Library Active IssuesList Page 1 of 56

Doc. no. J16/99-0048

WG21 N1224
Date: 3 Nov 1999
Project: Programming Language C++

Replyto: Beman Dawes <beman@esva.net>

C++ Standard Library ActivelssuesList (Revision 11)

Committee Version

Reference ISO/IEC IS 14882:1998(E)

Also see:
o Table of Contentsfor al library issues.
o Index by Section for all library issues.
o Index by Statusfor all library issues.
o Library Defect Report List
o Library Closed IssuesList
e How to prepare and submit an issue.

The purpose of this document is to record the status of issues which have come before the Library Working Group
(LWG) of the ANSI (J16) and ISO (WG21) C++ Standards Committee. |ssues represent potential defectsin the
ISO/IEC 1S 14882:1998(E) document. Issues are not to be used to request new features or other extensions.

This document contains only library issues which are actively being considered by the Library Working Group. That is,
issues which have a status of New, Open, Review, and Ready. See "C++ Standard Library Defect Report List" for issues
considered defects and "C++ Standard Library Closed Issues List" for issues considered closed.

Theissuesin these lists are not necessarily formal 1SO Defect Reports (DR's). While some issues will eventually be
elevated to official Defect Report status, other issues will be disposed of in other ways. See Issue Status.

This document isin an experimental format designed for both viewing via a world-wide web browser and hard-copy
printing. Itisavailable asan HTML file for browsing or PDF file for printing.

Thisissues list existsin two dightly different versions; the Committee Version and the Public Version. The Committee
Version is the master copy, while the Public Version is an extract with certain names, email addresses, action items, and
internal committee comments removed. A line of text reading "Committee Version" following the title above identifies
the Committee Version Material with the HTML tag, displayed by common browsers in italics, does not appear
in the public version.

For the most current public version of this document see http://www.dkuug.dk/jtcl/sc22/wg21. Requests for further
information about this document should include the document number above, reference |SO/IEC 14882:1998(E), and be
submitted to Information Technology Industry Council (ITI), 1250 Eye Street NW, Washington, DC 20005.

Public information as to how to obtain a copy of the C++ Standard, join the standards committee, submit an issue, or
comment on an issue can be found in the C++ FAQ at http://reality.sgi.com/austern_miti/std-c++/fag.html. Public
discussion of C++ Standard related issues occurs on news.comp.std.c++.

For committee members, files available on the committee's private web site include the HTML version of the Standard
itself. HTML hyperlinks from thisissues list to those files will only work for committee members who have downloaded
them into the same disk directory as the issues list files.

Library Active IssuesList Page 2 of 56

Revision history

e R11: post-Kona: Updated to reflect LWG and full committee actions in Kona (99-0048/N1224). Note changed
resolution of issues 4 and 38. Added issues 196 to 198. Closed issues list split into "defects" and "closed"
documents.
0033/D1209, 14 Oct 99)

e R9: pre-Konamailing. Added issues 140 to 189. Issues list split into separate "active" and "closed” documents.
(99-0030/N 1206, 25 Aug 99)

e R8: post-Dublin mailing. Updated to reflect LWG and full committee actions in Dublin. (99-0016/N1193, 21
Apr 99)

e R6: pre-Dublin mailing. Added issues 127, 128, and 129. (99-0007/N1194, 22 Feb 99)

R5: update issues 103, 112; added issues 114 to 126. Format revisions to prepare for making list public. (30 Dec

98)

R4: post-Santa Cruz Il updated: Issues 110, 111, 112, 113 added, several issues corrected. (22 Oct 98)

R3: post-Santa Cruz I1: Issues 94 to 109 added, many issues updated to reflect LWG consensus (12 Oct 98)

R2: pre-Santa Cruz I1: Issues 73 to 93 added, issue 17 updated. (29 Sep 98)

R1: Correction to issue 55 resolution, 60 code format, 64 title. (17 Sep 98)

| ssue Status

New - The issue has not yet been reviewed by the LWG. Any Proposed Resolution is purely a suggestion from the
issue submitter, and should not be construed as the view of LWG.

Open - The LWG has discussed the issue but is not yet ready to move the issue forward. There are several possible
reasons for open status:

o Consensus may have not yet have been reached as to how to deal with the issue.

o Informal consensus may have been reached, but the LWG awaits exact Proposed Resolution wording for review.
e The LWG wishes to consult additional technical experts before proceeding.

o Theissue may require further study.

A Proposed Resolution for an open issue is still not be construed as the view of LWG. Comments on the current state
of discussions are often given at the end of open issuesin an italic font. Such comments are for information only and
should not be given undue importance. They do not appear in the public version.

Dup - The LWG has reached consensus that the issue is a duplicate of another issue, and will not be further dealt with.
A Rationale identities the duplicated issue's issue number.

NAD - The LWG has reached consensus that the issue is not a defect in the Standard, and the issue is ready to forward
to the full committee as a proposed record of response. A Rationale discusses the LWG's reasoning.

Review - Exact wording of a Proposed Resolution is now available for review on an issue for which the LWG
previously reached informal consensus.

Ready - The LWG has reached consensus that the issue is a defect in the Standard, the Proposed Resolution is correct,
and the issue is ready to forward to the full committee for further action as a Defect Report (DR).

DR - (Defect Report) - The full J16 committee has voted to forward the issue to the Project Editor to be processed as a
Potential Defect Report. The Project Editor reviews the issue, and then forwards it to the WG21 Convenor, who returns
it to the full committee for final disposition. Thisissues list accords the status of DR to all these Defect Reports
regardless of where they are in that process.

Library Active IssuesList Page 3 of 56

TC - (Technical Corrigenda) - The full WG21 committee has voted to accept the Defect Report's Proposed Resolution as
aTechnical Corrigenda. Action on thisissueis thus complete and no further action is possible under 1SO rules.

RR - (Record of Response) - The full WG21 committee has determined that thisissue is not a defect in the Standard.
Action on thisissue is thus complete and no further action is possible under SO rules.

Future - In addition to the regular status, the LWG believes that this issue should be revisited at the next revision of the
standard. It isusually paired with NAD.

Issues are always given the status of New when they first appear on theissueslist. They may progress to Open or
Review while the LWG is actively working on them. When the LWG has reached consensus on the disposition of an
issue, the status will then change to Dup, NAD, or Ready as appropriate. Once the full J16 committee votes to forward
Ready issues to the Project Editor, they are given the status of Defect Report (DR). These in turn may become the basis
for Technical Corrigenda (TC), or are closed without action other than a Record of Response (RR). The intent of this
LWG processis that only issues which are truly defects in the Standard move to the formal 1SO DR status.

Active |l ssues

3. Atexit registration during atexit() call isnot described

Section: 18.3 lib.support.start.term Status: Open Submitter: Steve Clamage Date: 12 Dec 97 M sg: 1ib-6500

We appear not to have covered all the possibilities of exit processing with respect to atexit registration.
Example 1: (C and C++)

#i ncl ude <stdlib. h>
void f1() { }
void f2() { atexit(f1l); }
int main()
atexit(f2); // the only use of f2

return 0; // for C conpatibility
}

At program exit, f2 gets called due to its registration in main. Running f2 causes f1 to be newly registered during the
exit processing. Isthisavalid program? If so, what are its semantics?

Interestingly, neither the C standard, nor the C++ draft standard nor the forthcoming C9X Committee Draft says
directly whether you can register afunction with atexit during exit processing.

All 3 standards say that functions are run in reverse order of their registration. Since f1 isregistered last, it ought to be
run first, but by the timeit is registered, it istoo late to be first.

If the program is valid, the standards are self-contradictory about its semantics.
Example 2: (C++ only)

void F() { static Tt; } // type T has a destructor
int main()

atexit(F); // the only use of F

Library Active IssuesList Page 4 of 56

Function F registered with atexit has alocal static variablet, and F is called for the first time during exit processing. A
local static object isinitialized the first time control flow passes through its definition, and al static objects are
destroyed during exit processing. Is the code valid? If so, what are its semantics?

Section 18.3 "Start and termination” says that if afunction F is registered with atexit before a static abject t is
initialized, F will not be called until after t's destructor completes.

In example 2, function F is registered with atexit before its local static object O could possibly be initialized. On that
basis, it must not be called by exit processing until after O's destructor completes. But the destructor cannot be run until
after F is called, since otherwise the object could not be constructed in the first place.

If the program is valid, the standard is self-contradictory about its semantics.

| plan to submit Example 1 as a public comment on the C9X CD, with a recommendation that the results be undefined.
(Alternative: make it unspecified. | don't think it is worthwhile to specify the case where f1 itself registers additional
functions, each of which registers still more functions.)

| think we should resolve the situation in the whatever way the C committee decides.

For Example 2, | recommend we declare the results undefined.
Proposed Resolution:

[Kona: Steve analyzed thisissue in depth, and presented the first draft of a paper for reaction. Of four options
presented, the LWG favored #2, which retains "destruction in reverse order of construction” and never re-creates local
static objects. Reasonsare 1) easier to explain, 2) clearer mental model, 3) gives users a hook to do what they need to
do, 4) eliminates special cases. Steve will finish his paper, which includes his proposed resolution.]

8. Locale::global lacks guarantee
Section: 22.1.1.5 lib.locale.statics Status: Review Submitter: Matt Austern Date: 24 Dec 97

It appears there's an important guarantee missing from clause 22. We're told that invoking locale::global (L) setsthe C
localeif L has aname. However, we're not told whether or not invoking setlocale(s) sets the global C++ locale.

Theintent, | think, isthat it should not, but | can't find any such words anywhere.
Proposed Resolution:
Add a sentence at the end of 22.1.1.5 [lib.locale.statics], paragraph 2:
No library function other than | ocal e: : gl obal () shall affect the value returned by | ocal e() .

[Kona: Matt Austern provided the proposed resolution wording.]

9. Operator new(0) calls should not yield the same pointer
Section: 18.4.1 lib.new.delete Status: Open Submitter: Steve Clamage Date: 4 Jan 98

Scott Meyers, in a comp.std.c++ posting: | just noticed that section 3.7.3.1 of CD2 seems to allow for the possibility
that all callsto operator new(0) yield the same pointer, an implementation technique specifically prohibited by ARM

Library Active IssuesList Page 5 of 56

5.3.3.Was this prohibition really lifted? Does the FDIS agree with CD2 inthe regard? [I ssues list maintainer's note: the
ISisthe same.]

Seve: Yes, the FDISisthe same. | never noticed this change. Was it on purpose, or something that fell into an editorial
crack?

Josee: The statement Scott referstois still in Section 5.3.4, albeit a little bit modified. i.e. 5.3.4 para 7: "When the
value of the expression in a direct-new-declarator is zero, the allocation function is called to allocate an array with no
elements. The pointer returned by the new-expression is non-null. [Note: If the library allocation function is called, the
pointer returned is distinct from the pointer to any other object.]”

Josee: Section 3.7.3.1 never discussed this, and the requirement has always been in Section 5.3.4 (or 5.3.3, as it was
numbered in the ARM). Unfortunately, the last sentencein 5.3.4 para 7 is not normative. | believe thisis a rule that
should appear in Chapter 18, in the section on the C++ standard library operator new.

Josee: Section 3.7.3.1 describes the requirements on the semantics of the user provided new operators. The requirement
that operator new(0) must return a pointer that is distinct from the pointer to any other object only holds, | believe,
when the C++ standard library operator new is called. For other new operators, especially for class specific new
operators, this requirement does not hold.

Josee: | think thisis one of these core/library issues that the two WGs should discuss.
Proposed Resolution:
[Kona: After initial discussion, Steve drafted an analysis, concluding that the choices are:

1. Arequest for zero size never fails, meaning values need not be distinct.
2. Arequest for zero sizereturns a distinct pointer value if it succeeds, but is allowed to fail.

After much further discussion, there was agreement that choice 2 is the desired behavior. Seve will draft wording.]

17. Bad bool parsing

Section: 22.2.2.1.2 lib.facet.num.get.virtuals Status: Ready Submitter: Nathan Myers Date: 6 Aug 98

This section describes the process of parsing a text boolean value from the input stream. It does not say it recognizes
either of the sequences "true" or "false" and returns the corresponding bool value; instead, it says it recognizes only one
of those sequences, and chooses which according to the received value of a reference argument intended for returning
the result, and reports an error if the other sequence is found. (1) Furthermore, it claims to get the names from the
ctype<> facet rather than the numpunct<> facet, and it examines the "boolalpha’ flag wrongly; it doesn't define the
value "loc"; and finally, it computes wrongly whether to use numeric or "alpha’ parsing.

| believe the correct algorithm is "asif":

/1 in, err, val, and str are argunents.

err = 0;
const nunpunct <char T>& np = use_f acet <nunpunct <char T> >(str.getloc());
const string_type t = np.truenane(), f = np.fal senanme();

bool tm= true, fm= true;
size_t pos = 0;
while (tm && pos < t.size() || fm&& pos < f.size()) {
if (in===end) { err = str.eofbit; }
bool matched = fal se;
if (tm&& pos < t.size())
if (lerr &k t[pos] == *in) matched = true;
else tm= fal se;

Library Active IssuesList Page 6 of 56

}

if (fm&& pos < f.size()) {
if (lerr & f[pos] == *in) matched = true;
else fm= fal se;

f (matched) { ++in; ++pos; }
f (pos > t.size()) tm= fal se;
f (pos > f.size()) fm= fal se;

if (tm==fm|]| pos == 0) { err |=str.failbit; }
el se { val =tm }
return in;

Notice this works reasonably when the candidate strings are both empty, or equal, or when one is a substring of the
other. The proposed text below captures the logic of the code above.

Proposed Resolution:

In 22.2.2.1.2 [lib.facet.num.get.virtualg, in the first line of paragraph 14, change"&&" to "&".

Then, replace paragraphs 15 and 16 as follows:

Otherwise target sequences are determined "asif" by calling the membersf al senanme() andt r uenane
() of thefacet obtained by use_f acet <>(str. getl oc()) . Successive charactersin the range

[in, end) (see[lib.sequence.reqmts]) are obtained and matched against corresponding positions in the
target sequences only as necessary to identify a unique match. The input iterator i n is compared to end
only when necessary to obtain a character. If and only if atarget sequence is uniquely matched, val is set
to the corresponding value.

Thei n iterator is always left pointing one position beyond the last character successfully matched. If val
isset, thenerrissetto st r. goodbi t; ortostr. eof bi t if, when seeking another character to match, it
isfound that (i n==end) . If val isnot set,then err issettostr.failbit;orto
(str.failbit|str.eofbit)if thereason for thefailure wasthat (i n==end) . [Example: for targets
true:"a' andf al se:"abb", theinput sequence"a' yieldsval ==t rue and err ==st r . eof bi t ; the
input sequence "abc" yieldserr=str. f ai | bi t, withi n ending at the'c’ element. For targetst r ue:"1"
and f al se:"0", theinput sequence "1" yieldsval ==t rue and er r =st r . goodbi t . For empty targets
("), any input sequenceyieldserr==str. fai | bi t . --end example]

[Dublin: Dietmar Kihl has reviewed the proposed resolution wording and has some questions he will discuss with
Nathan.]

[Kona: Dietmar will submit new issues regarding his concerns.]

