

Doc No: SC22/WG21/N1760
 J16/05-0020

 Date: Nov 10, 2004
 Project: JTC1.22.32

 Reply to: Herb Sutter
 Microsoft Corp.

 1 Microsoft Way
 Redmond WA USA 98052

 Email: hsutter@microsoft.com

TG5 Liaison Report #7

Meeting #8 of Ecma TC39/TG5 (C++/CLI) was held in Redmond, WA, USA, on
October 22–23, 2004.

The following TG5 documents are attached to this liaison report:

• TC39-TG5/2004/41 Agenda for the 8th meeting of TC39-TG5, Redmond,
October 2004

• TC39-TG5/2004/42 Intentionally omitted (see below)
• TC39-TG5/2004/43 Project Editor's Report, October 2004
• TC39-TG5/2004/44 C++/CLI Specification Comments - revision 14 October

2004
• TC39-TG5/2004/45 C++/CLI Specification Comments - revision 26 October

2004
• TC39-TG5/2004/46 Minutes of the 8th meeting of TC39-TG5, Redmond,

October 2004

Document TC39-TG5/2004/42, “Working Draft 1.8 of the C++/CLI Standard, Language”
is not included. This draft can be found at the following URLs:

• http://www.plumhall.com/ecma/index.html
• http://msdn.microsoft.com/visualc/homepageheadlines/ecma/default.aspx
• http://www.dinkumware.com

Ecma/TC39-TG5/2004/041

Agenda
for the: 8th meeting of Ecma TC39-TG5
to be held in: Redmond, WA, USA
on: 22-23 October 2004

TIME: 13:00!! t i l l 17:00 on Fri 22n d October 2004
 09:00 t i l l 17:00 on Sat 23r d October 2004
 [Noon lunch each day]

LOCATION: Fri 22nd October: Bldg 44, Room 3200
 Sat 23rd October: Bldg 41, Room 2731
 Microsoft Campus, Redmond WA 98052 USA
 (Directions: see TG5/2004/021)

CONTACT: John Hawkins
 johawk@microsoft.com

1 Opening
1.1 Appointment of Recording Secretary
1.2 Introduction of participants
1.3 Host facilities/local information

2 Adoption of the agenda

3 Final approval of minutes of previous TG5 meeting
(2004TG5 040)

4 Matters arising from the minutes not covered elsewhere

5 Project Editor’s Report

6 Approving tracked changes in latest draft

7 Date and place of next meetings
7.1 January xxx, Westfield, NJ; hosted by EDG/Dinkumware
7.2 March 8, 9, and 11(9am), Kona, HI; hosted by Plum Hall

NOTE
TC39 business meeting takes place March 11(pm)

Ecma International Rue du Rhône 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org

IW tc39-tg5-2004-041.doc

mailto:johawk@microsoft.com

8 Reports from Liaisons
8.1 TC39 TG3 (CLI) – Rex Jaeschke
8.2 SC22/WG21 (C++) – Tom Plum, P. J. Plauger, Tana Plauger,

John Spicer, and Steve Adamczyk
8.2.1 explicit conversion functions (#105, Hall)

8.3 TC39 TG2 (C#) – Rex Jaeschke

9 Action item spreadsheet review

10 Any other business, and appreciation of hosts

11 Adjournment

2

This is a replacement/place-holder for Document TC39-TG5/2004/42, “Working
Draft 1.8 of the C++/CLI Standard, Language”. This draft can be found at the following
URLs:

• http://www.plumhall.com/ecma/index.html
• http://msdn.microsoft.com/visualc/homepageheadlines/ecma/default.aspx
• http://www.dinkumware.com

 Ecma/TC39-TG5/2004/043

2004-10 Project Editor’s Report
Rex Jaeschke

ECMA TC39-TG5 project editor
rex@RexJaeschke.com

+1 703 860-0091

Working Draft 1.8 has been produced and distributed. The following work went into producing it:

1. I applied corrections resulting from the Redmond Sep meeting.

2. I created Clause 33, “Metadata”, and moved all metadata-related text from the other clauses (except for
the custom modifier text in Clause 32) to this new clause. Only new metadata in this clause has been
tracked.

3. I made many improvements of an editorial nature; these were not tracked. (They included changing
numerous examples so that properties were no longer in native classes.)

4. I merged in Steve’s long long proposal.

5. Some issues I came across while working on the draft:

a. In email on Oct 6, I raised the question of whether a ref class can be implicitly abstract if it
contains an abstract or pure virtual method.

b. 18.9, “Static constructors”, states: “A static constructor can have any access-specifier. [Note:
However, for security reasons, a static constructor should have a private access-specifier.”
True, it can have any access-specifier; however, the compiler always emits it in metadata as
private. If that is correct, should we allow it to de declared with any access-specifier other
than private?

Ecma International Rue du Rhône 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org

2004tg5-043 For Ecma use only

mailto:rex@RexJaeschke.com

1

10

11

13

19

23
24

25

27

28
29
32
33
34

35
36

38

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

4-Dec-03 meeting #1 (TX) 14 Technical M Brandon Bray pull together all the conversion information into one
place. Make sure all conversions are covered.

No

4-Dec-03 meeting #1 (TX) 15.3.2 Technical Steve Adamczyk comma vs. semicolon as separator in indexed access
expressions

In indexed access expressions (§15.3.2), comma
operators are currently disallowed inside [] unless
they are enclosed in parentheses. This conflicts with
usage in existing template libraries (e.g., Lambda),
in which the comma operator occurs inside []
without enclosing it in parentheses.

Meeting #2 (HI): Can we treat commas in [] not
having enclosing parenthesis, in any context, always
be treated as punctuators?

Yes. Steve will provide words to the editor for this.

Meeting #3 (Mel): Steve produced a paper. He
reported one outstanding issue: In 15.3.2, "Indexed
Access", in the C++/CLI spec is rather vague. There,
we have
 indexed-access: indexed-designator [expression-list
]
where indexed-access is defined as an additional
alternative for
postfix-expression:
 postfix-expression: indexed-access
Unfortunately, there isn't any definition of indexed-
designator, so I'm not quite sure whether all the multi-
dimensional cases are supposed be handled by indexed-
designator, leaving the traditional cases to be handled
by the original (possibily modified) syntax.
An alternative would be not to introduce indexed-
access at all, and use the definition
 postfix-expression: postfix-expression [expression-
list]
to handle all the cases, for both traditional subscripting
and the new C++/CLI indexer references.
There was agreement to this so Steve will update his p

No

4-Dec-03 meeting #1 (TX) 12 Technical M Brandon Bray Add a diagram of the type tree No

5-Dec-03 meeting #1 (TX) Technical L Brandon Bray list of overlap between Standard C++ and features
proposed by C++/CLI

No

16-Dec-03 Phone meeting 8.2.3 Editorial H Brandon Bray Say more, especially w.r.t the template class
array<element-type>.

No

16-Dec-03 Phone meeting 9 Technical R Brandon Bray Review this clause. No
16-Dec-03 Phone meeting 10 Technical H Brandon Bray Revise this clause by covering topics including

application entry point, assembly boundaries, among
others.

No

16-Dec-03 Phone meeting 12.13.6 Technical H Brandon Bray Describe how interior_ptr, pin_ptr, array, and
safe_cast are template-like with certain constraints.

No

16-Dec-03 Phone meeting 12.3.6 Technical M Brandon Bray Describe how the compiler will need to emit a
modopt to distinguish interior_ptr<T> from tracking
reference to T (T%) in the metatada.

No

16-Dec-03 Phone meeting 12.3.6.2 Technical M Brandon Bray Spell out target type restrictions No
16-Dec-03 Phone meeting 13 Technical Tom Plum What, if anything, goes in this clause? No
16-Dec-03 Phone meeting 14.1.1 Editorial R Brandon Bray Review this subclause. No
16-Dec-03 Phone meeting 14.4 Editorial R Brandon Bray Review this subclause. No
16-Dec-03 Phone meeting 15.1 Technical H Brandon Bray The rewrite rules for e[x] (default indexed accesses)

are different where there is only one index. This is
because there is a potential ambiguity with the C++
operator[]. Is this mentioned elsewhere?

No

16-Dec-03 Phone meeting 15.3.8 Technical M Brandon Bray cv-qualification needs to be considered. No
16-Dec-03 Phone meeting 15.3.9 Technical L Brandon Bray Provide a spec for standard typeid (that returns

std::type_info) in addition to the new typeid (that
returns System::Type).

No

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

39
40

43

44
47

50

52
54
55

56
57

58

59

62

63

16-Dec-03 Phone meeting 15.3.13 Editorial H Brandon Bray Update this subclause No
16-Dec-03 Phone meeting 15.4.1.1 Editorial R Brandon Bray Review this subclause. No
16-Dec-03 Phone meeting 15.11.1 Technical Mark Hall Add support for handle equality comparison, and

handle ==/!= nullptr, and vice versa.
Meeting #3 (Mel): Had a short discussion. Mark will
produce a paper for the May meeting.

Meeting #4 (NJ): No progress. To be discussed via
email, and at the Jun meeting

Meeting #5 (WA): Discussed briefly. Asked Mark to
write this up and distribute to the reflector.

Phone call Jun 29: This issue was resolved; just needs
drafting of final words.

Meeting 7 (WA): In the case of if(handle), which
conversions are attempted before comparison against
nullptr is used?

We agreed that if an explicit conversion to bool exists,
if(handle) uses that.

There is no implicit unboxing.

Steve and Mark worked on this and presented it to the
full committee on the 2nd day.

Based on committee feedback, Mark will write this up
for future consideration.

No

16-Dec-03 Phone meeting 15.18 Technical H Brandon Bray
Add words to discuss assignment for properties and
events from the point of view of the rewrite rules.

No

16-Dec-03 Phone meeting 17 Technical M Brandon Bray Provide text for this clause No
16-Dec-03 Phone meeting 18.4 Technical M Brandon Bray Extend declarator-id’s by adding a new production

that allows default.
No

16-Dec-03 Phone meeting 18.4.2 Technical H Brandon Bray This subclause only covers how the accessor
functions must be defined. The expressions clause
needs to cover the rewrite rules that call accessor
functions.

