Doc. No.:. WG21 N1254/)16 00-0031

Author: Martin J. O'Riordan
EMail: martino@theheart.ie
Date: 6 September 2000

Member Access Control - Proposed Revisions

1 Changes
After 1191, insert the following paragraph and add the footnote,

A member of a class can also access all names as the class of which it is a member. A local class
of a member function may access the same names that the member function itself may access
(footnote).

Footnote: Access permissions are thus transitive and cumulative to nested and local classes.

Delete the whole of 1196, as it is no longer irrelevant.

Replace the first sentence of Section 11.8/1,

The members of a nested class have no special access to members of an enclosing class, nor to
classes or functions that have granted friendship to an enclosing class; the usual access rules
(clause 11) shall be obeyed.

With the following,

A nested class is a member and as such has the same access rights as any other member.

Strictly speaking, just deleting the first sentence of 11.891 is all that is necessary, but
replacing it with the above words makes it clear that the intention is that a nested class is
a member like any other.

In the example 11.8911, replace the lines that read,
B b; /1 error: E:Bis private

and,
p->x =1i; [/ error: E:x is private

With the following,

B b; /1 Ckay, E::l can access E :B

and,
p->x =1i; [/ Okay, E :l can access E: :Xx

respectively.

Delete 11.89]2 altogether.

WG21 N1254/J16 00-0031 Member Access Control - Proposed Revisions

2 Discussion and Examples

There are many issues concerning accessibility and nested classes that are inconsistent with
other kinds of members, especially member functions.

A class describes two main parts:
?? aninterface
?? animplementation

Usual thinking is to consider that the consumer of the class may use the interface to the class
without having any concern about its implementation. Indeed, the implementation should be
freely constructed after the fashion best determined by the implementor, and remain opaque
to the consumer of the interface.

I have often thought that the implementation of a member function should be no more
entitled to privilege than a member class and vice versa. But this is not that case in the
current IS. All of the block scopes in a member function have the complete member access
rights, which currently the member class does not enjoy.

2.1 Local Classes and Member Access Control:
| was considering an example recently,

class X

{

private:
static bool inside_foo;
publi c:

b

bool X::inside foo = fal se;

T foo ();

T X::foo ()

i nside_foo = true;
/1 sonme code
if (sone-conditional-expression)
{
// some nore code
i nside_foo = fal se;
return val ue;

else if (some-other-conditional-expression)

/'l other code
i nside_foo = fal se;
return val ue;
}
/1l yet nore code
i nside_foo = fal se;
return val ue;

Martin J. O'Riordan Page 2 of 9 6 September 2000

WG21 N1254/J16 00-0031 Member Access Control - Proposed Revisions

Here | have had to be very careful to remember to reset the ‘i nsi de_f oo’ boolean on each
return path. This leads to a lot or potential errors as the function is edited, and return paths
may be missed. Obviously the example is concocted, but it is nevertheless illustrative of
general resource management issues. Typically, such code might be rewritten such that
another class does the work of managing the resource, for example,

T X :foo () {
cl ass Hel per { public:
Hel per () { X :inside_foo
~Hel per () { X :inside_foo
} hel per;
/1 some code
if (sone-conditional-expression)
{ /1l some nore code
return val ue;
}

else if (some-other-conditional-expression)
{ /1l other code

return val ue;
}

/1l yet nore code
return val ue;

true; 1}
fal se; }

And the simplicity and robustness of the code is improved. However, the current IS does not
support this use as the local class doesn’t have any access to ‘X: : i nsi de_f oo’. Yet doing so
is strictly an implementation choice that has no effect on the consumer of the cl ass X, nor
does it in anyway compromise the access security of the cl ass X

[Note: This particular example could be coded by adding a reference to ‘i nt’ and binding
‘i nsi de_f 00’ to it when declaring the object “‘hel per ’]

In this case, the proposed resolution that a nested class is implicitly made a ‘f ri end’ of the
class of which it is a member could be extended to local classes. However, | have several
problems with this, two of which are that,

?? the idea of expressing the accessibility of members in terms of friend’s is
semantically broken. It should always work that ‘f ri end’ access is described in
terms of member access, not the other way around. Itis ‘f ri end’ that represents
the special case, not members.