19. "Noconv" definition too vague

Section: 22.2.1.5.2 lib.locale.codecvt.virtuals Status: Review Submitter: Nathan Myers Date: 6 Aug 98

In the definitions of codecvt<>::do_out and do_in, they are specified to return noconv if "no conversion is needed". This
definition is too vague, and does not say normatively what is done with the buffers.

Proposed Resolution:

Change the entry for noconv in the table under paragraph 4 in section 22.2.1.5.2 [lib.locale.codecvt.virtuals] to read:

noconv: i nt er nT and ext er nT are the same type, and input sequence is identical to converted
sequence.

Library Active IssuesList Page 7 of 56

Change the Note in paragraph 2 to normative text as follows:

If returns noconv, i nt er nT and ext er nT are the same type and the converted sequence isidentical to
theinput sequence[from from next).to_next isset equa tot o, thevalue of st at e isunchanged,
and there are no changesto thevaluesin[to, to_limt).

[Kona: Matt Austern provided the proposed resolution wording.]

21. Codecvt_byname<> instantiations

Section: 22.1.1.1.1 lib.locale.category Status: Ready Submitter: Nathan Myers Date: 6 Aug 98

In the second table in the section, captioned "Required instantiations”’, the instantiations for codecvt_byname<> have
been omitted. These are necessary to allow users to construct alocale by name from facets.

Proposed Resolution:

Addin 22.1.1.1.1 [lib.locale.category] to the table captioned "Required instantiations”, in the category "ctype" the lines

codecvt _bynane<char, char, nbstate_t >,
codecvt _byname<wchar _t, char, nbstate_t >

[Kona: reviewed by LWG.]

26. Bad sentry example

Section: 27.6.1.1.2 lib.istream::sentry Status: Open Submitter: Nathan Myers Date: 6 Aug 98

In paragraph 6, the code in the example:

tenpl ate <class charT, class traits = char_traits<charT> >
basi c_i streancchar T, trai ts>::sentry(
basi c_i streanccharT,traits>& i s, bool noskipws = false) {

int_type c;
t ypedef ctype<charT> ctype_type
const ctype_type& ctype = use_facet<ctype_type>(is.getloc());
while ((c = is.rdbuf()->snextc()) !'=traits::eof())
if (ctype.is(ctype.space,c)==0) {
i s. rdbuf ()->sputbackc (c);
br eak;
}
}

}

fails to demonstrate correct use of the facilities described. In particular, it fails to use traits operators, and specifies
incorrect semantics. (E.g. it specifies skipping over the first character in the sequence without examining it.)

Proposed Resolution:

Replace the example with better code, as follows:

Library Active IssuesList Page 8 of 56

tenpl ate <class charT, class traits>
basi c_i streanccharT,traits>::sentry::sentry(
basi c_i streanccharT,traits>& i s, bool noskipws)

t ypedef ctype<charT> ctype_type;
const ctype_type& ct = use_facet<ctype_type>(is.getloc());
for (int_type ¢ = is.rdbuf()->sgetc();
Itraits::eq_int_type(c,traits::eof ()) && ct.is(ct.space,c);
¢ = is.rdbuf()->snextc())
{}
}

[Kona: LWG identified problems needing further work: 1) argument noskipsw not referenced, 2) missing flush(), 3) does
not handle errors. Nathan will work on it.]

31. Immutable locale values
Section: 22.1.1 [lib.locale] Status: Open Submitter: Nathan Myers Date: 6 Aug 98

Paragraph 6, says "An instance of _locale _is*immutable*; once afacet reference is obtained from it, ...". This has
caused some confusion, because locale variables are manifestly assignable.

Proposed Resolution:
In 22.1.1 [lib.local€] replace paragraph 6,

An instance of locale isimmutable; once afacet reference is obtained from it, that reference remains
usable aslong as the locale value itself exists.

with

A locale value isimmutable. This means that once a facet reference is obtained from alocale object by
calling use_facet<>, that reference remains usable, and the results from member functions of it may be
cached and re-used, until the locale object is assigned to or destroyed.

[Kona: Nathan will work on wording; change to "cached and re-used without change" or similar.]

32. Pbackfail description inconsistent

Section: 27.5.2.4.4 lib.streambuf.virt.pback Status: Ready Submitter: Nathan Myers Date: 6 Aug 98

The description of the required state before calling virtual member basic_streambuf<>::pbackfail requirementsis
inconsistent with the conditions described in 27.5.2.2.4 [lib.streambuf.pub.pback] where member sputbackc callsiit.
Specifically, the latter saysit calls pbackfail if:

traits::eq(c,gptr()[-1]) isfalse
where pbackfail claimsto require:
traits::eq(* gptr(),traits::to_char_type(c)) returns false

It appears that the pbackfail description iswrong.

Library Active IssuesList Page 9 of 56

Proposed Resolution:

In 27.5.2.4.4 [lib.streambuf.virt.pback], paragraph 1, change:

"traits::eq(* gptr() traits:;to_char_type()"
to
"traits;:eq(traits::to_char_type(c),gptr()[-1])"
Rationale:
Note deliberate reordering of arguments for clarity in addition to the correction of the argument value.
[Dublin: Dietmar wants more people to look at this.]

[Kona: Three implementors confirmed that the proposed resolution is correct.]

41. los base needs clear (), exceptions()
Section: 27.4.2 [lib.ios.base] Status: Ready Submitter: Nathan Myers Date: 6 Aug 98

The description of ios_base::iword() and pword() in 27.4.2.4 [lib.ios.members.static], say that if they fail, they "set
badbit, which may throw an exception™. However, ios_base offers no interface to set or to test badbit; those interfaces are
defined in basic_ios<>.

Proposed Resolution:

Change the description in 27.4.2.5 [lib.ios.members.storage] in paragraph 2, and also in paragraph 4, as follows.
Replace

If the function fails it sets badbit, which may throw an exception.
with

If the function fails, and * t hi s is a base sub-object of abasi c_i os<> object or sub-object, the effect is
equivalent to calling basi c_i os<>: : set st at e(badbi t) on the derived object (which may throw
failure).

[Kona: LWG reviewed wording; setstate(failbit) changed to setstate(badbid).]

42. String ctors specify wrong default allocator
Section: 21.3 [lib.basic.string] Status: Ready Submitter: Nathan Myers Date: 6 Aug 98

The basic_string<> copy constructor:

0

basi c_string(const basic_string& str, size_type pos ,
Allocator());

size_type n = npos, const Allocator& a

Library Active IssuesList Page 10 of 56

specifies an Allocator argument default value that is counter-intuitive. The natural choice for a the allocator to copy
from is str.get_allocator(). Though this cannot be expressed in default-argument notation, overloading suffices.

Alternatively, the other containers in Clause 23 (deque, list, vector) do not have this form of constructor, so it is
inconsistent, and an evident source of confusion, for basic_string<> to have it, so it might better be removed.

Proposed Resolution:

In 21.3 [lib.basic.string], replace the declaration of the copy constructor as follows:

basi c_string(const basic_string& str);
basi c_string(const basic_string& str, size_type pos, size_type n = npos,
const Allocator& a = Allocator());

In 21.3.1 [lib.string.consg], replace the copy constructor declaration as above. Add to paragraph 5, Effects:
In the first form, the Allocator value used is copied from st r. get _al | ocat or ().
Rationale:
The LWG believes the constructor is actually broken, rather than just an unfortunate design choice.
The LWG considered two other possible resolutions:

A. In 21.3[lib.basic.string], replace the declaration of the copy constructor as follows:

basi c_string(const basic_string& str, size_type pos = 0,
size_type n = npos);

basi c_string(const basic_string& str, size_type pos,
size_type n, const Allocator& a);

In 21.3.1 [lib.string.consg], replace the copy constructor declaration as above. Add to paragraph 5, Effects:

When no Al | ocat or argument is provided, the string is constructed using the value
str.get_allocator().

B. In 21.3 [lib.basic.string], and also in 21.3.1 [lib.string.cons], replace the declaration of the copy constructor as
follows:

basi c_string(const basic_string& str, size_type pos = 0,
size_type n = npos);

The proposed resolution reflects the original intent of the LWG. It was also noted by Pete Becker that this fix "will
cause a small amount of existing code to now work correctly."”

[PJP says that this fix was previously agreed to, but failed to be edited into the standard.]
[Dublin: reviewed by LWG]

[Kona: issue editing snafu fixed - the proposed resolution now correctly reflects the LWG consensus.]

44. |ostreams use operator==on int_type values

Library Active IssuesList Page 11 of 56

Section: 27 [lib.input.output] Status: Open Submitter: Nathan Myers Date: 6 Aug 98

Many of the specifications for iostreams specify that character values or their int_type equivalents are compared using
operators == or !=, though in other places traits::eq() or traits::eq_int_type is specified to be used throughout. Thisisan
inconsistency; we should change uses of == and != to use the traits members instead.

Proposed Resolution:

[Nathan to supply proposed wording.]

49. Under specification of ios_base::sync_with_stdio

Section: 27.4.2.4 lib.ios.members.static Status: Open Submitter: Matt Austern Date: 21 Jun 98

Two problems.

(1) 27.4.2.4 doesn't say what ios_base::sync_with_stdio(f) returns. Does it return f, or does it return the previous
synchronization state? My guess is the latter, but the standard doesn't say so.

(2) 27.4.2.4 doesn't say what it means for streams to be synchronized with stdio. Again, of course, | can make some
guesses. (And I'm unhappy about the performance implications of those guesses, but that's another matter.)

Proposed Resolution:

Change the following sentenance in 27.4.2.4 lib.ios.members.static returns clause from:
t r ue if the standard iostream objects (27.3) are synchronized and otherwise returnsf al se.
to:

t r ue if the previous state of the standard iostream objects (27.3) was synchronized and otherwise returns
fal se.

[The LWG agrees (2) that a definition of synchronized isrequired. Jerry Schwarz will work by email with Matt
Austern to provide such a definition.]

50. Copy constructor and assignment operator of ios_base
Section: 27.4.2 lib.ios.base Status: Ready Submitter: Matt Austern Date: 21 Jun 98

Aswritten, ios_base has a copy constructor and an assignment operator. (Nothing in the standard says it doesn't have
one, and all classes have copy constructors and assingment operators unless you take specific steps to avoid them.)
However, nothin in 27.4.2 says what the copy constructor and assignment operator do.

My guess is that this was an oversight, that ios _base s, like basic_ios, not supposed to have a copy constructor or an
assignment operator.

A LWG member [Jerry Schwarzl comments: Yes, its an oversight, but in the opposite sense to what you're suggesting.
At one point there was a definite intention that you could copy ios_base. It's an easy way to save the entire state of a
stream for future use. As you note, to carry out that intention would have required a explicit description of the semantics

Library Active IssuesList Page 12 of 56

(e.0. what happens to the iarray and parray stuff). So | guess [remainder of comment disappeared into the black hole of
email].

Proposed Resolution:
In 27.4.2 lib.ios.base, classios_base, specify the copy constructor and operator= members as being private.
Rationale:

The LWG believes the difficulty of specifying correct semantics outweighs any benefit of allowing ios_base objects to be
copyable.

53. Basic_iosdestructor unspecified

Section: 27.4.4.1 lib.basic.ios.cons, 27.4.4.2 lib.basic.ios.members Status: Ready Submitter: Matt Austern Date: 23
Jun 98

There's nothing in 27.4.4 saying what basic_ios's destructor does.
The important question is whether basic_ios::~basic_ios() destroys rdbuf ().
Proposed Resolution:
Add after 27.4.4.1 lib.basic.ios.cons paragraph 2:
virtual ~basic_ios();
Notes: The destructor does not destroy r dbuf () .
Rationale:

The LWG reviewed the additional question of whether or not r dbuf (0) may set badbi t . The answer is clearly yes; it
may be set viacl ear () . See 27.4.4.2 lib.basic.ios.members, paragraph 6.

[Kona: reviewed at length by the LWG, which removed from the proposed resolution a footnote which incorrectly said
"r dbuf (0) doesnot set badbit".]

60. What isaformatted input function?

Section: 27.6.1.2.1 lib.istream.formatted.reqmts Status: Ready Submitter: Matt Austern Date:3 Aug 98

Paragraph 1 of 27.6.1.2.1 contains general requirements for all formatted input functions. Some of the functions defined
in section 27.6.1.2 explicitly say that those requirements apply ("Behaves like aformatted input member (as described in
27.6.1.2.1)"), but others don't. The question: is 27.6.1.2.1 supposed to apply to everything in 27.6.1.2, or only to those
member functions that explicitly say "behaves like a formatted input member"? Or to put it differently: are we to assume
that everything that appears in a section called "Formatted input functions' really is a formatted input function? |
assume that 27.6.1.2.1 is intended to apply to the arithmetic extractors (27.6.1.2.2), but | assume that it is not intended
to apply to extractors like

basi c_i stream& oper at or >>(basi c_i stream& (*pf) (basic_istream®));

Library Active IssuesList Page 13 of 56

and

basi c_i stream& oper at or >>(basi c_st reammbuf *) ;
Thereisasimilar ambiguity for unformatted input, formatted output, and unformatted output.

Comments from Judy Ward: It seems like the problem is that the basic_istream and basic_ostream operator <<()'s that
are used for the manipulators and streambuf* are in the wrong section and should have their own separate section or be
modified to make it clear that the "Common requirements” listed in section 27.6.1.2.1 (for basic_istream) and section
27.6.2.5.1 (for basic_ostream) do not apply to them.

Additional comments from Dietmar Kihl: It appears to be somewhat nonsensical to consider the functions defined in
27.6.1.2.3 lib.istream::extractors paragraphs 1 to 5 to be "Formatted input function" but since these functions are
defined in a section labeled "Formatted input functions" it is unclear to me whether these operators are considered
formatted input functions which have to conform to the "common requirements® from 27.6.1.2.1
(lib.istream.formatted.regmts): If thisis the case, all manipulators, not just ws, would skip whitespace unless noski pws
isset (... but setting noski pws using the manipulator syntax would also skip whitespace :-)

It is not clear which functions are to be considered unformatted input functions. As written, it seems that all functionsin
27.6.1.3 (lib.istream.unformatted) are unformatted input functions. However, it does not really make much sense to
construct a sentry object for gcount (), sync(), ... Also it isunclear what happens to the gcount () if eg. gcount (),
put back(), unget (), orsync() iscaled: These functions don't extract characters, some of them even "unextract" a
character. Should this still be reflected in gcount () ? Of course, it could be read asiif after acall to gcount () gcount
() return 0 (the last unformatted input function, gcount (), didn't extract any character) and after a call to put back()
gcount () returns- 1 (the last unformatted input functon put back() did "extract" back into the stream).
Correspondingly for unget () . Isthiswhat isintended? If so, this should be clarified. Otherwise, a corresponding
clarification should be used.

Proposed Resolution:

Change the standard as specified in J16/99-0043==WG21/N1219, Proposed Resolution to Library Issue 60, section "VI
Wording", by Judy Ward and Matt Austern.

[Kona: The LWG reviewed a draft of Judy and Matt's paper. Several implementors reviewed their implementations and
several changes were made to the draft. The LWG then unanimously agreed to the proposed resolution.]

