and a remove-accessor-function. If that event
has no raise-accessor-function, one is not supplied automatically by the compiler.

A program is ill-formed if it contains an event having only one of add-accessor-function and remove-accessor-
function.

add-accessor-function and remove-accessor-function shall each take one parameter, of type event-type, and their
return type shall be void.

88

10

15

20

25

30

35

Classes and members

The parameter list of raise-accessor-function shall correspond exactly to the parameter list of event-type, and its
return type shall be the return type of event-type.

[Note: Trivial envents are generally better to use because use of the non-trivial form requires consideration of
thread safety. end note]

When an event is invoked, the raise function is called.

[Example: ... end example] [[Ed]]

18.5.3 Virtual, sealed, abstract, and override accessor functions

A virtual event declaration specifies that the accessor functions of that event are virtual. The virtual
modifier applies to all accessor functions of an event.

An abstract event declaration specifies that the accessor functions of the event are virtual, but does not
provide an actual implementation of the accessor functions. Instead, non-abstract derived classes are required to
provide their own implementation for the accessor functions by overriding the event.

An event declaration that includes both the abstract and override modifiers specifies that the event is
abstract and overrides a base event. The accessor functions of such an event are also abstract.

[Note: Having an abstract event makes the enclosing class abstract. end note] The accessor functions of an
inherited virtual event can be overridden in a derived class by including an event declaration of the same name.
This is known as an overriding event declaration. An overriding event declaration does not declare a new event.
Instead, it simply specializes the implementations of the accessor functions of an existing virtual event.

An overriding event declaration can include the sealed modifier. Use of this modifier prevents a derived class
from further overriding the event. The accessor functions of a sealed event are also sealed.

An event with the new modifier introduces a new event that does not override an event from a base class. Make
sure the complete specification is provided in the clause for the new modifier. Except for differences in
declaration and invocation syntax, virtual, sealed, override, and abstract accessor functions behave exactly like
virtual, sealed, override and abstract functions.

When a trivial event overrides an event, the trivial event’s raise is implicitly declared and defined.

18.5.4 Trivial events
A trivial event is defined by an event-definition ending with a semicolon (as opposed to a brace-delimited
accessor-specification). [Example:

ref struct s {
event SomeDelegateTypeA E;

end example]

Within the class that contains the declaration of an event, certain events can be used like fields. To be used in
this way, an event must be trivial. Such an event can be used in any context that permits a field. The field
contains a delegate, which refers to the list of event handlers that have been added to the event. If no event
handlers have been added, the field contains nul1ptr.

[Example: In the example

public delegate void EventHandler(ObjectA sender,
EventArgsA e);

89

10

15

20

25

30

35

40

45

50

C++/CLI Language Specification

public ref class Button : Control {
public:
event EventHandlerA Click;
void Reset() {
Click = nullptr;

protected:
void onClick(EventArgsA e) {
Click(this, e); // raise tests for nullptr

}
1

Click is used as a field within the Button class. As the example demonstrates, the field can be examined,
modified. The onC11 ck function in the Button class “raises” the €11 ck event.

Outside the declaration of the Button class, the C1ick member can only be used on the left-hand side of the +=
and —-= operators, as in

b->Click += gcnew EventHandler(.);

which appends a delegate to the invocation list of the C11 ck event, and
b->CTick -= gcnew EventHandler(.);

which removes a delegate from the invocation list of the C11 ck event. end example]

When compiling a trivial event, the compiler automatically creates storage to hold the delegate, and creates
accessor functions for the event that add event handlers to, and remove them from, the delegate field. The
compiler also automatically generates a raise accessor function. The access-specifier for the generated add and
remove accessor functions is the same as that for the whole event. The access-specifier for the generated raise
accessor function is protected. In order to be thread-safe, the addition and removal operations shall be done
while holding the lock on the containing object for an instance event, or the type object for a static event. Such
a lock is specified using the attribute MethodImp1(MethodImploptions: :Synchronized). The compiler-
generated raise accessor function shall not have this attribute.

[Note: Thus, an instance event declaration of the form:
delegate int D(int);

ref class X {
pubTic:
event DA Ev;
could be compiled to something equivalent to:

ref class X {
DA __EvV; // field to hold the delegate

pubTic:
event DA Ev {
[MethodImp1 (MethodImploptions: :Synchronized)]
void add(DA value) {
) __Ev += value;

[MethodImpl (MethodImplOptions: :Synchronized)]
void remove(DA value) {
) __Ev -= value;

protected:]
int raise(int arg) { return _Ev(arg); }

};

90

10

15

20

25

30

35

40

Classes and members

Within the class X, references to Ev are compiled to reference the hidden field __Ev instead. (The name “_Ev”
is arbitrary; the hidden field could have any name or no name at all.)

Similarly, a static event declaration of the form:
delegate int D(int);

ref class X {
pubTlic:
static event DA Ev;
could be compiled to something equivalent to:

ref class X {
static DA __Ev; // field to hold the delegate

pubTic:
static event DA Ev {
[MethodImp1(MethodImploptions: :Synchronized)]
void add(DA value) {
} __Ev += value;

[MethodImpl (MethodImplOptions: :Synchronized)]
void remove(DA value) {

) __Ev -= value;
protected:
int raise(int arg) { return _Ev(arg); }
3
end note]

18.5.5 Event invocation

Events having a programmer-supplied or compiler-generated raise accessor function can be invoked using
function call syntax. Specifically, an event E can be invoked using E (delegate-argument-list), which results in
the raise accessor function’s being called with delegate-argument-list as its argument list.

Events without a raise accessor function cannot be invoked using function call syntax. Instead, the delegate’s
Invoke function must be called directly.

18.6 Static operators
Add examples throughout this clause. [[Ed]]

To support the definition of operators in CLI types, C++/CLI allows for static operator functions.

The rules for operators remain largely unchanged from Standard C++; however, the following rule in
Standard C++ (813.5/6) is relaxed to allow static member functions:

(The restriction below does not apply to non-static member operators — that need not have a parameter of
the type of the class.)“A static member or a non-member operator function shall either-be-a-non-static
member-function-or-be-a-non-memberfunction-and have at least one parameter whose type is a class, a
reference to a class, a handle to a class, an enumeration, a reference to an enumeration, or a handle to an
enumeration.”

The requirements of non-member operator functions apply to static operator functions.

The following rule in Standard C++ (§13.5.1/1) is relaxed to allow static member functions:

91

10

15

20

25

30

35

40

C++/CLI Language Specification

“A prefix unary operator shall be implemented by a non-static member function with no parameters or a
non-member or static function with one parameter.”

The following rule in Standard C++ (§813.5.2/1) is relaxed to allow static member functions:

“A binary operator shall be implemented either by a non-static member function with one parameter or by a
non-member or static function with two parameters.”

However, operators required by Standard C++ to be instance functions shall continue to be instance functions.
[Note: Standard C++ specifies that these operators are: operator=(813.5.3), operator() (813.5.4),
operator[] (813.5.5), and operator-> (813.5.6). end note]

18.6.1 Homogenizing the candidate overload set
Provide an example.

Standard C++ (813.3.1/2) describes how all member functions are considered to have an implicit object
parameter for the purpose of overload resolution. C++/CLI expands upon this notion by creating two signatures
for every member function (including static member functions) in which the difference between the two
signatures is the type of the implicit object parameter. For a type T, the type of the implicit object parameter in
the first signature is T, whereas the type for the second signature is TA. These signatures exist only for the
purpose of overload resolution, and both signatures refer exactly to the one member function from which the
signatures were created.

[Rationale: This allows functions to be called using variables that have the raw type and using variables that are
handles to the raw type. (This is necessary to compare operator overloads where the candidate set includes
member functions and operator functions from namespace scope.) end rationale]

18.6.2 Operators on Handles

Unlike pointers, some user-defined operators can be defined for handles. For example, the addition of an integer
to a handle does not attempt to add an offset to the handle (as is done with pointer arithmetic); rather, lookup for
a user-defined operator is performed. The Standard C++ operator lookup rules are modified in the following
ways:

Standard C++ (813.5.1/1) is changed, as follows:

“Thus, for any prefix unary operator@, @x can be interpreted as either-x->operator@() if x is a handle,
x.operator@() if x is not a handle, or operator@(x).”

Standard C++ (813.5.2/1) is changed, as follows:

“Thus for any binary operator@, x@y can be interpreted as eitherx->operator@(y) if x is a handle,
x.operator@(y) if x is not a handle, or operator@(x,y).”

[Note: In C++/CLI, equality operators for handles behave as if they were compiler-generated or user-defined
operators. See 818.6.6.1. end note]

The rules in Standard C++ (813.5.3/1) continue to apply—an assignment operator shall be a instance function.
An assignment to a handle never invokes the user-defined assignment operator.

In Standard C++ (813.5.4/1), although function call operators continue to be allowed only as instance functions,
the text is changed, as follows:

“Thus, acall x(argl,...) isinterpreted as x->operator() (argl, ...) if xisahandle, or
x.operator() (argl,...) if x is not a handle, for a class object x of type T if T: :operator() (T1,
T2, T3) exists and if the operator is selected as the best match function by the overload resolution
mechanism.”

92

10

15

20

25

30

35

Classes and members

In Standard C++ (813.5.5/1), although subscript operators continue to be allowed only as instance functions, the
text is changed, as follows:

“Thus, a subscripting expression x [y] is interpreted as x->operator[](y) if x is a handle, or
x.operator[] (y) if x is not a handle, for a class object x of type T if T: :operator[](T1) exists and if
the operator is selected as the best match function by the overload resolution mechanism.”

In Standard C++ (813.5.6), the member access operator does not apply to a handle. Like a pointer, x->y is
defined as (*x) .y. A member access to a handle never invokes the user defined member access operator.

[Note: The increment and decrement operators described in Standard C++ (§13.5.7), have significant differences
from the CLS increment and decrement operators. (See §18.6.3 for details.) end note]

18.6.3 Increment and decrement operators

In C++/CLI, the static operators operator++ and operator-- behave as both postfix and prefix operators.
Neither of these static operators shall be declared with the dormant int parameter described by Standard C++
(813.5.7).

For the expressions x++ and x--, where the postfix operator is non-static, the following processing occurs:
o If x is classified as a property or indexed access:

0 The expression x is evaluated and the results are used in subsequent get and set accessor
function calls.

0 The get accessor function of x is invoked and the return value is saved.

0 The selected operator is invoked with the saved value of x as its argument and the literal O as
the argument to select the postfix operator overload.

0 The set accessor function of x is invoked with the value returned by the operator as its
argument.

0 The saved value of x is the result of the expression.
e Otherwise:
0 The operator is processed as specified by Standard C++.
Add an example.
For the expressions ++x and --x, where the prefix operator is non-static, the following processing occurs:
o If x is classified as a property or indexed access:

0 The expression x is evaluated and the results are used in subsequent get and set accessor
function calls.

0 The get accessor function of x is invoked.

0 The selected operator is invoked with the result of get accessor function of x as its argument
and the return value is saved.

0 The set accessor function of x is invoked with the saved value from the operator invocation.
0 The saved value from the operator invocation is the result of the expression.

e Otherwise:
0 The operator is processed as specified by Standard C++.

Add an example.

93

10

15

20

25

30

35

40

C++/CLI Language Specification

For the expressions x++ and x--, where the operator is static, the following processing occurs:

o If x is classified as a property or indexed access, the expression is evaluated in the same manner as if the
operator were a non-static postfix operator with the exception that no dormant zero argument is passed
to the static operator function.

e Otherwise:

0 x isevaluated.
0 The value of x is saved.
0 The selected operator is invoked with the value of x as its only argument.
o0 The value returned by the operator is assigned in the location given by the evaluation of x.
0 The saved value of x becomes the result of the expression.

Add an example.

For the expression ++x or --x, where the operator is static, the following processing occurs:

o If x is classified as a property or indexed access, the expression is evaluated in the same manner as if the
operator were a non-static prefix operator.

e Otherwise:
0 x isevaluated.
0 The selected operator is invoked with the value of x as its only argument.
o0 The value returned by the operator is assigned in the location given by the evaluation of x.
0 x becomes the result of the expression.

[Example: The following example shows an implementation and subsequent usage of operator++ for an
integer vector class:

public ref class Intvector {
public:
// ...

static IntvectorA operator++(IntvectorA iv) { /*...*/ }
’
int main() {

IntvectorA ivl = gcnew Intvector;
IntvVectorA 1iv2;

iv2 = ivl++;

// equivalent to:
// IntvectorA __temp = ivl;
// ivl = IntVector::operator++(ivl);
// iv2 = __temp;
iv2 = ++ivl;
// equivalent to:
// ivl = IntVector::operator++(ivl);
// iv2 = ivl;

}

Note: Unlike traditional operator versions in Standard C++, this operator need not, and in fact should not,
modify the value of its operand directly. end example]

94

10

15

20

25

30

35

40

Classes and members

18.6.4 Operator synthesis

The compound assignment operators (+=, -=, *=, /=, %=, A=, &=, and | =) are synthesized from other operators.
For the expression x @= y (where @ denotes one of the operators listed above): If lookup for operator@=
succeeds, the rules specified so far are applied. Otherwise, the expression x @= y is rewrittenasx = x @ v,
and the transformed expression is interpreted with the rules specified so far. Identify when synthesis would and
would not occur. [[BB]]

If no overload for operator@= applies after overload resolution or synthesis, the program is ill-formed.

Synthesis shall not occur for operators defined inside native classes.

18.6.5 Naming conventions

During compilation, the name of every operator function is the C++ identifier used in source code for that
function. For example, the addition operator’s identifier is operator+. When the compiler emits the program to
an assembly, the metadata name for the operator function is the CLS-compliant name as specified herein.

The CLS-compliant name for the operator function is only used in the compiled assembly. A program shall not
refer to the CLS-compliant name given to the operator function. When the compiler imports functions from
metadata, it shall rewrite the CLS-compliant name into the respective C++ operator function identifier.
Likewise, when the compiler emits metadata for the program, it translates the C++ operator function identifier to
the respective CLS-compliant name.

A C++ program shall not declare nor define a function using one of the CLS-compliant identifiers referred to
herein.

The CLS recommends certain operators upon which CLS consumer and producer languages can agree. The set
of CLS-compliant operators overlaps with the set of operators supported by C++ (see Partition I, §9.3, of the
CLI Standard) as described in 818.6.5.1. The C++ operators that do not overlap with the CLS-compliant
operators are known as C++-dependent operators (818.6.5.2).

All operator functions, regardless of whether they are CLS-compliant operators or C++-dependent operators,
shall be marked as SpecialName functions in the metadata.

18.6.5.1 CLS-compliant operators
An operator is CLS-compliant when the following conditions occur:

1. The operator function is one listed in either Table 18-1: CLS-Recommended Unary Operators or Table
18-2: CLS-Recommended Binary Operators.

2. The operator function is a static member of a ref class or a value class.

3. Ifavalue class is a parameter or a return value of the operator function, the value class is not passed by
reference nor passed by pointer or handle.

4. If aref class is a parameter or a return value of the operator function, the ref class is passed by handle.
The handle shall not be passed by reference.

If the above criteria are not met, the operator function is C++-dependent (§18.6.5.2). Table 18-1: CLS-
Recommended Unary Operators and Table 18-2: CLS-Recommended Binary Operators list the name that shall
be given to the function used to represent the operator function in an assembly.

When importing a class from an assembly, each static member function with a name listed in Table 18-1: CLS-
Recommended Unary Operators and Table 18-2: CLS-Recommended Binary Operators shall be renamed with
its corresponding C++ identifier for the operator function.

Table 18-1: CLS-Recommended Unary Operators

95

C++/CLI Language Specification

Function Name in Assembly

C++ Operator
Function Name

op_UnaryNegation operator-
op_UnaryPlus operator+
op_LogicalNot operator!
op_Addressof operator&
op_OnesComplement operator~
op_Pointerbereference operator*

Table 18-2: CLS-Recommended Binary Operators

Function Name in Assembly

C++ Operator
Function Name

op_Decrement operator--
op_Increment operator++
op_Addition operator+
op_Subtraction operator-
op_Multiply operator¥
op_Division operator/
op_Modulus operator%
op_ExclusiveOr operatorA
op_B1itwiseAnd operator&
op_Bitwiseor operator|
op_LogicalAnd operator&&
op_Logicalor operator| |
op_Leftshift operator<<
op_Rightshift operator>>
op_Equality operator==
op_GreaterThan operator>
op_LessThan operator<
op_Inequality operator!=
op_GreaterThanOrequal operator>=
op_LessThanorequal operator<=
op_Comma operator,

Non-C++ operators

The CLS recommends some operators that Standard C++ does not support. [Note: Compilers for other
languages might not be tolerant to functions with these names. It is recommended that a C++/CLI
implementation issue a compatibility diagnostic if a user-defined function is given one of these names listed
in 8E.1. end note]

The ability to define operator true and operator false will be provided. [[BB]]

96

10

15

Classes and members

Function Name in Assembly C++ Operator
Function Name

op_True Not yet defined

op_False Not yet defined

Assignment operators

Given that assignment operators take a parameter by value and return a result by value, with regard to these
operators, the CLS recommendations are incompatible with C++. As C++ requires assignment operators to be
instance functions, the C++ compiler does not generate or consume CLS assignment operators (as listed in Table
18-3: CLS-Recommended Assignment Operators). As such, user-defined functions with names from Table 18-3:
CLS-Recommended Assignment Operators are not given special treatment.

Table 18-3: CLS-Recommended Assignment Operators

Function Name in Assembly C++ Operator
Function Name
Op_Assign No equivalent
op_unsignedRightshiftAssignment No equivalent
op_RightshiftAssignment No equivalent
op_MultiplicationAssignment No equivalent
op_SubtractionAssignment No equivalent
op_ExclusiveOrAssignment No equivalent
op_LeftshiftAssignment No equivalent
op_ModulusAssignment No equivalent
op_AdditionAssignment No equivalent
op_BitwiseAndAssignment No equivalent
op_BitwiseOrAssignment No equivalent
op_DivisionAssignment No equivalent

18.6.5.2 C++-dependent operators

If an operator function does not match the criteria for a CLS-compliant operator, as listed in 818.6.5.1, the
operator is C++-dependent. Table 18-4: C++-Dependent Unary Operators and Table 18-5: C++-Dependent
Binary Operators list the metadata name for each function.

When importing functions from an assembly, functions with the names listed in Table 18-4: C++-Dependent
Unary Operators and Table 18-5: C++-Dependent Binary Operators shall be treated during compilation using
their corresponding C++ identifiers. If such a function does not make sense as an operator function (for
example, it takes three arguments), the function name shall not be changed to the internal operator function
name, and the function is callable by the name it has in the assembly.

These operator names are, in most cases, those recommended by the CLS even though they are not CLS-
compliant.

97

C++/CLI Language Specification

Some operator names listed below are not part of the CLS recommendations. These are op_Functioncall and
op_Subscript.

