Library Closed Issues List Page 1 of 21

Doc. no. J16/99-0047

WG21 N1223
Date: 3 November 1999
Project: Programming Language C++

Replyto:  Beman Dawes <beman@esva.net>

C++ Standard Library Closed IssuesList (Revision 11)

Committee Version
Reference |SO/IEC |S 14882:1998(E)
Also see:

Table of Contentsincluding both active and closed issues.
Index by Section including both active and closed issues.
Index by Status including both active and closed issues.
Library Active IssuesList

Library Defect Report List

This document contains only library issues which have been closed by the Library Working Group as duplicates or not
defects. That is, issues which have a status of Dup or NAD. See"C++ Standard Library Active Issues List" for active
issues and more information. See "C++ Standard Library Defect Report List" for issues considered defects. The
introductory material in that document also applies to this document.

Closed I ssues

6. Fileposition not an offset unimplementable
Section: 27.4.3 lib.fpos Status: NAD Submitter: Matt Austern Date: 15 Dec 97

Table 88, in 1/0O, istoo strict; it's unimplementable on systems where a file position isn't just an offset. It also never says
just what fpos<> isreally supposed to be. [Here's my summary, which Jerry agreesis more or less accurate. "l think |
now know what the class really is, at this point: it's a magic cookie that encapsulates an mbstate t and afile position
(possibly represented as an fpos _t), it has syntactic support for pointer-like arithmetic, and implementors are required to
have real, not just syntactic, support for arithmetic." Thisisn't standardese, of course.]

Rationale:

Not adefect. The LWG believes that the Standard is aready clear, and that the above summary is what the Standard in
effect says.

10. Codecvt<>::do unclear

Section: 22.2.1.5.2 lib.locale.codecvt.virtuals Status: Dup Submitter: Matt Austern Date: 14 Jan 98

Section 22.2.1.5.2 says that codecvt<>::do_in and do_out should return the value noconv if "no conversion was needed"”.
However, | don't see anything anywhere that defines what it means for a conversion to be needed or not needed. | can
think of several circumstances where one might plausibly think that a conversion is not "needed"”, but | don't know



Library Closed Issues List Page 2 of 21

which oneisintended here.
Rationale:

Duplicate. See issuel9.

12. Way objects hold allocator s unclear

Section: 20.1.5 lib.allocator.requirements Status: NAD Submitter: AngelikalLanger Date: 23 Feb 98

| couldn't find a statement in the standard saying whether the allocator abject held by a container is held as a copy of the
constructor argument or whether a pointer of reference is maintained internal. There is an according statement for
compare aobjects and how they are maintained by the associative containers, but | couldn't find anything regarding
allocators.

Did | overlook it? Isit an open issue or known defect? Or isit deliberately left unspecified?
Rationale:

Not adefect. The LWG believes that the Standard is already clear. See 23.1 paragraph 8 [lib.container.requirements).

43. Localetable correction

Section: 22.2.1.5.2 lib.locale.codecvt.virtuals Status: Dup Submitter: Brendan Kehoe Date: 1 Jun 98

Rationale:

Duplicate. Seeissue 33.

45. Stringstreams read/write pointersinitial position unclear
Section: 27.7.3 lib.ostringstream Status: NAD Submitter: Matthias Mueller Date: 27 May 98
In aacomp.lang.c++.moderated Matthias Mueller wrote:

"We are not sure how to interpret the CD2 (see [lib.iostream.forward], [lib.ostringstream.cons), [lib.stringbuf.cons])
with respect to the question as to what the correct initial positions of the write and read pointers of a stringstream
should be."

"Isit the same to output two strings or to initialize the stringstream with the first and to output the second ?*

PJ Plauger, Bjarne Sroustrup, Randy Smithey, Sean Corfield, and Jerry Schwarz have all offered opinions; see
reflector messages lib-6518, 6519, 6520, 6521, 6523, 6524.

Rationale:

The LWG believes the Standard is correct as written. The behavior of stringstreams is consistent with fstreams, and
there is a constructor which can be used to obtain the desired effect. This behavior is known to be different from
strstreams.



Library Closed Issues List Page 3 of 21

58. Extracting a char from a wide-oriented stream

Section: 27.6.1.2.3 lib.istream::extractors Status: NAD Submitter: Matt Austern Date:1 Jul 98

27.6.1.2.3 has member functions for extraction of signed char and unsigned char, both singly and as strings. However, it
doesn't say what it meansto extract achar fromabasi c_streanbuf <charT, Traits>.

basic_streambuf, after all, has no membersto extract a char, so basic_istream must somehow convert from charT to
signed char or unsigned char. The standard doesn't say how it is to perform that conversion.

Rationale:

The Standard is correct as written. There is no such extractor and this is the intent of the LWG..

65. Under specification of strstreambuf::seekoff

Section: D.7.1.3 depr.strstreambuf.virtuals Status: NAD Submitter: Matt Austern Date: 18 Aug 98

The standard says how this member function affects the current stream position. (gpt r or ppt r ) However, it does not
say how this member function affects the beginning and end of the get/put area.