No

16-Dec-03 Phone meeting 18.5.2 Editorial R Brandon Bray Review this subclause. No
16-Dec-03 Phone meeting 18.6 Editorial R Brandon Bray Review this subclause. No
16-Dec-03 Phone meeting 18.6.4 Technical M Brandon Bray Identify when synthesis would and would not occur. No

16-Dec-03 Phone meeting 18.6.5.1 Technical L Brandon Bray Writeup op_true and op_false operators No
16-Dec-03 Phone meeting 18.6.6.1 Technical Mark Hall Reword this subclause similarly to the way special

member functions are described.
Meeting 7 (WA): ?? To be done in Tue morning work
sessions.

No

16-Dec-03 Phone meeting 18.6.6.1 Technical H Brandon Bray Add another subclause to cover the compiler-
generated conversion from handle to unspecified
bool type.

Meeting 7 (WA): ?? To be done in Tue morning work
sessions.

No

16-Dec-03 Phone meeting 18.10.1 Technical L Brandon Bray Add a description that for any value class we have to
make the copy before calling member functions.

No

16-Dec-03 Phone meeting 18.11 Technical H Brandon Bray Say more about finalizers (including Dispose/~T and
Finalize/!T) and add some examples.

No

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

65

66

67

68
71

74
75

76

79

81
82

87
88
90

16-Dec-03 Phone meeting 18.1 Technical Editor As a cross-language issue, come up with terminology
to distingish between destructors and finalizers.
Perhaps "deterministic destructor" vs. "non-
deterministic finalizer."

Add some text in spec re this, esp. w.r.t C#'s use of
destructor

No

16-Dec-03 Phone meeting 21 Editorial M Brandon Bray Introduce value classes -- Discuss the following:
value classes are optimized for small data structures.
As such, value classes do not allow inheritance from
anything but interface classes. Tie in fundamental
classes.

No

16-Dec-03 Phone meeting 21.4.1 Technical H Brandon Bray Add words about instance constructors and static
constructor.
Value classes cannot have SMFs (specifically, default
constructor, copy constructor, assignment operator,
destructor, or finalizer. Need to add specification for
this along with rationale.

No

16-Dec-03 Phone meeting 22 Technical L Brandon Bray Consider writing some text for this "place-holder"
clause. Should this all go in the new annex "Future
directions"?

No

16-Dec-03 Phone meeting 23 Editorial R Brandon Bray Will review this whole clause. No
16-Dec-03 Phone meeting 23.5 Technical M Brandon Bray Look at array covariance w.r.t arrays having copy

constructors.
No

16-Dec-03 Phone meeting 23.6 Technical M Brandon Bray Write up array initialization. No
16-Dec-03 Phone meeting 24.4 Technical H Brandon Bray Address what happens when a ref class does not

implement an interface function (and what happens
when a base class has a non-virtual function with the
same name).

No

16-Dec-03 Phone meeting 27 Technical H Brandon Bray Cover unification of CLI and Standard C++ exception-
handling models, and anything else that might go in
this clause.

Are exceptions asynchronous now in some cases?
Yes they are. (For example,
NullReferenceException.)

Meeting #5 (WA): Kevin Free (Microsoft) gave a verbal
presentation.

catch(…) catches managed and native exceptions.

catch(System::Object^) also catches both kinds, but
won’t invoke the destructor (so can leak).

CLI exception handling supports more features than
we expose.

The issue remained with Brandon to write up, as
before.

No

16-Dec-03 Phone meeting 20.5.2 Technical R Brandon Bray
Describe MethodImplOption metadata generation.

No

16-Dec-03 Phone meeting 29 Technical M Brandon Bray Flesh out "Templates" clause. No
16-Dec-03 Phone meeting A Technical L Brandon Bray Flesh out "Verifiable code" clause.

Describe the dangers of pointer arithmetic and
interior ptrs.

No

16-Dec-03 Phone meeting B Technical L Brandon Bray Flesh out "Documentation comments" clause. No
16-Dec-03 Phone meeting D Technical Editor Add naming guidelines for generics No

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

92

94
95

96

29-Jan-04 meeting #2 (HI) Technical M Brandon Bray "size size" name lookup issue (see email thread
started by Herb Sutter on January 14 on the liaison
reflector under the topic {Name lookup 1 (of 2):
"Size Size" (CLI property naming idiom)}.)

This is the common CLI idiom of naming a property
(or potentially other members) with the same name
as its type. In particular, here are two common
examples:

value class Size { /*…*/ };

value class Color { /*…*/ };

ref class X {
public:
 property Size Size;
 property Color Color;
};

In other languages, it’s easy to simply use the
identifier “Size” without qualification and have the
compiler Do the Right Thing™. But C++ name
lookup is different. The status quo in Managed C++
syntax was that we made no change to C++ lookup
rules, with the result that authors of classes that use
this idiom are required to qualify most occurrences
of “Size” which is ugly. The issue mostly appears
only within the class itself (and in derived classes).

Here's a brief description of the problem:

ref class X {
public:
 property Size Size {
 Si () { }

No

29-Jan-04 meeting #2 (HI) Technical Mark Hall Relationship between primitive types and CLI types.

The current spec allows the following: int i = 10;
String^ s = i.ToString();
Standard C++ doesn’t allow member selection on
expressions of primitive type. Assuming int maps to
System::Int32, just how much alike are these two
types? Specifically, when do we treat the primitive as
the underlying class.

Meeting 5 (WA): Asked Mark to write this up and
distribute to the reflector. Please address the side-
effect issue; that is, given (i++).ToString, is the
increment done?

Meeting 7 (WA): ?? To be done in Tue morning work
sessions.

Re the side-effect, yes, it must be done.

No

29-Jan-04 meeting #2 (HI) 10 Technical H Brandon Bray Provide words for #using. No
29-Jan-04 meeting #2 (HI) 9.1.1 Technical M Brandon Bray The spec does not provide a way to use a keyword

as an identifier. (Managed C++ used the intrinsic
__identifier(name) to achieve this; C# uses a leading
@.) This is an issue for inter-operability; for
example, being a consumer of a public type (written
in something other than C++) that has a name (or
contains a public member that has a name) that is a
keyword in C++.

No

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

97

98

105

106

109

29-Jan-04 meeting #2 (HI) Technical Editor Overloading on arity. (This is a liaison issue with
TG3.)

The issue involves the overloading of a non-generic
type with a one or more generic types of the same
name in the same namespace. For example, the
following is permitted by the CLS:

ref class X { /*…*/ };

generic<typename T> /*…*/
ref class X { /*…*/ };

generic<typename T, typename U> /*…*/
ref class X { /*…*/ };

Meeting 3 (Mel): Herb presented this issue, which was
then reassigned to Brandon.

Meeting 5 (WA): In this version, we'll support a
generic and non-generic version of a type in the same
namespace, but not in different namespaces.

There was a discussion about using something like
“using generic x::y” to provide cross-namespace
support as well.

Rex to work with Brandon to get this into the draft.

Meeting 7 (WA): Herb reported that the MS
implementation can consume same-named generics
that overload on arity in the same assembly, but it
cannot create them.

No

29-Jan-04 meeting #2 (HI) 30 Technical R Brandon Bray Restrictions on generics re generic code generation.

The current generics clause needs to be fleshed out,
especially w.r.t how overload resolution works within
the CLI.

Meeting #2 (HI): Brandon will write a paper on this.

Meeting #4 (NJ): The fleshing out of Clause 30 is a
significant contribution toward this. More work needed
in declarations and function calls.

No

29-Jan-04 meeting #2 (HI) 14.5.1 Technical Mark Hall Constructors can't be used in casts in managed
classes. Should they be allowed in explicit
conversions?
All managed type constructors being explicit by
default. (Already yes, but reconfirm this.)

Meeting #4 (NJ): Steve will send the editor
sufficient text to go into the public drop to indicate
our intention re this topic. DONE.

Meeting 5 (WA): Asked Mark to write this up and
distribute to the reflector.

Meeting 7 (WA): Steve and Mark worked on this
and presented it to the full committee on the 2nd
day. Mark will write this up for future consideration.

No

29-Jan-04 meeting #2 (HI) Technical Daveed Vandevoorde Should >> handled as two tokens rather than one;
e.g., List<List<int>>.

Meeting #3 (Mel): Had a short discussion. Tom will
produce a paper for the May meeting.

Meeting #4 (NJ): TG5 agreed that if a < for a template
is seen, and >> that are not inside parentheses, that
>> will always be considered to be the closing
delimiter of two < symbols, and results in an error if
there are not two such corresponding < symbols.

Refer to Daveed's paper WG21/N1649 for more
information.

Meeting #7 (WA): This paper was updated (see
N1699). It was discussed in TG5 and will be discussed
at the up-coming WG21 meeting, at which TG5
members will participate.

No

19-Feb-04 12.3.6.3 Technical L Brandon Bray Cover the dangers of pointer arithmetic and
interior ptrs

No

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

111

116

117

121

122

124

19-Feb-04 15.3.2 Technical M Brandon Bray Need to consider how indexed access expressions are
interpreted in templates.

No

19-Feb-04 18.4.2 Technical H Brandon Bray Add some discussion of how accesses to properties
are rewritten into accessor functions. This should be
covered in rewrite rules in the expressions clause.
Note that access checking for whether a property can
be written to or read to is done after rewriting and
overload resolutions.

No

19-Feb-04 18.4.2 Technical H Brandon Bray The qualified name of a property needs to be
described somewhere. Once that happens, how an
out-of-class definition is done will already be covered
by existing rules.

No

19-Mar-04 meeting #3 (Mel) Technical Steve Adamczyk In the context of Herb's keywords paper (2004-05),
Steve will write up the notion "If it can be an
identifier, it is."

No

19-Mar-04 meeting #3 (Mel) Technical Steve Adamczyk Write a WG21 paper on extended integer types,
promotion rules, costs of conversion, and the like,
for the May meeting.

Meeting #4 (NJ): Not yet done, but still planned. No

10-Jun-04 Jonathan Caves Technical Jonathan Caves Indexed properties -- Consider the following:

interface class I1 {
 property int Value;
};

interface class I2 {
 property int Value[String^] {
 int get(String^);
 void set(String^, int);
 };
};

ref class D : I1, I2 {
 // Implements the properties
};

D^ d;
d->Value["Foo"];

The question is what does the last line do?

Which leads to a language design question - what
should the complier do when faced with a property
followed by a '['

1) Should it look for just parameterized properties
and if there isn't one fail - I suspect not

2) Should it look for all properties and if the returned
set contains a parameterized property it should
prefer it - this sounds like magic to me.