[Note: The postfix increment and decrement operators are identified in C++ via a dormant int parameter. Static
member increment and decrement operators shall not have such a dormant int parameter. Instead, a single
static increment and decrement operator is used for both pre and post operations. (See §18.6.3 for more details.)

end note]

Table 18-4: C++-Dependent Unary Operators

Function Name in Assembly

C++ Operator
Function Name

op_UnaryNegation operator-
op_UnaryPlus operator+
op_LogicalNot operator!
op_Addressof operatoré&
op_OnesComplement operator~
op_Pointerbereference operator*

Table 18-5: C++-Dependent Binary Operators

Function Name in Assembly

C++ Operator
Function Name

op_Addition operator+
op_Subtraction operator-
op_Multiply operator*
op_Division operator/
op_Modulus operator%
op_Exclusiveor operatorA
op_B1itwiseAnd operatoré&
op_Bitwiseor operator|
op_LogicalAnd operator&&
op_Logicalor operator]| |
op_Leftshift operator<<
op_Rightshift operator>>
op_Equality operator==
op_GreaterThan operator>
op_LessThan operator<
op_Inequality operator!=
op_GreaterThanorequal operator>=
op_LessThanorequal operator<=

op_Memberselection
op_PointerToMemberSelection
op_Comma

op_Decrement

operator->
operator->*
operator,
operator--

98

10

15

20

25

Classes and members

op_Increment operator++
Op_Assign operator=

op_RightshiftAssignment operator>>=
op_MultiplicationAssignment operator¥*=
op_SubtractionAssignment operator-=
op_ExclusiveOrAssignment operatorA=
op_LeftsShiftAssignment operator<<=
op_ModulusAssignment operator%=
op_AdditionAssignment operator+=
op_B1itwiseAndAssignment operatoré&=
op_BitwiseOrAssignment operator|=
op_DivisionAssignment operator/=
op_Functioncall operator()

op_Subscript operator[]

18.6.6 Compiler-defined operators

18.6.6.1 Equality
Reword this subclause similarly to the way special member functions are described. [[MH]]
Every type has an equality operator that works on handles. Every type behaves as if it had both a static

operator==and operator!= where both arguments are handles to the containing type. That is, for type T, it
is as if every type had the following operators:

static bool operator==(TA Ths, TA rhs);
static bool operator!=(TA Ths, TA rhs);

The purpose of these “as if” operators is to determine reference equality. Specifically, the return value of
operator==is true if and only if both arguments are handles referring to the same object. Conversely, the
return value of operator!=is true if and only if both arguments are handles referring to different objects.

If a type has a user-defined static operator== or operator!= with the same signature as the “as if” equality
operators, then the user-defined operator is used. The user-defined operator is actually emitted to the assembly,
whereas the “as if” operators are not.

Add another subclause to cover the compiler-generated conversion from handle to unspecified bool type.

[[MH]]

18.7 Instance constructors

Since C++/CLI has added the notion of a static constructor, all uses of the term “constructor” in the
C++ Standard refer to what C++/CLI refers to as “instance constructor”.

18.7.1 Delegating constructors

The definition of ctor-initializer has been extended to accommodate the addition of delegating constructors to
C++/CLLI; however, no change is necessary in the Standard C++ (88.4) grammar.

Prior to executing its body, a constructor can call one of its sibling constructors to initialize members. That is, it
delegates the object’s initialization to another constructor, gets control back, and then optionally performs other
actions as well. A constructor that delegates in this manner is called a delegating constructor, and the

99

10

15

20

25

30

35

40

45

50

C++/CLI Language Specification

constructor to which it delegates is called a target constructor. A delegating constructor can also be a target
constructor of some other delegating constructor. [Example:
class FullName {
string firstName_;
string middleName_;
string TastName_;
public:
FullName(string firstName, string middleName, string TastName);
FulTName(string firstName, string lastName);
FullName(const FullName& name);

’
FullName::FulIName(string firstName, strin? middleName, strin? TastName)
: firstName_(firstName), middleName_(middleName), lastName_(lastName)

// ...
}

// delegating copy constructor
FullName: :FullName(const FullName& name)
FulTName(name.firstName, name.middleName, name.lastName)

// ...
}

//_delegating constructor)
Fu11Name::Fu11Name(str1n9 firstName, string TastName)

FulTName(firstName, , lastName)

// ...
}

end example]

If a mem-initializer-id designates the class being defined, it shall be the only mem-initializer. The resulting ctor-
initializer signifies that the constructor being defined is a delegating constructor.

A delegating constructor causes a constructor from the class itself to be invoked. The target constructor is
selected by overload resolution and template argument deduction, as usual. If a delegating constructor definition
includes a ctor-initializer that directly or indirectly invokes the constructor itself, the program is ill-formed;
however, no diagnostic is required.

[Example: When using constructors that are templates, deduction works as usual:

class X {
template<class T> X(T, T) : 1_(first, last) { /* Common Init */ }
Tist<int> 1_;
pubTic:
X(vector<short>&);
X::X(vector<short>& v) : X(v.begin(Q), v.end(Q)) { }
// T is deduced as vector<short>::iterator

end example]

The object’s lifetime begins when all construction is successfully completed. For the purposes of the

C++ Standard (83.8), “the constructor call has completed” means the originally invoked constructor call.
[Rationale: Even if a target constructor completes, an outer delegating constructor can still throw an exception,
and if so the caller did not get the object that was requested. The foregoing decision also preserves the Standard
C++ rule that an exception emitted from a constructor means that the object’s lifetime never began. end
rationale]

Add text to show what the behavior in the CLI (including CIL) and perhaps a comparison with C#.

100

10

15

20

25

30

35

40

45

50

Classes and members

18.8 Static constructors

A static constructor is a function member that implements the actions required to initialize a ref or value class.
A static constructor is declared just like an ordinary (that is, instance) constructor in Standard C++ (88.4),
except that the former is specified with the storage class stat:ic.

A static constructor shall not have a ctor-initializer-list.
Static constructors are not inherited, and cannot be called directly.
The static constructor for a class is executed as specified in the CLI standard, Partition 11 (810.5.3).

If a class contains any static fields (including initonly fields) with initializers, those fields are initialized
immediately prior to the static constructor’s being executed and in the order in which they are declared.

[Example: The example

ref struct A {
static AQ {
cout << "Init A" << “\n”;

static void FO {
cout << "A::F" << “\n”;
3
3
ref struct B : A {

static BO {
cout << "Init B" << “\n”;

static void FQ
cout << "B::F" << “\n”;

};

int main() {
A::FQ;
B::FQ);

shall produce one of the following outputs:
Init A Init A InitB

AllF Init B Init A
Init B AllF AllF
B::F B::F B::F

because A's static constructor must be run before accessing any static members of A, and B's static constructor
must be run before accessing any static members of B, and A: : F is called before B: : F. end example]

A static constructor can be defined outside its parent class using the same syntax for a corresponding out-of-
class instance constructor, except that a static prefix shall also be present. [Example:

ref class X {

public:

static X(O); // static constructor declaration

XO; // instance constructor declaration

xX@int) {.} // inline instance constructor definition
static X::xXO {.} // out-of-class static constructor definition
X::xO {.} // out-of-class instance constructor definition

end example]

[Note: In Standard C++, an out-of-class constructor definition is not permitted to have internal linkage; that is, it
is not permitted to be declared static. end note]

101

10

15

20

25

30

35

40

C++/CLI Language Specification

A static constructor can have any access-specifier. [Note: However, for security reasons, a static constructor
should have a private access-specifier. end note]

If a ref or value class has no user-defined static constructor, a default static constructor is implicitly defined. It
performs the set of initializations that would be performed by a user-written static constructor for that class with
an empty function body.

The static constructor cannot be explicitly invoked. A nontrivial static constructor is emitted as a private
member of its class in metadata.

18.9 Literal fields
Literal fields are defined by including the 11 teral storage-class-specifier.
add literal to storage-class-specifier

Add grammar for literal-constant-initializer = Standard C++ constant-initializer + float/double + String +
nullptr. [[BB]]

A literal field is a named compile-time constant rvalue having the type of the literal field and having the value
of its literal-constant-initalizer.

Each member-declarator in the member-declarator-list shall contain a literal-constant-initializer. The decl-
specifier-seq shall not contain a cv-qualifier.

Even though literal fields are accessed like static members, a literal field definition shall not contain the
keyword static.

Whenever a compiler comes across a valid usage of a literal field, the compiler shall replace that usage with the
value associated with that literal field.

A literal field shall have one of the following types: a scalar type or System: : String. beetplain-char;

expression is not a string literal, it can be a value of a type that can be converted to the target type by a standard
conversion sequence.

[Note: A literal-constant-expression is an expression that can be fully evaluated at compile-time. Since the only
way to create a non-null value of a handle type other than System: : StringA is to apply the gcnew operator,
and since that operator is not permitted in a literal-constant-expression, the only possible value for literal fields
of handle type other than System: : StringA is nullptr. end note]

When a symbolic name for a constant value is desired, but when the type of that value is not permitted in a
literal field declaration, or when the value cannot be computed at compile-time by a constant-expression, an
initonly field (§18.10) can be used instead. [Note: The versioning semantics of 1iteral and initonly differ
(818.10.2). end-note]

Literal fields are permitted to depend on other literal fields within the same program as long as the dependencies
are not of a circular nature.

[Example:

ref struct X {
Titeral double PI = 3.1415926;
Titeral int MIN = -5, MAX = 5;
Titeral int COUNT = MAX - MIN + 1;
Titeral int Size = 10;
enum Color {red, white, blue};
Titeral Color DefaultColor = red;

102

10

15

20

25

30

35

40

45

50

Classes and members

int main() {
double radius;
cout << “Enter a radius: “;
cin >> radius;
cout << "Area = " << X::PI * radius

static double d = X::PI;

for (int i = X::MIN; i <= X::MAX; ++i) {..}
float f[Size];

o
w

radius << "\n";

}
end example]
For a discussion of versioning and literal fields, see §18.10.2.

18.10 Initonly fields
Initonly fields are defined by including the initonTy storage-class-specifier.

add initonly to storage-class-specifier

Initialization of initonly fields shall occur only as part of their definition. Assignments (via an assignment
operator or a postfix or prefix increment or decrement operator) to initonly fields shall occur only in an instance
constructor or static constructor in the same class. [Note: Of course, such assignment could be done via a
constructor’s ctor-initializer. end note] (Although an initonly field can be assigned to multiple times in a given
context, it shall be assigned in only one context.) Specifically, initialization of, and assignments to, initonly
fields are permitted only in the following contexts:

¢ |nthe constant-initializer of a member-declarator.

e Foran instance field, in the instance constructors of the class containing the initonly field definition; for
a static field, in the static constructor of the class containing the initonly field definition.

A program that attempts to assign to an initonly field in any other context, or that attempts to take its address or
to bind it to a reference in any context, is ill-formed.

[Example:

ref class X {
initonly static int svarl = 1;// 0Ok
initonly static int svar2;
initonly static int svar3;

initonly int mvarl = 1; // Error
initonly int mvar2;
initonly int mvar3;

public:
static XO{
svar3 = 3;
svarl = 4; // Ok: but overwrites the value 1
smf20);
static void smf1() {
) svar3 = 5; // Error; not in a static constructor
static void smf2() {
) svar2 = 5; // Error; not in a static constructor
XO : mvar2(2) { // Ok
mvar3 = 3; // ok
mfl1Q);

103

10

15

20

25

30

35

40

45

C++/CLI Language Specification

void mf1() {])
mvar3 = 5; // Error; not in an instance constructor

void mf20) {) .
mvar2 = 5; // Error; not in an instance constructor

}
1

end example]

18.10.1 Using static initonly fields for constants
A static initonTy field is useful when a symbolic name for a constant value is desired.

Add a description that for any value class we have to make the copy before calling member functions. [[BB]]

18.10.2 Versioning of literal fields and static initonly fields

Literal fields and initonly fields have different binary versioning semantics. When an expression references a
literal field, the value of that member is obtained at compile-time, but when an expression references an initonly
field, the value of that member is not obtained until run-time. [Example: Consider an application with the
following source:

namespace Programl {
?ub11c ref struct Utils

static_initonly int X = 1;
Titeral int Y = 1;
’
b

namespace Program2 {
int main() {
Console::writeLine(Programl::Utils::X);
Console::wWriteLine(Programl::Utils::Y);

}

The Programl and Program2 namespaces denote two source files that are compiled separately, each
generating its own assembly. Because Programl: :UtiTs: : X is declared as a static initonly field, the value
output by Console: :writeLine is not known at compile-time, but rather is obtained at run-time. Thus, if the
value of X is changed and Programl is recompiled, Console: :writeL1ine will output the new value even if
Program? isn’t recompiled. However, because Y is a literal field, the value of Y is obtained at the time
Program2 is compiled, and remains unaffected by changes in Programl until Program?2 is recompiled. end
example]

18.11 Destructors and finalizers

Any native class or ref class can have a user-defined destructor. Such destructors are run at the times specified
by the C++ Standard:

= An object of any type allocated on the stack is destroyed when that object goes out of scope.
= An object of any type allocated in static storage is destroyed during program termination.

= Anobject that is allocated on the native heap using new, is destroyed when a delete is performed on a
pointer to that object.

= An object that is allocated on the CLI heap using gcneuw, is destroyed when a deTete is performed on a
handle to that object.

104

10

Classes and members

= An object that is a member of another object is destroyed as part of the destruction of the enclosing
object.

For the purposes of destruction, the native and CLI heaps are treated the same. The only difference between the
two heaps is the automation and timing of memory reclamation. In the case of the native heap, memory is
reclaimed manually at the same time as the de1ete, while in the case of the CLI heap, memory is reclaimed
automatically during garbage collection whether or not there was a delete. In addition, objects on the CLI
heap are finalized, if a finalizer exists.

Any ref class can have a user-defined finalizer. The finalizer is run zero or more times by the garbage collector,
as specified by the CLI.

Say more about finalizers (including Dispose/~T and Finalize/!T) and add some examples. [[BB]]

105

10

15

20

C++/CLI Language Specification

19. Native classes

The accessibility of a non-nested native class can optionally be specified via a top-level-type-visibility (§12.4).

A native class can optionally have a class-modifiers (§18.1.1).

19.1 Functions
A virtual member function in a native class can contain:
o the function-modifier override, or an override-specifier, or both (818.3.1).
o the function-modifier sealed (818.3.2).
o the function-modifier abstract (818.3.3).
Member functions in a native class can optionally have a parameter-array (§18.3.6) in their parameter-
declaration-clause.

19.2 Properties
Support for properties in native classes.

19.3 Static operators
Native classes support static operators (818.6).

19.4 Instance constructors

19.4.1 Delegating constructors
Native classes support the use of delegating constructors in instance constructors (§18.7.1).

19.5 Delegates

Native classes support delegate-definitions (826); however, a native class shall not contain a field having a
delegate type.

106

10

15

20

25

30

Ref classes

20. Ref classes

A ref class is a data structure known to the CLI runtime. It can contain fields, function members, and nested
types.

20.1 Ref class declarations
A reference-class-declaration introduces a declaration of a ref class.

reference-class-declaration:
ref-class-key identifier ;
ref-class-key:
refiiclass
refiistruct
A refiiclass declaration and refiistruct declaration differ in the default accessibility of members. The

members of a refiiclass are private by default. On the other hand, the members of a refistruct are public
by default.

A reference-class-definition defines a ref class.

reference-class-definition:
attributes,; top-level-type-visibility,, ref-class-key identifier
class-modifiers,, base-clause,,: { member-specificationyy,: }

A reference-class-definition can include a set of attributes (828), top-level-type-visibility (812.4), class-
modifiers (§18.1.1), and base-clause (§20.1.1).

20.1.1 Ref class base specification

A reference-class-definition can include a base-clause specification, which defines the direct base class of the
ref class, and the interfaces implemented by the ref class.

If a base-specifier contains an access-specifier, that access-specifier shall be pub1ic. If a base-specifier does
not contain an access-specifier, the access-specifier is implicitly pub1ic, even if the ref class is defined with
the refiiclass keyword.

A ref class type shall have at most one class as its direct base, and that class type shall be a ref class type. If no
direct base class is specified, the direct base class is assumed to be System: :Object.

The direct base class of a ref class type shall not be a native class, a sealed ref class, or any of the following
types: System::Array, System::Delegate, System: :Enum, or System: :ValueType.

The direct base class of a ref class type shall be at least as accessible as the ref class type itself.

If a reference-class-definition contains one or more base-specifiers that specify interface types, the ref class is
said to implement those interface types. (Interface implementations are discussed further in 824.4.) Those
interface types shall be at least as accessible as the ref class itself.

107

10

15

20

25

30

35

C++/CLI Language Specification

20.2 Ref class members
The members of a ref class consist of all the members introduced by its member-specification- and the members

inherited from the direct base class.

A member function of a ref class shall not have a cv-qualifier-seq.

20.2.1 Variable initializers
The definition of zero-initialize in the C++ Standard (88.5/5) has been extended, as follows:

“To zero-initialize an object of type T means:

e if Tis ahandle type, the object is set to the value of the null value constant converted to T;

e if T is ascalar type other than a handle type, the object is set to the value of O (zero) converted to T;

The default initial value as described in the C++ Standard (88.5/9) has been extended, as follows:

“If no initializer is specified for a handle, the handle is always zero-initialized. Otherwise, if no initializer is
specified for a nonstatic object, the object and its subobjects, if any, have an indeterminate initial value);”

[Rationale: Handles must always have a valid value, as they are used as roots by the garbage collector. If a
handle had an invalid value, the runtime could fail. Thus, a handle that has not been initialized is always zeroed
to prevent runtime failure. end rationale]

Tracking references are treated like Standard C++ references—they are always initialized.

20.3 Functions
A virtual member function in a ref class can contain:

e the function-modifier override, or an override-specifier, or both (§18.3.1).

108

10

15

20

25

30

Ref classes

o the function-modifier sealed (818.3.2).
o the function-modifier abstract (818.3.3).

Virtual function overrides in ref classes shall not have covariant return types without an explicit override.
[Rationale: This is a restriction imposed by the CLI. end rationale]

Member functions in a ref class can optionally have a parameter-array (818.3.6) in their parameter-declaration-
clause.

For each ref class, the implementation shall reserve several names (§18.2.3). A program is ill-formed if it
declares a member whose name matches any of these reserved names.

20.4 Properties
Ref classes support properties (§18.4).

For each property definition, the implementation shall reserve several names (818.2.1). A program is ill-formed
if it declares a member whose name matches any of these reserved names.

20.5 Events
Ref classes support events (§18.5).

For each event definition, the implementation shall reserve several names (§818.2.2). A program is ill-formed if it
declares a member whose name matches any of these reserved names.

20.6 Static operators
Ref classes support static operators (§18.6).

20.7 Instance constructors

20.7.1 Delegating constructors
Ref classes support the use of delegating constructors within instance constructors (818.7.1).

20.8 Static constructor
Ref classes support static constructors (818.8).

20.9 Literal fields
Ref classes support literal fields (818.9).

20.10 Initonly fields
Ref classes support initonly fields (§18.10).

20.11 Destructors and finalizers
See §18.11.

20.12 Delegates
Ref classes support delegate-definitions (§26).

A ref class is permitted to contain a field having a delegate type.

109

10

15

20

25

30

35

C++/CLI Language Specification

21. Value classes

Introduce value classes -- Discuss the following: value classes are optimized for small data structures. As such,
value classes do not allow inheritance from anything but interface classes. [[BB]]

[Note: As described in 812.2.2, the fundamental types provided by C++/CLI, such as int, double, and booT,
are, in fact, all value classes. Just as these predefined types are value classes, it is also possible to use value
classes and operator overloading to implement new “primitive” types in this specification. Two examples of
such types are given at the end of this clause (§??). end note]

21.1 Value class declarations
A value-class-declaration introduces a declaration of a value class.

value-class-declaration:
value-class-key identifier ;

value-class-key:
valueiiclass
valueiistruct
A valueiiclass declaration and valueiistruct declaration differ in the default accessibility of members. The
members of a vaTlueiicTass are private by default. The members of a valueiistruct are public by default.