Thisis an issue when seekoff is used to position the get pointer beyond the end of the current read area. (Which islegal.
Thisisimplicit in the definition of seekhigh in D.7.1, paragraph 4.)

Rationale:

The LWG agrees that seekoff() is underspecified, but does not wish to invest effort in this deprecated feature.

67. Setw uselessfor strings
Section: 21.3.7.9 lib.string.io Status: Dup Submitter: Steve Clamage Date: 9 Jul 98

In acomp.std.c++ posting Michel Michaud wrote: What should be output by :

string text("Hello");
cout << '[' << setw(10) << right << text << ']';

Shouldn't it be:
[ Hel | 0]

Another person replied: Actually, according to the FDIS, the width of the field should be the minimum of width and the
length of the string, so the output shouldn't have any padding. | think that thisis atypo, however, and that what is
wanted is the maximum of the two. (As written, setw is useless for strings. If that had been the intent, one wouldn't
expect them to have mentioned using its value.)

It's worth pointing out that this is a recent correction anyway; IIRC, earlier versions of the draft forgot to mention
formatting parameters what soever.



Library Closed Issues List Page 4 of 21

Rationale:

Duplicate. See issue 25.

72. Do_convert phantom member function
Section: 22.2.1.5 lib.locale.codecvt Status: Dup Submitter: Nathan Myers Date: 24 Aug 98

In 22.2.1.5 par 3 lib.locale.codecvt, and in 22.2.1.5.2 par 8 lib.locale.codecvt.virtuals, a nonexistent member function
"do_convert" is mentioned. This member was replaced with "do_in" and "do_out", the proper referents in the contexts
above.

Proposed Resolution:

Duplicate: see issue 24.

73. i s_open should be const
Section: 27.8.1 lib.filestreams Status: NAD Submitter: Matt Austern Date: 27 Aug 98

Classesbasi c_i f stream basi ¢c_of st ream and basi ¢_f st r eamall have a member functioni s_open. It should
be aconst member function, since it does nothing but call one of basi c_fi | ebuf 's const member functions.

Rationale:

Not adefect. Thisis adeliberate feature; const streams would be meaningless.

77. Valarray operator[] const returning value

Section: 26.3.2.3 [lib.valarray.access| Status: NAD Future Submitter: Levente Farkas Date: 9 Sep 98

valarray:
T operator[] (size_t) const;
why not
const T& operator[] (size_t) const;
asin vector ?7??
One can't copy even from a const valarray eg:
mencpy(ptr, &[0], v.size() * sizeof(double));
[1] find this bug in valarray is very difficult.

Bjarne Stroustrup, lib-6597:



Library Closed Issues List Page 5 of 21

... | suspect that there ought to be a way of iterating over the elements on a valarray in the way Mr. Farkas suggests.
The tricky issue is whether providing a way of obtaining a const pointer to an element of a const valarray would impede
any of the optimizations for which valarray was defined.

Gabridl Dos Reis, lib-6599:
May | suggest

t enpl at e<t ypenane T>
class valarray {

i&/benams "inpl enentation defined" const_iterator;
1 .
and specify that a valarray<>::const_iterator may be agressively optimized?
Bjarne Stroustrup, lib-6604:

We don't have ... iterator types and ... begin()/end() members. They would be easy to add (had the committee been in it's
pre-CD2 mode of operations), but would adding them have endangered critical optimizations?

Greg Colvin, lib-6605:
If we decide to fix this | would prefer changing

T operator[](size_t) const;
T& operator[](size_t);

to

const T& operator[](size_t) const;
T& operator[](size_t);

rather than trying at this late date to make an STL container out of valarray.
Rationale:

The LWG believes that the interface was deliberately designed that way. That iswhat valarray was designed to do;
that's where the "value array” name comes from. LWG members further comment that "we don't want valarray to be a
full STL container.” 26.3.2.3 lib.valarray.access specifies properties that indicate "an absence of aliasing” for non-
constant arrays; this allows optimizations, including special hardware optimizations, that are not otherwise possible.80.
Global Operators of complex declared twice

81. Wrong declaration of slice operations

Section: 26.3.5 lib.template.dlice.array, 26.3.7 lib.template.gslice.array, 26.3.8, 26.3.9 Status: NAD Submitter: Nico
Josuttis Date: 29 Sep 98

Isn't the definition of copy constructor and assignment operators wrong? Instead of

slice_array(const slice_array&);
slice_array& operator=(const slice_array@&);



Library Closed Issues List Page 6 of 21

IMHO they have to be

slice_array(const slice_array<T>&);
slice_array& operator=(const slice_array<T>&);

Same for gdlice_array.
Rationale:

Not adefect. The Standard is correct as written.

82. Missing constant for set elements

Section: 23.1.2 lib.associative.regmts Status: NAD Submitter: Nico Josuttis Date: 29 Sep 98

Paragraph 5 specifies:

For set and multiset the value type is the same as the key type. For map and multimap it is equal to pair<const Key,
T>.