61. Ambiguity in iostreams exception policy

Section: 27.6.1.3 lib.istream.unformatted Status: Open Submitter: Matt Austern Date:6 Aug 98

The introduction to the section on unformatted input (27.6.1.3) says that every unformatted input function catches all
exceptions that were thrown during input, sets badbit, and then conditionally rethrows the exception. That seems clear
enough. Several of the specific functions, however, such as get() and read(), are documented in some circumstances as
setting eofbit and/or failbit. (The standard notes, correctly, that setting eofbit or failbit can sometimes result in an
exception being thrown.) The question: if one of these functions throws an exception triggered by setting failbit, is this
an exception "thrown during input" and hence covered by 27.6.1.3, or does 27.6.1.3 only refer to alimited class of
exceptions? Just to make this concrete, suppose you have the following snippet.

char buffer[N];
istreami s;

ié:exceptions(istream:faiIbit); /1l Throw on failbit but not on badbit.
is.read(buffer, N);

Library Active IssuesList Page 14 of 56

Now suppose we reach EOF before we've read N characters. What iostate bits can we expect to be set, and what
exception (if any) will be thrown?

Proposed Resolution:

Alternative A:
In 27.6.1.3, paragraph 1, change "If an exception is thrown during input then..." to "If, during input, an exception is
thrown by one of rdbuf()'s virtual members or by alocale or alocale facet, then...".

Alternative B:
In 27.6.1.3, paragraph 1, after the sentence that begins "If an exception is thrown...", add the following parenthetical
comment: "(Exceptions thrown from basi c_i os<>: : cl ear () are not caught or rethrown.)"

[Kona: Matt Austern provided the proposed resolution wording.]

63. Exception-handling policy for unformatted output

Section: 27.6.2.6 lib.ostream.unformatted Status: Review Submitter: Matt Austern Date:11 Aug 98

Clause 27 details an exception-handling policy for formatted input, unformatted input, and formatted output. It says
nothing for unformatted output (27.6.2.6). 27.6.2.6 should either include the same kind of exception-handling policy as
in the other three places, or else it should have afootnote saying that the omission is deliberate.

Proposed Resolution:

In 27.6.2.6, paragraph 1, replace the last sentence ("In any case, the unformatted output function ends by destroying the
sentry object, then returning the value specified for the formatted output function.") with the following text:

If an exception is thrown during output, theni os: : badbi t is turned on [Footnote: without causing an
i os::failuretobethrown.] in*t hi s'serror state. If (exception() & badbit) != 0 thenthe
exception is rethrown. In any case, the unformatted output function ends by destroying the sentry object,
then, if no exception was thrown, returning the value specified for the formatted output function.

[Kona: Matt Austern provided the proposed resolution wording.]

76. Can acodecvt facet alwaysconvert oneinternal character at atime?
Section: 22.2.1.5 lib.locale.codecvt Status: Open Submitter: Matt Austern Date: 25 Sep 98

This issue concerns the requirements on classes derived from codecvt , including user-defined classes. What are the
restrictions on the conversion from external characters (e.g. char) to internal characters (e.g. wchar _t)? Or,
alternatively, what assumptions about codecvt facets can the I/O library make?

The question is whether it's possible to convert from internal characters to external characters one internal character at a
time, and whether, given a valid sequence of external characters, it's possible to pick off internal charactersone at a
time. Or, to put it differently: given a sequence of external characters and the corresponding sequence of internal
characters, does a position in the internal sequence correspond to some position in the external sequence?

To make this concrete, supposethat [first, |ast) isasequenceof M external charactersand that [i first,

i | ast) isthe corresponding sequence of N internal characters, where N > 1. That is, my_encodi ng. i n(), applied to
[first, last),yidds[ifirst, ilast).Now thequestion: doesthere necessarily exist a subsequence of external
characters, [first, last_1), such that the corresponding sequence of internal characters is the single character
*ifirst?

Library Active IssuesList Page 15 of 56

(What a"no" answer would mean isthat my_encodi ng translates sequences only as blocks. There's a sequence of M
external characters that maps to a sequence of N internal characters, but that external sequence has no subsequence that
maps to N-1 internal characters.)

Some of the wording in the standard, such as the description of codecvt : : do_max_| engt h (22.2.1.5.2, paragraph
11) and basi c_fi | ebuf: : under f | ow (27.8.1.4, paragraph 3) suggests that it must always be possible to pick off
internal characters one at atime from a sequence of external characters. However, thisis never explicitly stated one way
or the other.

This issue seems (and is) quite technical, but it is important if we expect users to provide their own encoding facets.
Thisis an area where the standard library calls user-supplied code, so a well-defined set of requirements for the user-
supplied code is crucial. Users must be aware of the assumptions that the library makes. This issue affects positioning
operations on basi c_fi | ebuf , unbuffered input, and several of codecvt 's member functions.

Proposed Resolution:

[Matt Austern will attempt wording; it isvery complex.]

83. String::nposvs. string::max_size()

Section: 21.3 lib.basic.string Status: Ready Submitter: Nico Josuttis Date: 29 Sep 98

Many string member functions throw if size is getting or exceeding npos. However, | wonder why they don't throw if
size is getting or exceeding max_size() instead of npos. May be npos is known at compile time, while max_size() is
known at runtime. However, what happens if size exceeds max_size() but not npos, then ? It seems the standard lacks
some clarifications here.

Proposed Resolution:

[The LWG believes length_error isthe right exception to throw. At the request of the LWG, Nico proposes the
following wording.]

After 21.3 [lib.basic.string] paragraph 4 ("The functions described in this clause...") add a new paragraph:

For any string operation, if as aresult of the operation, si ze() would exceed max_si ze() thenthe
operation throws| engt h_error.

86. String constructorsdon't describe exceptions
Section: 21.3.1 lib.string.cons Status: Review Submitter: Nico Josuttis Date: 29 Sep 98

The constructor from arange:

t enpl at e<cl ass I nputlterator>
basic_string(lnputlterator begin, Inputlterator end,
const Allocator& a = Allocator());

lacks athrow specification. However, | would expect that it throws according to the other constructors if the numbers of
characters in the range equals npos (or exceeds max_size(), see above).

Proposed resolution:

Library Active IssuesList Page 16 of 56

[Dublin: Needs a throws paragraph. Kona: Nico provided wording, insuring that it works for input iterators and does
not over-constrain implementors as to when to throw.]

At the beginning of 21.3.1 [lib.string.cons] paragraph 15 add:

Throws: | engt h_error if di st ance(begi n, end) equals or exceeds npos (see
[lib.iterator.operations] for di st ance()).

91. Description of operator>> and getling() for string<> might cause endless loop
Section: 21.3.7.9 lib.string.io Status: Review Submitter: Nico Josuttis Date: 29 Sep 98

Operator >> and getling() for strings read until eof() in the input stream is true. However, this might never happen, if
the stream can't read anymore without reaching EOF. So shouldn't it be changed into that it reads until 'good() ?

Proposed resolution:

[Dublin: Should say "read until an attempt to extract a character fails' or similar. The same problem occurs
elsewhere.

Pre-Kona: Nico provided the following wording:.]

In 21.3.7.9 [lib.string.io], paragraph 1, last sentence "Characters are extracted and appended until any of the following
occurs....", replace:

- end-of-file occurs on the input sequence;
with:

- an attempt to extract a character fails;
In 21.3.7.9 [lib.string.i0], paragraph 5, last sentence, replace :

- end-of-file occurs on the input sequence (in which case, the getline function calls is.setstate(ios_base::eofhit)).
with:

- an attempt to extract a character fails

In 23.3.5.3 [lib.bitset.operators], paragraph 5, last sentence, replace:

- end-of-file occurs on the input sequence;
with:
- an attempt to extract a character fails;

[Pre-Kona: Nico comments: operator>> for complex<> has a different and very short specification:

12- Effects: Extracts a complex number x of the form: u, (u), or (u,v), where u isthereal part and v is the imaginary
part (lib.istream.formatted).

-13- Requires: The input values be convertibleto T. If bad input is encountered, calls is.setstate(ios::failbit) (which may

Library Active IssuesList Page 17 of 56

throw ios::failure (lib.iostate.flags).

Do we have to change something, here?]

92. Incomplete Algorithm Requirements
Section: 25 lib.algorithms Status: Open Submitter: Nico Josuttis Date: 29 Sep 98

The standard does not state, how often a function object is copied, called, or the order of callsinside an algorithm. This
may lead to suprising/buggy behavior. Consider the following example:

class Nth { /1 function object that returns true for the nth el enent
private:
int nth; /] elenment to return true for
i nt count; /] el ement counter
public:

Nth (int n) : nth(n), count(0) {

bool operator() (int) {
return ++count == nth;
}

b

/1 renmove third el ement
list<int> :iterator pos;
pos = renove_if(coll.begin(),coll.end(), // range
Nt h(3)), /'l rempve criterion
col |l . erase(pos,coll.end());

This call, in fact removes the 3rd AND the 6th element. This happens because the usual implementation of the
algorithm copies the function object internally:

tenpl ate <class Forwiter, class Predicate>
Forwiter std::renove_if(Forwter beg, Forwiter end, Predicate op)

{
beg = find_if(beg, end, op);
if (beg == end) {
return beg;
el se {
Forwiter next = beg;
return renove_copy_if(++next, end, beg, op);
}
}

The algorithm uses find_if() to find the first element that should be removed. However, it then uses a copy of the passed
function abject to process the resulting elements (if any). Here, Nth is used again and removes also the sixth element.
This behavior compromises the advantage of function objects being able to have a state. Without any cost it could be
avoided (just implement it directly instead of calling find_if()).

Proposed resolution:

The standard should specify that this kind of implementation is a bug. Something like "it is guaranteed that an
algorithm uses the same object for all calls of passed function objects (however, it may be a copy)”.

[Santa Cruz: The LWG believes that there may be more to this than meets the eye. It appliesto all function objects,
particularly predicates. Two questions: (1) must a function object be copyable? (2) how many times is a function object
called? These arein effect questions about state. Function objects appear to require special copy semantics to make
state work, and may fail if calling alters state and calling occurs an unexpected number of times.

Library Active IssuesList Page 18 of 56

Dublin: Pete Becker felt that this may not be a defect, but rather something that programmers need to be educated
about. There was discussion of adding wording to the effect that the number and order of callsto function objects,
including predicates, not affect the behavior of the function object.

Pre-Kona: Nico comments: It seems the problemis that we don't have a clear statement of "predicate” in the standard.
People including me seemed to think "a function returning a Boolean value and being able to be called by an STL
algorithm or be used as sorting criterion or ... isa predicate”. But a predicate has more requirements: It should never
change its behavior due to a call or being copied. IMHO we have to state this in the standard. If you like, see section
8.1.4 of my library book for a detailed discussion.

Kona: Nico will provide wording to the effect that "unless otherwise specified, the number of copies of and calls to
function objects by algorithms is unspecified". Consider placing in 25 lib.algorithms after paragraph 9]

94. May library implementors add template parametersto Standard Library classes?
Section: 17.4.4 lib.conforming Status: Open Submitter: Matt Austern Date: 22 Jan 98

Isit a permitted extension for library implementors to add template parameters to standard library classes, provided that
those extra parameters have defaults? For example, instead of definingt enpl ate <class T, class Alloc =

al l ocator<T> > cl ass vector; definingitastenpl ate <class T, class Alloc = allocator<T>, int
N = 1> cl ass vector;

The standard may well already allow this (I can't think of any way that this extension could break a conforming
program, considering that users are not permitted to forward-declare standard library components), but it ought to be
explicitly permitted or forbidden.

Proposed Resolution:

Add a new subclause [presumably 17.4.4.9] following 17.4.4.8 [lib.res.on.exception.handling]:

17.4.4.9 Template Parameters

A specialization of atemplate class described in the C++ Standard Library behaves the same asif the
implementation declares no additional template parameters.

Footnote/ Additional template parameters with default values are thus permitted.
Add "template parameters' to the list of subclauses at the end of 17.4.4 paragraph 1 [lib.conforming].

[Kona: The LWG agreed the standard needs clarification. After discussion with John Spicer, it seems added template
parameters can be detected by a program using template-template parameters. A straw vote - "should implementors be
allowed to add template parameters?" found no consensus ; 5 - yes, 7 - no.]

96. Vector<bool> isnot a container
Section: 23.2.5 lib.vector.bool Status: Open Submitter: AFNOR Date: 7 Oct 98
vect or <bool > isnot a container asits reference and pointer types are not references and pointers.

Also it forces everyone to have a space optimization instead of a speed one.

Library Active IssuesList Page 19 of 56

See also: 99-0008 == N1185 Vector<bool> is Nonconforming, Forces Optimization Choice.
Proposed Resolution:
[In Santa Cruz the LWG felt that this was Not A Defect.]

[In Dublin many present felt that failure to meet Container requirements was a defect. There was disagreement asto
whether or not the optimization requirements constituted a defect.

The LWG looked at the following resolutions in some detail:
* Not A Defect.
* Add a note explaining that vector<bool> does not meet Container requirements.
* Remove vector<bool>.
* Add a new category of container requirements which vector<bool> would meet.
* Rename vector<bool>.
No alternative had strong, wide-spread, support and every alternative had at least one "over my dead body" response.

There was also mention of a transition scheme something like (1) add vector_bool and deprecate vector<bool> in the
next standard. (2) Remove vector<bool> in the following standard.

Modifying container requirements to permit returning proxies (thus allowing container requirements conforming
vector<bool>) was also discussed.

It was also noted that thereis a partial but ugly workaround in that vector<bool> maybe further specialized with a
customer allocator.

Kona: Herb Sutter presented his paper J16/99-0035==WG21/N1211, vector<bool>: More Problems, Better

Solutions. Much discussion of a two step approach: a) deprecate, b) provide replacement under a new name. LWG
straw vote on that: 1-favor, 11-could live with, 2-over my dead body. This resolution was mentioned in the LWG report
to the full committee, where several additional committee members indicated over-my-dead-body positions.]

98. Input iterator requirementsare badly written
Section: 24.1.1 lib.input.iterators Status: Open Submitter: AFNOR Date: 7 Oct 98

Table 72 in 24.1.1 (lib.input.iterators) specifies semantics for *r ++ of:

{ Ttnp = *r; ++r; return tnp; }
This does not work for pointers and overconstrains implementors.
Proposed Resolution:
Add for *r++: “To call the copy constructor for the type T is allowed but not required.”

[Dublin: Pete Becker will attempt improved wording.]

Library Active IssuesList Page 20 of 56

102. Bugin insert rangein associative containers

Section: 23.1.2 lib.associative.regmts Status: Open Submitter: AFNOR Date: 7 Oct 98

Table 69 of Containers say that a.insert(i,j) islinear if [i, j) is ordered. It seems impossible to implement, asit means
that if [i, j) = [X], insert in an associative container is O(1)!

Proposed Resolution:
N+log (siz()) if [i,j) is sorted according to value_comp()

[This may need better specification. Matt Austern will ask Dave Musser.]

103. set::iterator isrequired to be modifiable, but this allows modification of keys

Section: 23.1.2 lib.associative.reqgmts, 23.3.3 lib.set, 23.3.4 lib.mutliset Status: Open Submitter: AFNOR Date: 7
Oct 98

Set::iterator is described as implementation-defined with a reference to the container requirement; the container
regquirement says that const_iterator is an iterator pointing to const T and iterator an iterator pointingto T.