A value-class-definition defines a value class.

value-class-definition:
attributes,,: top-level-type-visibilityo,: value-class-key identifier
value-class-modifiersqy base-clausevatue-class-bases,y { member-specificationg,: }

A value-class-definition can include a set of attributes (828), top-level-type-visibility (812.4), value-class-
modifiers (821.1.1), and base-clausevalue-class-bases-(821.1.2).

21.1.1 Value class modifiers
A value-class-definition can optionally include a segquence-ef-modifiers:
i
valie-class |ee|_||_|e| .

value-class-modifier:
sealed

The seaTled modifier is discussed in §18.1.1.2. All value classes are implicitly sealed (so the explicit use of this
modifier in this context is redundant).

110

10

15

20

25

30

35

Value classes

21.1.2 Value class base specification

A value-class-definition can include a base-clause specification, which defines the interfaces implemented by
the value class. Can the base class System::ValueType redundantly be specified?

If a base-specifier contains an access-specifier, that access-specifier shall be pub1ic. If a base-specifier does
not contain an access-specifier, the access-specifier is implicitly pub1i c, even if the value class is defined with
the valueiiclass keyword.

If a value-class-definition contains one or more base-specifiers that specify interface types, the value class is
said to implement those interface types. (Interface implementations are discussed further in §24.4.) Those
interface types shall be at least as accessible as the value class itself.

21.2 Value class members

The members of a value class include all the members introduced by its member-specification and the members
inherited from the type System: :valueType.

A member function of a value class shall not have a cv-qualifier-seq.

Except for the differences noted in 821.3, the descriptions of class members provided in §20.2 through §20.10,
and §20.12 apply to value class members as well.

21.3 Ref class and value class differences
To be added. [[Ed]]

21.4 Simple value classes
Is this subclause intended to do the same thing as §12.2.2.1? If so, which one shall we keep? [[Ed]]

21.4.1 Constructors
Add words about instance constructors and static constructor.

Value classes cannot have SMFs (specifically, default constructor, copy constructor, assignment operator,
destructor, or finalizer. Need to add specification for this along with rationale. [[BB]]

111

C++/CLI Language Specification

22. Mixed classes

This clause is reserved for possible future use. Consider writing text for here. [[BB]]

112

10

15

20

25

30

35

Arrays

23. Arrays

An array is a data structure that contains a number of variables, which are accessed through computed indices.
The variables contained in an array, also called the elements of the array, are all of the same type, and this type
is called the element type of the array.

An array in C++/CL1 differs from a native array (88.3.4) in that the former is allocated on the CLI heap, and can
have a rank other than one. The rank determines the number of indices associated with each array element. The

rank of an array is also referred to as the dimensions of the array. An array with a rank of one is called a single-
dimensional array, and an array with a rank greater than one is called a multi-dimensional array.

Throughout this Standard, the term array is used to mean an array in C++/CLI. A C++-style array is referred to
as a native array whenever the distinction is needed.

Each dimension of an array has an associated length, which is an integral number greater than or equal to zero.
The dimension lengths are not part of the type of the array, but, rather, are established when an instance of the
array type is created at run-time. The length of a dimension determines the valid range of indices for that
dimension: For a dimension of length N, indices can range from 0 to N - 1, inclusive. The total number of
elements in an array is the product of the lengths of each dimension in the array. If one or more of the
dimensions of an array have a length of zero, the array is said to be empty.

The element type of an array can be any type, including an array type.

23.1 Array types
An array type is declared using a pseudo-template ref class with the following declaration:

namespace stdcli::language {
template<typename T, int rank = 1>
ref class array : Array {

The class is a pseudo-template because aspects of an array type cannot be implemented in a library using the
facilities of the language. An array-type is any specialization of the stdc11i: : Tanguage: :array pseudo-
template class. For example:

array<int>A arrlD = gcnew array<int>(10);
array<int, 3>A arr3D = gcnew array<int, 3>(10, 20, 30);
23.1.1 The System::Array type

The System: : Array type is the abstract base type of all array types. An implicit reference conversion (§??)
exists from any array type to System: : Array, and an explicit reference conversion (§??) exists from
System: :Array to any array type. Note that System: : Array is not itself an array-type. Rather, it is a
reference-class-type from which all array-type are derived.

Is reference conversion the correct term? [[BB]]

23.2 Array creation

Array instances are created by array-creation-expressions (§??) or by field or local variable declarations that
include an array-initializer (823.6).

113

10

15

20

25

30

35

C++/CLI Language Specification

When an array instance is created, the rank and length of each dimension are established and then remain
constant for the entire lifetime of the instance. In other words, it is not possible to change the rank of an existing
array instance, nor is it possible to resize its dimensions.

An array instance created by an array-creation-expression is always of an array type. The System: :Array
type is an abstract type, so it cannot be instantiated.

Elements of arrays created by array-creation-expressions are always initialized to their default value (§??).

23.3 Array element access

Array elements are accessed using element-access expressions (8??) of the form A[I1, I, .., In], Where A
is an expression having an array type, and each Iy isan expression of integral type or a type that can be
implicitly converted to an integral type.

An element-access expression differs from subscript expressions in Standard C++ (85.2.1) in that in the former
case, commas are not treated as operators. Rather, commas separate individual expressions that respectively
match the dimension of the array being accessed. However, parentheses can be used to force the use of the
comma operator in an expression. The result of an array element-access is a variable, namely the array element
selected by the indices. Add examples. [[Ed]]

The elements of an array can be enumerated using a for each statement (§16.1.1).

23.4 Array members

Every array type inherits the members declared by the type System: : Array. In addition, arrays have iterators
compatible with Standard C++’s template library.

Provide details for array members. [[BB & TP]]

23.5 Array covariance

For any two types A and B, if an implicit reference conversion (8??) or explicit reference conversion (8??) exists
from A to B, then the same reference conversion also exists from the array type array<A, R> to the array type
array<B, R>,where R is any given rank-specifier (but is the same for both array types). This relationship is
known as array covariance. In particular, array covariance means that a value of an array type array<A, R>
might actually be a reference to an instance of an array type array<B, R>, provided an implicit reference
conversion exists from B to A.

Because of array covariance, assignments to arrays where the elements are ref classes will include a run-time
check, which ensures that the value being assigned to the array element is actually of a permitted type (§8??).

Array covariance does not extend to boxing conversions. For example, no conversion exists that permits an
array<int> to be treated as an array<ObjectA> or array<intAs,

Array covariance really only applies to handles of arrays, not direct arrays — in other words, do arrays have copy
constructors? [[BB]]

23.6 Array initializers
To be added. [[BB]]

114

10

15

20

25

30

35

Interfaces

24. Interfaces

An interface defines a set of virtual members that an implementing class must define. An interface can also
require an implementing class to implement other interfaces. A class can implement multiple interfaces.

The interface does not provide a definition for any of its members. Instead, classes that implement the interface
supply these definitions.

24.1 Interface declarations
An interface-class-declaration introduces a declaration of an interface.

interface-class-declaration:
interface-class-key identifier ;

interface-class-key:
interfaceiiclass
interfaceiistruct
Aninterfaceiiclass and interfaceiistruct declaration are equivalent. The default accessibility of
members within an interface is public, and the accessibility cannot be changed.

An interface-class-definition defines an interface.

interface-class-definition:
attributes,; top-level-type-visibility,, interface-class-key identifier
interface-class-basesy,,x { member-specificationg, 3 ;

An interface-class-definition can include a set of attributes (828), top-level-type-visibility (§12.4), and interface-
class-bases (824.1.1).

24.1.1 Interface base specification

An interface-class-definition can include an interface-class-bases specification, which defines the explicit base
interfaces of the interface being defined.

interface-class-bases:
interface-class-base-list

interface-class-base-list:
publicyy interface-type
interface-class-base-list , publicyy interface-type

The explicit base interfaces of an interface must be at least as accessible as the interface itself (§??). For
example, a program is ill-formed if it specifies a private interface in the interface-class-base-list of a pubTic
interface.

The base interfaces of an interface are the explicit base interfaces and their base interfaces. That is, the set of
base interfaces is the complete transitive closure of the explicit base interfaces, their explicit base interfaces, and
SO on.

An interface inherits all members of its base interfaces.

A type that implements an interface also implicitly implements all that interface’s base interfaces.

115

10

15

20

25

30

35

40

C++/CLI Language Specification

24.2 Interface members

The members of an interface are the members inherited from its base interfaces, and the members declared by
the interface itself.

An interface definition can declare zero or more members. The members of an interface shall be instance
functions, instance properties, instance events, or nested types of any kind. An interface cannot contain
constantsfields, operators, constructors, destructors, erfinalizers, or static members of any kind.

All interface members have public access. pickup the restrictions from page 333

All members declared in an interface are implicitly abstract. However, those members can redundantly contain
the virtual and/or abstract modifiers, and/or a pure-specifier. [Example:
interface class I {
property int Size { /*.*/ }; // (implicit) abstract property
virtual property string Name abstract = 0 { /*..* ;
// “virtual”, “abstract” and “= 0”

} // permitted but are redundant

end example]

24.2.1 Interface functions

A function in an interface is declared exactly the same way as a function in a class. An interface function
declaration is not permitted to specify a function definition; therefore, the declaration always ends with a
semicolon.

If the function is declared virtual, it shall also be declared abstract, and vice versa.

Member functions in an interface class can optionally have a parameter-array (818.3.6) in their parameter-
declaration-clause.

For each interface class, the implementation shall reserve several names (818.2.3). A program is ill-formed if it
declares a member whose name matches any of these reserved names.

24.2.2 Interface properties
Interface classes support properties (§18.4).

The accessor functions of an interface property definition correspond to the accessor functions of a class
property definition (§18.4.2), except that in an interface the accessor functions must be declarations that are not
definitions. Thus, the accessor functions simply indicate whether the property is read-write, read-only, or write-
only.

[Example:

interface class I {
property int Size { int get(); void set(int value); };
property bool default[int j] { bool get(int);
void set(int k, bool value); };

};
end example]

A property-definition ending with a semicolon (as opposed to a brace-delimited accessor-specification) declares
a trivial scalar property (818.4.4). Such a declaration declares an abstract virtual property with get and set
accessor functions.

An accessor function with an inline definition in an interface is ill-formed.

116

10

15

20

25

30

35

40

Interfaces

For each property definition, the implementation must reserve several names (§18.2.1). A program is ill-formed
if it declares a member whose name matches any of these reserved names.

24.2.3 Interface events
Interface classes support events (818.5).

The accessor functions of an interface event declaration correspond to the accessor functions of a class event
definition (8§18.5.2), except that the accessor functions must be function declarations that are not function
definitions.

As events in interfaces cannot have a raise accessor function (because everything in an interface is pub1i c),
such events cannot be invoked using function call syntax.

For each event definition, the implementation must reserve several names (818.2.2). A program is ill-formed if it
declares a member whose name matches any of these reserved names.

24.2.4 Delegates
Interface classes support delegate-definitions (826).

24.2.5 Interface member access
Do we need this subclause? [[BB]]

24.3 Fully qualified interface member names

24.4 Interface implementations

Interfaces can be implemented by classes. To indicate that a class implements an interface, the interface
identifier is included in the base class list of the class. [Example: For example:

interface class ICloneable {
ObjectA Clone(Q);

’
interface class IComparable {
int CompareTo(ObjectA other);

ref class ListEntry : ICloneable, IComparable {
public:

ObjectA Clone() {..}

int CompareTo(ObjectA other) {..}

end example]

An interface in the base class list is always and implicitly pub11ic. The pub1ic keyword is allowed but not
required as a base class access specifier for an interface. The private, protected, and virtual keywords
are not allowed as base class specifiers for an interface.

A class that implements an interface also implicitly implements all of the interface’s base interfaces. This is true
even if the class doesn’t explicitly list all base interfaces in the base class list. [Example: For example:

interface class IControl {
void Paint(Q);

interface class ITextBox : IControl {
void SetText(StringA text);

117

C++/CLI Language Specification

ref class TextBox : ITextBox {
public:

void Paint() {.}

void SetText(StringA text) {.}

;
Here, class TextBox implements both IControl and ITextBox. end example]

Address what happens when a ref class does not implement an interface function (and what happens when a
base class has a non-virtual function with the same name). [[BB]]

118

10

15

20

25

30

35

25. Enums

An enum type is a distinct type with named constants. C++/CLI includes two kinds of enum types: native
enums that are compatible with Standard C++ enums (87.2), and CLI enums, which are new, and that are

Enums

preferred for frameworks programming. Native and CLI enum types are collectively referred to as enum types.
A native enum can only be generated by a C++ compiler. To languages other than C++, a native enum and a
CLI enum appear to be exactly the same; they both cause the same metadata to be generated, and they both

inherit from System: : Enum (§25.3).

[Example: The example

public enum Suit : short { Hearts = 1, Spades, Clubs, Diamonds};

defines a publicly accessible native enum type named Ssuit with enumerators Hearts, Spades, Clubs, and

Diamonds, whose values are 1, 2, 3, and 4, respectively. The underlying type for Suit is short int.

The example

enum class Direction { North, South = 10,

East, West

20 };

defines a CLI enum type named D1 rection with enumerators North, South, East, and west, whose values

are 0, 10, 11, and 20, respectively. By default, the underlying type for Direction is int.end example]

25.1 Native enums
A native enum is an enum type.

Enumerations as defined by the C++ Standard (87.2) continue to have exactly the same meaning. Native enums

have extensions to allow the following: declaration of the underlying type, the placement of attributes on

enumerators, and access to enumerators within the scope of the enum-name.

25.1.1 Native enum declarations

The enum-specifier production in the C++ standard (§7.2) has been extended, as follows:

enum-specifier:

attributes,, top-level-type-visibility,,: enum identifier,; enum-base, { enumerator-listy,; }

An enum-specifier can optionally include a set of attributes (828), top-level-type-visibility (§12.4), enum-base

(825.1.3), and enumerator-list.

25.1.2 Native enum visibility

A non-nested native enum can optionally specify the accessibility of the native enum by using a top-level-type-

visibility of pub1ic or private (§12.4).

25.1.3 Native enum underlying type

As in Standard C++, each enum type has a corresponding underlying type, which shall be able to represent all
the enumerator values defined in the enumeration. Unlike Standard C++, C++/CLI allows that underlying type

to be specified.

enum-base:
??-type

119

10

15

20

25

30

35

C++/CLI Language Specification

The underlying type of a native enum can be explicitly declared via enum-base, as one of the following types:
booT, char, unsigned char, signed char, short, unsigned short, int, unsigned 1int, long long,
unsigned long long, f1oat, or doubTe. wchar_t cannot be used as an underlying type. If no underlying type is
given for a native enum, the rules specified in the C++ Standard (87.2) apply.

What types should all C++/CLI implementations be required to support? For example, the CLI allows float,
double, and bool as base types? What about [unsigned] long and long double? Why not wchar_t?

25.1.4 Native enum members
The enumerator production in the C++ Standard (87.2) has been extended, as follows:

enumerator:
attributes,,: identifier

The values assigned to enumerators are either explicit or implicit, as defined by the C++ Standard when the
underlying type is an integral value. However, if the underlying type is bool, float, or double, every enumerator-
definition in that enum shall be initialized with a constant-expression.

25.2 CLI enums

A CLI enum is an enum type. All enumerations generated by CLI-based languages other than C++ are CLI
enums. CLI enums are different from native enums in that the names of the former’s enumerators are only found
by looking in the scope of the named CLI enum, and that integral promotion as defined by the C++ standard
(84.5) do not apply to a CLI enum.

25.2.1 CLI enum declarations
A cli-enum-declaration introduces a declaration of a CLI enum type.

cli-enum-declaration:
cli-enum-class-key identifier ;

cli-enum-class-key:
enumiiclass
enumiistruct

An enumiiclass and enumiistruct declaration are equivalent.
A cli-enum-definition defines a CLI enum.

cli-enum-definition:
attributes,y; top-level-type-visibility,,: cli-enum-class-key identifier enum-base,y
{ enumerator-listo,: } ;

A cli-enum-definition can optionally include a set of attributes (§28), top-level-type-visibility (812.4), cli-enum-
class-key, enum-base (825.1.3), and enumerator-list.

25.2.2 CLI enum visibility

A non-nested CLI enum can optionally specify the accessibility of the CLI enum by using a top-level-type-
visibility of pub1ic or private (812.4).

25.2.3 CLI enum underlying type

A CLI enum can explicitly declare an underlying type, following the same rules for explicit underlying type as
native enums (825.1.3). A CLI enum definition that does not explicitly declare an underlying type has an
underlying type of int.

120

10

15

Enums

25.2.4 CLI enum members
See §25.1.1.

25.2.5 CLI enum values and operations

Each CLI enum type defines a distinct type; an explicit enumeration conversion is required to convert between a
CLI enum type and an integral type, or between two enum types. The set of values that a CLI enum type can
take on is not limited by its enum members. In particular, any value of the underlying type of an enum can be
cast to the enum type, and is a distinct valid value of that enum type.

CLI enumerators have the type of their containing enum type (except within other enumerator initializers). The
value of an enumerator declared in enum type E with associated value v is static_cast<E>(v).

The following operators can be used on values of CLI enum types: ==, =, <, >, <=, >=,+, -, A, &, |, ~, ++, -,
sizeof. Some members in this set require an underlying integral type.

25.3 The System::Enum type

The type System: : Enum is the abstract base class of both native and CLI enum types (this is distinct and
different from the underlying type of the enum type), and the members inherited from System: : Enum are
available in any enum type. A boxing conversion (§8??) exists from any enum type to System: : Enum, and an
unboxing conversion (8??) exists from System: : Enum to any enum type.

Note that System: : Enum is not itself an enum type; it is a value class type from which all enum types are
derived. The type System: : Enum inherits from the type System: :valueType, which, in turn, inherits from
System::0Object.

121

10

15

20

25

30

35

C++/CLI Language Specification

26. Delegates

[Note: Delegates enable scenarios that have been addressed previously with function pointers. Unlike function
pointers, however, delegates are fully object-oriented, and unlike pointers to member functions, delegates
encapsulate both an object instance and a function. end note]

A delegate definition defines a class that is derived from the class System: :Delegate. A delegate instance
encapsulates one or more member functions, each of which is referred to as a callable entity. For instance
functions, a callable entity consists of an instance and a member function on that instance. For static functions, a
callable entity consists of just a member function.

add text to be explicit that delegates are multicast Given a delegate instance and an appropriate set of arguments,
one can invoke all of that delegate instance’s functions with that set of arguments.

[Note: Unlike a pointer to member function, a delegate instance can be bound to members of arbitrary classes, as
long as the function signatures are compatible (§26.1) with the delegate’s type. This makes delegates suited for
“anonymous” invocation. end note]

26.1 Delegate definitions
A delegate-definition is a type-declaration (8??) that defines a new delegate type.

delegate-definition:
attributes,y top-level-type-visibility,,: delegate decl-specifier-seqq,: identifier
(decl-specifier-seq) ;

Redo this grammar. [[BB]]
A delegate-definition can include a set of attributes (§28).
The return type of each of the functions that can be encapsulated by the delegate is indicated by return-type.