Strictly speaking, thisis not correct because for set and multiset the value type is the same as the constant key type.
Rationale:

Not adefect. The Standard is correct as written; it uses a different mechanism (const &) for set and nul ti set . See
issue 103 for arelated issue.

84. Ambiguity with string::insert()

Section: 21.3.5 lib.string.modifiers Status: NAD Future Submitter: Nico Josuttis Date: 29 Sep 98

If I try
s.insert(0,1,' ');
| get an nasty ambiguity. It might be
s.insert((size_type)O,(size_type)l, (charT)" ");
which inserts 1 space character at position O, or
s.insert((char*)O0, (size_type)l,(charT)' ")
which inserts 1 space character at iterator/address O (bingo!), or
s.insert((char*)0, (lnputlterator)l, (Inputlterator)' ")

which normally inserts characters from iterator 1 to iterator ' . But according to 23.1.1.9 (the "do the right thing" fix) it
is equivalent to the second. However, it is still ambiguous, because of course | mean the first!



Library Closed Issues List Page 7 of 21

Rationale:

Not a defect. The LWG believesthisis a"genetic misfortune” inherent in the design of string and thus not a defect in
the Standard as such .

85. String char types
Section: 21 lib.strings Status: NAD Submitter: Nico Josuttis Date: 29 Sep 98

The standard seems not to require that charT is equivalent to traits::char_type. So, what happensif charT is not
equivalent to traits::char_type ?

Rationale:

Thereis already wording in 21.1 paragraph 3 (lib.char.traits) that requires them to be the same.

87. Error in description of string::compare()

Section: 21.3.6.8 lib.string::compare Status: Dup Submitter: Nico Josuttis Date: 29 Sep 98

The following compare() description is obviously a bug:

int conpare(size_type pos, size_type nl,
charT *s, size_type n2 = npos) const;

because without passing n2 it should compare up to the end of the string instead of comparing npos characters (which
throws an exception)

Rationale:

Duplicate; see issue 5.

88. Inconsistency between string::insert() and string::append()

Section: 21.3.5.4 lib.string::insert, 21.3.5.2 lib.string::append Status: NAD Future Submitter: Nico Josuttis Date: 29
Sep 98

Why does

t enpl at e<cl ass I nputlterator>
basi c_string& append(lnputlterator first, Inputlterator |ast);

return a string, while

t enpl at e<cl ass I nputlterator>
void insert(iterator p, Inputlterator first, Inputlterator |ast);

returns nothing ?



Library Closed Issues List Page 8 of 21

Rationale:

The LWG believes thisinconsistency is not sufficiently serious to constitute a defect.

89. Missing throw specification for string::insert() and string::replace()
Section: 21.3.5.4 lib.string::insert, 21.3.5.6 lib.string::replace Status: Dup Submitter: Nico Josuttis Date: 29 Sep 98

All insert() and replace() members for strings with an iterator asfirst argument lack athrow specification. The throw
specification should probably be: length_error if size exceeds maximum.

Rationale:

Considered a duplicate because it will be solved by the resolution of issue 83.

93. Incomplete Valarray Subset Definitions
Section: 26.3 lib.numarray Status: NAD Future Submitter: Nico Josuttis Date: 29 Sep 98

You can easily create subsets, but you can't easily combine them with other subsets. Unfortunately, you almost always
needs an explicit type conversion to valarray. Thisis because the standard does not specify that valarray subsets provide
the same operations as valarrays.

For example, to multiply two subsets and assign the result to a third subset, you can't write the following:
va[slice(0,4,3)] = va[slice(1,4,3)] * va[slice(2,4,3)];
Instead, you have to code as follows:

va[slice(0,4,3)] = static_cast<val array<doubl e> >(va[slice(1l,4, *
4

3)1)
static_cast<val array<doubl e> >(va[slice(2,4,3)]);

Thisis tedious and error-prone. Even worse, it costs performance because each cast creates a temporary objects, which
could be avoided without the cast.

Proposed resolution:
Extend all valarray subset types so that they offer all valarray operations.
Ratinale:

Thisis not adefect in the Standard; it is arequest for an extension.

95. Membersadded by the implementation

Section: 17.4.4.4 lib.member.functions Status: NAD. Submitter: AFNOR Date: 7 Oct 98

In 17.3.4.4/2 vs 17.3.4.7/0 there is a hole; an implementation could add virtual members a base class and break user



Library Closed Issues List Page 9 of 21

derived classes.
Example:

/1 inplenentation code:
struct _Base { // _Base is in the inplenenter nanespace
virtual void foo ();

b
class vector : _Base // deriving froma class is allowed
{ ...

/'l user code:
cl ass vector_checking : public vector

{

void foo (); // don't want to override _Base::foo () as the
/1 user doesn't know about _Base::foo ()

1
Proposed Resolution:
Clarify the wording to make the example illegal .
Rationale:

Thisis not adefect in the Standard. The exampleisalready illegal. See 17.4.4.4 lib.member.functions paragraph 2.