At the request of the LWG, Chichiang Wan submitted the following:

23.1.2 paragraph 2 implies that the keys should not be modified to break the ordering of elements. But that is not clearly
specified. Especially considering that the current standard requires that iterator for associative containers be different
from const_iterator. Set, for example, has the following:

typedef inplenentation defined iterator;
/1 See _lib.container.requirenments_

23.1 lib.container.requirements actually requires that iterator type pointing to T (table 65). Disallowing user
modification of keys by changing the standard to require an iterator for associative container to be the same as
const_iterator would be overkill since that will unnecessarily significantly restrict the usage of associative container. A
class to be used as elements of set, for example, can no longer be modified easily without either redesigning the class
(using mutable on fields that have nothing to do with ordering), or using const_cast, which defeats requiring iterator to
be const_iterator. The proposed solution goes in line with trusting user knows what he is doing.

Proposed Resolution:

Option A. Chichiang Wan proposes In 23.1.2 lib.associative.regmts, paragraph 2, after first sentence, and before "In
addition,...", add one line;

Modification of keys shall not change their strict weak ordering.

Option B. Matt Austern proposes Add three new sentences to 23.1.2 lib.associ ative.regmts:

At the end of paragraph 5: "Keysin an associative container are immutable.” At the end of paragraph 6:
"For associative containers where the value type is the same as the key type, bothi t er at or and

const _i t erat or are constant iterators. It is unspecified whether or not i t er at or and

const _i terat or arethe sametype."

Library Active IssuesList Page 21 of 56

Option C. At the request of the LWG, Herb Sutter proposes To 23.1.2 lib.associative.regmts, paragraph 3, which
currently reads:

The phrase “"equivalence of keys" means the equivalence relation imposed by the comparison and not the
operator== on keys. That is, two keys k1 and k2 in the same container are considered to be equivalent if
for the comparison abject comp, comp(kl, k2) == false & & comp(k2, k1) == false.

add the following:

For any two keys k1 and k2 in the same container, comp(k1, k2) shall return the same value whenever it
isevaluated. [Note: If k2 is removed from the container and later reinserted, comp(k1, k2) must still
return a consistent value but this value may be different than it was the first time k1 and k2 were in the
same container. Thisisintended to allow usage like a string key that contains a filename, where comp
compares file contents; if k2 is removed, the file is changed, and the same k2 (filename) is reinserted,
comp(k1, k2) must again return a consistent value but this value may be different than it was the previous
time k2 was in the container.]

Rationale:

Simply requiring that keys be immutable is not sufficient, because the comparison object may indirectly (via pointers)
operate on values outside of the keys. Furthermore, requiring that keys be immutable places undue restrictions on set
for structures where only a portion of the structure participates in the comparison.

108. Lifetime of exception::what() return unspecified
Section: 18.6.1 lib.exception para 8, 9 Status: Review Submitter: AFNOR Date: 7 Oct 98

The lifetime of the return value of exception::what() is left unspecified. Thisissue has implications with exception safety
of exception handling: some exceptions should not throw bad_alloc.

Proposed Resolution:
Addto 18.6.1 lib.exception paragraph 9 (exception::what notes clause) the sentence:

The return value remains valid until the exception object from which it is obtained is destroyed or a non-
const member function of the exception object is called.

109. Missing bindersfor non-const sequence elements
Section: 20.3.6 lib.binders Status: Open Submitter: Bjarne Stroustrup Date: 7 Oct 98

There are no versions of binders that apply to non-const elements of a sequence. This makes examples like for_each()
using bind2nd() on page 521 of "The C++ Programming Language (3rd)" non-conforming. Suitable versions of the
binders need to be added.

[Dublin: Nico volunteered to organize a discussion of this and related issues. Hereitis:]

What is probably meant here is shown in the following example:

class Elem {

Library Active IssuesList Page 22 of 56

public:
void print (int i) const { }
void modify (int i) { }

b
int main()
vect or <El em> col | (2);
for_each (coll.begin(), coll.end(), bind2nd(nmem fun_ref (&l em:print),42)); /1 K
for_each (coll.begin(), coll.end(), bind2nd(nmemfun_ref(&El em: nodify), 42)); /1 ERRC
}

The error results from the fact that bind2nd() passes its first argument (the argument of the sequence) as constant
reference. See the following typical implementation:

tenpl ate <cl ass Operation>
cl ass bi nder2nd
public unary_function<typenane Operation::first_argument_type,
typename Operation::result_type> {

pr ot ect ed:

Operation op;

t ypename Operation::second_argunent _type val ue;
public:

bi nder 2nd(const Operati on& o,

const typenane Qperation::second_argunment _type& v)

op(o), value(v) {}

t ypename Operation::result_type
operator()(const typename Operation::first_argument _type& x) const {
return op(x, value);
}
b

The solution is to overload operator () of bind2nd for non-constant arguments:

tenpl ate <cl ass Operation>
cl ass bi nder2nd
public unary_function<typenane Operation::first_argument_type,
typename Operation::result_type> {

pr ot ect ed:

Operation op;

t ypename Operation::second_argunent _type val ue;
public:

bi nder 2nd(const Operati on& o,

const typenane Qperation::second_argunment _type& v)

op(o), value(v) {}

t ypename Operation::result_type

operator()(const typename Operation::first_argument _type& x) const {
return op(x, value);

}

t ypename Operation::result_type

operator () (typenane Operation::first_argument_type& x) const {
return op(x, value);

}

1

Proposed Resolution:
In 20.3.6.1 [lib.binders.1st] in the declaration of binderlst after:

t ypename Operation::result_type
operator()(const typenane QOperation::second_argunment _type& x) const;

Library Active IssuesList Page 23 of 56

insert:

t ypename Operation::result_type
operator () (typenane Operation::second_argunent_type& x) const;

In 20.3.6.3 [lib.binders.2nd] in the declaration of binder2nd after:

t ypename Operation::result_type
operator()(const typename Operation::first_argument _type& x) const;

insert:

t ypename Operation::result_type
operator () (typenane Operation::first_argunment_type& x) const;

[Kona: The LWG discussed this at some length. It was agreed that thisis a mistake in the design, but there was no
consensus on whether it was a defect in the Sandard. Straw vote:

5 NAD
3 As Proposed
6 Leave open]

111. istreambuf_iterator::equal over specified, inefficient

Section: 24.5.3.5 [lib.istreambuf.iterator::equal] Status: Open Submitter: Nathan Myers Date: 15 Oct 98

The member istreambuf _iterator<>::equal is specified to be unnecessarily inefficient. While this does not affect the
efficiency of conforming implementations of iostreams, because they can "reach into" the iterators and bypass this
function, it does affect users who use istreambuf _iterators.

The inefficiency results from atoo-scrupul ous definition, which requires a "true" result if neither iterator is at eof. In
practice these iterators can only usefully be compared with the "eof" value, so the extratest implied provides no benefit,
but slows down users code.

The solution is to weaken the requirement on the function to return true only if both iterators are at eof.
Proposed Resolution:

Replace 24.5.3.5 [lib.istreambuf.iterator::equal], paragraph 1,

-1- Returns: true if and only if both iterators are at end-of-stream, or neither is at end-of-stream,
regardless of what streambuf object they use.

with

-1- Returns: true if and only if both iterators are at end-of-stream, regardless of what streambuf object
they use.

[Dublin: People present saw no compelling reason to make change. Thereis also concern over not-equal. Theissueis
being held open for input from Nathan.]

Library Active IssuesList Page 24 of 56

112. Minor typoin ostreanbuf _iterator constructor

Section: 24.5.4.1 lib.ostreambuf.iter.cons Status: Review Submitter: Matt Austern Date: 20 Oct 98

The requiresclause for ost r eanbuf _i t er at or 's constructor from an ost r eam t ype (24.5.4.1, paragraph 1) reads
"sisnot null". However, sis areference, and references can't be null.

Proposed Resolution:

In 24.5.4.1 lib.ostreambuf .iter.cons:

Move the current paragraph 1, which reads "Requires. sis not null.”, from the first constructor to the second
constructor.

Insert a new paragraph 1 Requires clause for the first constructor reading:

Requires: s. r dbuf () isnot null.

114. Placement forms examplein error twice

Section: 18.4.1.3 [lib.new.delete.placement] Status: Open Submitter: Steve Clamage Date: 28 Oct 1998

Section 18.4.1.3 contains the following example:

[Exanpl e: This can be useful for constructing an object at a known address:
char pl ace[si zeof (Sonet hi ng)];
Sonet hing* p = new (place) Something();

-end exanpl €]

First code line: "place” need not have any special alignment, and the following constructor could fail due to misaligned
data.

Second code line: Aren't the parens on Something() incorrect? [Dublin: the LWG believesthe () are correct.]
Examples are not normative, but nevertheless should not show code that isinvalid or likey to fail.

Proposed Resolution:

Replace the first line of code in the example in 18.4.1.3 [lib.new.del ete.placement] with:

voi d* place = operator new(sizeof (Sonething));

[Kona: Seeissue 196 (forwarded from Core), which is the same issue but with a different resolution. Need to resolve the
difference.]

115. Typoin strstream constructors

Section: D.7.4.1 [depr.strstream.cons] Status: Review Submitter: Steve Clamage Date: 2 Nov 1998

D.7.4.1 strstream constructors paragraph 2 says:

Library Active IssuesList Page 25 of 56

Effects: Constructs an object of class strstream, initializing the base class with iostream(& sb) and
initializing sbwith one of the two constructors:

- If mode& app==0, then s shall designate the first element of an array of n elements. The constructor is
strstreambuf(s, n, s).

- If mode& app==0, then s shall designate the first element of an array of n elements that contains an
NTBS whose first element is designated by s. The constructor is strstreambuf(s, n, s+std::strlen(s)).

Notice the second condition is the same as the first. | think the second condition should be "1f mode& app==app", or
"mode& app!=0", meaning that the append bit is set.

Proposed Resolution:

In D.7.3.1 [depr.ostrstream.cons] paragraph 2 and D.7.4.1 [depr.strstream.cons] paragraph 2, change the first condition
to (mode&app) ==0 and the second condition to (node&app) ! =0.

[Project Editor in lib-6682 indicated that these changes have already been made as editorial. |

117. basi c_ost r eamuses nonexistent num put member functions

Section: 27.6.2.5.2 lib.ostream.inserters.arithmetic Status: Review Submitter: Matt Austern Date: 20 Nov 98

The effects clause for numeric inserters says that insertion of avalue x, whose type is either bool , short, unsi gned
short,int,unsigned int,long,unsigned |ong,float,double,long double,orconst void*,is
delegated to num put , and that insertion is performed asif through the following code fragment:

bool failed = use_facet<
num put <char T, ostreanbuf _iterator<charT,traits> >
>(getloc()).put(*this, *this, fill(), val). failed();

This doesn't work, because num put <>::put is only overloaded for the types bool , | ong, unsi gned | ong, doubl e,
| ong doubl e, and const voi d*. That is, the code fragment in the standard isincorrect (it is diagnosed as
ambiguous at compile time) for the typesshort, unsi gned short,int,unsigned int,andfl oat.

We must either add new member functionsto num put , or else change the description in ost r eamso that it only calls
functions that are actually there. | prefer the latter.

Proposed Resolution:
Replace 27.6.2.5.2, paragraph 1 with the following:

The classes num get <> and num put <> handle localedependent numeric formatting and parsing. These
inserter functions use the imbued | ocal e value to perform numeric formatting. When val isof type
bool , | ong, unsi gned | ong, doubl e, | ong doubl e, or const voi d*, the formatting conversion
occurs asif it performed the following code fragment:

bool failed = use_facet<
num put <char T, ostreanbuf _iterator<charT,traits> >
>(getloc()).put(*this, *this, fill(), val). failed();

When val isof typeshort orint theformatting conversion occurs asif it performed the following code
fragment:

Library Active IssuesList Page 26 of 56

bool failed = use_facet<
num put <char T, ostreanbuf _iterator<charT,traits> >
>(getloc()).put(*this, *this, fill(), static_cast<long>(val)). failed();

When val isof typeunsi gned short orunsi gned i nt theformatting conversion occurs asif it
performed the following code fragment:

bool failed = use_facet<
num put <char T, ostreanbuf _iterator<charT,traits> >
>(getloc()).put(*this, *this, fill(), static_cast<unsigned long>(val)). failed();

When val isof typef| oat theformatting conversion occurs asif it performed the following code
fragment:

bool failed = use_facet<
num put <char T, ostreanbuf _iterator<charT,traits> >
>(getloc()).put(*this, *this, fill(), static_cast<double>(val)). failed();

[Dublin: The LWG feelsthisis probably correct, but would like to review it one more time with additonal technical
experts. Issue 118 isrelated.]

118. basi c_i st reamuses nonexistent num get member functions

Section: 27.6.1.2.2 lib.istream.formatted.arithmetic Status: Open Submitter: Matt Austern Date: 20 Nov 98

Formatted input is defined for the types short , unsi gned short,int,unsigned int,|ong, unsigned | ong,
fl oat, doubl e,1 ong doubl e, bool , and voi d*. According to section 27.6.1.2.2, formatted input of avalue x is
done as if by the following code fragment:

typedef num get< charT,istreanbuf_iterator<charT,traits> > nunget;
jostate err = O;

use_facet< nunget >(loc).get(*this, 0, *this, err, val);
setstate(err);

According to section 22.2.2.1.1 lib.facet.num.get.members, however, num get <>: : get () isonly overloaded for the

typesbool , | ong, unsi gned short,unsi gned int,unsigned |ong,unsigned |ong,float,double,|ong
doubl e, and voi d*. Comparing the lists from the two sections, we find that 27.6.1.2.2 is using a nonexistent function
for typesshort andi nt.

Proposed Resolution:
Addshort andi nt overloadsfor num get <>: : get ()

[Dublin: What about do_get? Aren't two functions need there too? Also, the LWG would like to see full wording for the
Proposed Resolution.]

119. Should virtual functions be allowed to strengthen the exception specification?

Section: 17.4.4.8 lib.res.on.exception.handling Status: Ready Submitter: Judy Ward Date: 15 Dec 1998

Section 17.4.4.8 lib.res.on.exception.handling states:

Library Active IssuesList Page 27 of 56

"An implementation may strengthen the exception-specification for a function by removing listed exceptions.”

The prablem isthat if an implementation is allowed to do this for virtual functions, then alibrary user cannot write a
class that portably derives from that class.

For example, this would not compile if ios_base::failure::~failure had an empty exception specification:

#i ncl ude <i os>
#i ncl ude <string>

class D: public std::ios_base::failure {

public:
D(const std::string&);
~D(); /! error - exception specification nust be conpatible with
/'l overridden virtual function ios_base::failure::~failure()
b

Proposed Resolution:

Change Section 17.4.4.8 lib.res.on.exception.handling from:

"may strengthen the exception-speciification for a function”
to:

"may strengthen the exception-specification for a non-virtual function™.

120. Can an implementor add specializations?

Section: 17.4.3.1 lib.reserved.names Status: Open Submitter: Judy Ward Date: 15 Dec 1998

Section 17.4.3.1 says:

It is undefined for a C++ program to add declarations or definitions to namespace std or namespaces
within namespace std unless otherwise specified. A program may add template specializations for any
standard library template to namespace std. Such a specialization (complete or partial) of a standard
library template results in undefined behavior unless the declaration depends on a user-defined name of
external linkage and unless the specialization meets the standard library requirements for the original
template...