A non-nested delegate can optionally specify the accessibility of the class by using a top-level-type-visibility of
publicor private (812.4).

The delegate’s type name is identifier.

The optional delegate-parameter-list specifies the parameters of the delegate, and return-type indicates the
return type of the delegate. The parameter list of a delegate corresponds to that of a function, except that at least
one parameter must be specified. [Note: no C-style “vararg” argument is allowed, nor is a parameter array. end
note]

A function and a delegate type are compatible if both of the following are true:

e They have the same number of parameters, with the same types, in the same order, with the same
parameter modifiers.

e Their return-types are the same.

Delegate types are name equivalent, not structurally equivalent. Specifically, two different delegate types that
have the same parameter lists and return type are considered different delegate types. [Example: For example:

delegate int D1(int i, double d);

122

10

15

20

25

30

35

40

45

Delegates

ref struct A {
static int M1(int a, double b) {.}
ref struct B {
delegate int D2(int c, double d);
static int M2(int f, double g) {.}
static void M3(int k, double 1) {.}
static int M4Cint g) {.}
static void M5(Cint g) {..}

};

D1A d1;

dl = gcnew D1(&A::M1); // ok

dl += gcnew D1(&B::M2); // ok

dl += gcnew D1(&B::M3); // error; types are not compatible
dl += gcnew D1(&B::M4); // error; types are not compatible
dl += gcnew D1(&B::M5); // error; types are not compatible
D2A d2;

d2 = gcnew D2(&A::M1); // ok

d2 += gcnew D2(&B::M2); // ok

d2 += gcnew D2(&B::M3); // error; types are not compatible
d2 += gcnew D2(&B::M4); // error; types are not compatible
d2 += gcnew D2(&B::M5); // error; types are not compatible

dl = d2; // error; different types
end example]

The only way to define a delegate type is via a delegate-definition. A delegate type is a class type that is derived
from System: :Delegate. Delegate types are implicitly sealed, so it is not permissible to derive any type from
a delegate type. It is also not permissible to derive a non-delegate class type from System: :Delegate.
System: :Delegate is not itself a delegate type; it is a class type from which all delegate types are derived.

C++/CLI provides syntax for delegate instantiation and invocation. Except for instantiation, any operation that
can be applied to a class or class instance can also be applied to a delegate class or instance, respectively. In
particular, it is possible to access members of the System: : Delegate type via the usual member access
syntax.

The set of functions encapsulated by a delegate instance is called an invocation list. When a delegate instance is
created (826.2) from a single function, it encapsulates that function, and its invocation list contains only one
entry. However, when two non-nul1ptr delegate instances are combined, their invocation lists are
concatenated—in the order left operand then right operand—to form a new invocation list, which contains two
or more entries.

Delegates are combined using the binary + (815.8.1) and += operators (815.18). A delegate can be removed
from a combination of delegates, using the binary - (815.8.2) and -= operators (815.18). Delegates can be
compared for equality (§15.11.2).

[Example: The following example shows the instantiation of a number of delegates, and their corresponding
invocation lists:

delegate void D(int x);

ref struct Test {

static void M1(int i) {.}
static void M2(int i) {..}

123

10

15

20

25

30

35

40

45

C++/CLI Language Specification

int main(QQ {

DA cdl = gcnew D(&Test::M1); // M1
DA cd2 = gcnew D(&Test::M2); // M2
DA cd3 = cdl + cd2; // ML + M2
DA cd4 = cd3 - cdl; // M2

}
For more examples of combining (as well as removing) delegates, see §26.3. end example]

26.2 Delegate instantiation
Each delegate type shall have two constructors, as follows:

1. A constructor taking one argument, del-con-argl, to create a delegate from a static member function or
a namespace scope function. Here del-con-argl shall be the address of a static member function or a
namespace scope function that is compatible with the type of the delegate being instantiated.

2. A constructor taking two arguments, del-con-arg2 and del-con-arg3, respectively. This is used to create
a delegate to a instance function. Here, del-con-arg2 shall be a reference to an object instance and del-
con-arg3 shall be the address of an instance function directly defined in that instance’s type.

[Example: For example:

delegate void D(int x);
ref struct Test {
static void M1(int 1) {..}
void M2(int i) {.}
int main() {
DA cdl = gcnew D(&Test::M1); // static function
TestA t = gcnew Test;
DA cd2 = gcnew D(t, &Test::M2); // instance function

end example]

Once instantiated, delegate instances always refer to the same target object and function. [Note: Remember,
when two delegates are combined, or one is removed from another, a new delegate results with its own
invocation list; the invocation lists of the delegates combined or removed remain unchanged. end note]

When a delegate is created from a member function name, the formal parameter list and return type of the
delegate determine which of the overloaded functions to select. [Example: In the example

delegate double DoubleFunc(double x);

ref struct A {
static float Square(float x) {

o

return x * X;

static double Square(double x) {

return x * X;

3
};
int main(Q {
DoubTeFuncA f = gcnew DoubleFunc(&A::Square);

the variable f is initialized with a delegate that refers to the second square function because that function
exactly matches the formal parameter list and return type of boubTeFunc. Had the second Square function not
been present, the program would have been ill-formed. end example]

124

Delegates

26.3 Delegate invocation

Invocation of a delegate has the semantics specified for the Invoke member in ISO CLI (§??). Should we say
more? [[Ed]]

125

C++/CLI Language Specification

27. Exceptions

To be added. (Cover unification of CLI and Standard C++ exception-handling models.) [[BB]]

27.1 Common exception classes

The following exceptions are thrown by certain C++/CLI operations.

System: :NulTReferenceException

Thrown when a null-valued handle is dereferenced.

System: :TypeInitializationException

Thrown when a static constructor throws an
exception, yet no catch clauses exists to catch it.

126

10

15

20

25

30

35

Attributes

28. Attributes

The CLI enables programmers to invent new kinds of declarative information, called attributes. Programmers
can then attach attributes to various program entities, and retrieve attribute information in a run-time
environment. [Note: For instance, a framework might define a He1pAttribute attribute that can be placed on
certain program elements (such as classes and functions) to provide a mapping from those program elements to
their documentation. end note]

Attributes are defined through the declaration of attribute classes (828.1), which can have positional and named
parameters (§28.1.2). Attributes are attached to entities in a C++ program using attribute specifications (§28.2),
and can be retrieved at run-time as attribute instances (§28.3).

28.1 Attribute classes

A class that derives from the abstract ref class System: : Attribute, whether directly or indirectly, is an
attribute class. The declaration of an attribute class defines a new kind of attribute that can be placed on a
declaration. [Note: By convention, attribute classes are named with a suffix of Attribute. Uses of an attribute
can either include or omit this suffix. end note]

28.1.1 Attribute usage

The attribute System: :AttributeUsageAttribute (§28.4.1) is used to describe how an attribute class can
be used. [Note: When the name of an attribute type ends in the suffix Attribute, the suffix can be omitted
when it is being used in an attribute and there is no other attribute having the name without the suffix. See §??.
end note]

AttributeUsage has a positional parameter (828.1.2) that enables an attribute class to specify the kinds of
declarations on which it can be used. [Example: The example

[Attributeusage(AttributeTargets::Class | AttributeTargets::Interface)]
public ref class SimpleAttribute : Attribute {};

defines an attribute class named SimpleAttribute that can be placed on reference-class-declarations and
interface-class-declarations only. The example

[simple] ref class Classl {..};
[simple] interface class Interfacel {..};

shows several uses of the SimpTe attribute. Although this attribute is defined with the name
SimpleAttribute, when this attribute is used, the Attribute suffix can be omitted, resulting in the short
name SimpTle. Thus, the example above is semantically equivalent to the following

[simpleAttribute] ref class Classl {..};
[simpleAttribute] interface class Interfacel {.};

end example]

AttributeUsage has a named parameter (§28.1.2), called ATTowMuTtipTe, which indicates whether the
attribute can be specified more than once for a given entity. If ATTowMu1t1ip1e for an attribute class is true,
then that class is a multi-use attribute class, and can be specified more than once on an entity. If
AllowMuTtiple for an attribute class is false or it is unspecified, then that class is a single-use attribute class,
and can be specified at most once on an entity.

[Example: The example

127

10

15

20

25

30

35

40

45

C++/CLI Language Specification

[AttributeUsage(AttributeTargets::Class, AllowMultiple = true)]
public ref class AuthorAttribute : Attribute {

StringA name;
public:

AuthorAttribute(StringA name) : name(name) { }

property StringA Name { StringA get() { return name;} }

defines a multi-use attribute class named AuthorAttribute. The example

[Author("Brian Kernighan"), Author('Dennis Ritchie")]
ref class Classl {..};

shows a class declaration with two uses of the Author attribute. end example]

AttributeUsage has another named parameter (§28.1.2), called Inheri ted, which indicates whether the
attribute, when specified on a base class, is also inherited by classes that derive from that base class. If
Inherited for an attribute class is true, then that attribute is inherited. If Inherited for an attribute class is
false then that attribute is not inherited. If it is unspecified, its default value is true.

An attribute class X not having an AttributeUsage attribute attached to it, as in

ref class X : Attribute { .. };

is equivalent to the following:

[AttributeUsage(AttributeTargets::All, AllowMultiple = false,
Inherited = true)] ref class X : Attribute { .. };

28.1.2 Positional and named parameters

Attribute classes can have positional parameters and named parameters. Each public instance constructor for
an attribute class defines a valid sequence of positional parameters for that attribute class. Each non-static public
read-write field and property for an attribute class defines a named parameter for the attribute class.

[Example: The example

[Attributeusage(AttributeTargets::Class)]
public ref class HelpAttribute : Attribute {

pubTic:
HelpAttribute(StringA url) { // Url 1is a positional parameter
) "
property StringA Topic { // Topic is a named parameter

StringA get() {..}
void set(StringA value) {.}

) property StringA uUrl { stringA get() {.} }
defines an attribute class named HelpAttribute that has one positional parameter (StringA UrT1) and one
named parameter (StringA Topic). Although it is non-static and public, the property Ur1 does not define a
named parameter, since it is not read-write.

This attribute class might be used as follows:

[Help("http://www.mycompany.com/../Classl.htm")]

;ef class Classl {
[Help("http://www.mycompany.com/../Misc.htm", Topic ="Class2")]
ref class Class2 {

};

128

10

15

20

25

30

35

40

Attributes

end example]

28.1.3 Attribute parameter types

The types of positional and named parameters for an attribute class are limited to the attribute parameter types,
which are:

e One of the following types: booT, char, wchar_t, short, int, Tong, Tong long, float, double,
and System: :StringA.

o Thetype System: :0ObjectA.
o Thetype System: : TypeA.

e Anenum class type, provided it has public accessibility and the types in which it is nested (if any) also
have public accessibility.

e Single-dimensional stdcl1i::Tanguage: :arrays of the above types.

28.2 Attribute specification

Attribute specification is the application of a previously defined attribute to a declaration. An attribute is a piece
of additional declarative information that is specified for a declaration. Attributes can be specified at file scope
(to specify attributes on the containing assembly) and for type-declarations (§??), class member-declarations,
struct member-declarations, interface member-declarations, enum member-declarations, accessor-specification
(8??), and formal-parameters (§??).

Attributes are specified in attribute sections. An attribute section consists of a pair of square brackets, which
surround a comma-separated list of one or more attributes. The order in which attributes are specified in such a
list, and the order in which sections attached to the same program entity are arranged, is not significant. For
instance, the attribute specifications [A] [B], [B][A], [A, B],and [B, A] are equivalent.

global-attributes:
global-attribute-sections ;

global-attribute-sections:
global-attribute-section
global-attribute-sections global-attribute-section

global-attribute-section:
[global-attribute-target : attribute-list]

global-attribute-target:
assembly
module

attributes:
attribute-sections

attribute-sections:
attribute-section
attribute-sections attribute-section

attribute-section:
[attribute-target-specifier,y attribute-list]

attribute-target-specifier:
attribute-target

129

10

15

20

25

30

35

40

C++/CLI Language Specification

attribute-target:
class
constructor
delegate
enum
event
field
interface
method
parameter
property
returnvalue
struct

attribute-list:
attribute , ot
attribute , attribute-list

attribute:
attribute-name attribute-argumentsy

attribute-name:
type-name

attribute-arguments:
(positional-argument-listyy,)
(positional-argument-list , named-argument-list)
(named-argument-list)

positional-argument-list:
positional-argument
positional-argument-list , positional-argument

positional-argument:
attribute-argument-expression

named-argument-list:
named-argument
named-argument-list , named-argument

named-argument:
identifier = attribute-argument-expression

attribute-argument-expression:
expression

An attribute consists of an attribute-name and an optional list of positional and named arguments. The positional
arguments (if any) precede the named arguments. A positional argument consists of an attribute-argument-
expression; a named argument consists of a name, followed by an equal sign, followed by an attribute-
argument-expression, which, together, are constrained by the same rules as simple assignment. The order of
named arguments is not significant.

[Note: A trailing comma is allowed in a global-attribute-section and an attribute-section; this provides
flexibility in adding or deleting members from the list, and simplifies machine generation of such lists. end note]

[Note: In the CLI, functions are called methods, so the target specifier for a function is method. end note]

130

10

15

20

25

30

35

40

45

Attributes

The attribute-name identifies an attribute class. type-name shall refer to an attribute class. [Example: The
example

ref class Classl {};
[classl] ref class class2 {}; // Error

results in an ill-formed program because it attempts to use Class1 as an attribute class when Class1 is not an
attribute class. end example]

Certain contexts permit the specification of an attribute on more than one target. A program can explicitly
specify the target by including an attribute-target-specifier. When an attribute is placed at file scope, a global-
attribute-target is required. In all other locations, a reasonable default is applied, but an attribute-target-
specifier can be used to affirm or override the default in certain ambiguous cases (or just to affirm the default in
non-ambiguous cases). Thus, typically, attribute-target-specifiers can be omitted. The potentially ambiguous
contexts are resolved as follows:

e An attribute specified on a delegate declaration can apply either to the delegate being declared or to its
return value. In the absence of an attribute-target-specifier, the attribute applies to the delegate. The
presence of the deTegate attribute-target-specifier indicates that the attribute applies to the delegate;
the presence of the returnvalue attribute-target-specifier indicates that the attribute applies to the
return value.

e An attribute specified on a function declaration can apply either to the function being declared or to its
return value. In the absence of an attribute-target-specifier, the attribute applies to the function. The
presence of the method attribute-target-specifier indicates that the attribute applies to the function; the
presence of the returnvalue attribute-target-specifier indicates that the attribute applies to the return
value.

e An attribute specified on an operator declaration can apply either to the operator being declared or to its
return value. In the absence of an attribute-target-specifier, the attribute applies to the operator. The
presence of the method attribute-target-specifier indicates that the attribute applies to the operator; the
presence of the returnvalue attribute-target-specifier indicates that the attribute applies to the return
value.

e An attribute specified on a trivial event declaration can apply to the event being declared, to the
associated field (if the event is not abstract), or to the associated add and remove functions. In the
absence of an attribute-target-specifier, the attribute applies to the event declaration. The presence of
the event attribute-target-specifier indicates that the attribute applies to the event; the presence of the
field attribute-target-specifier indicates that the attribute applies to the field; and the presence of the
method attribute-target-specifier indicates that the attribute applies to the functions.

An implementation can accept other attribute target specifiers, the purpose of which is implementation-defined.
However, an implementation that does not recognize such a target, shall issue a warning.

By convention, attribute classes are named with a suffix of Attribute. An attribute-name can either include or
omit this suffix. When attempting to resolve an attribute reference from which the suffix has been omitted, if an
attribute class is found both with and without this suffix, an ambiguity is present, and the program is ill-formed.
[Example: The example

[AttributeUsage(AttributeTargets::Al1)]
public ref class X : Attribute {};

[AttributeUsage(AttributeTargets::Al11)]
public ref class XAttribute : Attribute {};

[X] // error: ambiguity
ref class Classl {};

131

10

15

20

25

30

35

40

45

C++/CLI Language Specification

[XAttribute] // refers to XAttribute
ref class Class2 {};

shows two attribute classes named X and XAttribute. The attribute reference [X] is ambiguous, since it could
refer to either X or XAttribute. The attribute reference [XAttribute] is not ambiguous (although it would
be if there was an attribute class named xAttributeAttribute!). If the declaration for class X is removed,
then both attributes refer to the attribute class named XAttribute, as follows:

[AttributeUsage(AttributeTargets::Al1)]
public ref class XAttribute : Attribute {};

[X] // refers to XAttribute
ref class Classl {};
[XAttribute] // refers to XAttribute

ref class Class2 {};
end example]

A program is ill-formed if it uses a single-use attribute class more than once on the same entity. [Example: The
example
[AttributeUsage(AttributeTargets::Class)]
public ref class HelpStringAttribute : Attribute {
StringA value;
pubTic:
HelpStringAttribute(StringA value) {
) this->value = value;

property StringA value { stringA get() {.} }
[Helpstring("'Description of Classl")]

[Helpstring("Another description of Classl")] // error
public ref class Classl {};

results in the programs’ being ill-formed because it attempts to use HelpString, which is a single-use attribute
class, more than once on the declaration of Class1. end example]

An expression E is an attribute-argument-expression if all of the following statements are true:
e The type of E is an attribute parameter type (828.1.3).
e At compile-time, the value of E can be resolved to one of the following:
e A constant value.
e A System::TypeA object.
e Aone-dimensional stdcli::language: :array of attribute-argument-expressions.

[Example: For example:

[AttributeUsage(AttributeTargets::Class)]
public ref class MyAttribute : Attribute {
pubTic:
property int Pl {
int get() {.}
void set(int value) {.}

property TypeA P2 {
TypeA get() {..}
) void set(TypeA value) {.}

132

10

15

20

25

30

35

Attributes

property ObjectA P3 {
ObjectA get() {.}
void set(ObjectA value) {..}

1

[My(Pl = 1234, P3 = gcnew array<int>{1l, 3, 5}, P2 = typeid<float>)]
ref class MyClass {};

end example]

28.3 Attribute instances

An attribute instance is an instance that represents an attribute at run-time. An attribute is defined with an
attribute class, positional arguments, and named arguments. An attribute instance is an instance of the attribute
class that is initialized with the positional and named arguments.

Retrieval of an attribute instance involves both compile-time and run-time processing, as described in the
following subclauses.

28.3.1 Compilation of an attribute

The compilation of an attribute with attribute class T, positional-argument-list P and named-argument-list N,
consists of the following steps:

o Follow the compile-time processing steps for compiling a new-expression of the form gcnew T(P).
These steps either result in the program being ill-formed, or determine an instance constructor on T that
can be invoked at run-time. Let us call this instance constructor C.

e |f C does not have public accessibility, then the program is ill-formed.
e For each named-argument Arg in N:
0 Let Name be the identifier of the named-argument Arg.

0 Name must identify a non-static read-write public field or property on T. If T has no such field
or property, then the program is ill-formed.

o Keep the following information for run-time instantiation of the attribute: the attribute class T, the
instance constructor C on T, the positional-argument-list P and the named-argument-list N.

28.3.2 Run-time retrieval of an attribute instance
This is governed by the CLI standard (see §?7?).

28.4 Reserved attributes
A small number of attributes affect the language in some way. These attributes include:

e System::AttributeUsageAttribute (§28.4.1), which is used to describe the ways in which an
attribute class can be used.

e System::ObsoleteAttribute (§28.4.2), which is used to mark a member as obsolete.

28.4.1 The AttributeUsage attribute
The attribute AttributeUsage is used to describe the manner in which the attribute class can be used.

A ref class that is decorated with the AttributeUsage attribute must derive from System: :Attribute,
either directly or indirectly. Otherwise, the program is ill-formed.

133

10

15

20

25

30

35

40

C++/CLI Language Specification

The constructor for class AttributeUsageAttribute takes an argument of type AttributeTargets. This
enumeration type has a number of enumerators defined, several of which need further explanation:

e Class indicates that the attribute can be applied to a ref class.

e Enum indicates that the attribute can be applied to a native or CLI enum.

e Struct indicates that the attribute can be applied to a value class.

e Method indicates that the attribute can be applied to a function.

[Note: For an example of using this attribute, see §28.1.1. end note]

28.4.2 The Obsolete attribute
The attribute Obsolete is used to mark types and members of types that should no longer be used.

[AttributeUsage(AttributeTargets::Class | AttributeTargets::Struct |
AttributeTargets::Enum | AttributeTargets::Interface |
AttributeTargets::Delegate | AttributeTargets::Method |
AttributeTargets::Constructor | AttributeTargets::Property |
AttributeTargets::Field | AttributeTargets::Event)]

?ub11c ref class ObsoleteAttribute : Attribute

public:]
ObsoleteAttribute() {..}
ObsoleteAttribute(StringA message) {..}
ObsoleteAttribute(StringA message, bool error) {.}
property StringA Message { StringA get() {.} }
) property bool Istrror { bool get() {.} }
If a program uses a type or member that is decorated with the ObsoTlete attribute, then the compiler shall issue
a warning or error in order to alert the developer, so the offending code can be fixed. Specifically, the compiler
shall issue a warning if no error parameter is provided, or if the error parameter is provided and has the value
false. The program is ill-formed if the error parameter is specified and has the value true.

[Example: In the example

[ObsoTete("This class is obsolete; use class B instead")]
ref struct A {
void FO {}

ref struct B {
void FO {}

int main() {
AA a = gchew AQ); // warning
a->FQ);

the class A is decorated with the Obsolete attribute. Each use of A in main results in a warning that includes
the specified message, “This class is obsolete; use class B instead.” end example]

134

Attributes

28.5 Attributes for interoperation
28.5.1 Interoperation with other CLI-based languages

28.5.1.1 The DefaultMember attribute

The attribute System: :Reflection: :DefaultMemberAttribute is used to provide the underlying name
to the default indexed property. The attribute is placed on the class, and all overloads of a default indexed
property share the same name.

Check this name; this attribute might have been renamed in the CLI standard. [[BB]]

28.5.1.2 The MethodimplOption attribute
Synchronized function for compiler-generated add/remove event accessor functions. [[BB]]

135

10

15

20

25

30

C++/CLI Language Specification

29. Templates

This clause is currently informative. A full specification is still necessary.

The template syntax is the same for all types, including CLI types. Templates on CLI types can be partially
specialized, fully specialized, and non-type parameters of any type (subject to all the constant-expression and
type rules in the C++ Standard) can be used, with the same semantics as specified by the C++ Standard.

Templates are fully resolved and compiled at compile time, and reside in their own assemblies.

Within an assembly, templates are implicitly instantiated only for the uses of that template within the assembly.

29.1 Attributes

Given that the grammars for ref class, value class, and interface class already include the possibility of
attributes, review what is stated below and modify as necessary. (Support for attributes has yet to be added to
the grammar for functions.)

Classes within templates can have attributes, with those attributes being written after the template parameter list
and before the class-key. A template parameter is allowed as an attribute, and also as an argument to an attribute.
[Example:

template<typename T>
Lattributes]
ref class R { };

end example]

Functions within templates can have attributes, with those attributes being written after the template parameter
list and before the function definition. [Example:

template <typename T>

[attributes]

void f(const T& t) { /* .. */ }
end example]

TODO: explicit and partial specializations of a class template must have the same class kind as the primary
template. For example, an explicit specialization of a ref class template cannot be a value class.

TODO: Are there any issues with metadata name emission? Is it even necessary to standardize this since
template specializations are really only useful inside an assembly.

29.2 Type deduction
There is no ordering among %, A, &, or *.
Template type deduction of nul1ptr literal is not possible.

TODO: Non-type template parameters will not include %, #, or nullptr.

136

10

15

20

25

30

35

Generics

30. Generics

This clause is underspecified. Some issues to consider are: (1) using templates inside of generics, (2)
overloading rules, and (3) dynamic cast to type parameters. The high level goal with generics (as with other
parts of C++/CL1) is to provide a close mapping the underlying capabilities of the CLI, which does mean that
C++ can potentially create generics that other languages might not be able to consume. Note that generics are
not CLS compliant, so there is no existing contract for cross-language restrictions on generics.

Generic types and functions are a set of features defined by the CLI to allow parameterized types. They differ
from templates in that they are instantiated by the VES rather than at compile-time.

30.1 Generic Declarations
Like templates, a generic-declaration defines type parameters for a declaration.

generic-declaration:
generic < generic-parameter-list > constraint-clause-list,,; declaration

generic-parameter-list:
generic-parameter
generic-parameter-list , generic-parameter

generic-parameter:
attributes,,y class identifier
attributes,,: typename identifier

A generic-parameter-list lists at least one type parameter. [Note: Unlike templates, generics have no equivalent
to a non-type template-parameter or a template template-parameter. Neither does generics support default
generic-parameters. Generic type overloading is used instead. end note]

The declaration of a generic-declaration shall be a ref class, value class, interface class, delegate, or function.
Other declarations are ill-formed. [Note: Generic declarations can have public or private assembly visibility. end
note]

30.2 Generic Classes

As is the case with templates in Standard C++ within the body of a generic class any usage of the unqualified
unadorned name of the generic class is assumed to refer to the current instantiation. [Example:

generic<typename T>
ref class X {
pubTic:
xXO {3 // ok: means X<T>

void f(XA); // ok: means X<T>

11X g0; // error
end example]

A generic class outside of the definition is referenced using a constructed type. Given the generic ref class
declaration

137

10

15

20

25

30

35

40

45

C++/CLI Language Specification

generic<typename T>
ref class List {};

some examples of constructed types are List<T>, List<int>and List<List<StringA>A>. A constructed

type that uses one or more type parameters, such as List<T>, is called an open constructed type. A constructed
type that uses no type parameters, such as List<int>, is called a closed constructed type.

30.2.1 Base Classes

The base class of a generic shall not be a type parameter, though it can be a constructed type using a type
parameter. [Example:

ref class Bl {};

generic<typename T>
ref class B2 {};

generic<typename T>
ref class R1 : T {}; // error

generic<typename T>
ref class R2 : Bl {}; // ok

generic<typename T>
ref class R2 : B2<int> {}; // ok (closed constructed type)

generic<typename T>
ref class R2 : B2<T> {}; // ok (open constructed type)

end example]

30.2.2 Member Access

Within the body of either a generic class or a generic function there is no change to how members of non-
generic parameter type are accessed. [Example:

generic<typename T>
ref class X {
pubTic:
void set() {
name = “Jon”;
amount = 4.50;

name->ToUpper(Q) ;
amount.ToString():

}

private:
StringA name;
Decimal amount;
end example]

When the type of a member or a variable is a generic type-parameter, T, declarations of those members shall use
the T without any pointer, reference, or handle declarators. [Example:

138

10

15

20

25

30

35

40

Generics

interface class IFoo {
void mfQ;

ref class R : IFoo {
pubTic:
void mfQ;

value class V : IFoo {
public:
void mfQ;

generic<typename T>
where T : IFoo
ref class X {
pubTic:

void mfQ;

private:
T,
};

end example]. Member access on a variable of generic type parameter shall use the -> operator. [Example:
void X::mf(Q)

t->mfQ;

end example]

[Note: The compiler only generates one definition for a generic class in metadata. Generics allow value classes
as generic type parameters. Textual substitution of a value class parameter would lead to an ill-formed program
as the -> operator is not allowed for member access. As the VES is responsible for instantiations of generics,
textual substitution is the wrong way of thinking about generic instantiation. end note]

A variable of generic parameter type will be a value class, handle to ref class, or handle to interface class. As
such, the destructor of generic class will not invoke the destructors on member variables of generic type
parameters.

TODO: update design to discuss how C++ generics could employ destructible generic type parameter variables

30.2.3 Nested Types

A generic class can contain any nested type except a native class. A type nested within a generic class can itself
be a generic type. A generic type can be nested within a non-generic type. [Example:

139

10

15

20

25

30

35

40

C++/CLI Language Specification

ref class R {

public:
generic<typename T>
ref class N {

generic<typename T1>
ref class G {
public:

ref class N {

generic<typename T2>
ref class NG {

}s
};
end example]

A type nested within a generic has access to the generic type-parameters of any enclosing type.

30.2.4 Static Data Members

If a generic type has static data members, the static data members are shared by all instances of a specific
specialization: they are not shared by all specializations. If a generic type has a class constructor then, if
required, the class constructor will be executed exactly once for each specialization of the generic type.

30.2.5 Other Members
A program is ill-formed if it declares a property or event as a generic. The constituent functions of a property or
event shall not be generic functions.

TODO: Will generic operators be allowed?

30.2.6 Overloading

A generic class can contain overloaded functions that might necessitate an ambiguity for a particular
specialization. [Example:
generic<typename T1l, typename T2>
ref class X {
public:
void mf(T1, 12) { }
void mf(12, T1) { }
3
When X is specialized with the same type for T1 and T2, mf has two overloads with the same signature. end
example]. A generic class is allowed to have this potential ambiguity; however, it is ill-formed for a
specialization to have this ambiguity.

30.2.7 Type Overloading
This is currently under investigation. It is important that C++/CLI support frameworks conventions.

140

10

15

20

25

30

35

40

45

Generics

30.2.8 Accessibility of Constructed Types

A specialization of a generic type has the same accessibility as the least accessible type parameter of the
specialization.

30.3 Generic Functions

Any function can be declared as a generic. [Example:
generic<typename T>
void gf(T);

ref class cl1 {
generic<typename T>
void f(T);

generic<typename T1>

ref class c2 {
generic<typename T2>
void mf(T);

end example]

Not all generic type parameters must appear as an argument type or return type of a function. Types not used as
an argument type to a function cannot be deduced.

30.3.1 Type Deduction
The generic arguments to a generic function can either be explicitly specified or they can be deduced. [Example:
interface class IFoo {};

ref class R : public IFoo {};

generic<typename T>
void f(TA) {}

void g(RA hR) {

f<IFoo>(hR); // T is specified to be IFoo
f(hr); // T is deduced to be R

end example].

30.4 Generic Arguments
The arguments for a specific specialization of a generic class must always be explicitly specified.

A specialization of a generic function can either explicitly specify the generic arguments, or type deduction can
determine the arguments. The grammar for a generic-argument-list is:

generic-argument-list:
generic-argument
generic-argument-list , generic-argument

generic-argument:
type-id

A generic-argument shall be a value class, a handle to ref class, a handle to delegate, a handle to an interface, a
handle to an array, or a generic type parameter from an enclosing generic. [Note: It is not possible to use a

141

10

15

20

25

30

35

40

C++/CLI Language Specification

native class, a pointer, a reference, a handle to a value class, or a ref class by value as a generic argument. end
note]

30.5 Constraints
A constraint is a way to restrict the generic arguments to a generic by requiring it to derive from a set of
interfaces or a particular base ref class.

constraint-clause-list:
constraint-clause
constraint-clause-list constraint-clause

constraint-clause:
where identifier : constraint-item-list

constaint-item-list:
constraint-item
constraint-item-list , constraint-item

constraint-item:
type-id
identifier ()
~ identifier ()

Both generic classes and generic functions can include constraints. A constraint-item can require a particular
base class, a default constructor, or a destructor.

If the constraint-item is a type-id, the constraint shall name an interface class or a ref class. At most one
constraint-item in a constraint list shall be a ref class, and it shall not be sealed.

A constraint-item of identifier (O is known as a constructor constraint. The identifier must be the same as the
identifier following the where. A type argument with the constructor constraint must have a constructor that
takes no arguments.

A constraint-item of ~identifier () is known as a destructor constraint. The identifier must be the same as the
identifier following the where. A type argument with the destructor constraint must have a destructor.

[Example:

generic<typename T>
where T : IComparable
ref class X {};

end example]

A generic can have zero or more constraints. [Example:

generic<typename T>
value class X1 {};

generic<typename T1l, typename T2>
where T1 : IComparable

where T2 : ICloneable

public ref class X2 {};

end example]

A generic parameter can also have zero or more constraints associated with it. At most one constraint-clause can

appear for each type parameter. [Example:

142

10

15

20

25

30

35

40

45

Generics

generic<typename T1l, typename T2>
where T2 : IComparable, IEnumerable
public ref class list {};

end example]

If a generic parameter has no constraints associated with it then it is implicitly constrained by
System: :0bject. [Note: having a generic parameter constrained by Object severely limits what you can do
with the type within the body of the generic. end note]

30.5.1 The Constructor Constraint

The VES uses constraints to locate members of generic type parameters. Interfaces have no way of requiring a
derived type to implement a constructor. A constructor constraint allows the gcnew operator to create a new
instance of a type parameter using the default constructor. [Example:

generic<typename T>

where T : TQ

ref class R {

pubTic:
goid fO

Tt =gcnew TQ;
};
end example]

Although the gcnew operator is used, if the type parameter is a value class, allocation on the CLI heap will not
occur as defined in the CLI.

30.6 Delegates
A delegate declaration can be generic. [Example:

generic<typename T>
delegate void D(T t);

end example]

30.7 Attributes
A generic type cannot inherit from System: :Attribute. A type parameter or an open type shall not be an
argument to the constructor of a custom attribute.

30.8 Type Identification

The typeid<> operator can be applied to a generic type-parameter or to a constructed type: the result is
System: : Type object for the runtime type of the type-parameter or constructed type. The typeid<> operator
shall not be applied to bare name of a generic. [Example:

generic<typename T>
ref class X {

pubTic:
static void T {
TypeA tl = typeid<T>; // ok - typeid<int>
TypeA t2 = typeid<X<T> >; // ok - typeid<X<int> >
TypeA t3 = typeid<X>; // error
};

end example]

143

C++/CLI Language Specification

31. Standard C and C++ libraries

Describe synchronization of standard C++ streams and System::Console. [[PJP]]
What else should go here? [[PJP]]

144

CLI libraries

32. CLI libraries

To be added. [[BB]]

145

C++/CLI Language Specification

A. Verifiable code

To be added. [[BB]]

146

Documentation comments

B. Documentation comments

To be added. [[BB]]

147

C++/CLI Language Specification

C. Non-normative references

ISO/IEC 23270:2003, Programming languages — C#.

148

CLI naming guidelines

D. CLI naming guidelines

This annex is informative.
Add guidelines for generics. [[Ed]]

One of the most important elements of predictability and discoverability is the use of a consistent naming
pattern. Many of the common user questions don’t even arise once these conventions are understood and widely
used. There are three elements to the naming guidelines:

1. Casing — use of the correct capitalization style
2. Mechanical — use nouns for classes, verbs for functions, etc.
3. Word choice — use consistent terms across class libraries.

The following subclause lays out rules for the first two elements, and some philosophy for the third.

D.1 Capitalization styles
The following subclause describes different ways of capitalizing identifiers.

D.1.1 Pascal casing
This convention capitalizes the first character of each word. For example:
color BitConverter

D.1.2 Camel casing
This convention capitalizes the first character of each word except the first word. For example:
backgroundColor totalvalueCount

D.1.3 All uppercase

Only use all uppercase letters for an identifier if it contains an abbreviation. For example:
System::I0
System: :WinForms: :UTI

D.1.4 Capitalization summary

The following table summarizes the capitalization style for the different kinds of identifiers:

Type Case Notes

Class PascalCase

Class, attribute PascalCase Has a suffix of Attribute
Class, exception PascalCase Has a suffix of Exception
Literal PascalCase

149

10

15

20

C++/CLI Language Specification

Type Case Notes

Enum type PascalCase

Enum value PascalCase

Event PascalCase

Field, non-public instance camelCase

Field, public instance PascalCase Rarely used (use a property instead)
Function PascalCase

Interface PascalCase Has a prefix of T
Local variable camelCase

Namespace PascalCase

Parameter camelCase

Property PascalCase

D.2 Word choice

Do avoid using class names duplicated in heavily used namespaces. For example, don’t use the
following for a class name.

System Collections Forms U1

Do not use abbreviations in identifiers.

If you must use abbreviations, do use camelCase for any abbreviation containing more than two
characters, even if this is not the usual abbreviation.

D.3 Namespaces
The general rule for namespace naming is CompanyName: : TechnologyName.

Do avoid the possibility of two published namespaces having the same name, by prefixing namespace
names with a company name or other well-established brand. For example, Microsoft: :0ffice for
the Office Automation classes provided by Microsoft.

Do use PascalCase, and separate logical components with periods (as in

Microsoft::0ffice: :PowerPoint). If your brand employs non-traditional casing, do follow the
casing defined by your brand, even if it deviates from normal namespace casing (for example,

NeXT: :WebObjects, and ee: : cummings).

Do use plural namespace names where appropriate. For example, use System: :ColTlections rather
than System: :ColTection. Exceptions to this rule are brand names and abbreviations. For example,
use System: : IO not System: : I0s.

Do not have namespaces and classes with the same name.

D.4 Classes

Do name classes with nouns or noun phrases.

Do use PascalCase.

150

10

15

20

25

30

35

40

CLI naming guidelines

Do use sparingly, abbreviations in class names.

Do not use any prefix (such as “C”, for example). Where possible, avoid starting with the letter “1”,
since that is the recommended prefix for interface names. If you must start with that letter, make sure
the second character is lowercase, as in IdentityStore.

Do not use any underscores.
};

public ref class FileStream { ..
public ref class Button { ;

.}
public ref class String { .. };

D.5 Interfaces

Do name interfaces with nouns or noun phrases, or adjectives describing behavior. For example,
IComponent (descriptive noun), ICustomAttributeProvider (noun phrase), and IPersistable
(adjective).

Do use PascalCase.

Do use sparingly, abbreviations in interface names.

Do not use any underscores.

Do prefix interface names with the letter “I”, to indicate that the type is an interface.

Do use similar names when defining a class/interface pair where the class is a standard implementation
of the interface. The names should differ only by the “I” prefix in the interface name. This approach is
used for the interface IComponent and its standard implementation, Component.

public interface class IComponent { .. };

public ref class Component : IComponent { .. };

public interface class IServiceProvider{ .. };
public interface class IFormatable { .. };

D.6 Enums

Do use PascalCase for enums.

Do use PascalCase for enum value names.

Do use sparingly, abbreviations in enum names.
Do not use a family-name prefix on enum.

Do not use any “Enum” suffix on enum types.
Do use a singular name for enums.

Do use a plural name for bit fields.

Do define enumerated values using an enum if they are used in a parameter or property. This gives
development tools a chance at knowing the possible values for a property or parameter.

pubTic enum class FileMode

Create,
CreateNew,
open,
OpenorcCreate,
Truncate

151

10

15

20

25

30

35

40

C++/CLI Language Specification

e Do use the Flags custom attribute if the numeric values are meant to be bitwise ORed together.
[FTags]
public enum class Bindings

CreateInstance,
DefaultBinding,
ExcatBinding,
GetField,
GetProperty,
IgnorecCase,
InvokeMethod,
NonPubTic,
OABinding,
SetField,
SetProperty,
Static

};

o Do use int as the underlying type of an enum. (An exception to this rule is if the enum represents flags
and there are more than 32 flags, or the enum might grow to that many flags in the future, or the type
needs to be different from int for backward compatibility.)

e Do use enums only if the value can be completely expressed as a set of bit flags. Do not use enums for
open sets (such as operating system version).

D.7 Static members
o Do name static members with nouns, noun phrases, or abbreviations for nouns.

o Do name static members using PascalCase.

o Do not use Hungarian-type prefixes on static member names.

D.8 Parameters
o Do use descriptive hames such that a parameter’s name and type clearly imply its meaning.
o Do name parameters using camelCase.

o Do prefer names based on a parameter’s meaning, to names based on the parameter’s type. It is likely
that development tools will provide the information about type in a convenient way, so the parameter
name can be put to better use describing semantics rather than type.

e Do not reserve parameters for future use. If more data is need in the next version, a new overload can be
added.

o Do not use Hungarian-type prefixes.

Type GetType(StringA typeName))
string Format(StringA format, array<ObjectA>A args)

D.9 Functions
o Do name functions with verbs or verb phrases.

e Do name functions with PascalCase.
RemoveAl1() GetCharArray() Invoke()

152

10

15

20

25

30

35

40

CLI naming guidelines

D.10 Properties
o Do name properties using noun or noun phrases.

o Do name properties with PascalCase.

D.11 Events
e Do name event handlers with the EventHandTer suffix.
public delegate void MouseEventHandler(ObjectA sender, MouseEventA e);
e Do use two parameters named sender and e. The sender parameter represents the object that raised the
event, and this parameter is always of type Object, even if it is possible to employ a more specific

type. The state associated with the event is encapsulated in an instance e of an event class. Use an
appropriate and specific event class for its type.

public delegate void MouseEventHandler(ObjectA sender, MouseEventA e);

e Do name event argument classes with the EventArgs suffix.
public ref class MouseEventArgs : EventArgs {
int x;
int y;

public:
MouseEventArgs(int x, int y) {
this->x = Xx;
this->y = y;

property int X { int get() { return x; } }
property int Y { int get() { returny; } }
¢ Do name event names that have a concept of pre- and post-operation using the present and past tense
(do not use Beforexxx/Afterxxx pattern). For example, a close event that could be canceled would
have a Closing and Closed event.

event cControlEventHandlerA ControlAdded;

o Consider naming events with a verb.

D.12 Case sensitivity

e Don’t use names that require case sensitivity. Components might need to be usable from both case-
sensitive and case-insensitive languages. Since case-insensitive languages cannot distinguish between
two names within the same context that differ only by case, components must avoid this situation.

Examples of what not to do:

e Don’t have two namespaces whose names differ only by case.

namespace ee::cummings;
namespace Ee::Cummings;

o Don’t have a function with two parameters whose names differ only by case.
void F(StringA a, StringA A)
e Don’t have a namespace with two types whose names differ only by case.

System::winForms::Point p;
System: :WinForms: : POINT pp;

e Don’t have a type with two properties whose names differ only by case.

153

10

15

20

25

30

35

C++/CLI Language Specification

property int f { int get(); void set(int value); }
property int F { int get(); void set(int value); }

Don’t have a type with two functions whose names differ only by case.

void f(Q;
void FQ;

D.13 Avoiding type name confusion

Different languages use different names to identify the fundamental CLI types, so in a multi-language
environment, designers must take care to avoid language-specific terminology. This subclause describes a set of
rules that help avoid type name confusion.

Do use semantically interesting names rather than type names.

In the rare case that a parameter has no semantic meaning beyond its type, use a generic name. For
example, a class that supports writing a variety of data types into a stream might have:

void write(double value);
void write(float value);
void write(long long value);
void wWrite(int value);

void write(short value);

rather than a language-specific alternative such as:

void wWrite(doubTle doublevalue);

void write(float floatvalue);

void write(long long Tonglongvalue);
void wWrite(int intvalue);

void wWrite(short shortvalue);

In the extremely rare case that it is necessary to have a uniquely named function for each fundamental
data type, do use the following universal type names: SByte, Byte, Intl6, UIntl6, Int32, UInt32,
Int64, UInt64, Single, Double, Boolean, Char, String, and object. For example, a class that
supports reading a variety of data types from a stream might have:

double ReadDouble();
float Readsingle();
Tong Tong Readint64();
int ReadInt32();

short ReadIntl6();

rather than a language-specific alternative such as:

double ReadDouble();
float ReadFloat();

Tong Tong ReadLongLong();
int ReadInt();

short ReadShort();

End of informative text

154

10

15

Future directions

E. Future directions

This annex is informative.

This annex contains information about features that might be considered for a future revision of this Standard.

E.1 Static members in interfaces
Yet to come.

E.2 Mixed types
Yet to come.

E.3 gcnew of unmanaged types
Yet to come.

E.4 new of managed types
Yet to come.

E.5 Unsupported CLS-recommended operators

Function Name in Assembly C++ Operator
Function Name
op_SignedRightshift undefined
op_unsignedRightShift undefined
op_MemberSelection undefined

op_PointerToMemberSelection yndefined

Regarding op_Memberselection and op_PointerToMemberSelection, the C++ Standard only permits

non-static member declarations of these operators.

End of informative text

155

10

15

20

25

30

C++/CLI Language Specification

F. Index

This annex is informative.

... See ellipses

I
INEXEd ACCESSvveveieeeie e 57
+=
event handler addition............cccccoeevvivevenvenennn, 24
event handler removalccccoooviiinnn. 24
abstract class.................. See class modifier, abstract
abstract function........ See function modifier, abstract
access
ASSEMDBIY ..o 40
family and assembly...........ccccooviiiiiniiinenne 40
family or assembly ... 40
NAMTOWET ..ttt 40
WIABT ..t 40
accessor function
add....oooiiee See add accessor function
0[] SRS See get accessor function
property 21, 80, 82, See also get accessor
function; set accessor function
FeMOVE.......covrenee. See remove accessor function
=] S See set accessor function
add accessor fUNCLIONccocvvvvenencieceee 25
add_* reserved NameScceevveveeveeveesnesie e 73
APPlICAtioNc.ecvecececc e 4
application domaincceoviiiiiinereeeceee e, 4

argument list
function call........cocoooveiiiiii 58

variable length...................... See parameter array

35

40

45

50

55

60

156

AITAY 1ottt 113
COVANANCE ...vvevvreeeecie e se et see s 114
(o= 11 o] o SR 113
element ACCESSovvveeririeie e 114
initializationccocvveveve v 114
MEMDEIS. ...t 114
PAFAMELET ..o 74
Standard CH+ ..o 113

ATTAY it 67,113, 114

array pseudo-template class..........cccoevveieeiinennnns 113

ASSEMDBIY ..o 4,33

attribute.......cooeveeene, 4,35, 127, See also Attribute
class naming convention.............ccccveevvnennne. 127
compilation of an.........cccccee v, 133
delegate.....ccoevviieiiieee 131
BVENL. ..ot 131
TUNCHION ... 131
INStaNCe Of Nccoovviiiiii e 133
NAMe Of N ...ooviieecee e 131
TESEIVEA... i iiiiii ettt 133
specification of an.........ccccceveviiciincene, 129

ALTDULE ...t 127, 133

attribute Classocveveveiiiee e, 127
MUITT=USE oot 127,128
parameter

NAMEM.....ciiieeiceee e 128
POSItIONAl ...cveeviececeeee 128
SINGIE-USE ...evveivecteee e 127

attribute SECtioN........ccevvviveiee e 129

10

15

20

25

30

Attribute SUFFIX ... 131
attribute targetccooeevviiiiie 131
ASSEMDBIY ..o 131
BVENT ...t 131
Field oo 131
MELhOd... .o 131
PAFAM ..t 131
Q1 0] 0 1< (PP PP 131
FETUIMN Lo 131
[L SR 131
AttributeUsage See AttributeUsageAttribute
AttributeUsageAttribute..........cccevvvveenee. 127, 133
BOOI€AN ..o 39
MEMDEIS OF ... 39
DOXING...ceviiiiiee e 4,13
BY e o 39
MEMDEIS OF ... 39
CH+standard.........coceeeveveieinise e 3,148
Char ..o 39
MEMDEIS OF ..o 39
class
abstract.........oevveeenen. See class modifier, abstract
attribute ... See attribute class
initialization of @cooceviiiii 27
INtErface.......covvvverice e See interface
NALIVE ..o See native class
=] SRR See ref class
sealed.......ccooovvriiiiinnns See class modifier, sealed
SEIUCE VEISUS....cooiiiei i, 31,111
ValUB ..o See value class
class definitioncccovviinininene 70
class MOAITIiercoovvvvviieiicce e, 71
ADSIFACT ..o 71
SEAIEA. ...t 72
CLS ...ccooenn. See Common Language Specification

40

45

50

55

60

65

70

157

CLS complianCeccccovveieviiieieceeece e, 4
(070 [=Tox (o] o 19, 67

SYSIEMIIAITAY oo 67
Common La,nguage Infrastructure.............ccccveuee Xi
Common Language Specification............c.ccceuene... 8
Common Type SYStemcccovvvevrvrieeenennns 56,8
constant

NUITPOINEEN....cviiieeceeec e 51
constructor

delegating......c.ccccvevveieeiie i 99

INSTANCE ... 99

£ L[RR 27,101

default. ..o 102

BAFQBL e 100
conversion

EXPHCHE .o 52

implicit

CONStant eXPressSioN.......c.ccvvververeieereesiennnan, 52

UNDOXING 1. 6
CTS. e See Common Type System
CUITENE .. 67
definition

non-inling........cceeeee. See definition, out-of-class

OUL-0F-ClaSSovereeeie e 4
delegate................. 4,19, 24, 122, See also Delegate

equality of See operator, equality, delegate

removal Of @......coovviiiiii 64

sealedness Of @......ccccovveveniieicic 123
Delegate.....ccceveviveieieireece e, 19, 39, 122

MEMDEIS OFveiiieee e 39
design goalscovveveeieiecc e xi
DOUDIE e 39

MEMDErS OFveiiie e 39
BHIPSIS oo 79
BINUM Lttt 11

10

15

20

25

30

35

C++/CLI Language Specification

BVENT ...t 4,24,87
ADSIFACT ... 89
ACCESSING ANt 56
NANAIET ... 87
inhibiting overriding of ancccccoovninennn. 89
INSEANCE.....veeveeeeie e 88
NON-TrIVIAl ..o, 87
OVEITIAR . 89
FESEIVEd NAMESvveverererieeie e seeseeeie e nee e 73
SEAIEA. ..ot 89
SEALIC vt 88
TFIVIAL oo 87, 89
VIFTUAL .o 89

BXAMPIES......vieciiecec e s 9

exception
types thrown by certain operations.................. 126

Execution Engine....... See Virtual Execution System

explicit interface member..........cccccoeviivecinnenn, 32

FIEld oo 4
initonly See initonly field, See initonly field
literalcoooveeiiie See literal field

FINAHZE ..o 73

function
ADSIFACT ..o 4
pure virtualccevevennenn. See function, abstract
FESErVed NAMESoouvieieiereiee e 73

function Memberccoeeiiiieee e, 56

function MOdIfier.........ccocvvviviiiieiic e, 74
ADSIFACT ..o 78
DBV ...ttt eennne e 78
OVEITIAR .o 74
SEAIBA... .o 77

garbage collectionccoccevevievviiiecees 4,5, 18

ge-lvalue.....ccoovevviieice e, See lvalue, gc

get accessor function.........c.ccceeevevevveie e, 21, 82

40

45

50

55

60

65

70

158

get_* reserved NAMES.cccveveveeeenecee e e 72
et _HTeM e 73
GetENUMETALOr.......oovieiieicci e 67
RANAIE ..o 5
NUIL .o 38
OPErAtiONS ON ...vvveiiieieie e 92
heap
CLI it 5
NALIVE ©o.veiicecee e 5

IEC. See International Electrotechnical Commission

IEC 60559 standardccocevererieieiniencnenenen, 3
IEEE See Institute of Electrical and Electronics
Engineers
IEEE 754 standard............... See IEC 60559 standard
IEnumerable.GetEnumerator See GetEnumerator
IEnumerator.Current..........cccooeveiennnenn See Current
IEnumerator.MoveNext..................... See MoveNext
INAEXEA BCCESS ...vvvvviiirieeie et 57

indexed property

ACCESSING AN ..vvveieeiiccee e 56
default.....cccooeiii 22
INNEITANCE .o 43
initonly field ... 21,102, 103
literal field VErsuSccooeveeveeveeeeiiieinns 102, 104
INSTANCE ... 5

INEL6 .. 39
MEMBDErS OF ..o 39
INt32..ieeeee e 12,39
MEMDErS OF ..o 39
INEBA ... 39
MEMDBErS OF ..ovviiiiciec e 39
INEEITACE e 31, 115
DASE ... 115
delegate.....ccovvveiciiie e 117

5

10

15

20

25

30

35

BVENT ...t 117
FUNCLION .o, 116
implementation.........cccocevvvere i 117
MEMDET ... s 116
ADSIIACT .o 116
VIFtUAL . 116
MEMDEI ACCESS ...vvveeeeeieriee et 117
PIOPEILY weeeiiiie ittt 116
interface Class.........ccoccevvvivevenenneen, See interface
interface StruCt...........ccoocevevevenviieen, See interface
INTEFION P e 45
International Electrotechnical Commission............. 8
International Organization for Standardization....... 8
ISO . See International Organization for
Standardization
ISO/IEC 10646........ceeieieeeeeieiesieseeiee e 3
YA 0] (o S 37
literal fieldcccooeieiie 20, 102
initonly field Versus..........ccccooevvevenenne. 102, 104
interdependency Ofccccccvvvviviiiiic v, 102
restrictions on type of a........cccoceevviveveinenennn, 102
VErsioning Of @........ccoceveneneiieiise e 104
IVAIUB ..o 5
gc4d
member
ata e See field
member declaration............ccccoceveiiieneniie e 70

member name

FESEIVEA ...ovvievie ettt 72
MELAAALAeeeeeeeeeeie e 5
MethodImpl.......ccooveiii e, 90
MethodImplOptions

SYNChronized.........ccocooeiiiiiciiicee 90
MOVENEXL......ooiiiiiiiiieieeeeee e 67
NAMESPACE ..veevveeerereeeitieerieeesbeeesireesbe e nbee e sbeeeniees 33

40

45

50

55

60

65

70

159

NALIVE ClaSS.....eeieiiiiiirccie e 106
new function See function modifier, new
NOFMALIVE TEXEevieieieceeeie e 9
NOTES ...ttt 9
NUITEYPE oo 44
NUITVAIUE ..o 51
null value constant...........ccccoeeiineiic e 38
nullptr

literal.....cccooveeee e 38

null pointer constant and............ccccceevevevieeinennn 51

NullReferenceException

foreachand ..o, 67
(0]] 1< o SRR 5, 13
object reference.......cccvvvvivvie i e, See handle
Obsolete......cccevveveveiviieiene. See ObsoleteAttribute
ObsoleteAttribute...........cocovoveieiiiiieieeeee, 134
operator

equality

delegate. ... 64
SEALIC. ..ot 91
CH+-dependentcceevveeveiveie e, 97
CLS-compliant........ccooeoveeiiiiiiiiicneceiens 95
compiler-defined...........ccooeoeviiiiiiiiiens 99
eCrement.......cocvveiie e 93
INCIEMENTviee e 93
SYNtheSIS OF @ ...c.oovvviiiiirecc s 95
output

formatted.........coooveieei 11
overload resolutionc.cccoecvevevieeiene i 56
override function..... See function modifier, override
override SPecCifier......c.cccovveveiii i, 74
PArAMELEr AITAYvvevieveerieerieenire e 16, 78
PN DU e e 47
0111411 T S 5
pointer

5

10

15

20

25

30

35

C++/CLI Language Specification

INEEIION v 16, 45
PINNING Lo 47
to fUNCLioNooovviiee See delegate
to member functionccoeene. See delegate
private type........ccoovvernnn. See type visibility, private
PrOPEITY .ot 5,21,80
ADSFACT ..o 85
ACCESSING Auvvevrereereeie et ie e e sre e 56
INAEXE ... 21,80
default......cccoviiiii 81
NAMET ..o 81
inhibiting overriding of @ccccoovvvininiicnne 84
INSEANCE.....veeeeeeeeiee e 82
OVEITIAR ..t 85
FEAU-ONIY ... 83
FEAA-WIILE ..eeoie et 83
FESErVed NAMESoiviieieieiiiee e 72
SCANAN ..o 21,80
TAVIAL oo 86
SEAIEA. ..ot 84
SEALIC ..t 82
VIFTUAL .o 84
WITEE-ONTY oo 83
public type.....c.ccocevvvvrnnne. See type visibility, public
raise_* reserved NAMEScccevvvvvevesieeieseseenenns 73
reDINAING ..o 5
FEF ClASS ..o 107
DASE....eee 107
FeStriCted tYPeSooveveiricierieeeee e, 107
MEMDET ... 108
Fef SErUCT ..o See ref class
remove accessor function..........cccceevevvvviccveeennnn, 25
remove_* reserved NAMEScccccevvevveeiveesieesenenns 73
PVAIUB. ... 5
Safe_CASL....coveicece e 61

40

45

50

55

60

65

70

160

SBYIE e 39
MEMDBErS OF ...vveieivce e 39
sealed classcccveeeennnen. See class modifier, sealed
sealed function............ See function modifier, sealed
set accessor fuNCtion.........ccocvevevevvevene s 21
Set_* reserved NAMESccovvevereneerene e 72
SEL ITEBM .o 73
SINGIE .o 39
MEMDBErS OF ..ovviiiiiie e 39
standard
CHtovrvren See C++ standard, See C++ standard
IEC 60559........ccc0evenenn. See IEC 60559 standard
IEEE 754.....cooviee. See IEC 60559 standard
Unicode........ccccovviveinnnnnnns See Unicode standard
stdclizzlanguage.........cooovviiinincieneee 113

stdcli::language::array See array pseudo-template
class

stdcli::language::interior_ptr............. See interior_ptr
stdcli::language::pin_ptr........ccccocviveenne. See pin_ptr
stdcli::language::try cast.......c.cccvvenee. See try_cast
SIFUCT . 11,31
advice for using Over Class.........ccccoceevvvreriennen. 31
ClaSS VEISUS ..veeveveveiie st 31, 111
=] PSR See ref class
ValUe. ..o See value class
System
ValUETYPE ..ot 43
System.NullReferenceException............cccccvnee. See
NullReferenceException
SYSEMIIAITAY ..o See Array
System::Attribute ... See Attribute
System::AttributeUsageAttributec..co....... See
AttributeUsageAttribute
System::Delegate.........cccccovvveevceiinnnen. See Delegate
SYStemMIINI32...ciiciiie See Int32

10

15

20

25

30

System::NullReferenceException See
NullReferenceException

System::ObsoleteAttributeSee ObsoleteAttribute

SYStEMIITYPE . See Type

System::TypelnitializationException.................. See
TypelnitializationException

this

constructor call

EXPHICIE. .. 100
B0 1] £] T S 13
trACKINGvvcie e 5
type
DOXEd ..o 5
ClaSS. ..ot See class
ANY oo)
INTEITACE ... 5
TET e 5
ValUE ..o 5
CLI e 5
collectioncccceviviieniiiee See collection
delegateccveveeeee e 43
BlEMENT ...t 67
fundamental
mapping to system class.........ccccevevveieennnnne 39
MEMDErS OF @....ccovviiriiiee e 39
fundamental..........ccooeviiiiiiie 6
handle ... 6
INEEITACE ..ot 43
NALIVE ..o 6
pointer
NALIVE ..o e 6
private.......ccoovvvreinennns See type visibility, private
publiC......cccovviiiinn See type visibility, public
reference

35

40

45

50

55

60

65

161

NATIVE e 6
TrACKING .o 6
simple
struct type and.........ccoceeveveieeicieieenn, 31,110
SITUCT .. See struct
value
DOXEd ... 6
0] 0] LS 6
TYPE ot 59
type VISIDIlitycooovvvieii 49,70
ClASS et 49
default.......ocoveeiiee e 12, 49
delegate......ccooviieieiii 49
BINUIM Lttt 49
INTEITACE ..o 49
PrIVALE ..o 12, 49
PUBHIC ... 12, 49
UINELG ... 39
MEMDBErS OF ..ovvieiiciece e 39
UINE32...ice e 39
MEMBDErS OF ..o 39
UINEBA ... 39
MEMDEIS OFveiiiiie e 39
UNDOXING wveeveeiieciee e 6, 13
Unicode standardccooeeeiiiineneneneeeee 3
ValUB ClaSS......eeeceeeeee e 110
MEMDET ... 39
value StruCt.........cooceveieiincccc See value class
variable
10CAL . 11
variable-length argument list...........cc.ccoevvvienns 78
VEISIONING .o 33
VES....cooiiieeene See Virtual Execution System
Virtual Execution System.........cccceveveveeinevnene. 56

e c ma Ecma/TC39-TG5/2004/2

2004-01 Project Editor's Report

Rex Jaeschke
ECMA TC39 TG5 project editor

rex@RexJaeschke.com
+1 703 860-0091

Working Draft 1.1 has been produced and distributed. The following work went into producing it:

1. | applied corrections resulting from the Texas meeting and the December phone call. In summary, these
involved:

a. Wrote the text for clauses 1, “Scope”, and 2, Conformance.
b. Added to, and corrected terms in, clause 4, “Definitions.

c. Made clause 7 normative.

d. Added 10.1.1, “Value class members”.

e. Fleshed out 12.1, “Fundamental types”.

f. Beefed-up 15.4.3, “Sizeof”.

Rewrote 20.1.1, “Ref class base specification”.

5 @

Cleaned-up 21.1.1, “Value class modifiers”.
i. Rewrote 21.1.2, “Value class base specification”.
j. Created Annex E, “Future directions”.

2. All non-editorial TODO items from the spec were added to the comments spreadsheet for action item
tracking.

Ecma International Rue du Rhoéne 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org

2003tg5-002 For Ecma use only

mailto:rex@RexJaeschke.com

oeCcha Ecma/TC39-TG5/2004/1

Agenda and Venue Information

for the: 2" meeting of Ecma TC39-TG5
to be held in: Kona, HI, United States
on: 29-31 January 2004

TIME : 09:00 till 17:00 on 29'" January 2004

09:00 till 17:00 on 30" January 2004
09:00 till 17:00 on 31°' January 2004
[8:30 AM Breakfast, Noon Lunch each day]

LOCATION : Ohana Keauhou Beach Resort

78-6740 Alii Drive
Kona, Hl, United States of America

96740-2497

Phone : +1 877 532-8468
Direct Phone : +1 808 322-3411
Fax: +1 808 322-3117

(Directions and Maps below)

CONTACT : Tom Plum

7.

tplum@plumhall.com

. Opening

1.1. Appointment of Recording Secretary
1.2. Introduction of participants
1.3. Host facilities/local information

. Adoption of the agenda

. Approval of Minutes of previous TG5 meeting -

http://www.ecmadoc.net/docfiles/Tc39-g5/2003/2003tg5-010.pdf

. Matters arising from the minutes not covered elsewhere
. Project Editor’s Report — Rex Jaeschke

. Reports from Liaisons

6.1. TC39 TG3 (CLI) - Rex Jaeschke

6.2. SC22/WG21 (C++) - Tom Plum, P.J. Plauger, Tana Plauger, John
Spicer, and Steve Adamczyk.

6.3. JTC1/SC22 - Rex Jaeschke

Date and place of next meetings

Ecma International Rue du Rhéne 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org
MS 2004tg5-001.doc

mailto:tplum@plumhall.com

@ecna

7.1 March 2004 Australia Meeting
7.2 May 2004 Short Hills NJ Meeting

8. Approving tracked changes in latest draft

9. Action item and comment spreadsheet review
http://www.ecmadoc.net/docfiles/Tc39-g5/2003/Notpdf/2003tg5-009.xls

10. Any other business

11. Adjournment
DIRECTIONS :
From the Kona (KOA) Airport

Summary: 14.5 miles (23 minutes)

Time Mile Instruction For
9:00AM 0.0 Depart Keahole-Kona International Airport on Local 0.1
road(s) (East)
9:00 AM 0.1 Turn RIGHT (South) onto Keahole-Kona Airport 0.1 mi
9:01 AM 0.3 Turn RIGHT to stay on Keahole-Kona Airport 0.9 mi
9:03 AM 1.2 Turn RIGHT (South) onto SR-19 [Queen Kaahumanu Hwy] 6.4 mi
9:10 AM 7.6 Road name changes to SR-11 [Queen Kaahumanu Hwy] 4.9 mi
9:18 AM 12.4 Bear RIGHT (South) onto Kamehameha III Rd 1.5 mi
9:22 AM 13.9 Turn RIGHT (North-West) onto Alii Dr 0.6 mi

9:23 AM 14.5 Arrive Ohana Keauhou Beach Resort [78-6740 Alii Dr,
Kailua Kona, HI 96740, Tel: (808) 322-3441]

Keahale
Faint

H a W A ||

Hualalai

Hawall

Pacific O ce an

Kahaluu”

Copyright @ 2003 Mictozoft Corp andior ts suppliers . A rights reserved

. e c ma Ecma/TC39-TG5/2003/10

Minutes of the: 1°' meeting of Ecma TC39-TG5
held in: College Station, Texas, USA
on: 4 — 5 December 2003

Rex Jaeschke
rex@RexJaeschke.com
2003-12-05

1 Opening
Convener Tom Plum welcomed everyone to the first meeting of TG5.

1.1 Appointment of Recording Secretary
Rex Jaeschke was appointed.

1.2 Introduction of participants

The participants introduced themselves. A sign-up sheet was circulated. Those attending
were: Brandon Bray (Microsoft), Rex Jaeschke (Microsoft), Jan van den Beld (ECMA),
Tana Plauger (Dinkumware), P.J. Plauger (Dinkumware), Tom Plum (Plum Hall), Sean
Perry (IBM), Bjarne Stroustrup (Texas A&M), John Spicer (EDG), Steve Adamczyk (EDG),
Herb Sutter (Microsoft), Mark Hall (Microsoft), Gabriel dos Reis (guest).

1.3 Host facilities/local information

Microsoft and Plum Hall are the hosts for this meeting. Bjarne provided various pieces of
information.

2 Adoption of the agenda (including posting of new
documents)

Accepted as is. We'll revisit this later as necessary.

3 Welcome and overview of the ECMA process — Mr. van den
Beld

Jan described the history and mission of ECMA in general, and of TC39, in particular. Please
direct further questions to Jan at jan@ecma-international.org.

4 Project Editor’s Report [2003/_] — Mr. Jaeschke

Rex presented his paper.

It was agreed that both Word and PDF versions of each working draft should be produced, with
line numbers every 5 lines.

5 Proposed Timeline [2003/2] — Mr. Jaeschke

Rex presented his paper.

There is no requirement that TG5 follow the same schedule as TG3 (CLI). We’ll have a good
idea of how we are doing by the middle of 2004. We’ll work until we have consensus.

Ecma International Rue du Rhoéne 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org

2003tg5-002 For Ecma use only

mailto:rex@RexJaeschke.com
mailto:jan@ecma-international.org

@ecma

6
6.1

6.2

6.3

Reports from Liaisons

TC39 TG3 (CLI)

Rex Jaeschke was appointed as the liaison to TG3 (CLI).

JTC 1/SC 22 — Mr. Jaeschke

Rex reported that he is the bi-directional liaison between ECMA and ISO/IEC JTC 1/SC 22.
At each SC22 plenary, he reports on ECMA TC39 activities relevant to the work of SC22,
and advises SC22 of ECMA standards and TRs that might be Fast-Tracked to SC22 (via
JTC 1) in the near future. (The next SC22 plenary will be held Sep 6-10 in Seoul, South
Korea.)

At its recent plenary, ISO/IEC JTC 1 approved the free availability of the ISO/IEC standard
and TR for CLI.
SC 22/WG 21 - liaison policy, reflector policy, public-release
docs policy

TG5’s mission is to produce a standard for a binding to a programming language for which
there is an existing, and very active, standards committee, ISO/IEC JTC 1/SC 22/WG 21
(which holds co-located meetings with the U.S.-based committee INCITS/J16). How can we
make use of this significant existing expertise as well as keep that committee informed of
our work? Specifically,

e Who can attend TG5 meetings?

e Who has access to TG5 email reflector traffic?

e Who has access to TG5 documents?

The question arose as to how our end result could affect evolution of the C++ standard.

As submitted, the base document contains features that are necessary to support CLI but
also overlap directly with Standard C++ evolution.

What are the goals of TG5?

e |s the intent to simply endorse MS’s plan?

e Are we trying to make C++/CLI at least as powerful as C#?

e How should we handle extensions that overlap with Standard C++ evolution?
e What makes sense for the long-term future of C++?

There was considerable discussion about these ideas, among others. Extensions that
overlap with Standard C++ should also be proposed to, and feedback/direction solicited
from, WG21. No other firm goals were adopted.

Liaisons from TG5 to WG21 were appointed. They are: Tom Plum, P.J. Plauger, Tana
Plauger, John Spicer, and Steve Adamczyk.

Herb’s proposal w.r.t TG5 meeting attendance, reflector access, and document access by
Standard C++ participants was approved as part of the WG21 liaison. Herb will make this an
official TG5 document and then make it an official WG21 document as well.

Jan will create the new TG5-WG21 liaison email reflector, which TG5 will use for all future
technical discussions.

Motion: Herb Sutter/Tom Plum that TG5 adopt the policy, which, by default, permits all TG5
documents (including minutes once approved, and working drafts) to be included in the
WG21 liaison report. Unanimous.

secma

7
7.1

7.2

7.3

8
8.1

Date and place of future meetings

Next meeting

January, 2004. Kona, Hawaii, hosted by Plum Hall. (See document 2003/5 for hotel
registration and other information.)

1/25, Sun: TG2 (C#)
1/26, Mon: TG2 (C#)
1/27, Tue: TG3 (CLI)
1/28, Wed: TG3 (CLI)
1/29, Thu: TG5 (C++/CLI)
1/30, Fri: TG5 (C++/CLI)
1/31, Sat: TG5 (C++/CLI)

TG5 members are invited to sit in on the CLI meeting that precedes the TG5 meeting.

Future meetings

March, 2004. Monash University’s downtown office at 30 Collins Street, Melbourne, Victoria,
Australia, hosted by Monash University.

3/14, Sun: TG3 (CLI)

3/15, Mon: TG3 (CLI)

3/16, Tue: TG2 + TG4 + TG1 (C#, Eiffel, ECMAScript)
3/17, Wed: TG2 + TG4 + TG1 (C#, Eiffel, ECMAScript)
3/18, Thu morning: TC39 business meeting

3/18, Thu afternoon: TGS (C++/CLI)

3/19, Fri: TG5 (C++/CLI)

3/20, Sat: TG5 (C++/CLI)

May, 2004. Short Hills, NJ, hosted by EDG and Dinkumware. (Nearest airport is Newark, NJ
[EWRY])

5/3, Mon: TG5 (C++/CLI)
5/4, Tue: TG5 (C++/CLI)

June, 2004. Tentatively in Redmond, WA, or Bend, OR.

6/14, Mon: TG5 (C++/CLI)
6/15, Tue: TG5 (C++/CLI)
6/16, Wed: TG3 (CLI)
6/17, Thu: TG3 (CLI)
6/18, Fri: TG2 (C#)

6/19, Sat: TG2 (C#)

August, 2004. Tentatively in Bend, OR, or Portland, OR.
Sometime in the week of 2-6. TG3 (CLI) might also meet then.

Teleconference planning
Tue, Dec 16", 10 am Pacific Time, for 2 hours.

Key Technical Discussions

Adopt base document

The Candidate Base Document was made TG5 document number 2003/4. (Except for the
addition of the ECMA document number, this document is identical to that made available to
the public by Microsoft.)

Motion: P.J. Plauger/ Herb Sutter that we adopt document 2003/4 as TG5’s Base Document.
Unanimous

@ecma

8.2

10

11

Technical issues to resolve in base document
Will our spec show all the diffs to the C++ Standard? No, not simply as a list of changes.

We walked through the base doc looking at “TODO” (marked in pink), creating entries in the
comment spreadsheet, as necessary. Some of the issues raised were:

1. We should spell out the scaffolding assumed by the code fragments (w.r.t namespaces).

2. ltis expected that no new string literal form will be needed to deal with System::String.

w

What is the name of the 64-bit integer type? long long? __int64? In any event, we need
a literal suffix, promotion rules, etc.

How will we map long double? System::Double? Implementation-defined?
Comma vs. semicolon as separator in indexed access expressions.
Should sizeof(ref-class) be permitted? What about sizeof(value-type)?
Should for-each work with STL types?

Can for-each simply be spelled “for”?

© ©® N o o &

How might parameter arrays fit into sequence constructors, currently being considered
in WG21?

10. Decided that a property should not be able to return a C-style array.

11. Decided that compound assignment operators should not be synthesized for native
classes.

We got to, and completed, §18.6.4. (The remaining clauses will be covered in the next
teleconference.)

Brandon will monitor compatibility issues w.r.t the C++ Standard.

Agenda items for the Jan meeting

Walk-through of WD1.1 to confirm the tracked changes resulting from committee decisions,
and to review changes that are pending approval.

Brandon Bray: paper on “It just works”.

Brandon Bray: paper on metadata names.

Steve Adamczyk: paper on 64-bit integer mapping.

Tom Plum: paper on for-each support for STL types, and use of for instead of for-each.

Review of action items from the comment spreadsheet.

Thank meeting host

Everyone thanked meeting hosts Plum Hall and Microsoft, dinner host Microsoft, and Bjarne
Stroustrup for his assistance with local arrangements.

Adjournment

The meeting was adjourned at 2:15 pm.

A B C D E F G H |
Date Raised?Issue Raiser? Reference [Issue Type JOwner Comment Other Remarks Resolved? JPostponed?
7-0ct-03|Rex Jaeschke Technical Peter Hallam The current ELI spec supports Unicode V-3.0. Peter Brought up during the phone meeting of 10/7. No
Hallam of MS has an action item to see what's
involved in having TG2 (C#) and TG3 (CLI) support
Unicode V4.0. If TG3 makes changes in this direction,
TGS5 should look at how this would affect its spec.
7-Oct-03|Tom Plum Technical Tom Plum Diagnostics: How should we deal with warnings and Brought up during the phone meeting of 10/7. No
such?
10-Oct-03|Phone meeting Editorial Editor Future directions: Should there be an informative No
annex listing future directions?
Possible entries are:
1. Supporting static members in interfaces
2. Mixed types
3. gcnew of unmanaged types
4. new of managed types
10-Oct-2003|Tom Plum Technical Tom Plum While discussing enums (25.1.3) and wchar_t's not In email on 10/12/2003 Tom Plum wrote: No
being permitted as an underlying type, a discussion
arose w.r.t CLI's requiring wchar_t to have the same |Refining my comments re wchar_t, I see a short-term
representation as System::Char; that is, a 16-bit and a long-term ...
character.
Short-term, there's no need to change anything. The
This needs further investigation. 16-bit unicode type is wchar_t in VC++ and in C++/CLI.
Possible need to look at/point to the PDTR currently [Long-term, the decision is up to TG5, and depends upon
out from WG11 (ISO C). who participates. My own guess is that TG5 in fact will
be the first group that has to integrate Unicode 3.1 and
This is part of a more general issue. Do we require 4.0 into its language definition. I suspect that before
exact mapping for types, or do we allow a certain we're done we'll have four types of character (and literal
amount of flexibility? wchar_t, int vs. long. What and C++ string):
about long double? System::Double vs.
implementation-defined. char - has to be 8 bits to integrate with CLI
'x' "str" string = basic_string<char>
wchar_t - implementation's legacy choice of widechar
L'x' L"str" wstring = basic_string<wchar_t>
char1l6_t - 16-bit character type, has to be UCS-2 or
UTF-16 for CLI
u'x' u"str" ustring (?) = basic_string<char16_t> (or
string16?)
char32_t - 32-bit character type, has to be UTF-32 for
CLI
U'x" U"str" Ustring (?) = basic_string<char32_t> (or
string32?)
wchar_t can be the same type as charl6_t or char32_t,
but isn't required to be
10-Oct-2003|Phone meeting Technical Brandon Bray Issue of mapping system value types to the No

fundamental types, and interop with the standard
library.

A B C D E F H |
] Date Raised?Issue Raiser? Reference [Issue Type JOwner Comment Other Remarks Resolved? JPostponed?
21-Oct-03|Rex Jaeschke Technical Brandon Bray What is the interaction between the standard I/O No
7 streams and System::Console?
4-Dec-2003|meeting #1 (TX) 12.1.1|Technical Steve Adamczyk Write a paper for Jan, 04, meeting on 64-bit integer No
8 mapping
9 4-Dec-03|meeting #1 (TX) Technical Brandon Bray Write a paper for Jan, 04, meeting on "It just works" No
4-Dec-2003|meeting #1 (TX) 14|Technical Brandon Bray pull together all the conversion information into one No
10 place. Make sure all conversions are covered.
4-Dec-2003|meeting #1 (TX) 15.3.2|Technical Brandon Bray coma vs. semicolon as separator in indexed access No
11 expressions
4-Dec-2003|meeting #1 (TX) 9| Technical Tom Plum Issue of source code/Unicode mapping. What No
assumptions, if any, should we make about the form
12 of input text?
13 4-Dec-2003|meeting #1 (TX) 12| Technical Brandon Bray Add a diagram of the type tree No
14 5-Dec-03|meeting #1 (TX) 15.3.9|Technical John Spicer alternative syntax for typeid <type-id> No
5-Dec-2003|meeting #1 (TX) 16.1.1|Technical Tom Plum Write a paper for Jan, 04, meeting on use of for-each No
15 with STL types.
5-Dec-03|meeting #1 (TX) 16.1.1|Technical Tom Plum Write a paper for Jan, 04, meeting on spelling "for No
16 each" simply as "for".
5-Dec-03|meeting #1 (TX) 17|Technical John Spicer Check on the UK submission to WG21 re opening No
17 nested namespaces.
5-Dec-2003|meeting #1 (TX) 18.3.6|Technical Bjarne Stroustrup How might parameter arrays fit into sequence No
18 constructors being considered in WG21?
5-Dec-2003|meeting #1 (TX) Technical Brandon Bray list of overlap between Standard C++ and features No
19 proposed by C++/CLI

A B C D F H |
Date Raised?Issue Raiser? Reference [Issue Type JOwner Comment Other Remarks Resolved? JPostponed?
1
8-Dec-2003|Herb Sutter 18.7.1|Technical Subject: RE: CLI binding: Delegating constructors and No
exceptions
>>> "Herb Sutter" <hsutter@microsoft.com> 24
November 2003 18:33:42 >>>
> Actually, it's in there, thanks to BSI.
> EDG suggested that we specify the answer in terms
of object lifetime,
so that other answers,
> including the destructor calling question, can just
fall out from rest
of ISO C++ which specifies
> most things in terms of object lifetimes. In the
11/21 spec, we tried
to cover this in 18.7.1
> (page 99:44-49)
Thanks for joining the dots for me <g>
> This decision can be reviewed of course, and
currently follows your
option (ii) below.
> Does this address your question?
Yes. Thanks.
> Further comments are definitely welcome, and for
our part we're happy
to reconsider this
> choice if it's not the right decision.
My feeling is still at this option will make it more
difficult to write code. The (contrived) minimal
example that motivates me would be:
20 class Delegated

A B C D E F G H |
Date Raised?Issue Raiser? Reference [Issue Type JOwner Comment Other Remarks Resolved? JPostponed?
7-0ct-03|Rex Jaeschke Technical Peter Hallam The current ELI spec supports Unicode V-3.0. Peter Brought up during the phone meeting of 10/7. No
Hallam of MS has an action item to see what's
involved in having TG2 (C#) and TG3 (CLI) support
Unicode V4.0. If TG3 makes changes in this direction,
TGS5 should look at how this would affect its spec.
7-Oct-03|Tom Plum Technical Tom Plum Diagnostics: How should we deal with warnings and Brought up during the phone meeting of 10/7. No
such?
10-Oct-03|Phone meeting Editorial Editor Future directions: Should there be an informative No
annex listing future directions?
Possible entries are:
1. Supporting static members in interfaces
2. Mixed types
3. gcnew of unmanaged types
4. new of managed types
10-Oct-2003|Tom Plum Technical Tom Plum While discussing enums (25.1.3) and wchar_t's not In email on 10/12/2003 Tom Plum wrote: No
being permitted as an underlying type, a discussion
arose w.r.t CLI's requiring wchar_t to have the same |Refining my comments re wchar_t, I see a short-term
representation as System::Char; that is, a 16-bit and a long-term ...
character.
Short-term, there's no need to change anything. The
This needs further investigation. 16-bit unicode type is wchar_t in VC++ and in C++/CLI.
Possible need to look at/point to the PDTR currently [Long-term, the decision is up to TG5, and depends upon
out from WG11 (ISO C). who participates. My own guess is that TG5 in fact will
be the first group that has to integrate Unicode 3.1 and
This is part of a more general issue. Do we require 4.0 into its language definition. I suspect that before
exact mapping for types, or do we allow a certain we're done we'll have four types of character (and literal
amount of flexibility? wchar_t, int vs. long. What and C++ string):
about long double? System::Double vs.
implementation-defined. char - has to be 8 bits to integrate with CLI
'x' "str" string = basic_string<char>
wchar_t - implementation's legacy choice of widechar
L'x' L"str" wstring = basic_string<wchar_t>
char1l6_t - 16-bit character type, has to be UCS-2 or
UTF-16 for CLI
u'x' u"str" ustring (?) = basic_string<char16_t> (or
string16?)
char32_t - 32-bit character type, has to be UTF-32 for
CLI
U'x" U"str" Ustring (?) = basic_string<char32_t> (or
string32?)
wchar_t can be the same type as charl6_t or char32_t,
but isn't required to be
10-Oct-2003|Phone meeting Technical Brandon Bray Issue of mapping system value types to the No

fundamental types, and interop with the standard
library.

A B C D E F H |
] Date Raised?Issue Raiser? Reference [Issue Type JOwner Comment Other Remarks Resolved? JPostponed?
21-Oct-03|Rex Jaeschke Technical P.J. Plauger What is the interaction between the standard I/O No
7 streams and System::Console?
4-Dec-2003|meeting #1 (TX) 12.1.1|Technical Steve Adamczyk Write a paper for Jan, 04, meeting on 64-bit integer No
8 mapping
9 4-Dec-03|meeting #1 (TX) Technical Brandon Bray Write a paper for Jan, 04, meeting on "It just works" No
4-Dec-2003|meeting #1 (TX) 14|Technical Brandon Bray pull together all the conversion information into one No
10 place. Make sure all conversions are covered.
4-Dec-2003|meeting #1 (TX) 15.3.2|Technical Brandon Bray coma vs. semicolon as separator in indexed access No
11 expressions
4-Dec-2003|meeting #1 (TX) 9| Technical Tom Plum Issue of source code/Unicode mapping. What No
assumptions, if any, should we make about the form
12 of input text?
13 4-Dec-2003|meeting #1 (TX) 12| Technical Brandon Bray Add a diagram of the type tree No
14 5-Dec-03|meeting #1 (TX) 15.3.9|Technical John Spicer alternative syntax for typeid <type-id> No
5-Dec-2003|meeting #1 (TX) 16.1.1|Technical Tom Plum Write a paper for Jan, 04, meeting on use of for-each No
15 with STL types.
5-Dec-03|meeting #1 (TX) 16.1.1|Technical Tom Plum Write a paper for Jan, 04, meeting on spelling "for No
16 each" simply as "for".
5-Dec-03|meeting #1 (TX) 17|Technical John Spicer Check on the UK submission to WG21 re opening No
17 nested namespaces.
5-Dec-2003|meeting #1 (TX) 18.3.6|Technical Bjarne Stroustrup How might parameter arrays fit into sequence No
18 constructors being considered in WG21?
5-Dec-2003|meeting #1 (TX) Technical Brandon Bray list of overlap between Standard C++ and features No
19 proposed by C++/CLI

A B C D E F H |
Date Raised?Issue Raiser? Reference [Issue Type JOwner Comment Other Remarks Resolved? JPostponed?
1
8-Dec-2003|Herb Sutter 18.7.1|Technical Subject: RE: CLI binding: Delegating constructors and No
exceptions
>>> "Herb Sutter" <hsutter@microsoft.com> 24
November 2003 18:33:42 >>>
> Actually, it's in there, thanks to BSI.
> EDG suggested that we specify the answer in terms
of object lifetime,
so that other answers,
> including the destructor calling question, can just
fall out from rest
of ISO C++ which specifies
> most things in terms of object lifetimes. In the
11/21 spec, we tried
to cover this in 18.7.1
> (page 99:44-49)
Thanks for joining the dots for me <g>
> This decision can be reviewed of course, and
currently follows your
option (ii) below.
> Does this address your question?
Yes. Thanks.
> Further comments are definitely welcome, and for
our part we're happy
to reconsider this
> choice if it's not the right decision.
My feeling is still at this option will make it more
difficult to write code. The (contrived) minimal
example that motivates me would be:
20 class Delegated
24-Nov-2003|Attila Feher Editorial Editor When distilling PDF, add bookmarks. Look at other No
21 options too (such as hotlinks).
24-Nov-2003|Attila Feher 8.4|Technical Base doc, pp. 17, line 43 (Automatic memory No
management).
Object” Pop() {
if (first == nullptr)
throw gcnew Exception("Can't Pop from an empty
Stack.");
Why do you gcnew the Exception? Is it necessary?
There you throw a hat (handle), if I understand
correctly. But why... Cannot even a value type just
be thrown and make the catch box it, as it happens in
C++7?
22
23 | 16-Dec-2003[Phone meeting 8.2.3|Editorial Brandon Bray Say more, especially w.r.t the template class array<element-type>. No

A B C D E F H |
] Date Raised?Issue Raiser? Reference [Issue Type JOwner Comment Other Remarks Resolved? JPostponed?
16-Dec-2003|Phone meeting 9|Technical Brandon Bray Review this clause. Things to be added include No
changing "fp-number" so 3.ToString is parsed as an
integer and a member-selection operator, rather than
24 a a fp constant.
16-Dec-2003|Phone meeting 10| Technical Brandon Bray Revise this clause by covering topics including No
application entry point, assembly boundaries, among
25 others.
16-Dec-2003|Phone meeting 10.2.1|Technical Brandon Bray Clarify the ordering definition when multiple No
26 accessibility keywords are used.
27] 16-Dec-2003|Phone meeting 12.3.6|Technical Brandon Bray Provide a grammar for interior_ptr No
16-Dec-2003|Phone meeting 12.3.6|Technical Brandon Bray Describe how the compiler will need to emit a modopt No
to distinguish interior_ptr<T> from tracking reference
28 to T (T%) in the metatada.
291 16-Dec-2003[Phone meeting 12.3.6.2[Technical Brandon Bray Spell out target type restrictions No
30 | 16-Dec-2003[Phone meeting 12.3.6.3|Editorial Brandon Bray Describe the dangers of pointer arithmetic and interior_ptrs. No
31 16-Dec-2003|Phone meeting 12.3.7|Technical Brandon Bray Provide a grammar for pinning_ptr No
32| 16-Dec-2003[Phone meeting 13| Technical Brandon Bray What, if anything, goes in this clause? No
33| 16-Dec-2003|Phone meeting 14.1.1|Editorial Brandon Bray Review this subclause. No
34 | 16-Dec-2003|Phone meeting 14.4|Editorial Brandon Bray Review this subclause. No
16-Dec-2003|Phone meeting 15.1|Technical Brandon Bray The rewrite rules for e[x] (default indexed accesses) No
are different where there is only one index. This is
because there is a potential ambiguity with the C++
35 operator[]. Is this mentioned elsewhere?
36 | 16-Dec-2003[Phone meeting 15.3.8|Technical Brandon Bray cv-qualification needs to be considered. No
37| 16-Dec-2003[Phone meeting 15.3.9|Technical Brandon Bray Are typeid<long> and typeid<char> allowed (and if so, what do they mean). No
16-Dec-2003|Phone meeting 15.3.9|Technical Brandon Bray Provide a spec for standard typeid (that returns No
std::type_info) in addition to the new typeid (that
38 returns System::Type).
39 [16-Dec-2003[Phone meeting 15.3.13|Editorial Brandon Bray Update this subclause No
40 16-Dec-2003[Phone meeting 15.4.1.1[Editorial Brandon Bray Review this subclause. No
41 16-Dec-2003|Phone meeting 15.4.1.4|Technical All Should a unary » operator exist? No
16-Dec-2003|Phone meeting 15.4.6|Technical Brandon Bray Define the grammar for gcnew array, and describe No
42 array creation expression.
16-Dec-2003|Phone meeting 15.11.1|Technical Brandon Bray Add support for handle equality comparison, and No
43 handle ==/!= nullptr, and vice versa.
44 | 16-Dec-2003[Phone meeting 15.18|Technical Brandon Bray Add words discuss assignment for properties and events from the point of view of the rewrite rules. No
45| 16-Dec-2003|Phone meeting 15.2|Technical Brandon Bray Investigate whether string literals include compile-time_expressions, such as string concatenation. No
46 | 16-Dec-2003|Phone meeting 16.3|Technical All Should statements exist to control the overflow-checking context for integral-type arithmetic operations and corfNo
47] 16-Dec-2003[Phone meeting 17|Technical Brandon Bray Provide text for this clause No
48] 16-Dec-2003|Phone meeting 18.3.1|Technical Brandon Bray Explain the difference between using ‘override’ and ‘= function-name’; one creates an .override directive in CIL,{No
49| 16-Dec-2003|Phone meeting 18.3.4|Technical Brandon Bray Describe in more detail the semantics of new, including_its use on static member functions (currently new only gNo
50 | 16-Dec-2003|Phone meeting 18.4|Technical Brandon Bray Extend declarator-id’s by adding a new production that allows default. No
16-Dec-2003|Phone meeting 18.4|Technical Brandon Bray The grammar for indexer-parameter-declaration does No
not allow handles or pointers, but full declarators are
not needed. The grammar should allow a simpler
51 sequence of ptr-operator.
16-Dec-2003|Phone meeting 18.4.2|Technical Brandon Bray This subclause only covers how the accessor functions No
must be defined. The expressions clause needs to
59 cover the rewrite rules that call accessor functions.
53 | 16-Dec-2003[Phone meeting 18.4.2|Technical Brandon Bray Describe the qualified name of a property No
94| 16-Dec-2003|Phone meeting 18.5.2|Editorial Brandon Bray Review this subclause. No
99 | 16-Dec-2003|Phone meeting 18.6|Editorial Brandon Bray Review this subclause. No
56 16-Dec-2003|Phone meeting 18.6.4|Technical Brandon Bray Identify when synthesis would and would not occur. No
571 16-Dec-2003[Phone meeting 18.6.5.1[Technical Brandon Bray Writeup op_true and op_false operators No

A

B

C

D

H

Date Raised?}

JIssue Raiser?

Reference

JIssue Type

Owner

Comment

Other Remarks

Resolved?

Postponed?

58

16-Dec-2003]

Phone

meeting

18.6.6.1

Technical

Mark Hall

Reword this subclause similarly to the way special
member functions are described.

No

09

16-Dec-2003,

60

16-Dec-2003|

Phone
Phone

meeting

18.6.6.1

Technical

Mark Hall

Add another subclause to cover the compiler-

meeting

18.9

Technical

Brandon Bray

No

Add grammar for literal-constant-initializer = Standard|
C++ constant-initializer + float/double + String +
nullptr.

No

61

16-Dec-2003]

Phone

meeting

18.9, 18.10

Technical

Brandon Bray

Justify why we need literal and initonly fields.

No

62

16-Dec-2003]

Phone

meeting

18.10.1

Technical

Brandon Bray

Add a description that for any value class we have to
make the copy before calling member functions.

No

63

16-Dec-2003|

Phone

meeting

18.11

Technical

Brandon Bray

Say more about finalizers (including Dispose/~T and
Finalize/!T) and add some examples.

54

16-Dec-2003]

Phone

meeting

19

Technical

Brandon Bray

Supply more text for this clause.

No

819

16-Dec-2003,

66

16-Dec-2003]

Phone
Phone

meeting

18.1

Technical

Tom Plum

As a cross-language issue, come up with terminology

meeting

21

Editorial

Brandon Bray

No

Introduce value classes -- Discuss the following: value
classes are optimized for small data structures. As
such, value classes do not allow inheritance from
anything but interface classes. Tie in fundamental
classes

No

67

16-Dec-2003|

Phone

meeting

21.4.1

Technical

Brandon Bray

Add words about instance constructors and static
constructor.

Value classes cannot have SMFs (specifically, default
constructor, copy constructor, assignment operator,
destructor, or finalizer. Need to add specification for
this along with rationale.

No

68

16-Dec-2003]

Phone

meeting

Technical

Brandon Bray

Consider writing some text for this "place-holder"
clause. Should this all go in the new annex "Future
directions"?

69

16-Dec-2003]

Phone

meeting

Technical

Tom Plum

The spec currently states "Throughout this Standard,
the term array is used to mean an array in C++/CLI.
A C++-style array is referred to as a native array
whenever the distinction is needed." Tom was
concerned that this was, perhaps, too subtle. He will
try to come up with an alternative name for C++/CLI
arrays.

70

16-Dec-2003|

Phone

meeting

Technical

Sean Perry

Check if the term "array" is used in the library
extensions plan of WG21.

71

16-Dec-2003]

Phone

meeting

Editorial

Brandon Bray

Will review this whole clause.

No

72

16-Dec-2003|

Phone

meeting

Technical

Sean Perry

Look into possible performance issues re "for each"
and delegates.

73

16-Dec-2003]

Phone

meeting

Technical

Tom Plum

No

"Every array type inherits the members declared by
the type System::Array. In addition, arrays have
iterators compatible with Standard C++'s template
library." To will provide expanded text here (with
Brandon's help).

74

16-Dec-2003]

Phone

meeting

23.5

Technical

Brandon Bray

Look at array covariance w.r.t arrays having copy
constructors.

75

16-Dec-2003]

Phone

meeting

23.6

Technical

Brandon Bray

Write up array initialization.

No

76

16-Dec-2003|

Phone

meeting

24.4]

Technical

Brandon Bray

Address what happens when a ref class does not
implement an interface function (and what happens
when a base class has a non-virtual function with the

same name).

No

A B C D E F H |

] Date Raised?Issue Raiser? Reference [Issue Type JOwner Comment Other Remarks Resolved? JPostponed?
77 16-Dec-2003|Phone meeting 25|Technical Herb Sutter Coordinate with WG21's extended enum proposal. No

16-Dec-2003|Phone meeting 26.1|Technical Brandon Bray Redo the grammar for delegate-definition, and find a No

place for it in the type tree. Replace all uses of "return

78 type" with appropriate production.

16-Dec-2003|Phone meeting 27|Technical Brandon Bray Cover unification of CLI and Standard C++ exception- No

handling models, and anything else that might go in

79 this clause.
80 [16-Dec-2003[Phone meeting 20.5.1|Technical Brandon Bray Check the name System::Reflection::DefaultMemberAttribute; it might have been renamed in the CLI standard.|No
81 16-Dec-2003|Phone meeting 20.5.2|Technical Brandon Bray Describe attribute MethodImplOption. No
82| 16-Dec-2003[Phone meeting 29|Technical Brandon Bray Flesh out "Templates" clause. No
83| 16-Dec-2003[Phone meeting 30| Technical Brandon Bray Flesh out "Generics" clause. No

16-Dec-2003|Phone meeting 31|Technical P.J. Plauger Suggest possibly standard library interaction issues No
84 apart from I/0O synchronization.
85| 16-Dec-2003[Phone meeting 32|Technical Brandon Bray Flesh out "CLI libraries" clause. No
87| 16-Dec-2003[Phone meeting AlTechnical Brandon Bray Flesh out "Verifiable code" clause. No
88 | 16-Dec-2003[Phone meeting B|Technical Brandon Bray Flesh out "Documentation comments" clause. No
89| 16-Dec-2003[Phone meeting C|Technical Editor Add any non-normative references No
90 [16-Dec-2003[Phone meeting D|Technical Editor Add naming guidelines for generics No

	Cover
	2003-tg5-006.pdf
	2004tg5-003.pdf
	Table of Contents
	Introduction
	1. Scope
	2. Conformance
	3. Normative references
	4. Definitions
	5. Notational conventions
	6. Acronyms and abbreviations
	7. General description
	8. Language overview
	9. Lexical structure
	10. Basic concepts
	11. Preprocessor
	12. Types
	13. Variables
	14. Conversions
	15. Expressions
	16. Statements
	17. Namespaces
	18. Classes and members
	19. Native classes
	20. Ref classes
	21. Value classes
	22. Mixed classes
	23. Arrays
	24. Interfaces
	25. Enums
	26. Delegates
	27. Exceptions
	28. Attributes
	29. Templates
	30. Generics
	31. Standard C and C++ libraries
	32. CLI libraries
	A. Verifiable code
	B. Documentation comments
	Non-normative references
	D. CLI naming guidelines
	E. Future directions
	F. Index

	2004tg5-002.pdf
	2004-tg5-001.pdf
	2003-tg5-010.pdf
	2003-tg5-009.pdf
	2004-tg5-004.pdf