97. Insert inconsistent definition
Section: 23 lib.containers Status: NAD Future Submitter: AFNOR Date: 7 Oct 98

insert(iterator, const val ue_type&) isdefined both on sequences and on set, with unrelated semantics:
insert here (in sequences), and insert with hint (in associative containers). They should have different names (B.S. says:
do not abuse overloading).

Rationale:

Thisis not adefect in the Standard. It is a genetic misfortune of the design, for better or for worse.

99. Reverse iterator comparisons completely wrong

Section: 24.4.1.3.13 lib.reverse.iter.op<, etc. Status: NAD Submitter: AFNOR Date: 7 Oct 98

The <, >, <=, >= comparison operator are wrong: they return the opposite of what they should.

Note: same problem in CD2, these were not even defined in CD1
SGI STL code is correct; this problem is known since the Morristown meeting but there it was too late

Rationale:

Thisis not adefect in the Standard. A careful reading shows the Standard is correct as written. A careful reading of the
Gl implementation shows that it implements exactly what the Standard says.




Library Closed Issues List Page 10 of 21

100. Insert iterators/ostream _iterators over constrained

Section: 24.4.2 lib.insert.iterators, 24.5.4 lib.ostreambuf.iterator Status: NAD Submitter: AFNOR Date: 7 Oct 98

Overspecified For an insert iterator it, the expression *it is required to return areference to it. Thisisasimple possible
implementation, but as the SGI STL documentation says, not the only one, and the user should not assume that thisis
the case.

Rationale:
The LWG believes this causes no harm and is not a defect in the standard.

[In Santa Cruz the LWG agreesin principle, but couldn't think of any practical problem this would cause. AFNOR
was asked to provide a practical example.

In Dublin, Valentin Bonnard presented the issue, but the only example anyone could come up with caused some
incorrect code to work, rather than the other way around.]

101. No way to free storage for vector and deque

Section: 23.2.4 lib.vector, 23.2.1 lib.deque Status: NAD Submitter: AFNOR Date: 7 Oct 98
Reserve can not free storage, unlike string::reserve

Rationale:

Thisis not a defect in the Standard. The LWG has considered this issue in the past and sees no need to change the
Standard. Deque has no reserve() member function. For vector, shrink-to-fit can be expressed in a single line of code
(wherev isvect or <T>):

vector<T>(v).swap(v); [/ shrink-to-fit v

104. Description of basic_string::operator[] is unclear

Section: 21.3.4 lib.string.access Status: NAD Submitter: AFNOR Date: 7 Oct 98

It is not clear that undefined behavior applies when pos == size () for the non const version.
Proposed Resolution:

Rewrite as: Otherwise, if pos> size () or pos == size () and the non-const version is used, then the behavior is
undefined.

Rationale:

The Standard is correct. The proposed resolution already appears in the Standard.




Library Closed Issues List Page 11 of 21

105. fstream ctorsargument types desired
Section: 27.8 lib.file.streams Status: NAD Future Submitter: AFNOR Date: 7 Oct 98

fstream ctors take a const char* instead of string.
fstream ctors can't take wchar_t

An extension to add a const wchar_t* to fstream would make the implementation non conforming.
Rationale:

Thisis not adefect in the Standard. 1t might be an interesting extension for the next Standard.

107. Valarray constructor is strange

Section: 26.3.2 lib.template.valarray Status: NAD Submitter: AFNOR Date: 7 Oct 98

The order of the argumentsis (elem, size) instead of the normal (size, elem) in the rest of the library. Since elem often
has an integral or floating point type, both types are convertible to each other and reversing them leads to a well formed
program.

Proposed Resolution:

Inverting the arguments could silently break programs. Introduce the two signatures (const T&, size t) and (size t,
const T&), but make the one we do not want private so errorsresult in a diagnosed access violation. This technique can
also be applied to STL containers.

[Santa Cruz The LWG believes, that the proposed solution will not work for valarray<size t> and perhaps other
cases.]

Rationale:

The LWG believes that while the order of arguments is unfortunate, it does not constitute a defect in the standard.

113. Missing/extra iostream sync semantics

Section: 27.6.1.1 lib.istream, 27.6.1.3 lib.istream.unformatted, para 36 Status: NAD Submitter: Steve Clamage
Date: 13 Oct 98

In 27.6.1.1, class basic_istream has a member function sync, described in 27.6.1.3, paragraph 36.

Following the chain of definitions, | find that the various sync functions have defined semantics for output streams, but
no semantics for input streams. On the other hand, basic_ostream has no sync function.

The sync function should at minimum be added to basic_ostream, for internal consistency.
A larger question is whether sync should have assigned semantics for input streams.

Classic iostreams said streambuf::sync flushes pending output and attempts to return unread input characters to the



Library Closed Issues List Page 12 of 21

source. It is a protected member function. The filebuf version (which is public) has that behavior (it backs up the read
pointer). Class strstreambuf does not override streambuf::sync, and so sync can't be called on a strstream.

If we can add corresponding semantics to the various sync functions, we should. If not, we should remove sync from
basic_istream.

Rationale:
A sync function is not needed in basic_ostream because the flush function provides the desired functionality.
Asfor the other points, the LWG finds the standard correct as written.

[Dublin: the LWG discussed thisissue in considerable detail.]

116. bitset cannot be constructed with a const char*

Section: 23.3.5 lib.template.bitset Status: NAD Future Submitter: Judy Ward Date: 6 Nov 1998

The following code does not compile with the EDG compiler:

#i ncl ude <bitset>
usi ng nanespace std;
bi tset<32> b("111111111");

If you cast the ctor argument to a string, i.e.:

bi t set<32> b(string("111111111"));

then it will compile. The reason is that bitset has the following templatized constructor:

tenpl ate <class charT, class traits, class Allocator>
explicit bitset (const basic_string<charT, traits, Allocator>& str, ...);

According to the compiler vendor, Steve Adamcyk at EDG, the user cannot pass this template constructor a const
char * and expect aconversion to basi c_st ri ng. The reason is "When you have a template constructor, it can get
used in contexts where type deduction can be done. Type deduction basically comes up with exact matches, not ones
involving conversions.”

I don't think the intention when this constructor became templatized was for construction from aconst char* to no
longer work.

Proposed Resolution:

Add to 23.3.5 lib.template.bitset a bitset constructor declaration

explicit bitset(const char*);
and in Section 23.3.5.1 lib.bitset.cons add:
explicit bitset(const char* str);

Effects:
Calsbitset ((string) str, 0, string::npos);



Library Closed Issues List Page 13 of 21

Rationale:

Although the problem isreal, the standard is designed that way so it isnot adefect. Education isthe immediate
workaround. A future standard may wish to consider the Proposed Resolution as an extension.

[Discussed in Dublin.].

128. Need open_mode() function for file stream, string streams, file buffers, and string buffers

Section: 27.7 lib.string.streams and 27.8 lib.file.streams Status: NAD Future Submitter: Angelika Langer Date:
February 22, 1999

The following question came from Thorsten Herlemann:

Y ou can set a mode when constructing or opening a file-stream or filebuf, e.g. ios::in, ios::out,
ios::binary, ... But how can | get that mode later on, e.g. in my own operator << or operator >> or when |
want to check whether a file-stream or file-buffer object passed as parameter is opened for input or output
or binary? Is there no possibility? Is this a design-error in the standard C++ library?

It isindeed impossible to find out what a stream'’s or stream buffer's open mode is, and without that knowledge you
don't know how certain operations behave. Just think of the append mode.

Both streams and stream buffers should have anode() function that returns the current open mode setting.
Proposed Resolution:
For stream buffers, add a function to the base class as a non-virtual function qualified as const to 27.5.2 lib.streambuf
opennode node() const;
Retur ns the current open mode.

With streams, I'm not sure what to suggest. In principle, the mode could aready be returned by i os_base, but the
mode is only initialized for file and string stream objects, unless I'm overlooking anything. For this reason it should be
added to the most derived stream classes. Alternatively, it could be added to basi c_i os and would be default
initialized inbasi c_i os<>::init().

Rationale:

This might be an interesting extension for some future, but it is not a defect in the current standard. The Proposed
Resolution is retained for future reference.

130. Return type of container::erase(iterator) differsfor associative containers

Section: 23.1.2 lib.associative.regmts, 23.1.1 lib.sequence.regmts Status: NAD Future Submitter: Andrew Koenig
Date: 2 Mar 99

Table 67 (23.1.1) says that container::erase(iterator) returns an iterator. Table 69 (23.1.2) says that in addition to this
reguirement, associative containers also say that container::erase(iterator) returns void.



Library Closed Issues List Page 14 of 21
That's not an addition; it's a change to the requirements, which has the effect of making associative containers fail to
meet the requirements for containers.

Rationale:

The LWG believes this was an explicit design decision by Alex Stepanov driven by complexity considerations. It has
been previously discussed and reaffirmed, so thisis not a defect in the current standard. A future standard may wish to
reconsider thisissue.

131. list::splice throws nothing

Section: 23.2.2.4 lib.list.ops Status: NAD Submitter: Howard Hinnant Date: 6 Mar 99
What happens if a splice operation causes the size() of alist to grow beyond max_size()?
Rationale:

Size() cannot grow beyond max_size().

135. basic_iostream doubly initialized
Section: 27.6.1.5.1 lib.iostream.cons Status: NAD Submitter: Howard Hinnant Date: 6 Mar 99

-1- Effects Constructs an object of class basic_iostream, assigning initial values to the base classes by calling
basic_istream<charT traits>(sb) (lib.istream) and basic_ostream<charT traits>(sh) (lib.ostream)

The called for basic_istream and basic_ostream constructors call init(sb). This means that the basic_iostream’s virtua
base classisinitialized twice.

Proposed Resolution:
Change 27.6.1.5.1, paragraph 1 to:

-1- Effects Constructs an object of class basic_iostream, assigning initial values to the base classes by calling
basic_istream<charT traits>(sb) (lib.istream).

Rationale:

The LWG agreed that thei ni t () function is called twice, but said that thisis harmless and so not a defect in the
standard.

140. map<Key, T>::value_type does not satisfy the assignable requirement
Section: 23.3.1 lib.map Status: NAD Future Submitter: Mark Mitchell Date: 14 Apr 99

[lib.container.requirements)

expression returntype  pre/post-condition




Library Closed Issues List Page 15 of 21

X:value type T T isassignable
[lib.map]
A map satisfies all the requirements of a container.

For amap<Key, T> ... the value _typeis pair<const Key, T>.

Ther€e's a contradiction here. In particular, “pair<const Key, T>' is not assignable; the “const Key' cannot be assigned to.
So, map<Key, T>::value_type does not satisfy the assignable requirement imposed by a container.

[See 103 for the dlightly related issue of modification of set keys)

In 1ib-6855 Nicolai Josuttis comments: There is an interesting general issue involved here. IMO we don't need the
requirement that elements are assignable for any node based container type (i.e. neither for lists nor for all associative
containers). Copyable and destroyable would be enough.

In lib-6856 Howard Hinnant comments: I'm not comfortable lumping list into this category. | think it is a quite
reasonable design decision for list::assign to use T's assignment operator to recycle nodes. One could argue that a
destruction / placement new sequence could be used to replace assignment and thus you could still recycle nodes, but
where's the win?

Rationale:

The LWG believes that the standard is inconsistent, but that thisis a design problem rather than a strict defect. May
wish to reconsider for the next standard.

145. adjustfield lacks default value

Section: 27.4.4.1 lib.basic.ios.cons Status: NAD Submitter: Angelika Langer Date: 12 May 99

Thereisnoinitial value for the adjustfield defined, although many people believe that the default adjustment were right.
This is acommon misunderstanding. The standard only defines that, if no adjustment is specified, all the predefined
inserters must add fill characters before the actual value, which is"asif" the right flag were set. The flag itself need not
be set.

When you implement a user-defined inserter you cannot rely on right being the default setting for the adjustfield.
Instead, you must be prepared to find none of the flags set and must keep in mind that in this case you should make your
inserter behave "as if" the right flag were set. Thisis surprising to many people and complicates matters more than
necessary.

Unless there is a good reason why the adjustfield should not beinitialized | would suggest to give it the default value
that everybody expects anyway.

Rationale:

Thisis not adefect. It isdeliberate that the default is no bits set. Consider Arabic or Hebrew, for example. See
22.2.2.2.2 [lib.facet.num.put.virtuals| paragraph 19, Table 61 - Fill padding.

149. Insert should return iterator to first eement inserted

Section: 23.1.1 lib.sequence.regmts Status: NAD Future Submitter: Andrew Koenig Date: 28 Jun 99




Library Closed Issues List Page 16 of 21

Suppose that ¢ and c1 are sequential containersand i is an iterator that refersto an element of c. Then | can insert a
copy of cl's elementsinto c ahead of element i by executing

c.insert(i, cl.begin(), cl.end());

If cisavector, it isfairly easy for me to find out where the newly inserted elements are, even though i is now invalid:

size_t i_loc =i - c.begin();
c.insert(i, cl.begin(), cl.end());

and now the first inserted element is at c.begin()+i_loc and one past the last is at c.begin()+i_loc+cl.size().

But what if cisalist? 1 can still find the location of one past the last inserted element, becausei is still valid. To find the
location of the first inserted element, though, | must execute something like

for (size_t n = cl.size(); n; --n)

--1;

because i is now no longer arandom-access iterator.

Alternatively, | might write something like

bool first =i == c.begin();
list<T>::iterator j =i
if ('first) --j;
c.insert(i, cl.begin(), cl.end());
if (first)

j = c.begin();
el se

++j ;

which, although wretched, requires less overhead.

But | think the right solution is to change the definition of insert so that instead of returning void, it returns an iterator
that refersto the first element inserted, if any, and otherwise is a copy of itsfirst argument.

Rationale:

The LWG believes this was an intentional design decision and so is not a defect. It may be worth revisiting for the next
standard.

157. Meaninglesserror handling for pwor d() and i wor d()

Section:: 27.4.2.5 lib.ios.base.storage Status: Dup Submitter: Dietmar Kihl Date: 20 Jul 99

According to paragraphs 2 and 4 of 27.4.2.5 (lib.ios.base.storage), the functionsi wor d() and pwor d() "set the

badbi t (which might throw an exception)" on failure. ... but what does it mean for i os_base to set the badbi t ? The
state facilities of the |OStream library are defined inbasi c¢_i os, aderived class! It would be possible to attempt a
down cast but then it would be necessary to know the character type used...

Rationale:

Duplicate. Seeissue 41.




Library Closed Issues List Page 17 of 21

162. Really " formatted input functions' ?

Section:: 27.6.1.2.3 lib.istream::extractors Status: Dup Submitter: Dietmar Kihl Date: 20 Jul 99

It appears to be somewhat nonsensical to consider the functions defined in the paragraphs 1 to 5 to be "Formatted input
function" but since these functions are defined in a section labeled "Formatted input functions” it is unclear to me
whether these operators are considered formatted input functions which have to conform to the "common requirements’
from 27.6.1.2.1 (lib.istream.formatted.regmts): If thisis the case, all manipulators, not just ws, would skip whitespace
unless noski pws isset (... but setting noski pws using the manipulator syntax would also skip whitespace :-)

See also below for the same problem is formatted output
Rationale:

Duplicate. Seeissue 60.

163. Return of gcount () after acall to gcount

Section:: 27.6.1.3 lib.istream.unformatted Status: Dup Submitter: Dietmar Kiihl Date: 20 Jul 99

It is not clear which functions are to be considered unformatted input functions. As written, it seems that all functionsin
27.6.1.3 (lib.istream.unformatted) are unformatted input functions. However, it does not really make much sense to
construct a sentry object for gcount (), sync(), ... Also it isunclear what happens to the gcount () if eg. gcount (),
put back(), unget (), orsync() iscaled: These functions don't extract characters, some of them even "unextract" a
character. Should this still be reflected in gcount () ? Of course, it could be read asiif after acall to gcount () gcount
() return 0 (the last unformatted input function, gcount (), didn't extract any character) and after a call to put back()
gcount () returns- 1 (the last unformatted input functon put back() did "extract" back into the stream).
Correspondingly for unget () . Isthiswhat isintended? If so, this should be clarified. Otherwise, a corresponding
clarification should be used.

Rationale:

Duplicate. Seeissue 60.

166. Really " formatted output functions' ?

Section:: 27.6.2.5.3 lib.ostream.inserters Status: Dup Submitter: Dietmar Kihl Date: 20 Jul 99

From 27.6.2.5.1 (lib.ostream.formatted.reqmts) it appears that all the functions defined in 27.6.2.5.3
(lib.ostream.inserters) have to construct asent ry object. Isthisreally intended?

This is basically the same problem as the corresponding defect report for formatted input but for output instead of input.
Rationale:

Duplicate. Seeissue 60.

178. Should clog and cerr initially betied to cout?



Library Closed Issues List Page 18 of 21

Section: 27.3.1 lib.narrow.stream.objects Status: NAD Submitter: Judy Ward Date: 2 Jul 99

Section 27.3.1 says "After the object cerr isinitialized, cerr.flags() & unitbuf is nonzero. Its state is otherwise the same
asrequired for ios_base::init (lib.basic.ios.cons). It doesn't say anything about the the state of clog. So this means that
calling cerr.tie) and clog.tie() should return O (see Table 89 for ios_base::init effects).

Neither of the popular standard library implementations that | tried does this, they both tie cerr and clog to & cout. |
would think that would be what users expect.

Rationale:

The standard is clear as written.

188. valarray helpers missing augmented assignment operators

Section: 26.3.2.6 lib.valarray.cassign Status: NAD Future Submitter: Gabriel Dos Reis Date: 15 Aug 99

26.3.2.6 defines augmented assignment operators valarray<T>::op=(const T&), but fails to provide corresponding
versions for the helper classes. Thus making the following illegal:

#i ncl ude <val array>

int main()

std: :val array<doubl e> v(3. 14, 1999);
v[99] *= 2.0; /]

std::slice s(0, 50, 2);

}/[s] *= 2.0; // ERROR

| can't understand the intent of that omission. It makes the valarray library lessintuitive and less useful.

Rationale:

Although perhaps an unfortunate design decision, the omission is not a defect in the current standard. A future
standard may wish to add the missing operators.

190. min() and max() functions should be std::binary_functions

Section: 25.3.7 lib.alg.min.max Status: NAD Future Submitter: Mark Rintoul Date: 26 Aug 99

Both std::min and std::max are defined as template functions. Thisis very different than the definition of std::plus (and
similar structs) which are defined as function objects which inherit std::binary_function.

This lack of inheritance leaves std::min and std::max somewhat useless in standard library algorithms which require a
function object that inherits std::binary_function.

Rationale:



Library Closed Issues List Page 19 of 21

Although perhaps an unfortunate design decision, the omission is not a defect in the current standard. A future
standard may wish to consider additional function objects.

191. Unclear complexity for algorithms such as binary search

Section: 25.3.3 lib.ag.binary.search Status: NAD Submitter: Nico Josuttis Date: 10 Oct 99

The complexity of binary_search() is stated as " At most log(last-first) + 2 comparisons’, which seems to say that the
algorithm has logarithmic complexity. However, this algorithms is defined for forward iterators. And for forward
iterators, the need to step element-by-element results into linear complexity. But such a statement is missing in the
standard. The same aplliesto lower_bound(), upper_bound(), and equal _range().

However, strictly speaking the standard contains no bug here. So this might considered to be a clarification or
improvement.

Rationale:

The complexity is expressed in terms of comparisons, and that complexity can be met even if the number of iterators
accessed islinear. Paragraph 1 already says exactly what happens to iterators.

192. a.insert(p,t) isinefficient and overconstrained

Section: 23.1.2 lib.associative.regmts Status: NAD Future Submitter: Ed Brey Date: 6 Jun 99

Asdefined in 23.1.2, paragraph 7 (table 69), a.insert(p,t) suffers from several problems:

expression :;;Lém pre/post-condition complexity

insertst if and only if there is no element with key equivalent

to the key of t in containers with unique keys, always insertst logarithmic in
a.insert i terator in containers with equivalent keys. always returns the iterator general, but amortized
(p,t) pointing to the element with key equivalent to the key of t . constant if tis

iterator p is a hint pointing to where the insert should start to inserted right after p .

search.

1. For a container with unique keys, only logarithmic complexity is guaranteed if no element is inserted, even though
constant complexity is always possible if p points to an element equivalent to t.

2. For acontainer with equivalent keys, the amortized constant complexity guarantee is only useful if no key equivalent
to t existsin the container. Otherwise, the insertion could occur in one of multiple locations, at least one of which would
not be right after p.

3. By guaranteeing amortized constant complexity only when t isinserted after p, it is impossible to guarantee constant
complexity if t isinserted at the beginning of the container. Such a problem would not exist if amortized constant
complexity was guaranteed if t isinserted before p, since there is always some p immediately before which an insert can
take place.

4. For a container with equivalent keys, p does not allow specification of where to insert the element, but rather only acts
as ahint for improving performance. This negates the added functionality that p would provide if it specified where



Library Closed Issues List Page 20 of 21

within a sequence of equivalent keys the insertion should occur. Specifying the insert location provides more control to
the user, while providing no disadvantage to the container implementation.

Proposed Resolution:

In 23.1.2 lib.associative.reqmts paragraph 7, replace the row in table 69 for a.insert(p,t) with the following two rows:

expression :;;Lém pre/post-condition complexity

insertst if and only if thereisno element || logarithmic in general, but
a_unig.insert i terator with key equivalent to the key of t. returns || amortized constant if t is inserted
(p,t) the iterator pointing to the el ement with right before p or p pointsto an

key equivalent to the key of t. element with key equivalent to t.

insertst and returns the iterator pointing looarithmic in general. but
a_eq.insert . to the newly inserted element. t is inserted gart general, bu

iterator || . o amortized constant if tisinserted
(p,t) right before p if doing so preserves the .
) . right before p.
container ordering.

Rationale:

Too big achange. Furthermore, implementors report checking both before p and after p, and don't want to change this
behavior.

194. rdbuf() functions poorly specified
Section: 27.4.4lib.ios Status: NAD Submitter: Steve Clamage Date: 7 Sep 99

In classic iostreams, base class ios had an rdbuf function that returned a pointer to the associated streambuf. Each
derived class had its own rdbuf function that returned a pointer of atype reflecting the actua type derived from
streambuf. Because in ARM C++, virtual function overrides had to have the same return type, rdbuf could not be virtual.

In standard iostreams, we retain the non-virtual rdbuf function design, and in addition have an overloaded rdbuf
function that sets the buffer pointer. There is no need for the second function to be virtual nor to be implemented in
derived classes.

Minor question: Was there a specific reason not to make the original rdbuf function virtual ?

Major problem: Friendly compilers warn about functions in derived classes that hide base-class overloads. Any standard
implementation of iostreams will result in such a warning on each of the iostream classes, because of the ill-considered
decision to overload rdbuf only in a base class.

In addition, users of the second rdbuf function must use explicit qualification or a cast to call it from derived classes. An
explicit qualification or cast to basic_ios would prevent accessto any later overriding version if there was one.

What I'd like to do in an implementation is add a using- declaration for the second rdbuf function in each derived class.
It would eliminate warnings about hiding functions, and would enable access without using explicit qualification. Such
achange | don't think would change the behavior of any valid program, but would allow invalid programs to compile:

fil ebuf nybuf;
fstream f;
f.rdbuf (nybuf); // should be an error, no visible rdbuf



Library Closed Issues List Page 21 of 21

I'd like to suggest this problem as a defect, with the proposed resolution to require the equivalent of a using-declaration
for the rdbuf function that is not replaced in alater derived class. We could discuss whether replacing the function
should be allowed.

Rationale:

For historical reasons, the standard is correct as written. There is a subtle difference between the base class r dbuf ()
and derived classr dbuf () . The derived classr dbuf () always returns the original streambuf, whereas the base class
r dbuf () will return the "current streambuf" if that has been changed by the variant you mention.

Permission is not required to add such an extension. See 17.4.4.4 [lib.member.functions].




