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A B C D E F G H I
Date Raised? Issue Raiser? Reference Issue Type Owner Comment Other Remarks Resolved? Postponed?

7-Oct-03 Rex Jaeschke Technical The current CLI spec supports Unicode V3.0. Peter 
Hallam of MS has an action item to see what's 
involved in having TG2 (C#) and TG3 (CLI) support 
Unicode V4.0. If TG3 makes changes in this direction, 
TG5 should look at how this would affect its spec.

Brought up during the phone meeting of 10/7. No

7-Oct-03 Tom Plum Technical Diagnostics: How should we deal with warnings and 
such?

Brought up during the phone meeting of 10/7. No

10-Oct-03 Phone meeting Technical Future directions: Should there be an informative 
annex listing future directions?

Possible entries are:

1. Supporting static members in interfaces
2. Mixed types
3. gcnew of unmanaged types
4. new of managed types

No

10-Oct-2003 Tom Plum Technical While discussing enums (25.1.3) and wchar_t's not 
being permitted as an underlying type, a discussion 
arose w.r.t CLI's requiring wchar_t to have the same 
representation as System::Char; that is, a 16-bit 
character.

This needs further investigation.

Possible need to look at/point to the PDTR currently 
out from WG11 (ISO C).

In email on 10/12/2003 Tom Plum wrote:

Refining my comments re wchar_t, I see a short-term 
and a long-term ...

Short-term, there's no need to change anything.  The 
16-bit unicode type is wchar_t in VC++ and in 
C++/CLI.

Long-term, the decision is up to TG5, and depends 
upon who participates. My own guess is that TG5 in 
fact will be the first group that has to integrate Unicode 
3.1 and 4.0 into its language definition.  I suspect that 
before we're done we'll have four types of character 
(and literal and C++ string):

char - has to be 8 bits to integrate with CLI
   'x'  "str"  string = basic_string<char>

wchar_t - implementation's legacy choice of widechar
   L'x'  L"str"  wstring = basic_string<wchar_t>

char16_t - 16-bit character type, has to be UCS-2 or 
UTF-16 for CLI
   u'x'  u"str"  ustring (?) = basic_string<char16_t> (or 
string16?)

char32_t - 32-bit character type, has to be UTF-32 for 
CLI
   U'x'  U"str"  Ustring (?) = basic_string<char32_t> 
(or string32?)

wchar_t can be the same type as char16_t or char32_t, 
but isn't required to be

No

10-Oct-2003 Phone meeting Technical Issue of mapping system value types to the 
fundamental types, and interop with the standard 
library.

No
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Introduction 
 
This International Standard is based on a submission from Microsoft. It describes a technology, called 
C++/CLI, that is a binding between the Standard C++ programming language and the ECMA and ISO/IEC 
CLI Common Language Infrastructure (§3). That submission was based on another Microsoft project, 5 
Managed Extensions for C++, the first widely distributed implementation of which was released by 
Microsoft in July 2000, as part of its .NET Framework initiative. The first widely distributed beta 
implementation of C++/CLI was released by Microsoft in ??. 

ECMA Technical Committee 39 (TC39) Task Group 5 (TG5) was formed in October 2003, to produce a 
standard for C++/CLI. (Another Task Group, TG3, was formed in September 2000, to produce a standard 10 
for a library and execution environment called Common Language Infrastructure. An ISO/IEC version of 
that CLI standard (§3) has since been adopted. CLI is based on a subset of the .NET Framework.) 

The goals used in the design of C++/CLI were as follows: 

• Provide an elegant and uniform syntax and semantics that give a natural feel for C++ programmers 

• Provide first-class support for CLI features (e.g., properties, events, garbage collection, generics) for 15 
all types including existing Standard C++ classes 

• Provide first-class support for Standard C++ features (e.g., deterministic destruction, templates) for 
all types including CLI classes 

• Preserve the meaning of existing Standard C++ programs by specifying pure extensions wherever 
possible 20 

The development of this standard started in December 2003.  

It is expected there will be future revisions to this standard, primarily to add new functionality. 





 Scope 

1 

1. Scope 

This International Standard specifies requirements for implementations of the C++/CLI binding. The first such 
requirement is that they implement the binding, and so this International Standard also defines C++/CLI. Other 
requirements and relaxations of the first requirement appear at various places within this International Standard. 

C++/CLI is an extension of the C++ programming language as described in ISO/IEC 14882:2003, Programming 5 
languages — C++. In addition to the facilities provided by C++, C++/CLI provides additional keywords, 
classes, exceptions, namespaces, and library facilities, as well as garbage collection. 
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2. Conformance 

Clause §1.4, “Implementation compliance” of the C++ Standard applies to this International Standard. 



 Normative references 

3 

3. Normative references 

The following normative documents contain provisions, which, through reference in this text, constitute 
provisions of this Standard. For dated references, subsequent amendments to, or revisions of, any of these 
publications do not apply. However, parties to agreements based on this Standard are encouraged to investigate 
the possibility of applying the most recent editions of the normative documents indicated below. For undated 5 
references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain 
registers of currently valid International Standards. 

 

ISO/IEC 2382.1:1993, Information technology — Vocabulary — Part 1: Fundamental terms. 

ISO/IEC 10646 (all parts), Information technology — Universal Multiple-Octet Coded Character Set (UCS). 10 

ISO/IEC 14882:2003, Programming languages — C++. 

ISO/IEC 23271:2004, Common Language Infrastructure (CLI), all Partitions. 

IEC 60559:1989,  Binary floating-point arithmetic for microprocessor systems (previously designated IEC 
559:1989). (This standard is widely known by its U.S. national designation, ANSI/IEEE Standard 754-1985, 
IEEE Standard for Binary Floating-Point Arithmetic.) 15 

The Unicode Consortium. The Unicode Standard,  Version 3.0, defined by: The Unicode Standard, Version 3.0 
(Reading, MA, Addison-Wesley, 2000. ISBN 0-201-61633-5), Unicode Annex UAX #15: Unicode 
Normalization Forms, and Unicode Annex UAX #19: UTF-32. [[Ed]] 



C++/CLI Language Specification 

4 

4. Definitions 

For the purposes of this Standard, the following definitions apply. Other terms are defined where they appear in 
italic type or on the left side of a syntax rule. Terms explicitly defined in this Standard are not to be presumed to 
refer implicitly to similar terms defined elsewhere. Terms not defined in this Standard are to be interpreted 
according to the C++ Standard, ISO/IEC 14882:2003. 5 

 

application — Refers to an assembly that has an entry point. When an application is run, a new application 
domain is created. Several different instantiations of an application can exist on the same machine at the same 
time, and each has its own application domain. 

application domain — An entity that enables application isolation by acting as a container for application state. 10 
An application domain acts as a container and boundary for the types defined in the application and the class 
libraries it uses. A type loaded into one application domain is distinct from the same type loaded into another 
application domain, and instances of objects are not directly shared between application domains. Each 
application domain has its own copy of static variables for these types, and a static constructor for a type is run 
at most once per application domain. Implementations are free to provide implementation-specific policy or 15 
mechanisms for the creation and destruction of application domains. 

assembly —Refers to one or more files that are output by the compiler as a result of program compilation. An 
assembly is a configured set of loadable code modules and other resources that together implement a unit of 
functionality. An assembly can contain types, the executable code used to implement these types, and references 
to other assemblies. The physical representation of an assembly is not defined by this specification. Essentially, 20 
an assembly is the output of the compiler. An assembly that has an entry point is called an application. 

attribute — A characteristic of a type and/or its members that contains descriptive information. While the most 
common attributes are predefined, and have a specific encoding in the metadata associated with them, user-
defined attributes can also be added to the metadata. 

boxing — An explicit or implicit conversion from a value class to type System::Object, in which an object 25 
box is allocated and the value is copied into that box. (See also “unboxing”.) 

CLS compliance — The Common Language Specification (CLS) defines language interoperability rules, which 
apply only to items that are visible outside of their defining assembly. CLS compliance is described in 
Partition I of the CLI standard (§3). 

definition, out-of-class  — A synonym for what Standard C++ calls a “non-inline definition”. 30 

delegate — A ref class such that an instance of it can encapsulate one or more functions. Given a delegate 
instance and an appropriate set of arguments, one can invoke all of that delegate instance’s functions with that 
set of arguments. 

event — A member that enables an object or class to provide notifications. 

field — A synonym for what Standard C++ calls a “data member”. 35 

function, abstract — A synonym for what Standard C++ calls a “pure virtual function”. 

garbage collection — The process by which allocated memory is automatically reclaimed on the CLI heap. 

gc-lvalue — An expression that refers to an object or subobject on the CLI heap. 
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handle — A handle is called an “object reference” in the CLI specification. For any CLI type T, the 
declaration T^ h declares a handle h to type T, where the object to which h is capable of pointing resides on the 
CLI heap. A handle tracks, is rebindable, and can point to a whole object only. (See also “type, reference, 
tracking”.) 

heap, CLI — The storage area (accessed by gcnew) that is under the control of the garbage collector of the 5 
Virtual Execution System as specified in the CLI. (See also “heap, native”.)  

heap, native — The dynamic storage area (accessed by new) as defined in the C++ Standard (§18.4). (See also 
“heap, CLI”.) 

IL – Intermediate Language, the instruction set of the Virtual Execution System. 

instance — An instance of a type; synonymous with “object”. 10 

lvalue — This has the same meaning as that defined in the C++ Standard (§3.10). 

metadata — Data that describes and references the types defined by the Common Type System (CTS). 
Metadata is stored in a way that is independent of any particular programming language. Thus, metadata 
provides a common interchange mechanism for use between tools that manipulate programs (such as compilers 
and debuggers) as well as between these tools and the Virtual Execution System. 15 

object — An instance of a type; synonymous with “instance”. 

pinning — The process of (temporarily) keeping constant the location of an object that resides on the CLI heap, 
so that object’s address can be taken and that address remains constant. 

property — A member that defines a named value and the functions that access that value. A property 
definition defines the accessing contracts on that value. Hence, the property definition specifies the accessing 20 
functions that exist and their respective function contracts. 

rebinding —The act of making a handle or pointer refer to the same or another object. 

rvalue — This has the same meaning as that defined in the C++ Standard (§3.10). 

tracking — The act of keeping track of the location of an object that resides on the CLI heap; this is necessary 
because such objects can move during their lifetime (unlike objects on the native heap, which never move). 25 
Tracking is maintained by the Virtual Execution System during garbage collection. Tracking is an inherent 
property of handles and tracking references. 

type, boxed — An instance of a value class on the CLI heap, that is always accessed via a handle. A boxed type 
is always of the form V^. 

type, class, any — Any CLI or native type. 30 

type, class, interface — A type that declares a set of virtual members that an implementing class must define. 
An interface class type binds to a CLI interface type.A type declared using interface class or interface 
struct. [Note: Unless otherwise noted, the name I is used as shorthand to refer to a type of this kind. end note] 

type, class, ref — A type that can contain fields, function members, and nested types.  Instances of a ref class 
type are allocated on the CLI heap. A ref class type binds to a CLI class type.A type declared using ref class 35 
or ref struct. [Note: Unless otherwise noted, the name R is used as shorthand to refer to a type of this kind. 
end note] 

type, class, value — A type that can contain fields, function members, and nested types. Instances of a value 
class type are values. Since they directly contain their data, no heap allocation is necessary. A value class type 
binds to a CLI value type.A type declared using value class or value struct. [Note: Unless otherwise 40 
noted, the name V is used as shorthand to refer to a type of this kind. end note] 

type, CLI — An interface class, a ref class, or a value class. 
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type, fundamental  — The arithmetic types as defined by the C++ Standard (§3.9.1), and that map to CLI value 
types. (These include bool, char, and wchar_t, but exclude enumerations.)  

type, handle — Longhand for “handle”. 

type, native — An ordinary C++ class (declared using class, struct, or union). [Note: Unless otherwise 
noted, the name N is used as shorthand to refer to a type of this kind. end note] 5 

type, pointer, native — The pointer types as defined by the C++ Standard (§8.3.1). (Unlike a handle, a native 
pointer doesn’t track, since objects on the native heap never move.) 

type, reference, native — The reference types as defined by the C++ Standard (§8.3.2). 

type, reference, tracking — A tracking reference is a kind of reference that has restrictions as to where it can 
be declared. For any type T, the declaration T% r declares a tracking reference r to type T. (See also “handle”.) 10 

type, value, boxed — A boxed value class is an instance of a value class on the CLI heap. For a value class V, a 
boxed value class is always of the form V^. 

type, value, simple — The subset of value classes that can be embedded in a CLI type. The simple value classes 
include the fundamental types. [Note: Unless otherwise noted, the name S is used as shorthand to refer to a type 
of this kind. end note] 15 

unboxing — An explicit conversion from type System::Object to any value class, from V^ (the boxed form 
of a value class) to V (the value class), or from any interface class to any value class that implements that 
interface class. (See also “boxing”.) 

Virtual Execution System (VES) — This system implements and enforces the Common Type System (CTS)   
model. The VES is responsible for loading and running programs written for the CLI. It provides the services 20 
needed to execute IL and data, using the metadata to connect separately generated modules together at runtime. 
For example, given an address inside the code for a function, it must be able to locate the metadata describing 
the function. It must also be able to walk the stack, handle exceptions, and store and retrieve security 
information. The VES is also known as the “Execution Engine”. 

 25 
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5. Notational conventions 

Various pieces of text from the C++ Standard appear verbatim in this standard. Additions to such text are 
indicated by underlining, and deletions are indicated using strike-through. For example: 

The rules for operators remain largely unchanged from Standard C++; however, the following rule in 
Standard C++ (§13.5/6) is relaxed: 5 

“An operator function shall either be a non-static member function or be a non-member function 
and have at least one parameter whose type is a class, a reference to a class, a class handle, an 
enumeration, a reference to an enumeration, or an enumeration handle.” 

Unless otherwise noted, the following names are used as shorthand to refer to a type of their corresponding kind: 

• I for interface class 10 

• N for native type 

• R for ref class 

• S for simple value class 

• V for value class 

The CLI has its own set of naming conventions, some of which differ from established C++ programming 15 
practice. The CLI conventions have been used throughout this Standard, and they are described in §D. 

Many source code examples use facilities provided by the CLI namespace System; however, that namespace is 
not explicitly referenced. Instead, there is an implied using namespace System; at the beginning of each of 
those examples. 
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6. Acronyms and abbreviations 

This clause is informative. 

The following acronyms and abbreviations are used throughout this Standard: 

 

BCL — Base Class Library, which provides types to represent the built-in data types of the CLI, simple file 5 
access, custom attributes, security attributes, string manipulation, formatting, streams, and collections. 

CLI — Common Language Infrastructure 

CLS — Common Language Specification 

CTS — Common Type System 

IEC — the International Electrotechnical Commission 10 

IEEE — the Institute of Electrical and Electronics Engineers 

ISO — the International Organization for Standardization 

End of informative text. 
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7. General description 

This clause is informative. 

This Standard is intended to be used by implementers, academics, and application programmers. As such, it 
contains a considerable amount of explanatory material that, strictly speaking, is not necessary in a formal 
language specification. 5 

This standard is divided into the following subdivisions: 

1. Front matter (clauses 1–7); 

2. Language overview (clause 8); 

3. The language syntax, constraints, and semantics (clauses 9–32); 

4. Annexes 10 

Examples are provided to illustrate possible forms of the constructions described. References are used to refer to 
related clauses. Notes are provided to give advice or guidance to implementers or programmers. Annexes 
provide additional information and summarize the information contained in this Standard.  

Clauses 1–5, 7, and 9–32 form a normative part of this standard; and Foreword, Introduction, clauses 6 and 8, 
annexes, notes, examples, and the index, are informative. 15 

Except for whole clauses or annexes that are identified as being informative, informative text that is contained 
within normative text is indicated in the following ways: 

1. [Example: The following example … code fragment, possibly with some narrative … end example] 

2. [Note: narrative … end note] 

3. [Rationale: narrative … end rationale] 20 

End of informative text. 
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8. Language overview 

This clause is informative. 

This specification is a superset of Standard C++. This clause describes the essential features of this 
specification. While later clauses describe rules and exceptions in a detail, this clause strives for clarity and 
brevity at the expense of completeness. The intent is to provide the reader with an introduction to the language 5 
that will facilitate the writing of early programs and the reading of later chapters. 

8.1 Getting started 
The canonical “hello, world” program can be written as follows: 

int main() { 
 System::Console::WriteLine("hello, world"); 10 
} 

The source code for a C++/CLI program is typically stored in one or more text files with a file extension of 
.cpp, as in hello.cpp. Using a command-line compiler (called cl, for example), such a program can be 
compiled with a command line like 

cl hello.cpp 15 

which produces an application named hello.exe. The output produced by this application when it is run is: 
hello, world 

The CLI library is organized into a number of namespaces, the most commonly used being System. That 
namespace contains a ref class called Console, which provides a family of functions for performing 
console I/O. One of these functions is WriteLine, which when given a string, writes that string plus a trailing 20 
newline to the console. (Examples from this point on assume that the namespace System has been the subject of 
a using declaration.) 

8.2 Types 
Look at the possibility of rewriting this sub-clause. C++ has many more class types, and a handle type can 
include all class types. Keep this placeholder until the type tree diagram has been added. [[BB]] 25 

Value classes differ from handle types in that variables of the value classes directly contain their data, whereas 
variables of the handle types store handles to objects. With handle types, it is possible for two variables to 
reference the same object, and thus possible for operations on one variable to affect the object referenced by the 
other variable. With value classes, the variables each have their own copy of the data, and it is not possible for 
operations on one to affect the other. 30 

The example 
ref class Class1 { 
public: 
 int Value; 
 Class1() { 35 
  Value = 0; 
 } 
}; 
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int main() { 
 int val1 = 0; 
 int val2 = val1; 
 val2 = 123; 

 Class1^ ref1 = gcnew Class1; 5 
 Class1^ ref2 = ref1; 
 ref2->Value = 123; 

 Console::WriteLine("Values: {0}, {1}", val1, val2); 
 Console::WriteLine("Refs: {0}, {1}", ref1->Value, ref2->Value); 
} 10 

shows this difference. The output produced is 
Values: 0, 123 
Refs: 123, 123 

The assignment to the local variable val1 does not affect the local variable val2 because both local variables 
are of a value class (the type int) and each local variable of a value class has its own storage. In contrast, the 15 
assignment ref2->Value = 123; affects the object that both ref1 and ref2 reference. 

The lines 
Console::WriteLine("Values: {0}, {1}", val1, val2); 
Console::WriteLine("Refs: {0}, {1}", ref1->Value, ref2->Value); 

deserve further comment, as they demonstrate some of the string formatting behavior of 20 
Console::WriteLine, which, in fact, takes a variable number of arguments. The first argument is a string, 
which can contain numbered placeholders like {0} and {1}. Each placeholder refers to a trailing argument with 
{0} referring to the second argument, {1} referring to the third argument, and so on. Before the output is sent to 
the console, each placeholder is replaced with the formatted value of its corresponding argument. 

Developers can define new value classes through enum and value class declarations. The example 25 
public enum class Color { 
 Red, Blue, Green 
}; 

public value struct Point {  
 int x, y;  30 
}; 

public interface class IBase { 
 void F(); 
}; 

public interface class IDerived : IBase { 35 
 void G(); 
}; 

public ref class A { 
protected: 
 virtual void H() { 40 
  Console::WriteLine("A.H"); 
 } 
}; 

public ref class B : A, IDerived { 
public: 45 
 void F() { 
  Console::WriteLine("B.F, implementation of IDerived.F"); 
 } 

 void G() { 
  Console::WriteLine("B.G, implementation of IDerived.G"); 50 
 } 
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 virtual protected void H() override { 
  Console::WriteLine("B.H, override of A.H"); 
 } 
}; 

public delegate void MyDelegate(); 5 

shows an example of each kind of type definition. Later clauses describe type definitions in detail. 

Types like Color, Point, and IBase above, which are not defined inside other types, can have a type visibility 
specifier of either public or private. The use of public in this context indicates that the type will be visible 
outside the assembly. Conversely, the private indicates that the type will not be visible outside the assembly. 
The default visibility for a type is private. 10 

8.2.1 Fundamental types and the CLI 
Each of the fundamental types is shorthand for a CLI-provided type. For example, the keyword int refers to the 
value class System::Int32. As a matter of style, use of the keyword is favored over use of the complete 
system type name. 

The table below lists the fundamental types and their corresponding CLI-provided type: 15 

 

Type Description CLI Value class 
bool Boolean type; a bool value is either true or false System::Bool 

char 8-bit signed/unsigned integral type System::SByte 
(with modopt for 
NoSignSpecified) 

signed 
char 

8-bit signed integral type System::SByte 

unsigned 
char 

8-bit unsigned integral type System::Byte 

short 16-bit signed integral type System::Int16 

unsigned 
short 

16-bit unsigned integral type System::UInt16 

int 32-bit signed integral type System::Int32 

unsigned 
int 

32-bit unsigned integral type System::UInt32 

long 32-bit signed integral type System::Int32 

(with modopt for IsLong) 
unsigned 
long 

32-bit unsigned integral type System::UInt32 

(with modopt for IsLong) 

long long 64-bit signed integral type System::Int64 

unsigned 
long long 

64-bit unsigned integral type System::Uint64 

float Single-precision floating point type System::Single 

double Double-precision floating point type System::Double 
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long double Double-precision floating point type System::Double 

wchar_t A 16-bit Unicode code unit System::Char 

 

Add description for how fundamental types have the same member functions as those described in the CLI. 
[[Ed]] 

Although they are not fundamental types, three other types provided in the CLI library are worth mentioning. 
They are: 5 

• System::Object, which is the ultimate base type of all value and handle types 

• System::String, a sequence of Unicode code units 

• System::Decimal, a precise decimal type with 28 significant digits 

C++/CLI has no corresponding keyword for these. 

8.2.2 Conversions 10 
A number of new kinds of conversion have been defined. These include handle and parameter array conversion, 
among others. 

8.2.3 Array types 
An array in C++/CLI differs from a native array (§8.3.4) in that the former is allocated on the CLI heap, and can 
have a rank other than one. The rank determines the number of indices associated with each array element. The 15 
rank of an array is also referred to as the dimensions of the array. An array with a rank of one is called a single-
dimensional array, and an array with a rank greater than one is called a multi-dimensional array.  

Throughout this Standard, the term array is used to mean an array in the CLI. A C++-style array is referred to as 
a native array whenever the distinction is needed. 

Say more, especially w.r.t the template class array<element-type>. [[BB]] 20 

8.2.4 Type system unification 
C++/CLI provides a “unified type system”. All value and handle types derive from the type System::Object. 
It is possible to call instance functions on any value, even values of fundamental types such as int. The 
example 

int main() { 25 
 Console::WriteLine(3.ToString()); 
} 

calls the instance function ToString from type System::Int32 on an integer literal, resulting in the 
string “3” being output. 

The example  30 
int main() { 
 int i = 123; 
 Object^ o = i;    // boxing 
 int j = (int) o;   // unboxing 
} 35 

is more interesting. An int value can be converted to System::Object and back again to int. This example 
shows both boxing and unboxing. When a variable of a value class needs to be converted to a handle type, an 
object box is allocated to hold the value, and the value is copied into the box. Unboxing is just the opposite. 
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When an object box is cast back to its original value class, the value is copied out of the box and into the 
appropriate storage location. 

This type system unification provides value classes with the benefits of object-ness without introducing 
unnecessary overhead. For programs that don’t need int values to act like objects, int values are simply 32-bit 
values. For programs that need int values to behave like objects, this capability is available on demand. This 5 
ability to treat value classes as objects bridges the gap between value classes and ref classes that exists in most 
languages. For example, a Stack class can provide Push and Pop functions that take and return Object^ 
values. 

public ref class Stack { 
public: 10 
 Object^ Pop() {…} 
 void Push(Object^ o) {…} 
}; 

Because C++/CLI has a unified type system, the Stack class can be used with elements of any type, including 
value classes like int. 15 

8.2.5 Pointers, handles, and null 
Standard C++ supports pointer types and null pointer constants. C++/CLI adds handle and null values. To help 
integrate handles, and to have a universal null, C++/CLI defines the keyword nullptr. This keyword 
represents a literal having the null type. nullptr is referred to as the null value constant. (No instances of the 
null type can ever be created, and the only way to obtain a null value constant is via this keyword.) 20 

The definition of null pointer constant (which Standard C++ requires to be a compile-time expression that 
evaluates to zero) has been extended to include nullptr. The null value constant can be implicitly converted to 
any pointer or handle type, in which case it becomes a null pointer value or null value, respectively. This 
allows nullptr to be used in relational, equality, conditional, and assignment expressions, among others. 

[Example: 25 
Object^ obj1 = nullptr; // handle obj1 has the null value 
String^ str1 = nullptr; // handle str1 has the null value 
if (obj1 == 0);   // false (zero is boxed and the two handles differ) 
if (obj1 == 0L);   // false  “   “   “   “   “ 
if (obj1 == nullptr); // true 30 
char* pc1 = nullptr;  // pc1 is the null pointer value 
if (pc1 == 0);    // true as zero is a null pointer value 
if (pc1 == 0L);   // true  “   “   “ 
if (pc1 == nullptr);  // true as nullptr is a null pointer constant 

int n1 = 0; 35 
n1 = nullptr;    // error, no implicit conversion to int 
if (n1 == 0);    // true, performs integer comparison 
if (n1 == 0L);    //    “   “   “ 
if (n1 == nullptr);  // error, no implicit conversion to int 

if (nullptr);    // error 40 
if (nullptr == 0);  // error, no implicit conversion to int 
if (nullptr == 0L);  //    “   “   “ 
nullptr = 0;    // error, nullptr is not an lvalue 
nullptr + 2;    // error, nullptr can’t take part in arithmetic 

Object^ obj2 = 0;   // obj2 is a handle to a boxed zero 45 
Object^ obj3 = 0L;  // obj3  “   “   “ 
String^ str2 = 0;   // error, no conversion from int to String^ 
String^ str3 = 0L;  //    “   “   “   “ 
char* pc2 = 0;    // pc2 is the null pointer value 
char* pc3 = 0L;   // pc3  “   “   “ 50 
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Object^ obj4 = expr ? nullptr : nullptr; // obj4 is the null value 
Object^ obj5 = expr ? 0 : nullptr;   // error, no composite type 

char* pc4 = expr ? nullptr : nullptr;  // pc4 is the null pointer value 
char* pc5 = expr ? 0 : nullptr;    // error, no composite type 
 5 
int n2 = expr ? nullptr : nullptr; // error, no implicit conversion to int 
int n3 = expr ? 0 : nullptr;   // error, no composite type 
 
sizeof(nullptr);    // error, the null type has no size, per se 
typeid(nullptr);    // error 10 
throw nullptr;     // error 
 
void f(Object^);    // 1 
void f(String^);    // 2 
void f(char*);     // 3 15 
void f(int);      // 4 
f(nullptr);      // error, ambiguous (1, 2, 3 
possible) 
f(0);        // calls f(int) 
 20 
void g(Object^, Object^); // 1 
void g(Object^, char*);  // 2 
void g(Object^, int);  // 3 
g(nullptr, nullptr);   // error, ambiguous (1, 2 possible) 
g(nullptr, 0);     // calls g(Object^, int) 25 
g(0, nullptr);     // error, ambiguous (1, 2 possible) 
 
void h(Object^, int); 
void h(char*, Object^); 
h(nullptr, nullptr);   // calls h(char*, Object^); 30 
h(nullptr, 2);     // calls h(Object^, int); 
 
template<typename T> void k(T t); 
k(0);        // specializes k, T = int 
k(nullptr);      // error, can’t instantiate null type 35 
k((Object^)nullptr);   // specializes k, T = Object^ 
k<int*>(nullptr);    // specializes k, T = int* 

end example] 

Since objects allocated on the native heap do not move, pointers and references to such objects need not track an 
object’s location. However, objects on the CLI heap can move, so they require tracking. As such, native pointers 40 
and references are not sufficient for dealing with them. To track objects, C++/CLI defines handles (using the 
punctuator ^) and tracking references (using the punctuator %). [Example: 

N* hn = new N;  // allocate on native heap 
N& rn = *hn;  // bind ordinary reference to native object 

R^ hr = gcnew R; // allocate on CLI heap 45 
R% rr = *hr;  // bind tracking reference to gc-lvalue 

end example] 

In general, % is to ^ as & is to *. 

Just as Standard C++ has a unary & operator, C++/CLI provides a unary % operator. While &t yields a T* or an 
interior_ptr<T> (see below), %t yields a T^. 50 

Rvalues and lvalues continue to have the same meaning as with Standard C++, with the following rules 
applying: 

• An entity declared with type T*, a native pointer to T, points to an lvalue. 

• Applying unary * to an entity declared with type T*, dereferencing a T*, yields an lvalue. 
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• An entity declared with type T&, a native reference to T, is an lvalue. 

• The expression &lvalue yields a T*. 

• The expression %lvalue yields a T^. 

A gc-lvalue is an expression that refers to an object on the CLI heap, or to a value member contained within 
such an object. The following rules apply to gc-lvalues: 5 

• Standard conversions exist from “cv-qualified lvalue of type T” to “cv-qualified gc-lvalue of type T,” 
and from “cv-qualified gc-lvalue of type T” to “cv-qualified rvalue of type T.” 

• An entity declared with type T^, a handle to T, points to a gc-lvalue. 

• Applying unary * to an entity declared with type T^, dereferencing a T^, yields a gc-lvalue. 

• An entity declared with type T%, a tracking reference to T, is a gc-lvalue. 10 

• The expression &gc-lvalue yields an interior_ptr<T> (See below.). 

• The expression %gc-lvalue yields a T^. 

The garbage collector is permitted to move objects that reside on the CLI heap. In order for a pointer to refer 
correctly to such an object, the runtime needs to update that pointer to the object’s new location. An interior 
pointer (which is defined using interior_ptr) is a pointer that is updated in this manner. 15 

8.3 Parameters 
A parameter array enables a many-to-one relationship: many arguments can be represented by a single 
parameter array. Parameter arrays are a type safe alternative to parameter lists that end with an ellipsis. 

A parameter array is declared with a leading ... punctuator and an array type. There can be only one parameter 
array for a given function, and it must always be the last parameter specified. The type of a parameter array is 20 
always a single-dimensional array type. A caller can either pass a single argument of this array type, or any 
number of arguments of the element type of this array type. For instance, the example  

void F(... array<int>^ args) { 
 Console::WriteLine("# of arguments: {0}", args->Length); 
 for (int i = 0; i < args->Length; i++) 25 
  Console::WriteLine("\targs[{0}] = {1}", i, args[i]); 
} 

int main() { 
 F(); 
 F(1); 30 
 F(1, 2); 
 F(1, 2, 3); 
 F(gcnew array<int> {1, 2, 3, 4}); 
} 

shows a function F that takes a variable number of int arguments, and several invocations of this function. The 35 
output is: 
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# of arguments: 0 
# of arguments: 1 
 args[0] = 1 
# of arguments: 2 
 args[0] = 1 5 
 args[1] = 2 
# of arguments: 3 
 args[0] = 1 
 args[1] = 2 
 args[2] = 3 10 
# of arguments: 4 
 args[0] = 1 
 args[1] = 2 
 args[2] = 3 
 args[3] = 4 15 

By declaring the parameter array to be an array of type System::Object^, the parameters can be 
heterogeneous; for example: 

void G(... array<Object^>^ args) { … } 
G(10, “Hello”, 1.23, ‘X’);   // last two arguments are boxed 

A number of examples presented in this document use the WriteLine function of the Console class. The 20 
argument substitution behavior of this function, as exhibited in the example 

int a = 1, b = 2; 
Console::WriteLine("a = {0}, b = {1}", a, b); 

is accomplished using a parameter array. The Console class provides several overloaded versions of the 
WriteLine function to handle the common cases in which a small number of arguments are passed, and one 25 
general-purpose version that uses a parameter array, as follows: 

namespace System { 
 public ref class Object {…}; 
 public ref class String {…}; 
 public ref class Console { 30 
 public: 
  static void WriteLine(String^ s) {…} 
  static void WriteLine(String^ s, Object^ a) {…} 
  static void WriteLine(String^ s, Object^ a, Object^ b) {…} 
  static void WriteLine(String^ s, Object^ a, Object^ b, Object^ c) {…} 35 
  … 
  static void WriteLine(String^ s, ... array<Object^>^ args) {…} 
 }; 
} 

[Note: The CLI library specification shows library functions using C# syntax, in which case, the C# keyword 40 
params indicates a parameter array. For example, the declaration of the final WriteLine function above is 
written in C#, as follows: 

public static void WriteLine(string s, params object[] args) 

end note] 

8.4 Automatic memory management 45 
The example 

public ref class Stack { 
 Node^ first; 

public: 
 Stack() { 50 
  first = nullptr; 
 } 
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 property bool Empty { 
  book get() { 
   return (first == nullptr); 
  } 
 } 5 
 Object^ Pop() { 
  if (first == nullptr)  
   throw gcnew Exception("Can't Pop from an empty Stack."); 
  else { 
   Object temp^ = first->Value; 10 
   first = first->Next; 
   return temp; 
  } 
 } 

 public void Push(Object^ o) { 15 
  first = gcnew Node(o, first); 
 } 

 ref struct Node { 
  Node^ Next; 
  object^ Value; 20 
  Node(object^ value) : Node(value, nullptr) {} 
  Node(object^ value, Node^ next) { 
   Next = next; 
   Value = value; 
  } 25 
 } 
}; 

shows a Stack class implemented as a linked list of Node instances. Node instances are created in the Push 
function and are garbage collected when no longer needed. A Node instance becomes eligible for garbage 
collection when it is no longer possible for any code to access it. For instance, when an item is removed from 30 
the Stack, the associated Node instance becomes eligible for garbage collection. 

The example 
int main() { 
 Stack^ s = gcnew Stack(); 
 for (int i = 0; i < 10; i++) 35 
  s->Push(i); 
 s = nullptr; 
} 

shows code that uses the Stack class. A Stack is created and initialized with 10 elements, and then assigned 
the value nullptr. Once the variable s is assigned the null value, the Stack and the associated 10 Node 40 
instances become eligible for garbage collection. The garbage collector is permitted to clean up immediately, 
but is not required to do so. 

The garbage collector underlying C++/CLI can work by moving objects around in memory, but this motion is 
invisible to most C++/CLI developers. For developers who are generally content with automatic memory 
management but sometimes need fine-grained control or that extra bit of performance, C++/CLI provides the 45 
ability to pin objects, to prevent temporarily the garbage collector from moving them. For example, 

void f(int* p) { *p = 100; } 

int main() { 
 stdcli::language::array<int>^ arr =  
  gcnew stdcli::language::array<int>(100); 50 
 stdcli::language::pin_ptr<int> pinp = &arr[0]; // pin arr’s location 
 f(pinp);              // change arr[0]’s value 
} 
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8.5 Expressions 
C++/CLI makes numerous additions and changes with respect to operators. For example: 

• The addition of delegates requires the use of the function-call operator to invoke the functions 
encapsulated by a delegate. 

• To accommodate CLI types, a new form of the typeid operator has been added. For example, typeid 5 
<int> results in a handle to an object of type System::Type, that describes the CLI type int. 
(Remember, int is a synonym for the CLI type System::Int32.) 

• The cast operators have been extended to accommodate handle types. 

• The safe_cast operator has been added. 

• The operator gcnew has been added. This allocates memory from the CLI heap. 10 

• The binary + and – operators have been extended to accommodate delegate addition and removal, 
respectively. 

• Simple assignment has been extended to accommodate properties and events as the left operand. 

• Compound Aassignment operators are synthesized from the corresponding binary operator. [[BB]] 

8.6 Statements 15 
A new statement, for each, has been added. This statement enumerates the elements of a collection, executing 
a block for each element of that collection. For example: 

void display(array<int>^ args) { 
 for each (int i in args) 
  Console::WriteLine(i); 20 
} 

A type is said to be a collection type  if it implements the System::Collections.IEnumerable interface or 
implements some collection pattern by meeting a number of criteria. 

8.7 Delegates 
Delegates enable scenarios that Standard C++ programmers typically address with function adapters from the 25 
Standard C++ Library. 

A delegate definition implicitly defines a class that is derived from the class System::Delegate. A delegate 
instance encapsulates one or more functions, each of which is referred to as a callable entity. For instance 
functions, a callable entity is an instance and a member function on that instance. For static functions, a callable 
entity is just a member function. Given a delegate instance and an appropriate set of arguments, one can invoke 30 
all of that delegate instance’s callable entities with that set of arguments.  

Consider the following example: 
delegate int MyFunction(int value);    // define a delegate type 

public ref struct A { 
 static int Square(int i) { return i * i; } 35 
}; 

public ref struct B { 
 int Cube(int i) { return i * i * i; } 
}; 

The class function A::Square parameter types and the instance function B::Cube both have the same 40 
parameter types and return type as MyFunction, so they can be encapsulated by a delegate of that type. Note 
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that even though both functions are public, their accessibility is irrelevant when considering their compatibility 
with MyFunction. Such functions can also be defined in the same or different classes, as the programmer sees 
fit. 

int main() { 
 int result; 5 
 MyFunction^ d;          // create a delegate reference 
 d = gcnew MyFunction(&A::Square);  
 B^ b = gcnew B; 
 d += gcnew MyFunction(b, &B::Cube); 

 result = d(10);     // invoke function via delegate instance 10 
 Console::WriteLine(S"d(10) result = {0}", result); 
 Console::WriteLine(S"d(20) result = {0}", d(20)); 
} 

Also show output of example and reference the clause in the CLI spec re non-deterministic behavior. [[Ed]] 

d can be initialized with A::Square or B::Cube. The constructor for a delegate needs two arguments when it 15 
is bound to a non-static member function: the first is a handle to a ref class, and the second is the address of the 
non-static member function within that ref class’s type. The constructor for a delegate needs only one argument 
when it is bound to a static function, the argument is the address of the static member function. 

Once a delegate instance has been initialized, it is possible to indirectly call the function it encapsulates just as if 
it were called directly, except the delegate instance’s name is used instead. The value (if any) returned by the 20 
encapsulated function is obtained as with a direct function call. If a delegate instance is null and an attempt is 
made to call the “encapsulated” function, an exception of type NullReferenceException results. 

8.8 Native and ref classes 

8.8.1 Literal fields 
A literal field is a field that represents a compile-time constant rvalue. The value of a literal field is permitted to 25 
depend on the value of other literal fields within the same program as long as they have been previously defined. 
The example 

ref class X { 
 literal int A = 1; 
public: 30 
 literal int B = A + 1; 
}; 

ref class Y { 
public: 
 literal double C = X::B * 5.6; 35 
}; 

shows two classes that, between them, define three literal fields, two of which are public while the other is 
private.  

Even though literal fields are accessed like static members, a literal field is not static and its definition neither 
requires nor allows the keyword static. Literal fields can be accessed through the class, as in 40 

int main() { 
 cout << "B = " << X::B << "\n"; 
 cout << "C = " << Y::C << "\n"; 
} 

which produces the following output: 45 
 B = 2 
 C = 11.2 
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Literal fields are only permitted in reference, value, and interface classes. 

8.8.2 Initonly fields 
The initonly identifier declares a field that is an lvalue during construction only, and thereafter is an rvalue. 
This is called an initonly field. For example: 

public ref class Data { 5 
 initonly static double coefficient1; 
 initonly static double coefficient2; 
 static Data() { 
  // read in the value of the coefficients from some source 
  coefficient1 = …; // ok 10 
  coefficient2 = …; // ok 
 } 
public: 
 static void F() { 
  coefficient1 = …; // error 15 
  coefficient2 = …; // error 
 } 
}; 

Assignments to an initonly field can only occur as part of its definition, or in an instance constructor or static 
constructor in the same class. (A static initonly field can be assigned to in a static constructor, and a non-static 20 
initonly field can be assigned to in an instance constructor.) 

Initonly fields are only permitted in ref and value classes. 

8.8.3 Functions 
Member functions in CLI types are defined and used just as in Standard C++. However, C++/CLI does have 
some differences in this regard. For example: 25 

• The const and volatile qualifiers are not permitted on instance member functions. 

• The function modifier override and override specifiers provide the ability to indicate explicit 
overriding, to allow selective and multiple overriding, and to have renamed overriding. 

• Marking a virtual member function as sealed prohibits that function from being overridden in a 
derived class. 30 

• The abstract function modifier provides an alternate way to declare a pure virtual member function. 

• The new function modifier …[[Ed]] 

• Type-safe variable-length argument lists are supported via parameter arrays. 

8.8.4 Properties 
A property is a member that behaves as if it were a field. There are two kinds of properties: scalar and indexed. 35 
A scalar property  enables scalar field-like access to an object or class. Examples of scalar properties include 
the length of a string, the size of a font, the caption of a window, and the name of a customer. An indexed 
property  enables array-like access to an object. An example of an index property is a bit-array class. 

Properties are an evolutionary extension of fields—both are named members with associated types, and the 
syntax for accessing scalar fields and scalar properties is the same, as is that for accessing arrays and indexed 40 
properties. However, unlike fields, properties do not denote storage locations. Instead, properties have accessor 
functions that specify the statements to be executed when their values are read or written. 

Properties are defined with property definitions. The first part of a property definition looks quite similar to a 
field definition. The second part includes a get accessor function and/or a set accessor function. Properties that 
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can be both read and written include both get and set accessor functions. In the example below, the point class 
defines two read-write properties, X and Y.  

public value class point { 
 int Xor; 
 int Yor; 5 
public: 
 property int X { 
  int get()    { return Xor; } 
  void set(int value) { Xor = value; } 
 } 10 
 property int Y { 
  int get()    { return Yor; } 
  void set(int value) { Yor = value; } 
 } 

 point() : point(0, 0) {    // delegating constructor call 15 
 } 

 point(int x, int y) { 
  move(x, y); 
 } 

 void move(int x, int y) {   // absolute move 20 
  X = x; 
  Y = y; 
 }  

 void translate(int x, int y) { // relative move  
  X += x; 25 
  Y += y; 
 } 
 … 
}; 

The get accessor function is called when the property’s value is read; the set accessor function is called when the 30 
property’s value is written. 

The definition of properties is relatively straightforward, but the real value of properties is seen when they are 
used. For example, the X and Y properties can be read and written as though they were fields. In the example 
above, the properties are used to implement data hiding within the class itself. The following application code 
(directly and indirectly) also uses these properties: 35 

point p1;     // set to (0,0) 
p1.X = 10;      // set to (10,0) 
p1.Y = 5;      // set to (10,5) 
p1.move(5, 7);    // move to (5,7) 
point p2(9, 1);    // set to (9,1) 40 
p2.translate(-4, 12); // move 4 left and 12 up, to (5,13) 

A default indexed property allows array-like access directly on an instance. Whereas properties enable field-like 
access, default indexed properties enable array-like access. [Note: Other languages refer to default indexed 
properties as “indexers”. end note] 

As an example, consider a Stack class. The designer of this class might want to expose array-like access so that 45 
it is possible to inspect or alter the items on the stack without performing unnecessary Push and Pop operations. 
That is, class Stack is implemented as a linked list, but it also provides the convenience of array access. 

Default indexed property definitions are similar to property definitions, with the main differences being that 
default indexed properties can be nameless and that they include indexing parameters. The indexing parameters 
are provided between square brackets. The example 50 
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public ref class Stack { 
public: 
 ref struct Node { 
  Node^ Next; 
  Object^ Value; 5 
  Node(Object^ value) : Node(value, nullptr) {} 
  Node(Object^ value, Node^ next) { 
   Next = next; 
   Value = value; 
  } 10 
 }; 

private: 
 Node^ first;  
 Node^ GetNode(int index) { 
  Node^ temp = first;  15 
  while (index > 0) { 
   temp = temp->Next; 
   index--; 
  } 
  return temp; 20 
 } 
 bool ValidIndex(int index) { … } 

public: 
 property Object^ default[int] {  // default indexed property 
  Object^ get(int index) { 25 
   if (!ValidIndex(index)) 
    throw gcnew Exception("Index out of range."); 
   else 
    return GetNode(index)->Value; 
  } 30 
  void set(Object^ value, int index) { 
   if (!ValidIndex(index)) 
    throw gcnew Exception("Index out of range."); 
   else 
    GetNode(index)->Value = value; 35 
  } 
 } 

 Object^ Pop() { … } 
 void Push(Object^ o) { … } 

 … 40 
}; 

int main() { 
 Stack^ s = gcnew Stack; 

 s->Push(1); 
 s->Push(2); 45 
 s->Push(3); 

 s[0] = 33; // Changes the top item from 3 to 33 
 s[1] = 22; // Changes the middle item from 2 to 22 
 s[2] = 11; // Changes the bottom item from 1 to 11 
} 50 

shows a default indexed property for the Stack class.  

[Note: A more efficient implementation of Stack would make use of generics. end note] 

Default indexed properties can just as easily be defined for native classes; for example: 

public class IntVector { 
public: 55 
 property int default[int index] {  // default indexed property 
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  int get(int index) { … } 
  void set(int index, int value) { … } 
 } 
… 
}; 5 

int main() { 
 IntVector iv(7, 5); // define a 7-element vector with all values 5 
 int i = iv[0];   // get element 0 
 iv[1] = 55;    // set element 1 
 iv[3] -= 17;    // get and set element 3 10 
 iv[5] *= 3;    // get and set element 5 
} 

8.8.5 Events 
An event is a member that enables an object or class to provide notifications. A class defines an event by 
providing an event declaration (which resembles a field declaration, though with an added event identifier) and 15 
an optional set of event accessor functions. The type of this declaration must be a handle to a delegate type 
(§8.7).  

An instance of a delegate type encapsulates one or more callable entities. For instance functions, a callable 
entity consists of an instance and a function on that instance. For static functions, a callable entity consists of 
just a function. Given a delegate instance and an appropriate set of arguments, one can invoke all of that 20 
delegate instance’s functions with that set of arguments. 

In the example 
public delegate void EventHandler(Object^ sender, 
 EventArgs^ e); 

public ref class Button { 25 
public: 
 event EventHandler^ Click; 
 void Reset() { 
  Click = nullptr; 
 } 30 
}; 

the Button class defines a Click event of type EventHandler. Inside the Button class, the Click member 
is exactly like a private field of type EventHandler. However, outside the Button class, the Click member is 
typically only used on the left-hand side of the += and –= operators. The += operator adds a handler for the 
event, and the -= operator removes a handler for the event. The example 35 

public ref class Form1 { 
 Button^ Button1; 
 void Button1_Click(Object^ sender, EventArgs^ e) { 
  Console::WriteLine("Button1 was clicked!"); 
 } 40 
public: 
 Form1() { 
  Button1 = gcnew Button; 
 // Add Button1_Click as an event handler for Button1’s Click event 
  Button1->Click += gcnew EventHandler(this, &Button1_Click); 45 
 } 

 void Disconnect() { 
  Button1->Click -= gcnew EventHandler(this, &Button1_Click); 
 } 
}; 50 
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shows a class, Form1, that adds Button1_Click as an event handler for Button1’s Click event. In the 
Disconnect function, that event handler is removed. 

For a trivial event declaration such as  
event EventHandler^ Click; 

the compiler automatically provides the default implementations of the accessor functions. 5 

An implementer who wants more control can get it by explicitly providing add and remove accessor functions.  
For example, the Button class could be rewritten as follows: 

public ref class Button { 
 EventHandler^ handler; 
public: 10 
 event EventHandler^ Click { 
  void add( EventHandler^ e )    { Lock<Mutex> l(m); handler += e; } 
  void remove( EventHandler^ e ) { Lock<Mutex> l(m); handler -= e; } 
 } 
 … 15 
}; 

This change has no effect on client code, but it allows the Button class more implementation flexibility. For 
example, the event handler for Click need not be represented by a field. 

8.8.6 Static operators 
Add examples for native and value classes. [[Ed]] 20 

In addition to Standard C++ operator overloading, C++/CLI provides the ability to define operators that are 
static and/or take parameters of ^ type. 

The following example shows part of an integer vector class: 
public ref class IntVector { 
 int array<int>^ values; 25 
public: 
 property int Length {      // property 
  int get() { return values->Length; } 
 } 

 property int default[int] {  // default indexed property 30 
  int get(int index) { return values[index]; } 
  void set(int index, int value) { values[index] = value; } 
 } 

 IntVector(int length) : IntVector(length, 0) {} 

 IntVector(int length, int value); 35 
// unary – (negation) 
 static IntVector^ operator-(IntVector^ iv) { 
  IntVector^ temp = gcnew IntVector(iv->Length); 
  for (int i = 0; i < iv->Length; ++i) { 
   temp[i] = -iv[i]; 40 
  } 
  return temp; 
 } 

 static IntVector^ operator+(IntVector^ iv, int val) { 
  IntVector^ temp = gcnew IntVector(iv->Length); 45 
  for (int i = 0; i < iv->Length; ++i) { 
   temp[i] = iv[i] + val; 
  } 
  return temp; 
 } 50 
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 static IntVector^ operator+(int val, IntVector^ iv) { 
  return iv + val; 
 } 
 … 
}; 5 
int main() { 
 IntVector^ iv1 = gcnew IntVector(4);  // 4 elements with value 0 
 IntVector^ iv2 = gcnew IntVector(7, 2); // 7 elements with value 2 
 iv1 = -2 + iv2 + 5; 
 iv2 = -iv1; 10 
} 

8.8.7 Instance constructors 
Unlike Standard C++, C++/CLI, supports static constructors (§8.8.9). As such, this specification refers to 
constructors as defined by the C++ Standard as being instance constructors. An instance constructor can 
directly transfer control to one of its siblings via a delegating constructor, as described in the next subclause. 15 

8.8.7.1 Delegating constructors 
When implementing a class, it is not unusual to have a number of constructors share some common code. For 
example, consider the case of the following point class: 

class point { 
 int x_; 20 
 int y_; 
 void commonCode(); 
public: 
 point(); 
 point(int x, int y); 25 
 point(const point& p); 
 
 // ... 
}; 

All three constructors need to initialize the two private members, x_ and y_; they might also perform other 30 
actions, some of which they share, and some of which are unique. One approach is as follows: 

point::point() : x_(0), y_(0) { 
 commonCode(); 
 // ... custom code goes here 
} 35 
point::point(int x, int y) : x_(x), y_(y) { 
 commonCode(); 
} 

point::point(const point& p) : x_(p.x_), y_(p.y_) { 
 commonCode(); 40 
 // ... custom code goes here 
} 

Certainly, the constructor with no parameters can be eliminated by adding default argument values to the 
constructor having two. However, that is not an entirely satisfactory approach for all classes. Specifically, it 
requires the default values to essentially be compile-time constant expressions (which might not always be 45 
preferable), and it allows the two-argument constructor to be called with only the first argument, but not with 
only the second, which, philosophically, is asymmetric. 

Although the constructor definitions could easily have been written inline, that generally makes their 
implementations visible to readers of the header containing the class definition. In addition, some classes might 
have constructors, which might not lend themselves to being inlined. In any event, it is very useful to be able to 50 
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re-implement a constructor without requiring re-compilation of applications that use that constructor, so keeping 
the implementation separate has an important advantage. 

As shown above, a common approach to implementing such a family of constructors is to place their common 
code in a private member function, such as commonCode, and have each of them call that function. 

C++/CLI helps solve this problem by providing delegating constructors. Simply stated, prior to executing its 5 
body, a delegating constructor can call one of its sibling constructors as though it were a base constructor. That 
is, it delegates part of the object’s initialization to another constructor, gets control back, and then optionally 
performs other actions as well. Using this approach, the constructors shown earlier can be re-implemented as 
follows: 

point::point() : point(0, 0) { 10 
 // ... custom code goes here 
} 

point::point(int x, int y) : x_(x), y_(y) { 
 // ... common code goes here 
} 15 
point::point(const point& p) : point(p.x_, p.y_) { 
 // ... custom code goes here 
} 

Note how the ctor-initializer construct has been extended to accommodate a call to a sibling constructor, using 
the exact same approach as for a call to a base class constructor. The common code statements can now be part 20 
of the body of the second constructor, where they will be executed by calls to all three constructors. When the 
first and third constructors are called, they transfer control to the second. When that returns control to its caller, 
that caller’s body is executed. 

Any constructor can delegate to any of its siblings; however, a class must have at least one non-delegating 
constructor (no diagnostic is required), and that constructor can still have a ctor-initializer that calls one or more 25 
base class constructors. A delegating constructor cannot also have a ctor-initializer that contains a comma-
separated list of member initializers.  

8.8.8 Destructors 
Introduce finalizers. [[BB]] 

8.8.9 Static constructors 30 
A static constructor is a ref or value class static member function that implements the actions required to 
initialize the static members of a class, rather than the instance members of that class. Static constructors cannot 
have parameters, must be private, and they cannot be called explicitly. The static constructor for a class is called 
automatically by the runtime. [Note: A static constructor is required to be private to prevent the static 
constructor from being invoked more than once. end note] 35 

The example 
public ref class Data { 
private: 
 initonly static double coefficient1; 
 initonly static double coefficient2; 40 
 static Data() { 
  // read in the value of the coefficients from some source 
  coefficient1 = …; 
  coefficient2 = …; 
 } 45 
public: 
 … 
}; 
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shows a Data class with a static constructor that initializes two initonly static fields. 

8.8.10 Inheritance 
When using ref classes, C++/CLI supports single inheritance of ref classes only. However, multiple inheritance 
of interfaces is permitted. 

8.8.10.1 Function overriding 5 
C++/CLI supports three virtual function-overriding features not available in Standard C++. These features are 
available in any class type. They are: 

1. Explicit overriding: In Standard C++, given a derived class with a function having the same name and 
parameter list as a virtual function in a base class, the derived class function always overrides the one in 
the base class, even if the derived class function is not declared virtual. [Example:  10 

 
struct B { 
 virtual void f(); 
 virtual void g(); 
}; 15 
struct D : B { 
 virtual void f();  // D::f overrides B::f 
 void g();    // D::g overrides B::g 
}; 

The virtual specifier on D::f is optional. end example]  20 

In C++/CLI, it is possible to state that 

a) A derived class function explicitly overrides a base class virtual function having the same name 
and parameter list, with the program being ill-formed if no such base class virtual function 
exists; and  

b) A derived class function explicitly does not override a base class virtual function having the 25 
same name and parameter list.  

[Example:  

 
struct B { 
 virtual void f(); 30 
 virtual void g(); 
 virtual void h(); 
 virtual void j(); 
}; 

struct D : B { 35 
 virtual void f() = B::f;// D::f overrides B::f 
 virtual void g() = B; // D::g overrides B::g 
 virtual void h() = h; // D::h overrides B::h 
 virtual void j() new; // D::j doesn’t override B::j, it hides it 
}; 40 

The virtual specifiers on D::f, D::g, D::h, and D::j, are required. The B::f in the declaration of 
D::f is referred to as a qualified name. The h in the declaration of D::h is referred to as an 
unqualified name. The B in the declaration of D::g is simply the base class name without a function 
name. 
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struct B { 
 void f(); 
private: 
 virtual void h(); 
 virtual void j(); 5 
}; 

struct D : B { 
 virtual void f() = B::f; // error, B::f is not overridable 
 virtual void g() = B;  // error, B::g does not exist 
 virtual void h();    // B::h not visible, but ok 10 
 virtual void j() = B::j  // B::j not visible, but ok 
}; 

end example] 

2. Multiple overriding: In Standard C++, the only way that a function in a derived class can override more 
than one base class virtual function is if, in the presence of multiple inheritance, more than one base 15 
class provides a virtual function that has the same name and parameter list as the derived class function. 
[Example: 

 
struct A { 
 virtual void f(); 20 
}; 

struct B { 
 virtual void f(); 
}; 

struct C { 25 
 virtual void f(); 
}; 

struct D : A, B, C { 
 virtual void f();  // D::f overrides A::f, B::f, and C::F 
}; 30 

The virtual specifier on D::f is optional. end example] 

In C++/CLI, it is possible to state that a derived class function overrides all or any subset of the 
compatible base class virtual functions. [Example:  

 
struct A { 35 
 virtual void f(); 
}; 

struct B { 
 virtual void f(); 
}; 40 
struct C { 
 virtual void f(); 
}; 

struct D : A, B, C {        // alternative 1 
 virtual void f() = A::f, B::f, C::f; // D::f overrides all three 45 
}; 

struct D : A, B, C {        // alternative 2 
 virtual void f() = f;      // D::f overrides all three 
}; 
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struct D : A, B, C {        // alternative 3 
 virtual void f() = C, A::f;    // D::f overrides two 
}; 

end example] 

3. Renamed overriding: In Standard C++, an overriding function must have the same name as the function 5 
it is overriding. In C++/CLI, it is possible for the derived class function to have a different name 
(although the two functions must still have the same parameter lists). [Example:  

 
struct A { 
 virtual void f(); 10 
}; 

struct B { 
 virtual void f(); 
}; 

struct D1 : A, B { 15 
 virtual void x() = B::f;   // D1::x overrides B::f 
}; 

struct D2 : A, B { 
 virtual void x() = A::f, B::f; // D2::x overrides A::f and B::f 
}; 20 
struct D3 : A, B { 
 virtual void x() = f;    // D3::x overrides A::f and B::f 
}; 

struct D4 : A, B { 
 virtual void x() = A, B;   // error, neither A nor B have 25 
            // a virtual function x 
}; 

end example] 
 

An alternate overriding syntax is available; this involves the identifier override. (This name is not a keyword; 30 
it is simply a special identifier when used in this context.) [Example: 

struct A { 
 virtual void f(); 
 virtual void g(); 
 virtual void h(); 35 
 virtual void j(); 
}; 

struct B { 
 virtual void f(); 
 virtual void g(); 40 
}; 

struct D : A, B { 
 virtual void f() override;    // D::f overrides A::f and B::f 
 virtual void g() override = A, B; // D::g overrides A::g and B::g 
 virtual void h() override = A::h; // D::h overrides A::h 45 
 virtual void k() override = A::j; // D::k overrides A::j 
}; 

end example] 

An explicit override takes priority over an implicit override. Once a virtual function has been overridden 
explicitly, in further class derivations, it shall always be overridden explicitly. 50 
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A function shall only be overridden (either implicitly or explicitly) once in any given class. 

[Note: If a base class is a template, an explicit override of a virtual function from that template does not happen 
until the point of instantiation. end note] 

8.9 Value classes 
Value classes are similar to ref classes in that the former represent data structures that can contain fields and 5 
function members. However, unlike ref classes, value classes do not require heap allocation. A variable of a 
value class directly contains the data of the value class, whereas a variable of a ref class contains a handle to the 
data. 

Value classes are particularly useful for small data structures that have value semantics. Complex numbers, 
points in a coordinate system, or key-value pairs in a dictionary are all good examples of structs. Key to these 10 
data structures is that they have few fields, that they do not require use of inheritance or referential identity, and 
that they can be conveniently implemented using value semantics where assignment copies the value instead of 
the reference. 

The simple types provided by C++/CLI, such as int, double, and bool, are, in fact, all value classes. Just as 
these predefined types are value classes, it is also possible to use value classes and operator overloading to 15 
implement new “primitive” types in this specification. 

value struct Point { 
 int x, y; 
 Point(int x, int y) { 
  this->x = x; 20 
  this->y = y; 
 } 
}; 

8.10 Interfaces 
An interface defines a contract. A class that implements an interface must adhere to its contract by implementing 25 
all of the functions, properties, and events that interface declares. 

The example 
delegate void EventHandler(Object sender, 
 EventArgs^ e); 

interface class IExample { 30 
 void F(int value); 
 property bool P { bool get(); } 
 property double default[int]; 
 event EventHandler^ E; 
}; 35 

shows an interface that contains a function F, a read-only scalar property P, a default indexed property, and an 
event E. 

Interfaces are implemented using inheritance syntax. 
interface class I1 { void F(); }; // F is implicitly virtual abstract 

ref class R1 : I1 { virtual void F() { /* implement I1::f */ } }; 40 

An interface can require implementation of one or more other interfaces. For example 
interface class IControl { 
 void Paint(); 
}; 
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interface class ITextBox : IControl { 
 void SetText(String^ text); 
}; 

interface class IListBox : IControl { 
 void SetItems(array<String^>^ items); 5 
}; 

interface class IComboBox : ITextBox, IListBox {}; 

A class that implements IComboBox must also implement ITextBox, IListBox, and IControl. 

Classes can implement multiple interfaces. In the example 
interface class IDataBound { 10 
 void Bind(Binder^ b); 
}; 

public ref class EditBox : Control, IControl, 
   public IDataBound { 
public: 15 
 void Paint() {…} 
 void Bind(Binder^ b) {…} 
}; 

the class EditBox derives from the class Control and implements both IControl and IDataBound. 

In the previous example, interface functions were implicitly implemented. C++/CLI provides an alternative way 20 
of implementing these functions that allows the implementing class to avoid having these members be public. 
Interface functions can be explicitly implemented using the override syntax shown in §8.8.10. For example, the 
EditBox class could instead be implemented by providing IControl::Paint and IDataBound::Bind 
functions.  

public ref class EditBox : IControl, IDataBound { 25 
private: 
 void Paint() = IControl {…} 
 void Bind(Binder^ b) = IDataBound {…} 
}; 

Interface members implemented in this way are called explicit interface members because each member 30 
explicitly designates the interface member being implemented. 

 int main() { 
  EditBox^ editbox = gcnew EditBox; 
  editbox->Paint();   // error: Paint is private 
  IControl^ control = editbox; 35 
  control->Paint();   // calls EditBox’s Paint implementation 
 } 

8.11 Enums 
Standard C++ already supports enumerated types. However, C++/CLI provides some interesting extensions to 
this facility. For example: 40 

• An enum can be declared public or private, so its visibility outside its parent assembly can be controlled. 

• The underlying type for an enum can be specified. 

• An enum type and/or its enumerators can have attributes. 

• A new syntax is available for defining enums that are strongly typed and thus do not have integral 
promotion conversions. 45 
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8.12 Namespaces and assemblies 
The programs presented so far have stood on their own except for dependence on a few system-provided classes 
such as System::Console. It is far more common, however, for real-world applications to consist of several 
different pieces, each compiled separately. For example, a corporate application might depend on several 
different components, including some developed internally and some purchased from independent software 5 
vendors.  

Namespaces and assemblies enable this component-based system. Namespaces provide a logical organizational 
system. Namespaces are used both as an “internal” organization system for a program, and as an “external” 
organization system—a way of presenting program elements that are exposed to other programs. 

Assemblies are used for physical packaging and deployment. An assembly can contain types, the executable 10 
code used to implement these types, and references to other assemblies.  

To demonstrate the use of namespaces and assemblies, this subclause revisits the “hello, world” program 
presented earlier, and splits it into two pieces: a class library that contains a function that displays the greeting, 
and a console application that calls that function.  

The class library will contain a single class named DisplayMessage. For example: 15 
// DisplayHelloLibrary.cpp 
namespace MyLibrary { 
 public ref struct DisplayMessage { 
  static void Display() { 
   Console::WriteLine("hello, world"); 20 
  } 
 }; 
} 

The next step is to write a console application that uses the DisplayMessage class; for example: 
// HelloApp.cpp 25 
#using <DisplayHelloLibrary.dll> 
int main() { 
  MyLibrary::Display(); 
} 

No headers need to be included when using CLI library classes and functions. Instead library assemblies are 30 
referenced via a #using directive, with the assembly name enclosed in <…>, as shown. The code written can 
be compiled into a class library containing the class DisplayMessage and an application containing the 
function main. The details of this compilation step might differ based on the compiler or tool being used. A 
command-line compiler might enable compilation of a class library and an application that uses that library with 
the following command-line invocations: 35 

cl /LD DisplayHelloLibrary.cpp 
cl HelloApp.cpp 

which produce a class library named DisplayHelloLibrary.dll and an application named HelloApp.exe. 

8.13 Versioning 
Versioning is the process of evolving a component over time in a compatible manner. A new version of a 40 
component is source-compatible with a previous version if code that depends on the previous version can, when 
recompiled, work with the new version. In contrast, a new version of a component is binary-compatible if an 
application that depended on the old version can, without recompilation, work with the new version. 

Consider the situation of a base class author who ships a class named Base. In the first version, Base contains 
no function F. A component named Derived derives from Base, and introduces an F. This Derived class, 45 
along with the class Base on which it depends, is released to customers, who deploy to numerous clients and 
servers. 
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public ref struct Base {  // version 1 
 … 
}; 

public ref struct Derived : Base { 
 virtual void F() { 5 
  Console::WriteLine("Derived.F");  
 } 
}; 

So far, so good, but now the versioning trouble begins. The author of Base produces a new version, giving it its 
own function F. 10 

public ref struct Base {  // version 2 
 virtual void F() {   // added in version 2 
  Console::WriteLine("Base.F");  
 } 
}; 15 

This new version of Base should be both source and binary compatible with the initial version. (If it weren’t 
possible simply to add a function then a base class could never evolve.) Unfortunately, the new F in Base makes 
the meaning of Derived’s F unclear. Did Derived mean to override Base’s F? This seems unlikely, since 
when Derived was compiled, Base did not even have an F! Further, if Derived’s F does override Base’s F, 
then it must adhere to the contract specified by Base—a contract that was unspecified when Derived was 20 
written. In some cases, this is impossible. For example, Base’s F might require that overrides of it always call 
the base. Derived’s F could not possibly adhere to such a contract. 

C++/CLI addresses this versioning problem by allowing developers to state their intent clearly. In the original 
code example, the code was clear, since Base did not even have an F. Clearly, Derived’s F is intended as a 
new function rather than an override of a base function, since no base function named F exists. 25 

If Base adds an F and ships a new version, then the intent of a binary version of Derived is still clear—
Derived’s F is semantically unrelated, and should not be treated as an override. 

However, when Derived is recompiled, the meaning is unclear—the author of Derived might intend its F to 
override Base’s F, or to hide it. By default, the compiler makes Derived’s F override Base’s F. However, this 
course of action does not duplicate the semantics for the case in which Derived is not recompiled.  30 

If Derived’s F is semantically unrelated to Base’s F, then Derived’s author can express this intent by using 
the identifier new in the declaration of F. 

public ref struct Base {   // version 2 
 virtual void F() {     // added in version 2 
  Console::WriteLine("Base.F");  35 
 } 
}; 

public ref struct Derived : Base { // version 2a: new 
 virtual void F() new { 
  Console::WriteLine("Derived.F");  40 
 } 
}; 

On the other hand, Derived’s author might investigate further, and decide that Derived’s F should override 
Base’s F. This intent can be specified explicitly by using the identifier override keyword, as shown below. 

public ref struct Base {      // version 2 45 
 virtual void F() {        // added in version 2 
  Console::WriteLine("Base.F");  
 } 
}; 
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public ref struct Derived : Base { // version 2b: override 
 virtual void F() override { 
  Base::F(); 
  Console::WriteLine("Derived.F");  
 } 5 
}; 

The author of Derived has one other option, and that is to change the name of F, thus completely avoiding the 
name collision. Although this change would break source and binary compatibility for Derived, the importance 
of this compatibility varies depending on the scenario. If Derived is not exposed to other programs, then 
changing the name of F is likely a good idea, as it would improve the readability of the program—there would 10 
no longer be any confusion about the meaning of F. 

8.14 Attributes 
C++/CLI has certain declarative elements. For example, the accessibility of a function in a class can be specified 
by declaring it public, protected, or private. C++/CLI generalizes this capability, so that programmers 
can invent new kinds of declarative information, attach this declarative information to various program entities, 15 
and retrieve this declarative information at run-time. Programs specify this additional declarative information by 
defining and using attributes. 

For instance, a framework might define a HelpAttribute attribute that can be placed on program elements 
such as classes and functions, enabling developers to provide a mapping from program elements to 
documentation for them. The example 20 

[AttributeUsage(AttributeTargets::All)] 
public ref class HelpAttribute : Attribute { 
 String^ url; 
public: 
 HelpAttribute(String^ url) { 25 
  this->url = url; 
 } 

 String^ Topic = nullptr; 

 property String^ Url {  
  String^ get() { return url; } 30 
 } 
}; 

defines an attribute class named HelpAttribute that has one positional parameter (String^ url) and one 
named parameter (String^ Topic). Positional parameters are defined by the formal parameters for public 
instance constructors of the attribute class, and named parameters are defined by public non-static read-write 35 
fields and properties of the attribute class. For convenience, usage of an attribute name when applying an 
attribute is allowed to drop the Attribute suffix from the name. 

The example 
[Help("http://www.mycompany.com/…/Class1.htm")] 
public ref class Class1 { 40 
public: 
 [Help("http://www.mycompany.com/…/Class1.htm", Topic = "F")] 
 void F() {} 
}; 

shows several uses of the attribute Help.  45 

Attribute information for a given program element can be retrieved at run-time by using reflection support. The 
example 
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int main() { 
 Type^ type = typeid<Class1>; 
 array<Object^>^ arr = 
  type->GetCustomAttributes(typeid<HelpAttribute>, true); 
 if (arr->Length == 0) 5 
  Console::WriteLine("Class1 has no Help attribute."); 
 else { 
  HelpAttribute^ ha = (HelpAttribute^) arr[0]; 
  Console::WriteLine("Url = {0}, Topic = {1}", ha->Url, ha->Topic); 
 } 10 
} 

checks to see if Class1 has a Help attribute, and writes out the associated Topic and Url values if that 
attribute is present. 

8.15 Generics 
To be added. [[Ed]] 15 

End of informative text. 
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9. Lexical structure 

A number of issues (such as the CLI Unicode binding) are not yet discussed here. Much of this clause is yet to 
be added. [[BB]] 

9.1 Tokens 

9.1.1 Identifiers 5 
Certain places in the Standard C++ grammar do not allow identifiers. However, C++/CLI allows a defined set of 
identifiers to exist in those places, with these identifiers having special meaning. [Note: Such identifiers are 
colloquially referred to as context-sensitive keywords; none-the-less, they are identifiers. end note] The 
identifiers that carry special meaning are: 

abstract  delegate  event   finally 10 
in    initonly  literal  override 
property  sealed  where 

When referred to in the grammar, these identifiers are used explicitly rather than using the identifier grammar 
production. Ensuring that the identifier is meaningful is a semantic check rather than a syntax check. 

9.1.2 Keywords 15 
The following keywords are added to those in the C++ Standard (§2.11):  

enum░class  enum░struct   for░each    gcnew 
generic   interface░class interface░struct nullptr 
ref░class  ref░struct   value░class   value░struct 

The symbol ░ is used in the grammar to signify that white-space appears within the keyword. This occurs during 20 
the decomposition into preprocessing tokens, as defined in phase 3 of the Phases of translation (C++ Standard 
§2.1). Any white-space, including comments and new-lines (but excluding documentation comments), is 
permitted in the position signified by the ░ symbol. Following the decomposition, a keyword with ░ will appear 
as a single preprocessing token. In phase 7 of translation, a preprocessing token containing white-space is 
converted to a single token. [Note: The ░ symbol is only used in the grammar of the language. Examples will 25 
include white-space as is required in a well-formed program. end note] 

In some places in the grammar, specific identifiers have special meaning, but are not keywords. [Note: For 
example, within a virtual function declaration, the identifiers abstract and sealed have special meaning. 
Ordinary user-defined identifiers are never permitted in these locations, so this use does not conflict with a use 
of these words as identifiers. For a complete list of these special identifiers, see §9.1.1. end note] 30 

9.1.3 Literals 
The grammar for literal in the C++ Standard (§2.13) has been extended as follows:  

literal: 
… 
null-literal 35 
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9.1.3.1 The null literal 
null-literal:: 

nullptr 

The null literal is the keyword nullptr, whose type is the null type (§12.3.4).  nullptr represents the null 
value constant and is unique.  This literal is not an lvalue. 5 

The null value constant can be converted to any handle type, with the result being a null handle. The null value 
constant can also be converted to any pointer type, with the result being a null pointer. 
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10. Basic concepts 

Much of this clause is yet to be added, include application entry point, assembly boundaries, etc. [[BB]] 

#using subclause: When importing functions from an assembly, functions with these names shall be renamed 
with the appropriate C++ identifier for the conversion function. If such a function does not make sense as a 
conversion function (for example, it takes three arguments), the function name is not changed to the internal 5 
conversion function name, and thus the function is callable by the name it has in the assembly. [[BB]] 

10.1 Members 

10.1.1 Value class members 
The members of a value class are the members declared in that value class, and the members inherited from the 
value class’s direct base class System::ValueType and the indirect base class System::Object. 10 

The members of a fundamental type correspond directly to the members of the value class type aliased by the 
fundamental type, as follows: 

• The members of signed char are the members of the System::SByte value class. 

• The members of unsigned char are the members of the System::Byte value class. 

• If a plain char is signed, the members of char are the members of the System::SByte value class; 15 
otherwise, they are the members of the System::Byte value class. 

• The members of short int are the members of the System::Int16 value class. 

• The members of unsigned short are the members of the System::UInt16 value class. 

• The members of int are the members of the System::Int32 value class. 

• The members of unsigned int are the members of the System::UInt32 value class. 20 

• The members of long long are the members of the System.Int64 value class. 

• The members of unsigned long long are the members of the System::UInt64 value class. 

• The members of wchar_t are the members of the System::Char value class. 

• The members of float are the members of the System::Single value class. 

• The members of double are the members of the System::Double value class. 25 

• The members of long double are the members of the System::Double value class. 

• The members of bool are the members of the System::Boolean value class. 

10.1.2 Delegate members 
The members of a delegate are the members inherited from class System::Delegate, in addition to the 
members added by the C++ compiler. [Note: The compiler needs to add typedef members to the class so that 30 
template code can use the return type or the parameter types. end note] 
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10.2 Member access 

10.2.1 Declared accessibility 
In the C++ Standard (§10), an access-specifier is used to define member access control. This grammar has been 
extended to accommodate the notion of assemblies, as follows: 

access-specifier: 5 
… 

public private 
private public 
protected public 

public protected 10 
private protected 
protected private 

public public 
protected protected 
private private 15 

In the C++ Standard (§11/1), member access control for each access-specifier is defined. To accommodate the 
addition of assemblies, these definitions have been extended, as follows: 

A member of a class can be 

• private or private private; that is, its name can be used only by members and friends of the class 
in which it is declared. 20 

• protected or protected protected; that is, its name can be used only by members and friends of 
the class in which it is declared, and by members and friends of classes derived from this class. 

• public or public public; that is, its name can be used anywhere without access restriction. 

• public private or private public; that is, its name can be used in its parent assembly. This is 
referred to as assembly access. 25 

• public protected or protected public; that is, its name can be used in its parent assembly or by 
types derived from the containing class. This is referred to as family or assembly access. . 

• private protected or protected private; that is, its name can be used only by types derived 
from the containing class within its parent assembly. This is referred to as family and assembly access. . 

For access-specifiers containing two keywords, the more restrictive of the two applies outside the parent 30 
assembly while the less restrictive of the two applies within the parent assembly. 

An overriding name is allowed to have a different accessibility than the name it is overriding. Clarify the 
ordering definition. [[BB]] An ordering is applied to distinguish between greater accessibility. Given the two 
accessibilities A and B, A has narrower access than B if A permits the same or less access than A within the 
assembly and outside the assembly. A has wider access than B if A permits the same or more access than A 35 
within the assembly and outside the assembly. Narrowing and widening of accessibilities implies a partial 
ordering of accessibilities. For example, protected is wider than private, protected is wider than 
protected, protected is narrower than public, protected is narrower than protected, protected 
private is narrower than public protected, and no ordering exists between public private and 
protected. [Note: In general, widening and narrowing accessibility is not CLS compliant. end note] 40 
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11. Preprocessor 

11.1 Predefined macro names 
In addition to the macros specified in the C++ Standard (§16.8), the following macro name shall be defined by 
the implementation: 

__cplusplus_cli The name __cplusplus_cli is defined to the value 200406L when compiling a 5 
C++/CLI translation unit. [Note: It is intended that future versions of this standard will replace the value of this 
macro with a greater value. end note] 

The value of this predefined macro remains constant throughout the translation unit. 

If this pre-defined macro name is the subject of a #define or a #undef preprocessing directive, the behavior is 
undefined. 10 
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12. Types 

Add a picture of a type tree. [[BB]] 

The C++ Standard (§3.9/10) definition for scalar types has been extended, as follows: 

“Arithmetic types (3.9.1), enumeration types, handles, pointer types, and pointer to member types (3.9.2), 
and cv-qualified versions of these types (3.9.3) are collectively called scalar types.” 5 

The C++ Standard (§7.1.5) definition for type-specifier has been extended, as follows: 

type-specifier: 
… 
delegate-definition 

12.1 Fundamental types 10 
Standard C++ (§3.9.1) is augmented by the following: 

• For all fundamental types (not just character types), all bits of the object representation participate in the 
value representation. 

• An object of type char shall have exactly 8 bits. 

• There are five signed integer types: “signed char”, “short int”, “int”, “long int”, and “long 15 
long” 

• For each of the signed integer types, there exists a corresponding (but different) unsigned integer type: 
“unsigned char”, “unsigned short int”, “unsigned int”, “unsigned long int”, and 
“unsigned long long” 

• An object of type short int shall have exactly 16 bits. 20 

• An object of type int shall have exactly 32 bits. 

• An object of type long int shall have exactly 32 bits. 

• An object of type long long shall have exactly 64 bits. 

• The value of an object having a signed integer type shall be stored using twos-complement 
representation. 25 

• An object of type wchar_t shall be unsigned and have exactly 16 bits. 

• An object of type float is represented using the 32-bit single-precision IEC 60559 format. 

• An object of type double is represented using the 64-bit double-precision IEC 60559 format. 

• An object of type long double is represented using the 64-bit double-precision IEC 60559 format. 

• An object of type bool shall have exactly 8 bits. 30 
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12.2 Class types 

12.2.1 Native classes 

12.2.2 Value classes 
Is there more to say? What about boxing? [[Ed]] 

All value class types implicitly inherit from the class System::ValueType,  which, in turn, inherits from class 5 
System::Object. [Note: System::ValueType is not itself a value class type. Rather, it is a ref class type, 
from which all value class types are automatically derived. end note] 

12.2.2.1 Simple value classes 
Is this the place to describe the mapping of fundamental types to CLI types? [[Ed]] 

12.2.2.2 Enum classes 10 

12.2.3 Ref classes 
A ref class defines a data structure that contains fields, function members (functions, properties, events, 
operators, instance constructors, destructors, and static constructors), and nested types. Ref classes support 
inheritance. Instances of ref classes are created using new-expressions (§15.4.6.1). 

Ref classes are described in §20. 15 

12.2.4 Interface classes 
An interface defines a contract. A ref or value class that implements an interface must adhere to its contract. An 
interface can inherit from multiple base interfaces, and a ref or value class can implement multiple interfaces. 

Interface classes are described in §24. 

12.2.5 Delegate types 20 
A delegate is a data structure that refers to one or more functions, and for instance functions, it also refers to 
their corresponding object instances. 

Delegate types are described in §26. 

12.2.6 Arrays 

12.3 Declarator types 25 

12.3.1 Raw types 

12.3.2 Pointer types 
It is possible to declare a pointer to a function that takes a parameter array (§18.3.6). [Example:  

Void F(double, ... array<int>^); 
void (*p)(double, ... array<int>^) = &F; 30 

end example] 

A native pointer cannot point to an object on the CLI heap unless that object has been pinned (§12.3.7). 
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12.3.3 Handle types 
For any CLI type T, the declaration T^ h declares a handle h to type T, where the object to which h is capable 
of pointing resides on the CLI heap. A handle tracks, is rebindable, and can point to a whole object only. [Note: 
In general, handles are to the gc heap as pointers are to the native heap. end note] 

The default initial value of a handle is nullptr. 5 

Objects of CLI type are allocated on the CLI heap via gcnew, and such objects are referred to by handles. 
[Example: 

R^ r1 = gcnew R; // allocate an object on the CLI heap 
R^ r2 = r1;   // handles r1 and r2 point to the same object 

end example] If an object allocated using gcnew is never destroyed (using delete or by an explicit destructor 10 
call), that object’s destructor will never be run; however, the garbage collector will reclaim the object’s memory, 
and the object’s finalizer (§??), if one exists, will be run. [Example: 

{        // allocate an object on the CLI heap 
 R^ r3 = gcnew R; 
}        // the object will be garbage-collected and 15 
        // finalized, but its destructor will not be run 

end example] 

Unlike pointers, handles track; that is, a handle’s value can change as the object to which it refers gets moved by 
the garbage collector. This has the following implications: 

• A handle cannot be converted to and from void*. (A handle can, however, be converted to and from 20 
Object^.) [Note: There is no void^. end note] 

• A handle cannot be converted to and from an integral type. (A handle cannot be hidden from the 
garbage collector.) 

• Handles cannot be ordered. 

• A handle can only point to a whole object. 25 

[Example: 
R^ r4 = new R; 
Object^ o = r4;     // ok 
R^ r5 = dynamic_cast<R^>(o); // ok, r4 and r5 point to the same object 
long l = reinterpret_cast<long>(r5); // error, can’t convert to integer 30 
R^ r6 = reinterpret_cast<R^>(l);   // error, can’t convert from integer 
std::set<R^> s;     // error, R^’s can’t be compared with less 

end example] 

All handles to the same object compare equal, even if that object is moved by the garbage collector. 

A handle can have any storage duration. 35 

12.3.4 Null type 
The null type is a special type that exists solely to support the null literal, nullptr (also referred to as the null 
value constant).  No instances of this type can be created; the only way to obtain a value of this type is via the 
nullptr literal, whose type is the null type.  

12.3.5 Reference types 40 
A native reference can bind to any lvalue. 
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As an object on the CLI heap can be moved by the garbage collector, its location must be tracked. As such, a 
reference to such an object is called a tracking reference (%), and it can bind to any gc-lvalue. [Note: Because 
there is a standard conversion from lvalue to gc-lvalue, a tracking reference can therefore bind to any gc-lvalue 
or lvalue. end note] 

For any type T, the declaration T% r declares a tracking reference r to type T. [Example: 5 
 R^ h = gcnew R; // allocate on CLI heap 
 R% r = *h;   // bind tracking reference to ref class object 

 void f(V% r); 
 f(*gcnew V);   // bind tracking reference to value class object 

end example] 10 

Like an ordinary reference, a tracking reference is not rebindable; once set, its value cannot be changed. 

A program containing a tracking reference that has storage duration other than automatic is ill-formed. [Note: 
This limitation directly reflects that of the CLI, because tracking references are in general implemented in terms 
of CLI byrefs. This limitation is not inherent in this language design, and can be removed on CLI platforms that 
support byrefs that can exist in non-stack locations. end note] 15 

12.3.6 Interior pointers 
The garbage collector is permitted to move objects that reside on the CLI heap. In order for a pointer to refer 
correctly to such an object, the runtime needs to update that pointer to the object’s new location. An 
interior_ptr is a pointer that is updated in this manner.  

We need a grammar for this. [[BB]] 20 

The compiler will need to emit a modopt to distinguish interior_ptr<T> from tracking reference to T (T%) in the 
metatada.[[BB]] 

12.3.6.1 Definitions 
When lookup finds the name interior_ptr in the stdcli::language namespace, the compiler interprets 
the remainder of the declaration specially. 25 

An interior pointer shall have an implicit or explicit auto storage-class-specifier. An interior_ptr can be 
used as a parameter and return type. 

An interior pointer shall not be a subobject. 

The default initial value for an interior pointer not having an explicit initial value, shall be nullptr. 

[Note: An interior pointer to a value class can be implemented as a CLI byref. However, a byref can't refer to a 30 
whole object, so an interior pointer to a ref class can be implemented using an object reference (just like a 
handle is implemented); this common implementation need not affect the programmer, who still sees distinct 
semantics for interior_ptr<R> and R^. end note] 

12.3.6.2 Target type restrictions 
An interior pointer shall not point to a ref class object. (However, such a pointer is permitted to point to a handle 35 
to a ref class object.) Other target types are permitted. We need to say which types. For example, what about 
pointers to functions? [[BB]] [Example: 



C++/CLI Language Specification 

46 

interior_ptr<int> p1;      // OK 
interior_ptr<int*> p2 = nullptr;   // OK 
interior_ptr<System::String> p3;   // error, String is a ref class 
interior_ptr<System::String^> p4;  // OK; is a handle to ref class  
interior_ptr<interior_ptr<int> > p5; // OK 5 
interior_ptr<int^> p6 = nullptr;   // OK 

end example] 

12.3.6.3 Operations 
An interior pointer can be involved in the same set of operations as native pointers, as defined by the 
C++ Standard. [Note: This includes comparison and pointer arithmetic. end note] 10 

Cover the dangers of pointer arithmetic and interior_ptrs. [[BB]] 

12.3.6.4 Conversion rules 
The following conversion rules apply to interior pointers: 

Conversion from interior_ptr<T1> to interior_ptr<T2> is allowed if and only if conversion from T1* 
to T2* is allowed; 15 

In conversions between types where exactly one type is interior_ptr<T1>, the interior pointer behaves 
exactly as if it were “pointer to cv T1”, with two exceptions: 

• Conversion to any other type “pointer to cv T1” is not allowed. In particular, conversion from 
interior_ptr<T> to T* is not allowed. 

• Conversion from the null pointer constant to interior_ptr<T> is not allowed (but conversion from 20 
nullptr is) 

[Example: 
array<int>^ arr = gcnew array<int>(100); 
interior_ptr<int> ipi = &arr[0]; 
int* p = ipi;   // error; no conversion from interior to non-interior 25 
int k = 10; 
ipi = &k;    // OK; k is an auto variable 
ipi = 0;     // error; must use nullptr instead 
ipi = nullptr;   // OK 
ipi = p;     // OK 30 
if (ipi) {…}   // OK 

end example] 

12.3.6.5 Data access 
An interior pointer exhibits the usual pointer semantics for data access: 

• Operator -> is used to access a member of an object pointed to by an interior pointer; 35 

• Operator * is used to dereference an interior pointer. 

[Example: 
value struct V { 
 int data; 
}; 40 
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V v; 
interior_ptr<V> pv = &v; 
pv->data = 42; 
interior_ptr<int> pi = &v.data; 
assert(*pi == 42); 5 

end example] 

Taking the address of an interior pointer yields a native pointer. 

Interior pointers can point to objects inside the CLI heap. As such, taking the address of an object pointed to by 
an interior pointer yields an interior pointer that cannot be converted to T*, as described in §12.3.6.4. 

[Example: 10 
value struct V { 
 int data; 
}; 

V v; 
interior_ptr<V> pv = &v; 15 
V** p = &pv;     // error 
interior_ptr<V>* pi = &pv; // OK, pv is on the stack and so is an lvalue 
int* p2 = &(pv->data);  // error 
int* p3 = &(v.data);   // OK, v is on the stack, v.data is an lvalue 

end example] 20 

12.3.6.6 The this pointer 
In the body of a non-static member-function of a value class V, this is an expression of type 
interior_ptr<V>, whose value is the address of the object for which the function is called.  

[Example: 
value struct V { 25 
 int data; 
 void f(); 
}; 

void V::f() { 
 interior_ptr<V> pv1 = this; // OK 30 
 V* pv2 = this;      // error 
} 

end example] 

12.3.7 Pinning pointers 
Ordinarily, the garbage collector is permitted to move objects that reside on the CLI heap. However, such 35 
movement can be blocked temporarily, on a per object basis. A pinning pointer is one that prevents the garbage 
collector from moving the CLI heap-based object to which that pointer points. This makes it possible for code 
not under the control of the runtime to manipulate memory within the bounds of the CLI heap without 
corrupting that heap. 

Although a pinning pointer can be initialized from an interior pointer, the value of a pinning pointer is never 40 
changed by the runtime. 

12.3.7.1 Definitions 
When the name pin_ptr is found in the stdcli::language namespace, the compiler interprets the 
remainder of the declaration specially. 
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A pinning pointer shall have an implicit or explicit auto storage-class-specifier. A pin_ptr shall not be used 
as a parameter and return type. 

We need a grammar for this. [[BB]] 

[Note: As a pinning pointer is an interior pointer, the default initial value for a pinning pointer not having an 
explicit initial value, is nullptr. (§12.3.6.1) end note] 5 

12.3.7.2 Target type restrictions 
The target type restrictions for pinning pointers are the same as for interior pointers (§12.3.6.2). 

12.3.7.3 Operations 
The operations that can be formed on pinning pointers are the same as for interior pointers (§12.3.6.3). 

12.3.7.4 Conversion rules 10 
The following conversion rules apply to interior pointers: 

Conversion from pin_ptr<T1> to pin_ptr<T2> is allowed if and only if conversion from T1* to T2* is 
allowed; 

In conversions between types where exactly one type is cv pin_ptr<T>, the pinning pointer behaves exactly as 
if it were “pointer to cv T”, with the exception that conversion from a null pointer constant to pin_ptr<T> is 15 
not allowed (but conversion from nullptr is). [Note: In particular, conversion from pin_ptr<T> to T* is 
allowed as a standard conversion. end note] 

[Example: 
array<int>^ arr = gcnew array<int>(100); 
pin_ptr<int> ppi = &arr[0]; 20 
int* p = ppi;    // OK  
int k = 10; 
ppi = &k;     // OK; k is an auto variable 
ppi = 0;      // error; must use nullptr instead 
ppi = nullptr;    // OK  25 
pin_ptr<int> ppi2 = p; // OK 

end example] 

12.3.7.5 Data access 
With two exceptions, pinning pointers follow the same data access semantic as interior pointers (§12.3.6.5). 
Since a pinning pointer points to an unmovable object inside the CLI heap, a pin_ptr<T> can be converted to 30 
T* (§12.3.7.4). Dereferencing a pinning pointer yields an lvalue. [Example: 

value struct V { 
 int data; 
 void f(); 
}; 35 
void V::f() { 
 int* pi; 
 interior_ptr<V> ipv = this; 
 pi = &(ipv->data);    // error 
 pin_ptr<V> ppv = this; 40 
 pi = &(ppv->data);    // OK 
 
   V* pv; 
   pv = ipv;       // error 
   pv = ppv;       // OK 45 
} 
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V v; 
pin_ptr<V> pv = &v; 
V** p = &pv;       // error 
int* pi = &pv->data;     // OK 

end example] 5 

12.3.7.6 Duration of pinning 
As soon as a pinning pointer is initialized or assigned the address of an object, that object is guaranteed to 
remain at its location on the CLI heap. If the pinning pointer is then made to point to another object, that object 
is guaranteed to remain at its location on the CLI heap, and the object previously pointed to is no longer 
considered pinned, allowing the garbage collector to move it. If a pinning pointer is assigned the value 10 
nullptr, the object previously pointed to (if any) is no longer considered pinned 

When the block in which a pinning pointer is defined exits, any object pointed to by that pinning pointer is no 
longer considered pinned by that pinning pointer; however, it might still be pinned by another pinning pointer. 

[Example: 
ref struct R { 15 
 int data; 
}; 

R^ r = gcnew R; 
{ 

 pin_ptr<int> ppi = &r->data; // object referenced by r is pinned 20 
} 

// ppi’s parent block has exited, so object is free to move 

end example] 

12.4 Top-level type visibility 
A non-nested class, interface, delegate, or enum definition can optionally specify the accessibility of the class, 25 
interface, delegate, or enum: 

top-level-type-visibility: 
public 
private 

The public top-level-type-visibility specifier indicates that the non-nested class, interface, delegate, or enum 30 
will be visible outside the assembly. Conversely, the private top-level-type-visibility specifier indicates that 
the class, interface, delegate, or enum will not be visible outside the assembly. However, private types are 
visible within the same assembly. The default visibility for a class, interface, delegate, or enum is private. 
[Example: 

public class VisibleClass {};  // visible outside the assembly 35 
private class InternalClass {}; // visible only within the assembly 

end example] 

Those class, interface, delegate, or enum definitions nested within another type definition have the accessibility 
specified within that type. The use of a top-level-type-visibility modifier on a nested type definition causes the 
program to be ill-formed.  40 
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13. Variables 

To be added. 
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14. Conversions 

14.1 Standard conversions 
The standard conversions in the C++ standard apply to C++/CLI. The following standard conversions are added: 

14.1.1 Handle conversions 
A handle conversion is similar to a pointer conversion as defined in the C++ Standard (§4.10). A handle 5 
conversion has conversion rank. 

An rvalue of type “handle to cv D,” where D is a type, can be converted to an rvalue of type “handle to cv B,” 
where B is a base class of D. If B is an inaccessible or ambiguous base class of D, a program that necessitates this 
conversion is ill-formed. The result of the conversion is a handle to the base class sub-object of the derived class 
object. 10 

Since the type void^ is ill-formed, there is no handle conversion to it. 

A handle to a type array<S^, n> has a handle conversion to a handle to type array<T^, n> provided S^ 
has a handle conversion to T^ and n (the rank of both arrays) is the same. Such a conversion is better than 
Consider separating the list of conversions from the order of preference (such as how Standard C++ separates 
Standard Conversions from overload resolution). a conversion from type array<S^, n> to 15 
System::Array^. 

The null value constant can be converted to any handle type; the result is a handle with null value of that type, 
and is distinguishable from every other value that is a handle to an object.  Two null values of the same handle 
type shall compare equal. 

14.1.2 Pointer conversions 20 
The definition of null pointer constant in the C++ Standard (§4.10/1) has been extended, as follows: 

“A null pointer constant is either an integral constant expression rvalue of integer type that evaluates to zero, 
or the null value constant nullptr.” 

[Note: The implication of this is that the null value constant can be converted to any pointer type. end note] 

Need to say more here. Possibly move “Interior pointer conversion rules” (§12.3.6.4) and “Pinning pointer 25 
conversion rules” (§12.3.7.4) here. [[Ed]] 

14.1.3 Lvalue conversions 
There is a standard conversion for each of the following: “cv-qualified lvalue of type T” to “cv-qualified gc-
lvalue of type T,” and “cv-qualified gc-lvalue of type T” to “cv-qualified rvalue of type T.” 

14.2 Implicit conversions 30 
The C++ Standard (§4.12) text that describes Boolean conversions has been extended, as follows: 

“An rvalue of arithmetic, enumeration, pointer, pointer to member type, or handle can be converted to an 
rvalue of type bool. A zero value, null pointer value, null member pointer value, or null value is converted 
to false; any other value is converted to true.” 



C++/CLI Language Specification 

52 

14.2.1 Implicit constant expression conversions 
The following implicit constant expression conversions are permitted: 

• The null value constant can be converted to any pointer type. 

• The null value constant can be converted to any handle type. 

14.2.2 User-defined implicit conversions 5 

14.3 Explicit conversions 
The following explicit conversions are permitted: 

• The null value constant can be converted to any pointer type. 

• The null value constant can be converted to any handle type. 

14.4 Boxing conversions 10 
The boxing conversion applies only to value classes (including the simple value classes). The boxing conversion 
cannot be rewritten by the user and is reserved to the implementation. 

The boxing conversion is modeled as a preferred UDC. The text of this section should be revised to address 
concerns from the updated conversion proposal. [[BB]] 

A boxing conversion follows the exact same sequence of operations as user-defined conversions (C++ Standard 15 
§13.3.3.1.2). Boxing conversions are considered before user-defined conversions, and a boxing conversion 
sequence never invokes a user-defined conversion. In other words, given a choice between applying a boxing 
conversion or a user-defined conversion, the boxing conversion is selected. Thus, §13.3.3.2 of the C++ Standard 
is revised, as follows: 

We should start off the conversions clause with “Conversion Sequences”, which would cover this adjustment to 20 
the C++ Standard. That makes Boxing conversions shorter and prevents us from introducing parameter array 
conversions in a sub-clause where it doesn’t belong. [[BB]] 

“When comparing the basic forms of implicit conversion sequences (as defined in 13.3.3.1) 

— a standard conversion sequence (13.3.3.1.1) is a better conversion sequence than a boxing 
conversion sequence, a user-defined conversion sequence, a parameter array conversion 25 
sequence,  or an ellipsis conversion sequence, and 

— a boxing conversion sequence is a better conversion sequence than a user-defined conversion 
sequence, a parameter array conversion sequence, or an ellipsis conversion sequence, and 

— a user-defined conversion sequence (13.3.3.1.2) is a better conversion sequence than a 
parameter array conversion sequence or an ellipsis conversion sequence (13.3.3.1.3). 30 

— a parameter array conversion sequence is a better conversion sequence than an ellipsis 
conversion sequence (13.3.3.1.3).” 

The boxing conversion for a value class V is an implicit conversion from V to V^. As stated above, a standard 
conversion is permitted to follow a boxing conversion, and thus a handle conversion is able to convert V^ to 
System::Object^ or a handle to an interface that V implements. The conversion occurs as follows: 35 

The compiler selects the boxing conversion and emits the BOX instruction as specified in the CLI Standard, 
Partition III, §4.1. This causes a runtime bitwise copy of the value class instance to an object on the CLI heap. 

All value classes must be copyable. That is, a value class shall not have a non-public default constructor. 
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Ref classes have an explicit conversion from R to R^. (This is described later in §??.) 

14.5 User-defined conversions 

14.5.1 Constructors 
All constructors in ref and value classes are explicit (C++ Standard, §12.3.1). Using the explicit keyword on 
a constructor in a ref class or value class is permitted, but it is redundant. 5 

The meaning of an explicit constructor is unchanged from Standard C++. [Note: That is, an explicit constructor 
is permitted in direct-initialization syntax (C++ Standard, §8.5) and casts (C++ Standard, §5.2.9, §5.4). end 
note] 

14.5.2 Explicit conversion functions 
C++/CLI allows the explicit keyword on conversion functions. Thus, C++ Standard, §7.1.2 is changed, as 10 
follows: 

“The explicit specifier shall be used only in declarations of constructors within a class declaration, or on 
declarations of conversion functions within a class declaration; see 12.3.1.” 

A conversion function that is declared with the explicit keyword is known as an explicit conversion 
function. A conversion function that is declared without the explicit keyword (i.e., every conversion function 15 
in Standard C++) is known as an implicit conversion function. 

An explicit conversion function, like an explicit constructor, can only be invoked by direct-initialization syntax 
(C++ Standard §8.5) and casts (C++ Standard §5.2.9, §5.4). 

A type shall not contain an implicit conversion function and an explicit conversion function that perform the 
same conversion. Only one of these is allowed. 20 

It is possible to write a class that has both an explicit converting constructor and a conversion function that can 
perform the same conversion. In this case, the explicit conversion function is preferred. 

Add an example. [[Ed]] 

14.5.3 Static conversion functions 
C++/CLI allows conversion functions, both implicit and explicit, to be static. Conversion functions shall not 25 
have namespace scope. A static conversion function shall take only one parameter, which is the type to convert 
from (a non-static member conversion function shall have no parameters). Neither static nor non-static 
conversion functions shall specify return types. 

Either the source type (parameter type) or the target type (type-specifier-seq) is required to be T, T^, T&, or T%, 
where T is the type of the containing class. (T* is not allowed because conversions are not looked up through 30 
pointers.) 

Implicit conversions can now be found in more than one place: the scope of the type of the source expression 
and the scope of all potential target types. If overload resolution results in a set of conversion functions (and 
possibly converting constructors) that can perform the same conversion, the program is ambiguous and ill-
formed.  35 

14.6 Parameter array conversions 
The parameter array conversion sequence occurs when overload resolution chooses a function that takes a 
parameter array as its last argument. Such overloads are preferred to C-style variable-argument functions, and 
are not preferred to any other overloads. 
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A parameter array overload is chosen by overload resolution. For the purpose of overload resolution, the 
compiler creates signatures for the parameter array functions by replacing the parameter array argument with 
n arguments of the array’s element type, where n matches the number of arguments in the function call. These 
synthesized signatures have higher cost than other non-synthesized signatures, and they have lower cost than 
functions whose parameter-declaration-clause terminates with an ellipsis. This is similar to the tiebreaker rules 5 
for template-functions and non-template functions. It would be useful to reference those somehow. [[Ed]] 
For example, for the function call f(var1, var2, …, varm, val1, val2, …, valn) 

void f(T1 arg1, T2 arg2, …, Tm argm, ... array<T>^ arr) 

is replaced with 
void f(T1 arg1, T2 arg2, …, Tm argm, T t1, T t2, …, T tn) 10 

Overload resolution is performed with the set containing the synthesized signatures according to the rules of 
Standard C++. If overload resolution selects a C-style variable-argument conversion, it means that none of the 
synthesized signatures was chosen. 

If overload resolution selects one of the synthesized signatures, the conversion sequences needed for each 
argument to satisfy the call is performed. For the synthesized parameter array arguments, the compiler 15 
constructs a CLI array of length n and initializes it with the converted values. Then the function call is made 
with the constructed parameter array. 

14.7 Compiler-defined explicit conversions 

14.7.1 Unboxing conversions 
The unboxing conversion allows a conversion to an unboxed value class directly from a handle to one of the 20 
following: 

 System::Object 
 System::ValueType 

 an interface that the value class implements 

 the value class itself 25 

The conversion from the boxed form a value class (V^) to the value class (V) can be done using a dereference 
(i.e., operator*).  It can also be done by any cast notation that invokes user-defined conversions. 

The unboxing conversion can be done with any cast notation that invokes user-defined conversions. 

14.8 Naming conventions 
Conversion functions shall conform to a particular naming convention. (The names required of conversion 30 
functions are given by the CLS guidelines.) While all conversion functions have the CLS required name, not all 
conversion functions are CLS-conversion functions. 

During compilation, the name of the conversion function is the C++ identifier used in source code for that 
function. For example, the conversion function from A to B could be the static member function of either A or B, 
operator B(A), or the instance function of A, operator B(). The identifier used for the operator function in 35 
an assembly shall have the CLS name as specified in §14.8.1 and §14.8.2. 

A conversion function inside a native class shall have the names used in §14.8.1 and §14.8.2 prefixed with < and 
suffixed with >. Otherwise, the name specified in these subclauses is unchanged. A C++ program shall not 
declare nor define a function within a CLI type using one of the CLS names referred to herein. 

A program shall not refer to the CLS-compliant name given to the conversion function. 40 
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All conversion functions, regardless of whether they are CLS-compliant functions or not shall be marked as 
SpecialName functions in the metadata. 

14.8.1 CLS-compliant conversion functions 
A conversion function is CLS-compliant when the following conditions occur: 

1. The conversion function is a static member of a ref class or a value class. 5 

2. If a value class is a parameter or a target value of the conversion function, the value class shall not be 
passed by reference nor passed by pointer or handle. 

3. If a ref class is a parameter or a target value of the operator function, the ref class shall be passed by 
handle. The handle shall not be passed by reference. 

If the above criteria are not met, the conversion function is C++-dependent. Table 14-1 lists the name to give to 10 
the function used to represent the operator function in an assembly. 

Table 14-1: CLS Conversion Functions 
Function Name in Assembly C++ Conversion Function 
T op_Implicit(S) operator T(S) 

T op_Explicit(S) explicit operator T(S) 

The operators op_Implicit and op_Explicit are permitted to be overloaded on their return type. 

14.8.2 C++-dependent conversion functions 
If a conversion function does not match the criteria for CLS compliance, as listed in §14.8, the conversion 15 
function is C++-dependent. The names in Table 14-1 are also used for C++-dependent conversion functions in 
an assembly. 

Both op_Implicit and op_Explicit are allowed to be overloaded on their return type. 

Converting constructors are emitted as constructors, never as converting functions. (Constructors in CLI classes 
are always explicit.) 20 
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15. Expressions 

15.1 Function members 
The following function member kinds are added to those defined by Standard C++: 

• Properties (both scalar and default indexed) 

• Events 5 

The statements contained in these function members are executed through function member invocations. The 
actual syntax for writing a function member invocation depends on the particular function member category. 

Invocations of default indexed properties employ overload resolution to determine which of a candidate set of 
function members to invoke. 

[Note: The following table summarizes the processing that takes place in constructs involving these three 10 
categories of function members that can be explicitly invoked. In the table, e, x, y, and value indicate 
expressions classified as variables or values, T indicates an expression classified as a type, F is the simple 
name of a function, and P is the simple name of a property. 

 

Construct Example Description 
P P::get() Property access 
P = value P::set(value) 

E += value E::add(value) Event access 
E -= value E::remove(value) 

e[x, y] E::get(x, y) Default indexed 
property access e[x, y] = value E::set(x, y, value) 

 15 

The rewrite rules for e[x] (default indexed accesses) are different where there is only one index. This is because 
there is a potential ambiguity with the C++ operator[]. Is this mentioned elsewhere? [[BB]] 

end note] 

15.2 Primary expressions 
To accommodate the addition of properties, the “Primary expressions” subclause of the C++ Standard (§5.1) has 20 
been extended, as follows: 

“A static property or event is not associated with any instance of a class, and a program is ill-formed if it 
refers to this in the accessor functions of a static property or event.” 

“An instance property or event is associated with a specific instance of a class, and that instance can refer to 
this in the accessor functions of that instance property or event.” 25 
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15.3 Postfix expressions 
To accommodate the addition of default indexed properties and arrays (which are accessed using subscript-like 
expressions), the C++ Standard grammar (§5.2) for postfix-expression has been extended, as follows: 

postfix-expression: 
... 5 
postfix-expression   [   expression   ] 
indexed-access 

Indexed access is described in §15.3.2. 

15.3.1 Subscripting 
Given a class instance X, of a type having a default indexed property and operator[], an expression of the 10 
form X[i] is ambiguous. In such cases, the operator[] function or default indexed property accessor function 
must be called directly, as appropriate. If a derived class defines only one of operator[] or a default indexed 
property, lookup will use that function rather than making the program ambiguous. 

15.3.2 Indexed access 
An indexed-access consists of an indexed-designator, followed by a “[” token, followed by an expression-list, 15 
followed by a “]” token. The expression-list consists of one or more expressions, separated by commas. 

indexed-access: 
indexed-designator   [   expression-list   ] 

indexed-designator shall designate an instance that has one or more default indexed properties that are 
applicable with respect to the expression-list of the indexed-access. 20 

An indexed-access is interpreted as follows: Each default indexed property with only one indexing parameter 
has an associated operator[] synthesized. For the property property int default[int], the synthesized 
“operator[](int)” is created. Overload resolution for the appropriate operator[] is done for indexed-
access expressions where the expression list is not comma-separated. If a class has two operator[] operators 
with the same signature, the expression is ambiguous and the program is ill-formed. Otherwise, the rewrite rules 25 
for properties and events are used for indexed-access expressions. 

Need to consider how these expressions are interpreted in templates. [[BB]] 

Commas in expression-list are treated as a special case—they are considered punctuators. However, if an 
expression in that list is enclosed in parentheses, any commas inside that expression are interpreted as operators 
(and behave as described in §5.18/2 of the C++ Standard). 30 

struct S { 
 property int default[int index] { … }     // indexed property 1 
 property int default[string idx1, int idx2] { … } // indexed property 2 
}; 

void f(S& s, string& x, int j) { 35 
 s[x,j]   = 42; // ok, uses indexed property 2 
 s[1,j]   = 42; // error (tries to use indexed property 2, 
       // but there is a type mismatch;  
       // no comma operator is used) 
 s[(1,j)]  = 42; // ok, uses indexed property 1 with j as the argument 40 
 s[(1,x),j] = 42; // ok, uses indexed property 2 
} 

[Note: Given a class instance X, of a type having a default indexed property and operator[], an expression of 
the form X[i] can be ambiguous. In such cases, the operator[] function or default indexed property accessor 
function must be called directly, as appropriate. end note] 45 
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15.3.3 Function call 
The C++ Standard (§5.2.2/1) states, “A function call is a postfix expression followed by parentheses containing 
a possibly empty, comma-separated list of expressions which constitute the arguments to the function.” 

C++/CLI contains support for delegates (§26). As such, the postfix expression can be a delegate type, in which 
case, the whole expression is a delegate invocation (§26.3), and the argument list is passed to each function 5 
encapsulated by the delegate. 

15.3.4 Explicit type conversion (functional notation) 

15.3.5 Pseudo destructor call 

15.3.6 Class member access 
A named indexed property is accessed like any other member of a class. [Note: As expected, an expression of 10 
the form p->NamedIndexer[index] is equivalent to (*p).NamedIndexer[index]. end note] 

If a program attempts to access a default indexed property via a pointer to an object having that default indexed 
property, and the arrow operator, that program is ill-formed. [Note: Although p->[index] is ill-formed, the 
expression (*p)[index] is permitted. end note] 

15.3.7 Increment and decrement 15 

15.3.8 Dynamic cast 
For the expression dynamic_cast<T>(e), in addition to the rules specified by the C++ Standard (§5.2.7), the 
following also applies: 

If T is neither a handle nor a pointer, it is possible for dynamic cast expressions to invoke an unboxing 
conversion. If T is a value class, and e has type T^ or a type U^ (where there is a handle conversion from T^ 20 
to U^), the dynamic cast invokes the UNBOX instruction from the CLI Standard, Partition III. If T is a V% for a 
value class V, and e has type V^ or a type U^ (where there is a handle conversion from V^ to U^), the dynamic 
cast invokes the UNBOX instruction as well. If the unboxed type is not of type T, then an exception of type 
System::InvalidCastException is thrown.  cv-qualification needs to be considered. [[BB]] 

Otherwise, if T is a native reference to a value class, and e has type U^, the program is ill-formed. [Rationale: 25 
This can open a gc hole in the program as native references do not track what they refer to during garbage 
collection. end rationale] 

Otherwise, if T is V^ (where V is a value class) or U^ (where there is a handle conversion from V^ to U^), and e 
has a type V or reference to V, then the expression invokes a boxing conversion sequence. 

Otherwise, if T is a handle type, e shall be an rvalue of a handle to complete class type, and the result is an 30 
rvalue of type T. 

If the value of e is a null value, the result is the null value of type T. 

If T is “handle to cv1 B” and e has type “handle to cv2 D” such that B is a base class of D, the result is a handle 
to B such that it refers to the same object as e. The cv-qualification for cv1 shall be the same as or greater than 
that for cv2.Otherwise, a runtime check is required. 35 

If a run-time check is applied to the cast, and T is a handle or reference to a CLI type, the run-time check is 
performed using the ISINST CIL instruction from the CLI Standard, Partition III, §4.6. 

If T is either a handle or a pointer to any type other than a native class, and the cast fails, the result is the null 
value or the required result type. If T is a reference to any type other than a native class and the cast fails, then 
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the expression throws System::InvalidCastException. When T is a native class, the rules of 
Standard C++ §5.2.7/9 apply. 

15.3.9 Type identification 
In the C++ Standard (§5.2), the type-identification operator, typeid, is defined to be written in two ways. 
C++/CLI adds a third way, as follows: 5 

postfix-expression: 
… 
typeid   (   expression   ) 
typeid   (   type-id   ) 
typeid   <   type-id   > 10 

The first two ways are known collectively as the ()-form of typeid. C++/CLI requires that this form shall not 
be used with the nullptr literal. 

The third way is known as the <>-form of typeid. The result of this form is an lvalue of static type 
System::Type^. There is only one System::Type object for any given type. [Note: This means that for 
type T, typeid<T> == typeid<T> is always true. end note] As this form is a compile-time expression, it can 15 
be used as an argument to an attribute constructor. 

The type-id expression in the <>-form of typeid shall be a raw type or a pointer to a raw type. 

Check if typeid<long> and typeid<char> are allowed (and if so, what do they mean). [[BB]]  

Add a note that discourages the practice of using the result of typeid<T> to guard static members with a lock. 
[[Ed]] 20 

The <>-form provides convenient syntactic access to the functionality of the System::Type::GetType() 
library function. Whereas GetType() must be called on an object of the given type, typeid<> can take an 
abstract-declarator as its operand, and consequently does not require an object to be created. [Example:  

using namespace System::Reflection; 
using stdcli::language::array; 25 
ref class X { /* ... */ }; 

Console::WriteLine(typeid<X>); // typeid<> does not require an object 
X^ pX = gcnew X; 
Type^ pType = pX->GetType();  // GetType requires an object 
Console::WriteLine(pType); 30 
Console::WriteLine(typeid<int>); 
Console::WriteLine(typeid<array<int> >); 
Console::WriteLine(typeid<void>); 

Type^ t = typeid(String); 
Console::WriteLine(t->BaseType); 35 
array<MethodInfo^>^ functions = t->GetMethods(); 
for each (MethodInfo mi in functions) 
 Console::WriteLine(mi); 

The output produced is: 
X 40 
X 
System.Int32 
System.Single[] 
System.Void 

System.Object 45 
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System.String ToString(System.IFormatProvider) 
System.TypeCode GetTypeCode() 
System.Object Clone() 
… 
System.String IsInterned(System.String) 5 
System.CharEnumerator GetEnumerator() 
System.Type GetType() 

end example] 

It might be useful to add an example showing the use of the <>-form with a custom attribute. 

What about handles and tracking references? We still need to make sure we have a design for standard typeid 10 
(that returns std::type_info) in addition to the new typeid (that returns System::Type). [[BB]] 

15.3.10 Static cast 
The rules of specified by the C++ Standard (§5.2.9) apply. For the expression, static_cast<T>(e), the 
following also applies. 

Unboxing and boxing are described as preferred user-defined conversions. Nothing important about these needs 15 
to be mentioned in static cast, but those UDCs are not completely specified yet. 

A static cast can invoke a user-defined conversion function as described in the C++ Standard (§5.2.9/2). All of 
the following are considered: explicit conversion functions, implicit conversion functions, explicit converting 
constructors, and implicit converting constructors. 

The cast expression discussed in the C++ Standard (§5.2.9/3) is allowed also on tracking references. 20 

The conversion discussed in the C++ Standard (§5.2.9/7) is allowed for both native and CLI enumerations. 

An rvalue of type “handle to cv1 B”, where B is a type, can be converted to an rvalue of type “handle to cv2 D”, 
where D is a class derived from B, if a valid standard conversion from “handle to D” to “handle to B” exists 
(§14.1.1), and cv2 is the same cv-qualification as, or greater cv-qualification than, cv1. The null value is 
converted to the null value of the destination type. This can be unverifiable and might cause a gc hole. 25 

15.3.11 Reinterpret cast 
The rules of specified by the C++ Standard (§5.2.10) apply. A reinterpret cast expression that attempts to cast 
from or to a handle type is ill-formed. 

A reinterpret cast will never invoke an unboxing conversion or a boxing conversion sequence. 

15.3.12 Const cast 30 
The rules specified by the C++ Standard (§5.2.11) apply. For the expression, const_cast<T>(v), the 
following also applies. 

Where the C++ Standard discusses the application of const_cast to pointers, the rules shall also apply to 
handles. 

An lvalue of type T1 can be explicitly converted to an lvalue of type T2 using the cast const_cast<T2%> if a 35 
pointer or handle to T1 can be explicitly converted to the type pointer or handle to T2 using a const_cast. The 
result of a reference const_cast refers to the original object. 

A null value is converted to the null value of the destination type. A program in which v in the const cast 
expression is the nullptr literal is ill-formed. 

A const cast will never invoke an unboxing conversion or a boxing conversion sequence. 40 
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15.3.13 Safe cast 
Safe cast performs the optimal cast for CLI frameworks. The name safe_cast is located within the 
stdcli::language namespace. The compiler processes a safe_cast expression as follows: 

• The compiler performs a lookup in the current context for the name safe_cast. 

• If the name refers unambiguously to ::stdcli::language::safe_cast, then the expression is 5 
processed by the compiler according to the following grammar and interpreted according to the rules 
specified herein. 

safe_cast   <   type-id   >   (    expression   ) 

The type of the operand and the target type shall be a value class, a handle to a value class, a handle to a ref 
class, or a handle to an interface class. Otherwise, the expression is ill-formed. 10 

Include the specification for safe_cast from the revised casting proposal. [[BB]] 

15.4 Unary expressions 

15.4.1 Unary operators 

15.4.1.1 Unary & 
Since a discussion of lvalue, rvalue, and gc-lvalue has now been included, the above statement is generalized by 15 
saying that the application of & to an rvalue or a gclvalue is ill-formed. (Is this still true?) [[BB]] 

When applied to an lvalue of type T, & yields a T* (see Standard C++ §??). When applied to a gc-lvalue of type 
T, & yields an interior_ptr<T> (12.3.6). 

A program that attempts to apply the built-in unary & operator to a literal field, or to a property, or to an initonly 
field outside of the class’s constructor, is ill-formed. 20 

15.4.1.2 Unary * 
The C++ Standard (§5.3.1/1) has been extended to allow for indirection on handles. Specifically, the following 
text: 

‘The unary * operator performs indirection: the expression to which it is applied shall be a pointer to an 
object type, or a pointer to a function type and the result is an lvalue referring to the object or function to 25 
which the expression points. If the type of the expression is “pointer to T,” the type of the result is “T.”’ 

has been replaced with: 

‘The unary * operator performs indirection: the expression to which it is applied shall be one of the 
following: 

• If the expression is a pointer to an object type or a pointer to a function type, then the result is an lvalue 30 
referring to the object or function to which the expression points. If the type of the expression is 
“pointer to T,” the type of the result is “T.” 

• If the expression is a handle to an object type, then the result is a gc-lvalue referring to the object to 
which the expression points. If the type of the expression is “handle to T,” the type of the result is “T.”’ 

Dereferencing a T^ yields a gc-lvalue of type T. 35 

15.4.1.3 Unary % 
When applied to an lvalue of type T or a gc-lvalue of type T, % yields a T^. [Example: 
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ref class R { }; 
void f(System::Object^); 
R r; 
f(%r); // ok 

end example] 5 

This operator results in a boxing operation. [Note: All handles to the same object compare equal. For value 
classes, because % is a boxing operation, multiple applications of % results in a handles that do not compare 
equal. end note] 

15.4.1.4 Unary ^ 
No such operator exists; should it? [[All]] The only major asymmetry between %/^ and &/* is that unary * is 10 
used to dereference both * and ^, which allows for the writing of templates that can deal with both pointer and 
handle types using a common syntax; however, there is no unary ^. People new to the syntax often expect to 
dereference a ^ using a unary ^. Should unary ^ be allowed as a synonym for unary *? Doing so might introduce 
needless redundancy by having two unary operators with identical semantics. We might also be closing a door if 
we later discover a valid distinct meaning for unary ^ vs. unary *—we can't think of any meaning but the single 15 
"dereference" meaning, but maybe we're just not imaginative enough.) 

15.4.2 Increment and decrement 

15.4.3 Sizeof 
The C++ Standard (§5.3.3/1) has been extended, as follows: 

“The sizeof operator shall not be applied to an expression that has function or incomplete type, or to an 20 
enumeration type before all its enumerators have been declared, or to the parenthesized name of such types, 
or to an lvalue that designates a bit-field, or to an expression that has null type, or to a handle, or to a 
tracking reference, or to a ref class. sizeof(char), sizeof(signed char) and sizeof(unsigned 
char) are 1; the result of sizeof applied to any other fundamental type (3.9.1) is implementation-defined. 
[Note: in particular, sizeof(bool) and sizeof(wchar_t) are implementation-defined. 69] 25 
sizeof(short) is 2, sizeof(int) is 4, sizeof(long) is 4, sizeof(long long) is 8, 
sizeof(float) is 4, sizeof(double) is 8, sizeof(long double) is 8, sizeof(wchar_t) is 2, 
sizeof(bool) is 1.” 

The following paragraph is inserted after C++ Standard (§5.3.3/2): 

“When applied to a value class type, the result is not a compile-time constant expression.” 30 

15.4.4 New 
A program is ill-formed if it attempts to allocate memory using new for an object of CLI type other than a 
simple value class. 

15.4.5 Delete 
The C++ Standard (§5.3.5/1) has been extended to allow for deletion of objects allocated on the CLI heap, as 35 
follows: 

“The operand shall have a pointer type, a handle type, or a class type having a single conversion function 
(12.3.2) to a pointer type.” 

“In the first alternative (delete object), the value of the operand of delete shall be a pointer or handle to a 
non-array object or a pointer to a sub-object (1.8) representing a base class of such an object (clause 10). If 40 
not, the behavior is undefined.” 
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“If the delete-expression calls the implementation deallocation function (3.7.3.2), and if the operand of the 
delete expression is not the null pointer constant, the deallocation function will deallocate the storage 
referenced by the pointer or handle thus rendering the pointer or handle invalid.” 

The array form of delete cannot be used on a handle type. 

15.4.6 The gcnew operator 5 
The gcnew operator is similar to the new operator, except that the former creates an object on the CLI heap. The 
type of the result of the gcnew operator is a handle to the type of the object allocated. In out-of-memory 
situations, gcnew throws System::OutOfMemoryException. 

There is no array form of gcnew. There is no placement form of gcnew. The gcnew operator cannot be 
overloaded or replaced. There is no class-specific form of gcnew. 10 

A program is ill-formed if it attempts to allocate memory for an object of native type using gcnew. 

15.4.6.1 gcnew object creation expressions 
In the C++ Standard (§5.3.4), a new-expression is used to allocate memory for an object at runtime. This 
grammar has been extended to accommodate the addition of the gcnew operator, as follows: 

new-expression: 15 
… 
gcnew   new-type-id   new-initializeropt 
gcnew   (   type-id   )   new-initializeropt 

Add the array case to this grammar. [[BB]] 

The type of the object being allocated shall not be an abstract class type. The type shall not be incomplete. 20 
[Note: The gcnew operator applied to a value class creates a boxed value class. end note] 

15.4.6.2 Array creation expressions 
Does new-initializer need to be changed? [[BB]] 

15.5 Explicit type conversion (cast notation) 
The rules in the C++ Standard (§5.4/5) have been extended for C++/CLI by including safe casts before static 25 
casts. 

• a const_cast 

• a safe_cast 

• a safe_cast followed by a const_cast 

• a static_cast 30 

• a static_cast followed by a const_cast 

• a reinterpret_cast 

• a reinterpret_cast followed by a const_cast 

[Note: Standard C++ programs remain unchanged by this, as safe casts are ill-formed when either the expression 
type or target type is a native class. end note] 35 

Provide background on the expected behavior and rationale. (Get this from the updated casting proposal.) [[Ed]] 
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15.6 Pointer-to-member operators 

15.7 Multiplicative operators 

15.8 Additive operators 

15.8.1 Delegate combination 
Every delegate type provides the following predefined operator, where D is the delegate type: 5 

static D^ operator +(D^ x, D^ y); 

The binary + operator performs delegate combination when both operands are of the same delegate type D. The 
result of the operator is the result of calling System::Delegate::Combine on both arguments, and casting 
the result to D^. [Note: For examples of delegate combination, see §15.8.2 and §26.3. Since 
System::Delegate is not a delegate type, operator+ is not defined for it. end note] 10 

15.8.2 Delegate removal 
Every delegate type provides the following predefined operator, where D is the delegate type: 

static D^ operator –(D^ x, D^ y); 

The binary - operator performs delegate removal when both operands are of the same delegate type D. The 
result of the operator is the result of calling System::Delegate::Remove(x, y), and casting the result 15 
to D^.  [Note: the += and -= operator are defined via assignment operator synthesis. end note] [Example: For 
example: 

delegate void D(int x); 
ref struct Test { 
 static void M1(int i) { /* … */ } 20 
 static void M2(int i) { /* … */ } 
}; 

int main() {  
 D^ cd1 = gcnew D(&Test::M1); 
 D^ cd2 = gcnew D(&Test::M2); 25 
 D^ cd3 = cd1 + cd2; 
 cd3 -= cd1; 

 cd3 += cd1; 
 cd3 = cd3 – (cd1 + cd2); 
} 30 

end example] 

15.9 Shift operators 

15.10 Relational operators 

15.11 Equality operators 

15.11.1 Ref class equality operators 35 
Add support for handle equality comparison, and handle ==/!= nullptr, and vice versa. [[BB]] 

15.11.2 Delegate equality operators 
Every delegate type provides the following predefined comparison operators: 
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bool operator ==(Delegate^ x, Delegate^ y); 
bool operator !=(Delegate^ x, Delegate^ y); 

These are implemented in terms of System::Delegate::Equals. 

15.12 Bitwise AND operator 

15.13 Bitwise exclusive OR operator 5 

15.14 Bitwise inclusive OR operator 

15.15 Logical AND operator 

15.16 Logical OR operator 

15.17 Conditional operator 
With regard to expressions of the following forms 10 

e ? p : nullptr 
e ? nullptr : p 
e ? h : nullptr 
e ? nullptr : h 

where e is an expression that can be implicitly converted to bool, p has pointer type, and h has handle type, the 15 
C++ Standard (§5.16/6) is changed to 

“The second and third operands have pointer type, or one has pointer type and the other is a null pointer 
constant or null value constant; pointer conversions and qualification conversions are performed to bring 
them to their composite pointer type.  The result is of the composite pointer type.  If either the second or the 
third operands have a handle type, and the other operand is the null value constant, the result is of the handle 20 
type.” 

15.18 Assignment operators 
Add words here to discuss assignment for properties and events from the point of view of the rewrite rules. 
[[BB]] 

The left operand of an assignment shall be an lvalue or a gclvalue. 25 

15.19 Comma operator 

15.20 Constant expressions 
The C++ Standard (§5.19/2) provides a list of “Other expressions [that] are considered constant-expressions 
only for the purpose of non-local static object initialization.”  That list has been extended by the addition of the 
following: 30 

• the null value constant. 

A literal field can be used in any context that permits a literal of the same type. As such, a literal field can be 
present in a compile-time constant expression. 

To accommodate the addition of literal fields, the following is inserted in the C++ Standard, after §5.19/3: 

“A literal constant expression includes arithmetic constant expression, string literals of type 35 
System::String, and the null value constant nullptr.” 
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Investigate whether string literals include compile-time expressions, such as string concatenation. [[BB]] 
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16. Statements 

Unless stated otherwise in this clause, all existing statements are supported and behave as specified in the 
C++ Standard (§6). 

16.1 Iteration statements 
In addition to the three iteration statements specified by Standard C++ (§6.5), the iteration-statement production 5 
has been extended to include foreach-statement. 

iteration-statement: 
… 
foreach-statement 

16.1.1 The for each statement 10 
The for each statement enumerates the elements of a collection, executing the statement for each element of 
that collection. 

foreach-statement: 
for   each   (   type  ??- declaratoropt   identifier   in   expression   )   statement 

The type, declarator, and identifier of a for each statement declare the iteration variable of the statement. 15 
The iteration variable corresponds to a local variable with a scope that extends over the substatement. During 
execution of a for each statement, the iteration variable represents the collection element for which an 
iteration is currently being performed. The program is ill-formed if the substatement attempts to assign to the 
iteration variable or to pass the iteration variable by reference. 

The type of expression shall be a collection type (as defined below), and an explicit conversion (§??) must exist 20 
from the element type of the collection to the type of the iteration variable. If expression has the null value a 
System::NullReferenceException is thrown. 

A type C is said to be a collection type  if it implements the System::Collections.IEnumerable interface 
or implements the collection pattern by meeting all of the following criteria: 

• C contains a public instance function with the signature GetEnumerator(), that returns a struct-type, 25 
class-type, or interface-type, which is called E in the following two points. 

• E contains a public instance function with the signature MoveNext() and the return type bool. 

• E contains a public instance property named Current that permits reading the current value. The type 
of this property is said to be the element type of the collection type. 

A type that implements IEnumerable is also a collection type, even if it doesn't satisfy the conditions above. 30 
(This is possible if it implements IEnumerable via explicit interface member implementations.) 

The System::Array type (§23.1.1) is a collection type, and since all CLI array types derive from 
System::Array, any CLI array type expression is permitted in a for each statement. For single-dimensional 
CLI arrays, the for each statement enumerators traverses the array elements in increasing order, starting with 
index 0 and ending with index Length - 1. For multi-dimensional CLI arrays, elements are traversed such 35 
that the indices of the rightmost dimension are increased first, then the next left dimension, and so on to the left. 

A for each statement is executed as follows: 



C++/CLI Language Specification 

68 

• The collection expression is evaluated to produce an instance of the collection type. This instance is 
referred to as c in the following. 

• An enumerator instance is obtained by evaluating the function invocation c.GetEnumerator(). The 
returned enumerator is stored in a temporary local variable, in the following referred to as e. It is not 
possible for the statement to access this temporary variable. 5 

• The enumerator is advanced to the next element by evaluating the function invocation e.MoveNext(). 

• If the value returned by e.MoveNext() is true, the following steps are performed: 

o The current enumerator value is obtained by evaluating the property access e.Current, and the 
value is converted to the type of the iteration variable by an explicit conversion (§??). The resulting 
value is stored in the iteration variable such that it can be accessed in the statement. 10 

o Control is transferred to the statement. When and if control  reaches the end point of the statement 
(possibly from execution of a continue statement), another for each iteration is performed, 
starting with the step above that advances the enumerator. 

• If the value returned by e.MoveNext() is false, control is transferred to the end point of the for 
each statement. 15 

Add some examples. [[Ed]] 

16.2Jump statements 

16.2.1The break statement 
Within the substatement of a for each statement, a break statement causes termination of the smallest 
enclosing foreach-statement; control passes to the statement following the terminated statement, if any. 20 

16.2.2The continue statement 
Within the substatement of a for each statement, a continue statement causes control to pass to the loop 
continuation portion of the smallest enclosing foreach-statement, that is, to the end of the loop. 

16.2 The try statement 
A program that attempts to throw nullptr is ill-formed. 25 

16.3 The checked and unchecked statements 
Should statements exist to control the overflow-checking context for integral-type arithmetic operations and 
conversions? [[All]] 
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17. Namespaces 

To be added. [[BB]] 
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18. Classes and members 

This clause specifies the features of a class that are new in C++/CLI. However, not all of these features are 
available to all classes. The class-related features that are supported by native classes (§19), ref classes (§20), 
value classes (§21), and interfaces (§24), are specified in the clauses that define those types. [Note: A summary 
of that support is shown in the following table: 5 

TODO: This table and corresponding sections should include Special Member Functions (SMFs) like 
destructors, copy constructors, default constructors, assignment operators, conversion to special bool, handle 
equality. Many of these are not supported for value classes. 

Feature Native class Ref class Value class Interface 

Class modifier X X X  

Reserved member names X X X X 

Function modifiers X X X n/a 

Override specifier X X X n/a 

Parameter arrays X X X X 

Properties  X X X 

Events  X X X 

Static operators X X X X 

Delegating instance 
constructors 

X X X n/a 

Static constructor  X X X 

Literal field  X X X 

Initonly field  X X X 

Delegate definitions X X X X 

Member of delegate type  X X  

end note] 

18.1 Class definitions 10 
In the C++ Standard (§9), a class-specifier is used to define a class. This grammar has been extended to 
accommodate the addition of public and private classes, as follows: 

class-specifier: 
top-level-type-visibilityopt   class-head   {   member-specificationopt   } 

top-level-type-visibility is described in §12.4 15 

To accommodate the addition of initonly and literal fields, delegates, events, and properties, the syntactic class 
member-declaration in the C++ Standard (§9.2) has been extended, as follows: 
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member-declaration: 
attributesopt   initonly-or-literalopt   decl-specifier-seqopt   member-declarator-listopt   ; 
… 
delegate-definition 
event-definition 5 
property-definition 

initonly-or-literal: 
initonly 
literal 

Attributes are described in §28, initonly fields are described in §18.10, literal fields in §18.9, delegates in §26, 10 
events in §18.5, and properties in §18.4.  

18.1.1 Class modifiers 
To accommodate the addition of sealed and abstract classes, the grammar for class-head in the C++ Standard 
(§9) has been extended to include an optional sequence of class modifiers, as follows: 

class-head: 15 
class-key   identifieropt   class-modifiersopt   base-clauseopt 
class-key   nested-name-specifier   identifier   class-modifiersopt   base-clauseopt 
class-key   nested-name-specifieropt   template-id   class-modifiersopt   base-clauseopt 

class-modifiers: 
class-modifier 20 
class-modifiers   class-modifier 

class-modifier: 
abstract 
sealed 

If the same modifier appears multiple times in a class definition, the program is ill-formed. 25 

[Note: abstract and sealed can be used together; that is, they are not mutually exclusive. As non-member 
functions are not CLS-compliant, a substitute is to use an abstract sealed class, which can contain static member 
functions. This is the utility class pattern. end note] 

The abstract and sealed modifiers are discussed in §18.1.1.1 and §18.1.1.2, respectively. 

18.1.1.1 Abstract classes 30 
An abstract class follows the rules of Standard C++ for abstract classes (§10.4); however, a class definition 
containing the abstract class modifier need not contain any abstract functions. [Example:  

struct B abstract { 
 void f() { } 
}; 35 
struct D : B { }; 

int main() { 
 B b;     // error: B is abstract 
 D d;     // ok 
} 40 

end example] 
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18.1.1.2 Sealed classes 
The sealed modifier is used to prevent derivation from a class. The program is ill-formed if a sealed class is 
specified as the base class of another class. [Example:  

struct B sealed { 
}; 5 
struct D : B {   // error, cannot derive from a sealed class 
}; 

end example] 

Whether or not a class is sealed has no effect on whether or not any of its member functions are, themselves, 
sealed. 10 

[Note: The sealed modifier is primarily used to prevent unintended derivation, but it also enables certain 
runtime optimizations. In particular, because a sealed class is known never to have any derived classes, it is 
possible to transform virtual function member invocations on sealed class instances into non-virtual invocations. 
end note] 

18.2 Reserved member names 15 
To facilitate the underlying C++/CLI runtime implementation, for each member definition that is a property or 
event, the implementation must reserve several names based on the kind of the member definition (§18.2.1, 
§18.2.2). A program is ill-formed if it contains a class that declares a member whose name matches any of these 
reserved names, even if the underlying runtime implementation does not make use of these reservations. If a 
particular name is reserved within a class, that name is also reserved in all classes that derive from that class. 20 

The reserved names do not introduce definitions, thus they do not participate in member lookup. 

[Note: The new modifier cannot be used to circumvent the restriction that a member with a reserved name shall 
not be declared. end note] 

[Note: The reservation of these names serves several purposes: 

• To allow other languages to interoperate using an ordinary identifier as a function name for get or set 25 
access. 

• Partition I of the CLI standard requires these names for CLS-producer languages. 

end note] 

In order to accommodate the CLI notion of finalizers, several names are reserved for functions (§18.2.3). 

18.2.1 Member names reserved for properties 30 
For a scalar or named indexed property P (§18.4), the following names are reserved: 

get_P 
set_P 

Both names are reserved, even if the scalar or named indexed property is read-only or write-only. 

[Example: 35 
ref struct A { 
 property int P { 
  int get() { return 123; } 
 } 
}; 40 
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ref struct B : A { 
 int get_P() {   // error 
  return 456; 
 } 
}; 5 

end example] 

For a default indexed property (§18.4), the following names are reserved: 
get_Item 
set_Item 

Both names are reserved, even if the default indexed property is read-only or write-only. 10 

Need to address the following: C++/CLI uses the System::Reflection::DefaultMemberAttribute attribute to 
specify that something other than the default name, “Item”, should be used. Given that, the text describes what 
happens if no name is chosen; that is, Item is used by default. Once the name has been set with DefaultMember, 
it cannot be changed in a derived class. If two interfaces have different DefaultMember attributes, implementing 
both interfaces is ill-formed. 15 

18.2.2 Member names reserved for events 
For an event E (§18.5), the following names are reserved: 

add_E 
remove_E 
raise_E 20 

18.2.3 Member names reserved for functions 
For CLI types, the following name is reserved: 

Finalize 

18.3 Functions 
Extend the grammar to accommodate attributes on functions. 25 

The addition of overriding specifiers and function modifiers requires a change to the Standard C++ grammar for 
direct-declarator. [Note: The two new optional syntax productions, function-modifier and override-specifier, 
appear in that order, after exception-specification, but before function-body or function-try-block. end note] 

One of the productions for the Standard C++ grammar for member-declarator (§9.2) has been extended, as 
follows: 30 

override-specifier should support 0 for compatibility with pure-specifier. 

member-declarator: 
declarator   function-modifiersopt   override-specifieropt 

function-modifiers: 
function-modifier 35 
function-modifiers   function-modifier 

function-modifier: 
abstract 
new 
override 40 
sealed 
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function-modifiers are discussed in the following subclauses: abstract in §18.3.3, new in §18.3.4, override 
in §18.3.1, and sealed in §18.3.2. override-specifier is discussed in §18.3.1. 

A member function declaration containing any of the function-modifiers abstract, override, or sealed, or 
an override-specifier, shall explicitly be declared virtual. [Rationale: A major goal of this new syntax is to let 
the programmer state his intent, by making overriding more explicit, and by reducing silent overriding. The 5 
virtual keyword is required on all virtual functions, except in the one case where backwards compatibility 
with Standard C++ allows the virtual keyword to be optional. end rationale] 

If a function contains both abstract and sealed modifiers, or it contains both new and override modifiers, 
it is ill-formed. 

An out-of-class member function definition shall not contain a function-modifier or an override-specifier. 10 

The Standard C++ grammar for parameter-declaration-clause (§8.3.5) has been extended to include support for 
passing parameter arrays, as follows: 

parameter-declaration-clause: 
… 
parameter-array 15 
parameter-declaration-list   ,   parameter-array 

There shall be only one parameter array for a given function or instance constructor, and it shall always be the 
last parameter specified. 

Parameter arrays are discussed in §18.3.6. 

18.3.1 Override functions 20 
The Standard C++ grammar for direct-declarator has been extended (see §18.2.3) to allow the function modifier 
override as well as override specifiers. 

override-specifier: 
=   overridden-name-list 

overridden-name-list: 25 
id-expression 
overridden-name-list   ,   id-expression 

[Note: In Standard C++, given a derived class with a function that has the same name and parameter list of a 
virtual function in a base class, the derived class function always overrides the one in the base class, even if the 
derived class function is not declared virtual. end note] 30 

With the addition of the function modifier override and override specifiers, C++/CLI provides the ability to 
indicate explicit overriding, to allow selective and multiple overriding, and to have renamed overriding.  

If either the function-modifier override or an override-specifier, or both, are present in the derived class 
function declaration, no implicit overriding takes place. [Example:  

struct A { 35 
 virtual void f() abstract; 
}; 

struct B { 
 virtual void f() abstract; 
}; 40 
struct D : A, B { 
 virtual void f();       // overrides A::f and B::f 
}; 
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struct E : A, B { 
 virtual void f() = B::f;    // overrides B::f only, E is abstract 
}; 

struct F : A, B { 
 virtual void f() override;    // overrides A::f and B::f 5 
}; 

struct G : A, B { 
 virtual void f() override = B::f; // overrides B::f only 
}; 

end example] 10 

Explain the difference between using ‘override’ and ‘= function-name’; one creates an .override directive in 
CIL, the other does not. [[BB]] 

[Note: A member function declaration containing the function-modifier override or an override-specifier shall 
explicitly be declared virtual (§18.2.3). end note] 

An override-specifier contains a comma-separated list of names designating the virtual functions from one or 15 
more direct or indirect base classes that are to be overridden. 

An id-expression that designates an overridden name can be a qualified function name. Such a name designates 
a single function to be overridden. That function shall have the same name and same parameter list as the 
overriding function, and the return types of the two functions shall be covariant. 

 [Example:  20 
struct A { 
 virtual void f(); 
}; 

struct B { 
 virtual void f(); 25 
}; 

struct D : A, B { 
 virtual void f() = A::f, B::f; // override A::f and B::f 
}; 

struct E : A, B { 30 
 virtual void f() = B::f;   // override B::f only 
}; 

end example] 

An id-expression that designates an overridden name can be an unqualified function name, which designates, 
via a member function name, one or more functions to be overridden. Those functions shall have the same name 35 
and same parameter list as the overriding function, and the return types of all those functions and the overriding 
function shall be covariant. As no explicit base class name is specified, all direct and indirect base classes of the 
class containing the overriding function are implied. [Example:  

struct A { 
 virtual void f(); 40 
 virtual void g(); 
}; 

struct B { 
 virtual void f(); 
 virtual void g(); 45 
}; 

struct C { 
 virtual void g(); 
}; 
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struct D : A, B, C { 
 virtual void f() = f;  // override A::f, B::f 
 virtual void g() = g;  // override A::g, B::g, and C::g 
}; 

end example] 5 

An id-expression that designates an overridden name can be a base class name only, which designates one 
function to be overridden. As no explicit member function name is specified, the one function in the base class 
having the same name and same parameter list, and whose return type is covariant with that of the overriding 
function, is implied. [Example:  

struct A { 10 
 virtual void f(); 
 virtual void g(); 
}; 

struct B { 
 virtual void f(); 15 
 virtual void g(); 
}; 

struct D : A, B { 
 virtual void f() = A;  // override A::f 
 virtual void g() = A, B; // override A::g, B::g 20 
}; 

end example] 

[Note: The same overriding behavior can sometimes be achieved in different ways. For example, given a base 
class A with a virtual function f, an overriding function might have an override-specifier of A::f or A, have no 
override specifier or override function modifier, have the function-modifier override, or a combination of 25 
the two, as in override = A::f and override = A. All override A::f. end note] 

The name of the overriding function need not be the same as that being overridden. [Example:  
struct A { 
 virtual void f(); 
 virtual void g(); 30 
}; 

struct B { 
 virtual void f(); 
 virtual void g(); 
}; 35 
struct D : A, B { 
 virtual void x() = A::f;   // x overrides A:;f 
 virtual void y() = g;   // y overrides A::g and B::g 
}; 

end example] 40 

A derived class shall not override the same virtual function more than once. [Example: 
struct A { 
 virtual void f(); 
}; 

struct B { 45 
 virtual void f(); 
}; 
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struct D : A, B { 
 virtual void g() = B::f; 
 virtual void f();    // error, would override A::f and B::f, but 
          // B::f is already overridden 
}; 5 

end example] 

It is invalid for a class to have multiple functions with the same name and parameter list even if they override 
different inherited virtual functions. [Example: 

struct D : B1, B2 { 
 void f() = B1::f { /*…*/ }  // ok 10 
 void f() = B2::f { /*…*/ }  // error, duplicate declaration 
}; 

end example] 

A member function that is an explicit override cannot be called directly (except with explicit qualification) or 
have its address taken. [Example: 15 

struct I { 
 virtual void v(); 
}; 

struct J { 
 virtual void w(); 20 
}; 

struct A : I, J { 
 virtual void f() = I::v, J::w; 
}; 

struct C : A { 25 
  virtual void g() = I::v; 
  virtual void h() = J::w; 
}; 

void Test(A* pa) { // pa could point to an A, a C, or something else 
 pa->f();    // ambiguous: I::v or J::w? 30 
 pa->v();    // ok, virtual call 
 pa->w();    // ok, virtual call 
 pa->I::v();   // ok if I::v is implemented, nonvirtual call to I::v 
 pa->J::w();   // ok if J::w is implemented, nonvirtual call to J::w 
 pa->A::v();   // ok if I::v is implemented, nonvirtual call to I::v 35 
 pa->A::w();   // ok if J::w is implemented, nonvirtual call to J::w 
 pa->A::f();   // ok (classes derived from A might need to do this, 
       //  and there’s no ambiguity in this case) 
} 

end example][Rationale: Even though technically it is possible to allow a call to such an f when the type of the 40 
object is statically known to be an A, for example in: 

A a; 
a.f();     // ambiguous (even though it could work) 

there does not seem to be sufficient utility to offset the user confusion about “When can I do this and when 
can’t I?” end rationale] 45 

If a destructor or finalizer (§??) contains an override specifier, the program is ill-formed. 

18.3.2 Sealed function modifier 
A virtual member function marked with the function-modifier sealed cannot be overridden in a derived class. 
[Example: 
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struct B { 
 virtual int f() sealed; 
}; 

struct D : B { 
 virtual int f();  // error: cannot override a sealed function 5 
}; 

end example] 

[Note: A member function declaration containing the function-modifier sealed shall explicitly be declared 
virtual (§18). end note] If there is no virtual function to implicitly override in the base class, the derived 
class introduces the virtual function and seals it. 10 

Whether or not any member functions of a class are sealed, has no effect on whether or not that class itself is 
sealed. 

An implicit or explicit override can succeed as long as there is a non-sealed virtual function in at least one of the 
bases. [Example: Consider the case in which A::f is sealed, but B::f is not. If C inherits from A and B, and 
tries to implement f, it will succeed, but will only override B::f. end example] 15 

18.3.3 Abstract function modifier 
Standard C++ permits virtual member functions to be declared abstract by using a pure-specifier. C++/CLI 
provides an alternate approach via the function-modifier abstract. The two approaches are equivalent; using 
both is well-formed, but redundant.” [Example: A class shape can declare an abstract function draw in any of 
the following ways: 20 

virtual void draw() = 0;    // Standard C++ style 
virtual void draw() abstract;   // function-modifier style 
virtual void draw() abstract = 0; // okay, but redundant 

end example] 

[Note: A member function declaration containing the function-modifier abstract shall be declared virtual 25 
(§18). end note] 

18.3.4 New function modifier 
The function-modifier new neither requires nor implies that the function is virtual (§18). 

A member function declaration containing the function-modifier new shall not contain an override-specifier. 

Describe in more detail the semantics of new, including its use on static member functions (currently new only 30 
applies to overriding, not to hiding).  [BB]] 

18.3.5 Function overloading 
The C++ Standard (§13.3.2) has been extended to incorporate parameter arrays (§18.3.6), as follows: 

“For every parameter array function, two signatures are submitted to the overload candidate set: the 
expanded form and the exact signature.” 35 

18.3.6 Parameter arrays 
Standard C++ supports variable-length argument lists for both member and non-member functions; however, the 
approach used is not type-safe. C++/CLI adds a type-safe way using parameter arrays. A parameter array is 
defined as follows: 

parameter-array: 40 
attributesopt   ...   parameter-declaration 
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Re the following: For functions outside CLI types, if they happen to have a parameter array, it is okay to have a 
default parameter. That parameter can be any array -- the parameter array part of it is just ignored and instead 
for the purposes of the default parameter is just a plain array. 

A parameter-array consists of an optional set of attributes (§28), an ellipsis punctuator, and a parameter-
declaration. A parameter array declares a single parameter of the given array type with the given name. The 5 
array type of a parameter array must be a single-dimensional C++/CLI array type (§23.1). In a function 
invocation, either a parameter array permits a single argument of the given array type to be specified, or it 
permits zero or more arguments of the array element type to be specified. The program is ill-formed if the 
parameter-declaration contains an assignment-expression. 

void f(... array<Object^>^); 10 
 
int main() { 
 f(); 
 (nullptr); 
 f(1, 2); 15 
 f(nullptr, nullptr); 
 f(gcnew array<Object^>(1)); 
 f(gcnew array<Object^>(1), gcnew array<Object^>(2)); 
} 

end example] 20 

[Example:  
void F1(... array<String^>^ list) { 
 for (int i = 0 ; i < list->Length ; i++ ) 
  Console::Write(“{0} ”, list[i]); 
 Console::WriteLine(); 25 
} 

void F2(... array<Object^>^ list) { 
 for each (Object^ element in list)  
  Console::Write(“{0} ”, element); 
 Console::WriteLine(); 30 
} 

int main() { 
 F1(“1”, “2”, “3”); 
 F2(1, ‘a’, “test”); 
 array<String^>^ myarray 35 
  = gcnew array<String> {“a”, “b”, “c” }; 
 F1(myarray); 
} 

The output produced is as follows: 
1 2 3 40 
1 a test 
a b c 

end example] 

When a function with a parameter array is invoked in its expanded form, the invocation is processed exactly as 
if an array creation expression with an array initializer (§??) was inserted around the expanded parameters. 45 
[Example: For example, given the declaration 

void F(int x, int y, ... array<Object^>^ args); 

the following invocations of the expanded form of the function 
F(10, 20); 
F(10, 20, 30, 40); 50 
F(10, 20, 1, "hello", 3.0); 
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correspond exactly to 
F(10, 20, nullptr); 
F(10, 20, gcnew array<System::Object^> {30, 40}); 
F(10, 20, gcnew array<System::Object^> {1, "hello", 3.0}); 

In particular, nullptr is passed when there are zero arguments given for the parameter array. end example] 5 

Parameter array parameters can be passed to functions that take non-parameter array arguments of the 
corresponding type. [Example:  

void f(array<int>^ pArray); // not a parameter array 
void g(double value, ... array<int>^ p) { 
 f(p);        // Ok 10 
} 

end example] 

An argument of type array<type> can be passed to a function having a parameter ... array<type>. In the 
case of passing an array<Object^> argument A to a parameter P (declared using ... array<Object^>), 
P binds to A (that is, P is not an array whose first Object^ element refers to A). 15 

Parameter arrays can contain either native or CLI type elements. [Example: 
void g(... array<Object^>% v); // CLI type held by ^ 
g(1, 2, “abc”);        // creates a container of 3 boxed 
             // objects, having type Int32,  
             // Int32, and String. 20 
void h(... array<std::string>% a);  // native type held by value 
h(“abc”, “def”, “xyzzy”, string2);  // creates a container of 4 strings 

end example] 

18.4 Properties 
A property is a member that behaves as if it were a field. There are two kinds of properties: scalar and indexed. 25 
A scalar property  enables scalar field-like access to an object or class. Examples of scalar properties include 
the length of a string, the size of a font, the caption of a window, and the name of a customer. An indexed 
property  enables array-like access to an object. An example of an index property is a bit-array class. 

Properties are an evolutionary extension of fields—both are named members with associated types, and the 
syntax for accessing scalar fields and scalar properties is the same, as is that for accessing arrays and indexed 30 
properties. However, unlike fields, properties do not denote storage locations. Instead, properties have accessor 
functions that specify the statements to be executed when their values are read or written. 

Properties are defined using property-definitions: 

Extend declarator-id’s by adding a new production that allows default. [[BB]] 

property-definition: 35 
attributesopt   property-modifiers   simple-type-specifier   declarator 
  property-indexesopt   function-modifiersopt   override-specifieropt 

  {   accessor-specification   } 
attributesopt   property-modifiers   simple-type-specifier   declarator 
  function-modifiersopt   override-specifieropt   ; 40 

property-modifiers: 
property-modifier 
property-modifiers   property-modifier 
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property-modifier: 
property 

static 
virtual 

property-indexes: 5 
[   indexer-parameter-list   ] 

indexer-parameter-list: 
indexer-parameter-declaration 
indexer-parameter-list   ,    indexer-parameter-declaration 

indexer-parameter-declaration: 10 
type-specifier 

The grammar for indexer-parameter-declaration does not allow handles or pointers, but full declarators are not 
needed. The grammar should allow a simpler sequence of ptr-operator. [[BB]] 

A property-definition can include a set of attributes (§28), property-modifiers (§18.4.1, §18.4.3), property-
indexes, function-modifiers (§18.2.3), and an override-specifier (§18.3.1). It must include the property-modifier 15 
property. 

A property-definition that does not contain a property-indexes is a scalar property, while a property-definition 
that contains a property-indexes is an indexed property. 

A property-definition ending with a semicolon (as opposed to brace-delimited accessor-specification) defines a 
trivial scalar property (§18.4.4). [Note: There is no such thing as a trivial indexed property. end note] 20 

Property definitions are subject to the same rules as function declarations with regard to valid combinations of 
modifiers, with the one exception being that the static modifier is not permitted on a default indexed property 
definition. (Default indexed properties are introduced later in this subclause.) 

The simple-type-specifier of a scalar property definition specifies the type of the scalar property introduced by 
the definition, and the identifier specifies the name of the scalar property. The simple-type-specifier of an 25 
indexed property definition specifies the element type of the indexed property introduced by the definition.  

property-name specifies the name of the property. For an indexed property, if property-name is default, that 
property is a default indexed property. If property-name is identifier, that property is a named indexed 
property. 

We probably should say something about the reserved names get_Item and set_Item, and their relationship with 30 
default indexed properties. Also, add a forward pointer to the corresponding attribute. 

The accessor-specification declares the accessor functions (§18.4.2) of the property. The accessor functions 
specify the executable statements associated with reading and writing the property. An accessor function, 
qualified with the property name, is considered a member of the class. For a default indexed property, the parent 
property name is default. As such, the full names of the accessor functions for this indexed property are 35 
default::get and default::set. 

The address of an accessor function can be taken and yields a pointer-to-member of the enclosing type. 
However, it is not possible to bind a pointer-to-member value to a property. [Note: A property is a group of one 
or more accessor functions, not an object. end note] 

An indexed property cannot have the same name as a scalar property. Overloading of indexed properties on 40 
different index parameters is allowed, as long as none has the same name as a scalar property. 
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18.4.1 Static and instance properties 
When a property definition includes a static modifier, the property is said to be a static property.  [Note: An 
indexed property cannot be static. end note] When no static modifier is present, the property is said to be an 
instance property.  All accessor functions in a static property are static, and writing static on such a function 
is allowed but redundant. All accessor functions in an instance property are instance accessor functions. 5 
[Example: 

struct C { 
 static property C* Instance { /* … */ } // static property 
 property int default[int k] { /* … */ }; // instance property 
}; 10 

end example]  

[Note: Like a field, when a static property is referenced using the form E::M, E must denote a type that has a 
property M. When an instance property is referenced using the form E.M, E must denote an instance having a 
property M. When an instance property is referenced through a pointer or handle, the form E->M is used. end 
note] 15 

18.4.2 Accessor functions 
The accessor-specification of a property specifies the executable statements associated with reading and writing 
that property. 

accessor-specification: 
accessor-declaration   accessor-specificationopt 20 
access-specifier   :   accessor-specificationopt 

accessor-declaration: 
decl-specifier-seqopt   member-declarator-listopt   ; 
function-definition   ; 

A property must have at least one accessor function. The name of a property accessor function must be either 25 
get or set. A property shall have no more than one get accessor function and no more than one set accessor 
function. An accessor function of a property can be defined inline with the property definition, or out-of-class. 

If a property has the static modifier, all of its accessor functions are implicitly static; nevertheless, 
declaring static on one or more of those accessor functions is allowed but redundant. 

If a property is abstract, the accessor functions of the property can be abstract. If an accessor function is not 30 
declared abstract, it must be defined. If any accessor function of a property is declared abstract, the property 
must also be declared abstract. 

The get accessor function of a scalar property takes no parameters and its return type shall match exactly the 
type of the property, simple-type-specifier. A get accessor function shall not return a C-style array. For an 
indexed property, the parameters of the get accessor function shall correspond exactly to the types of the 35 
property’s property-indexe. 

This subclause only covers how the accessor functions must be defined. The expressions clause needs to cover 
the rewrite rules that call these functions. [[BB]] 

The set accessor function of a scalar property has one parameter that corresponds exactly to the type of the 
property, simple-type-specifier. For an indexed property, the parameters of the set accessor function shall 40 
correspond exactly to the types of the property’s property-indexes, followed by the last parameter, which shall 
correspond exactly to the type of the property, simple-type-specifier. The return type of the set accessor function 
for both scalar and indexed properties shall be void. 

Based on the presence or absence of the get and set accessor functions, a property is classified as follows: 
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• A property that includes both a get accessor function and a set accessor function is said to be a read-
write property. 

• A property that has only a get accessor function is said to be a read-only property.  

• A property that has only a set accessor function is said to be a write-only property.  

Like all class members, a property has an explicit or implicit access-specifier. Either or both of a property’s 5 
accessor functions can also have an access-specifier, which specifies a narrower access than the property’s 
accessibility for that accessor function. access-specifiers on accessor functions specify access for those accessor 
functions only; they have no effect on the accessibility of members in the parent class subsequent to the parent 
property. The accessibility following the property is the same as the accessibility before the property. 

[Note: If the get and set accessor functions in a read-write property have different implicit or explicit access-10 
specifiers, that property is not CLS-compliant. end note] 

[Example: In the example 
public ref class Button : Control { 
private: 
 String^ caption; 15 
public: 
 property String^ Caption { 
  String^ get() { 
   return caption; 
  } 20 
  void set(String^ value) { 
   if (caption != value) { 
    caption = value; 
    Repaint(); 
   } 25 
  } 
 } 
}; 

the Button control declares a public Caption property. This property does nothing more than a field except 
when the property is set, in which case, the control is repainted when a new value is supplied. 30 

Given the Button class above, the following is an example of use of the Caption property: 
Button^ okButton = gcnew Button; 
okButton->Caption = "OK";    // Invokes set accessor function 
String^ s = okButton->Caption;  // Invokes get accessor function 

Here, the set accessor function is invoked by assigning a value to the property, and the get accessor function is 35 
invoked by referencing the property in an expression. end example]  

In the paragraph above, add a cross-reference to the rewrite rules for properties and events. (They will be 
somewhere in the expressions clause.) [[Ed]] 

When a derived class declares a property by the same name as an inherited property, the derived property hides 
the inherited property with respect to both reading and writing. [Example: In the example 40 

struct A { 
 property int P { 
  void set(int value) {…} 
 } 
}; 45 
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struct B : A { 
 property int P { 
  int get() {…} 
 } 
}; 5 

the P property in B hides the P property in A with respect to both reading and writing. Thus, in the statements 
B b; 
b.P = 1;       // Error, B.P is read-only 
b.A::P = 1;      // Ok, reference to A.P 

the assignment to b.P causes the program to be ill-formed, since the read-only P property in B hides the write-10 
only P property in A. Note, however, that a cast can be used to access the hidden P property. end example] 

[Note: Exposing state through properties is not necessarily less efficient than exposing fields directly. In 
particular, accesses to a property are the same as calling that property’s accessor functions. When appropriate, 
an implementation can inline these function calls. Using properties is a good mechanism for maintaining binary 
compatibility over several versions of a class. end note] 15 

Add some discussion of how accesses to properties are rewritten into accessor functions. This should be covered 
in rewrite rules in the expressions clause. Note that access checking for whether a property can be written to or 
read to is done after rewriting and overload resolutions. [[BB]] 

Accessor functions can be defined inline or out-of-class. [Example: 
public class point { 20 
private: 
 int Xor; 
 int Yor; 

public: 
 property int X { 25 
  int get() { return Xor; }       // inline definition 
  void set(int value);         // declaration only 
 } 

 property int Y { 
  int get();            // declaration only 30 
  void set(int value) { return Yor = value; } // inline definition 
 } 
 … 
}; 

void point::X::set(int value) { Yor = value; } 35 
int point::Y::get() { return Yor; } 

end example] 

The qualified name of a property needs to be described somewhere. Once that happens, how an out-of-class 
definition is done will already be covered by existing rules. [[BB]] 

18.4.3 Virtual, sealed, abstract, and override accessor functions 40 
A virtual property definition specifies that the accessor functions of the property are virtual. Declaring 
virtual on an accessor function of a virtual property is allowed but redundant. If the virtual modifier 
appears on every accessor function in a property not itself having such a modifier, then that modifier applies 
implicitly to the property. 

A sealed property definition specifies that the accessor functions of the property are sealed.  A property 45 
definition containing the function-modifier sealed shall explicitly be declared virtual. Use of this modifier 
prevents a derived class from further overriding the property. Declaring sealed on an accessor function of a 
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sealed property is allowed but redundant.  If the sealed modifier appears on every accessor function in a 
property not itself having such a modifier, then that modifier applies implicitly to the property. 

An abstract property definition specifies that the accessor functions of the property are abstract and virtual, 
but does not provide an actual implementation of the accessor functions. Instead, non-abstract derived classes 
are required to provide their own implementation for the accessor functions by overriding the property. A 5 
property definition containing the function-modifier abstract shall explicitly be declared virtual. All of the 
accessor functions of an abstract property can also individually contain an abstract and/or virtual modifier; 
however, such modifiers are redundant. If the abstract modifier appears on every accessor function in a 
property not itself having such a modifier, then that modifier applies implicitly to the property. A virtual 
property can have abstract accessor functions, and the property need not be explicitly declared abstract. 10 

[Example: 
struct B { 
 virtual property string Name {  // virtual property 
  virtual string get() abstract; // property is implicitly abstract 
 } 15 
}; 

struct D : B { 
 virtual property string Name sealed { /*…*/ } // Name is now sealed  
}; 

end example] 20 

Any properties defined in an interface are implicitly abstract. However, those properties can redundantly contain 
the virtual and/or abstract modifiers, and a pure-specifier. [Example: 

interface class X abstract { 
 property int Size { /*…*/ }; // (implicit) abstract property 
 virtual property string Name abstract = 0 { /*…*/ }; 25 
  // “virtual”, abstract” and “= 0” 
  // permitted but are redundant 
}; 

end example] 

A property definition that includes the abstract modifier as well as an override modifier or an override-30 
specifier, specifies that the property is abstract and overrides a base property.  The accessor functions of such a 
property are also abstract. 

[Note: Abstract property definitions are only permitted in abstract classes (§18.1.1.1). end note] 

The accessor functions of an inherited virtual property can be overridden in a derived class by including a 
property definition that specifies an override modifier or an override-specifier (§18.3.1). This is known as an 35 
overriding property definition. An overriding property definition does not declare a new property. Instead, it 
simply specializes the implementations of the accessor functions of an existing virtual property. [Example:  

struct B1 { 
 virtual property string Name { /*…*/ } 
}; 40 
struct B2 { 
 virtual property string MyName { /*…*/ } 
}; 

struct D : B1, B2 { 
 // override both 45 
 virtual property string HelloIAm = Name, MyName { /*…*/ } 
}; 

end example]  



C++/CLI Language Specification 

86 

An accessor function can override accessor functions in other properties; it can also override non-accessor 
functions. [Example: 

struct B { 
 virtual property string Name { 
  string get(); 5 
  void set(string value); 
 } 
}; 

struct C { 
 virtual string getLabel(); 10 
}; 

struct D : B, C { 
 virtual property string MyName = Name { 
  string get() = getLabel; // implicitly overrides Name::get and 
 }          // explicitly overrides C::getLabel 15 
}; 

end example] 

An overriding property definition must specify wider accessibility modifiers and exactly the same type and 
name as the inherited property. If the inherited property is a read-only or write-only property, the overriding 
property must be a read-only or write-only property respectively, or a read-write property. If the inherited 20 
property is a read-write property, the overriding property must be a read-write property. 

A trivial scalar property shall not override another property. 

Except for differences in definition and invocation syntax, virtual, sealed, override, and abstract accessor 
functions behave exactly like virtual, sealed, override, and abstract functions, respectively. Specifically, the 
rules described in the C++ Standard (§10.3) and §18.3.2, §18.3.1, and §18.3.3 of this Standard apply as if 25 
accessor functions were functions of a corresponding form: 

[Example: In the example 
class A abstract { 
 int y; 

public: 30 
 virtual property int X { 
  int get() { return 0; } 
 } 

 virtual property int Y { 
  int get() { return y; } 35 
  void set(int value) { y = value; } 
 } 

 virtual property int Z abstract { int get(); void set(int value); } 
}; 

X is a virtual read-only property, Y is a virtual read-write property, and Z is an abstract read-write property.  40 

18.4.4 Trivial scalar properties 
A trivial scalar property is defined by a property-definition ending with a semicolon (as opposed to a brace-
delimited accessor-specification). [Example: 

struct S { 
 property int P; 45 
}; 

end example]  



 Classes and members 

87 

A trivial scalar property is read-write and has implicitly defined accessor functions. The implied access-specifier 
for these accessor functions is the same as for the parent property. Private backing storage for a trivial scalar 
property is automatically allocated with the name of that storage being unspecified, but in the implementer’s 
namespace. [Example: A compiler might treat the above trivial scalar property definition as if it was written like 
the following: 5 

struct S { 
 property int P { 
  int get() { return __P; } 
  void set(int value) { __P = value; } 
 } 10 
private: 
 int __P; 
}; 

end example] 

18.5 Events 15 
An event is a member that enables an object or class to provide notifications. Clients can add a delegate to an 
event, so that the object will invoke that delegate. Events are declared using event-definitions: 

event-definition: 
attributesopt   event-modifiers  event-type   identifier 
  function-modifiersopt   override-specifieropt   {   accessor-specification   } 20 
attributesopt   event-modifiers   event-type   identifier 
  function-modifiersopt   override-specifieropt   ; 

event-modifiers: 
event-modifier 
event-modifiers   event-modifier 25 

event-modifier: 
event 
static 

virtual 

An event-definition can include a set of attributes (§28), property-modifiers (§18.4.1, §18.4.3), function-30 
modifiers (§18.2.3, §18.4.3), and an override-specifier (§18.3.1). It must include the event-modifier event. 

The event-type of an event definition shall be a delegate type, and that type shall be at least as accessible as the 
event itself. identifier designates the name of the event. 

The production event-type has not yet been defined. The syntactic category of this element needs to be 
reviewed. 35 

The accessor-specification declares the accessor functions (§18.5.2) of the event. The accessor functions specify 
the executable statements associated with adding handlers to, and removing handlers from, the event, as well as 
raising that event.  

An event-definition ending with a semicolon (as opposed to a brace-delimited accessor-specification) defines a 
trivial event (§18.5.4). The three accessor functions for a trivial event are supplied automatically by the 40 
compiler along with a private backing store. An event-definition ending with a brace-delimited accessor-
specification defines a non-trivial event.  

[Example: The following example shows how event handlers are attached to instances of the Button class: 
public delegate void EventHandler(Object^ sender, 
 EventArgs^ e); 45 
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public ref struct Button : Control { 
 event EventHandler^ Click; 
}; 

public ref class LoginDialog : Form 
{ 5 
 Button^ OkButton; 
 Button^ CancelButton; 

public: 
 LoginDialog() { 
  OkButton = gcnew Button(…); 10 
  OkButton->Click += gcnew EventHandler(&OkButtonClick); 
  CancelButton = gcnew Button(…); 
  CancelButton->Click += gcnew EventHandler(&CancelButtonClick); 
 } 

 void OkButtonClick(Object^ sender, EventArgs^ e) { 15 
  // Handle OkButton->Click event 
 } 

 void CancelButtonClick(Object^ sender, EventArgs^ e) { 
  // Handle CancelButton->Click event 
 } 20 
}; 

Here, the LoginDialog constructor creates two Button instances and attaches event handlers to the Click 
events. end example] 

The address of an event accessor function can be taken and bound to a suitably typed pointer-to-member 
function (subject to the usual C++ rules, such as that the calling code must have access to the function’s name). 25 
However, it is not possible to bind a pointer-to-member object to an event. [Note: An event is a group of one or 
more accessor functions, not an object. end note] 

18.5.1 Static and instance events 
When an event declaration includes a static modifier, the event is said to be a static event. When no static 
modifier is present, the event is said to be an instance event. 30 

18.5.2 Accessor functions 
The accessor-specification for an event specifies the executable statements associated with adding handlers to, 
and removing handlers from, the event, as well as raising that event. 

The accessor-specification for an event shall contain no more than three function-definitions: 

It is a bit strange to define grammar productions for these functions. We probably should either make these 35 
terms (and change the style accordingly) or just call them the add function, remove function, and raise function. 

• one for a function called add, herein called the add-accessor-function, 

• one for a function called raise, herein called the raise-accessor-function, and 

• one for a function called remove, herein called the remove-accessor-function. 

A non-trivial event shall contain both an add-accessor-function and a remove-accessor-function. If that event 40 
has no raise-accessor-function, one is not supplied automatically by the compiler. 

A program is ill-formed if it contains an event having only one of add-accessor-function and remove-accessor-
function. 

add-accessor-function and remove-accessor-function shall each take one parameter, of type event-type, and their 
return type shall be void. 45 
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The parameter list of raise-accessor-function shall correspond exactly to the parameter list of event-type, and its 
return type shall be the return type of event-type. 

[Note: Trivial envents are generally better to use because use of the non-trivial form requires consideration of 
thread safety. end note] 

When an event is invoked, the raise function is called. 5 

[Example:  … end example] [[Ed]] 

18.5.3 Virtual, sealed, abstract, and override accessor functions 
A virtual event declaration specifies that the accessor functions of that event are virtual. The virtual 
modifier applies to all accessor functions of an event. 

An abstract event declaration specifies that the accessor functions of the event are virtual, but does not 10 
provide an actual implementation of the accessor functions. Instead, non-abstract derived classes are required to 
provide their own implementation for the accessor functions by overriding the event. 

An event declaration that includes both the abstract and override modifiers specifies that the event is 
abstract and overrides a base event.  The accessor functions of such an event are also abstract. 

[Note: Having an abstract event makes the enclosing class abstract. end note] The accessor functions of an 15 
inherited virtual event can be overridden in a derived class by including an event declaration of the same name. 
This is known as an overriding event declaration. An overriding event declaration does not declare a new event. 
Instead, it simply specializes the implementations of the accessor functions of an existing virtual event. 

An overriding event declaration can include the sealed modifier.  Use of this modifier prevents a derived class 
from further overriding the event. The accessor functions of a sealed event are also sealed. 20 

An event with the new modifier introduces a new event that does not override an event from a base class. Make 
sure the complete specification is provided in the clause for the new modifier. Except for differences in 
declaration and invocation syntax, virtual, sealed, override, and abstract accessor functions behave exactly like 
virtual, sealed, override and abstract functions. 

When a trivial event overrides an event, the trivial event’s raise is implicitly declared and defined. 25 

18.5.4 Trivial events 
A trivial event is defined by an event-definition ending with a semicolon (as opposed to a brace-delimited 
accessor-specification). [Example: 

ref struct S { 
 event SomeDelegateType^ E; 30 
}; 

end example]  

Within the class that contains the declaration of an event, certain events can be used like fields. To be used in 
this way, an event must be trivial. Such an event can be used in any context that permits a field. The field 
contains a delegate, which refers to the list of event handlers that have been added to the event. If no event 35 
handlers have been added, the field contains nullptr. 

[Example: In the example 
public delegate void EventHandler(Object^ sender, 
 EventArgs^ e); 
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public ref class Button : Control { 
public: 
 event EventHandler^ Click; 
 void Reset() { 
  Click = nullptr; 5 
 } 

protected: 
 void OnClick(EventArgs^ e) { 
  Click(this, e);  // raise tests for nullptr 
 } 10 
}; 

Click is used as a field within the Button class. As the example demonstrates, the field can be examined, 
modified. The OnClick function in the Button class “raises” the Click event.  

Outside the declaration of the Button class, the Click member can only be used on the left-hand side of the += 
and –= operators, as in 15 

b->Click += gcnew EventHandler(…); 

which appends a delegate to the invocation list of the Click event, and 
b->Click –= gcnew EventHandler(…); 

which removes a delegate from the invocation list of the Click event. end example] 

When compiling a trivial event, the compiler automatically creates storage to hold the delegate, and creates 20 
accessor functions for the event that add event handlers to, and remove them from, the delegate field. The 
compiler also automatically generates a raise accessor function. The access-specifier for the generated add and 
remove accessor functions is the same as that for the whole event. The access-specifier for the generated raise 
accessor function is protected. In order to be thread-safe, the addition and removal operations shall be done 
while holding the lock on the containing object for an instance event, or the type object for a static event.  Such 25 
a lock is specified using the attribute MethodImpl(MethodImplOptions::Synchronized). The compiler-
generated raise accessor function shall not have this attribute. 

[Note: Thus, an instance event declaration of the form: 
delegate int D(int); 

ref class X { 30 
public: 
 event D^ Ev; 
}; 

could be compiled to something equivalent to:  
ref class X { 35 
 D^ __Ev;    // field to hold the delegate 

public: 
 event D^ Ev { 
  [MethodImpl(MethodImplOptions::Synchronized)] 
  void add(D^ value) { 40 
   __Ev += value; 
  } 

  [MethodImpl(MethodImplOptions::Synchronized)] 
  void remove(D^ value) { 
   __Ev -= value; 45 
  } 

protected: 
  int raise(int arg) { return __Ev(arg); } 
 } 
}; 50 
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Within the class X, references to Ev are compiled to reference the hidden field __Ev instead. (The name “__Ev” 
is arbitrary; the hidden field could have any name or no name at all.) 

Similarly, a static event declaration of the form: 
delegate int D(int); 

ref class X { 5 
public: 
 static event D^ Ev; 
}; 

could be compiled to something equivalent to:  
ref class X { 10 
 static D^ __Ev;    // field to hold the delegate 

public: 
 static event D^ Ev { 
  [MethodImpl(MethodImplOptions::Synchronized)] 
  void add(D^ value) { 15 
   __Ev += value; 
  } 

  [MethodImpl(MethodImplOptions::Synchronized)] 
  void remove(D^ value) { 
   __Ev -= value; 20 
  } 
 protected: 
  int raise(int arg) { return __Ev(arg); } 
 } 
}; 25 

end note] 

18.5.5 Event invocation 
Events having a programmer-supplied or compiler-generated raise accessor function can be invoked using 
function call syntax. Specifically, an event E can be invoked using E(delegate-argument-list), which results in 
the raise accessor function’s being called with delegate-argument-list as its argument list. 30 

Events without a raise accessor function cannot be invoked using function call syntax. Instead, the delegate’s 
Invoke function must be called directly.  

18.6 Static operators 
Add examples throughout this clause. [[Ed]] 

To support the definition of operators in CLI types, C++/CLI allows for static operator functions. 35 

The rules for operators remain largely unchanged from Standard C++; however, the following rule in 
Standard C++ (§13.5/6) is relaxed to allow static member functions: 

(The restriction below does not apply to non-static member operators – that need not have a parameter of 
the type of the class.)“A static member or a non-member operator function shall either be a non-static 
member function or be a non-member function and have at least one parameter whose type is a class, a 40 
reference to a class, a handle to a class, an enumeration, a reference to an enumeration, or a handle to an 
enumeration.” 

The requirements of non-member operator functions apply to static operator functions. 

The following rule in Standard C++ (§13.5.1/1) is relaxed to allow static member functions:  
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“A prefix unary operator shall be implemented by a non-static member function with no parameters or a 
non-member or static function with one parameter.”  

The following rule in Standard C++ (§13.5.2/1) is relaxed to allow static member functions:  

“A binary operator shall be implemented either by a non-static member function with one parameter or by a 
non-member or static function with two parameters.”  5 

However, operators required by Standard C++ to be instance functions shall continue to be instance functions. 
[Note: Standard C++ specifies that these operators are: operator= (§13.5.3), operator() (§13.5.4), 
operator[] (§13.5.5), and operator-> (§13.5.6). end note]  

18.6.1 Homogenizing the candidate overload set 
Provide an example. 10 

Standard C++ (§13.3.1/2) describes how all member functions are considered to have an implicit object 
parameter for the purpose of overload resolution. C++/CLI expands upon this notion by creating two signatures 
for every member function (including static member functions) in which the difference between the two 
signatures is the type of the implicit object parameter. For a type T, the type of the implicit object parameter in 
the first signature is T, whereas the type for the second signature is T^. These signatures exist only for the 15 
purpose of overload resolution, and both signatures refer exactly to the one member function from which the 
signatures were created. 

[Rationale: This allows functions to be called using variables that have the raw type and using variables that are 
handles to the raw type. (This is necessary to compare operator overloads where the candidate set includes 
member functions and operator functions from namespace scope.) end rationale] 20 

18.6.2 Operators on Handles 
Unlike pointers, some user-defined operators can be defined for handles. For example, the addition of an integer 
to a handle does not attempt to add an offset to the handle (as is done with pointer arithmetic); rather, lookup for 
a user-defined operator is performed. The Standard C++ operator lookup rules are modified in the following 
ways: 25 

Standard C++ (§13.5.1/1) is changed, as follows:  

“Thus, for any prefix unary operator@, @x can be interpreted as either x->operator@() if x is a handle, 
x.operator@() if x is not a handle, or operator@(x).” 

Standard C++ (§13.5.2/1) is changed, as follows:  

“Thus for any binary operator@, x@y can be interpreted as either x->operator@(y) if x is a handle, 30 
x.operator@(y) if x is not a handle, or operator@(x,y).” 

[Note: In C++/CLI, equality operators for handles behave as if they were compiler-generated or user-defined 
operators. See §18.6.6.1. end note] 

The rules in Standard C++ (§13.5.3/1) continue to apply—an assignment operator shall be a instance function. 
An assignment to a handle never invokes the user-defined assignment operator. 35 

In Standard C++ (§13.5.4/1), although function call operators continue to be allowed only as instance functions, 
the text is changed, as follows:  

“Thus, a call x(arg1,...) is interpreted as x->operator()(arg1, ...) if x is a handle, or 
x.operator()(arg1,...) if x is not a handle, for a class object x of type T if T::operator()(T1, 
T2, T3) exists and if the operator is selected as the best match function by the overload resolution 40 
mechanism.” 
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In Standard C++ (§13.5.5/1), although subscript operators continue to be allowed only as instance functions, the 
text is changed, as follows:  

“Thus, a subscripting expression x[y] is interpreted as x->operator[](y) if x is a handle, or 
x.operator[](y) if x is not a handle, for a class object x of type T if T::operator[](T1) exists and if 
the operator is selected as the best match function by the overload resolution mechanism.” 5 

In Standard C++ (§13.5.6), the member access operator does not apply to a handle. Like a pointer, x->y is 
defined as (*x).y. A member access to a handle never invokes the user defined member access operator. 

[Note: The increment and decrement operators described in Standard C++ (§13.5.7), have significant differences 
from the CLS increment and decrement operators. (See §18.6.3 for details.) end note] 

18.6.3 Increment and decrement operators 10 
In C++/CLI, the static operators operator++ and operator-- behave as both postfix and prefix operators. 
Neither of these static operators shall be declared with the dormant int parameter described by Standard C++ 
(§13.5.7). 

For the expressions x++ and x--, where the postfix operator is non-static, the following processing occurs: 

• If x is classified as a property or indexed access:  15 

o The expression x is evaluated and the results are used in subsequent get and set accessor 
function calls. 

o The get accessor function of x is invoked and the return value is saved.  

o The selected operator is invoked with the saved value of x as its argument and the literal 0 as 
the argument to select the postfix operator overload. 20 

o The set accessor function of x is invoked with the value returned by the operator as its 
argument. 

o The saved value of x is the result of the expression. 

• Otherwise: 

o The operator is processed as specified by Standard C++. 25 

Add an example. 

For the expressions ++x and --x, where the prefix operator is non-static, the following processing occurs: 

• If x is classified as a property or indexed access:  

o The expression x is evaluated and the results are used in subsequent get and set accessor 
function calls. 30 

o The get accessor function of x is invoked. 

o The selected operator is invoked with the result of get accessor function of x as its argument 
and the return value is saved. 

o The set accessor function of x is invoked with the saved value from the operator invocation. 

o The saved value from the operator invocation is the result of the expression. 35 

• Otherwise: 

o The operator is processed as specified by Standard C++. 

Add an example. 
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For the expressions x++ and x--, where the operator is static, the following processing occurs: 

• If x is classified as a property or indexed access, the expression is evaluated in the same manner as if the 
operator were a non-static postfix operator with the exception that no dormant zero argument is passed 
to the static operator function. 

• Otherwise: 5 

o x is evaluated. 

o The value of x is saved. 

o The selected operator is invoked with the value of x as its only argument. 

o The value returned by the operator is assigned in the location given by the evaluation of x. 

o The saved value of x becomes the result of the expression. 10 

Add an example. 

For the expression ++x or --x, where the operator is static, the following processing occurs: 

• If x is classified as a property or indexed access, the expression is evaluated in the same manner as if the 
operator were a non-static prefix operator. 

• Otherwise: 15 

o x is evaluated. 

o The selected operator is invoked with the value of x as its only argument. 

o The value returned by the operator is assigned in the location given by the evaluation of x. 

o x becomes the result of the expression. 

[Example: The following example shows an implementation and subsequent usage of operator++ for an 20 
integer vector class: 

public ref class IntVector { 
public: 
   // ... 
 static IntVector^ operator++(IntVector^ iv) { /*...*/ } 25 
}; 

int main() { 
 IntVector^ iv1 = gcnew IntVector; 
 IntVector^ iv2; 
 30 
 iv2 = iv1++; 
     // equivalent to: 
     //   IntVector^ __temp = iv1; 
     //   iv1 = IntVector::operator++( iv1 ); 
     //   iv2 = __temp; 35 
 iv2 = ++iv1; 
     // equivalent to: 
     //   iv1 = IntVector::operator++( iv1 ); 
     //   iv2 = iv1; 
} 40 

Note: Unlike traditional operator versions in Standard C++, this operator need not, and in fact should not, 
modify the value of its operand directly. end example] 
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18.6.4 Operator synthesis 
The compound assignment operators (+=, -=, *=, /=, %=, ^=, &=, and |=) are synthesized from other operators. 
For the expression x @= y (where @ denotes one of the operators listed above): If lookup for operator@= 
succeeds, the rules specified so far are applied. Otherwise, the expression x @= y is rewritten as x = x @ y, 
and the transformed expression is interpreted with the rules specified so far. Identify when synthesis would and 5 
would not occur. [[BB]] 
If no overload for operator@= applies after overload resolution or synthesis, the program is ill-formed. 

Synthesis shall not occur for operators defined inside native classes. 

18.6.5 Naming conventions 
During compilation, the name of every operator function is the C++ identifier used in source code for that 10 
function. For example, the addition operator’s identifier is operator+. When the compiler emits the program to 
an assembly, the metadata name for the operator function is the CLS-compliant name as specified herein. 

The CLS-compliant name for the operator function is only used in the compiled assembly. A program shall not 
refer to the CLS-compliant name given to the operator function. When the compiler imports functions from 
metadata, it shall rewrite the CLS-compliant name into the respective C++ operator function identifier. 15 
Likewise, when the compiler emits metadata for the program, it translates the C++ operator function identifier to 
the respective CLS-compliant name. 

A C++ program shall not declare nor define a function using one of the CLS-compliant identifiers referred to 
herein. 

The CLS recommends certain operators upon which CLS consumer and producer languages can agree. The set 20 
of CLS-compliant operators overlaps with the set of operators supported by C++ (see Partition I, §9.3, of  the 
CLI Standard) as described in §18.6.5.1. The C++ operators that do not overlap with the CLS-compliant 
operators are known as C++-dependent operators (§18.6.5.2). 

All operator functions, regardless of whether they are CLS-compliant operators or C++-dependent operators, 
shall be marked as SpecialName functions in the metadata. 25 

18.6.5.1 CLS-compliant operators 
An operator is CLS-compliant when the following conditions occur: 

1. The operator function is one listed in either Table 18-1: CLS-Recommended Unary Operators or Table 
18-2: CLS-Recommended Binary Operators. 

2. The operator function is a static member of a ref class or a value class. 30 

3. If a value class is a parameter or a return value of the operator function, the value class is not passed by 
reference nor passed by pointer or handle. 

4. If a ref class is a parameter or a return value of the operator function, the ref class is passed by handle. 
The handle shall not be passed by reference. 

If the above criteria are not met, the operator function is C++-dependent (§18.6.5.2). Table 18-1: CLS-35 
Recommended Unary Operators and Table 18-2: CLS-Recommended Binary Operators list the name that shall 
be given to the function used to represent the operator function in an assembly. 

When importing a class from an assembly, each static member function with a name listed in Table 18-1: CLS-
Recommended Unary Operators and Table 18-2: CLS-Recommended Binary Operators shall be renamed with 
its corresponding C++ identifier for the operator function. 40 

Table 18-1: CLS-Recommended Unary Operators 
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Function Name in Assembly C++ Operator 
Function Name 

op_UnaryNegation operator- 

op_UnaryPlus operator+ 

op_LogicalNot operator! 

op_AddressOf operator& 

op_OnesComplement operator~ 

op_PointerDereference operator* 

Table 18-2: CLS-Recommended Binary Operators 
Function Name in Assembly C++ Operator 

Function Name 
op_Decrement operator-- 

op_Increment operator++ 

op_Addition operator+ 

op_Subtraction operator- 

op_Multiply operator* 

op_Division operator/ 

op_Modulus operator% 

op_ExclusiveOr operator^ 

op_BitwiseAnd operator& 

op_BitwiseOr operator| 

op_LogicalAnd operator&& 

op_LogicalOr operator|| 

op_LeftShift operator<< 

op_RightShift operator>> 

op_Equality operator== 

op_GreaterThan operator> 

op_LessThan operator< 

op_Inequality operator!= 

op_GreaterThanOrEqual operator>= 

op_LessThanOrEqual operator<= 

op_Comma operator, 

 

Non-C++ operators 

The CLS recommends some operators that Standard C++ does not support. [Note: Compilers for other 
languages might not be tolerant to functions with these names. It is recommended that a C++/CLI 5 
implementation issue a compatibility diagnostic if a user-defined function is given one of these names listed 
in §E.1. end note] 

The ability to define operator true and operator false will be provided. [[BB]] 
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Function Name in Assembly C++ Operator 
Function Name 

op_True Not yet defined 
op_False Not yet defined 

 

Assignment operators 

Given that assignment operators take a parameter by value and return a result by value, with regard to these 
operators, the CLS recommendations are incompatible with C++. As C++ requires assignment operators to be 
instance functions, the C++ compiler does not generate or consume CLS assignment operators (as listed in Table 5 
18-3: CLS-Recommended Assignment Operators). As such, user-defined functions with names from Table 18-3: 
CLS-Recommended Assignment Operators are not given special treatment. 

Table 18-3: CLS-Recommended Assignment Operators 
Function Name in Assembly C++ Operator 

Function Name 
op_Assign No equivalent 
op_UnsignedRightShiftAssignment No equivalent 
op_RightShiftAssignment No equivalent 
op_MultiplicationAssignment No equivalent 
op_SubtractionAssignment No equivalent 
op_ExclusiveOrAssignment No equivalent 
op_LeftShiftAssignment No equivalent 
op_ModulusAssignment No equivalent 
op_AdditionAssignment No equivalent 
op_BitwiseAndAssignment No equivalent 
op_BitwiseOrAssignment No equivalent 
op_DivisionAssignment No equivalent 

18.6.5.2 C++-dependent operators 
If an operator function does not match the criteria for a CLS-compliant operator, as listed in §18.6.5.1, the 10 
operator is C++-dependent. Table 18-4: C++-Dependent Unary Operators and Table 18-5: C++-Dependent 
Binary Operators list the metadata name for each function. 

When importing functions from an assembly, functions with the names listed in Table 18-4: C++-Dependent 
Unary Operators and Table 18-5: C++-Dependent Binary Operators shall be treated during compilation using 
their corresponding C++ identifiers. If such a function does not make sense as an operator function (for 15 
example, it takes three arguments), the function name shall not be changed to the internal operator function 
name, and the function is callable by the name it has in the assembly. 

These operator names are, in most cases, those recommended by the CLS even though they are not CLS-
compliant. 
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Some operator names listed below are not part of the CLS recommendations. These are op_FunctionCall and 
op_Subscript. 

[Note: The postfix increment and decrement operators are identified in C++ via a dormant int parameter. Static 
member increment and decrement operators shall not have such a dormant int parameter. Instead, a single 
static increment and decrement operator is used for both pre and post operations. (See §18.6.3 for more details.) 5 
end note] 

Table 18-4: C++-Dependent Unary Operators 
Function Name in Assembly C++ Operator 

Function Name 
op_UnaryNegation operator- 

op_UnaryPlus operator+ 

op_LogicalNot operator! 

op_AddressOf operator& 

op_OnesComplement operator~ 

op_PointerDereference operator* 

Table 18-5: C++-Dependent Binary Operators 
Function Name in Assembly C++ Operator 

Function Name 
op_Addition operator+ 

op_Subtraction operator- 

op_Multiply operator* 

op_Division operator/ 

op_Modulus operator% 

op_ExclusiveOr operator^ 

op_BitwiseAnd operator& 

op_BitwiseOr operator| 

op_LogicalAnd operator&& 

op_LogicalOr operator|| 

op_LeftShift operator<< 

op_RightShift operator>> 

op_Equality operator== 

op_GreaterThan operator> 

op_LessThan operator< 

op_Inequality operator!= 

op_GreaterThanOrEqual operator>= 

op_LessThanOrEqual operator<= 

op_MemberSelection operator-> 

op_PointerToMemberSelection operator->* 

op_Comma operator, 

op_Decrement operator-- 
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op_Increment operator++ 

op_Assign operator= 

op_RightShiftAssignment operator>>= 

op_MultiplicationAssignment operator*= 

op_SubtractionAssignment operator-= 

op_ExclusiveOrAssignment operator^= 

op_LeftShiftAssignment operator<<= 

op_ModulusAssignment operator%= 

op_AdditionAssignment operator+= 

op_BitwiseAndAssignment operator&= 

op_BitwiseOrAssignment operator|= 

op_DivisionAssignment operator/= 

op_FunctionCall operator() 

op_Subscript operator[] 

18.6.6 Compiler-defined operators 

18.6.6.1 Equality 
Reword this subclause similarly to the way special member functions are described. [[MH]] 

Every type has an equality operator that works on handles. Every type behaves as if it had both a static 
operator== and operator!= where both arguments are handles to the containing type. That is, for type T, it 5 
is as if every type had the following operators:  

static bool operator==(T^ lhs, T^ rhs); 
static bool operator!=(T^ lhs, T^ rhs); 

The purpose of these “as if” operators is to determine reference equality. Specifically, the return value of 
operator== is true if and only if both arguments are handles referring to the same object. Conversely, the 10 
return value of operator!= is true if and only if both arguments are handles referring to different objects. 

If a type has a user-defined static operator== or operator!= with the same signature as the “as if” equality 
operators, then the user-defined operator is used. The user-defined operator is actually emitted to the assembly, 
whereas the “as if” operators are not. 

Add another subclause to cover the compiler-generated conversion from handle to unspecified bool type. 15 
[[MH]] 

18.7 Instance constructors 
Since C++/CLI has added the notion of a static constructor, all uses of the term “constructor” in the 
C++ Standard refer to what C++/CLI refers to as “instance constructor”. 

18.7.1 Delegating constructors 20 
The definition of ctor-initializer has been extended to accommodate the addition of delegating constructors to 
C++/CLI; however, no change is necessary in the Standard C++ (§8.4) grammar. 

Prior to executing its body, a constructor can call one of its sibling constructors to initialize members. That is, it 
delegates the object’s initialization to another constructor, gets control back, and then optionally performs other 
actions as well. A constructor that delegates in this manner is called a delegating constructor, and the 25 
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constructor to which it delegates is called a target constructor. A delegating constructor can also be a target 
constructor of some other delegating constructor. [Example: 

class FullName { 
 string firstName_; 
 string middleName_; 5 
 string lastName_; 
public: 
 FullName(string firstName, string middleName, string lastName); 
 FullName(string firstName, string lastName); 
 FullName(const FullName& name); 10 
}; 

FullName::FullName(string firstName, string middleName, string lastName) 
 : firstName_(firstName), middleName_(middleName), lastName_(lastName)  
{ 
 // ... 15 
} 

// delegating copy constructor 
FullName::FullName(const FullName& name) 
 : FullName(name.firstName, name.middleName, name.lastName) 
{ 20 
 // ... 
} 

// delegating constructor 
FullName::FullName(string firstName, string lastName) 
 : FullName(firstName, "", lastName) 25 
{ 
 // ... 
} 

end example] 

If a mem-initializer-id designates the class being defined, it shall be the only mem-initializer. The resulting ctor-30 
initializer signifies that the constructor being defined is a delegating constructor. 

A delegating constructor causes a constructor from the class itself to be invoked. The target constructor is 
selected by overload resolution and template argument deduction, as usual. If a delegating constructor definition 
includes a ctor-initializer that directly or indirectly invokes the constructor itself, the program is ill-formed; 
however, no diagnostic is required. 35 

[Example: When using constructors that are templates, deduction works as usual: 
class X { 
 template<class T> X(T, T) : l_(first, last) { /* Common Init */ } 
 list<int> l_; 
public: 40 
 X(vector<short>&); 
}; 

X::X(vector<short>& v) : X(v.begin(), v.end()) { } 
 // T is deduced as vector<short>::iterator 

end example] 45 

The object’s lifetime begins when all construction is successfully completed. For the purposes of the 
C++ Standard (§3.8), “the constructor call has completed” means the originally invoked constructor call. 
[Rationale:  Even if a target constructor completes, an outer delegating constructor can still throw an exception, 
and if so the caller did not get the object that was requested. The foregoing decision also preserves the Standard 
C++ rule that an exception emitted from a constructor means that the object’s lifetime never began.  end 50 
rationale] 

Add text to show what the behavior in the CLI (including CIL) and perhaps a comparison with C#. 
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18.8 Static constructors 
A static constructor is a function member that implements the actions required to initialize a ref or value class. 
A static constructor is declared just like an ordinary (that is, instance) constructor in Standard C++ (§8.4), 
except that the former is specified with the storage class static. 

A static constructor shall not have a ctor-initializer-list. 5 

Static constructors are not inherited, and cannot be called directly. 

The static constructor for a class is executed as specified in the CLI standard, Partition II (§10.5.3). 

If a class contains any static fields (including initonly fields) with initializers, those fields are initialized 
immediately prior to the static constructor’s being executed and in the order in which they are declared. 

[Example: The example  10 
ref struct A { 
 static A() { 
  cout << "Init A" << “\n”; 
 } 
 static void F() { 15 
  cout << "A::F" << “\n”; 
 } 
}; 

ref struct B : A { 
 static B() { 20 
  cout << "Init B" << “\n”; 
 } 
 static void F() { 
  cout << "B::F" << “\n”; 
 } 25 
}; 

int main() { 
 A::F(); 
 B::F(); 
} 30 

shall produce one of the following outputs:  
Init A Init A Init B 
A::F  Init B Init A 
Init B A::F  A::F 
B::F  B::F  B::F 35 

because A's static constructor must be run before accessing any static members of A, and B's static constructor 
must be run before accessing any static members of B, and A::F is called before B::F. end example] 

A static constructor can be defined outside its parent class using the same syntax for a corresponding out-of-
class instance constructor, except that a static prefix shall also be present. [Example: 

ref class X { 40 
public: 
 static X();   // static constructor declaration 
 X();     // instance constructor declaration 
 X(int) {…}   // inline instance constructor definition 
}; 45 
static X::X() {…}  // out-of-class static constructor definition 
X::X() {…}    // out-of-class instance constructor definition 

end example] 

[Note: In Standard C++, an out-of-class constructor definition is not permitted to have internal linkage; that is, it 
is not permitted to be declared static. end note] 50 
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A static constructor can have any access-specifier. [Note: However, for security reasons, a static constructor 
should have a private access-specifier. end note] 

If a ref or value class has no user-defined static constructor, a default static constructor is implicitly defined. It 
performs the set of initializations that would be performed by a user-written static constructor for that class with 
an empty function body. 5 

The static constructor cannot be explicitly invoked. A nontrivial static constructor is emitted as a private 
member of its class in metadata. 

18.9 Literal fields 
Literal fields are defined by including the literal storage-class-specifier. 

add literal to storage-class-specifier 10 

Add grammar for literal-constant-initializer = Standard C++ constant-initializer + float/double + String + 
nullptr. [[BB]] 

A literal field is a named compile-time constant rvalue having the type of the literal field and having the value 
of its literal-constant-initalizer. 

Each member-declarator in the member-declarator-list shall contain a literal-constant-initializer. The decl-15 
specifier-seq shall not contain a cv-qualifier. 

Even though literal fields are accessed like static members, a literal field definition shall not contain the 
keyword static. 

Whenever a compiler comes across a valid usage of a literal field, the compiler shall replace that usage with the 
value associated with that literal field.  20 

A literal field shall have one of the following types: a scalar type or System::String. bool; plain char; 
signed or unsigned versions of char, short, int, long, or long long; float; double; an enum type; or a 
handle type. A literal-constant-expression shall yield a value of the target type, or if the literal-constant-
expression is not a string literal, it can be a value of a type that can be converted to the target type by a standard 
conversion sequence. 25 

[Note: A literal-constant-expression is an expression that can be fully evaluated at compile-time. Since the only 
way to create a non-null value of a handle type other than System::String^ is to apply the gcnew operator, 
and since that operator is not permitted in a literal-constant-expression, the only possible value for literal fields 
of handle type other than System::String^ is nullptr. end note] 

When a symbolic name for a constant value is desired, but when the type of that value is not permitted in a 30 
literal field declaration, or when the value cannot be computed at compile-time by a constant-expression, an 
initonly field (§18.10) can be used instead. [Note: The versioning semantics of literal and initonly differ 
(§18.10.2). end-note] 

Literal fields are permitted to depend on other literal fields within the same program as long as the dependencies 
are not of a circular nature.  35 

[Example: 
ref struct X { 
 literal double PI = 3.1415926; 
 literal int MIN = -5, MAX = 5; 
 literal int COUNT = MAX – MIN + 1; 40 
 literal int Size = 10; 
 enum Color {red, white, blue}; 
 literal Color DefaultColor = red; 
}; 
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int main() { 
 double radius; 
 cout << “Enter a radius: “; 
 cin >> radius; 
 cout << "Area = " << X::PI * radius * radius << "\n"; 5 
 static double d = X::PI; 
 for (int i = X::MIN; i <= X::MAX; ++i) {…} 
 float f[Size]; 
} 

end example] 10 

For a discussion of versioning and literal fields, see §18.10.2. 

18.10 Initonly fields 
Initonly fields are defined by including the initonly storage-class-specifier. 

add initonly to storage-class-specifier 

Initialization of initonly fields shall occur only as part of their definition. Assignments (via an assignment 15 
operator or a postfix or prefix increment or decrement operator) to initonly fields shall occur only in an instance 
constructor or static constructor in the same class. [Note: Of course, such assignment could be done via a 
constructor’s ctor-initializer. end note] (Although an initonly field can be assigned to multiple times in a given 
context, it shall be assigned in only one context.) Specifically, initialization of, and assignments to, initonly 
fields are permitted only in the following contexts: 20 

• In the constant-initializer of a member-declarator. 

• For an instance field, in the instance constructors of the class containing the initonly field definition; for 
a static field, in the static constructor of the class containing the initonly field definition. 

A program that attempts to assign to an initonly field in any other context, or that attempts to take its address or 
to bind it to a reference in any context, is ill-formed. 25 

[Example: 
ref class X { 
 initonly static int svar1 = 1;// Ok 
 initonly static int svar2; 
 initonly static int svar3; 30 
 
 initonly int mvar1 = 1;   // Error 
 initonly int mvar2; 
 initonly int mvar3; 
public: 35 
 static X(){ 
  svar3 = 3; 
  svar1 = 4;      // Ok: but overwrites the value 1 
  smf2(); 
 } 40 
 static void smf1() { 
  svar3 = 5;      // Error; not in a static constructor 
 } 

 static void smf2() { 
  svar2 = 5;      // Error; not in a static constructor 45 
 } 

 X() : mvar2(2) {     // Ok 
  mvar3 = 3;      // Ok 
  mf1(); 
 } 50 
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 void mf1() { 
  mvar3 = 5;      // Error; not in an instance constructor 
 } 

 void mf2() { 
  mvar2 = 5;      // Error; not in an instance constructor 5 
 } 
}; 

end example] 

18.10.1 Using static initonly fields for constants 
A static initonly field is useful when a symbolic name for a constant value is desired. 10 

Add a description that for any value class we have to make the copy before calling member functions. [[BB]] 

18.10.2 Versioning of literal fields and static initonly fields 
Literal fields and initonly fields have different binary versioning semantics. When an expression references a 
literal field, the value of that member is obtained at compile-time, but when an expression references an initonly 
field, the value of that member is not obtained until run-time. [Example: Consider an application with the 15 
following source: 

namespace Program1 { 
 public ref struct Utils 
 { 
  static initonly int X = 1; 20 
  literal int Y = 1; 
 }; 
} 

namespace Program2 { 
 int main() { 25 
  Console::WriteLine(Program1::Utils::X); 
  Console::WriteLine(Program1::Utils::Y); 
 } 
} 

The Program1 and Program2 namespaces denote two source files that are compiled separately, each 30 
generating its own assembly. Because Program1::Utils::X is declared as a static initonly field, the value 
output by Console::WriteLine is not known at compile-time, but rather is obtained at run-time. Thus, if the 
value of X is changed and Program1 is recompiled, Console::WriteLine will output the new value even if 
Program2 isn’t recompiled. However, because Y is a literal field, the value of Y is obtained at the time 
Program2 is compiled, and remains unaffected by changes in Program1 until Program2 is recompiled. end 35 
example] 

18.11 Destructors and finalizers 
Any native class or ref class can have a user-defined destructor. Such destructors are run at the times specified 
by the C++ Standard:  

 An object of any type allocated on the stack is destroyed when that object goes out of scope. 40 

 An object of any type allocated in static storage is destroyed during program termination. 

 An object that is allocated on the native heap using new, is destroyed when a delete is performed on a 
pointer to that object. 

 An object that is allocated on the CLI heap using gcnew, is destroyed when a delete is performed on a 
handle to that object. 45 
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 An object that is a member of another object is destroyed as part of the destruction of the enclosing 
object. 

For the purposes of destruction, the native and CLI heaps are treated the same. The only difference between the 
two heaps is the automation and timing of memory reclamation. In the case of the native heap, memory is 
reclaimed manually at the same time as the delete, while in the case of the CLI heap, memory is reclaimed 5 
automatically during garbage collection whether or not there was a delete. In addition, objects on the CLI 
heap are finalized, if a finalizer exists. 

Any ref class can have a user-defined finalizer. The finalizer is run zero or more times by the garbage collector, 
as specified by the CLI. 

Say more about finalizers (including Dispose/~T and Finalize/!T) and add some examples. [[BB]] 10 
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19. Native classes 

The accessibility of a non-nested native class can optionally be specified via a top-level-type-visibility (§12.4). 

A native class can optionally have a class-modifiers (§18.1.1). 

19.1 Functions 
A virtual member function in a native class can contain: 5 

• the function-modifier override, or an override-specifier, or both (§18.3.1). 

• the function-modifier sealed (§18.3.2). 

• the function-modifier abstract (§18.3.3). 

Member functions in a native class can optionally have a parameter-array (§18.3.6) in their parameter-
declaration-clause. 10 

19.2 Properties 
Support for properties in native classes. 

19.3 Static operators 
Native classes support static operators (§18.6). 

19.4 Instance constructors 15 

19.4.1 Delegating constructors 
Native classes support the use of delegating constructors in instance constructors (§18.7.1). 

19.5 Delegates 
Native classes support delegate-definitions (§26); however, a native class shall not contain a field having a 
delegate type. 20 
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20. Ref classes 

A ref class is a data structure known to the CLI runtime. It can contain fields, function members, and nested 
types. 

20.1 Ref class declarations 
A reference-class-declaration introduces a declaration of a ref class. 5 

reference-class-declaration: 
ref-class-key   identifier   ; 

ref-class-key: 
ref░class 
ref░struct 10 

A ref░class declaration and ref░struct declaration differ in the default accessibility of members. The 
members of a ref░class are private by default. On the other hand, the members of a ref░struct are public 
by default. 

A reference-class-definition defines a ref class. 

reference-class-definition: 15 
attributesopt   top-level-type-visibilityopt   ref-class-key   identifier 
      class-modifiersopt   base-clauseopt   {   member-specificationopt   }   ; 

A reference-class-definition can include a set of attributes (§28), top-level-type-visibility (§12.4), class-
modifiers (§18.1.1), and base-clause (§20.1.1). 

20.1.1 Ref class base specification 20 
A reference-class-definition can include a base-clause specification, which defines the direct base class of the 
ref class, and the interfaces implemented by the ref class. 

If a base-specifier contains an access-specifier, that access-specifier shall be public. If a base-specifier does 
not contain an access-specifier, the access-specifier is implicitly public, even if the ref class is defined with 
the ref░class keyword. 25 

A ref class type shall have at most one class as its direct base, and that class type shall be a ref class type. If no 
direct base class is specified, the direct base class is assumed to be System::Object. 

The direct base class of a ref class type shall not be a native class, a sealed ref class, or any of the following 
types:  System::Array, System::Delegate, System::Enum, or System::ValueType. 

The direct base class of a ref class type shall be at least as accessible as the ref class type itself. 30 

If a reference-class-definition contains one or more base-specifiers that specify interface types, the ref class is 
said to implement those interface types. (Interface implementations are discussed further in §24.4.) Those 
interface types shall be at least as accessible as the ref class itself. 
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20.1.1.1Base class 
If a reference-class-declaration has no base-clause, or the base-clause does not contain a ref-class-type in the 
list, the ref class is assumed to inherit from System::Object. A ref class inherits members from its direct base 
classes, as described in §??. 

A ref class can have at most one ref-class-type as a direct base. A program is ill-formed if it includes more than 5 
one ref-class-type in a ref-class-base-list. 

A base class that is a ref-class-type or interface-type is only permitted to use public inheritance; if no access 
specifier is given, access is assumed to be public even if the ref class is defined with the ref░class keyword. 

The direct base classes of a class type must be at least as accessible as the class type itself. For example, a 
program is ill-formed if it attempts to derive a public ref class from a private ref class. 10 

A direct base class of a ref class shall not be any of the following types:  System::Array, 
System::Delegate, System::Enum, or System::ValueType. 

A program is ill-formed if it attempts to derive from a sealed class. 

20.1.1.2Interface implementations 
A ref-class-base specification can include an interface type, in which case, the ref class is said to implement the 15 
given interface type. Interface implementations are discussed further in §24.4.  

20.2 Ref class members 
The members of a ref class consist of all the members introduced by its member-specification. and the members 
inherited from the direct base class. 

A member function of a ref class shall not have a cv-qualifier-seq.  20 

20.2.1 Variable initializers 
The definition of zero-initialize in the C++ Standard (§8.5/5) has been extended, as follows: “ 
 

 “To zero-initialize an object of type T means: 

• if T is a handle type, the object is set to the value of the null value constant converted to T; 25 

• if T is a scalar type other than a handle type, the object is set to the value of 0 (zero) converted to T; 

• …” 

The default initial value as described in the C++ Standard (§8.5/9) has been extended, as follows:  
 

“If no initializer is specified for a handle, the handle is always zero-initialized. Otherwise, if no initializer is 30 
specified for a nonstatic object, the object and its subobjects, if any, have an indeterminate initial value);” 

 
 [Rationale: Handles must always have a valid value, as they are used as roots by the garbage collector. If a 
handle had an invalid value, the runtime could fail. Thus, a handle that has not been initialized is always zeroed 
to prevent runtime failure. end rationale] 35 

Tracking references are treated like Standard C++ references—they are always initialized. 

20.3 Functions 
A virtual member function in a ref class can contain: 

• the function-modifier override, or an override-specifier, or both (§18.3.1). 
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• the function-modifier sealed (§18.3.2). 

• the function-modifier abstract (§18.3.3). 

Virtual function overrides in ref classes shall not have covariant return types without an explicit override. 
[Rationale: This is a restriction imposed by the CLI. end rationale]  

Member functions in a ref class can optionally have a parameter-array (§18.3.6) in their parameter-declaration-5 
clause. 

For each ref class, the implementation shall reserve several names (§18.2.3). A program is ill-formed if it 
declares a member whose name matches any of these reserved names. 

20.4 Properties 
Ref classes support properties (§18.4). 10 

For each property definition, the implementation shall reserve several names (§18.2.1). A program is ill-formed 
if it declares a member whose name matches any of these reserved names. 

20.5 Events 
Ref classes support events (§18.5). 

For each event definition, the implementation shall reserve several names (§18.2.2). A program is ill-formed if it 15 
declares a member whose name matches any of these reserved names. 

20.6 Static operators 
Ref classes support static operators (§18.6). 

20.7 Instance constructors 

20.7.1 Delegating constructors 20 
Ref classes support the use of delegating constructors within instance constructors (§18.7.1). 

20.8 Static constructor 
Ref classes support static constructors (§18.8). 

20.9 Literal fields 
Ref classes support literal fields (§18.9). 25 

20.10 Initonly fields 
Ref classes support initonly fields (§18.10). 

20.11 Destructors and finalizers 
See §18.11. 

20.12 Delegates 30 
Ref classes support delegate-definitions (§26). 

A ref class is permitted to contain a field having a delegate type. 
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21. Value classes 

Introduce value classes -- Discuss the following: value classes are optimized for small data structures. As such, 
value classes do not allow inheritance from anything but interface classes. [[BB]] 

[Note: As described in §12.2.2, the fundamental types provided by C++/CLI, such as int, double, and bool, 
are, in fact, all value classes. Just as these predefined types are value classes, it is also possible to use value 5 
classes and operator overloading to implement new “primitive” types in this specification. Two examples of 
such types are given at the end of this clause (§??). end note] 

21.1 Value class declarations 
A value-class-declaration introduces a declaration of a value class. 

value-class-declaration: 10 
value-class-key   identifier   ; 

value-class-key: 
value░class 
value░struct 

A value░class declaration and value░struct declaration differ in the default accessibility of members. The 15 
members of a value░class are private by default. The members of a value░struct are public by default. 

A value-class-definition defines a value class. 

value-class-definition: 
attributesopt   top-level-type-visibilityopt   value-class-key   identifier 
      value-class-modifiersopt   base-clausevalue-class-basesopt   {   member-specificationopt   }   ; 20 

A value-class-definition can include a set of attributes (§28), top-level-type-visibility (§12.4), value-class-
modifiers (§21.1.1), and base-clausevalue-class-bases (§21.1.2). 

21.1.1 Value class modifiers 
A value-class-definition can optionally include a sequence of modifiers: 

value-class-modifiers: 25 
value-class-modifier 
value-class-modifiers    value-class-modifier 

value-class-modifier: 
sealed 

If the same modifier appears multiple times in a value class definition, the program is ill-formed. 30 

[[Ed. If there is really only one value class modifier, there is no point in having a grammar that allows that one 
to be specified multiple times and then having a constraint outlawing duplicates. Either add other modifiers (if 
they exist) or fix the grammar and delete the constraint above.]] 

The sealed modifier is discussed in §18.1.1.2. All value classes are implicitly sealed (so the explicit use of this 
modifier in this context is redundant). 35 
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21.1.2 Value class base specification 
A value-class-definition can include a base-clause specification, which defines the interfaces implemented by 
the value class. Can the base class System::ValueType redundantly be specified? 

If a base-specifier contains an access-specifier, that access-specifier shall be public. If a base-specifier does 
not contain an access-specifier, the access-specifier is implicitly public, even if the value class is defined with 5 
the value░class keyword. 

If a value-class-definition contains one or more base-specifiers that specify interface types, the value class is 
said to implement those interface types. (Interface implementations are discussed further in §24.4.) Those 
interface types shall be at least as accessible as the value class itself. 

A value class definition can include a value-class-bases specification, which defines the direct base classes of 10 
the value class, and the interfaces implemented by the value class. 

value-class-bases: 
:   value-class-base-list 

value-class-base-list: 
base-access-specifieropt   value-class-base 15 
value-class-base-list   ,   base-access-specifieropt   value-class-base 

value-class-base: 
interface-type 

A base class that is an interface-type is only permitted to use public inheritance; if no access specifier is given, it 
is assumed to be public even if the value class is defined with the value░class keyword. 20 

The direct base classes of a value class must be at least as accessible as the value class itself. For example, a 
program is ill-formed if it attempts to have a public value class implement a private interface. 

A program is ill-formed if it contains a value-class-definition that declares a direct base that has not already been 
defined. 

21.2 Value class members 25 
The members of a value class include all the members introduced by its member-specification and the members 
inherited from the type System::ValueType. 

A member function of a value class shall not have a cv-qualifier-seq. 

Except for the differences noted in §21.3, the descriptions of class members provided in §20.2 through §20.10, 
and §20.12 apply to value class members as well. 30 

21.3 Ref class and value class differences 
To be added. [[Ed]] 

21.4 Simple value classes 
Is this subclause intended to do the same thing as §12.2.2.1? If so, which one shall we keep? [[Ed]] 

21.4.1 Constructors 35 
Add words about instance constructors and static constructor. 

Value classes cannot have SMFs (specifically, default constructor, copy constructor, assignment operator, 
destructor, or finalizer. Need to add specification for this along with rationale. [[BB]] 
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22. Mixed classes 

This clause is reserved for possible future use. Consider writing text for here. [[BB]] 
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23. Arrays 

An array is a data structure that contains a number of variables, which are accessed through computed indices. 
The variables contained in an array, also called the elements of the array, are all of the same type, and this type 
is called the element type of the array. 

An array in C++/CLI differs from a native array (§8.3.4) in that the former is allocated on the CLI heap, and can 5 
have a rank other than one. The rank determines the number of indices associated with each array element. The 
rank of an array is also referred to as the dimensions of the array. An array with a rank of one is called a single-
dimensional array, and an array with a rank greater than one is called a multi-dimensional array.  

Throughout this Standard, the term array is used to mean an array in C++/CLI. A C++-style array is referred to 
as a native array whenever the distinction is needed. 10 

Each dimension of an array has an associated length, which is an integral number greater than or equal to zero. 
The dimension lengths are not part of the type of the array, but, rather, are established when an instance of the 
array type is created at run-time. The length of a dimension determines the valid range of indices for that 
dimension: For a dimension of length N, indices can range from 0 to N – 1, inclusive. The total number of 
elements in an array is the product of the lengths of each dimension in the array. If one or more of the 15 
dimensions of an array have a length of zero, the array is said to be empty. 

The element type of an array can be any type, including an array type. 

23.1 Array types 
An array type is declared using a pseudo-template ref class with the following declaration: 

namespace stdcli::language { 20 
 template<typename T, int rank = 1> 
 ref class array : Array { 
 }; 
} 

The class is a pseudo-template because aspects of an array type cannot be implemented in a library using the 25 
facilities of the language. An array-type is any specialization of the stdcli::language::array  pseudo-
template class. For example: 

array<int>^ arr1D = gcnew array<int>(10); 
array<int, 3>^ arr3D = gcnew array<int, 3>(10, 20, 30); 

23.1.1 The System::Array type 30 
The System::Array type is the abstract base type of all array types. An implicit reference conversion (§??) 
exists from any array type to System::Array, and an explicit reference conversion (§??) exists from 
System::Array to any array type. Note that System::Array is not itself an array-type. Rather, it is a 
reference-class-type from which all array-type are derived. 

Is reference conversion the correct term? [[BB]] 35 

23.2 Array creation 
Array instances are created by array-creation-expressions (§??) or by field or local variable declarations that 
include an array-initializer (§23.6). 
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When an array instance is created, the rank and length of each dimension are established and then remain 
constant for the entire lifetime of the instance. In other words, it is not possible to change the rank of an existing 
array instance, nor is it possible to resize its dimensions. 

An array instance created by an array-creation-expression is always of an array type. The System::Array 
type is an abstract type, so it cannot be instantiated. 5 

Elements of arrays created by array-creation-expressions are always initialized to their default value (§??). 

23.3 Array element access 
Array elements are accessed using element-access expressions (§??) of the form A[I1, I2, …, IN], where A 
is an expression having an array type, and each IX is an expression of integral type or a type that can be 
implicitly converted to an integral type. 10 

An element-access expression differs from subscript expressions in Standard C++ (§5.2.1) in that in the former 
case, commas are not treated as operators. Rather, commas separate individual expressions that respectively 
match the dimension of the array being accessed. However, parentheses can be used to force the use of the 
comma operator in an expression. The result of an array element-access is a variable, namely the array element 
selected by the indices. Add examples. [[Ed]] 15 

The elements of an array can be enumerated using a for each statement (§16.1.1). 

23.4 Array members 
Every array type inherits the members declared by the type System::Array. In addition, arrays have iterators 
compatible with Standard C++’s template library. 

Provide details for array members. [[BB & TP]] 20 

23.5 Array covariance 
For any two types A and B, if an implicit reference conversion (§??) or explicit reference conversion (§??) exists 
from A to B, then the same reference conversion also exists from the array type array<A, R> to the array type 
array<B, R>, where R is any given rank-specifier (but is the same for both array types). This relationship is 
known as array covariance. In particular, array covariance means that a value of an array type array<A, R> 25 
might actually be a reference to an instance of an array type array<B, R>, provided an implicit reference 
conversion exists from B to A. 

Because of array covariance, assignments to arrays where the elements are ref classes will include a run-time 
check, which ensures that the value being assigned to the array element is actually of a permitted type (§??). 

Array covariance does not extend to boxing conversions. For example, no conversion exists that permits an 30 
array<int> to be treated as an array<Object^> or array<int^>. 

Array covariance really only applies to handles of arrays, not direct arrays – in other words, do arrays have copy 
constructors? [[BB]] 

23.6 Array initializers 
To be added. [[BB]] 35 
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24. Interfaces 

An interface defines a set of virtual members that an implementing class must define. An interface can also 
require an implementing class to implement other interfaces. A class can implement multiple interfaces. 

The interface does not provide a definition for any of its members. Instead, classes that implement the interface 
supply these definitions. 5 

24.1 Interface declarations 
An interface-class-declaration introduces a declaration of an interface. 

interface-class-declaration: 
interface-class-key   identifier   ; 

interface-class-key: 10 
interface░class 

interface░struct 

An interface░class and interface░struct declaration are equivalent. The default accessibility of 
members within an interface is public, and the accessibility cannot be changed. 

An interface-class-definition defines an interface. 15 

interface-class-definition: 
attributesopt   top-level-type-visibilityopt   interface-class-key   identifier 
      interface-class-basesopt   {   member-specificationopt   }   ; 

An interface-class-definition can include a set of attributes (§28), top-level-type-visibility (§12.4), and interface-
class-bases (§24.1.1). 20 

24.1.1 Interface base specification 
An interface-class-definition can include an interface-class-bases specification, which defines the explicit base 
interfaces of the interface being defined. 

interface-class-bases: 
:   interface-class-base-list 25 

interface-class-base-list: 
publicopt   interface-type 
interface-class-base-list   ,   publicopt   interface-type 

The explicit base interfaces of an interface must be at least as accessible as the interface itself (§??). For 
example, a program is ill-formed if it specifies a private interface in the interface-class-base-list of a public 30 
interface. 

The base interfaces of an interface are the explicit base interfaces and their base interfaces. That is, the set of 
base interfaces is the complete transitive closure of the explicit base interfaces, their explicit base interfaces, and 
so on. 

An interface inherits all members of its base interfaces. 35 

A type that implements an interface also implicitly implements all that interface’s base interfaces. 
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24.2 Interface members 
The members of an interface are the members inherited from its base interfaces, and the members declared by 
the interface itself. 

An interface definition can declare zero or more members. The members of an interface shall be instance 
functions, instance properties, instance events, or nested types of any kind. An interface cannot contain 5 
constants, fields, operators, constructors, destructors, or finalizers, or static members of any kind. 

All interface members have public access. pickup the restrictions from page 333 

All members declared in an interface are implicitly abstract. However, those members can redundantly contain 
the virtual and/or abstract modifiers, and/or a pure-specifier. [Example: 

interface class I { 10 
 property int Size { /*…*/ }; // (implicit) abstract property 
 virtual property string Name abstract = 0 { /*…*/ }; 
           // “virtual”, “abstract” and “= 0” 
           // permitted but are redundant 
}; 15 

end example] 

24.2.1 Interface functions 
A function in an interface is declared exactly the same way as a function in a class. An interface function 
declaration is not permitted to specify a function definition; therefore, the declaration always ends with a 
semicolon. 20 

If the function is declared virtual, it shall also be declared abstract, and vice versa. 

Member functions in an interface class can optionally have a parameter-array (§18.3.6) in their parameter-
declaration-clause. 

For each interface class, the implementation shall reserve several names (§18.2.3). A program is ill-formed if it 
declares a member whose name matches any of these reserved names. 25 

24.2.2 Interface properties 
Interface classes support properties (§18.4). 

The accessor functions of an interface property definition correspond to the accessor functions of a class 
property definition (§18.4.2), except that in an interface the accessor functions must be declarations that are not 
definitions. Thus, the accessor functions simply indicate whether the property is read-write, read-only, or write-30 
only.  

 [Example: 
interface class I { 
 property int Size { int get(); void set(int value); };  
 property bool default[int j] { bool get(int); 35 
   void set(int k, bool value); };  
}; 

end example] 

A property-definition ending with a semicolon (as opposed to a brace-delimited accessor-specification) declares 
a trivial scalar property (§18.4.4). Such a declaration declares an abstract virtual property with get and set 40 
accessor functions. 

An accessor function with an inline definition in an interface is ill-formed. 
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For each property definition, the implementation must reserve several names (§18.2.1). A program is ill-formed 
if it declares a member whose name matches any of these reserved names. 

24.2.3 Interface events 
Interface classes support events (§18.5). 

The accessor functions of an interface event declaration correspond to the accessor functions of a class event 5 
definition (§18.5.2), except that the accessor functions must be function declarations that are not function 
definitions. 

As events in interfaces cannot have a raise accessor function (because everything in an interface is public), 
such events cannot be invoked using function call syntax. 

For each event definition, the implementation must reserve several names (§18.2.2). A program is ill-formed if it 10 
declares a member whose name matches any of these reserved names. 

24.2.4 Delegates 
Interface classes support delegate-definitions (§26). 

24.2.5 Interface member access 
Do we need this subclause? [[BB]] 15 

24.3 Fully qualified interface member names 

24.4 Interface implementations 
Interfaces can be implemented by classes. To indicate that a class implements an interface, the interface 
identifier is included in the base class list of the class. [Example: For example: 

interface class ICloneable { 20 
 Object^ Clone(); 
}; 

interface class IComparable { 
 int CompareTo(Object^ other); 
}; 25 
ref class ListEntry : ICloneable, IComparable { 
public: 
 Object^ Clone() {…} 
 int CompareTo(Object^ other) {…} 
}; 30 

end example] 

An interface in the base class list is always and implicitly public. The public keyword is allowed but not 
required as a base class access specifier for an interface. The private, protected, and virtual keywords 
are not allowed as base class specifiers for an interface. 

A class that implements an interface also implicitly implements all of the interface’s base interfaces. This is true 35 
even if the class doesn’t explicitly list all base interfaces in the base class list. [Example: For example: 

interface class IControl { 
 void Paint(); 
}; 

interface class ITextBox : IControl { 40 
 void SetText(String^ text); 
}; 
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ref class TextBox : ITextBox { 
public: 
 void Paint() {…} 
 void SetText(String^ text) {…} 
}; 5 

Here, class TextBox implements both IControl and ITextBox. end example] 

Address what happens when a ref class does not implement an interface function (and what happens when a 
base class has a non-virtual function with the same name). [[BB]] 
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25. Enums 

An enum type is a distinct type with named constants. C++/CLI includes two kinds of enum types: native 
enums that are compatible with Standard C++ enums (§7.2), and CLI enums, which are new, and that are 
preferred for frameworks programming. Native and CLI enum types are collectively referred to as enum types. 
A native enum can only be generated by a C++ compiler. To languages other than C++, a native enum and a 5 
CLI enum appear to be exactly the same; they both cause the same metadata to be generated, and they both 
inherit from System::Enum (§25.3). 

[Example: The example 
public enum Suit : short { Hearts = 1, Spades, Clubs, Diamonds}; 

defines a publicly accessible native enum type named Suit with enumerators Hearts, Spades, Clubs, and 10 
Diamonds, whose values are 1, 2, 3, and 4, respectively. The underlying type for Suit is short int.  

The example 
enum class Direction { North, South = 10, East, West = 20 }; 

defines a CLI enum type named Direction with enumerators North, South, East, and West, whose values 
are 0, 10, 11, and 20, respectively. By default, the underlying type for Direction is int.end example] 15 

25.1 Native enums 
A native enum is an enum type.  

Enumerations as defined by the C++ Standard (§7.2) continue to have exactly the same meaning. Native enums 
have extensions to allow the following: declaration of the underlying type, the placement of attributes on 
enumerators, and access to enumerators within the scope of the enum-name. 20 

25.1.1 Native enum declarations 
The enum-specifier production in the C++ standard (§7.2) has been extended, as follows: 

enum-specifier: 
attributesopt   top-level-type-visibilityopt   enum   identifieropt   enum-baseopt   {   enumerator-listopt   } 

An enum-specifier can optionally include a set of attributes (§28), top-level-type-visibility (§12.4), enum-base 25 
(§25.1.3), and enumerator-list. 

25.1.2 Native enum visibility 
A non-nested native enum can optionally specify the accessibility of the native enum by using a top-level-type-
visibility of public or private (§12.4). 

25.1.3 Native enum underlying type 30 
As in Standard C++, each enum type has a corresponding underlying type, which shall be able to represent all 
the enumerator values defined in the enumeration. Unlike Standard C++, C++/CLI allows that underlying type 
to be specified. 

enum-base: 
:   ??-type 35 
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The underlying type of a native enum can be explicitly declared via enum-base, as one of the following types: 
bool, char, unsigned char, signed char, short, unsigned short, int, unsigned int, long long, 
unsigned long long, float, or double. wchar_t cannot be used as an underlying type. If no underlying type is 
given for a native enum, the rules specified in the C++ Standard (§7.2) apply. 

What types should all C++/CLI implementations be required to support? For example, the CLI allows float, 5 
double, and bool as base types? What about [unsigned] long and long double? Why not wchar_t? 

25.1.4 Native enum members 
The enumerator production in the C++ Standard (§7.2) has been extended, as follows: 

enumerator: 
attributesopt   identifier 10 

The values assigned to enumerators are either explicit or implicit, as defined by the C++ Standard when the 
underlying type is an integral value. However, if the underlying type is bool, float, or double, every enumerator-
definition in that enum shall be initialized with a constant-expression. 

25.2 CLI enums 
A CLI enum is an enum type. All enumerations generated by CLI-based languages other than C++ are CLI 15 
enums. CLI enums are different from native enums in that the names of the former’s enumerators are only found 
by looking in the scope of the named CLI enum, and that integral promotion as defined by the C++ standard 
(§4.5) do not apply to a CLI enum. 

25.2.1 CLI enum declarations 
A cli-enum-declaration introduces a declaration of a CLI enum type. 20 

cli-enum-declaration: 
cli-enum-class-key   identifier   ; 

cli-enum-class-key: 
enum░class 
enum░struct 25 

An enum░class and enum░struct declaration are equivalent. 

A cli-enum-definition defines a CLI enum. 

cli-enum-definition: 
attributesopt  top-level-type-visibilityopt  cli-enum-class-key  identifier  enum-baseopt 

  {  enumerator-listopt  }  ; 30 

A cli-enum-definition can optionally include a set of attributes (§28), top-level-type-visibility (§12.4), cli-enum-
class-key, enum-base (§25.1.3), and enumerator-list. 

25.2.2 CLI enum visibility 
A non-nested CLI enum can optionally specify the accessibility of the CLI enum by using a top-level-type-
visibility of public or private (§12.4). 35 

25.2.3 CLI enum underlying type 
A CLI enum can explicitly declare an underlying type, following the same rules for explicit underlying type as 
native enums (§25.1.3). A CLI enum definition that does not explicitly declare an underlying type has an 
underlying type of int. 
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25.2.4 CLI enum members 
See §25.1.1. 

25.2.5 CLI enum values and operations 
Each CLI enum type defines a distinct type; an explicit enumeration conversion is required to convert between a 
CLI enum type and an integral type, or between two enum types. The set of values that a CLI enum type can 5 
take on is not limited by its enum members. In particular, any value of the underlying type of an enum can be 
cast to the enum type, and is a distinct valid value of that enum type. 

CLI enumerators have the type of their containing enum type (except within other enumerator initializers). The 
value of an enumerator declared in enum type E with associated value v is static_cast<E>(v). 

The following operators can be used on values of CLI enum types: ==, !=, <, >, <=, >=, +, -, ^, &, |, ~, ++, --, 10 
sizeof. Some members in this set require an underlying integral type.  

25.3 The System::Enum type 
The type System::Enum is the abstract base class of both native and CLI enum types (this is distinct and 
different from the underlying type of the enum type), and the members inherited from System::Enum are 
available in any enum type. A boxing conversion (§??) exists from any enum type to System::Enum, and an 15 
unboxing conversion (§??) exists from System::Enum to any enum type. 

Note that System::Enum is not itself an enum type; it is a value class type from which all enum types are 
derived. The type System::Enum inherits from the type System::ValueType, which, in turn, inherits from 
System::Object. 
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26. Delegates 

[Note: Delegates enable scenarios that have been addressed previously with function pointers. Unlike function 
pointers, however, delegates are fully object-oriented, and unlike pointers to member functions, delegates 
encapsulate both an object instance and a function. end note] 

A delegate definition defines a class that is derived from the class System::Delegate. A delegate instance 5 
encapsulates one or more member functions, each of which is referred to as a callable entity. For instance 
functions, a callable entity consists of an instance and a member function on that instance. For static functions, a 
callable entity consists of just a member function. 

add text to be explicit that delegates are multicast Given a delegate instance and an appropriate set of arguments, 
one can invoke all of that delegate instance’s functions with that set of arguments.  10 

[Note: Unlike a pointer to member function, a delegate instance can be bound to members of arbitrary classes, as 
long as the function signatures are compatible (§26.1) with the delegate’s type. This makes delegates suited for 
“anonymous” invocation. end note] 

26.1 Delegate definitions 
A delegate-definition is a type-declaration (§??) that defines a new delegate type. 15 

delegate-definition: 
attributesopt    top-level-type-visibilityopt   delegate   decl-specifier-seqopt   identifier 
  (   decl-specifier-seq   )   ; 

Redo this grammar. [[BB]] 

A delegate-definition can include a set of attributes (§28).  20 

The return type of each of the functions that can be encapsulated by the delegate is indicated by return-type. 

A non-nested delegate can optionally specify the accessibility of the class by using a top-level-type-visibility of 
public or private (§12.4). 

The delegate’s type name is identifier. 

The optional delegate-parameter-list specifies the parameters of the delegate, and return-type indicates the 25 
return type of the delegate. The parameter list of a delegate corresponds to that of a function, except that at least 
one parameter must be specified. [Note: no C-style “vararg” argument is allowed, nor is a parameter array. end 
note] 

A function and a delegate type are compatible if both of the following are true: 

• They have the same number of parameters, with the same types, in the same order, with the same 30 
parameter modifiers. 

• Their return-types are the same. 

Delegate types are name equivalent, not structurally equivalent. Specifically, two different delegate types that 
have the same parameter lists and return type are considered different delegate types. [Example: For example: 

delegate int D1(int i, double d); 35 
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ref struct A { 
 static int M1(int a, double b) {…} 
}; 

ref struct B { 
 delegate int D2(int c, double d); 5 
 static int M2(int f, double g) {…} 
 static void M3(int k, double l) {…} 
 static int M4(int g) {…} 
 static void M5(int g) {…} 
}; 10 
D1^ d1;  
d1 =  gcnew D1(&A::M1); // ok 
d1 += gcnew D1(&B::M2); // ok  
d1 += gcnew D1(&B::M3); // error; types are not compatible 
d1 += gcnew D1(&B::M4); // error; types are not compatible 15 
d1 += gcnew D1(&B::M5); // error; types are not compatible 

D2^ d2;  
d2 =  gcnew D2(&A::M1); // ok 
d2 += gcnew D2(&B::M2); // ok  
d2 += gcnew D2(&B::M3); // error; types are not compatible 20 
d2 += gcnew D2(&B::M4); // error; types are not compatible 
d2 += gcnew D2(&B::M5); // error; types are not compatible 

d1 = d2; // error; different types 

end example] 

The only way to define a delegate type is via a delegate-definition. A delegate type is a class type that is derived 25 
from System::Delegate. Delegate types are implicitly sealed, so it is not permissible to derive any type from 
a delegate type. It is also not permissible to derive a non-delegate class type from System::Delegate. 
System::Delegate is not itself a delegate type; it is a class type from which all delegate types are derived. 

C++/CLI provides syntax for delegate instantiation and invocation. Except for instantiation, any operation that 
can be applied to a class or class instance can also be applied to a delegate class or instance, respectively. In 30 
particular, it is possible to access members of the System::Delegate type via the usual member access 
syntax. 

The set of functions encapsulated by a delegate instance is called an invocation list. When a delegate instance is 
created (§26.2) from a single function, it encapsulates that function, and its invocation list contains only one 
entry. However, when two non-nullptr delegate instances are combined, their invocation lists are 35 
concatenated—in the order left operand then right operand—to form a new invocation list, which contains two 
or more entries. 

Delegates are combined using the binary + (§15.8.1) and += operators (§15.18). A delegate can be removed 
from a combination of delegates, using the binary - (§15.8.2) and -= operators (§15.18). Delegates can be 
compared for equality (§15.11.2). 40 

[Example: The following example shows the instantiation of a number of delegates, and their corresponding 
invocation lists: 

delegate void D(int x); 
ref struct Test { 
 static void M1(int i) {…} 45 
 static void M2(int i) {…} 
}; 
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int main() {  
 D^ cd1 = gcnew D(&Test::M1);  // M1 
 D^ cd2 = gcnew D(&Test::M2);  // M2 
 D^ cd3 = cd1 + cd2;     // M1 + M2 
 D^ cd4 = cd3 - cd1;      // M2 5 
} 

For more examples of combining (as well as removing) delegates, see §26.3. end example] 

26.2 Delegate instantiation 
Each delegate type shall have two constructors, as follows: 

1. A constructor taking one argument, del-con-arg1, to create a delegate from a static member function or 10 
a namespace scope function. Here del-con-arg1 shall be the address of a static member function or a 
namespace scope function that is compatible with the type of the delegate being instantiated. 

2. A constructor taking two arguments, del-con-arg2 and del-con-arg3, respectively. This is used to create 
a delegate to a instance function. Here, del-con-arg2 shall be a reference to an object instance and del-
con-arg3 shall be the address of an instance function directly defined in that instance’s type. 15 

[Example: For example: 
delegate void D(int x); 
ref struct Test { 
 static void M1(int i) {…} 
 void M2(int i) {…} 20 
}; 

int main() {  
 D^ cd1 = gcnew D(&Test::M1);  // static function 
 Test^ t = gcnew Test; 
 D^ cd2 = gcnew D(t, &Test::M2); // instance function 25 
} 

end example] 

Once instantiated, delegate instances always refer to the same target object and function. [Note: Remember, 
when two delegates are combined, or one is removed from another, a new delegate results with its own 
invocation list; the invocation lists of the delegates combined or removed remain unchanged. end note] 30 

When a delegate is created from a member function name, the formal parameter list and return type of the 
delegate determine which of the overloaded functions to select. [Example: In the example 

delegate double DoubleFunc(double x); 

ref struct A { 
 static float Square(float x) { 35 
  return x * x; 
 } 

 static double Square(double x) { 
  return x * x; 
 } 40 
}; 

int main() { 
 DoubleFunc^ f = gcnew DoubleFunc(&A::Square); 
} 

the variable f is initialized with a delegate that refers to the second Square function because that function 45 
exactly matches the formal parameter list and return type of DoubleFunc. Had the second Square function not 
been present, the program would have been ill-formed. end example] 
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26.3 Delegate invocation 
Invocation of a delegate has the semantics specified for the Invoke member in ISO CLI (§??). Should we say 
more? [[Ed]] 
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27. Exceptions 

To be added. (Cover unification of CLI and Standard C++ exception-handling models.) [[BB]] 

27.1 Common exception classes 
The following exceptions are thrown by certain C++/CLI operations. 

System::NullReferenceException Thrown when a null-valued handle is dereferenced. 
System::TypeInitializationException Thrown when a static constructor throws an 

exception, yet no catch clauses exists to catch it. 

 5 
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28. Attributes 

The CLI enables programmers to invent new kinds of declarative information, called attributes.  Programmers 
can then attach attributes to various program entities, and retrieve attribute information in a run-time 
environment. [Note: For instance, a framework might define a HelpAttribute attribute that can be placed on 
certain program elements (such as classes and functions) to provide a mapping from those program elements to 5 
their documentation. end note] 

Attributes are defined through the declaration of attribute classes (§28.1), which can have positional and named 
parameters (§28.1.2). Attributes are attached to entities in a C++ program using attribute specifications (§28.2), 
and can be retrieved at run-time as attribute instances (§28.3). 

28.1 Attribute classes 10 
A class that derives from the abstract ref class System::Attribute, whether directly or indirectly, is an 
attribute class.  The declaration of an attribute class defines a new kind of attribute that can be placed on a 
declaration. [Note: By convention, attribute classes are named with a suffix of Attribute. Uses of an attribute 
can either include or omit this suffix. end note] 

28.1.1 Attribute usage 15 
The attribute System::AttributeUsageAttribute (§28.4.1) is used to describe how an attribute class can 
be used. [Note: When the name of an attribute type ends in the suffix Attribute, the suffix can be omitted 
when it is being used in an attribute and there is no other attribute having the name without the suffix. See §??. 
end note] 

AttributeUsage has a positional parameter (§28.1.2) that enables an attribute class to specify the kinds of 20 
declarations on which it can be used. [Example: The example 

[AttributeUsage(AttributeTargets::Class | AttributeTargets::Interface)] 
public ref class SimpleAttribute : Attribute {}; 

defines an attribute class named SimpleAttribute that can be placed on reference-class-declarations and 
interface-class-declarations only. The example  25 

[Simple] ref class Class1 {…}; 
[Simple] interface class Interface1 {…}; 

shows several uses of the Simple attribute. Although this attribute is defined with the name 
SimpleAttribute, when this attribute is used, the Attribute suffix can be omitted, resulting in the short 
name Simple. Thus, the example above is semantically equivalent to the following 30 

[SimpleAttribute] ref class Class1 {…}; 
[SimpleAttribute] interface class Interface1 {…}; 

end example]  

AttributeUsage has a named parameter (§28.1.2), called AllowMultiple, which indicates whether the 
attribute can be specified more than once for a given entity. If AllowMultiple for an attribute class is true, 35 
then that class is a multi-use attribute class,  and can be specified more than once on an entity. If 
AllowMultiple for an attribute class is false or it is unspecified, then that class is a single-use attribute class,  
and can be specified at most once on an entity. 

[Example: The example 
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[AttributeUsage(AttributeTargets::Class, AllowMultiple = true)] 
public ref class AuthorAttribute : Attribute { 
 String^ name; 
public: 
 AuthorAttribute(String^ name) : name(name) { } 5 
 property String^ Name { String^ get() { return name;} } 
}; 

defines a multi-use attribute class named AuthorAttribute. The example  
[Author("Brian Kernighan"), Author("Dennis Ritchie")]  
ref class Class1 {…}; 10 

shows a class declaration with two uses of the Author attribute. end example] 

AttributeUsage has another named parameter (§28.1.2), called Inherited, which indicates whether the 
attribute, when specified on a base class, is also inherited by classes that derive from that base class. If 
Inherited for an attribute class is true, then that attribute is inherited. If Inherited for an attribute class is 
false then that attribute is not inherited. If it is unspecified, its default value is true. 15 

An attribute class X not having an AttributeUsage attribute attached to it, as in 
ref class X : Attribute { … }; 

is equivalent to the following: 
[AttributeUsage(AttributeTargets::All, AllowMultiple = false, 
Inherited = true)] ref class X : Attribute { … }; 20 

28.1.2 Positional and named parameters 
Attribute classes can have positional parameters and named parameters.  Each public instance constructor for 
an attribute class defines a valid sequence of positional parameters for that attribute class. Each non-static public 
read-write field and property for an attribute class defines a named parameter for the attribute class. 

[Example: The example 25 
[AttributeUsage(AttributeTargets::Class)] 
public ref class HelpAttribute : Attribute { 
public: 

 HelpAttribute(String^ Url) { // Url is a positional parameter 
  … 30 
 } 

 property String^ Topic {  // Topic is a named parameter 
  String^ get() {…} 
  void set(String^ value) {…} 
 } 35 
 property String^ Url { String^ get() {…} } 
}; 

defines an attribute class named HelpAttribute that has one positional parameter (String^ Url) and one 
named parameter (String^ Topic). Although it is non-static and public, the property Url does not define a 
named parameter, since it is not read-write.  40 

This attribute class might be used as follows: 
[Help("http://www.mycompany.com/…/Class1.htm")] 
ref class Class1 { 
}; 

[Help("http://www.mycompany.com/…/Misc.htm", Topic ="Class2")] 45 
ref class Class2 { 
}; 
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end example] 

28.1.3 Attribute parameter types 
The types of positional and named parameters for an attribute class are limited to the attribute parameter types, 
which are: 

• One of the following types: bool, char, wchar_t, short, int, long, long long, float, double, 5 
and System::String^. 

• The type System::Object^. 

• The type System::Type^. 

• An enum class type, provided it has public accessibility and the types in which it is nested (if any) also 
have public accessibility. 10 

• Single-dimensional stdcli::language::arrays of the above types. 

28.2 Attribute specification 
Attribute specification is the application of a previously defined attribute to a declaration. An attribute is a piece 
of additional declarative information that is specified for a declaration. Attributes can be specified at file scope 
(to specify attributes on the containing assembly) and for type-declarations (§??), class member-declarations, 15 
struct member-declarations, interface member-declarations, enum member-declarations, accessor-specification 
(§??), and formal-parameters (§??). 

Attributes are specified in attribute sections. An attribute section consists of a pair of square brackets, which 
surround a comma-separated list of one or more attributes. The order in which attributes are specified in such a 
list, and the order in which sections attached to the same program entity are arranged, is not significant. For 20 
instance, the attribute specifications [A][B], [B][A], [A, B], and [B, A] are equivalent. 

global-attributes: 
global-attribute-sections   ; 

global-attribute-sections: 
global-attribute-section 25 
global-attribute-sections  global-attribute-section 

global-attribute-section: 
[   global-attribute-target   :   attribute-list   ] 

global-attribute-target: 
assembly 30 
module 

attributes: 
attribute-sections 

attribute-sections: 
attribute-section 35 
attribute-sections   attribute-section 

attribute-section: 
[   attribute-target-specifieropt   attribute-list   ] 

attribute-target-specifier: 
attribute-target   : 40 
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attribute-target: 
class 

constructor 
delegate 
enum 5 
event 
field 
interface 
method 
parameter 10 
property 
returnvalue 
struct 

attribute-list: 
attribute   , opt 15 
attribute   ,   attribute-list 

attribute: 
attribute-name   attribute-argumentsopt 

attribute-name: 
 type-name 20 

attribute-arguments: 
(   positional-argument-listopt   ) 
(   positional-argument-list   ,   named-argument-list   ) 
(   named-argument-list   ) 

positional-argument-list: 25 
positional-argument 
positional-argument-list   ,   positional-argument 

positional-argument: 
attribute-argument-expression 

named-argument-list: 30 
named-argument 
named-argument-list   ,   named-argument 

named-argument: 
identifier   =   attribute-argument-expression 

attribute-argument-expression: 35 
expression 

An attribute consists of an attribute-name and an optional list of positional and named arguments. The positional 
arguments (if any) precede the named arguments. A positional argument consists of an attribute-argument-
expression; a named argument consists of a name, followed by an equal sign, followed by an attribute-
argument-expression, which, together, are constrained by the same rules as simple assignment. The order of 40 
named arguments is not significant. 

[Note: A trailing comma is allowed in a global-attribute-section and an attribute-section; this provides 
flexibility in adding or deleting members from the list, and simplifies machine generation of such lists. end note] 

[Note: In the CLI, functions are called methods, so the target specifier for a function is method. end note] 



 Attributes 

131 

The attribute-name identifies an attribute class. type-name shall refer to an attribute class. [Example: The 
example 

ref class Class1 {}; 

[Class1] ref class Class2 {}; // Error 

results in an ill-formed program because it attempts to use Class1 as an attribute class when Class1 is not an 5 
attribute class. end example] 

Certain contexts permit the specification of an attribute on more than one target. A program can explicitly 
specify the target by including an attribute-target-specifier.  When an attribute is placed at file scope, a global-
attribute-target is required. In all other locations, a reasonable default is applied, but an attribute-target-
specifier can be used to affirm or override the default in certain ambiguous cases (or just to affirm the default in 10 
non-ambiguous cases).  Thus, typically, attribute-target-specifiers can be omitted. The potentially ambiguous 
contexts are resolved as follows:  

• An attribute specified on a delegate declaration can apply either to the delegate being declared or to its 
return value. In the absence of an attribute-target-specifier, the attribute applies to the delegate. The 
presence of the delegate attribute-target-specifier indicates that the attribute applies to the delegate; 15 
the presence of the returnvalue attribute-target-specifier indicates that the attribute applies to the 
return value. 

• An attribute specified on a function declaration can apply either to the function being declared or to its 
return value. In the absence of an attribute-target-specifier, the attribute applies to the function. The 
presence of the method attribute-target-specifier indicates that the attribute applies to the function; the 20 
presence of the returnvalue attribute-target-specifier indicates that the attribute applies to the return 
value. 

• An attribute specified on an operator declaration can apply either to the operator being declared or to its 
return value. In the absence of an attribute-target-specifier, the attribute applies to the operator. The 
presence of the method attribute-target-specifier indicates that the attribute applies to the operator; the 25 
presence of the returnvalue attribute-target-specifier indicates that the attribute applies to the return 
value. 

• An attribute specified on a trivial event declaration can apply to the event being declared, to the 
associated field (if the event is not abstract), or to the associated add and remove functions. In the 
absence of an attribute-target-specifier, the attribute applies to the event declaration. The presence of 30 
the event attribute-target-specifier indicates that the attribute applies to the event; the presence of the 
field attribute-target-specifier indicates that the attribute applies to the field; and the presence of the 
method attribute-target-specifier indicates that the attribute applies to the functions. 

An implementation can accept other attribute target specifiers, the purpose of which is implementation-defined. 
However, an implementation that does not recognize such a target, shall issue a warning. 35 

By convention, attribute classes are named with a suffix of Attribute. An attribute-name can either include or 
omit this suffix. When attempting to resolve an attribute reference from which the suffix has been omitted, if an 
attribute class is found both with and without this suffix, an ambiguity is present, and the program is ill-formed. 
[Example: The example 

[AttributeUsage(AttributeTargets::All)] 40 
public ref class X : Attribute {}; 

[AttributeUsage(AttributeTargets::All)] 
public ref class XAttribute : Attribute {}; 

[X]     // error: ambiguity 
ref class Class1 {}; 45 
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[XAttribute]  // refers to XAttribute 
ref class Class2 {}; 

shows two attribute classes named X and XAttribute. The attribute reference [X] is ambiguous, since it could 
refer to either X or XAttribute. The attribute reference [XAttribute] is not ambiguous (although it would 
be if there was an attribute class named XAttributeAttribute!). If the declaration for class X is removed, 5 
then both attributes refer to the attribute class named XAttribute, as follows: 

[AttributeUsage(AttributeTargets::All)] 
public ref class XAttribute : Attribute {}; 

[X]     // refers to XAttribute 
ref class Class1 {}; 10 
[XAttribute]  // refers to XAttribute 
ref class Class2 {}; 

end example] 

A program is ill-formed if it uses a single-use attribute class more than once on the same entity. [Example: The 
example 15 

[AttributeUsage(AttributeTargets::Class)] 
public ref class HelpStringAttribute : Attribute { 
 String^ value; 
public: 
 HelpStringAttribute(String^ value) { 20 
  this->value = value; 
 } 

 property String^ Value { String^ get() {…} } 
}; 

[HelpString("Description of Class1")] 25 
[HelpString("Another description of Class1")] // error 
public ref class Class1 {}; 

results in the programs’ being ill-formed because it attempts to use HelpString, which is a single-use attribute 
class, more than once on the declaration of Class1. end example] 

An expression E is an attribute-argument-expression if all of the following statements are true: 30 

• The type of E is an attribute parameter type (§28.1.3). 

• At compile-time, the value of E can be resolved to one of the following: 

• A constant value. 

• A System::Type^ object. 

• A one-dimensional stdcli::language::array of attribute-argument-expressions. 35 

[Example: For example: 
[AttributeUsage(AttributeTargets::Class)] 
public ref class MyAttribute : Attribute { 
public: 
 property int P1 { 40 
  int get() {…} 
  void set(int value) {…} 
 } 

 property Type^ P2 { 
  Type^ get() {…} 45 
  void set(Type^ value) {…} 
 } 
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 property Object^ P3 { 
  Object^ get() {…} 
  void set(Object^ value) {…} 
 } 
}; 5 
[My(P1 = 1234, P3 = gcnew array<int>{1, 3, 5}, P2 = typeid<float>)] 
ref class MyClass {}; 

end example] 

28.3 Attribute instances 
An attribute instance is an instance that represents an attribute at run-time. An attribute is defined with an 10 
attribute class, positional arguments, and named arguments. An attribute instance is an instance of the attribute 
class that is initialized with the positional and named arguments. 

Retrieval of an attribute instance involves both compile-time and run-time processing, as described in the 
following subclauses. 

28.3.1 Compilation of an attribute 15 
The compilation of an attribute with attribute class T, positional-argument-list P and named-argument-list N, 
consists of the following steps: 

• Follow the compile-time processing steps for compiling a new-expression of the form gcnew T(P). 
These steps either result in the program being ill-formed, or determine an instance constructor on T that 
can be invoked at run-time. Let us call this instance constructor C. 20 

• If C does not have public accessibility, then the program is ill-formed. 

• For each named-argument Arg in N: 

o Let Name be the identifier of the named-argument Arg. 

o Name must identify a non-static read-write public field or property on T. If T has no such field 
or property, then the program is ill-formed. 25 

• Keep the following information for run-time instantiation of the attribute: the attribute class T, the 
instance constructor C on T, the positional-argument-list P and the named-argument-list N. 

28.3.2 Run-time retrieval of an attribute instance 
This is governed by the CLI standard (see §??). 

28.4 Reserved attributes 30 
A small number of attributes affect the language in some way. These attributes include: 

• System::AttributeUsageAttribute (§28.4.1), which is used to describe the ways in which an 
attribute class can be used. 

• System::ObsoleteAttribute (§28.4.2), which is used to mark a member as obsolete. 

28.4.1 The AttributeUsage attribute 35 
The attribute AttributeUsage is used to describe the manner in which the attribute class can be used. 

A ref class that is decorated with the AttributeUsage attribute must derive from System::Attribute, 
either directly or indirectly. Otherwise, the program is ill-formed. 
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The constructor for class AttributeUsageAttribute takes an argument of type AttributeTargets. This 
enumeration type has a number of enumerators defined, several of which need further explanation:  

• Class indicates that the attribute can be applied to a ref class.  

• Enum indicates that the attribute can be applied to a native or CLI enum.  

• Struct indicates that the attribute can be applied to a value class.  5 

• Method indicates that the attribute can be applied to a function.  

[Note: For an example of using this attribute, see §28.1.1. end note] 

28.4.2 The Obsolete attribute 
The attribute Obsolete is used to mark types and members of types that should no longer be used. 

 [AttributeUsage(AttributeTargets::Class | AttributeTargets::Struct | 10 
 AttributeTargets::Enum | AttributeTargets::Interface | 
 AttributeTargets::Delegate | AttributeTargets::Method | 
 AttributeTargets::Constructor | AttributeTargets::Property | 
 AttributeTargets::Field | AttributeTargets::Event)] 
public ref class ObsoleteAttribute : Attribute 15 
{ 
public: 
 ObsoleteAttribute() {…} 
 ObsoleteAttribute(String^ message) {…} 
 ObsoleteAttribute(String^ message, bool error) {…} 20 
 property String^ Message { String^ get() {…} } 
 property bool IsError { bool get() {…} } 
}; 

If a program uses a type or member that is decorated with the Obsolete attribute, then the compiler shall issue 
a warning or error in order to alert the developer, so the offending code can be fixed. Specifically, the compiler 25 
shall issue a warning if no error parameter is provided, or if the error parameter is provided and has the value 
false. The program is ill-formed if the error parameter is specified and has the value true.  

[Example: In the example 
[Obsolete("This class is obsolete; use class B instead")] 
ref struct A { 30 
 void F() {} 
}; 

ref struct B { 
 void F() {} 
}; 35 
int main() { 
 A^ a = gcnew A();  // warning 
 a->F(); 
} 

the class A is decorated with the Obsolete attribute. Each use of A in main results in a warning that includes 40 
the specified message, “This class is obsolete; use class B instead.” end example] 
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28.5 Attributes for interoperation 

28.5.1 Interoperation with other CLI-based languages 

28.5.1.1 The DefaultMember attribute 
The attribute System::Reflection::DefaultMemberAttribute is used to provide the underlying name 
to the default indexed property. The attribute is placed on the class, and all overloads of a default indexed 5 
property share the same name. 

Check this name; this attribute might have been renamed in the CLI standard. [[BB]] 

28.5.1.2 The MethodImplOption attribute 
Synchronized function for compiler-generated add/remove event accessor functions. [[BB]] 
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29. Templates 

This clause is currently informative. A full specification is still necessary. 

The template syntax is the same for all types, including CLI types. Templates on CLI types can be partially 
specialized, fully specialized, and non-type parameters of any type (subject to all the constant-expression and 
type rules in the C++ Standard) can be used, with the same semantics as specified by the C++ Standard. 5 

Templates are fully resolved and compiled at compile time, and reside in their own assemblies. 

Within an assembly, templates are implicitly instantiated only for the uses of that template within the assembly. 

29.1 Attributes 
Given that the grammars for ref class, value class, and interface class already include the possibility of 
attributes, review what is stated below and modify as necessary. (Support for attributes has yet to be added to 10 
the grammar for functions.) 

Classes within templates can have attributes, with those attributes being written after the template parameter list 
and before the class-key. A template parameter is allowed as an attribute, and also as an argument to an attribute. 
[Example:  

template<typename T> 15 
[attributes] 
ref class R { }; 

end example]  

Functions within templates can have attributes, with those attributes being written after the template parameter 
list and before the function definition. [Example:  20 

template <typename T> 
[attributes] 
void f(const T& t) { /* … */ } 

end example] 

TODO: explicit and partial specializations of a class template must have the same class kind as the primary 25 
template. For example, an explicit specialization of a ref class template cannot be a value class. 

 

TODO: Are there any issues with metadata name emission? Is it even necessary to standardize this since 
template specializations are really only useful inside an assembly.  

29.2 Type deduction 30 
There is no ordering among %, ^, &, or *. 

Template type deduction of nullptr literal is not possible. 

TODO: Non-type template parameters will not include %, ^, or nullptr. 
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30. Generics 

This clause is underspecified. Some issues to consider are: (1) using templates inside of generics, (2) 
overloading rules, and (3) dynamic cast to type parameters. The high level goal with generics (as with other 
parts of C++/CLI) is to provide a close mapping the underlying capabilities of the CLI, which does mean that 
C++ can potentially create generics that other languages might not be able to consume. Note that generics are 5 
not CLS compliant, so there is no existing contract for cross-language restrictions on generics. 

Generic types and functions are a set of features defined by the CLI to allow parameterized types. They differ 
from templates in that they are instantiated by the VES rather than at compile-time. 

30.1 Generic Declarations 
Like templates, a generic-declaration defines type parameters for a declaration. 10 

generic-declaration: 
generic   <   generic-parameter-list   >   constraint-clause-listopt   declaration 

generic-parameter-list: 
generic-parameter 
generic-parameter-list   ,   generic-parameter 15 

generic-parameter: 
attributesopt   class   identifier 
attributesopt   typename   identifier 

A generic-parameter-list lists at least one type parameter. [Note: Unlike templates, generics have no equivalent 
to a non-type template-parameter or a template template-parameter. Neither does generics support default 20 
generic-parameters. Generic type overloading is used instead. end note] 

The declaration of a generic-declaration shall be a ref class, value class, interface class, delegate, or function. 
Other declarations are ill-formed. [Note: Generic declarations can have public or private assembly visibility. end 
note] 

30.2 Generic Classes 25 
As is the case with templates in Standard C++ within the body of a generic class any usage of the unqualified 
unadorned name of the generic class is assumed to refer to the current instantiation. [Example: 

generic<typename T> 
ref class X { 
public: 30 
   X() {}  // ok: means X<T> 
 
   void f(X^); // ok: means X<T> 
 
   ::X g();    // error 35 
}; 

end example] 

A generic class outside of the definition is referenced using a constructed type. Given the generic ref class 
declaration 



C++/CLI Language Specification 

138 

generic<typename T> 
ref class List {}; 

some examples of constructed types are List<T>, List<int> and List<List<String^>^>. A constructed 
type that uses one or more type parameters, such as List<T>, is called an open constructed type. A constructed 
type that uses no type parameters, such as List<int>, is called a closed constructed type. 5 

30.2.1 Base Classes 
The base class of a generic shall not be a type parameter, though it can be a constructed type using a type 
parameter. [Example:  

ref class B1 {}; 
 10 
generic<typename T> 
ref class B2 {}; 
 
generic<typename T> 
ref class R1 : T {};        // error 15 
 
generic<typename T> 
ref class R2 :  B1 {};     // ok 
 
generic<typename T> 20 
ref class R2 : B2<int> {};  // ok (closed constructed type) 
 
generic<typename T> 
ref class R2 : B2<T> {};  // ok (open constructed type) 

end example] 25 

30.2.2 Member Access 
Within the body of either a generic class or a generic function there is no change to how members of non-
generic parameter type are accessed. [Example: 

generic<typename T> 
ref class X { 30 
public: 
   void Set() { 
      name = “Jon”; 
      amount = 4.50; 
 35 
      name->ToUpper(); 
      amount.ToString(): 
   } 
 
private: 40 
   String^ name; 
   Decimal amount; 
}; 

end example] 

When the type of a member or a variable is a generic type-parameter, T, declarations of those members shall use 45 
the T without any pointer, reference, or handle declarators. [Example: 
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interface class IFoo { 
   void mf(); 
}; 
 
ref class R : IFoo { 5 
public: 
   void mf(); 
}; 
 
value class V : IFoo { 10 
public: 
   void mf(); 
}; 
 
generic<typename T> 15 
where T : IFoo 
ref class X { 
public: 
   void mf(); 
 20 
private: 
   T t; 
}; 

end example]. Member access on a variable of generic type parameter shall use the -> operator. [Example:  
void X::mf() 25 
{ 
   t->mf(); 
} 

end example]  

[Note: The compiler only generates one definition for a generic class in metadata. Generics allow value classes 30 
as generic type parameters. Textual substitution of a value class parameter would lead to an ill-formed program 
as the -> operator is not allowed for member access. As the VES is responsible for instantiations of generics, 
textual substitution is the wrong way of thinking about generic instantiation. end note]  

A variable of generic parameter type will be a value class, handle to ref class, or handle to interface class. As 
such, the destructor of generic class will not invoke the destructors on member variables of generic type 35 
parameters. 

TODO: update design to discuss how C++ generics could employ destructible generic type parameter variables  

30.2.3 Nested Types 
A generic class can contain any nested type except a native class. A type nested within a generic class can itself 
be a generic type. A generic type can be nested within a non-generic type. [Example: 40 
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ref class R { 
public: 
   generic<typename T> 
   ref class N { 
   }; 5 
}; 
 
generic<typename T1> 
ref class G { 
public: 10 
   ref class N { 
   }; 
 
   generic<typename T2> 
   ref class NG { 15 
   }; 

}; 

end example] 

A type nested within a generic has access to the generic type-parameters of any enclosing type. 

30.2.4 Static Data Members 20 
If a generic type has static data members, the static data members are shared by all instances of a specific 
specialization: they are not shared by all specializations. If a generic type has a class constructor then, if 
required, the class constructor will be executed exactly once for each specialization of the generic type. 

30.2.5 Other Members 
A program is ill-formed if it declares a property or event as a generic. The constituent functions of a property or 25 
event shall not be generic functions. 

TODO: Will generic operators be allowed? 

30.2.6 Overloading 
 

A generic class can contain overloaded functions that might necessitate an ambiguity for a particular 30 
specialization. [Example: 

generic<typename T1, typename T2> 
ref class X { 
public: 
 void mf(T1, T2) { } 35 
 void mf(T2, T1) { } 
}; 

When X is specialized with the same type for T1 and T2, mf has two overloads with the same signature. end 
example]. A generic class is allowed to have this potential ambiguity; however, it is ill-formed for a 
specialization to have this ambiguity.  40 

30.2.7 Type Overloading 
This is currently under investigation. It is important that C++/CLI support frameworks conventions. 
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30.2.8 Accessibility of Constructed Types 
A specialization of a generic type has the same accessibility as the least accessible type parameter of the 
specialization. 

30.3 Generic Functions 
Any function can be declared as a generic. [Example: 5 

generic<typename T> 
void gf(T); 
 
ref class C1 { 
   generic<typename T> 10 
   void f(T); 
}; 
 
generic<typename T1> 
ref class C2 { 15 
   generic<typename T2> 
   void mf(T); 
}; 

end example] 

Not all generic type parameters must appear as an argument type or return type of a function. Types not used as 20 
an argument type to a function cannot be deduced. 

30.3.1 Type Deduction 
The generic arguments to a generic function can either be explicitly specified or they can be deduced. [Example: 

interface class IFoo {}; 
 25 
ref class R : public IFoo {}; 
 
generic<typename T> 
void f(T^) {} 
 30 
void g(R^ hR) { 
   f<IFoo>(hR); // T is specified to be IFoo 
   f(hR);   // T is deduced to be R 
} 

end example]. 35 

30.4 Generic Arguments 
The arguments for a specific specialization of a generic class must always be explicitly specified. 

A specialization of a generic function can either explicitly specify the generic arguments, or type deduction can 
determine the arguments. The grammar for a generic-argument-list is: 

generic-argument-list: 40 
generic-argument 
generic-argument-list   ,   generic-argument 

generic-argument: 
type-id 

A generic-argument shall be a value class, a handle to ref class, a handle to delegate, a handle to an interface, a 45 
handle to an array, or a generic type parameter from an enclosing generic. [Note: It is not possible to use a 
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native class, a pointer, a reference, a handle to a value class, or a ref class by value as a generic argument. end 
note] 

30.5 Constraints 
A constraint is a way to restrict the generic arguments to a generic by requiring it to derive from a set of 
interfaces or a particular base ref class.  5 

constraint-clause-list: 
constraint-clause 
constraint-clause-list   constraint-clause 

constraint-clause: 
where   identifier   :   constraint-item-list 10 

constaint-item-list: 
constraint-item 
constraint-item-list   ,   constraint-item 

constraint-item: 
type-id 15 
identifier   (   ) 
~   identifier   (   ) 

Both generic classes and generic functions can include constraints. A constraint-item can require a particular 
base class, a default constructor, or a destructor. 

If the constraint-item is a type-id, the constraint shall name an interface class or a ref class. At most one 20 
constraint-item in a constraint list shall be a ref class, and it shall not be sealed. 

A constraint-item of identifier() is known as a constructor constraint. The identifier must be the same as the 
identifier following the where. A type argument with the constructor constraint must have a constructor that 
takes no arguments. 

A constraint-item of ~identifier() is known as a destructor constraint. The identifier must be the same as the 25 
identifier following the where. A type argument with the destructor constraint must have a destructor. 

[Example: 
generic<typename T> 
where T : IComparable 
ref class X {}; 30 

end example] 

A generic can have zero or more constraints. [Example: 
generic<typename T> 
value class X1 {}; 
 35 
generic<typename T1, typename T2> 
where T1 : IComparable 
where T2 : ICloneable 
public ref class X2 {}; 

end example] 40 

A generic parameter can also have zero or more constraints associated with it. At most one constraint-clause can 
appear for each type parameter. [Example: 
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generic<typename T1, typename T2> 
where T2 : IComparable, IEnumerable 
public ref class list {}; 

end example] 

If a generic parameter has no constraints associated with it then it is implicitly constrained by 5 
System::Object. [Note: having a generic parameter constrained by Object severely limits what you can do 
with the type within the body of the generic. end note] 

30.5.1 The Constructor Constraint 
The VES uses constraints to locate members of generic type parameters. Interfaces have no way of requiring a 
derived type to implement a constructor. A constructor constraint allows the gcnew operator to create a new 10 
instance of a type parameter using the default constructor. [Example: 

generic<typename T> 
where T : T() 
ref class R { 
public: 15 
   void f() 
   { 
      T t = gcnew T(); 
   } 
}; 20 

end example] 

Although the gcnew operator is used, if the type parameter is a value class, allocation on the CLI heap will not 
occur as defined in the CLI. 

30.6 Delegates 
A delegate declaration can be generic. [Example: 25 

generic<typename T> 
delegate void D(T t); 

end example] 

30.7 Attributes 
A generic type cannot inherit from System::Attribute. A type parameter or an open type shall not be an 30 
argument to the constructor of a custom attribute. 

30.8 Type Identification 
The typeid<> operator can be applied to a generic type-parameter or to a constructed type: the result is 
System::Type object for the runtime type of the type-parameter or constructed type. The typeid<> operator 
shall not be applied to bare name of a generic. [Example: 35 

generic<typename T> 
ref class X { 
public: 
  static void f() { 
    Type^ t1 = typeid<T>;  // ok – typeid<int> 40 
    Type^ t2 = typeid<X<T> >; // ok – typeid<X<int> > 
    Type^ t3 = typeid<X>;  // error 
  } 
}; 

end example] 45 
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31. Standard C and C++ libraries 

Describe synchronization of standard C++ streams and System::Console. [[PJP]]  

What else should go here? [[PJP]] 
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32. CLI libraries 

To be added. [[BB]]
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A. Verifiable code 

To be added. [[BB]] 
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B. Documentation comments 

To be added. [[BB]] 
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C. Non-normative references  

ISO/IEC 23270:2003, Programming languages — C#. 
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D. CLI naming guidelines 

This annex is informative. 

Add guidelines for generics. [[Ed]] 

One of the most important elements of predictability and discoverability is the use of a consistent naming 
pattern. Many of the common user questions don’t even arise once these conventions are understood and widely 5 
used. There are three elements to the naming guidelines: 

1. Casing – use of the correct capitalization style 

2. Mechanical – use nouns for classes, verbs for functions, etc. 

3. Word choice – use consistent terms across class libraries. 

The following subclause lays out rules for the first two elements, and some philosophy for the third. 10 

D.1 Capitalization styles 
The following subclause describes different ways of capitalizing identifiers. 

D.1.1 Pascal casing 
This convention capitalizes the first character of each word. For example: 

Color    BitConverter 15 

D.1.2 Camel casing 
This convention capitalizes the first character of each word except the first word. For example: 

backgroundColor    totalValueCount 

D.1.3 All uppercase 
Only use all uppercase letters for an identifier if it contains an abbreviation. For example: 20 

System::IO 
System::WinForms::UI 

D.1.4 Capitalization summary 
The following table summarizes the capitalization style for the different kinds of identifiers: 

 25 

Type Case Notes 
Class PascalCase  

Class, attribute PascalCase Has a suffix of Attribute 
Class, exception PascalCase Has a suffix of Exception 
Literal PascalCase  



C++/CLI Language Specification 

150 

Type Case Notes 
Enum type PascalCase  

Enum value PascalCase  

Event PascalCase  

Field, non-public instance camelCase  

Field, public instance  PascalCase Rarely used (use a property instead) 

Function PascalCase  

Interface PascalCase Has a prefix of I 
Local variable camelCase  

Namespace PascalCase  

Parameter camelCase  

Property PascalCase  

 

D.2 Word choice 
• Do avoid using class names duplicated in heavily used namespaces. For example, don’t use the 

following for a class name. 
System    Collections    Forms    UI 5 

• Do not use abbreviations in identifiers. 

• If you must use abbreviations, do use camelCase for any abbreviation containing more than two 
characters, even if this is not the usual abbreviation. 

D.3 Namespaces 
The general rule for namespace naming is CompanyName::TechnologyName. 10 

• Do avoid the possibility of two published namespaces having the same name, by prefixing namespace 
names with a company name or other well-established brand. For example, Microsoft::Office for 
the Office Automation classes provided by Microsoft.  

• Do use PascalCase, and separate logical components with periods (as in 
Microsoft::Office::PowerPoint). If your brand employs non-traditional casing, do follow the 15 
casing defined by your brand, even if it deviates from normal namespace casing (for example, 
NeXT::WebObjects, and ee::cummings). 

• Do use plural namespace names where appropriate. For example, use System::Collections rather 
than System::Collection. Exceptions to this rule are brand names and abbreviations. For example, 
use System::IO not System::IOs. 20 

• Do not have namespaces and classes with the same name.  

D.4 Classes 
• Do name classes with nouns or noun phrases. 

• Do use PascalCase. 
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• Do use sparingly, abbreviations in class names. 

• Do not use any prefix (such as “C”, for example). Where possible, avoid starting with the letter “I”, 
since that is the recommended prefix for interface names. If you must start with that letter, make sure 
the second character is lowercase, as in IdentityStore.  

• Do not use any underscores. 5 
public ref class FileStream { … }; 
public ref class Button { … }; 
public ref class String { … }; 

D.5 Interfaces 
• Do name interfaces with nouns or noun phrases, or adjectives describing behavior. For example, 10 

IComponent (descriptive noun), ICustomAttributeProvider (noun phrase), and IPersistable 
(adjective). 

• Do use PascalCase. 

• Do use sparingly, abbreviations in interface names. 

• Do not use any underscores. 15 

• Do prefix interface names with the letter “I”, to indicate that the type is an interface.  

• Do use similar names when defining a class/interface pair where the class is a standard implementation 
of the interface. The names should differ only by the “I” prefix in the interface name. This approach is 
used for the interface IComponent and its standard implementation, Component. 
public interface class IComponent { … }; 20 
public ref class Component : IComponent { … }; 
public interface class IServiceProvider{ … }; 
public interface class IFormatable { … }; 

D.6 Enums 
• Do use PascalCase for enums. 25 

• Do use PascalCase for enum value names.  

• Do use sparingly, abbreviations in enum names. 

• Do not use a family-name prefix on enum. 

• Do not use any “Enum” suffix on enum types. 

• Do use a singular name for enums. 30 

• Do use a plural name for bit fields. 

• Do define enumerated values using an enum if they are used in a parameter or property. This gives 
development tools a chance at knowing the possible values for a property or parameter.  
public enum class FileMode 
{ 35 
 Create, 
 CreateNew, 
 Open, 
 OpenOrCreate, 
 Truncate 40 
}; 
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• Do use the Flags custom attribute if the numeric values are meant to be bitwise ORed together. 
[Flags] 
public enum class Bindings 
{ 
 CreateInstance, 5 
 DefaultBinding, 
 ExcatBinding, 
 GetField, 
 GetProperty, 
 IgnoreCase, 10 
 InvokeMethod, 
 NonPublic, 
 OABinding, 
 SetField, 
 SetProperty, 15 
 Static 
}; 

• Do use int as the underlying type of an enum. (An exception to this rule is if the enum represents flags 
and there are more than 32 flags, or the enum might grow to that many flags in the future, or the type 
needs to be different from int for backward compatibility.) 20 

• Do use enums only if the value can be completely expressed as a set of bit flags. Do not use enums for 
open sets (such as operating system version). 

D.7 Static members 
• Do name static members with nouns, noun phrases, or abbreviations for nouns. 

• Do name static members using PascalCase. 25 

• Do not use Hungarian-type prefixes on static member names. 

D.8 Parameters 
• Do use descriptive names such that a parameter’s name and type clearly imply its meaning. 

• Do name parameters using camelCase. 

• Do prefer names based on a parameter’s meaning, to names based on the parameter’s type. It is likely 30 
that development tools will provide the information about type in a convenient way, so the parameter 
name can be put to better use describing semantics rather than type. 

• Do not reserve parameters for future use. If more data is need in the next version, a new overload can be 
added. 

• Do not use Hungarian-type prefixes. 35 
Type GetType(String^ typeName) 
string Format(String^ format, array<Object^>^ args) 

D.9 Functions 
• Do name functions with verbs or verb phrases. 

• Do name functions with PascalCase. 40 
RemoveAll()    GetCharArray()    Invoke() 
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D.10 Properties 
• Do name properties using noun or noun phrases. 

• Do name properties with PascalCase. 

D.11 Events 
• Do name event handlers with the EventHandler suffix.  5 

public delegate void MouseEventHandler(Object^ sender, MouseEvent^ e); 

• Do use two parameters named sender and e. The sender parameter represents the object that raised the 
event, and this parameter is always of type Object, even if it is possible to employ a more specific 
type. The state associated with the event is encapsulated in an instance e of an event class. Use an 
appropriate and specific event class for its type. 10 
public delegate void MouseEventHandler(Object^ sender, MouseEvent^ e); 

• Do name event argument classes with the EventArgs suffix. 
public ref class MouseEventArgs : EventArgs { 
 int x; 
 int y; 15 
public:  
 MouseEventArgs(int x, int y) { 
  this->x = x; 
  this->y = y; 
 } 20 
 property int X { int get() { return x; } } 
 property int Y { int get() { return y; } } 
}; 

• Do name event names that have a concept of pre- and post-operation using the present and past tense 
(do not use BeforeXxx/AfterXxx pattern). For example, a close event that could be canceled would 25 
have a Closing and Closed event.  
event ControlEventHandler^ ControlAdded; 

• Consider naming events with a verb. 

D.12 Case sensitivity 
• Don’t use names that require case sensitivity. Components might need to be usable from both case-30 

sensitive and case-insensitive languages. Since case-insensitive languages cannot distinguish between 
two names within the same context that differ only by case, components must avoid this situation. 

Examples of what not to do: 

• Don’t have two namespaces whose names differ only by case. 
namespace ee::cummings; 35 
namespace Ee::Cummings; 

• Don’t have a function with two parameters whose names differ only by case. 
void F(String^ a, String^ A) 

• Don’t have a namespace with two types whose names differ only by case. 
System::WinForms::Point p; 40 
System::WinForms::POINT pp; 

• Don’t have a type with two properties whose names differ only by case. 
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property int f { int get(); void set(int value); } 
property int F { int get(); void set(int value); } 

• Don’t have a type with two functions whose names differ only by case. 
void f(); 
void F(); 5 

D.13 Avoiding type name confusion 
Different languages use different names to identify the fundamental CLI types, so in a multi-language 
environment, designers must take care to avoid language-specific terminology. This subclause describes a set of 
rules that help avoid type name confusion. 

• Do use semantically interesting names rather than type names. 10 

• In the rare case that a parameter has no semantic meaning beyond its type, use a generic name. For 
example, a class that supports writing a variety of data types into a stream might have: 
void Write(double value); 
void Write(float value); 
void Write(long long value); 15 
void Write(int value); 
void Write(short value); 

rather than a language-specific alternative such as: 
void Write(double doubleValue); 
void Write(float floatValue); 20 
void Write(long long longlongValue); 
void Write(int intValue); 
void Write(short shortValue); 

• In the extremely rare case that it is necessary to have a uniquely named function for each fundamental 
data type, do use the following universal type names: SByte, Byte, Int16, UInt16, Int32, UInt32, 25 
Int64, UInt64, Single, Double, Boolean, Char, String, and Object. For example, a class that 
supports reading a variety of data types from a stream might have: 
double ReadDouble(); 
float ReadSingle(); 
long long ReadInt64(); 30 
int ReadInt32(); 
short ReadInt16(); 

rather than a language-specific alternative such as: 
double ReadDouble(); 
float ReadFloat(); 35 
long long ReadLongLong(); 
int ReadInt(); 
short ReadShort(); 

End of informative text 
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E. Future directions 

This annex is informative. 

This annex contains information about features that might be considered for a future revision of this Standard. 

E.1 Static members in interfaces 
Yet to come. 5 

E.2 Mixed types 
Yet to come. 

E.3 gcnew of unmanaged types 
Yet to come. 

E.4 new of managed types 10 
Yet to come. 

E.5 Unsupported CLS-recommended operators 
 

Function Name in Assembly C++ Operator 
Function Name 

op_SignedRightShift undefined 
op_UnsignedRightShift undefined 
op_MemberSelection undefined 
op_PointerToMemberSelection undefined 

 

Regarding op_MemberSelection and op_PointerToMemberSelection, the C++ Standard only permits 15 
non-static member declarations of these operators. 

 

End of informative text 
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F. Index 

This annex is informative. 

... See ellipses 

[] 

indexed access...................................................57 5 
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event handler addition .......................................24 
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event handler removal .......................................24 

abstract class.................. See class modifier, abstract 10 

abstract function .......See function modifier, abstract 
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assembly............................................................40 

family and assembly..........................................40 

family or assembly ............................................40 15 

narrower ............................................................40 

wider..................................................................40 

accessor function 

add................................See add accessor function 

get................................. See get accessor function 20 

property ............. 21, 80, 82, See also get accessor 
function; set accessor function 

remove................... See remove accessor function 

set ..................................See set accessor function 

add accessor function ............................................25 25 

add_* reserved names ...........................................73 

application ...............................................................4 

application domain ..................................................4 

argument list 

function call.......................................................58 30 

variable length....................... See parameter array 

array .................................................................... 113 

covariance....................................................... 114 

creation ........................................................... 113 

element access ................................................ 114 35 

initialization .................................................... 114 

members.......................................................... 114 

parameter .......................................................... 74 

Standard C++.................................................. 113 

Array..................................................... 67, 113, 114 40 

array pseudo-template class................................ 113 

assembly ........................................................... 4, 33 

attribute.......................4, 35, 127, See also Attribute 

class naming convention................................. 127 

compilation of an ............................................ 133 45 

delegate........................................................... 131 

event................................................................ 131 

function........................................................... 131 

instance of an .................................................. 133 

name of an ...................................................... 131 50 

reserved........................................................... 133 

specification of an........................................... 129 

Attribute...................................................... 127, 133 

attribute class ...................................................... 127 

multi-use ................................................. 127, 128 55 

parameter 

named.......................................................... 128 

positional .................................................... 128 

single-use ........................................................ 127 

attribute section................................................... 129 60 
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Attribute suffix ....................................................131 

attribute target .....................................................131 

assembly..........................................................131 

event ................................................................131 

field .................................................................131 5 

method.............................................................131 

param...............................................................131 

property ...........................................................131 

return ...............................................................131 

type..................................................................131 10 

AttributeUsage ............ See AttributeUsageAttribute 

AttributeUsageAttribute..............................127, 133 

Boolean .................................................................39 

members of........................................................39 

boxing................................................................4, 13 15 

Byte .......................................................................39 

members of........................................................39 

C++ standard ...................................................3, 148 

Char .......................................................................39 

members of........................................................39 20 

class 

abstract ...................... See class modifier, abstract 

attribute .................................... See attribute class 

initialization of a ...............................................27 

interface............................................ See interface 25 

native ............................................See native class 

ref ...................................................... See ref class 

sealed............................See class modifier, sealed 

struct versus...............................................31, 111 

value ..............................................See value class 30 

class definition ......................................................70 

class modifier ........................................................71 

abstract ..............................................................71 

sealed.................................................................72 

CLS ...............See Common Language Specification 35 

CLS compliance ..................................................... 4 

collection ........................................................ 19, 67 

System::Array................................................... 67 

Common La,nguage Infrastructure........................ xi 

Common Language Specification........................... 8 40 

Common Type System ................................... 5, 6, 8 

constant 

null pointer........................................................ 51 

constructor 

delegating.......................................................... 99 45 

instance ............................................................. 99 

static.......................................................... 27, 101 

default ......................................................... 102 

target ............................................................... 100 

conversion 50 

explicit .............................................................. 52 

implicit 

constant expression....................................... 52 

unboxing ............................................................. 6 

CTS................................See Common Type System 55 

Current .................................................................. 67 

definition 

non-inline................... See definition, out-of-class 

out-of-class ......................................................... 4 

delegate.................4, 19, 24, 122, See also Delegate 60 

equality of ........... See operator, equality, delegate 

removal of a ...................................................... 64 

sealedness of a ................................................ 123 

Delegate .................................................. 19, 39, 122 

members of ....................................................... 39 65 

design goals ........................................................... xi 

Double .................................................................. 39 

members of ....................................................... 39 

ellipsis................................................................... 79 

enum ..................................................................... 11 70 
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event ............................................................4, 24, 87 

abstract ..............................................................89 

accessing an.......................................................56 

handler...............................................................87 

inhibiting overriding of an ................................89 5 

instance..............................................................88 

non-trivial..........................................................87 

override .............................................................89 

reserved names ..................................................73 

sealed.................................................................89 10 

static ..................................................................88 

trivial ...........................................................87, 89 

virtual ................................................................89 

examples..................................................................9 

exception 15 

types thrown by certain operations..................126 

Execution Engine ......See Virtual Execution System 

explicit interface member......................................32 

field .........................................................................4 

initonly ......... See initonly field, See initonly field 20 

literal .............................................See literal field 

Finalize..................................................................73 

function 

abstract ................................................................4 

pure virtual ..........................See function, abstract 25 

reserved names ..................................................73 

function member ...................................................56 

function modifier...................................................74 

abstract ..............................................................78 

new ....................................................................78 30 

override .............................................................74 
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get accessor function .......................................21, 82 35 
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get_Item................................................................ 73 

GetEnumerator...................................................... 67 

handle ..................................................................... 5 

null .................................................................... 38 40 
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heap 

CLI...................................................................... 5 

native .................................................................. 5 

IEC. See International Electrotechnical Commission 45 

IEC 60559 standard ................................................ 3 

IEEE ....... See Institute of Electrical and Electronics 
Engineers 

IEEE 754 standard ..............See IEC 60559 standard 

IEnumerable.GetEnumerator ..... See GetEnumerator 50 

IEnumerator.Current...............................See Current 
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indexed access ...................................................... 57 

indexed property 

accessing an ...................................................... 56 55 

default ............................................................... 22 

inheritance ............................................................ 43 

initonly field ......................................... 21, 102, 103 
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instance ................................................................... 5 60 
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Int16...................................................................... 39 
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for each and ...................................................... 67 

object ................................................................ 5, 13 

object reference........................................ See handle 
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override function..... See function modifier, override 65 
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pointer 70 
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interior .........................................................16, 45 
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to member function ...........................See delegate 

private type...................... See type visibility, private 5 
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sealed function............See function modifier, sealed 
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5. Project Editor’s Report – Rex Jaeschke 

6. Reports from Liaisons 
6.1. TC39 TG3 (CLI) – Rex Jaeschke 
6.2. SC22/WG21 (C++) - Tom Plum, P.J. Plauger, Tana Plauger, John 

Spicer, and Steve Adamczyk. 
6.3. JTC1/SC22 – Rex Jaeschke 

7. Date and place of next meetings 

Ecma International   Rue du Rhône 114   CH-1204 Geneva   T/F: +41 22 849 6000/01   www.ecma-international.org 
 
MS   2004tg5-001.doc 
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7.1 March 2004 Australia Meeting 
7.2 May 2004 Short Hills NJ Meeting 

8. Approving tracked changes in latest draft 

9. Action item and comment spreadsheet review 
http://www.ecmadoc.net/docfiles/Tc39-g5/2003/Notpdf/2003tg5-009.xls 

10. Any other business 

11. Adjournment 
DIRECTIONS :  
From the Kona (KOA) Airport 
Summary:  14.5 miles (23 minutes) 
 

Time Mile Instruction For 
9:00 AM 0.0 Depart Keahole-Kona International Airport on Local 

road(s) (East) 
0.1  

9:00 AM 0.1 Turn RIGHT (South) onto Keahole-Kona Airport 0.1 mi 
9:01 AM 0.3 Turn RIGHT to stay on Keahole-Kona Airport 0.9 mi 
9:03 AM 1.2 Turn RIGHT (South) onto SR-19 [Queen Kaahumanu Hwy] 6.4 mi 
9:10 AM 7.6 Road name changes to SR-11 [Queen Kaahumanu Hwy] 4.9 mi 
9:18 AM 12.4 Bear RIGHT (South) onto Kamehameha III Rd 1.5 mi 
9:22 AM 13.9 Turn RIGHT (North-West) onto Alii Dr 0.6 mi 
9:23 AM 14.5 Arrive Ohana Keauhou Beach Resort [78-6740 Alii Dr, 

Kailua Kona, HI  96740, Tel: (808) 322-3441] 
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Minutes of the: 1st meeting of Ecma TC39-TG5 
held in: College Station, Texas, USA 
on: 4 – 5 December 2003 
 

Rex Jaeschke 
rex@RexJaeschke.com 

2003-12-05 

 

1 Opening 
Convener Tom Plum welcomed everyone to the first meeting of TG5. 

1.1 Appointment of Recording Secretary 
Rex Jaeschke was appointed. 

1.2 Introduction of participants 
The participants introduced themselves. A sign-up sheet was circulated. Those attending 
were: Brandon Bray (Microsoft), Rex Jaeschke (Microsoft), Jan van den Beld (ECMA), 
Tana Plauger (Dinkumware), P.J. Plauger (Dinkumware), Tom Plum (Plum Hall), Sean 
Perry (IBM), Bjarne Stroustrup (Texas A&M), John Spicer (EDG), Steve Adamczyk (EDG), 
Herb Sutter (Microsoft), Mark Hall (Microsoft), Gabriel dos Reis (guest). 

1.3 Host facilities/local information  
Microsoft and Plum Hall are the hosts for this meeting. Bjarne provided various pieces of 
information. 

2 Adoption of the agenda (including posting of new 
documents)  
Accepted as is. We’ll revisit this later as necessary. 

3 Welcome and overview of the ECMA process – Mr. van den 
Beld 
Jan described the history and mission of ECMA in general, and of TC39, in particular. Please 
direct further questions to Jan at jan@ecma-international.org. 

4 Project Editor’s Report [2003/_] – Mr. Jaeschke 
Rex presented his paper. 

It was agreed that both Word and PDF versions of each working draft should be produced, with 
line numbers every 5 lines. 

5 Proposed Timeline [2003/2] – Mr. Jaeschke 
Rex presented his paper. 

There is no requirement that TG5 follow the same schedule as TG3 (CLI). We’ll have a good 
idea of how we are doing by the middle of 2004. We’ll work until we have consensus. 

Ecma International   Rue du Rhône 114   CH-1204 Geneva   T/F: +41 22 849 6000/01   www.ecma-international.org 
 

2003tg5-002                For Ecma use only 
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6 Reports from Liaisons  
6.1 TC39 TG3 (CLI) 

Rex Jaeschke was appointed as the liaison to TG3 (CLI). 

6.2 JTC 1/SC 22 – Mr. Jaeschke 
Rex reported that he is the bi-directional liaison between ECMA and ISO/IEC JTC 1/SC 22. 
At each SC22 plenary, he reports on ECMA TC39 activities relevant to the work of SC22, 
and advises SC22 of ECMA standards and TRs that might be Fast-Tracked to SC22 (via 
JTC 1) in the near future. (The next SC22 plenary will be held Sep 6-10 in Seoul, South 
Korea.) 

At its recent plenary, ISO/IEC JTC 1 approved the free availability of the ISO/IEC standard 
and TR for CLI. 

6.3 SC 22/WG 21 – liaison policy, reflector policy, public-release 
docs policy 
TG5’s mission is to produce a standard for a binding to a programming language for which 
there is an existing, and very active, standards committee, ISO/IEC JTC 1/SC 22/WG 21 
(which holds co-located meetings with the U.S.-based committee INCITS/J16). How can we 
make use of this significant existing expertise as well as keep that committee informed of 
our work? Specifically, 

Who can attend TG5 meetings?  • 

• 

• 

• 

• 

• 

• 

Who has access to TG5 email reflector traffic? 

Who has access to TG5 documents? 

The question arose as to how our end result could affect evolution of the C++ standard. 

As submitted, the base document contains features that are necessary to support CLI but 
also overlap directly with Standard C++ evolution. 

What are the goals of TG5? 

Is the intent to simply endorse MS’s plan? 

Are we trying to make C++/CLI at least as powerful as C#? 

How should we handle extensions that overlap with Standard C++ evolution? 

What makes sense for the long-term future of C++? 

There was considerable discussion about these ideas, among others. Extensions that 
overlap with Standard C++ should also be proposed to, and feedback/direction solicited 
from, WG21. No other firm goals were adopted. 

Liaisons from TG5 to WG21 were appointed. They are: Tom Plum, P.J. Plauger, Tana 
Plauger, John Spicer, and Steve Adamczyk. 

Herb’s proposal w.r.t TG5 meeting attendance, reflector access, and document access by 
Standard C++ participants was approved as part of the WG21 liaison. Herb will make this an 
official TG5 document and then make it an official WG21 document as well.  

Jan will create the new TG5-WG21 liaison email reflector, which TG5 will use for all future 
technical discussions. 

Motion: Herb Sutter/Tom Plum that TG5 adopt the policy, which, by default, permits all TG5 
documents (including minutes once approved, and working drafts) to be included in the 
WG21 liaison report. Unanimous.  
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7 Date and place of future meetings  
7.1 Next meeting 

January, 2004. Kona, Hawaii, hosted by Plum Hall. (See document 2003/5 for hotel 
registration and other information.) 

1/25, Sun: TG2 (C#) 
1/26, Mon: TG2 (C#) 
1/27, Tue: TG3 (CLI) 
1/28, Wed: TG3 (CLI) 
1/29, Thu: TG5 (C++/CLI) 
1/30, Fri: TG5 (C++/CLI) 
1/31, Sat: TG5 (C++/CLI) 

TG5 members are invited to sit in on the CLI meeting that precedes the TG5 meeting. 

7.2 Future meetings 
March, 2004. Monash University’s downtown office at 30 Collins Street, Melbourne, Victoria, 
Australia, hosted by Monash University. 

3/14, Sun: TG3 (CLI) 
3/15, Mon: TG3 (CLI) 
3/16, Tue: TG2 + TG4 + TG1 (C#, Eiffel, ECMAScript) 
3/17, Wed: TG2 + TG4 + TG1 (C#, Eiffel, ECMAScript) 
3/18, Thu morning: TC39 business meeting 
3/18, Thu afternoon: TG5 (C++/CLI) 
3/19, Fri: TG5 (C++/CLI) 
3/20, Sat: TG5 (C++/CLI) 

May, 2004. Short Hills, NJ, hosted by EDG and Dinkumware. (Nearest airport is Newark, NJ 
[EWR]) 

5/3, Mon: TG5 (C++/CLI) 
5/4, Tue: TG5 (C++/CLI) 

June, 2004. Tentatively in Redmond, WA, or Bend, OR. 

6/14, Mon: TG5 (C++/CLI) 
6/15, Tue: TG5 (C++/CLI) 
6/16, Wed: TG3 (CLI) 
6/17, Thu: TG3 (CLI) 
6/18, Fri: TG2 (C#) 
6/19, Sat: TG2 (C#) 

August, 2004. Tentatively in Bend, OR, or Portland, OR. 

Sometime in the week of 2-6. TG3 (CLI) might also meet then. 

7.3 Teleconference planning 
Tue, Dec 16th, 10 am Pacific Time, for 2 hours. 

8 Key Technical Discussions  
8.1 Adopt base document 

The Candidate Base Document was made TG5 document number 2003/4. (Except for the 
addition of the ECMA document number, this document is identical to that made available to 
the public by Microsoft.) 

Motion: P.J. Plauger/ Herb Sutter that we adopt document 2003/4 as TG5’s Base Document. 
Unanimous 
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8.2 Technical issues to resolve in base document 
Will our spec show all the diffs to the C++ Standard? No, not simply as a list of changes. 

We walked through the base doc looking at “TODO” (marked in pink), creating entries in the 
comment spreadsheet, as necessary. Some of the issues raised were: 

1.  We should spell out the scaffolding assumed by the code fragments (w.r.t namespaces). 

2.  It is expected that no new string literal form will be needed to deal with System::String. 

3.  What is the name of the 64-bit integer type?  long long? __int64? In any event, we need 
a literal suffix, promotion rules, etc. 

4.  How will we map long double? System::Double? Implementation-defined? 

5.  Comma vs. semicolon as separator in indexed access expressions. 

6.  Should sizeof(ref-class) be permitted? What about sizeof(value-type)? 

7.  Should for-each work with STL types? 

8.  Can for-each simply be spelled “for”?  

9.  How might parameter arrays fit into sequence constructors, currently being considered 
in WG21? 

10.  Decided that a property should not be able to return a C-style array. 

11.  Decided that compound assignment operators should not be synthesized for native 
classes. 

We got to, and completed, §18.6.4. (The remaining clauses will be covered in the next 
teleconference.) 

Brandon will monitor compatibility issues w.r.t the C++ Standard. 

9 Agenda items for the Jan meeting 
Walk-through of WD1.1 to confirm the tracked changes resulting from committee decisions, 
and to review changes that are pending approval. 

• 

• 

• 

• 

• 

• 

Brandon Bray: paper on “It just works”. 

Brandon Bray: paper on metadata names. 

Steve Adamczyk: paper on 64-bit integer mapping. 

Tom Plum: paper on for-each support for STL types, and use of for instead of for-each. 

Review of action items from the comment spreadsheet. 

10 Thank meeting host  
Everyone thanked meeting hosts Plum Hall and Microsoft, dinner host Microsoft, and Bjarne 
Stroustrup for his assistance with local arrangements. 

11 Adjournment  
The meeting was adjourned at 2:15 pm. 
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1

2

3

4

5

6

A B C D E F G H I
Date Raised? Issue Raiser? Reference Issue Type Owner Comment Other Remarks Resolved? Postponed?

7-Oct-03 Rex Jaeschke Technical Peter Hallam The current CLI spec supports Unicode V3.0. Peter 
Hallam of MS has an action item to see what's 
involved in having TG2 (C#) and TG3 (CLI) support 
Unicode V4.0. If TG3 makes changes in this direction, 
TG5 should look at how this would affect its spec.

Brought up during the phone meeting of 10/7. No

7-Oct-03 Tom Plum Technical Tom Plum Diagnostics: How should we deal with warnings and 
such?

Brought up during the phone meeting of 10/7. No

10-Oct-03 Phone meeting Editorial Editor Future directions: Should there be an informative 
annex listing future directions?

Possible entries are:

1. Supporting static members in interfaces
2. Mixed types
3. gcnew of unmanaged types
4. new of managed types

No

10-Oct-2003 Tom Plum Technical Tom Plum While discussing enums (25.1.3) and wchar_t's not 
being permitted as an underlying type, a discussion 
arose w.r.t CLI's requiring wchar_t to have the same 
representation as System::Char; that is, a 16-bit 
character.

This needs further investigation.

Possible need to look at/point to the PDTR currently 
out from WG11 (ISO C).

This is part of a more general issue. Do we require 
exact mapping for types, or do we allow a certain 
amount of flexibility? wchar_t, int vs. long. What 
about long double? System::Double vs. 
implementation-defined.

In email on 10/12/2003 Tom Plum wrote:

Refining my comments re wchar_t, I see a short-term 
and a long-term ...

Short-term, there's no need to change anything.  The 
16-bit unicode type is wchar_t in VC++ and in C++/CLI.

Long-term, the decision is up to TG5, and depends upon 
who participates. My own guess is that TG5 in fact will 
be the first group that has to integrate Unicode 3.1 and 
4.0 into its language definition.  I suspect that before 
we're done we'll have four types of character (and literal
and C++ string):

char - has to be 8 bits to integrate with CLI
   'x'  "str"  string = basic_string<char>

wchar_t - implementation's legacy choice of widechar
   L'x'  L"str"  wstring = basic_string<wchar_t>

char16_t - 16-bit character type, has to be UCS-2 or 
UTF-16 for CLI
   u'x'  u"str"  ustring (?) = basic_string<char16_t> (or 
string16?)

char32_t - 32-bit character type, has to be UTF-32 for 
CLI
   U'x'  U"str"  Ustring (?) = basic_string<char32_t> (or 
string32?)

wchar_t can be the same type as char16_t or char32_t, 
but isn't required to be

No

10-Oct-2003 Phone meeting Technical Brandon Bray Issue of mapping system value types to the 
fundamental types, and interop with the standard 
library.

No
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A B C D E F G H I
Date Raised? Issue Raiser? Reference Issue Type Owner Comment Other Remarks Resolved? Postponed?

7

8

9

10

11

12

13

14

15

16

17

18

19

21-Oct-03 Rex Jaeschke Technical Brandon Bray What is the interaction between the standard I/O 
streams and System::Console?

No

4-Dec-2003 meeting #1 (TX) 12.1.1 Technical Steve Adamczyk Write a paper for Jan, 04, meeting on 64-bit integer 
mapping

No

4-Dec-03 meeting #1 (TX) Technical Brandon Bray Write a paper for Jan, 04, meeting on "It just works" No

4-Dec-2003 meeting #1 (TX) 14 Technical Brandon Bray pull together all the conversion information into one 
place. Make sure all conversions are covered.

No

4-Dec-2003 meeting #1 (TX) 15.3.2 Technical Brandon Bray coma vs. semicolon as separator in indexed access 
expressions

No

4-Dec-2003 meeting #1 (TX) 9 Technical Tom Plum Issue of source code/Unicode mapping. What 
assumptions, if any, should we make about the form 
of input text?

No

4-Dec-2003 meeting #1 (TX) 12 Technical Brandon Bray Add a diagram of the type tree No

5-Dec-03 meeting #1 (TX) 15.3.9 Technical John Spicer alternative syntax for typeid <type-id> No

5-Dec-2003 meeting #1 (TX) 16.1.1 Technical Tom Plum Write a paper for Jan, 04, meeting on use of for-each 
with STL types.

No

5-Dec-03 meeting #1 (TX) 16.1.1 Technical Tom Plum Write a paper for Jan, 04, meeting on spelling "for 
each" simply as "for".

No

5-Dec-03 meeting #1 (TX) 17 Technical John Spicer Check on the UK submission to WG21 re opening 
nested namespaces.

No

5-Dec-2003 meeting #1 (TX) 18.3.6 Technical Bjarne Stroustrup How might parameter arrays fit into sequence 
constructors being considered in WG21?

No

5-Dec-2003 meeting #1 (TX) Technical Brandon Bray list of overlap between Standard C++ and features 
proposed by C++/CLI

No



1

A B C D E F G H I
Date Raised? Issue Raiser? Reference Issue Type Owner Comment Other Remarks Resolved? Postponed?

20

8-Dec-2003 Herb Sutter 18.7.1 Technical Subject: RE: CLI binding: Delegating constructors and 
exceptions

>>> "Herb Sutter" <hsutter@microsoft.com> 24 
November 2003 18:33:42 >>>

> Actually, it's in there, thanks to BSI.

> EDG suggested that we specify the answer in terms 
of object lifetime,
so that other answers, 
> including the destructor calling question, can just 
fall out from rest
of ISO C++ which specifies 
> most things in terms of object lifetimes. In the 
11/21 spec, we tried
to cover this in 18.7.1 
> (page 99:44-49)

Thanks for joining the dots for me <g>

> This decision can be reviewed of course, and 
currently follows your
option (ii) below. 
> Does this address your question?

Yes.  Thanks.

> Further comments are definitely welcome, and for 
our part we're happy
to reconsider this 
> choice if it's not the right decision.

My feeling is still at this option will make it more 
difficult to write code.  The (contrived) minimal 
example that motivates me would be:

class Delegated

No



1

2

3

4

5

6

A B C D E F G H I
Date Raised? Issue Raiser? Reference Issue Type Owner Comment Other Remarks Resolved? Postponed?

7-Oct-03 Rex Jaeschke Technical Peter Hallam The current CLI spec supports Unicode V3.0. Peter 
Hallam of MS has an action item to see what's 
involved in having TG2 (C#) and TG3 (CLI) support 
Unicode V4.0. If TG3 makes changes in this direction, 
TG5 should look at how this would affect its spec.

Brought up during the phone meeting of 10/7. No

7-Oct-03 Tom Plum Technical Tom Plum Diagnostics: How should we deal with warnings and 
such?

Brought up during the phone meeting of 10/7. No

10-Oct-03 Phone meeting Editorial Editor Future directions: Should there be an informative 
annex listing future directions?

Possible entries are:

1. Supporting static members in interfaces
2. Mixed types
3. gcnew of unmanaged types
4. new of managed types

No

10-Oct-2003 Tom Plum Technical Tom Plum While discussing enums (25.1.3) and wchar_t's not 
being permitted as an underlying type, a discussion 
arose w.r.t CLI's requiring wchar_t to have the same 
representation as System::Char; that is, a 16-bit 
character.

This needs further investigation.

Possible need to look at/point to the PDTR currently 
out from WG11 (ISO C).

This is part of a more general issue. Do we require 
exact mapping for types, or do we allow a certain 
amount of flexibility? wchar_t, int vs. long. What 
about long double? System::Double vs. 
implementation-defined.

In email on 10/12/2003 Tom Plum wrote:

Refining my comments re wchar_t, I see a short-term 
and a long-term ...

Short-term, there's no need to change anything.  The 
16-bit unicode type is wchar_t in VC++ and in C++/CLI.

Long-term, the decision is up to TG5, and depends upon 
who participates. My own guess is that TG5 in fact will 
be the first group that has to integrate Unicode 3.1 and 
4.0 into its language definition.  I suspect that before 
we're done we'll have four types of character (and literal
and C++ string):

char - has to be 8 bits to integrate with CLI
   'x'  "str"  string = basic_string<char>

wchar_t - implementation's legacy choice of widechar
   L'x'  L"str"  wstring = basic_string<wchar_t>

char16_t - 16-bit character type, has to be UCS-2 or 
UTF-16 for CLI
   u'x'  u"str"  ustring (?) = basic_string<char16_t> (or 
string16?)

char32_t - 32-bit character type, has to be UTF-32 for 
CLI
   U'x'  U"str"  Ustring (?) = basic_string<char32_t> (or 
string32?)

wchar_t can be the same type as char16_t or char32_t, 
but isn't required to be

No

10-Oct-2003 Phone meeting Technical Brandon Bray Issue of mapping system value types to the 
fundamental types, and interop with the standard 
library.

No
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A B C D E F G H I
Date Raised? Issue Raiser? Reference Issue Type Owner Comment Other Remarks Resolved? Postponed?

7

8

9

10

11

12

13

14

15

16

17

18

19

21-Oct-03 Rex Jaeschke Technical P.J. Plauger What is the interaction between the standard I/O 
streams and System::Console?

No

4-Dec-2003 meeting #1 (TX) 12.1.1 Technical Steve Adamczyk Write a paper for Jan, 04, meeting on 64-bit integer 
mapping

No

4-Dec-03 meeting #1 (TX) Technical Brandon Bray Write a paper for Jan, 04, meeting on "It just works" No

4-Dec-2003 meeting #1 (TX) 14 Technical Brandon Bray pull together all the conversion information into one 
place. Make sure all conversions are covered.

No

4-Dec-2003 meeting #1 (TX) 15.3.2 Technical Brandon Bray coma vs. semicolon as separator in indexed access 
expressions

No

4-Dec-2003 meeting #1 (TX) 9 Technical Tom Plum Issue of source code/Unicode mapping. What 
assumptions, if any, should we make about the form 
of input text?

No

4-Dec-2003 meeting #1 (TX) 12 Technical Brandon Bray Add a diagram of the type tree No

5-Dec-03 meeting #1 (TX) 15.3.9 Technical John Spicer alternative syntax for typeid <type-id> No

5-Dec-2003 meeting #1 (TX) 16.1.1 Technical Tom Plum Write a paper for Jan, 04, meeting on use of for-each 
with STL types.

No

5-Dec-03 meeting #1 (TX) 16.1.1 Technical Tom Plum Write a paper for Jan, 04, meeting on spelling "for 
each" simply as "for".

No

5-Dec-03 meeting #1 (TX) 17 Technical John Spicer Check on the UK submission to WG21 re opening 
nested namespaces.

No

5-Dec-2003 meeting #1 (TX) 18.3.6 Technical Bjarne Stroustrup How might parameter arrays fit into sequence 
constructors being considered in WG21?

No

5-Dec-2003 meeting #1 (TX) Technical Brandon Bray list of overlap between Standard C++ and features 
proposed by C++/CLI

No
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A B C D E F G H I
Date Raised? Issue Raiser? Reference Issue Type Owner Comment Other Remarks Resolved? Postponed?

20

21

22
23

8-Dec-2003 Herb Sutter 18.7.1 Technical Subject: RE: CLI binding: Delegating constructors and 
exceptions

>>> "Herb Sutter" <hsutter@microsoft.com> 24 
November 2003 18:33:42 >>>

> Actually, it's in there, thanks to BSI.

> EDG suggested that we specify the answer in terms 
of object lifetime,
so that other answers, 
> including the destructor calling question, can just 
fall out from rest
of ISO C++ which specifies 
> most things in terms of object lifetimes. In the 
11/21 spec, we tried
to cover this in 18.7.1 
> (page 99:44-49)

Thanks for joining the dots for me <g>

> This decision can be reviewed of course, and 
currently follows your
option (ii) below. 
> Does this address your question?

Yes.  Thanks.

> Further comments are definitely welcome, and for 
our part we're happy
to reconsider this 
> choice if it's not the right decision.

My feeling is still at this option will make it more 
difficult to write code.  The (contrived) minimal 
example that motivates me would be:

class Delegated

No

24-Nov-2003 Attila Feher Editorial Editor When distilling PDF, add bookmarks. Look at other 
options too (such as hotlinks).

No

24-Nov-2003 Attila Feher 8.4 Technical Base doc, pp. 17, line 43 (Automatic memory 
management).
  
Object^ Pop() {
   if (first == nullptr)
      throw gcnew Exception("Can't Pop from an empty 
Stack.");

Why do you gcnew the Exception? Is it necessary?  
There you throw a hat (handle), if I understand 
correctly.  But why...  Cannot even a value type just 
be thrown and make the catch box it, as it happens in 
C++?

No

16-Dec-2003 Phone meeting 8.2.3 Editorial Brandon Bray Say more, especially w.r.t the template class array<element-type>. No
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24

25

26
27

28
29
30
31
32
33
34

35
36
37

38
39
40
41

42

43
44
45
46
47
48
49
50

51

52
53
54
55

56
57

16-Dec-2003 Phone meeting 9 Technical Brandon Bray Review this clause. Things to be added include 
changing "fp-number" so 3.ToString is parsed as an 
integer and a member-selection operator, rather than 
a a fp constant.

No

16-Dec-2003 Phone meeting 10 Technical Brandon Bray Revise this clause by covering topics including 
application entry point, assembly boundaries, among 
others.

No

16-Dec-2003 Phone meeting 10.2.1 Technical Brandon Bray Clarify the ordering definition when multiple 
accessibility keywords are used.

No

16-Dec-2003 Phone meeting 12.3.6 Technical Brandon Bray Provide a grammar for interior_ptr No
16-Dec-2003 Phone meeting 12.3.6 Technical Brandon Bray Describe how the compiler will need to emit a modopt 

to distinguish interior_ptr<T> from tracking reference 
to T (T%) in the metatada.

No

16-Dec-2003 Phone meeting 12.3.6.2 Technical Brandon Bray Spell out target type restrictions No
16-Dec-2003 Phone meeting 12.3.6.3 Editorial Brandon Bray Describe the dangers of pointer arithmetic and interior_ptrs. No
16-Dec-2003 Phone meeting 12.3.7 Technical Brandon Bray Provide a grammar for pinning_ptr No
16-Dec-2003 Phone meeting 13 Technical Brandon Bray What, if anything, goes in this clause? No
16-Dec-2003 Phone meeting 14.1.1 Editorial Brandon Bray Review this subclause. No
16-Dec-2003 Phone meeting 14.4 Editorial Brandon Bray Review this subclause. No
16-Dec-2003 Phone meeting 15.1 Technical Brandon Bray The rewrite rules for e[x] (default indexed accesses) 

are different where there is only one index. This is 
because there is a potential ambiguity with the C++ 
operator[]. Is this mentioned elsewhere?

No

16-Dec-2003 Phone meeting 15.3.8 Technical Brandon Bray cv-qualification needs to be considered. No
16-Dec-2003 Phone meeting 15.3.9 Technical Brandon Bray Are typeid<long> and typeid<char> allowed (and if so, what do they mean). No
16-Dec-2003 Phone meeting 15.3.9 Technical Brandon Bray Provide a spec for standard typeid (that returns 

std::type_info) in addition to the new typeid (that 
returns System::Type).

No

16-Dec-2003 Phone meeting 15.3.13 Editorial Brandon Bray Update this subclause No
16-Dec-2003 Phone meeting 15.4.1.1 Editorial Brandon Bray Review this subclause. No
16-Dec-2003 Phone meeting 15.4.1.4 Technical All Should a unary ^ operator exist? No
16-Dec-2003 Phone meeting 15.4.6 Technical Brandon Bray Define the grammar for gcnew array, and describe 

array creation expression.
No

16-Dec-2003 Phone meeting 15.11.1 Technical Brandon Bray Add support for handle equality comparison, and 
handle ==/!= nullptr, and vice versa.

No

16-Dec-2003 Phone meeting 15.18 Technical Brandon Bray Add words discuss assignment for properties and events from the point of view of the rewrite rules. No
16-Dec-2003 Phone meeting 15.2 Technical Brandon Bray Investigate whether string literals include compile-time expressions, such as string concatenation. No
16-Dec-2003 Phone meeting 16.3 Technical All Should statements exist to control the overflow-checking context for integral-type arithmetic operations and conNo
16-Dec-2003 Phone meeting 17 Technical Brandon Bray Provide text for this clause No
16-Dec-2003 Phone meeting 18.3.1 Technical Brandon Bray Explain the difference between using �override� and �= function-name�; one creates an .override directive in CIL, No
16-Dec-2003 Phone meeting 18.3.4 Technical Brandon Bray Describe in more detail the semantics of new, including its use on static member functions (currently new only aNo
16-Dec-2003 Phone meeting 18.4 Technical Brandon Bray Extend declarator-id�s by adding a new production that allows default. No
16-Dec-2003 Phone meeting 18.4 Technical Brandon Bray The grammar for indexer-parameter-declaration does 

not allow handles or pointers, but full declarators are 
not needed. The grammar should allow a simpler 
sequence of ptr-operator.

No

16-Dec-2003 Phone meeting 18.4.2 Technical Brandon Bray This subclause only covers how the accessor functions 
must be defined. The expressions clause needs to 
cover the rewrite rules that call accessor functions.

No

16-Dec-2003 Phone meeting 18.4.2 Technical Brandon Bray Describe the qualified name of a property No
16-Dec-2003 Phone meeting 18.5.2 Editorial Brandon Bray Review this subclause. No
16-Dec-2003 Phone meeting 18.6 Editorial Brandon Bray Review this subclause. No
16-Dec-2003 Phone meeting 18.6.4 Technical Brandon Bray Identify when synthesis would and would not occur. No

16-Dec-2003 Phone meeting 18.6.5.1 Technical Brandon Bray Writeup op_true and op_false operators No
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58
59

60
61

62

63
64
65

66

67

68

69

70
71

72

73

74
75

76

16-Dec-2003 Phone meeting 18.6.6.1 Technical Mark Hall Reword this subclause similarly to the way special 
member functions are described.

No

16-Dec-2003 Phone meeting 18.6.6.1 Technical Mark Hall Add another subclause to cover the compiler- No
16-Dec-2003 Phone meeting 18.9 Technical Brandon Bray Add grammar for literal-constant-initializer = Standard

C++ constant-initializer + float/double + String + 
nullptr.

No

16-Dec-2003 Phone meeting 18.9, 18.10 Technical Brandon Bray Justify why we need literal and initonly fields. No
16-Dec-2003 Phone meeting 18.10.1 Technical Brandon Bray Add a description that for any value class we have to 

make the copy before calling member functions.
No

16-Dec-2003 Phone meeting 18.11 Technical Brandon Bray Say more about finalizers (including Dispose/~T and 
Finalize/!T) and add some examples.

No

16-Dec-2003 Phone meeting 19 Technical Brandon Bray Supply more text for this clause. No
16-Dec-2003 Phone meeting 18.1 Technical Tom Plum As a cross-language issue, come up with terminology No
16-Dec-2003 Phone meeting 21 Editorial Brandon Bray Introduce value classes -- Discuss the following: value 

classes are optimized for small data structures. As 
such, value classes do not allow inheritance from 
anything but interface classes. Tie in fundamental 
classes.

No

16-Dec-2003 Phone meeting 21.4.1 Technical Brandon Bray Add words about instance constructors and static 
constructor.
Value classes cannot have SMFs (specifically, default 
constructor, copy constructor, assignment operator, 
destructor, or finalizer. Need to add specification for 
this along with rationale.

No

16-Dec-2003 Phone meeting 22 Technical Brandon Bray Consider writing some text for this "place-holder" 
clause. Should this all go in the new annex "Future 
directions"?

No

16-Dec-2003 Phone meeting 23 Technical Tom Plum The spec currently states "Throughout this Standard, 
the term array is used to mean an array in C++/CLI. 
A C++-style array is referred to as a native array 
whenever the distinction is needed." Tom was 
concerned that this was, perhaps, too subtle. He will 
try to come up with an alternative name for C++/CLI 
arrays.

No

16-Dec-2003 Phone meeting 23 Technical Sean Perry Check if the term "array" is used in the library 
extensions plan of WG21.

No

16-Dec-2003 Phone meeting 23 Editorial Brandon Bray Will review this whole clause. No
16-Dec-2003 Phone meeting Technical Sean Perry Look into possible performance issues re "for each" 

and delegates.
No

16-Dec-2003 Phone meeting 23.4 Technical Tom Plum "Every array type inherits the members declared by 
the type System::Array. In addition, arrays have 
iterators compatible with Standard C++�s template 
library." To will provide expanded text here (with 
Brandon's help).

No

16-Dec-2003 Phone meeting 23.5 Technical Brandon Bray Look at array covariance w.r.t arrays having copy 
constructors.

No

16-Dec-2003 Phone meeting 23.6 Technical Brandon Bray Write up array initialization. No
16-Dec-2003 Phone meeting 24.4 Technical Brandon Bray Address what happens when a ref class does not 

implement an interface function (and what happens 
when a base class has a non-virtual function with the 
same name).

No
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77

78

79
80
81
82
83

84
85
87
88
89
90

16-Dec-2003 Phone meeting 25 Technical Herb Sutter Coordinate with WG21's extended enum proposal. No

16-Dec-2003 Phone meeting 26.1 Technical Brandon Bray Redo the grammar for delegate-definition, and find a 
place for it in the type tree. Replace all uses of "return-
type" with appropriate production.

No

16-Dec-2003 Phone meeting 27 Technical Brandon Bray Cover unification of CLI and Standard C++ exception-
handling models, and anything else that might go in 
this clause.

No

16-Dec-2003 Phone meeting 20.5.1 Technical Brandon Bray Check the name System::Reflection::DefaultMemberAttribute; it might have been renamed in the CLI standard. No
16-Dec-2003 Phone meeting 20.5.2 Technical Brandon Bray Describe attribute MethodImplOption. No
16-Dec-2003 Phone meeting 29 Technical Brandon Bray Flesh out "Templates" clause. No
16-Dec-2003 Phone meeting 30 Technical Brandon Bray Flesh out "Generics" clause. No
16-Dec-2003 Phone meeting 31 Technical P.J. Plauger Suggest possibly standard library interaction issues 

apart from I/O synchronization.
No

16-Dec-2003 Phone meeting 32 Technical Brandon Bray Flesh out "CLI libraries" clause. No
16-Dec-2003 Phone meeting A Technical Brandon Bray Flesh out "Verifiable code" clause. No
16-Dec-2003 Phone meeting B Technical Brandon Bray Flesh out "Documentation comments" clause. No
16-Dec-2003 Phone meeting C Technical Editor Add any non-normative references No
16-Dec-2003 Phone meeting D Technical Editor Add naming guidelines for generics No
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