Thisimpliesthat it is ok for library users to add specializations, but not implementors. A user program can actually
detect this, for example, the following manual instantiation will not compileif the implementor has made
ctype<wchar_t> a specialization:;

#i ncl ude <l ocal e>
#i ncl ude <wchar. h>

tenpl ate class std::ctype<wchar_t>; // can't be specialization
Lib-7047 [Matt Austern] comments:

The status quo is unclear, and probably contradictory. This issue applies both the explicit instantiations and to
specializations, since it is not permitted to provide both a specialization and an explicit instantiation.

Library Active IssuesList Page 28 of 56

The specialization issue is actually more serious than the instantiation one. One could argue that there is a consistent
status quo as far as instantiations go, but one can't argue that in the case of specializations. The standard must either (1)
give library implementors license to provide explicit specializations of any library template; or (2) give a complete list of
exactly which specializations must be provided, and forbid library implementors from providing any specializations not
on that list. At present the standard does neither.

Proposed Resolution:
Add to 17.4.4 lib.conforming a section called Specializations with wording:

An implementation can define additional specializations for any of the template classes or functionsin
the standard library if a use of any of these classes or functions behaves asif the implementation did not
define them.

[Kona: Wording should be added to the effect that users will not be allowed to manual instantiate any templatesin the
standard library. Judy will work on the proposed wording. Also seeissue 177.]

121. Detailed definition for ctype<wchar_t> specialization missing

Section: 22.1.1.1.1 lib.locale.category Status: Open Submitter: Judy Ward Date: 15 Dec 1998

Section 22.1.1.1.1 has the following listed in Table 51: ctype<char>, ctype<wchar_t>.
Also Section 22.2.1.1 lib.locale.ctype says:

The instantiations required in Table 51 (22.1.1.1.1) namely ctype<char> and ctype<wchar_t>,
implement character classing appropriate to the implementation's native character set.

However, Section 22.2.1.3 lib.facet.ctype.special only has a detailed description of the ctype<char> specialization, not
the ctype<wchar_t> specialization.

Proposed Resolution:

Add the ctype<wchar_t> detailed class description to Section 22.2.1.3 lib.facet.ctype.special.

[Dublin: Judy will ask Nathan and Matt for their opinions.]

122. streambuf/wstreambuf description should not say they are specializations

Section: 27.5.2 lib.streambuf Status: Open Submitter: Judy Ward Date: 15 Dec 1998

Section 27.5.2 describes the streambuf classes this way:
The class streambuf is a specialization of the template class basic_streambuf specialized for the type char.

The class wstreambuf is a specialization of the template class basic_streambuf specialized for the type
wchar_t.

This implies that these classes must be template specializations, not typedefs.

Library Active IssuesList Page 29 of 56

It doesn't seem this was intended, since Section 27.5 has them declared as typedefs.
Proposed Resolution:

Remove 27.5.2 lib.streambuf paragraphs 2 and 3 (the two above sentences).
Rationale:

The st r eanbuf synopsis already has a declaration for the typedefs.

123. Should valarray helper arraysfill functions be const?

Section: 26.3.5.4 lib.slice.arr.fill, 26.3.7.4 lib.gslice.array fill, 26.3.8.4 lib.mask.array.fill, 26.3.9.4 lib.indirect.array..fill
Status: Open Submitter: Judy Ward Date: 15 Dec 1998

One of the operator=in the valarray helper arraysis const and one is not. For example, look at dlice_array. This
operator=in Section 26.3.5.2 lib.dlice.arr.assign is const:

voi d operator=(const val array<T>&) const;
but this one in Section 26.3.5.4 lib.dlice.arr fill, is not:

voi d operator=(const T&);
The description of the semantics for these two functionsis similar.
Proposed Resolution:

Make the oper at or =(const T&) versionsof slice array, gslice_array, indirect_array, and mask_array const
member functions.

[Dublin: Pete Becker spoke to Daveed Vandevoorde about this and will work on a proposed resolution.]

127. auto_ptr<> conversion issues
Section: 20.4.5 lib.auto.ptr Status: Open Submitter: Greg Colvin Date: 17 Feb 99
There are two problems with the current aut o_pt r wording in the standard:

First, the aut o_pt r_ref definition cannot be nested because aut o_pt r <Deri ved>: : aut o_ptr _ref isunrelated to
aut o_ptr<Base>::auto_ptr_ref. Alsosubmitted by Nathan Myers, with the same proposed resolution.

Second, there isno aut o_pt r assignment operator taking an aut o_pt r _r ef argument.

| have discussed these problems with my proposal coauthor, Bill Gibbons, and with some compiler and library
implementers, and we believe that these problems are not desired or desirable implications of the standard.

25 Aug 99: The proposed resolution now reflects changes suggested by Dave Abrahams, with Greg Colvin's
concurrence; 1) changed "assignment operator” to "public assignment operator”, 2) changed effects to specify use of

Library Active IssuesList Page 30 of 56

release(), 3) made the conversion to auto_ptr_ref const.

Proposed Resolution:

In 20.4.5 lib.auto.ptr, paragraph 2, move the aut o_pt r _r ef definition to namespace scope.

In 20.4.5 lib.auto.ptr, paragraph 2, add a public assignment operator to the aut o_pt r definition:
auto_ptr& operator=(auto_ptr_ref<X>r) throw();

Also add the assignment operator to 20.4.5.3 lib.auto.ptr.conv:

auto_ptr& operator=(auto_ptr_ref<X>r) throw()

Effects: Calls reset(p.release()) for the auto_ptr p that r holds a reference to.
Returns: *this.

In 20.4.5 lib.auto.ptr, paragraph 2, and 20.4.5.3 lib.auto.ptr.conv, paragraph 2, make the conversion to auto_ptr_ref
const:

t enpl at e<cl ass Y> operator auto_ptr_ref<Y>() const throw();

129. Need error indication from seekp() and seekg()

Section: 27.6.1.3 lib.istream.unformatted and 27.6.2.4 lib.istream.seeks Status: Review Submitter: Angelika Langer
Date: February 22, 1999

Currently, the standard does not specify how seekg() and seekp() indicate failure. They are not required to set failbit,
and they can't return an error indication because they must return *this, i.e. the stream. Hence, it is undefined what
happensiif they fail. And they _can_fail, for instance, when afile stream is disconnected from the underlying file
(is_open()==false) or when a wide charaacter file stream must perform a state-dependent code conversion, etc.

The stream functions seekg() and seekp() should set failbit in the stream state in case of failure.
Proposed Resolution:

Add to the Effects: clause of seekg() in 27.6.1.3 lib.istream.unformatted and to the Effects: clause of seekp() in
27.6.2.4 lib.istream.seeks:

In case of failure, the function calls set st at e(f ai | bit) (which may throw i os_base: : fai |l ure).

[Dublin: wording of PR "may call" changed to "calls'.]

134. vector and deque constructorsover specified
Section: 23.2.4.1 lib.vector.cons Status: Open Submitter: Howard Hinnant Date: 6 Mar 99

The complexity description says: "It does at most 2N callsto the copy constructor of T and logN reallocations if they are
just input iterators ...".

This appears to be overly restrictive, dictating the precise memory/performance tradeoff for the implementor.

Library Active IssuesList Page 31 of 56

Proposed Resolution:
Change 23.2.1.1, paragraph 6 to:

-6- Complexity: If the iterators first and last are forward iterators, bidirectional iterators, or random access iterators the
constructor makes only N calls to the copy constructor, and performs no reallocations, where N islast - first. It makes
order N calls to the copy constructor of T and order log N reallocations if they are input iterators.*

And change 23.2.4.1, paragraph 1 to:

-1- Complexity: The constructor template <class Inputlterator> vector(Inputlterator first, Inputlterator last) makes only
N callsto the copy constructor of T (where N is the distance between first and last) and no reallocations if iterators first
and last are of forward, bidirectional, or random access categories. It makes order N calls to the copy constructor of T
and order logN reallocations if they are just input iterators, since it isimpossible to determine the distance between first
and last and then do copying.

[Dublin: The issues hinges on whether at "most 2N calls" is correct or not. There was a feeling that 2N is correct, so
thisissue is NAD, but the issue will be left open to allow Howard to further analyze the complexity. Later in the meeting
Pete Becker said he had looked at it and 2N was correct.]

136. seekp, seekq setting wrong streams?

Section: 27.6.1.3 lib.istream.unformatted Status: Open Submitter: Howard Hinnant Date: 6 Mar 99

I may be misunderstanding the intent, but should not seekg set only the input stream and seekp set only the output
stream? The description seems to say that each should set both input and output streams. If that's really the intent, |
withdraw this proposal.

Proposed Resolution:

In section 27.6.1.3 change:

basi c_i streanxchar T, trai t s>& seekg(pos_type pos);
Effects: If fail() !'= true, executes rdbuf()->pubseekpos(pos).

To:

basi c_i streanxchar T, trai t s>& seekg(pos_type pos);
Effects: If fail() != true, executes rdbuf()->pubseekpos(pos, ios_base::in).

In section 27.6.1.3 change:

basi c_i streanccharT, trai t s>& seekg(off_type& of f, ios_base::seekdir dir);
Effects: If fail() != true, executes rdbuf()->pubseekoff(off, dir).

To:

basi c_i streanccharT, trai t s>& seekg(off_type& of f, ios_base::seekdir dir);
Effects: If fail() != true, executes rdbuf()->pubseekoff(off, dir, ios_base::in).

In section 27.6.2.4, paragraph 2 change:

-2- Effects: If fail() !'= true, executes rdbuf()->pubseekpos(pos).

Library Active IssuesList Page 32 of 56

To:

-2- Effects: If fail() !'= true, executes rdbuf()->pubseekpos(pos, ios_base::out).

In section 27.6.2.4, paragraph 4 change:

-4- Effects: If fail() !'= true, executes rdbuf()->pubseekoff(off, dir).
To:
-4- Effects: If fail() !'= true, executes rdbuf()->pubseekoff(off, dir, ios_base::out).

[Dublin: Dietmar Kihl thinks thisis probably correct, but would like the opinion of more iostream experts before
taking action.]

137. Do use facet and has facet look in the global locale?
Section: 22.1.1 lib.locale Status: Open Submitter: Angelika Langer Date: March 17, 1999
Section 22.1.1 lib.locale says:

-4- In the call to use_facet<Facet>(loc), the type argument chooses a facet, making available all members of the named
type. If Facet is not present in alocale (or, failing that, in the global locale), it throws the standard exception bad_cast.
A C++ program can check if alocale implements a particular facet with the template function has_facet<Facet>().

This contradicts the specification given in section 22.1.2 lib.locale.global .templ ates:

template <class Facet> const Facet& use facet(const locale& loc);
-1- Get areference to afacet of alocale.
-2- Returns: areference to the corresponding facet of loc, if present.

-3- Throws: bad _cast if has_facet<Facet>(loc) isfalse.
-4- Notes: The reference returned remains valid at least as long as any copy of loc exists

Proposed Resolution:

If there's consensus that section 22.1.2 reflects the intent, then the phrase:
(or, failing that, in the global locale)

should be removed from section 22.1.1.

[Dublin: The opinion of other iostream expertsisrequired.]

138. Class ctype byname<char> redundant and misleading

Section: 22.2.1.4 lib.locale.ctype.byname.special Status: Open Submitter: Angelika Langer Date: March 18, 1999

Section 22.2.1.4 lib.locale.ctype.byname.special specifies that ctype byname<char> must be a specialization of the
ctype_byname template.

Library Active IssuesList Page 33 of 56

It is common practice in the standard that specializations of class templates are only mentioned where the interface of
the specialization deviates from the interface of the template that it is a specialization of. Otherwise, the fact whether or
not a required instantiation is an actual instantiation or a specialization is left open as an implementation detail.

Clause 22.2.1.4 deviates from that practice and for that reason is misleading. The fact, that ctype _byname<char> is
specified as a specialization suggests that there must be something "special” about it, but it has the exact same interface
asthe ctype_byname template. Clause 22.2.1.4 does not have any explanatory value, is at best redundant, at worst
misleading - unless | am missing anything.

Naturally, an implementation will most likely implement ctype _byname<char> as a specialization, because the base
class ctype<char> is a specialization with an interface different from the ctype template, but that's an implementation
detail and need not be mentioned in the standard.

Proposed Resolution:

Delete section 22.2.1.4 lib.local e.ctype.byname.specia

[Dublin: A description of the function may be needed if it isn't going to be deleted. Dietmar Kihl will study the issue.]

141. basic_string::find_last_of, find_last_not_of say posinstead of xpos

Section: 21.3.6.4 lib.string::find.last.of, 21.3.6.6 lib.string::find.last.not.of Status: Ready Submitter: Arch Robison
Date: 28 Apr 99

Sections 21.3.6.4 paragraph 1 and 21.3.6.6 paragraph 1 surely have misprints where they say:
— Xpos <= pos and pos < size();

Surely the document meant to say ““xpos < si ze() " in both places.

Judy Ward also sent in thisissue for 21.3.6.4 with the same resolution.

Proposed Resolution:

Change Sections 21.3.6.4 paragraph 1 and 21.3.6.6 paragraph 1, the line which says:
— Xpos <= pos and pos < size();
to:

— Xpos <= pos and xpos < size();

142. lexicographical_compare complexity wrong

Section: 25.3.8 lib.ag.lex.comparison Status: Review Submitter: Howard Hinnant Date: 20 Jun 99

The lexicographical_compare complexity is specified as:
"At most min((lastl - firstl), (last2 - first2)) applications of the corresponding comparison.”

The best | can do is twice that expensive.

Library Active IssuesList Page 34 of 56

Nicolai Josuttis commentsin lib-6862: You mean, to check for equality you have to check both < and > ? Yes, IMO you
areright! (and Matt states this complexity in his book)

Proposed Resolution:

Change 25.3.8 [lib.alg.lex.comparison] complexity to:

Atmost2*min((lastl - firstl), (last2 - first2)) applicationsof the corresponding
comparison.

Change the example at the end of paragraph 3 to read:
[Example:
for (; firstl !'=lastl & & first2 I=last2 ; ++firstl, ++first2) {
if (*firstl <*first2) return true;
if (*first2 < *firstl) return false;
}
return firstl == lastl & & first2 != last2;

--end example]

[Kona: Matt Austern provided the proposed resolution wording at the request of the LWG.]

143. C .h header wording unclear
Section: D.5 depr.c.headers Status: Open Submitter: Christophe de Dinechin Date: 4 May 99
[depr.c.headers] paragraph 2 reads:

Each C header, whose name has the form name.h, behaves as if each name placed in the Standard library
namespace by the corresponding cname header is also placed within the namespace scope of the
namespace std and is followed by an explicit using-declaration (_namespace.udecl)

I think it should mention the global name space somewhere... Currently, it indicates that name placed in std is also
placed in std...

I don't know what is the correct wording. For instance, if struct tm is defined in time.h, ctime declares std::tm. However,
the current wording seems ambiguous regarding which of the following would occur for use of both ctime and time.h:

/1 version 1:
nanmespace std {
struct tm{ ... };

using std::tm

/'l version 2:
struct tm{ ... };
nanmespace std {

using ::tm
}

/'l version 3:
struct tm{ ... };
nanmespace std {

struct tm{ ... };
}

Library Active IssuesList Page 35 of 56

| think version 1 is intended.

Kona: The LWG agreed that thisis a defect; the wording is not clear. It also agreed that version 1 isintended, version
2 isnot equivalent to version 1, and version 3 is clearly not intended. The example below was constructed by Nathan
Myersto illustrate why version 2 is not equivalent to version 1.

Although not equivalent, the LWG is unsure if (2) is enough of a problem to be prohibited. Points discussed in favor of
allowing (2):

o It may be a convenience to implementors.
o Theonly cases that fail are structs, of which the C library contains only a few.

Example:

#i ncl ude <tine. h>
#include <utility>

int main() {
std::tm* t;
make_pair(t, t); // okay with version 1 due to Koenig | ookup
/1 fails with version 2; make_pair not found
return O;

}

Proposed Resolution:

Replace D.5 depr.c.headers paragraph 2 with:

Each C header, whose name has the form name.h, behaves as if each name placed in the Standard library
namespace by the corresponding cname header is also placed within the namespace scope of the
namespace std by name.h and is followed by an explicit using-declaration (_namespace.udecl_) in global
scope.

144. Deque constructor complexity wrong
Section: 23.2.1.1 lib.deque.cons Status: Ready Submitter: Herb Sutter Date: 9 May 99

In 23.2.1.1 paragraph 6, the deque ctor that takes an iterator range appears to have complexity requirements which are
incorrect, and which contradict the complexity requirements for insert(). | suspect that the text in question, below, was
taken from vector:

Complexity: If theiterators first and last are forward iterators, bidirectional iterators, or random access
iterators the constructor makes only N calls to the copy constructor, and performs no reallocations, where
N islast - first.

The word "reallocations” does not really apply to deque. Further, all of the following appears to be spurious:
It makes at most 2N calls to the copy constructor of T and log N reallocations if they are input iterators.1)

1) The complexity is greater in the case of input iterators because each element must be added
individually: it isimpossible to determine the distance between first abd last before doing the copying.

This makes perfect sense for vector, but not for deque. Why should deque gain an efficiency advantage from knowing in
advance the number of elements to insert?

Library Active IssuesList Page 36 of 56

Proposed Resolution:

In 23.2.1.1 paragraph 6, replace the Complexity description, including the footnote, with the following text (which also
corrects the "abd" typo):

Complexity: Makes last - first calls to the copy constructor of T.

[Kona: reviewed by the LWG.]

146. complex<T> Inserter and Extractor need sentries
Section: 26.2.6 lib.complex.ops Status: Review Submitter: Angelika Langer Date:12 May 99
The extractor for complex numbers is specified as:

template<class T, class charT, classtraits>
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is, complex<T>& Xx);

Effects: Extracts a complex number x of the form: u, (u), or (u,v), where u isthereal part and v isthe
imaginary part (lib.istream.formatted).

Requires: The input values be convertibleto T. If bad input is encountered, calls is.setstate(ios::failbit)
(which may throw ios::failure (lib.iostate.flags).

Returns: is.

Isit intended that the extractor for complex numbers does not skip whitespace, unlike all other extractorsin the
standard library do? Shouldn't a sentry be used?

The inserter for complex numbersis specified as:

template<class T, class charT, classtraits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& 0, const complex<T>& Xx);

Effects: inserts the complex number x onto the stream o as if it were implemented as follows:

template<class T, class charT, classtraits>

basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& 0, const complex<T>& X)
{

basic_ostringstream<charT, traits> s;

s.flags(o.flags());

s.imbue(o.getloc());

s.precision(o.precision());

s<<'('<<xrea() <<"," << x.imag() <<)’

return o << s.str();

}

Isit intended that the inserter for complex numbersignores the field width and does not do any padding? If, with the
suggested implementation above, the field width were set in the stream then the opening parentheses would be adjusted,
but the rest not, because the field width is reset to zero after each insertion.

| think that both operations should use sentries, for sake of consistency with the other inserters and extractors in the

Library Active IssuesList Page 37 of 56

library. Regarding the issue of padding in the inserter, | don't know what the intent was.
Proposed Resolution:
After 26.2.6 lib.complex.ops paragraph 14 (operator>>), add a Notes clause:

Notes: This extraction is performed as a series of simpler extractions. Therefore, the skipping of
whitespace is specified to be the same for each of the simpler extractions.

Rationale:
For extractors, the note is added to make it clear that skipping whitespace follows an "all-or-none" rule.

For inserters, the LWG believes there is no defect; the standard is correct as written.

147. Library Introrefersto global functionsthat aren't global

Section: 17.4.4.3 lib.global .functions Status: Review Submitter: Lois Goldthwaite Date: 4 Jun 99

The library had many global functions until 17.4.1.1 [lib.contents] paragraph 2 was added:

All library entities except macros, operator new and operator delete are defined within the namespace std
or namespaces nested within namespace std.

It appears "global function" was never updated in the following:

17.4.4.3 - Global functions [lib.global .functions]

-1- It is unspecified whether any global functions in the C++ Standard Library are defined asinline
(dcl.fct.spec).

-2- A call to aglobal function signature described in Clauses lib.language.support through
lib.input.output behaves the same asif the implementation declares no additional global function
signatures.*

[Footnote: A valid C++ program always calls the expected library global function. An implementation
may also define additional global functions that would otherwise not be called by a valid C++ program. --
- end footnote]

-3- A global function cannot be declared by the implementation as taking additional default arguments.
17.4.4.4 - Member functions [lib.member.functions]

-2- An implementation can declare additional non-virtual member function signatures within a class:

-- by adding arguments with default values to a member function signature; The same
latitude does not extend to the implementation of virtual or global functions, however.

Proposed Resolution:
Change "global" to "global or non-member" in:

17.4.4.3 [lib.global .functions] section title,

Library Active IssuesList Page 38 of 56

17.4.4.3 [lib.global.functions] para 1,

17.4.4.3 [lib.global .functions] para 2 in 2 places plus 2 places in the footnote,
17.4.4.3 [lib.global.functions] para 3,

17.4.4.4 [lib.member.functions] para 2

[Kona: Because operator new and delete are global, the proposed resolution was changed from "non-member” to
"global or non-member. |

148. Functionsin the example facet BoolNames should be const

Section: 22.2.8 lib.facets.examples Status: Ready Submitter: Jeremy Siek Date: 3 Jun 99

In 22.2.8 [lib.facets.examples] paragraph 13, the do_truename() and do_falsename() functions in the example facet
BoolNames should be const. The functions they are overriding in numpunct_byname<char> are const.

Proposed Resolution:

In 22.2.8 [lib.facets.examples] paragraph 13, insert "const” in two places:

string do_truenane() const { return "Qui Qui!"; }
string do_fal senanme() const { return "Mais Non!"; }

150. Find_first_of saysinteger instead of iterator

Section: 25.1.4 lib.alg.find.first.of Status: Ready Submitter: Matt McClure Date: 30 Jun 99

Proposed Resolution:

Change 25.1.4 lib.alg.find.first.of paragraph 2 from:

Returns: The first iterator i in the range [first1, last1) such that for some integer j in the range [first2,
last2) ...

to:

Returns: The first iterator i in the range [first1, last1) such that for some iterator j in the range [first2,
last2) ...

151. Can't currently clear () empty container

Section: 23.1.1 lib.sequence.regmts Status: Ready Submitter: Ed Brey Date: 21 Jun 99

For both sequences and associative containers, a.clear() has the semantics of erase(a.begin(),a.end()), which is undefined
for an empty container since erase(ql,g2) requires that q1 be dereferenceable (23.1.1,3 and 23.1.2,7). When the
container is empty, a.begin() is not dereferenceable.

The requirement that g1 be unconditionally dereferenceable causes many operations to be intuitively undefined, of
which clearing an empty container is probably the most dire.

Since g1 and g2 are only referenced in the range [gl, g2), and [ql, g2) is required to be a valid range, stating that g1

Library Active IssuesList Page 39 of 56

and g2 must be iterators or certain kinds of iterators is unnecessary.
Proposed Resolution:
In 23.1.1, paragraph 3, change:

p and g2 denote valid iterators to a, q and g1 denote valid dereferenceable iterators to a, [ql, 2) denotes
avalid range

to:

p denotes avalid iterator to a, q denotes a valid dereferenceable iterator to a, [ql, g2) denotes avalid
rangein a

In 23.1.2, paragraph 7, change:
p and g2 are valid iteratorsto a, g and g1 are valid dereferenceable iteratorsto a, [gl, g2) isavalid range
to

pisavalid iterator to a, g isavalid dereferenceable iterator to a, [g1, g2) isavalid range into a

152. Typoinscan_is() semantics

Section:: 22.2.1.1.2 lib.locale.ctype.virtuals Status: Ready Submitter: Dietmar Kihl Date: 20 Jul 99

The semantics of scan_i s() (paragraphs 4 and 6) is not exactly described because there is no functioni s() which
only takes a character as argument. Also, in the effects clause (paragraph 3), the semantic is also kept vague.

Proposed resolution:

In22.2.1.1.2 lib.locale.ctype.virtuals paragraphs 4 and 6, change the returns clause from:

"...suchthati s(*p) would..."

to: "...suchthati s(m *p) would...."

153. Typoinnarrow() Semantics

Section:: 22.2.1.3.2 lib.facet.ctype.char.members Status: Open Submitter: Dietmar Kihl Date: 20 Jul 99

The description of the array version of narrow() (in paragraph 11) isflawed: There is no member do_nar r ow()
which takes only there arguments because in addition to the range a default character is needed.

Proposed resolution:

Change 22.2.1.3.2 lib.facet.ctype.char.membersnar r ow() (in paragraph 10) by removing the comments around
df aul t (2 places).

Change 22.2.1.3.2 lib.facet.ctype.char.members nar r ow() (in paragraph 11) returns clause to:

Library Active IssuesList Page 40 of 56

Returns. do_narrow(l ow, hi gh, dfault, to)

[Kona: Dietmar will improve the wording because 1) the problem occursin additional places, 2) a user defined version
could be different.]

154. Missing doubl e specifier for do_get ()

Section:: 22.2.2.1.2 lib.facet.num.get.virtuals Status: Ready Submitter: Dietmar Kihl Date: 20 Jul 99

The table in paragraph 7 for the length modifier does not list the length modifier | to be applied if the typeis doubl e.
Thus, the standard asks the implementation to do undefined things when using scanf () (the missing length modifier
for scanf () when scanning doubl esis actually a problem | found quite often in production code, too).

Proposed resolution:

In 22.2.2.1.2 lib.facet.num.get.virtuals, paragraph 7, add arow in the Length Modifier table to say that for doubl e a
length modifier | isto be used.

Rationale:

The standard mades an embarrassing beginner's mistake.

155. Typo in naming the class defining the class | ni t

Section:: 27.3 lib.iostream.objects Status: Ready Submitter: Dietmar Kihl Date: 20 Jul 99

There are conflicting statements about where the class | ni t is defined. According to 27.3 (lib.iostream.objects)
paragraph 2 it isdefined asbasi c_i os: : I ni t, according to 27.4.2 (lib.ios.base) it isdefined asi os_base: : I nit.

Proposed resolution:

Change 27.3 (lib.iostream.objects) paragraph 2 from "basic_i os:: Init" to"i os_base::lnit".

Rationale:

Although not strictly wrong, the standard was misleading enough to warrant the change.

156. Typoini mbue() description

Section:: 27.4.2.3 lib.ios.base.locales Status: Ready Submitter: Dietmar Kuhl Date: 20 Jul 99

Thereisasmall discrepancy between the declarations of i mbue() : in 27.4.2 (lib.ios.base) the argument is passed as
| ocal e const & (correct), in 27.4.2.3 (lib.ios.base.locales) it is passed as| ocal e const (wrong).

Proposed resolution:

In 27.4.2.3 (lib.ios.base.locales) change the i mbue argument from "l ocal e const” to "l ocal e const &".

Library Active IssuesList Page 41 of 56

158. Under specified semanticsfor set buf ()

Section:: 27.5.2.4.2 lib.streambuf.virt.buffer Status: Ready Submitter: Dietmar Kihl Date: 20 Jul 99

The default behavior of set buf () isdescribed only for the situation that gptr () !'= 0 & & gptr() !'= egptr():
namely to do nothing. What has to be done in other situations is not described athough there is actually only one
reasonable approach, namely to do nothing, too.

Since changing the buffer would almost certainly mess up most buffer management of derived classes unless these
classes do it themselves, the default behavior of set buf () should always be to do nothing.

Proposed resolution:

Change 27.5.2.4.2 lib.streambuf .virt.buffer, paragraph 3, Default behavior, to: "Default behavior: Does nothing. Returns
this."

159. Strange use of underfl ow()

Section:: 27.5.2.4.3 lib.streambuf.virt.get Status. Review Submitter: Dietmar Kihl Date: 20 Jul 99

The description of the meaning of the result of shownanyc() seemsto be rather strange: It uses callsto under f1 ow() .
Using under f | ow() is strange because this function only reads the current character but does not extract it, uf I ow()
would extract the current character. This should be fixed to use sbunpc() instead.

Proposed resolution:

Change 27.5.2.4.3 lib.streambuf.virt.get paragraph 1, showmanyc() returns clause, by replacing the word "supplied”
with the words "extracted from the stream".

160. Typo: Use of non-existing function except i on()
Section:: 27.6.1.1 lib.istream Status: Ready Submitter: Dietmar Kihl Date: 20 Jul 99

The paragraph 4 refers to the function except i on() which is not defined. Probably, the referred function is
basi c_i os: : exceptions().

Proposed resolution:
In 27.6.1.1 lib.istream change "excepti on()" to "basic_i os::exceptions()".

[Note to Editor: in addition to adding "basic_ios::", "exceptions' with an s’ is the correct spelling.]

161. Typo: istreamiterator VS.istreanbuf _iterator

Section:: 27.6.1.2.2 lib.istream.formatted.arithmetic Status: Ready Submitter: Dietmar Kihl Date: 20 Jul 99

Library Active IssuesList Page 42 of 56

The note in the second paragraph pretends that the first argument is an object of typei st ream i t erat or. Thisis
wrong: It is an object of typei st reanbuf _i t erat or.

Proposed resolution:

Change 27.6.1.2.2 lib.istream.formatted.arithmetic from:

The first argument provides an object of the istream_iterator class...
to

The first argument provides an abject of the istreambuf_iterator class...

164. do_put() has apparently unused fill argument

Section:: 22.2.5.3.2 lib.locale.time.put.virtuals Status. Review Submitter: Angelika Langer Date: 23 Jul 99

In[lib.locale.time.put.virtuals] the do_put() function is specified as taking afill character as an argument, but the
description of the function does not say whether the character is used at all and, if so, in which way. The same holds for
any format control parameters that are accessible through theios _base& argument, such as the adjustment or the field
width. Is strftime() supposed to use the fill character in any way? In any case, the specification of time_put.do_put()
looks inconsistent to me.

Isthe signature of do_put() wrong, or is the effects clause incomplete?
Proposed resolution:

Add the following note after 22.2.5.3.2 lib.locale.time.put.virtual s paragraph 2:

[Note: thefi | | argument may be used in the implementation-defined formats, or by derivations. A space
character is a reasonable default for this argument. --end Note]

Rationale:

The LWG felt that while the normative text was correct, users need some guidance on what to pass for thefi | |
argument since the standard doesn't say how it's used.

165. xsput n(), pubsync() never called by basi c_ost r eammembers?
Section:: 27.6.2.1 lib.ostream Status: Open Submitter: Dietmar Kihl Date: 20 Jul 99

Paragraph 2 explicitly states that none of the basi c_ost r eamfunctions falling into one of the groups "formatted
output functions' and "unformatted output functions® calls any stream buffer function which might call avirtua
function other than over f | ow() . Basically thisisfine but thisimplies that sput n() (thisfunction would call the
virtual function xsput n()) is never called by any of the standard output functions. Is thisreally intended? At minimum
it would be convenient to call xsput n() for strings... Also, the statement that over f | ow() isthe only virtual member
of basi c_streanbuf calledisin conflict with the definition of f 1 ush() which calsr dbuf () - >pubsync() and
thereby the virtual functionsync() (f1 ush() islisted under "unformatted output functions").

In addition, | guess that the sentence starting with "They may use other public members of basi c_ost ream..."

Library Active IssuesList Page 43 of 56

probably was intended to start with "They may use other public members of basi c¢_st r eanuf ..." although the problem
with the virtual members exists in both cases.

Proposed resolution:
| see two obvious resolutions:

1. statein afootnote that this means that xsput n() will never be called by any ostream member and that thisis
intended.

2. relax therestriction and allow calling over f 1 ow() and xsput n() . Of course, the problem with f | ush() has
to be resolved in some way.

[Kona: the LWG believesthisis a problem. Wish to ask Jerry or PJP why the standard is written thisway.]

167. Improper useof traits_type:: | ength()

Section:: 27.6.2.5.4 lib.ostream.inserters.character Status: Open Submitter: Dietmar Kihl Date: 20 Jul 99

Paragraph 4 states that the length is determined using t rai t s: : | engt h('s) . Unfortunately, this function is not
defined for example if the character typeiswchar _t and thetype of s ischar const *. Similar problems exist if the
character typeischar and thetype of s iseither si gned char const* orunsi gned char const*.

Proposed resolution:

Make the case where s is of type adifferent typethant ypenane traits::char_type const* aspecia case, where
eg.std::char_traits<...>::1ength() isused (with the ... replaced by the correct type, of course) However, this
resolution would require that char _trait s isspecialized for si gned char and unsi gned char whichiscurrently
not the case, | think.

[Kona: It isclear to the LWG thereis a defect here. Dietmar will supply specific wording.]

168. Type: formatted vs. unformatted

Section:: 27.6.2.6 lib.ostream.unformatted Status: Ready Submitter: Dietmar Kihl Date: 20 Jul 99

The first paragraph begins with a descriptions what has to be done in *formatted* output functions. Probably thisis a
typo and the paragraph really want to describe unformatted output functions...

Proposed resolution:

In 27.6.2.6 lib.ostream.unformatted paragraph 1, the first and last sentences, change the word "formatted” to
"unfomatted”:

"Each unfor matted output function begins ..."
"... value specified for the unformatted output function.”

169. Bad efficiency of overfl ow() mandated

Section:: 27.7.1.3 lib.stringbuf.virtuals Status: Ready Submitter: Dietmar Kihl Date: 20 Jul 99

Library Active IssuesList Page 44 of 56

Paragraph 8, Notes, of this section seems to mandate an extremely inefficient way of buffer handling for
basi c_stri ngbuf, especialy in view of therestriction that basi c_ost r eammember functions are not allowed to use
xsput n() (see 27.6.2.1 lib.ostream): For each character to be inserted, a new buffer is to be created.

Of course, the resolution below requires some handling of simultaneous input and output since it is no longer possible to
update egpt r () whenever eppt r () ischanged. A possible solution isto handle thisinunder f1 ow() .

Proposed resolution:

In 27.7.1.3 lib.stringbuf.virtual s paragraph 8, Notes, insert the words "at least" as in the following:

To make awrite position available, the function reallocates (or initially allocates) an array object with a
sufficient number of elements to hold the current array object (if any), plus at least one additional write
position.

170. Inconsistent definition of traits_type
Section:: 27.7.4 lib.stringstream Status: Review Submitter: Dietmar Kihl Date: 20 Jul 99

Theclassesbasi c_st ri ngst r eam(27.7.4, lib.stringstream), basi c_i st ri ngst r eam(27.7.2, lib.istringstream), and
basi c_ost ri ngst ream(27.7.3, lib.ostringstream) are inconsistent in their definition of thetypetraits_t ype: For
i stringstream thistypeis defined, for the other two it is not. This should be consistent.

Proposed resolution:

To the declarations of basi c_ost ri ngst r eam(27.7.3, lib.ostringstream) and basi ¢_st ri ngst r eam(27.7.4,
lib.stringstream) add:

typedef traits traits_type;

171. Strange seekpos() semanticsduetojoint position

Section:: 27.8.1.4 lib.filebuf.virtuals Status: Open Submitter: Dietmar Kihl Date: 20 Jul 99

Overridden virtual functions, seekpos()

In 27.8.1.1 (lib.filebuf) paragraph 3, it is stated that a joint input and output position is maintained by basi ¢_fi | ebuf .
Still, the description of seekpos() seemsto talk about different file positions. In particular, it is unclear (at least to me)
what is supposed to happen to the output buffer (if there is one) if only the input position is changed. The standard
seems to mandate that the output buffer is kept and processed as if there was no positioning of the output position (by
changing the input position). Of course, this can be exactly what you want if theflagi os_base: : at e is set. However,

| think, the standard should say something like this:

e If (which & npde) == 0 neither read nor write position is changed and the call fails. Otherwise, the joint
read and write position is altered to correspond to sp.

o If thereisan output buffer, the output sequences is updated and any unshift sequence is written before the
position is altered.

o If thereisan input buffer, the input sequence is updated after the position is altered.

Plus the appropriate error handling, that is...

Library Active IssuesList Page 45 of 56

Proposed resolution:

[Kona: Dietmar isworking on a proposed resolution.]

172. Inconsistent typesfor basi c_i stream :ignore()

Section:: 27.6.1.3 lib.istream.unformatted Status: Ready Submitter: Greg Comeau, Dietmar Kihl Date: 23 Jul 99

In 27.6.1.1 (lib.istream) the function i gnor e() gets an object of type st r eansi ze asfirst argument. However, in
27.6.1.3 (lib.istream.unformatted) paragraph 23 the first argument is of typei nt .

Asfar as| can see thisis not really a contradiction because everything is consistent if st r eansi ze istypedef to bei nt .
However, thisis almost certainly not what was intended. The same thing happened to basi c_fil ebuf: : setbuf ().

Darin Adler also submitted this issue, commenting: Either 27.6.1.1 should be modified to show afirst parameter of type
int, or 27.6.1.3 should be modified to show afirst parameter of type streamsize and use
numeric_limits<streamsize>::max.

Proposed resolution:

In 27.6.1.3 (lib.istream.unformatted) paragraph 23 and 24, change both uses of i nt in the description of i gnore() to
streansi ze.

173. Inconsistent typesfor basic_fil ebuf: : set buf ()

Section:: 27.8.1.4 lib.filebuf.virtuals Status: Ready Submitter: Greg Comeau, Dietmar Kiihl Date: 23 Jul 99

In 27.8.1.1 (lib.istream) the function set buf () getsan object of type st r eansi ze as second argument. However, in
27.8.1.4 (lib.istream.unformatted) paragraph 9 the second argument is of typei nt

. Asfar as| can seethisis not really a contradiction because everything is consistent if st r eansi ze istypedef to be
i nt . However, thisis almost certainly not what was intended. The same thing happened to basi c_i stream :i gnore

Q).

Proposed resolution:

In 27.8.1.4 (lib.istream.unformatted) paragraph 9, change all uses of i nt in the description of set buf () to
streansi ze.

174. Typo: OFF_TVS.POS_T
Section:: D.6 depr.ios.members Status: Ready Submitter: Dietmar Kihl Date: 23 Jul 99

According to paragraph 1 of this section, st r eanpos isthe type OFF_T, the sametype as st r eanof f . However, in
paragraph 6 the st r eanpos getsthetype POS_T

Proposed resolution:

Library Active IssuesList Page 46 of 56

Change D.6 depr.ios.members paragraph 1 from "t ypedef OFF_T streanpos; " to"typedef PCS T
st reanpos; "

175. Ambiguity for basi c_st reanbuf: : pubseekpos() and a few other functions.
Section:: D.6 depr.ios.members Status: Ready Submitter: Dietmar Kihl Date: 23 Jul 99

According to paragraph 8 of this section, the methods basi c_st r eanbuf : : pubseekpos(),

basi c_i fstream : open(), and basi c_of st ream : open "may" be overloaded by aversion of this function taking
thetypei os_base: : open_node aslast argument argument instead of i os_base: : opennode

(i os_base: : open_node isdefined in this section to be an alias for one of the integral types). The clause specifies,
that the last argument has a default argument in three cases. However, this generates an ambiguity with the overloaded
version because now the arguments are absolutely identical if the last argument is not specified.

Proposed resolution:

In D.6 depr.ios.members paragraph 8, remove the default arguments for basi c_st r eanbuf : : pubseekpos(),
basic_i fstream : open(), and basi c_of stream : open().

176. exceptions() inios_base...?
Section:: D.6 depr.ios.members Status: Ready Submitter: Dietmar Kihl Date: 23 Jul 99

The "overload" for the function except i ons() in paragraph 8 gives the impression that there is another function of
this function defined in classi os_base. However, thisis not the case. Thus, it is hard to tell how the semantics
(paragraph 9) can be implemented: "Call the corresponding member function specified in clause lib.input.output.”

Proposed resolution:

In D.6 depr.ios.members paragraph 8, move the declaration of the function except i ons() into classbasi c_i os.

177. Complex operators cannot be explicitly instantiated
Section: 26.2.6 lib.complex.ops Status: Open Submitter: Judy Ward Date: 2 Jul 99

A user who tries to explicitly instantiate a complex non-member operator will get compilation errors. Below isa
simplified example of the reason why. The problem is that iterator_traits cannot be instantiated on a non-pointer type
like float, yet when the compiler istrying to decide which operator+ needs to be instantiated it must instantiate the
declaration to figure out the first argument type of areverse_iterator operator.

nanmespace std {
tenpl ate <class Iterator>
struct iterator_traits

typedef typenane lterator::value_type val ue_type;

tenpl ate <class T> class reverse_iterator;

/'l reverse_iterator operator+
tenpl ate <class T>

Library Active IssuesList Page 47 of 56

reverse_iterator<T> operator+
(typename iterator_traits<T>::difference_type, const reverse_iterator<T>&)

tenpl ate <class T> struct conplex {};
/'l conpl ex operator +
tenpl ate <class T>

conpl ex<T> operator+ (const T& | hs, const conpl ex<T>& r hs)
{ return conpl ex<T>();}

}

/'l request for explicit instantiation
tenpl ate std::conpl ex<fl oat> std::operator+<float>(const floatg&,
const std:: conpl ex<fl oat >&) ;

See also c++-stdlib reflector messages: 1ib-6814, 6815, 6316.
Proposed Resolution:
I'm not really sure. | think the choices are:

1. Do nothing. | think users will be surprised that there are certain functions in the standard library that cannot be
explicitly instantiated.

2. Add specializations of iterator_traits for the built-in types or specialize it in general for iterator_traits<T>.
3. Put the non-member operator functions that are currently all in namespace std in different namespaces, i.e. the

complex operators would have their own subnamespace, the reverse_iterator operators would have their own namespace,
€tc.

[Kona: Should be resolved in sync with issue 120. Judy will continue to work on thisissue.]

179. Comparison of const_iteratorsto iterators doesn't work

Section: 24.1.1 lib.iterator.requirements Status: Open Submitter: Judy Ward Date: 2 Jul 1998

Currently the following will not compile on two well-known standard library implementations:

#i ncl ude <set>
usi ng nanespace std;

void f(const set<int> &s)

{

set<int> :iterator i;
if (i==s.end()); // s.end() returns a const_iterator

}

The reason this doesn't compile is because operator== was implemented as a member function of the nested classes
set:iterator and set::const_iterator, and there is no conversion from const_iterator to iterator. Surprisingly, (s.end() == i)
does work, though, because of the conversion from iterator to const_iterator.

| don't see a requirement anywhere in the standard that this must work. Should there be one? If so, | think the
reguirement would need to be added to the tablesin section 24.1.1. I'm not sure about the wording. If this requirement
existed in the standard, | would think that implementors would have to make the comparison operators non-member
functions.

This issues was also raised on comp.std.c++ by Darin Adler. The example given was:

Library Active IssuesList Page 48 of 56

bool check_equal (std::deque<int>::iterator i,
std::deque<int>::const_iterator ci)

{

return i == ci;

}

Proposed Resolution:

[Kona: The LWG does wish the example to work. Judy will provide wording.]

180. Container member iterator arguments constness has unintended consequences
Section: 23 lib.containers Status: Open Submitter: Dave Abrahams Date: 1 Jul 99

It is the constness of the container which should control whether it can be modified through a member function such as
erase(), not the constness of the iterators. The iterators only serve to give positioning information.

Here's asimple and typical example problem which is currently very difficult or impossible to solve without the change
proposed below.

Wrap a standard container C in a class W which allows clients to find and read (but not modify) a subrange of (C.begin
(), C.end()]. The only modification clients are allowed to make to elementsin this subrange is to erase them from C
through the use of a member function of W.

Proposed resolution:

Change all non-const iterator parameters of standard library container member functions to accept const_iterator
parameters. Note that this change appliesto al library clauses, including strings.

For example, in 21.3.5.5 change:
iterator erase(iterator p);

to:
iterator erase(const_iterator p);

[Kona: Theissue was discussed at length. It was generally agreed that 1) Thereis no major technical argument against
the change (although there is a minor argument that some obscure programs may break), and 2) Such a change would
not break const correctness. The concerns about making the change were 1) it is user detectable (although only in
boundary cases), and 2) it changes a large number of signatures.

Straw vote: 5 In favor of change, 6- NAD]

181. make pair() unintended behavior
Section: 20.2.2 lib.pairs Status: Open Submitter: Andrew Koenig Date: 3 Aug 99
The claim has surfaced in Usenet that expressions such as

make_pair ("abc", 3)

areillegal, notwithstanding their use in examples, because template instantiation tries to bind the first template
parameter to const char (&) [4], which typeisuncopyable.

Library Active IssuesList Page 49 of 56

| doubt anyone intended that behavior...
Proposed resolution:

[Kona: The LWG agreed that thisis a probable defect, but would like to see fixes spelled out to verify the fix isn't
wor se that the problem.

Two potential fixes were suggested, 1) overloading with array arguments, and 2) use of a reference_traits classwith a
specialization for arrays.

Matt Austern and Dietmar Kuhl will work on wording for the two approaches.]

182. Ambiguousreferencesto size t
Section: 17 lib.library Status: Review Submitter: Al Stevens Date: 15 Aug 99
Many referencesto si ze_t throughout the document omit the st d: : namespace qualification.

For example, 17.4.3.4 [lib.replacement.functions] paragraph 2:

—operator newsize_t)

—operator newsize_t, const std::nothrow_t&)
—operator new] (size_t)

—operator new](size_t, const std::nothrow t&)

Proposed resolution:

Throughout the library clauses of the Standard, qualify with st d: : names from namespace st d, suchassi ze_t and
ptrdiff_t,unlesstheir useiswithin the scope of namespace st d.

Rationale:

The LWG believes correcting nameslike si ze_t andptrdiff_t tostd::size_t andstd::ptrdiff_t tobe
essentially editorial. Theissueis treated as a Defect Report to make explicit the Project Editor's authority to make this
change.

183. 1/0 stream manipulatorsdon't work for wide character streams
Section: 27.6.3 lib.std.manip Status: Open Submitter: Andy Sawyer Date: 7 Jul 99
27.6.3 [lib.std.manip] paragraph 3 says (clause numbering added for exposition):

Returns: An object s of unspecified type such that if [1] out is an (instance of) basic_ostream then the expression out<<s
behaves asif f(s) were called, and if [2] inis an (instance of) basic_istream then the expression in>>s behaves as if f(9)
were called. Where f can be defined as: ios_base& f(ios_base& str, ios_base::fmtflags mask) { // reset specified flags
str.setf(ios_base::fmtflags(0), mask); return str; } [3] The expression out<<s has type ostream& and value out. [4] The
expression in>>s has type istream& and valuein.

Given the definitions [1] and [2] for out and in, surely [3] should read: "The expression out << s has type
basic_ostreamé& ..." and [4] should read: "The expression in >> s has type basic_istream& ..."

If the wording in the standard is correct, | can see no way of implementing any of the manipulators so that they will
work with wide character streams.

Library Active IssuesList Page 50 of 56

e.g. weout << setbase(16);
Must have value ‘wcout' (which makes sense) and type 'ostream&' (which doesn't).

The same "cut'n'paste” type also seems to occur in Paras 4,5,7 and 8. In addition, Para 6 [setfill] has a similar error, but
relates only to ostreams.

I'd be happier if there was a better way of saying this, to make it clear that the value of the expression is "the same
speciaization of basic_ostream as out"&

Proposed resolution:

Maybe replace [1] with "out is an instance of basic_ostream<charT traitsT> for some charT and some traitsT" ... and [3]
with: "The expression out << s hastype basic_ostream& <charT,traitsT>" ... and do something similar for [2]&[4]. But
this strikes me as being somewhat cumbersome.

[Kona: Andy Sawyer and Beman Dawes will work to improve the wording of the proposed resolution.]

184. numeric_limits<bool> wording problems
Section: 18.2.1 lib.limits Status: Open Submitter: Gabriel Dos Reis Date: 21 Jul 99

bools are defined by the standard to be of integer types, as per 3.9.1/7 [basic.fundamental]. However "integer types’
seems to have a special meaning for the author of 18.2. The net effect is an unclear and confusing specification for
numeric_limits<bool> as evidenced below.

18.2.1.2/7 says numeric_limits<>::digitsis, for built-in integer types, the number of non-sign bits in the representation.
4.5/4 states that a bool promotesto int ; whereas 4.12/1 says any non zero arithmetical value converts to true.

I don't think it makes sense at all to require numeric_limits<bool>::digits and numeric_limits<bool>::digits10 to be
meaningful.

The standard defines what constitutes a signed (resp. unsigned) integer types. It doesn't categorize bool as being signed
or unsigned. And the set of values of bool type has only two elements.

I don't think it makes sense to require numeric_limits<bool>::is_signed to be meaningful.
18.2.1.2/18 for numeric_limits<integer_type>::radix says:
For integer types, specifies the base of the representation.186)

This disposition is at best misleading and confusing for the standard requires a "pure binary numeration system"” for
integer types as per 3.9.1/7

The footnote 186) says: "Distinguishes types with base other than 2 (e.g BCD)." This also erroneous as the standard
never defines any integer types with base representation other than 2.

Furthermore, numeric_limits<bool>::is_modulo and numeric_limits<bool>::is_signed have similar problems.

Proposed resolution:

Library Active IssuesList Page 51 of 56

Change 18.2.1 [lib.limits] paragraph 2, from:

Specializations shall be provided for each fundamental type, both floating point and integer, including
boal.

to:
Specializations shall be provided for each fundamental type, both floating point and integer, except bool.
Removet enpl at e<> cl ass numeric_li mit s<bool >; from the synopsis, 18.2.1 paragraph 4.

Changel8.2.1.2 lib.numeric.limits.members paragraph18 from:

For integer types, specifies the base of the representation.
to:

For all integer types other than bool, shall be 2 (3.9.1). Not meaningful for bool.
Remove footnote 186 which reads:

Distinguishes types with base other than 2 (e.g BCD).

[Kona: Matt Austern will provide wording that specifies an exact value.]

185. Questionable use of term "inline"

Section: 20.3 lib.function.objects Status: Ready Submitter: UK Panel Date: 26 Jul 99

Paragraph 4 of 20.3 [lib.function.objects] says:

[Example: To negate every element of a: transform(a.begin(), a.end(), a.begin(), negate<double>()); The
corresponding functions will inline the addition and the negation. end example]

(Note: The "addition" referred to in the above isin para 3) we can find no other wording, except this (non-normative)
example which suggests that any "inlining" will take place in this case.

Indeed both:

17.4.4.3 Global Functions[lib.global.functions] 1 It is unspecified whether any global functionsin the
C++ Standard Library are defined asinline (7.1.2).

and

17.4.4.4 Member Functions [lib.member.functions] 1 It is unspecified whether any member functionsin
the C++ Standard Library are defined asinline (7.1.2).

take care to state that this may indeed NOT be the case.

Thus the example "mandates’ behavior that is explicitly not required elsewhere.

Library Active IssuesList Page 52 of 56

Proposed resolution:

Remove from 20.3 [lib.function.objects] paragraph 2:

"Using function objects together with function templates increases the expressive power of the library as
well as making the resulting code much more efficient."

Remove from 20.3 [lib.function.objects] paragraph 4 the sentence:

"The corresponding functions will inline the addition and the negation."

186. bitset::set() second parameter should be bool

Section: 23.3.5.2 lib.bitset. members Status: Open Submitter: Darin Adler Date: 13 Aug 99

In section 23.3.5.2 [lib.bitset.members], paragraph 13 defines the bitset::set operation to take a second parameter of type
int. The function tests whether this value is non-zero to determine whether to set the bit to true or false. The type of this
second parameter should be bool. For one thing, the intent is to specify a Boolean value. For another, the result type
from test() is bool. In addition, it's possible to slice an integer that's larger than an int. This can't happen with bool,
since conversion to bool has the semantic of trandating O to false and any non-zero value to true.

Proposed resolution:

In 23.3.5.2 [lib.bitset.members], paragraph 13 and in 23.3.5 [lib.template.bitset] change the type of the second
parameter to bitset::set to bool

[Kona: The LWG agrees with the description. Andy Sawyers will work on better P/R wording.]

187. iter_swap under specified
Section: 25.2.2 lib.alg.swap Status: Ready Submitter: Andrew Koenig Date: 14 Aug 99

The description of iter_swap in 25.2.2 paragraph 7,says that it ~~exchanges the values' of the objects to which two
iterators refer.

What it doesn't say is whether it does so using swap or using the assignment operator and copy constructor.

This question is an important one to answer, because swap is specialized to work efficiently for standard containers.
For example:

vector<int> vl, v2;
iter_swap(&vl, &v2);

Isthis call to iter_swap equivalent to calling swap(vl, v2)? Or isit equivalent to

{

vector<int> tenp = vl;
vl = v2;

v2 = tenp;

}

Library Active IssuesList Page 53 of 56

The first alternative is O(1); the second is O(n).
A LWG member, Dave Abrahams, comments:
Not an objection necessarily, but | want to point out the cost of that requirement:
iter_swap(list<T>::iterator, list<T>: :iterator)

can currently be specialized to be more efficient than iter_swap(T*,T*) for many T (by using splicing).
Y our proposal would make that optimization illegal.

Proposed resolution:
Change the effect clause of iter_swap in 25.2.2 paragraph 7 from:
Exchanges the values pointed to by the two iterators a and b.
to
swap(*a, *b).

[Kona: The LWG notes the original need for iter_swap was proxy iterators which are no longer permitted.]

189. setprecision() not specified correctly
Section: 27.4.2.2 lib.fmtflags.state Status: Ready Submitter: Andrew Koenig Date: 25 Aug 99

27.4.2.2 paragraph 9 claims that setprecision() sets the precision, and includes a parenthetical note saying that it is the
number of digits after the decimal point.

This claim is not strictly correct. For example, in the default floating-point output format, setprecision sets the number
of significant digits printed, not the number of digits after the decimal point.

I would like the committee to look at the definition carefully and correct the statement in 27.4.2.2
Proposed resolution:

Remove from 27.4.2.2 lib.fmtflags.state, paragraph 9, the text "(number of digits after the decimal point)".

193. Heap oper ations description incorrect

Section: 25.3.6 lib.alg.heap.operations Status: Ready Submitter: Markus Mauhart Date: 24 Sep 99

25.3.6 [lib.alg.heap.operations] states two key properties of a heap [a,b), the first of them is
(1) *aisthe largest element”

I think thisisincorrect and should be changed to the wording in the proposed resolution.

Actually there are two independent changes:

Library Active IssuesList Page 54 of 56

A-"part of largest equivalence class" instead of "largest”, cause 25.3 [lib.alg.sorting] asserts "strict weak
ordering” for al its sub clauses.

B-Take "an oldest' from that equivalence class, otherwise the heap functions could not be used for a
priority queue as explained in 23.2.3.2.2 [lib.priqueue.members] (where | assume that a"priority queue"
respects priority AND time).

Proposed Resolution:

Change 25.3.6 [lib.alg.heap.operations] property (1) from:

(1) *aisthe largest element
to:

(1) Thereis no element greater than * a

195. Should basi c_i stream : sent ry'sconstructor ever set eofbit?

Section: 27.6.1.1.2 lib.istream::sentry Status: Ready Submitter: Matt Austern Date: 13 Oct 99

Supposethatis. fl ags() & ios_base: : ski pws isnonzero. What should basi c_i st reanx>: : sentry's
constructor do if it reaches eof while skipping whitespace? 27.6.1.1.2/5 suggests it should set failbit. Should it set eofbit
as well? The standard doesn't seem to answer that question.

On the one hand, nothing in 27.6.1.1.2 [lib.istream::sentry] saysthat basi c_i st r eanx>: : sent ry should ever set
eofbit. On the other hand, 27.6.1.1/4 [lib.istream] says that if extraction from ast r eanbuf "returnstraits:: eof (),
then the input function, except as explicitly noted otherwise, completesits actions and does set st at e(eof bit)". So
the question comes down to whether basi ¢_i st r eanm<>: : sent r y's constructor is an input function.

Comments from Jerry Schwarz:

It was always my intention that eofbit should be set any time that a virtual returned something to indicate
eof, no matter what reason iostream code had for calling the virtual.

The motivation for thisisthat | did not want to require streambufs to behave consistently if their virtuals
are called after they have signalled eof.

The classic case is a streambuf reading from a UNIX file. EOF isn't really a state for UNIX file
descriptors. The convention isthat aread on UNIX returns O bytes to indicate "EOF", but the file
descriptor isn't shut down in any way and future reads do not neccessarily also return O bytes. In
particular, you can read from tty's on UNIX even after they have signalled "EOF". (It isn't always
understood that a”*D on UNIX is not an EOF indicator, but an EOL indicator. By typing a"line"
consisting solely of ~D you cause aread to return O bytes, and by convention thisisinterpreted as end of
file)

Proposed Resolution:
Add a sentence to the end of 27.6.1.1.2 paragraph 2:

Ifi s.rdbuf()->sbunpc() oris.rdbuf()->sgetc() returnstraits::eof (), thefunctioncalls
setstate(failbit | eofbit) (whichmaythrowios_base::failure).

Library Active IssuesList Page 55 of 56

196. Placement new example has alignment problems

Section: 18.4.1.3 lib.new.delete.placement Status: New Submitter: Herb Sutter Date: 15 Dec 98

The example in 18.4.1.3 [lib.new.del ete.placement] paragraph 4 reads:

[Example: This can be useful for constructing an object at a known address:

char pl ace[si zeof (Sonet hi ng)];
Sonet hing* p = new (place) Something();

end example]
This example has potential alignment problems.
[Kona: Thisissue was previously Core-79; the core working group requested it be handled by the LWG.

It is, however, a duplicate of issue 114, but with a different propose resolution. This difference should be resolved.]

Proposed Resolution:

Change the code in the examplein 18.4.1.3 [lib.new.del ete.placement] paragraph 4 to:

char* place = new char[si zeof (Sonet hing)];
Sonet hing* p = new (place) Something();

197. max_size() under specified

Section: 20.1.5 lib.allocator.requirements, 21.3.3 lib.string.capacity, 23.1 lib.container.requirements Status: New
Submitter: Andy Sawyer Date: 21 Oct 99

Must the value returned by max_size() be unchanged from call to call?
Must the value returned from max_size() be meaningful ?
Possible meanings identified in lib-6827:

1) The largest container the implementation can support given "best case” conditions - i.e. assume the run-time platform
is"configured to the max", and no overhead from the program itself. This may possibly be determined at the point the
library iswritten, but certainly no later than compile time.

2) The largest container the program could create, given "best case" conditions - i.e. same platform assumptions as (1),
but take into account any overhead for executing the program itself. (or, roughly " storage=storage-sizeof (program)").
This does NOT include any resource allocated by the program. This may (or may not) be determinable at compile time.

3) The largest container the current execution of the program could create, given knowledge of the actual run-time
platform, but again, not taking into account any currently allocated resource. Thisis probably best determined at
program start-up.

4) The largest container the current execution program could create at the point max_size() is called (or more correctly
at the point max_size() returns :-), given it's current environment (i.e. taking into account the actual currently available

Library Active IssuesList Page 56 of 56

resources). This, obviously, has to be determined dynamically each time max_size() is called.
Proposed Resolution:

[Kona: the LWG informally discussed this and asked that an issue be opened.]

198. Validity of referencesis unspecified after iterator destruction

Section: 23.1 lib.container.requirements Status: New Submitter: Beman Dawes Date: 3 Nov 99

Is areference or pointer to a container element still valid after destruction of the iterator that the reference was obtained
from?

/1 assune ¢ is sonme non-enpty standard library container
T* p = & c.begin();

/1l is p still valid at this point?

c.clear(); // clearly invalidates p

If references must remain valid after iterator destruction, it is not possible to implement standard conforming containers
which return iterators to cached elements. Thisis a particular problem for large disk-based containers like B-trees as
they cannot be portably implemented without caching elements.

Three well-known implementations of <algorithm> seem to be written asif references do not remain valid after iterator
destruction. Thus these implementations appear to already conform to the proposed resolution. Whether thisis by design
or happenstance isn't known.

The standard doesn't appear to address this question. It needs to be made clear to both users and implementors.

Proposed Resolution:

Add a new paragraph at the end of 23.1 lib.container.requirements:

Destruction of an iterator invalidates container element references and pointers previously obtained from
that iterator.