?? the implicit ‘f ri end’ hack only goes to one level of nesting. If the nested class is
to be granted access rights to its sibling members only through friendship, it
means that the implementation choices for the nested class itself are restricted.
The implementor cannot describe the nested class implementation in terms of
sub-nested classes because friendship is not transitive.

Martin J. O'Riordan Page 3 0of 9 6 September 2000

WG21 N1254/J16 00-0031 Member Access Control - Proposed Revisions

The implicit f ri end hack does increase the right of the implementor to choose a nested class
for their implementation over a function style implementation, for example,

class X {
voi d acquire ();
voi d rel ease ();
publi c:
T use ();
b

T Xi:use () {
acquire ();
if (conditional-expression)
{ rel ease ();
return val ue;

rel ease ();
return anot her Val ue;

With the implicit f r i end hack, the above example can be rewritten as,

class X {
voi d acquire ();
voi d rel ease ();

cl ass Manage {

X& rX;
publi c:
Manage (X& r) : rX(r) { rX acquire (); }
~Manage () { rX.release (); }
3
publi c:
T use ();

b

T X :use () {
Manage mgr (*this);
if (conditional-expression)
return val ue;
return anot her Val ue;

The implementation is simplified and made more robust. As with the previous local class
example, this poses no threat to the security or interface of the cl ass X by its consumers, but
having the implicit fri end hack does increase the choices of implementation for the
implementor.

Martin J. O'Riordan Page 4 of 9 6 September 2000

WG21 N1254/J16 00-0031

Member Access Control - Proposed Revisions

However, even a slight variation of the implicit f ri end hack does not work. Consider the

following example,

class X
cl ass Resource {
voi d acquire ();
voi d rel ease ();
friend class X;
b
class X {
Resource res;
publi c:
T use ();
1

T X :use () {
res.acquire ();
if (conditional-expression)
{ res.rel ease ();
return val ue;
}

res.rel ease ();
return anot herVal ue;

In this case, the implicit fri end hack does not permit the implementor to make the
equivalent implementation choice by using a nested class. That is, the following analogous
code is not permitted,

Martin J. O'Riordan Page 5 of 9

class X;
cl ass Resource {
voi d acquire ();
voi d rel ease ();
friend class X
b
class X {

Resource res;
cl ass Manage {

X& rX;
publi c:
Manage (Resource& r) : rX(r) { rX acquire (); }
~Manage () { rX.release (); }
3
publi c:
T use ();
1

T X :use () {
Manage nmgr (res);
if (conditional-expression)
return val ue;
return anot her Val ue;

6 September 2000

WG21 N1254/J16 00-0031 Member Access Control - Proposed Revisions

And yet, nothing has really changed. In this case, cl ass Resour ce has stated that the
cl ass Xhas special access. It has not placed an implementation constraint on the cl ass X
Yet, the implementation of cl ass X is implicitly restricted to NOT using a nested class,
despite the fact that doing so compromises neither the security nor interface of either the
cl ass Resource orthecl ass X

The proposed implicit fri end mechanism only goes partway. Indeed, it becomes more
ludicrous when the nested class has itself a sub-nested class intended for similar purpose,

cl ass Sonet hing {

class X
cl ass Resource {
voi d acquire ();
voi d rel ease ();
friend class X
1
class X {
Resource res;
publ i c:
T use ();
b

b

T Sonething:: X :use () {
res.acquire ();
if (conditional-expression)
{ res.rel ease ();
return val ue;
}

res.rel ease ();
return anot her Val ue;

Martin J. O'Riordan Page 6 of 9 6 September 2000

WG21 N1254/J16 00-0031 Member Access Control - Proposed Revisions

But it cannot be rewritten by the implementor as,

cl ass Somnet hing {

class X
cl ass Resource {
voi d acquire ();
voi d rel ease ();
friend class X
b
class X {

Resource res;
cl ass Manage {

X& rX;
publi c:
Manage (Resource& r) : rX(r) {
~Manage ()
1
publi c:
T use ();
1

T Sonething:: X :use () {
Manage ngr (res);
if (conditional-expression)
return val ue;
return anot her Val ue;

Despite the fact that it is not really different at all to the global case.

rX.acquire (); }
rX.release (); }

The security and

interface of both the cl ass Sonet hi ng and the cl ass Sonet hi ng: : Resour ce remains

un-compromised, yet this implementation choice is unavailable.