3) Should it look for all properties perform overload
resolution across the whole set and it the resulting
call is ambiguous then issue an error.

Meeting #5 (WA): Discussed this. Option #3 preferred.

Meeting 7 (WA): Discussed this in detail.

property int Value[int] {
 void set(int, int);
};

x->Value[1] = 4
is treated as
x->set_Value(1,4);

property array<int>^ Value {
 array<int>^ get();
}

x->Value[1] = 4
is treated as
x->get_Value()[1] = 4

property int% Value[int] {
 int% get(int);
}

x->Value[1] = 4
is treated as
x->get_Value(1) = 4

This construct violates the principle of properties (that
of setting/getting the value of some property), so is
not to be encouraged; however, it is supported, but no
need to consider it further here.

No

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

125

127

128

129

130

14-Jun-04 meeting #5 (WA) 8.15.3 Technical M Brandon Bray Based on the rules for type deduction in templates, it
seems surprising that you can match
array<ItemType>^ with an argument of type int.
Here is a standard C++ example intended to
illustrate the issue:
 template <class ItemType> struct Stack {};
 template <class ItemType> struct Array {
 Array(ItemType);
 };
 template <class ItemType>
 void PushMultiple(Stack<ItemType>,
Array<ItemType>);
 int main() {
 Stack<int> s;
 PushMultiple(s, 1); // deduction fails
 PushMultiple<int>(s, 1);
 }
Are the rules for generic different in this area?
[There seems to be information related to this in
30.3.2. See that subclause for further comments on
this issue.]

No

14-Jun-04 meeting #5 (WA) 12.3.3 Technical L Brandon Bray
Add text to indicate the circumstances under which the modreq IsBoxed shall be emitted (i.e., passing

No

14-Jun-04 meeting #5 (WA) 12.3.6 Technical L Brandon Bray
The compiler will need to emit a modopt to distinguish interior_ptr<T> from tracking reference to T (T

No

14-Jun-04 meeting #5 (WA) 12.3.7 Technical L Brandon Bray
Need to add text to indicate the circumstances under which the modopt IsPinned shall be emitted (i.e.,

No

14-Jun-04 meeting #5 (WA) 14.1.1 Technical L Brandon Bray
Separate the list of conversions from the order of preference (such as how Standard C++ separates Sta

No

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

131

132

133

134

135

136

138

139

142

143

144

145

14-Jun-04 meeting #5 (WA) 15.3.3 Technical L Brandon Bray

Add text to indicate the circumstances under
which the following type modifiers shall be
emitted, and point to each modifier's definition:
• IsBoxed i.e., passing a handle to a value type).
• IsByValue (i.e., ref class type passed by value).
• IsConst (i.e., pointer or reference to a const-
qualified type).
• IsExplicitlyDereferenced (i.e., interior_ptr as a
parameter).
• IsImplicitlyDereferenced (i.e., parameter is a
reference).
• IsLong (i.e., long/unsigned long/long double
parameters).
• IsExplicitlyDereferenced (i.e., pin_ptr as a
parameter).
• IsSignUnspecifiedByte (i.e., plain char's
sigedness).
• IsUdtReturn (i.e., ref class type returned by
value).
• IsVolatile (i.e., pointer or reference to a volatile-
qualified type).

No

14-Jun-04 meeting #5 (WA) 15.3.10 Technical M Brandon Bray
Unboxing and boxing are described as preferred user-defined conversions. Nothing important about th

No

14-Jun-04 meeting #5 (WA) 15.3.10 Technical L Brandon Bray
The null value is converted to the null value of the destination type. This can be unverifiable and migh

No

14-Jun-04 meeting #5 (WA) 16.3.3 Technical L Brandon Bray
Need to add text to indicate the circumstances under which the modreq IsUdtReturn shall be emitted (i

No

14-Jun-04 meeting #5 (WA) 18 Technical R Brandon Bray
This table and corresponding sections should include Special Member Functions (SMFs) like destructo

No

14-Jun-04 meeting #5 (WA) 18.2.1 Technical L Brandon Bray
Need to address the following: C++/CLI uses the System::Reflection::DefaultMemberAttribute attribu

No

14-Jun-04 meeting #5 (WA) 18.4 Technical Mark Hall
Need to write up the restrictions on trivial properties.

No

14-Jun-04 meeting #5 (WA) 18.4 Technical L Brandon Bray
We probably should say something about the reserved names get_Item and set_Item, and their relation

No

14-Jun-04 meeting #5 (WA) 18.5.3 Technical L Brandon Bray
An event with the new modifier introduces a new event that does not override an event from a base cla

No

14-Jun-04 meeting #5 (WA) 18.6 Technical L Brandon Bray
The restriction below does not apply to non-static member operators – that need not have a parameter

No

14-Jun-04 meeting #5 (WA) 18.6.1 Technical L Brandon Bray Provide an example for "Homogenizing the candidate
overload set".

No

14-Jun-04 meeting #5 (WA) 18.6.5.2 Technical L Brandon Bray Provide C++ names for operator True and False No

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

148

149

151

154

14-Jun-04 meeting #5 (WA) 20.2 Technical L Brandon Bray

Add text to indicate the circumstances under
which the following type modifiers shall be
emitted, and point to each modifier's definition:
• IsConst (i.e., data member involves a cv type).
• IsImplicitlyDereferenced (i.e., has a reference
type).
• IsLong (i.e., long/unsigned long/long double
type).
• IsSignUnspecifiedByte (i.e., plain char's
sigedness).
• IsVolatile (i.e., data member involves a cv
type).

No

14-Jun-04 meeting #5 (WA) 20.3 Technical L Brandon Bray

Add text to indicate the circumstances under
which the following type modifiers shall be
emitted, and point to each modifier's definition:
• IsBoxed i.e., passing a handle to a value type).
• IsByValue (i.e., ref class type passed by value).
• IsConst (i.e., pointer or reference to a const-
qualified type).
• IsExplicitlyDereferenced (i.e., interior_ptr as a
parameter).
• IsImplicitlyDereferenced (i.e., parameter is a
reference).
• IsLong (i.e., long/unsigned long/long double
parameters).
• IsExplicitlyDereferenced (i.e., pin_ptr as a
parameter).
• IsSignUnspecifiedByte (i.e., plain char's
signedness).
• IsUdtReturn (i.e., ref class type returned by
value).
• IsVolatile (i.e., pointer or reference to a volatile-
qualified type).

No

14-Jun-04 meeting #5 (WA) 24.2 Technical M Brandon Bray
The note says "pickup the restrictions from page 333". Brandon, do you have any idea what this page r

No

14-Jun-04 meeting #5 (WA) 30.1 Technical R Brandon Bray
Doesn't the text "a generic name declared in namespace scope or in class scope shall be unique in that

No

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

155

156

158

159

160

161

162

163

165

167

14-Jun-04 meeting #5 (WA) 30.1 Technical R Brandon Bray
What is a non-generic type? Does it mean that the rules are the same as classes? As template classes?

No

14-Jun-04 meeting #5 (WA) 30.1 Technical Editor
Can generic types be nested in native classes?

No

14-Jun-04 meeting #5 (WA) 30.1.1 Technical R Brandon Bray
The equivalent wording for template parameters in the working paper has been changed to "defines its

No

14-Jun-04 meeting #5 (WA) 30.1.2 Technical R Brandon Bray
30.1.2 says "Like templates in Standard C++,
within the body of a generic type any usage of the
unqualified unadorned name of that type is
assumed to refer to the current instantiation."
30.1.3 then goes on to describe "The instance
type". Those seem like to different ways of
describing the same concept. Can they be unified
in some way?

No

14-Jun-04 meeting #5 (WA) 30.1.6 Technical R Brandon Bray This subclause describes when a static
constructor is invoked. In 18.8, it references the
CLI Standard Partition II (10.5.3). Are the rules
the same? (Yes) Should this subclause also just
reference the CLI spec?
There are two sets of behavior; we need to say
which one we use.

No

14-Jun-04 meeting #5 (WA) 30.1.7 Technical M Brandon Bray
What to say about explicit conversion functions (which can only occur in managed class types)?

No

14-Jun-04 meeting #5 (WA) 30.2.2 Technical R Brandon Bray
This subclause lists the types that can and cannot be generic arguments. Fundamental types are not in

No

14-Jun-04 meeting #5 (WA) 30.2.4 Technical R Brandon Bray "The non-inherited members of a constructed type
are obtained by substituting, for each generic-
parameter in the member declaration, the
corresponding generic-argument of the constructed
type. The substitution process is based on the
semantic meaning of type declarations, and is not
simply textual substitution."

It would be helpful to explain this in more detail
and/or give an example where this makes a
difference.

No

14-Jun-04 meeting #5 (WA) 30.3 Technical L Brandon Bray Types not used as a parameter type to a generic
function cannot be deduced. Are the nondeduced
context rules the same as Standard C++ or not?
The sentence before this is true, but not complete if
the rules are the same as Standard C++.

No

14-Jun-04 meeting #5 (WA) 30.3 Technical L Brandon Bray "When the type of a parameter or variable is a
type parameter, the declaration of that parameter
or variable shall use that type parameter’s name
without any pointer, reference, or handle
declarators."

What about cv-qualifiers?

No

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

168

169

170

171

172

173

14-Jun-04 meeting #5 (WA) 30.3 Technical L Brandon Bray
Can you take the address of a generic function ins

Meeting #6 (WA): Tentatively decided, NO. No

14-Jun-04 meeting #5 (WA) 30.3.2 Technical L Brandon Bray
The issue raised in 8.15.3 is somewhat answered
here. 18.3.6 seems to deal with expanded forms
of calls, not expanded forms of function
declarations. I interpret the text above as saying
that deduction is done as if the function were
declared like this:
 generic <typename ItemType>
 void PushMultiple(Stack<ItemType>^,
ItemType i1, ItemType i2,/* ... */);
Is that correct? I think this requires a more
detailed description.

No

14-Jun-04 meeting #5 (WA) 30.3.2 Technical L Brandon Bray
Something needs to be said about instantiating a generic delegate using a generic function.

No

14-Jun-04 meeting #5 (WA) 30.4.2 Technical L Brandon Bray
When are members considered hidden? Is it using the rules described later? Those are described as ap

No

14-Jun-04 meeting #5 (WA) 30.4.4 Technical L Brandon Bray Miscellaneous generics issues:
1. I seem to recall discussions of other kinds of
constraints (I believe one of them concerned
whether you could do a "new T()").
2. Doesn't there need to be some discussion of how
overload resolution works when a function argument
has a type parameter as its type?
3. Are the typename and template rules for syntactic
disambiguation the same in generics as in
templates? Presumably, the lack of specialization
would eliminate the need for these.
4. If scope contains a set of overloaded generic
functions, is partial ordering used to choose between
them?
5. I assume since there is nothing that says
otherwise, that generics can be friends of other
classes and generics can make other classes,
functions, (including generics) friends?
6. If friendship is supported, can a generic first be
declared in a friend declaration (suggested answer:
no).
7. Standard C++ has restrictions on type parameters
such as prohibiting types with no linkage. Does this
rule apply to generic arguments?
8. Are there generic conversion functions?

No

14-Jun-04 meeting #5 (WA) 32.1.4 Technical L Brandon Bray To ensure that signatures for the same Type
produced by different implementations match, the
ordering in such a set of modreqs and modopts is as
follows: first modreqs in ascending order by name,
then modopts in ascending order by name, with case
being significant. [[We need some rule here; is this
the one?]].

No

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

174

175

176

179

182

183

14-Jun-04 meeting #5 (WA) 32.1.4 Technical L Brandon Bray
If IsBoxed is retained for the standard, we have an ordering issue to consider: Currently, the value-typ

No

14-Jun-04 meeting #5 (WA) 32.1.5.1 Technical L Brandon Bray
This modifier [IsBoxed] is a workaround for the MS implementation. Does it have any long-term valu

No

14-Jun-04 meeting #5 (WA) E Technical L Brandon Bray
Flesh out Future Directions

No

23-Jul-04 TG3 liaison Technical Mark Hall Support for Hide-By-Signature on Methods in ref
classes
(This would also apply to setter/getter methods for
properties.)

See email thread started by Rex J. on Jul 24.

Meeting #6 (WA): Some possible ways to address this
(and results of a straw poll) are:
1) Support hidebyname only and issue better error
messages. [0 in favour]
2) Make all ref class methods be hidebysig;
a. Only [0 in favour]
b. Default, with an option to select hidebyname [6 in
favour]
3) Add hidebysig keyword to allow explicit marking of
methods. [0 in favour]
with 3 people unsure.

We could go two routes:
A) Bring hidebysig in via “using” directive to hoist base
class/interface names (this is an approximate solution
only, as it doesn’t allow hoist-by-signature, only hoist-
by-name) [0 in favour]
B) Do repeated lookup in all base classes (like C#) [8
in favour]

Tom circulated the relevant pages from the CLI spec
(Partition I, 7.10.4).
We need to take into account the CLS rules when
resolving this issue.

Meeting #7 (WA): Had a brief discussion. No progress.

No

26-Jul-04 phone meeting Technical H Brandon Bray Discussion of passing a string literal in the presence
of overloads taking String^ and const
char * (what about char *?)

Meeting #6 (WA): The compiler currently chooses the
String^ over the const char*. Involves type deduction
across templates and generics.
Reassigned from Mark to Brandon.

String literal portion of issue 12 was transferred to
#182.

No

2-Aug-04 meeting #6 (WA) Technical L Brandon Bray Overload assignment operator for handles. Post-meeting #7. MS design team discussed this and
believes that we should drop this issue.

No

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

184

185

186

188

189

191

192

193

2-Aug-04 meeting #6 (WA) Technical Herb Sutter Describe problem with overloading on % vs. &

Herb presented the following code:

#include <iostream>
using namespace std;
void f(const int&) { cout << "f(const int&)" <<
endl; }
void f(int&) { cout << "f(int&)" << endl; }

void g(int%) { cout << "g(int%)" << endl; }
void g(int&) { cout << "g(int&)" << endl; }

int main() {
 const int ci = 0;
 int i = 0;
 int^ hi = gcnew int;

 f(ci);
 f(i);

 g(*hi);
// g(i); // ambiguous: should g(int&) be
preferred?
}

The following code was his attempt to write an
agnostic swap:

template<typename T>
void swap(T% a, T% b) {
#if defined NO_PIN_PTR // doesn't work
 T temp = a; a = b; b = temp;
#elif defined PIN_PTR_BUG // doesn't
compile
 T temp = *pin_ptr<T>(a);
 *pin_ptr<T>(*pa) = *pin_ptr<T>(*pb);

No

2-Aug-04 meeting #6 (WA) Technical Herb Sutter Collapsing reference to reference. (It’s in the C++0x
spec.)

No

2-Aug-04 meeting #6 (WA) Technical L Brandon Bray Should we standardize traits? No

2-Aug-04 meeting #6 (WA) Technical H Brandon Bray Look at using + to implement String concatenation. No

2-Aug-04 meeting #6 (WA) Technical ?? Look at the changes to the grammar for C++0x and
note where they affect the C++/CLI grammar.

No

2-Aug-04 meeting #6 (WA) Technical M Brandon Bray Review the specification checking the usage of
accessibility vs. visibility

No

2-Aug-04 meeting #6 (WA) Technical L Brandon Bray Provide an annex containing the differences between
the grammar of Standard C++ and C++/CLI

No

2-Aug-04 meeting #6 (WA) Technical Sean Perry Look at the issue of whether or not the mapping of
bool should be implementation-defined.

Meeting 7 (WA): Sean wrote this up and presented it
to the full committee on the 2nd day.

Based on committee feedback, Sean will revise his
paper for future consideration.

No

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

194

195

196

198

199

200

201

2-Aug-04 Anthony Williams 15.3.2 Technical Jonathan Caves

Re Anthony's post to the reflector re "default index

Meeting 7 (WA): Discussed the possibility of
disallowing both the default indexed property and
operator[].

No

25-Aug-04 Rex Jaeschke 14.1. Technical L Brandon Bray Separate the list of conversions from the order of
preference (such as how Standard C++ separates
Standard Conversions from overload resolution).

No

30-Sep-04 meeting #7 (WA) Technical Herb Sutter In native types, % behaves like &. No

30-Sep-04 meeting #7 (WA) 2 Technical Tom Plum Propose wording to require that extensions over and
above ISO C++ requirements, be diagnosed.

No

30-Sep-04 meeting #7 (WA) 16.2.1 Technical R Brandon Bray Proof the text on Collection type and how a for each
is executed.

No

30-Sep-04 meeting #7 (WA) 19.1 Technical Herb Sutter Regarding "Member functions in a native class can
be generic", support for this appears to have been
added inadvertently. However, is there any user
need for it?

No

30-Sep-04 meeting #7 (WA) Technical No

1

10

11

13

19

23
24

25

27

28

29
32
33
34

35

36

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

4-Dec-03 meeting #1 (TX) 14 Technical M Brandon Bray pull together all the conversion information into one
place. Make sure all conversions are covered.

No

4-Dec-03 meeting #1 (TX) 15.3.2 Technical Steve Adamczyk comma vs. semicolon as separator in indexed access
expressions

In indexed access expressions (§15.3.2), comma
operators are currently disallowed inside [] unless
they are enclosed in parentheses. This conflicts with
usage in existing template libraries (e.g., Lambda),
in which the comma operator occurs inside []
without enclosing it in parentheses.

Meeting #2 (HI): Can we treat commas in [] not
having enclosing parenthesis, in any context, always
be treated as punctuators?

Yes. Steve will provide words to the editor for this.

Meeting #3 (Mel): Steve produced a paper. He
reported one outstanding issue: In 15.3.2, "Indexed
Access", in the C++/CLI spec is rather vague. There,
we have
 indexed-access: indexed-designator [expression-list
]
where indexed-access is defined as an additional
alternative for
postfix-expression:
 postfix-expression: indexed-access
Unfortunately, there isn't any definition of indexed-
designator, so I'm not quite sure whether all the multi-
dimensional cases are supposed be handled by indexed-
designator, leaving the traditional cases to be handled
by the original (possibily modified) syntax.
An alternative would be not to introduce indexed-
access at all, and use the definition
 postfix-expression: postfix-expression [expression-
list]
to handle all the cases, for both traditional subscripting
and the new C++/CLI indexer references.
There was agreement to this so Steve will update his p

No

4-Dec-03 meeting #1 (TX) 12 Technical M Brandon Bray Add a diagram of the type tree No

5-Dec-03 meeting #1 (TX) Technical L Brandon Bray list of overlap between Standard C++ and features
proposed by C++/CLI

No

16-Dec-03 Phone meeting 8.2.3 Editorial H Brandon Bray Say more, especially w.r.t the template class
array<element-type>.

No

16-Dec-03 Phone meeting 9 Technical R Brandon Bray Review this clause. No
16-Dec-03 Phone meeting 10 Technical H Brandon Bray Revise this clause by covering topics including

application entry point, assembly boundaries, among
others.

No

16-Dec-03 Phone meeting 12.13.6 Technical H Brandon Bray Describe how interior_ptr, pin_ptr, array, and
safe_cast are template-like with certain constraints.

No

16-Dec-03 Phone meeting 12.3.6 Technical M Brandon Bray Describe how the compiler will need to emit a
modopt to distinguish interior_ptr<T> from tracking
reference to T (T%) in the metatada.

No

16-Dec-03 Phone meeting 12.3.6.2 Technical M Brandon Bray Spell out target type restrictions (for an interior_ptr) No

16-Dec-03 Phone meeting 13 Technical Tom Plum What, if anything, goes in this clause? No
16-Dec-03 Phone meeting 14.1.1 Editorial R Brandon Bray Review this subclause. No
16-Dec-03 Phone meeting 14.4 Editorial R Brandon Bray Review this subclause. No
16-Dec-03 Phone meeting 15.1 Technical H Brandon Bray The rewrite rules for e[x] (default indexed accesses)

are different where there is only one index. This is
because there is a potential ambiguity with the C++
operator[]. Is this mentioned elsewhere?

No

16-Dec-03 Phone meeting 15.3.8 Technical M Brandon Bray cv-qualification needs to be considered for
dynamic cast.

No

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

38
39
40

43

44
47

50

52
54
55

56
57

58

59

62

63

16-Dec-03 Phone meeting 15.3.9 Technical L Brandon Bray Provide a spec for standard typeid (that returns
std::type_info) in addition to the new typeid (that
returns System::Type).

No

16-Dec-03 Phone meeting 15.3.13 Editorial H Brandon Bray Update this subclause No
16-Dec-03 Phone meeting 15.4.1.1 Editorial R Brandon Bray Review this subclause. No
16-Dec-03 Phone meeting 15.11.1 Technical Mark Hall Add support for handle equality comparison, and

handle ==/!= nullptr, and vice versa.
Meeting #3 (Mel): Had a short discussion. Mark will
produce a paper for the May meeting.

Meeting #4 (NJ): No progress. To be discussed via
email, and at the Jun meeting

Meeting #5 (WA): Discussed briefly. Asked Mark to
write this up and distribute to the reflector.

Phone call Jun 29: This issue was resolved; just needs
drafting of final words.

Meeting 7 (WA): In the case of if(handle), which
conversions are attempted before comparison against
nullptr is used?

We agreed that if an explicit conversion to bool exists,
if(handle) uses that.

There is no implicit unboxing.

Steve and Mark worked on this and presented it to the
full committee on the 2nd day.

Based on committee feedback, Mark will write this up
for future consideration.

No

16-Dec-03 Phone meeting 15.18 Technical H Brandon Bray
Add words to discuss assignment for properties and
events from the point of view of the rewrite rules.

No

16-Dec-03 Phone meeting 17 Technical M Brandon Bray Provide text for this clause (Namespaces) No
16-Dec-03 Phone meeting 18.4 Technical M Brandon Bray Extend declarator-id’s by adding a new production

that allows default.
No

16-Dec-03 Phone meeting 18.4.2 Technical H Brandon Bray This subclause only covers how the accessor
functions must be defined. The expressions clause
needs to cover the rewrite rules that call accessor
functions.

No

16-Dec-03 Phone meeting 18.5.2 Editorial R Brandon Bray Review this subclause. No
16-Dec-03 Phone meeting 18.6 Editorial R Brandon Bray Review this subclause. No
16-Dec-03 Phone meeting 18.7.4 Technical M Brandon Bray Identify when (operator) synthesis would and would

not occur.
No

16-Dec-03 Phone meeting 18.6.5.1 Technical L Brandon Bray Writeup op_true and op_false operators No
16-Dec-03 Phone meeting 18.6.6.1 Technical Mark Hall Reword this subclause similarly to the way special

member functions are described.
Meeting 7 (WA): ?? To be done in Tue morning work
sessions.

No

16-Dec-03 Phone meeting 18.6.6.1 Technical H Brandon Bray Add another subclause to cover the compiler-
generated conversion from handle to unspecified
bool type.

Meeting 7 (WA): ?? To be done in Tue morning work
sessions.

No

16-Dec-03 Phone meeting 18.10.1 Technical L Brandon Bray Add a description that for any value class we have to
make the copy before calling member functions.

No

16-Dec-03 Phone meeting 18.11 Technical H Brandon Bray Say more about finalizers (including Dispose/~T and
Finalize/!T) and add some examples.

No

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

65

66

67

68
71
74
75

76

79

81
82

87
88
90

16-Dec-03 Phone meeting 18.1 Technical Editor As a cross-language issue, come up with terminology
to distingish between destructors and finalizers.
Perhaps "deterministic destructor" vs. "non-
deterministic finalizer."

Add some text in spec re this, esp. w.r.t C#'s use of
destructor

No

16-Dec-03 Phone meeting 21 Editorial M Brandon Bray Introduce value classes -- Discuss the following:
value classes are optimized for small data structures.
As such, value classes do not allow inheritance from
anything but interface classes. Tie in fundamental
classes.

No

16-Dec-03 Phone meeting 21.4.1 Technical H Brandon Bray Add words about instance constructors and static
constructor.
Value classes cannot have SMFs (specifically, default
constructor, copy constructor, assignment operator,
destructor, or finalizer. Need to add specification for
this along with rationale.

No

16-Dec-03 Phone meeting 22 Technical L Brandon Bray Consider writing some text for this "place-holder"
clause. Should this all go in the new annex "Future
directions"?

No

16-Dec-03 Phone meeting 23 Editorial R Brandon Bray Will review this whole clause. No
16-Dec-03 Phone meeting 23.5 Technical M Brandon Bray Write-up array covariance w.r.t arrays. No
16-Dec-03 Phone meeting 23.6 Technical M Brandon Bray Write up array initialization. No
16-Dec-03 Phone meeting 24.4 Technical H Brandon Bray Address what happens when a ref class does not

implement an interface function (and what happens
when a base class has a non-virtual function with the
same name).

No

16-Dec-03 Phone meeting 27 Technical H Brandon Bray Cover unification of CLI and Standard C++ exception-
handling models, and anything else that might go in
this clause.

Are exceptions asynchronous now in some cases?
Yes they are. (For example,
NullReferenceException.)

Meeting #5 (WA): Kevin Free (Microsoft) gave a verbal
presentation.

catch(…) catches managed and native exceptions.

catch(System::Object^) also catches both kinds, but
won’t invoke the destructor (so can leak).

CLI exception handling supports more features than
we expose.

The issue remained with Brandon to write up, as
before.

No

16-Dec-03 Phone meeting 20.5.2 Technical R Brandon Bray
Describe MethodImplOption metadata generation.

No

16-Dec-03 Phone meeting 29 Technical M Brandon Bray Flesh out "Templates" clause. No
16-Dec-03 Phone meeting A Technical L Brandon Bray Flesh out "Verifiable code" clause.

Describe the dangers of pointer arithmetic and
interior ptrs.

No

16-Dec-03 Phone meeting B Technical L Editor Flesh out "Documentation comments" clause. No
16-Dec-03 Phone meeting D Technical Editor Add naming guidelines for generics No

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

94
95

96

97

98

29-Jan-04 meeting #2 (HI) Technical Mark Hall Relationship between primitive types and CLI types.

The current spec allows the following: int i = 10;
String^ s = i.ToString();
Standard C++ doesn’t allow member selection on
expressions of primitive type. Assuming int maps to
System::Int32, just how much alike are these two
types? Specifically, when do we treat the primitive as
the underlying class.

Meeting 5 (WA): Asked Mark to write this up and
distribute to the reflector. Please address the side-
effect issue; that is, given (i++).ToString, is the
increment done?

Meeting 7 (WA): ?? To be done in Tue morning work
sessions.

Re the side-effect, yes, it must be done.

No

29-Jan-04 meeting #2 (HI) 10 Technical H Brandon Bray Provide words for #using. No
29-Jan-04 meeting #2 (HI) 9.1.1 Technical M Editor The spec does not provide a way to use a keyword

as an identifier. (VC++ uses the intrinsic
__identifier(name) to achieve this; C# uses a leading
@.) This is an issue for inter-operability; for
example, being a consumer of a public type (written
in something other than C++) that has a name (or
contains a public member that has a name) that is a
keyword in C++.

Meeting #8 (WA): It was proposed we support the
intrinsic approach, accepting __intrinsic(x), where x is
a string literal or an identifier. String version is
reserved for implementers.

No

29-Jan-04 meeting #2 (HI) Technical Editor Overloading on arity. (This is a liaison issue with
TG3.)

The issue involves the overloading of a non-generic
type with a one or more generic types of the same
name in the same namespace. For example, the
following is permitted by the CLS:

ref class X { /*…*/ };

generic<typename T> /*…*/
ref class X { /*…*/ };

generic<typename T, typename U> /*…*/
ref class X { /*…*/ };

Meeting 3 (Mel): Herb presented this issue, which was
then reassigned to Brandon.

Meeting 5 (WA): In this version, we'll support a
generic and non-generic version of a type in the same
namespace, but not in different namespaces.

There was a discussion about using something like
“using generic x::y” to provide cross-namespace
support as well.

Rex to work with Brandon to get this into the draft.

Meeting 7 (WA): Herb reported that the MS
implementation can consume same-named generics
that overload on arity in the same assembly, but it
cannot create them.

No

29-Jan-04 meeting #2 (HI) 30 Technical R Brandon Bray Restrictions on generics re generic code generation.

The current generics clause needs to be fleshed out,
especially w.r.t how overload resolution works within
the CLI.

Meeting #2 (HI): Brandon will write a paper on this.

Meeting #4 (NJ): The fleshing out of Clause 30 is a
significant contribution toward this. More work needed
in declarations and function calls.

No

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

105

106

109

111

116

117

121

122

29-Jan-04 meeting #2 (HI) 14.5.1 Technical Mark Hall Constructors can't be used in casts in managed
classes. Should they be allowed in explicit
conversions?
All managed type constructors being explicit by
default. (Already yes, but reconfirm this.)

Meeting #4 (NJ): Steve will send the editor
sufficient text to go into the public drop to indicate
our intention re this topic. DONE.

Meeting 5 (WA): Asked Mark to write this up and
distribute to the reflector.

Meeting 7 (WA): Steve and Mark worked on this
and presented it to the full committee on the 2nd
day. Mark will write this up for future consideration.

No

29-Jan-04 meeting #2 (HI) Technical Editor Should >> handled as two tokens rather than one;
e.g., List<List<int>>.

Meeting #3 (Mel): Had a short discussion. Tom will
produce a paper for the May meeting.

Meeting #4 (NJ): TG5 agreed that if a < for a template
is seen, and >> that are not inside parentheses, that
>> will always be considered to be the closing
delimiter of two < symbols, and results in an error if
there are not two such corresponding < symbols.

Refer to Daveed's paper WG21/N1649 for more
information.

Meeting #7 (WA): This paper was updated (see
N1699). It was discussed in TG5 and will be discussed
at the up-coming WG21 meeting, at which TG5
members will participate.

Meeting #8 (WA): Daveed presented this at the WG21
meeting this week. He proposed option 1, to which
WG21 agreed. He was charged to write the final words.

No

19-Feb-04 12.3.6.3 Technical L Brandon Bray Cover the dangers of pointer arithmetic and
interior ptrs

No

19-Feb-04 15.3.2 Technical M Brandon Bray Need to consider how indexed access expressions are
interpreted in templates.

No

19-Feb-04 18.4.2 Technical H Brandon Bray Add some discussion of how accesses to properties
are rewritten into accessor functions. This should be
covered in rewrite rules in the expressions clause.
Note that access checking for whether a property can
be written to or read to is done after rewriting and
overload resolutions.

No

19-Feb-04 18.4.2 Technical H Brandon Bray The qualified name of a property needs to be
described somewhere. Once that happens, how an
out-of-class definition is done will already be covered
by existing rules.

No

19-Mar-04 meeting #3 (Mel) Technical Steve Adamczyk In the context of Herb's keywords paper (2004-05),
Steve will write up the notion "If it can be an
identifier, it is."

No

19-Mar-04 meeting #3 (Mel) Technical Steve Adamczyk Write a WG21 paper on extended integer types,
promotion rules, costs of conversion, and the like,
for the May meeting.

Meeting #4 (NJ): Not yet done, but still planned. No

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

124

125

10-Jun-04 Jonathan Caves Technical Jonathan Caves Indexed properties -- Consider the following:

interface class I1 {
 property int Value;
};

interface class I2 {
 property int Value[String^] {
 int get(String^);
 void set(String^, int);
 };
};

ref class D : I1, I2 {
 // Implements the properties
};

D^ d;
d->Value["Foo"];

The question is what does the last line do?

Which leads to a language design question - what
should the complier do when faced with a property
followed by a '['

1) Should it look for just parameterized properties
and if there isn't one fail - I suspect not

2) Should it look for all properties and if the returned
set contains a parameterized property it should
prefer it - this sounds like magic to me.

3) Should it look for all properties perform overload
resolution across the whole set and it the resulting
call is ambiguous then issue an error.

Meeting #5 (WA): Discussed this. Option #3 preferred.

Meeting 7 (WA): Discussed this in detail.

property int Value[int] {
 void set(int, int);
};

x->Value[1] = 4
is treated as
x->set_Value(1,4);

property array<int>^ Value {
 array<int>^ get();
}

x->Value[1] = 4
is treated as
x->get_Value()[1] = 4

property int% Value[int] {
 int% get(int);
}

x->Value[1] = 4
is treated as
x->get_Value(1) = 4

This construct violates the principle of properties (that
of setting/getting the value of some property), so is
not to be encouraged; however, it is supported, but no
need to consider it further here.

No

14-Jun-04 meeting #5 (WA) 8.15.3 Technical M Brandon Bray Based on the rules for type deduction in templates, it
seems surprising that you can match
array<ItemType>^ with an argument of type int.
Here is a standard C++ example intended to
illustrate the issue:
 template <class ItemType> struct Stack {};
 template <class ItemType> struct Array {
 Array(ItemType);
 };
 template <class ItemType>
 void PushMultiple(Stack<ItemType>,
Array<ItemType>);
 int main() {
 Stack<int> s;
 PushMultiple(s, 1); // deduction fails
 PushMultiple<int>(s, 1);
 }
Are the rules for generic different in this area?
[There seems to be information related to this in
30.3.2. See that subclause for further comments on
this issue.]

No

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

127

128

129

130

131

132

133

134

135

136

138

139

142

14-Jun-04 meeting #5 (WA) 12.3.3 Technical L Brandon Bray
Add text to indicate the circumstances under which the modreq IsBoxed shall be emitted (i.e., passing

No

14-Jun-04 meeting #5 (WA) 12.3.6 Technical L Brandon Bray
The compiler will need to emit a modopt to distinguish interior_ptr<T> from tracking reference to T (T

No

14-Jun-04 meeting #5 (WA) 12.3.7 Technical L Brandon Bray
Need to add text to indicate the circumstances under which the modopt IsPinned shall be emitted (i.e.,

No

14-Jun-04 meeting #5 (WA) 14.1.1 Technical L Brandon Bray
Separate the list of conversions from the order of preference (such as how Standard C++ separates Sta

No

14-Jun-04 meeting #5 (WA) 15.3.3 Technical L Brandon Bray

Add text to indicate the circumstances under
which the following type modifiers shall be
emitted, and point to each modifier's definition:
• IsBoxed i.e., passing a handle to a value type).
• IsByValue (i.e., ref class type passed by value).
• IsConst (i.e., pointer or reference to a const-
qualified type).
• IsExplicitlyDereferenced (i.e., interior_ptr as a
parameter).
• IsImplicitlyDereferenced (i.e., parameter is a
reference).
• IsLong (i.e., long/unsigned long/long double
parameters).
• IsExplicitlyDereferenced (i.e., pin_ptr as a
parameter).
• IsSignUnspecifiedByte (i.e., plain char's
sigedness).
• IsUdtReturn (i.e., ref class type returned by
value).
• IsVolatile (i.e., pointer or reference to a volatile-
qualified type).

No

14-Jun-04 meeting #5 (WA) 15.3.10 Technical M Brandon Bray
Unboxing and boxing are described as preferred user-defined conversions; however, this is incorrect.

No

14-Jun-04 meeting #5 (WA) 15.3.10 Technical L Brandon Bray
The null value is converted to the null value of the destination type. This can be unverifiable and migh

No

14-Jun-04 meeting #5 (WA) 16.3.3 Technical M Brandon Bray
Need to add text to indicate the circumstances under which the modreq IsUdtReturn shall be emitted (i

No

14-Jun-04 meeting #5 (WA) 18 Technical R Brandon Bray
This table and corresponding sections should include Special Member Functions (SMFs) like destructo

No

14-Jun-04 meeting #5 (WA) 18.2.1 Technical L Brandon Bray
Need to address the following: C++/CLI uses the System::Reflection::DefaultMemberAttribute attribu

No

14-Jun-04 meeting #5 (WA) 18.4 Technical Mark Hall
Need to write up the restrictions on trivial properties.

No

14-Jun-04 meeting #5 (WA) 18.4 Technical L Brandon Bray
We probably should say something about the reserved names get_Item and set_Item, and their relation

No

14-Jun-04 meeting #5 (WA) 18.5.3 Technical L Brandon Bray
An event with the new modifier introduces a new event that does not override an event from a base cla

No

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

143

144

145

148

14-Jun-04 meeting #5 (WA) 18.6 Technical L Brandon Bray
The restriction below does not apply to non-static member operators – that need not have a parameter

No

14-Jun-04 meeting #5 (WA) 18.6.1 Technical L Brandon Bray Provide an example for "Homogenizing the candidate
overload set".

No

14-Jun-04 meeting #5 (WA) 18.6.5.2 Technical L Brandon Bray Provide C++ names for operator True and False Meeting #8 (WA): Move to future directions. No

14-Jun-04 meeting #5 (WA) 20.2 Technical L Brandon Bray

Add text to indicate the circumstances under
which the following type modifiers shall be
emitted, and point to each modifier's definition:
• IsConst (i.e., data member involves a cv type).
• IsImplicitlyDereferenced (i.e., has a reference
type).
• IsLong (i.e., long/unsigned long/long double
type).
• IsSignUnspecifiedByte (i.e., plain char's
sigedness).
• IsVolatile (i.e., data member involves a cv
type).

No

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

149

151

154

155

156

158

159

14-Jun-04 meeting #5 (WA) 20.3 Technical L Brandon Bray

Add text to indicate the circumstances under
which the following type modifiers shall be
emitted, and point to each modifier's definition:
• IsBoxed i.e., passing a handle to a value type).
• IsByValue (i.e., ref class type passed by value).
• IsConst (i.e., pointer or reference to a const-
qualified type).
• IsExplicitlyDereferenced (i.e., interior_ptr as a
parameter).
• IsImplicitlyDereferenced (i.e., parameter is a
reference).
• IsLong (i.e., long/unsigned long/long double
parameters).
• IsExplicitlyDereferenced (i.e., pin_ptr as a
parameter).
• IsSignUnspecifiedByte (i.e., plain char's
signedness).
• IsUdtReturn (i.e., ref class type returned by
value).
• IsVolatile (i.e., pointer or reference to a volatile-
qualified type).

No

14-Jun-04 meeting #5 (WA) 25.2 Technical M Brandon Bray
The note says "pickup the restrictions from page 333 (of Brandon's paperback copy of the C# spec)".

No

14-Jun-04 meeting #5 (WA) 30.1 Technical R Brandon Bray
Doesn't the text "a generic name declared in namespace scope or in class scope shall be unique in that

No

14-Jun-04 meeting #5 (WA) 30.1 Technical R Brandon Bray
What is a non-generic type? Does it mean that the rules are the same as classes? As template classes?

No

14-Jun-04 meeting #5 (WA) 30.1 Technical Editor
Can generic types be nested in native classes?

No

14-Jun-04 meeting #5 (WA) 30.1.1 Technical R Brandon Bray
The equivalent wording for template parameters in the working paper has been changed to "defines its

No

14-Jun-04 meeting #5 (WA) 30.1.2 Technical R Brandon Bray
30.1.2 says "Like templates in Standard C++,
within the body of a generic type any usage of the
unqualified unadorned name of that type is
assumed to refer to the current instantiation."
30.1.3 then goes on to describe "The instance
type". Those seem like to different ways of
describing the same concept. Can they be unified
in some way?

No

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

160

161

162

163

165

167

168

14-Jun-04 meeting #5 (WA) 30.1.6 Technical R Brandon Bray This subclause describes when a static
constructor is invoked. In 18.8, it references the
CLI Standard Partition II (10.5.3). Are the rules
the same? (Yes) Should this subclause also just
reference the CLI spec?
There are two sets of behavior; we need to say
which one we use.

No

14-Jun-04 meeting #5 (WA) 30.1.7 Technical M Brandon Bray
What to say about explicit conversion functions (which can only occur in managed class types)?

No

14-Jun-04 meeting #5 (WA) 30.2.2 Technical R Brandon Bray
This subclause lists the types that can and cannot be generic arguments. Fundamental types are not in

No

14-Jun-04 meeting #5 (WA) 30.2.4 Technical R Brandon Bray "The non-inherited members of a constructed type
are obtained by substituting, for each generic-
parameter in the member declaration, the
corresponding generic-argument of the constructed
type. The substitution process is based on the
semantic meaning of type declarations, and is not
simply textual substitution."

It would be helpful to explain this in more detail
and/or give an example where this makes a
difference.

No

14-Jun-04 meeting #5 (WA) 30.3 Technical L Brandon Bray Types not used as a parameter type to a generic
function cannot be deduced. Are the nondeduced
context rules the same as Standard C++ or not?
The sentence before this is true, but not complete if
the rules are the same as Standard C++.

Meeting #8 (WA): The intent for V1 is to use the same
rules as for templates.

No

14-Jun-04 meeting #5 (WA) 30.3 Technical L Brandon Bray "When the type of a parameter or variable is a
type parameter, the declaration of that parameter
or variable shall use that type parameter’s name
without any pointer, reference, or handle
declarators."

What about cv-qualifiers?

No

14-Jun-04 meeting #5 (WA) 30.3 Technical L Brandon Bray

Can you take the address of a generic function ins

Meeting #6 (WA): Tentatively decided, NO.

Meeting #8 (WA): Reconsidered, and now think YES.
Consider the following example:

delegate void D(int);

generic <class T>
void F(T t);

D^ d = gcnew D(&F<int>);

W d th t thi f l idi

No

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

169

170

171

172

173

174

14-Jun-04 meeting #5 (WA) 30.3.2 Technical L Brandon Bray
The issue raised in 8.15.3 is somewhat answered
here. 18.3.6 seems to deal with expanded forms
of calls, not expanded forms of function
declarations. I interpret the text above as saying
that deduction is done as if the function were
declared like this:
 generic <typename ItemType>
 void PushMultiple(Stack<ItemType>^,
ItemType i1, ItemType i2,/* ... */);
Is that correct? I think this requires a more
detailed description.

No

14-Jun-04 meeting #5 (WA) 30.3.2 Technical L Brandon Bray
Something needs to be said about instantiating a generic delegate using a generic function.

No

14-Jun-04 meeting #5 (WA) 30.4.2 Technical L Brandon Bray
When are members considered hidden? Is it using the rules described later? Those are described as ap

No

14-Jun-04 meeting #5 (WA) 30.4.4 Technical H Brandon Bray Miscellaneous generics issues:
1. I seem to recall discussions of other kinds of
constraints (I believe one of them concerned
whether you could do a "new T()").
2. Doesn't there need to be some discussion of how
overload resolution works when a function argument
has a type parameter as its type?
3. Are the typename and template rules for syntactic
disambiguation the same in generics as in
templates? Presumably, the lack of specialization
would eliminate the need for these.
4. If scope contains a set of overloaded generic
functions, is partial ordering used to choose between
them?
5. I assume since there is nothing that says
otherwise, that generics can be friends of other
classes and generics can make other classes,
functions, (including generics) friends?
6. If friendship is supported, can a generic first be
declared in a friend declaration (suggested answer:
no).
7. Standard C++ has restrictions on type parameters
such as prohibiting types with no linkage. Does this
rule apply to generic arguments?
8. Are there generic conversion functions?

Meeting #8 (WA):

1. For V1, we can consume and enforce these special
constraints, but we can't author them. However, we
plan to do so in future, so add this to "Future
directions".

No

14-Jun-04 meeting #5 (WA) 32.1.4 Technical L Brandon Bray To ensure that signatures for the same Type
produced by different implementations match, the
ordering in such a set of modreqs and modopts is as
follows: first modreqs in ascending order by name,
then modopts in ascending order by name, with case
being significant. [[We need some rule here; is this
the one?]].

No

14-Jun-04 meeting #5 (WA) 32.1.4 Technical L Brandon Bray
If IsBoxed is retained for the standard, we have an ordering issue to consider: Currently, the value-typ

No

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

175

176

179

182

14-Jun-04 meeting #5 (WA) 32.1.5.1 Technical L Brandon Bray
This modifier [IsBoxed] is a workaround for the MS implementation. Does it have any long-term valu

No

14-Jun-04 meeting #5 (WA) E Technical L Brandon Bray
Flesh out Future Directions

No

23-Jul-04 TG3 liaison Technical Mark Hall Support for Hide-By-Signature on Methods in ref
classes
(This would also apply to setter/getter methods for
properties.)

See email thread started by Rex J. on Jul 24.

Meeting #6 (WA): Some possible ways to address this
(and results of a straw poll) are:
1) Support hidebyname only and issue better error
messages. [0 in favour]
2) Make all ref class methods be hidebysig;
a. Only [0 in favour]
b. Default, with an option to select hidebyname [6 in
favour]
3) Add hidebysig keyword to allow explicit marking of
methods. [0 in favour]
with 3 people unsure.

We could go two routes:
A) Bring hidebysig in via “using” directive to hoist base
class/interface names (this is an approximate solution
only, as it doesn’t allow hoist-by-signature, only hoist-
by-name) [0 in favour]
B) Do repeated lookup in all base classes (like C#) [8
in favour]

Tom circulated the relevant pages from the CLI spec
(Partition I, 7.10.4).
We need to take into account the CLS rules when
resolving this issue.

Meeting #7 (WA): Had a brief discussion. No progress.

No

26-Jul-04 phone meeting Technical H Brandon Bray Discussion of passing a string literal in the presence
of overloads taking String^ and const
char * (what about char *?)

Meeting #6 (WA): The compiler currently chooses the
String^ over the const char*. Involves type deduction
across templates and generics.
Reassigned from Mark to Brandon.

String literal portion of issue 12 was transferred to
#182.

No

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

184

185

186

188

189

191

192

193

2-Aug-04 meeting #6 (WA) Technical Herb Sutter Describe problem with overloading on % vs. &

Herb presented the following code:

#include <iostream>
using namespace std;
void f(const int&) { cout << "f(const int&)" <<
endl; }
void f(int&) { cout << "f(int&)" << endl; }

void g(int%) { cout << "g(int%)" << endl; }
void g(int&) { cout << "g(int&)" << endl; }

int main() {
 const int ci = 0;
 int i = 0;
 int^ hi = gcnew int;

 f(ci);
 f(i);

 g(*hi);
// g(i); // ambiguous: should g(int&) be
preferred?
}

The following code was his attempt to write an
agnostic swap:

template<typename T>
void swap(T% a, T% b) {
#if defined NO_PIN_PTR // doesn't work
 T temp = a; a = b; b = temp;
#elif defined PIN_PTR_BUG // doesn't
compile
 T temp = *pin_ptr<T>(a);
 *pin_ptr<T>(*pa) = *pin_ptr<T>(*pb);

No

2-Aug-04 meeting #6 (WA) Technical Herb Sutter Collapsing reference to reference. (It’s in the C++0x
spec.)

No

2-Aug-04 meeting #6 (WA) Technical M Brandon Bray Should we standardize traits? No

2-Aug-04 meeting #6 (WA) Technical H Brandon Bray Look at using + to implement String concatenation. No

2-Aug-04 meeting #6 (WA) Technical ?? Look at the changes to the grammar for C++0x and
note where they affect the C++/CLI grammar.

No

2-Aug-04 meeting #6 (WA) Technical R Brandon Bray Review the specification checking the usage of
accessibility vs. visibility

No

2-Aug-04 meeting #6 (WA) Technical L Brandon Bray Provide an annex containing the differences between
the grammar of Standard C++ and C++/CLI

No

2-Aug-04 meeting #6 (WA) Technical Sean Perry Look at the issue of whether or not the mapping of
bool should be implementation-defined.

Meeting 7 (WA): Sean wrote this up and presented it
to the full committee on the 2nd day.

Based on committee feedback, Sean will revise his
paper for future consideration.

No

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

194

195

196

198

199

200

201

202

2-Aug-04 Anthony Williams 15.3.2 Technical Jonathan Caves

Re Anthony's post to the reflector re "default index

Meeting 7 (WA): Discussed the possibility of
disallowing both the default indexed property and
operator[].

No

25-Aug-04 Rex Jaeschke 14.1. Technical L Brandon Bray Separate the list of conversions from the order of
preference (such as how Standard C++ separates
Standard Conversions from overload resolution).

No

30-Sep-04 meeting #7 (WA) Technical Herb Sutter In native types, % behaves like &. No

30-Sep-04 meeting #7 (WA) 2 Technical Tom Plum Propose wording to require that extensions over and
above ISO C++ requirements, be diagnosed.

No

30-Sep-04 meeting #7 (WA) 16.2.1 Technical R Brandon Bray Proof the text on Collection type and how a for each
is executed.

No

30-Sep-04 meeting #7 (WA) 19.1 Technical Herb Sutter Regarding "Member functions in a native class can
be generic", support for this appears to have been
added inadvertently. However, is there any user
need for it?

No

23-Oct-04 meeting #8 (WA) Technical H Brandon Bray How to accomodate non-CLI calling conventions on
other platforms.

Meeting #8 (WA):

delegate void D(int);

generic<class T>
void F(T t) { System::Console::WriteLine(t-
>ToString()); }

typedef void (* FP)(int);

void G(FP fp) {
 D^ d = gcnew D(fp);
 d(1010);
}

int main() {
 D^ d = gcnew D(&F<int>);
 d(42);

 FP fp = &F<int>;
 fp(101);

 G(&F<int>);

In MS's implementation, need to use __clrcall to
indicate the clr calling convention. This lead to a
discussion of how to accomodate non-G193CLI
calling conventions on other platforms. It was noted
that the CLI draft spec, Partition II, 15.3, "Calling
convention", states:

"When dealing with methods implemented outside
the CLI it is important to be able to specify the
calling convention required. For this reason there

No

23-Oct-04 meeting #8 (WA) Technical H Brandon Bray Name lookup in managed classes ignores interfaces. No

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

203
204

205

206
207
208

26-Oct-04 Rex Jaeschke 10.1.2 Technical M Brandon Bray [Note: The compiler needs to add typedef members
to the class so that template code can use the return
type or the parameter types. [[Need more
explanation.]] end note]

No

26-Oct-04 Rex Jaeschke 12.2.2 Technical M Brandon Bray Write intro text. No
26-Oct-04 Rex Jaeschke 15.5 Technical H Brandon Bray 15.5 Explicit type conversion (cast notation)

The rules in the C++ Standard (§5.4/5) have been
extended for C++/CLI by including safe casts before
static casts.
• a const_cast
• a safe_cast
• a safe_cast followed by a const_cast
• a static_cast
• a static_cast followed by a const_cast
• a reinterpret_cast
• a reinterpret_cast followed by a const_cast
[Note: Standard C++ programs remain unchanged
by this, as safe casts are ill-formed when either the
expression type or target type is a native class. end
note]

Provide background on the expected behavior and
rationale. (Get this from the updated casting
proposal.)

No

26-Oct-04 Rex Jaeschke 21.4 Technical M Brandon Bray Simple value classes: Flesh this out. No

26-Oct-04 Rex Jaeschke 24.2.5 Technical H Brandon Bray Interface member access: Write up. No

26-Oct-04 Rex Jaeschke 27.2 Technical L Brandon Bray Attribute specification: Write up modules. No

Ecma/TC39-TG5/2004/046
Ecma/TC39/2004/049

Ecma International Rue du Rhône 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org

2004tg5-046 For Ecma use only

Minutes of the: 8th meeting of Ecma TC39-TG5
held in: Redmond, WA, USA
on: 22-23 October, 2004

Rex Jaeschke
rex@RexJaeschke.com

2004-10-23

1 Opening
Convener Tom Plum welcomed everyone to the eighth meeting of TG5.

1.1 Appointment of Recording Secretary
Rex Jaeschke was appointed.

1.2 Introduction of participants
The participants introduced themselves. Those attending were: Steve Adamczyk (EDG),
Jonathan Caves (Microsoft), Mike Cowlishaw (IBM), Francis Glassborow (WG21), Rex Jaeschke
(Microsoft), Thorsten Ottosen (WG21), Sean Perry (IBM), P.J. Plauger (Dinkumware), Tana
Plauger (Dinkumware), Tom Plum (Plum Hall), Michiel Salters (WG21), and Herb Sutter
(Microsoft), Detlef Vollmann (WG21), Christopher Walker (Dinkumware).

1.3 Host facilities/local information
Local information was provided.

2 Adoption of the agenda
Document 2004-41 was approved without objection.

3 Approval of Minutes of previous TG5 meeting
Document 2004-40 was approved without objection.

4 Matters arising from the minutes not covered elsewhere
None.

5 Project Editor’s Report – Rex Jaeschke
Rex presented document 2004-43.

Issue 5a: A ref class not marked abstract yet having one or more abstract or pure virtual
functions, becomes implicitly abstract. In the spirit of encouraging better programming practices,
should we require this to be diagnosed, thereby requiring the abstract to be written on the class
explicitly? The committee agreed.

Issue 5b: 18.9, “Static constructors”, states: “A static constructor can have any access-specifier.
[Note: However, for security reasons, a static constructor should have a private access-specifier.”
True, it can have any access-specifier; however, the compiler always emits it in metadata as

2

private. Should we allow it to de declared with any access-specifier other than private? The
committee agreed that private should be required.

As we reviewed the long long edits, Steve reported that at its meeting earlier this week, WG21
adopted a slightly modified version of that proposal.

Action: Steve will email to Rex the differences in the final WG21 version of long long.

6 Approving tracked changes in latest draft
Document 2003-42 was approved with a number of editorial changes. The following issues were
raised:

3: Remove the reference to the C99 standard (see 30.1) below.

8.7 pp 19/line 29: Regarding the constructors for delegates, to “the second is the address of the
non-static member function”, append “(using the syntax of a pointer to member)”.

18.5.3 pp 90: Fix two examples using named overrides on a property rather than on the accessors of
that property.

25.1: Prohibit enumerators called __value in native enums as well.

31: Remove all the current text from this clause (and close out Action Items 7 and 84), replacing it
with something along the lines of “Apart from what is mentioned in other clauses of this standard,
there are no other requirements on a conforming C++/CLI implementation with regard to the
Standard C and C++ libraries.”

7 Date and place of next meetings
Dec 30, 2004, is the cut-off date for contributions of all non-trivial issues.

Jan 7, 2005, editor will circulate a new draft.

Jan 8-19, 2005, all TG5 members will perform a detailed review

7.1 Next Meeting
January 20-21, 2005: Westfield NJ; hosted by EDG and Dinkumware.

7.2 Future meetings

March 8-9, 2005: Big Island, Hawaii; hosted by Plum Hall
(and, if needed, 1 hour at 9 am on May 11 to review work done post-main meeting)

Vote the spec out of TG5 and then forward to the GA via the TC39 business meeting, to be held
the afternoon of March 11.

8 Reports from Liaisons
8.1 TC39 TG3 (CLI) – Rex Jaeschke

Instances of all value types are initializes to all-bits-zero; default constructors are not supported.
A recent version of the MS implementation didn’t allow T() for T being an arbitrary value type.

It was reported that this has been fixed in the implementation; T() is valid.

Action: Rex will see if the spec needs words for this.

Rex recently distributed the spec for the new type Nullable<T>. It was adopted by TG3 earlier this
week. Please send any comments to him.

3

8.2 SC22/WG21 (C++) – Tom Plum, P.J. Plauger, Tana Plauger, John
Spicer, and Steve Adamczyk.
The following issues were discussed at this week’s WG21 meeting:

8.2.1 A strong enum type

- Enumerators having scope within parent enum type.

- No conversion to integer.

- Explicit specification of an underlying type.

WG21 Straw vote 9 strongly in favor/6 mildly in favor/3 strongly opposed to using “enum class”
as the way to state this new type.

8.2.2 Forwarding constructors

Still under discussion; however, this topic is no longer part of the C++/CLI spec.

8.2.3 nullptr

What is the type of this?

8.2.4 The new form of the for statement

Should TG5 use a syntax for its “for each” that is compatible with that being looked at by
WG21. No, TG5 intentionally chose a different syntax to stay out of WG21’s way as it resolves
this issue.

8.3 TC39 TG2 (C#) – Rex Jaeschke
None.

8.4 ISO/IEC JTC 1/SC 22 – Rex Jaeschke
Rex outlined the Fast-Track schedule, as follows:

1. Mar, 2005: At its semi-annual business meeting, TC39 agrees to forward the final draft based on TG5’s
recommendation.

2. May, 2005: The Ecma office will notify JTC 1 that Ecma expects to submit the spec via the Fast Track
process in Jul, 2005, and provides an advance copy of the draft spec for circulation, as a courtesy.

3. Jun, 2005: At its semi-annual business meeting, the Ecma General Assembly (GA) adopts the submission
as an Ecma standard, Version 1, gives it a number, and makes it available for free from the Ecma public
website.

4. Jul, 2005: The Ecma standard is submitted to JTC 1 for Fast Track processing. JTC 1 determines that
Subcommittee 22 (SC22 — programming languages and environments) is the appropriate home for this,
and assigns the task to SC22.

5. Mid-Jul, 2005: SC22 starts a 6-month letter ballot period.

6. While National Bodies (NBs) are reviewing the specs and, ultimately, submitting comments, so too can
TG5 via Ecma. TG5 might want to meet in person or have one or more phone conferences to determine
what its comments are and its own formal response to those comments.

7. Jan 1, 2006: A JTC 1 ballot resolution meeting date, location, chairman, and project editor are proposed by
Ecma.

4

8. Mid-Jan, 2006: SC22's 6-month letter ballot period ends and all comments are due to JTC 1's ITTF. (All
comments must be submitted electronically using a specific Word template.)

9. Feb 1, 2006: JTC 1's ITTF collates all the ballots and their associated comments, and makes them
available to the ballot resolution committee (which is, essentially, TG5).

10. Feb 1, 2006, the SC22 Secretariat announces the date and location of the ballot resolution meeting.

11. Feb 1–mid-Mar, 2006: TG5 works on producing formal responses to all public comments.

12. Late Mar, 2006, the ballot resolution meeting is held for x days. Any NB that has voted NO on the ballot
must send a representative; otherwise, their NO vote will be ignored. (Assuming that a sufficient number of
NBs vote YES initially, or turn their NO to a YES based on decisions made at the ballot resolution meeting,
the draft is unofficially an ISO/IEC standard.)

13. Apr, 2006: The project editor integrates all changes based on the ballot resolution meeting, and forwards
the revised spec to ITTF for final proofing and processing.

14. May, 2006: the corresponding Ecma standard is revised to match that adopted by ISO/IEC.

15. Late Sep, 2006: the spec is announced as an ISO/IEC standard.

16. Sep, 2006: TC39 votes to forward the revised draft to the Ecma GA for adoption.

17. Sep, 2006: At the annual ISO/IEC JTC 1/SC 22 plenary, I (as Ecma-to-SC22 liaison) request that JTC 1
make available for free, the ISO/IEC version of the standard.

18. Nov, 2006: JTC 1 approves the free availability.

19. Dec, 2006: The Ecma GA adopts Version 2 of the standard, which, except for some typographical and
front matter differences, is identical to that from ISO/IEC.

There was a discussion about the possibility of future maintenance of the C++/CLI standard,
especially with regard to WG21.

9 Action item and comment spreadsheet review
A walk-through took place with several issues being closed, re-assigned, or re-prioritized. These
changes were recorded in the spreadsheet.

96: Using keywords as identifiers: Assigned to the editor to close out.

106: Handling of >> as a single token: Assigned to the editor to close out with new words from
Daveed.

10 Any other business
10.1 Distribution of docs to WG21:

Action: Editor will distribute to the TG5 reflector, WD1.8, so members can make it available on their
websites for access by WG21 members. Editor will also announce this availability to the liaison email
reflector.

Action: Editor will concatenate the PDFs of all docs (except WD1.8) to WG21, and forward to
Herb for distribution. (This package will include these draft minutes after TG5 has had a change
to review and correct them via email.) This packet will include a document containing URLs from
which the latest draft can be obtained.

10.2 Thank meeting host:
Everyone thanked meeting host Microsoft.

11 Adjournment
The meeting was adjourned at 2:45 pm.

	Liaison #7.doc.pdf
	1 Opening
	1.1 Appointment of Recording Secretary
	1.2 Introduction of participants
	1.3 Host facilities/local information

	2 Adoption of the agenda
	3 Final approval of minutes of previous TG5 meeting (2004TG5
	4 Matters arising from the minutes not covered elsewhere
	5 Project Editor’s Report
	6 Approving tracked changes in latest draft
	7 Date and place of next meetings
	7.1 January xxx, Westfield, NJ; hosted by EDG/Dinkumware
	7.2 March 8, 9, and 11(9am), Kona, HI; hosted by Plum Hall

	8 Reports from Liaisons
	8.1 TC39 TG3 (CLI) – Rex Jaeschke
	8.2 SC22/WG21 (C++) – Tom Plum, P. J. Plauger, Tana Plauger,
	8.2.1 explicit conversion functions (#105, Hall)

	8.3 TC39 TG2 (C#) – Rex Jaeschke

	9 Action item spreadsheet review
	10 Any other business, and appreciation of hosts
	11 Adjournment