Martin J. O'Riordan Page 7 of 9

6 September 2000

WG21 N1254/J16 00-0031 Member Access Control - Proposed Revisions

3 Summary

Allowing access permissions of members to be inwardly transitive resolves quite a lot of the
issues concerning member access control. It also seems to be the natural way to provide the
needed access security, while at the same time not compromising the implementor in their
choice of implementation strategy. It seems very strange that the simple resource
management metaphor is restricted in the way it currently is. The implicit f ri end approach
is only a half-hearted attempt at resolving this anomaly. The proposal in this document takes
that partial solution, and extends it completely to address the anomalies that implicit f ri end
was intended to resolve by generalising it to transitive accessibility for members.

3.1 Reconsideration of other Member Access Control issues:

Looking at the other issues concerning Clause 11 in the light of the above proposal, it seems
that with this one semantic change, quite a lot of the issues are resolved; even those for which
we have other special case resolutions already.

This proposal directly resolves issues #8, #10 and #45, and partially resolves issue #77 which
would require simple revision. 1 also expect that it resolves many other anomalies in access
control that have come up from time to time.

For completeness | have examined each of the issues and summarised the affects of this
proposal on them.

3.1.1 [OPEN] CWG Issue #8, sub Issue 2:

The changes to 11.8 make this work as expected. The usual wording of 1195 is all that is
subsequently necessary to check accessibility.

This issue is resolved by the proposed changes in this paper.

3.1.2 [REVIEW] CWG Issue #9:

Not affected, the existing proposed resolution is still good and necessary.

3.1.3 [REVIEW] CWG Issue #16:

Not affected, the existing proposed resolution is still good and necessary.

3.1.4 [READY] CWG Issue #142:

Not affected, the existing proposed resolution is still good and necessary.

3.1.5 [DRAFTING] CWG Issue #207:

Not affected, the existing proposed resolution is still good and necessary.

Martin J. O'Riordan Page 8 of 9 6 September 2000

WG21 N1254/J16 00-0031 Member Access Control - Proposed Revisions

3.1.6 [READY] CWG Issue #77:

The proposed resolution would need to be revised. In the currently proposed changes to
11.491, remove the words,

Also, following the example, add the sentence:

A class that is a member of another class does not gain any special access to
the enclosing class. However, such member classes may be declared as
friends of the enclosing class.

Also, the second part of the proposal (to 11.4912) should be removed completely, as it is no
longer relevant.

3.1.7 [READY] CWG Issue #209:

Not affected, the existing proposed resolution is still good and necessary.

3.1.8 [DR] CWG Issue #161:

Not affected, the existing proposed resolution is still good and necessary.

3.1.9 [OPEN] CWG Issue #10:

This issue is resolved by the proposed changes in this paper. Because of transitive access for
nested members, the words of 119]5 are sufficient to resolve this.

This issue is resolved by the proposed changes in this paper.

3.1.10 [REVIEW] CWG Issue #45:

This issue is also resolved by the proposed changes in this paper. Again, the transitive
accessibility properties for nested classes resolves this problem.

The existing proposed resolution for issue #45 is replaced by this proposal.

Martin J. O'Riordan Page 9 of 9 6 September 2000

	1 Changes
	2 Discussion and Examples
	2.1 Local Classes and Member Access Control:

	3 Summary
	3.1 Reconsideration of other Member Access Control issues:
	3.1.1 [OPEN] CWG Issue #8, sub Issue 2:
	3.1.2 [REVIEW] CWG Issue #9:
	3.1.3 [REVIEW] CWG Issue #16:
	3.1.4 [READY] CWG Issue #142:
	3.1.5 [DRAFTING] CWG Issue #207:
	3.1.6 [READY] CWG Issue #77:
	3.1.7 [READY] CWG Issue #209:
	3.1.8 [DR] CWG Issue #161:
	3.1.9 [OPEN] CWG Issue #10:
	3.1.10 [REVIEW] CWG Issue #45:

