
Library Active Issues List Page 1 of 64

Doc. no. J16 00-0003
 WG21 N1226
Date: 18 Feb 2000
Project: Programming Language C++
Reply to: Beman Dawes <beman@esva.net>

C++ Standard Library Active Issues List (Revision 12)
Committee Version

Reference ISO/IEC IS 14882:1998(E)

Also see:

l Table of Contents for all library issues.
l Index by Section for all library issues.
l Index by Status for all library issues.
l Library Defect Report List
l Library Closed Issues List
l How to prepare and submit an issue.

The purpose of this document is to record the status of issues which have come before the Library Working Group
(LWG) of the ANSI (J16) and ISO (WG21) C++ Standards Committee. Issues represent potential defects in the
ISO/IEC IS 14882:1998(E) document. Issues are not to be used to request new features or other extensions.

This document contains only library issues which are actively being considered by the Library Working Group. That is,
issues which have a status of New, Open, Review, and Ready. See "C++ Standard Library Defect Report List" for issues
considered defects and "C++ Standard Library Closed Issues List" for issues considered closed.

The issues in these lists are not necessarily formal ISO Defect Reports (DR's). While some issues will eventually be
elevated to official Defect Report status, other issues will be disposed of in other ways. See Issue Status.

This document is in an experimental format designed for both viewing via a world-wide web browser and hard-copy
printing. It is available as an HTML file for browsing or PDF file for printing.

This issues list exists in two slightly different versions; the Committee Version and the Public Version. The Committee
Version is the master copy, while the Public Version is an extract with certain names, email addresses, action items, and
internal committee comments removed. A line of text reading "Committee Version" following the title above identifies
the Committee Version Material with the HTML tag, displayed by common browsers in italics, does not appear
in the public version.

For the most current public version of this document see http://www.dkuug.dk/jtc1/sc22/wg21. Requests for further
information about this document should include the document number above, reference ISO/IEC 14882:1998(E), and be
submitted to Information Technology Industry Council (ITI), 1250 Eye Street NW, Washington, DC 20005.

Public information as to how to obtain a copy of the C++ Standard, join the standards committee, submit an issue, or
comment on an issue can be found in the C++ FAQ at http://reality.sgi.com/austern_mti/std-c++/faq.html. Public
discussion of C++ Standard related issues occurs on news:comp.std.c++.

For committee members, files available on the committee's private web site include the HTML version of the Standard
itself. HTML hyperlinks from this issues list to those files will only work for committee members who have downloaded
them into the same disk directory as the issues list files.

Library Active Issues List Page 2 of 64

Revision history

l R12: pre-Tokyo II: Added issues 199 to 211.
l R11: post-Kona: Updated to reflect LWG and full committee actions in Kona (99-0048/N1224). Note changed

resolution of issues 4 and 38. Added issues 196 to 198. Closed issues list split into "defects" and "closed"
documents.

l R10: pre-Kona updated. Added proposed resolutions 83, 86, 91, 92, 109. Added issues 190 to 195. (99-
0033/D1209, 14 Oct 99)

l R9: pre-Kona mailing. Added issues 140 to 189. Issues list split into separate "active" and "closed" documents.
(99-0030/N1206, 25 Aug 99)

l R8: post-Dublin mailing. Updated to reflect LWG and full committee actions in Dublin. (99-0016/N1193, 21
Apr 99)

l R7: pre-Dublin updated: Added issues 130, 131, 132, 133, 134, 135, 136, 137, 138, 139 (31 Mar 99)
l R6: pre-Dublin mailing. Added issues 127, 128, and 129. (99-0007/N1194, 22 Feb 99)
l R5: update issues 103, 112; added issues 114 to 126. Format revisions to prepare for making list public. (30 Dec

98)
l R4: post-Santa Cruz II updated: Issues 110, 111, 112, 113 added, several issues corrected. (22 Oct 98)
l R3: post-Santa Cruz II: Issues 94 to 109 added, many issues updated to reflect LWG consensus (12 Oct 98)
l R2: pre-Santa Cruz II: Issues 73 to 93 added, issue 17 updated. (29 Sep 98)
l R1: Correction to issue 55 resolution, 60 code format, 64 title. (17 Sep 98)

Issue Status

New - The issue has not yet been reviewed by the LWG. Any Proposed Resolution is purely a suggestion from the
issue submitter, and should not be construed as the view of LWG.

Open - The LWG has discussed the issue but is not yet ready to move the issue forward. There are several possible
reasons for open status:

l Consensus may have not yet have been reached as to how to deal with the issue.
l Informal consensus may have been reached, but the LWG awaits exact Proposed Resolution wording for review.
l The LWG wishes to consult additional technical experts before proceeding.
l The issue may require further study.

A Proposed Resolution for an open issue is still not be construed as the view of LWG. Comments on the current state
of discussions are often given at the end of open issues in an italic font. Such comments are for information only and
should not be given undue importance. They do not appear in the public version.

Dup - The LWG has reached consensus that the issue is a duplicate of another issue, and will not be further dealt with.
A Rationale identities the duplicated issue's issue number.

NAD - The LWG has reached consensus that the issue is not a defect in the Standard, and the issue is ready to forward
to the full committee as a proposed record of response. A Rationale discusses the LWG's reasoning.

Review - Exact wording of a Proposed Resolution is now available for review on an issue for which the LWG
previously reached informal consensus.

Ready - The LWG has reached consensus that the issue is a defect in the Standard, the Proposed Resolution is correct,
and the issue is ready to forward to the full committee for further action as a Defect Report (DR).

DR - (Defect Report) - The full J16 committee has voted to forward the issue to the Project Editor to be processed as a
Potential Defect Report. The Project Editor reviews the issue, and then forwards it to the WG21 Convenor, who returns
it to the full committee for final disposition. This issues list accords the status of DR to all these Defect Reports
regardless of where they are in that process.

Library Active Issues List Page 3 of 64

TC - (Technical Corrigenda) - The full WG21 committee has voted to accept the Defect Report's Proposed Resolution as
a Technical Corrigenda. Action on this issue is thus complete and no further action is possible under ISO rules.

RR - (Record of Response) - The full WG21 committee has determined that this issue is not a defect in the Standard.
Action on this issue is thus complete and no further action is possible under ISO rules.

Future - In addition to the regular status, the LWG believes that this issue should be revisited at the next revision of the
standard. It is usually paired with NAD.

Issues are always given the status of New when they first appear on the issues list. They may progress to Open or
Review while the LWG is actively working on them. When the LWG has reached consensus on the disposition of an
issue, the status will then change to Dup, NAD, or Ready as appropriate. Once the full J16 committee votes to forward
Ready issues to the Project Editor, they are given the status of Defect Report (DR). These in turn may become the basis
for Technical Corrigenda (TC), or are closed without action other than a Record of Response (RR). The intent of this
LWG process is that only issues which are truly defects in the Standard move to the formal ISO DR status.

Active Issues

3. Atexit registration during atexit() call is not described

Section: 18.3 lib.support.start.term Status: Open Submitter: Steve Clamage Date: 12 Dec 97 Msg: lib-6500

We appear not to have covered all the possibilities of exit processing with respect to atexit registration.

Example 1: (C and C++)

 #include <stdlib.h>
 void f1() { }
 void f2() { atexit(f1); }

 int main()
 {
 atexit(f2); // the only use of f2
 return 0; // for C compatibility
 }

At program exit, f2 gets called due to its registration in main. Running f2 causes f1 to be newly registered during the
exit processing. Is this a valid program? If so, what are its semantics?

Interestingly, neither the C standard, nor the C++ draft standard nor the forthcoming C9X Committee Draft says
directly whether you can register a function with atexit during exit processing.

All 3 standards say that functions are run in reverse order of their registration. Since f1 is registered last, it ought to be
run first, but by the time it is registered, it is too late to be first.

If the program is valid, the standards are self-contradictory about its semantics.

Example 2: (C++ only)

 void F() { static T t; } // type T has a destructor

 int main()
 {
 atexit(F); // the only use of F
 }

Library Active Issues List Page 4 of 64

Function F registered with atexit has a local static variable t, and F is called for the first time during exit processing. A
local static object is initialized the first time control flow passes through its definition, and all static objects are
destroyed during exit processing. Is the code valid? If so, what are its semantics?

Section 18.3 "Start and termination" says that if a function F is registered with atexit before a static object t is
initialized, F will not be called until after t's destructor completes.

In example 2, function F is registered with atexit before its local static object O could possibly be initialized. On that
basis, it must not be called by exit processing until after O's destructor completes. But the destructor cannot be run until
after F is called, since otherwise the object could not be constructed in the first place.

If the program is valid, the standard is self-contradictory about its semantics.

I plan to submit Example 1 as a public comment on the C9X CD, with a recommendation that the results be undefined.
(Alternative: make it unspecified. I don't think it is worthwhile to specify the case where f1 itself registers additional
functions, each of which registers still more functions.)

I think we should resolve the situation in the whatever way the C committee decides.

For Example 2, I recommend we declare the results undefined.

Proposed Resolution:

[Kona: Steve analyzed this issue in depth, and presented the first draft of a paper for reaction. Of four options
presented, the LWG favored #2, which retains "destruction in reverse order of construction" and never re-creates local
static objects. Reasons are 1) easier to explain, 2) clearer mental model, 3) gives users a hook to do what they need to
do, 4) eliminates special cases. Steve will finish his paper, which includes his proposed resolution.]

8. Locale::global lacks guarantee

Section: 22.1.1.5 lib.locale.statics Status: Review Submitter: Matt Austern Date: 24 Dec 97

It appears there's an important guarantee missing from clause 22. We're told that invoking locale::global(L) sets the C
locale if L has a name. However, we're not told whether or not invoking setlocale(s) sets the global C++ locale.

The intent, I think, is that it should not, but I can't find any such words anywhere.

Proposed Resolution:

Add a sentence at the end of 22.1.1.5 [lib.locale.statics], paragraph 2:

No library function other than locale::global() shall affect the value returned by locale().

[Kona: Matt Austern provided the proposed resolution wording.]

9. Operator new(0) calls should not yield the same pointer

Section: 18.4.1 lib.new.delete Status: Open Submitter: Steve Clamage Date: 4 Jan 98

Scott Meyers, in a comp.std.c++ posting: I just noticed that section 3.7.3.1 of CD2 seems to allow for the possibility
that all calls to operator new(0) yield the same pointer, an implementation technique specifically prohibited by ARM

Library Active Issues List Page 5 of 64

5.3.3.Was this prohibition really lifted? Does the FDIS agree with CD2 inthe regard? [Issues list maintainer's note: the
IS is the same.]

Steve: Yes, the FDIS is the same. I never noticed this change. Was it on purpose, or something that fell into an editorial
crack?

Josee: The statement Scott refers to is still in Section 5.3.4, albeit a little bit modified. i.e. 5.3.4 para 7: "When the
value of the expression in a direct-new-declarator is zero, the allocation function is called to allocate an array with no
elements. The pointer returned by the new-expression is non-null. [Note: If the library allocation function is called, the
pointer returned is distinct from the pointer to any other object.]"

Josee: Section 3.7.3.1 never discussed this, and the requirement has always been in Section 5.3.4 (or 5.3.3, as it was
numbered in the ARM). Unfortunately, the last sentence in 5.3.4 para 7 is not normative. I believe this is a rule that
should appear in Chapter 18, in the section on the C++ standard library operator new.

Josee: Section 3.7.3.1 describes the requirements on the semantics of the user provided new operators. The requirement
that operator new(0) must return a pointer that is distinct from the pointer to any other object only holds, I believe,
when the C++ standard library operator new is called. For other new operators, especially for class specific new
operators, this requirement does not hold.

Josee: I think this is one of these core/library issues that the two WGs should discuss.

Proposed Resolution:

[Kona: After initial discussion, Steve drafted an analysis, concluding that the choices are:

1. A request for zero size never fails, meaning values need not be distinct.
2. A request for zero size returns a distinct pointer value if it succeeds, but is allowed to fail.

After much further discussion, there was agreement that choice 2 is the desired behavior. Steve will draft wording.]

17. Bad bool parsing

Section: 22.2.2.1.2 lib.facet.num.get.virtuals Status: Ready Submitter: Nathan Myers Date: 6 Aug 98

This section describes the process of parsing a text boolean value from the input stream. It does not say it recognizes
either of the sequences "true" or "false" and returns the corresponding bool value; instead, it says it recognizes only one
of those sequences, and chooses which according to the received value of a reference argument intended for returning
the result, and reports an error if the other sequence is found. (!) Furthermore, it claims to get the names from the
ctype<> facet rather than the numpunct<> facet, and it examines the "boolalpha" flag wrongly; it doesn't define the
value "loc"; and finally, it computes wrongly whether to use numeric or "alpha" parsing.

I believe the correct algorithm is "as if":

 // in, err, val, and str are arguments.
 err = 0;
 const numpunct<charT>& np = use_facet<numpunct<charT> >(str.getloc());
 const string_type t = np.truename(), f = np.falsename();
 bool tm = true, fm = true;
 size_t pos = 0;
 while (tm && pos < t.size() || fm && pos < f.size()) {
 if (in == end) { err = str.eofbit; }
 bool matched = false;
 if (tm && pos < t.size()) {
 if (!err && t[pos] == *in) matched = true;
 else tm = false;

Library Active Issues List Page 6 of 64

 }
 if (fm && pos < f.size()) {
 if (!err && f[pos] == *in) matched = true;
 else fm = false;
 }
 if (matched) { ++in; ++pos; }
 if (pos > t.size()) tm = false;
 if (pos > f.size()) fm = false;
 }
 if (tm == fm || pos == 0) { err |= str.failbit; }
 else { val = tm; }
 return in;

Notice this works reasonably when the candidate strings are both empty, or equal, or when one is a substring of the
other. The proposed text below captures the logic of the code above.

Proposed Resolution:

In 22.2.2.1.2 [lib.facet.num.get.virtuals], in the first line of paragraph 14, change "&&" to "&".

Then, replace paragraphs 15 and 16 as follows:

Otherwise target sequences are determined "as if" by calling the members falsename() and truename
() of the facet obtained by use_facet<>(str.getloc()). Successive characters in the range
[in,end) (see [lib.sequence.reqmts]) are obtained and matched against corresponding positions in the
target sequences only as necessary to identify a unique match. The input iterator in is compared to end
only when necessary to obtain a character. If and only if a target sequence is uniquely matched, val is set
to the corresponding value.

The in iterator is always left pointing one position beyond the last character successfully matched. If val
is set, then err is set to str.goodbit; or to str.eofbit if, when seeking another character to match, it
is found that (in==end). If val is not set, then _err_ is set to str.failbit; or to
(str.failbit|str.eofbit)if the reason for the failure was that (in==end). [Example: for targets
true:"a" and false:"abb", the input sequence "a" yields val==true and err==str.eofbit; the
input sequence "abc" yields err=str.failbit, with in ending at the 'c' element. For targets true:"1"
and false:"0", the input sequence "1" yields val==true and err=str.goodbit. For empty targets
(""), any input sequence yields err==str.failbit. --end example]

[Dublin: Dietmar Kühl has reviewed the proposed resolution wording and has some questions he will discuss with
Nathan.]

[Kona: Dietmar will submit new issues regarding his concerns.]

19. "Noconv" definition too vague

Section: 22.2.1.5.2 lib.locale.codecvt.virtuals Status: Review Submitter: Nathan Myers Date: 6 Aug 98

In the definitions of codecvt<>::do_out and do_in, they are specified to return noconv if "no conversion is needed". This
definition is too vague, and does not say normatively what is done with the buffers.

Proposed Resolution:

Change the entry for noconv in the table under paragraph 4 in section 22.2.1.5.2 [lib.locale.codecvt.virtuals] to read:

noconv: internT and externT are the same type, and input sequence is identical to converted
sequence.

Library Active Issues List Page 7 of 64

Change the Note in paragraph 2 to normative text as follows:

If returns noconv, internT and externT are the same type and the converted sequence is identical to
the input sequence [from,from_next). to_next is set equal to to, the value of state is unchanged,
and there are no changes to the values in [to, to_limit).

[Kona: Matt Austern provided the proposed resolution wording.]

21. Codecvt_byname<> instantiations

Section: 22.1.1.1.1 lib.locale.category Status: Ready Submitter: Nathan Myers Date: 6 Aug 98

In the second table in the section, captioned "Required instantiations", the instantiations for codecvt_byname<> have
been omitted. These are necessary to allow users to construct a locale by name from facets.

Proposed Resolution:

Add in 22.1.1.1.1 [lib.locale.category] to the table captioned "Required instantiations", in the category "ctype" the lines

codecvt_byname<char,char,mbstate_t>,
codecvt_byname<wchar_t,char,mbstate_t>

[Kona: reviewed by LWG.]

26. Bad sentry example

Section: 27.6.1.1.2 lib.istream::sentry Status: Open Submitter: Nathan Myers Date: 6 Aug 98

In paragraph 6, the code in the example:

 template <class charT, class traits = char_traits<charT> >
 basic_istream<charT,traits>::sentry(
 basic_istream<charT,traits>& is, bool noskipws = false) {
 ...
 int_type c;
 typedef ctype<charT> ctype_type;
 const ctype_type& ctype = use_facet<ctype_type>(is.getloc());
 while ((c = is.rdbuf()->snextc()) != traits::eof()) {
 if (ctype.is(ctype.space,c)==0) {
 is.rdbuf()->sputbackc (c);
 break;
 }
 }
 ...
 }

fails to demonstrate correct use of the facilities described. In particular, it fails to use traits operators, and specifies
incorrect semantics. (E.g. it specifies skipping over the first character in the sequence without examining it.)

Proposed Resolution:

Replace the example with better code, as follows:

Library Active Issues List Page 8 of 64

 template <class charT, class traits>
 basic_istream<charT,traits>::sentry::sentry(
 basic_istream<charT,traits>& is, bool noskipws)
 {
 typedef ctype<charT> ctype_type;
 const ctype_type& ct = use_facet<ctype_type>(is.getloc());
 for (int_type c = is.rdbuf()->sgetc();
 !traits::eq_int_type(c,traits::eof()) && ct.is(ct.space,c);
 c = is.rdbuf()->snextc())
 {}
 }

[Kona: LWG identified problems needing further work: 1) argument noskipsw not referenced, 2) missing flush(), 3) does
not handle errors. Nathan will work on it.]

31. Immutable locale values

Section: 22.1.1 [lib.locale] Status: Open Submitter: Nathan Myers Date: 6 Aug 98

Paragraph 6, says "An instance of _locale_ is *immutable*; once a facet reference is obtained from it, ...". This has
caused some confusion, because locale variables are manifestly assignable.

Proposed Resolution:

In 22.1.1 [lib.locale] replace paragraph 6,

An instance of locale is immutable; once a facet reference is obtained from it, that reference remains
usable as long as the locale value itself exists.

with

A locale value is immutable. This means that once a facet reference is obtained from a locale object by
calling use_facet<>, that reference remains usable, and the results from member functions of it may be
cached and re-used, until the locale object is assigned to or destroyed.

[Kona: Nathan will work on wording; change to "cached and re-used without change" or similar.]

32. Pbackfail description inconsistent

Section: 27.5.2.4.4 lib.streambuf.virt.pback Status: Ready Submitter: Nathan Myers Date: 6 Aug 98

The description of the required state before calling virtual member basic_streambuf<>::pbackfail requirements is
inconsistent with the conditions described in 27.5.2.2.4 [lib.streambuf.pub.pback] where member sputbackc calls it.
Specifically, the latter says it calls pbackfail if:

 traits::eq(c,gptr()[-1]) is false

where pbackfail claims to require:

 traits::eq(*gptr(),traits::to_char_type(c)) returns false

It appears that the pbackfail description is wrong.

Library Active Issues List Page 9 of 64

Proposed Resolution:

In 27.5.2.4.4 [lib.streambuf.virt.pback], paragraph 1, change:

"traits::eq(*gptr(),traits::to_char_type(c))"

to

"traits::eq(traits::to_char_type(c),gptr()[-1])"

Rationale:

Note deliberate reordering of arguments for clarity in addition to the correction of the argument value.

[Dublin: Dietmar wants more people to look at this.]

[Kona: Three implementors confirmed that the proposed resolution is correct.]

41. Ios_base needs clear(), exceptions()

Section: 27.4.2 [lib.ios.base] Status: Ready Submitter: Nathan Myers Date: 6 Aug 98

The description of ios_base::iword() and pword() in 27.4.2.4 [lib.ios.members.static], say that if they fail, they "set
badbit, which may throw an exception". However, ios_base offers no interface to set or to test badbit; those interfaces are
defined in basic_ios<>.

Proposed Resolution:

Change the description in 27.4.2.5 [lib.ios.members.storage] in paragraph 2, and also in paragraph 4, as follows.
Replace

If the function fails it sets badbit, which may throw an exception.

with

If the function fails, and *this is a base sub-object of a basic_ios<> object or sub-object, the effect is
equivalent to calling basic_ios<>::setstate(badbit) on the derived object (which may throw
failure).

[Kona: LWG reviewed wording; setstate(failbit) changed to setstate(badbid).]

42. String ctors specify wrong default allocator

Section: 21.3 [lib.basic.string] Status: Ready Submitter: Nathan Myers Date: 6 Aug 98

The basic_string<> copy constructor:

basic_string(const basic_string& str, size_type pos = 0,
 size_type n = npos, const Allocator& a = Allocator());

Library Active Issues List Page 10 of 64

specifies an Allocator argument default value that is counter-intuitive. The natural choice for a the allocator to copy
from is str.get_allocator(). Though this cannot be expressed in default-argument notation, overloading suffices.

Alternatively, the other containers in Clause 23 (deque, list, vector) do not have this form of constructor, so it is
inconsistent, and an evident source of confusion, for basic_string<> to have it, so it might better be removed.

Proposed Resolution:

In 21.3 [lib.basic.string], replace the declaration of the copy constructor as follows:

basic_string(const basic_string& str);
basic_string(const basic_string& str, size_type pos, size_type n = npos,
 const Allocator& a = Allocator());

 In 21.3.1 [lib.string.cons], replace the copy constructor declaration as above. Add to paragraph 5, Effects:

In the first form, the Allocator value used is copied from str.get_allocator().

Rationale:

The LWG believes the constructor is actually broken, rather than just an unfortunate design choice.

The LWG considered two other possible resolutions:

A. In 21.3 [lib.basic.string], replace the declaration of the copy constructor as follows:

basic_string(const basic_string& str, size_type pos = 0,
 size_type n = npos);
basic_string(const basic_string& str, size_type pos,
 size_type n, const Allocator& a);

 In 21.3.1 [lib.string.cons], replace the copy constructor declaration as above. Add to paragraph 5, Effects:

When no Allocator argument is provided, the string is constructed using the value
str.get_allocator().

B. In 21.3 [lib.basic.string], and also in 21.3.1 [lib.string.cons], replace the declaration of the copy constructor as
follows:

basic_string(const basic_string& str, size_type pos = 0,
 size_type n = npos);

The proposed resolution reflects the original intent of the LWG. It was also noted by Pete Becker that this fix "will
cause a small amount of existing code to now work correctly."

[PJP says that this fix was previously agreed to, but failed to be edited into the standard.]

[Dublin: reviewed by LWG]

[Kona: issue editing snafu fixed - the proposed resolution now correctly reflects the LWG consensus.]

44. Iostreams use operator== on int_type values

Library Active Issues List Page 11 of 64

Section: 27 [lib.input.output] Status: Open Submitter: Nathan Myers Date: 6 Aug 98

Many of the specifications for iostreams specify that character values or their int_type equivalents are compared using
operators == or !=, though in other places traits::eq() or traits::eq_int_type is specified to be used throughout. This is an
inconsistency; we should change uses of == and != to use the traits members instead.

Proposed Resolution:

[Nathan to supply proposed wording.]

49. Underspecification of ios_base::sync_with_stdio

Section: 27.4.2.4 lib.ios.members.static Status: Open Submitter: Matt Austern Date: 21 Jun 98

Two problems.

(1) 27.4.2.4 doesn't say what ios_base::sync_with_stdio(f) returns. Does it return f, or does it return the previous
synchronization state? My guess is the latter, but the standard doesn't say so.

(2) 27.4.2.4 doesn't say what it means for streams to be synchronized with stdio. Again, of course, I can make some
guesses. (And I'm unhappy about the performance implications of those guesses, but that's another matter.)

Proposed Resolution:

Change the following sentenance in 27.4.2.4 lib.ios.members.static returns clause from:

true if the standard iostream objects (27.3) are synchronized and otherwise returns false.

to:

true if the previous state of the standard iostream objects (27.3) was synchronized and otherwise returns
false.

[The LWG agrees (2) that a definition of synchronized is required. Jerry Schwarz will work by email with Matt
Austern to provide such a definition.]

50. Copy constructor and assignment operator of ios_base

Section: 27.4.2 lib.ios.base Status: Ready Submitter: Matt Austern Date: 21 Jun 98

As written, ios_base has a copy constructor and an assignment operator. (Nothing in the standard says it doesn't have
one, and all classes have copy constructors and assingment operators unless you take specific steps to avoid them.)
However, nothin in 27.4.2 says what the copy constructor and assignment operator do.

My guess is that this was an oversight, that ios_base is, like basic_ios, not supposed to have a copy constructor or an
assignment operator.

A LWG member [Jerry Schwarz] comments: Yes, its an oversight, but in the opposite sense to what you're suggesting.
At one point there was a definite intention that you could copy ios_base. It's an easy way to save the entire state of a
stream for future use. As you note, to carry out that intention would have required a explicit description of the semantics

Library Active Issues List Page 12 of 64

(e.g. what happens to the iarray and parray stuff). So I guess [remainder of comment disappeared into the black hole of
email].

Proposed Resolution:

In 27.4.2 lib.ios.base, class ios_base, specify the copy constructor and operator= members as being private.

Rationale:

The LWG believes the difficulty of specifying correct semantics outweighs any benefit of allowing ios_base objects to be
copyable.

53. Basic_ios destructor unspecified

Section: 27.4.4.1 lib.basic.ios.cons, 27.4.4.2 lib.basic.ios.members Status: Ready Submitter: Matt Austern Date: 23
Jun 98

There's nothing in 27.4.4 saying what basic_ios's destructor does.

The important question is whether basic_ios::~basic_ios() destroys rdbuf().

Proposed Resolution:

Add after 27.4.4.1 lib.basic.ios.cons paragraph 2:

virtual ~basic_ios();

Notes: The destructor does not destroy rdbuf().

Rationale:

The LWG reviewed the additional question of whether or not rdbuf(0) may set badbit. The answer is clearly yes; it
may be set via clear(). See 27.4.4.2 lib.basic.ios.members, paragraph 6.

[Kona: reviewed at length by the LWG, which removed from the proposed resolution a footnote which incorrectly said
"rdbuf(0) does not set badbit".]

60. What is a formatted input function?

Section: 27.6.1.2.1 lib.istream.formatted.reqmts Status: Ready Submitter: Matt Austern Date:3 Aug 98

Paragraph 1 of 27.6.1.2.1 contains general requirements for all formatted input functions. Some of the functions defined
in section 27.6.1.2 explicitly say that those requirements apply ("Behaves like a formatted input member (as described in
27.6.1.2.1)"), but others don't. The question: is 27.6.1.2.1 supposed to apply to everything in 27.6.1.2, or only to those
member functions that explicitly say "behaves like a formatted input member"? Or to put it differently: are we to assume
that everything that appears in a section called "Formatted input functions" really is a formatted input function? I
assume that 27.6.1.2.1 is intended to apply to the arithmetic extractors (27.6.1.2.2), but I assume that it is not intended
to apply to extractors like

 basic_istream& operator>>(basic_istream& (*pf)(basic_istream&));

Library Active Issues List Page 13 of 64

and

 basic_istream& operator>>(basic_streammbuf*);

There is a similar ambiguity for unformatted input, formatted output, and unformatted output.

Comments from Judy Ward: It seems like the problem is that the basic_istream and basic_ostream operator <<()'s that
are used for the manipulators and streambuf* are in the wrong section and should have their own separate section or be
modified to make it clear that the "Common requirements" listed in section 27.6.1.2.1 (for basic_istream) and section
27.6.2.5.1 (for basic_ostream) do not apply to them.

Additional comments from Dietmar Kühl: It appears to be somewhat nonsensical to consider the functions defined in
27.6.1.2.3 lib.istream::extractors paragraphs 1 to 5 to be "Formatted input function" but since these functions are
defined in a section labeled "Formatted input functions" it is unclear to me whether these operators are considered
formatted input functions which have to conform to the "common requirements" from 27.6.1.2.1
(lib.istream.formatted.reqmts): If this is the case, all manipulators, not just ws, would skip whitespace unless noskipws
is set (... but setting noskipws using the manipulator syntax would also skip whitespace :-)

It is not clear which functions are to be considered unformatted input functions. As written, it seems that all functions in
27.6.1.3 (lib.istream.unformatted) are unformatted input functions. However, it does not really make much sense to
construct a sentry object for gcount(), sync(), ... Also it is unclear what happens to the gcount() if eg. gcount(),
putback(), unget(), or sync() is called: These functions don't extract characters, some of them even "unextract" a
character. Should this still be reflected in gcount()? Of course, it could be read as if after a call to gcount() gcount
() return 0 (the last unformatted input function, gcount(), didn't extract any character) and after a call to putback()
gcount() returns -1 (the last unformatted input functon putback() did "extract" back into the stream).
Correspondingly for unget(). Is this what is intended? If so, this should be clarified. Otherwise, a corresponding
clarification should be used.

Proposed Resolution:

Change the standard as specified in J16/99-0043==WG21/N1219, Proposed Resolution to Library Issue 60, section "VI
Wording", by Judy Ward and Matt Austern.

[Kona: The LWG reviewed a draft of Judy and Matt's paper. Several implementors reviewed their implementations and
several changes were made to the draft. The LWG then unanimously agreed to the proposed resolution.]

61. Ambiguity in iostreams exception policy

Section: 27.6.1.3 lib.istream.unformatted Status: Open Submitter: Matt Austern Date:6 Aug 98

The introduction to the section on unformatted input (27.6.1.3) says that every unformatted input function catches all
exceptions that were thrown during input, sets badbit, and then conditionally rethrows the exception. That seems clear
enough. Several of the specific functions, however, such as get() and read(), are documented in some circumstances as
setting eofbit and/or failbit. (The standard notes, correctly, that setting eofbit or failbit can sometimes result in an
exception being thrown.) The question: if one of these functions throws an exception triggered by setting failbit, is this
an exception "thrown during input" and hence covered by 27.6.1.3, or does 27.6.1.3 only refer to a limited class of
exceptions? Just to make this concrete, suppose you have the following snippet.

 char buffer[N];
 istream is;
 ...
 is.exceptions(istream::failbit); // Throw on failbit but not on badbit.
 is.read(buffer, N);

Library Active Issues List Page 14 of 64

Now suppose we reach EOF before we've read N characters. What iostate bits can we expect to be set, and what
exception (if any) will be thrown?

Proposed Resolution:

Alternative A:
In 27.6.1.3, paragraph 1, change "If an exception is thrown during input then..." to "If, during input, an exception is
thrown by one of rdbuf()'s virtual members or by a locale or a locale facet, then...".

Alternative B:
In 27.6.1.3, paragraph 1, after the sentence that begins "If an exception is thrown...", add the following parenthetical
comment: "(Exceptions thrown from basic_ios<>::clear() are not caught or rethrown.)"

[Kona: Matt Austern provided the proposed resolution wording.]

63. Exception-handling policy for unformatted output

Section: 27.6.2.6 lib.ostream.unformatted Status: Review Submitter: Matt Austern Date:11 Aug 98

Clause 27 details an exception-handling policy for formatted input, unformatted input, and formatted output. It says
nothing for unformatted output (27.6.2.6). 27.6.2.6 should either include the same kind of exception-handling policy as
in the other three places, or else it should have a footnote saying that the omission is deliberate.

Proposed Resolution:

In 27.6.2.6, paragraph 1, replace the last sentence ("In any case, the unformatted output function ends by destroying the
sentry object, then returning the value specified for the formatted output function.") with the following text:

If an exception is thrown during output, then ios::badbit is turned on [Footnote: without causing an
ios::failure to be thrown.] in *this's error state. If (exception() & badbit) != 0 then the
exception is rethrown. In any case, the unformatted output function ends by destroying the sentry object,
then, if no exception was thrown, returning the value specified for the formatted output function.

[Kona: Matt Austern provided the proposed resolution wording.]

76. Can a codecvt facet always convert one internal character at a time?

Section: 22.2.1.5 lib.locale.codecvt Status: Open Submitter: Matt Austern Date: 25 Sep 98

This issue concerns the requirements on classes derived from codecvt, including user-defined classes. What are the
restrictions on the conversion from external characters (e.g. char) to internal characters (e.g. wchar_t)? Or,
alternatively, what assumptions about codecvt facets can the I/O library make?

The question is whether it's possible to convert from internal characters to external characters one internal character at a
time, and whether, given a valid sequence of external characters, it's possible to pick off internal characters one at a
time. Or, to put it differently: given a sequence of external characters and the corresponding sequence of internal
characters, does a position in the internal sequence correspond to some position in the external sequence?

To make this concrete, suppose that [first, last) is a sequence of M external characters and that [ifirst,
ilast) is the corresponding sequence of N internal characters, where N > 1. That is, my_encoding.in(), applied to
[first, last), yields [ifirst, ilast). Now the question: does there necessarily exist a subsequence of external
characters, [first, last_1), such that the corresponding sequence of internal characters is the single character
*ifirst?

Library Active Issues List Page 15 of 64

(What a "no" answer would mean is that my_encoding translates sequences only as blocks. There's a sequence of M
external characters that maps to a sequence of N internal characters, but that external sequence has no subsequence that
maps to N-1 internal characters.)

Some of the wording in the standard, such as the description of codecvt::do_max_length (22.2.1.5.2, paragraph
11) and basic_filebuf::underflow (27.8.1.4, paragraph 3) suggests that it must always be possible to pick off
internal characters one at a time from a sequence of external characters. However, this is never explicitly stated one way
or the other.

This issue seems (and is) quite technical, but it is important if we expect users to provide their own encoding facets.
This is an area where the standard library calls user-supplied code, so a well-defined set of requirements for the user-
supplied code is crucial. Users must be aware of the assumptions that the library makes. This issue affects positioning
operations on basic_filebuf, unbuffered input, and several of codecvt's member functions.

Proposed Resolution:

[Matt Austern will attempt wording; it is very complex.]

83. String::npos vs. string::max_size()

Section: 21.3 lib.basic.string Status: Ready Submitter: Nico Josuttis Date: 29 Sep 98

Many string member functions throw if size is getting or exceeding npos. However, I wonder why they don't throw if
size is getting or exceeding max_size() instead of npos. May be npos is known at compile time, while max_size() is
known at runtime. However, what happens if size exceeds max_size() but not npos, then ? It seems the standard lacks
some clarifications here.

Proposed Resolution:

[The LWG believes length_error is the right exception to throw. At the request of the LWG, Nico proposes the
following wording.]

After 21.3 [lib.basic.string] paragraph 4 ("The functions described in this clause...") add a new paragraph:

For any string operation, if as a result of the operation, size() would exceed max_size() then the
operation throws length_error.

86. String constructors don't describe exceptions

Section: 21.3.1 lib.string.cons Status: Review Submitter: Nico Josuttis Date: 29 Sep 98

The constructor from a range:

 template<class InputIterator>
 basic_string(InputIterator begin, InputIterator end,
 const Allocator& a = Allocator());

lacks a throw specification. However, I would expect that it throws according to the other constructors if the numbers of
characters in the range equals npos (or exceeds max_size(), see above).

Proposed resolution:

Library Active Issues List Page 16 of 64

[Dublin: Needs a throws paragraph. Kona: Nico provided wording, insuring that it works for input iterators and does
not over-constrain implementors as to when to throw.]

At the beginning of 21.3.1 [lib.string.cons] paragraph 15 add:

Throws: length_error if distance(begin,end) equals or exceeds npos (see
[lib.iterator.operations] for distance()).

91. Description of operator>> and getline() for string<> might cause endless loop

Section: 21.3.7.9 lib.string.io Status: Review Submitter: Nico Josuttis Date: 29 Sep 98

Operator >> and getline() for strings read until eof() in the input stream is true. However, this might never happen, if
the stream can't read anymore without reaching EOF. So shouldn't it be changed into that it reads until !good() ?

Proposed resolution:

[Dublin: Should say "read until an attempt to extract a character fails" or similar. The same problem occurs
elsewhere.

Pre-Kona: Nico provided the following wording:.]

In 21.3.7.9 [lib.string.io], paragraph 1, last sentence "Characters are extracted and appended until any of the following
occurs:...", replace:

 - end-of-file occurs on the input sequence;

with:

 - an attempt to extract a character fails;

In 21.3.7.9 [lib.string.io], paragraph 5, last sentence, replace :

 - end-of-file occurs on the input sequence (in which case, the getline function calls is.setstate(ios_base::eofbit)).

with:

 - an attempt to extract a character fails

In 23.3.5.3 [lib.bitset.operators], paragraph 5, last sentence, replace:

 - end-of-file occurs on the input sequence;

with:

 - an attempt to extract a character fails;

[Pre-Kona: Nico comments: operator>> for complex<> has a different and very short specification:

12- Effects: Extracts a complex number x of the form: u, (u), or (u,v), where u is the real part and v is the imaginary
part (lib.istream.formatted).

-13- Requires: The input values be convertible to T. If bad input is encountered, calls is.setstate(ios::failbit) (which may

Library Active Issues List Page 17 of 64

throw ios::failure (lib.iostate.flags).

Do we have to change something, here?]

92. Incomplete Algorithm Requirements

Section: 25 lib.algorithms Status: Open Submitter: Nico Josuttis Date: 29 Sep 98

The standard does not state, how often a function object is copied, called, or the order of calls inside an algorithm. This
may lead to suprising/buggy behavior. Consider the following example:

class Nth { // function object that returns true for the nth element
 private:
 int nth; // element to return true for
 int count; // element counter
 public:
 Nth (int n) : nth(n), count(0) {
 }
 bool operator() (int) {
 return ++count == nth;
 }
};
....
// remove third element
 list<int>::iterator pos;
 pos = remove_if(coll.begin(),coll.end(), // range
 Nth(3)), // remove criterion
 coll.erase(pos,coll.end());

This call, in fact removes the 3rd AND the 6th element. This happens because the usual implementation of the
algorithm copies the function object internally:

template <class ForwIter, class Predicate>
ForwIter std::remove_if(ForwIter beg, ForwIter end, Predicate op)
{
 beg = find_if(beg, end, op);
 if (beg == end) {
 return beg;
 }
 else {
 ForwIter next = beg;
 return remove_copy_if(++next, end, beg, op);
 }
}

The algorithm uses find_if() to find the first element that should be removed. However, it then uses a copy of the passed
function object to process the resulting elements (if any). Here, Nth is used again and removes also the sixth element.
This behavior compromises the advantage of function objects being able to have a state. Without any cost it could be
avoided (just implement it directly instead of calling find_if()).

Proposed resolution:

The standard should specify that this kind of implementation is a bug. Something like "it is guaranteed that an
algorithm uses the same object for all calls of passed function objects (however, it may be a copy)".

[Santa Cruz: The LWG believes that there may be more to this than meets the eye. It applies to all function objects,
particularly predicates. Two questions: (1) must a function object be copyable? (2) how many times is a function object
called? These are in effect questions about state. Function objects appear to require special copy semantics to make
state work, and may fail if calling alters state and calling occurs an unexpected number of times.

Library Active Issues List Page 18 of 64

Dublin: Pete Becker felt that this may not be a defect, but rather something that programmers need to be educated
about. There was discussion of adding wording to the effect that the number and order of calls to function objects,
including predicates, not affect the behavior of the function object.

Pre-Kona: Nico comments: It seems the problem is that we don't have a clear statement of "predicate" in the standard.
People including me seemed to think "a function returning a Boolean value and being able to be called by an STL
algorithm or be used as sorting criterion or ... is a predicate". But a predicate has more requirements: It should never
change its behavior due to a call or being copied. IMHO we have to state this in the standard. If you like, see section
8.1.4 of my library book for a detailed discussion.

Kona: Nico will provide wording to the effect that "unless otherwise specified, the number of copies of and calls to
function objects by algorithms is unspecified". Consider placing in 25 lib.algorithms after paragraph 9]

94. May library implementors add template parameters to Standard Library classes?

Section: 17.4.4 lib.conforming Status: Open Submitter: Matt Austern Date: 22 Jan 98

Is it a permitted extension for library implementors to add template parameters to standard library classes, provided that
those extra parameters have defaults? For example, instead of defining template <class T, class Alloc =
allocator<T> > class vector; defining it as template <class T, class Alloc = allocator<T>, int
N = 1> class vector;

The standard may well already allow this (I can't think of any way that this extension could break a conforming
program, considering that users are not permitted to forward-declare standard library components), but it ought to be
explicitly permitted or forbidden.

Proposed Resolution:

Add a new subclause [presumably 17.4.4.9] following 17.4.4.8 [lib.res.on.exception.handling]:

17.4.4.9 Template Parameters

A specialization of a template class described in the C++ Standard Library behaves the same as if the
implementation declares no additional template parameters.

Footnote/ Additional template parameters with default values are thus permitted.

Add "template parameters" to the list of subclauses at the end of 17.4.4 paragraph 1 [lib.conforming].

[Kona: The LWG agreed the standard needs clarification. After discussion with John Spicer, it seems added template
parameters can be detected by a program using template-template parameters. A straw vote - "should implementors be
allowed to add template parameters?" found no consensus ; 5 - yes, 7 - no.]

96. Vector<bool> is not a container

Section: 23.2.5 lib.vector.bool Status: Open Submitter: AFNOR Date: 7 Oct 98

vector<bool> is not a container as its reference and pointer types are not references and pointers.

Also it forces everyone to have a space optimization instead of a speed one.

Library Active Issues List Page 19 of 64

See also: 99-0008 == N1185 Vector<bool> is Nonconforming, Forces Optimization Choice.

Proposed Resolution:

[In Santa Cruz the LWG felt that this was Not A Defect.]

[In Dublin many present felt that failure to meet Container requirements was a defect. There was disagreement as to
whether or not the optimization requirements constituted a defect.

The LWG looked at the following resolutions in some detail:

 * Not A Defect.

 * Add a note explaining that vector<bool> does not meet Container requirements.

 * Remove vector<bool>.

 * Add a new category of container requirements which vector<bool> would meet.

 * Rename vector<bool>.

No alternative had strong, wide-spread, support and every alternative had at least one "over my dead body" response.

There was also mention of a transition scheme something like (1) add vector_bool and deprecate vector<bool> in the
next standard. (2) Remove vector<bool> in the following standard.

Modifying container requirements to permit returning proxies (thus allowing container requirements conforming
vector<bool>) was also discussed.

It was also noted that there is a partial but ugly workaround in that vector<bool> maybe further specialized with a
customer allocator.

Kona: Herb Sutter presented his paper J16/99-0035==WG21/N1211, vector<bool>: More Problems, Better
Solutions. Much discussion of a two step approach: a) deprecate, b) provide replacement under a new name. LWG
straw vote on that: 1-favor, 11-could live with, 2-over my dead body. This resolution was mentioned in the LWG report
to the full committee, where several additional committee members indicated over-my-dead-body positions.]

98. Input iterator requirements are badly written

Section: 24.1.1 lib.input.iterators Status: Open Submitter: AFNOR Date: 7 Oct 98

Table 72 in 24.1.1 (lib.input.iterators) specifies semantics for *r++ of:

 { T tmp = *r; ++r; return tmp; }

This does not work for pointers and overconstrains implementors.

Proposed Resolution:

Add for *r++: “To call the copy constructor for the type T is allowed but not required.”

[Dublin: Pete Becker will attempt improved wording.]

Library Active Issues List Page 20 of 64

102. Bug in insert range in associative containers

Section: 23.1.2 lib.associative.reqmts Status: Open Submitter: AFNOR Date: 7 Oct 98

Table 69 of Containers say that a.insert(i,j) is linear if [i, j) is ordered. It seems impossible to implement, as it means
that if [i, j) = [x], insert in an associative container is O(1)!

Proposed Resolution:

N+log (size()) if [i,j) is sorted according to value_comp()

[This may need better specification. Matt Austern will ask Dave Musser.]

103. set::iterator is required to be modifiable, but this allows modification of keys

Section: 23.1.2 lib.associative.reqmts, 23.3.3 lib.set, 23.3.4 lib.mutliset Status: Open Submitter: AFNOR Date: 7
Oct 98

Set::iterator is described as implementation-defined with a reference to the container requirement; the container
requirement says that const_iterator is an iterator pointing to const T and iterator an iterator pointing to T.

At the request of the LWG, Chichiang Wan submitted the following:

23.1.2 paragraph 2 implies that the keys should not be modified to break the ordering of elements. But that is not clearly
specified. Especially considering that the current standard requires that iterator for associative containers be different
from const_iterator. Set, for example, has the following:

typedef implementation defined iterator;
 // See _lib.container.requirements_

23.1 lib.container.requirements actually requires that iterator type pointing to T (table 65). Disallowing user
modification of keys by changing the standard to require an iterator for associative container to be the same as
const_iterator would be overkill since that will unnecessarily significantly restrict the usage of associative container. A
class to be used as elements of set, for example, can no longer be modified easily without either redesigning the class
(using mutable on fields that have nothing to do with ordering), or using const_cast, which defeats requiring iterator to
be const_iterator. The proposed solution goes in line with trusting user knows what he is doing.

Proposed Resolution:

Option A. Chichiang Wan proposes In 23.1.2 lib.associative.reqmts, paragraph 2, after first sentence, and before "In
addition,...", add one line:

Modification of keys shall not change their strict weak ordering.

Option B. Matt Austern proposes Add three new sentences to 23.1.2 lib.associative.reqmts:

At the end of paragraph 5: "Keys in an associative container are immutable." At the end of paragraph 6:
"For associative containers where the value type is the same as the key type, both iterator and
const_iterator are constant iterators. It is unspecified whether or not iterator and
const_iterator are the same type."

Library Active Issues List Page 21 of 64

Option C. At the request of the LWG, Herb Sutter proposes To 23.1.2 lib.associative.reqmts, paragraph 3, which
currently reads:

The phrase ``equivalence of keys'' means the equivalence relation imposed by the comparison and not the
operator== on keys. That is, two keys k1 and k2 in the same container are considered to be equivalent if
for the comparison object comp, comp(k1, k2) == false && comp(k2, k1) == false.

 add the following:

For any two keys k1 and k2 in the same container, comp(k1, k2) shall return the same value whenever it
is evaluated. [Note: If k2 is removed from the container and later reinserted, comp(k1, k2) must still
return a consistent value but this value may be different than it was the first time k1 and k2 were in the
same container. This is intended to allow usage like a string key that contains a filename, where comp
compares file contents; if k2 is removed, the file is changed, and the same k2 (filename) is reinserted,
comp(k1, k2) must again return a consistent value but this value may be different than it was the previous
time k2 was in the container.]

Rationale:

Simply requiring that keys be immutable is not sufficient, because the comparison object may indirectly (via pointers)
operate on values outside of the keys. Furthermore, requiring that keys be immutable places undue restrictions on set
for structures where only a portion of the structure participates in the comparison.

108. Lifetime of exception::what() return unspecified

Section: 18.6.1 lib.exception para 8, 9 Status: Review Submitter: AFNOR Date: 7 Oct 98

The lifetime of the return value of exception::what() is left unspecified. This issue has implications with exception safety
of exception handling: some exceptions should not throw bad_alloc.

Proposed Resolution:

Add to 18.6.1 lib.exception paragraph 9 (exception::what notes clause) the sentence:

The return value remains valid until the exception object from which it is obtained is destroyed or a non-
const member function of the exception object is called.

109. Missing binders for non-const sequence elements

Section: 20.3.6 lib.binders Status: Open Submitter: Bjarne Stroustrup Date: 7 Oct 98

There are no versions of binders that apply to non-const elements of a sequence. This makes examples like for_each()
using bind2nd() on page 521 of "The C++ Programming Language (3rd)" non-conforming. Suitable versions of the
binders need to be added.

[Dublin: Nico volunteered to organize a discussion of this and related issues. Here it is:]

What is probably meant here is shown in the following example:

class Elem {

Library Active Issues List Page 22 of 64

 public:
 void print (int i) const { }
 void modify (int i) { }
};

int main()
{
 vector<Elem> coll(2);
 for_each (coll.begin(), coll.end(), bind2nd(mem_fun_ref(&Elem::print),42)); // OK
 for_each (coll.begin(), coll.end(), bind2nd(mem_fun_ref(&Elem::modify),42)); // ERROR
}

The error results from the fact that bind2nd() passes its first argument (the argument of the sequence) as constant
reference. See the following typical implementation:

template <class Operation>
class binder2nd
 : public unary_function<typename Operation::first_argument_type,
 typename Operation::result_type> {
protected:
 Operation op;
 typename Operation::second_argument_type value;
public:
 binder2nd(const Operation& o,
 const typename Operation::second_argument_type& v)
 : op(o), value(v) {}

 typename Operation::result_type
 operator()(const typename Operation::first_argument_type& x) const {
 return op(x, value);
 }
};

The solution is to overload operator () of bind2nd for non-constant arguments:

template <class Operation>
class binder2nd
 : public unary_function<typename Operation::first_argument_type,
 typename Operation::result_type> {
protected:
 Operation op;
 typename Operation::second_argument_type value;
public:
 binder2nd(const Operation& o,
 const typename Operation::second_argument_type& v)
 : op(o), value(v) {}

 typename Operation::result_type
 operator()(const typename Operation::first_argument_type& x) const {
 return op(x, value);
 }
 typename Operation::result_type
 operator()(typename Operation::first_argument_type& x) const {
 return op(x, value);
 }
};

Proposed Resolution:

In 20.3.6.1 [lib.binders.1st] in the declaration of binder1st after:

typename Operation::result_type
 operator()(const typename Operation::second_argument_type& x) const;

Library Active Issues List Page 23 of 64

insert:

typename Operation::result_type
 operator()(typename Operation::second_argument_type& x) const;

In 20.3.6.3 [lib.binders.2nd] in the declaration of binder2nd after:

typename Operation::result_type
 operator()(const typename Operation::first_argument_type& x) const;

insert:

typename Operation::result_type
 operator()(typename Operation::first_argument_type& x) const;

[Kona: The LWG discussed this at some length. It was agreed that this is a mistake in the design, but there was no
consensus on whether it was a defect in the Standard. Straw vote:

5 NAD
3 As Proposed
6 Leave open]

111. istreambuf_iterator::equal overspecified, inefficient

Section: 24.5.3.5 [lib.istreambuf.iterator::equal] Status: Open Submitter: Nathan Myers Date: 15 Oct 98

The member istreambuf_iterator<>::equal is specified to be unnecessarily inefficient. While this does not affect the
efficiency of conforming implementations of iostreams, because they can "reach into" the iterators and bypass this
function, it does affect users who use istreambuf_iterators.

The inefficiency results from a too-scrupulous definition, which requires a "true" result if neither iterator is at eof. In
practice these iterators can only usefully be compared with the "eof" value, so the extra test implied provides no benefit,
but slows down users' code.

The solution is to weaken the requirement on the function to return true only if both iterators are at eof.

Proposed Resolution:

Replace 24.5.3.5 [lib.istreambuf.iterator::equal], paragraph 1,

-1- Returns: true if and only if both iterators are at end-of-stream, or neither is at end-of-stream,
regardless of what streambuf object they use.

with

-1- Returns: true if and only if both iterators are at end-of-stream, regardless of what streambuf object
they use.

[Dublin: People present saw no compelling reason to make change. There is also concern over not-equal. The issue is
being held open for input from Nathan.]

Library Active Issues List Page 24 of 64

112. Minor typo in ostreambuf_iterator constructor

Section: 24.5.4.1 lib.ostreambuf.iter.cons Status: Review Submitter: Matt Austern Date: 20 Oct 98

The requires clause for ostreambuf_iterator's constructor from an ostream_type (24.5.4.1, paragraph 1) reads
"s is not null". However, s is a reference, and references can't be null.

Proposed Resolution:

In 24.5.4.1 lib.ostreambuf.iter.cons:

Move the current paragraph 1, which reads "Requires: s is not null.", from the first constructor to the second
constructor.

Insert a new paragraph 1 Requires clause for the first constructor reading:

Requires: s.rdbuf() is not null.

114. Placement forms example in error twice

Section: 18.4.1.3 [lib.new.delete.placement] Status: Open Submitter: Steve Clamage Date: 28 Oct 1998

Section 18.4.1.3 contains the following example:

[Example: This can be useful for constructing an object at a known address:
 char place[sizeof(Something)];
 Something* p = new (place) Something();
 -end example]

First code line: "place" need not have any special alignment, and the following constructor could fail due to misaligned
data.

Second code line: Aren't the parens on Something() incorrect? [Dublin: the LWG believes the () are correct.]

Examples are not normative, but nevertheless should not show code that is invalid or likey to fail.

Proposed Resolution:

Replace the first line of code in the example in 18.4.1.3 [lib.new.delete.placement] with:

void* place = operator new(sizeof(Something));

[Kona: See issue 196 (forwarded from Core), which is the same issue but with a different resolution. Need to resolve the
difference.]

115. Typo in strstream constructors

Section: D.7.4.1 [depr.strstream.cons] Status: Review Submitter: Steve Clamage Date: 2 Nov 1998

D.7.4.1 strstream constructors paragraph 2 says:

Library Active Issues List Page 25 of 64

Effects: Constructs an object of class strstream, initializing the base class with iostream(& sb) and
initializing sbwith one of the two constructors:

- If mode&app==0, then s shall designate the first element of an array of n elements. The constructor is
strstreambuf(s, n, s).

- If mode&app==0, then s shall designate the first element of an array of n elements that contains an
NTBS whose first element is designated by s. The constructor is strstreambuf(s, n, s+std::strlen(s)).

Notice the second condition is the same as the first. I think the second condition should be "If mode&app==app", or
"mode&app!=0", meaning that the append bit is set.

Proposed Resolution:

In D.7.3.1 [depr.ostrstream.cons] paragraph 2 and D.7.4.1 [depr.strstream.cons] paragraph 2, change the first condition
to (mode&app)==0 and the second condition to (mode&app)!=0.

[Project Editor in lib-6682 indicated that these changes have already been made as editorial.]

117. basic_ostream uses nonexistent num_put member functions

Section: 27.6.2.5.2 lib.ostream.inserters.arithmetic Status: Review Submitter: Matt Austern Date: 20 Nov 98

The effects clause for numeric inserters says that insertion of a value x, whose type is either bool, short, unsigned
short, int, unsigned int, long, unsigned long, float, double, long double, or const void*, is
delegated to num_put, and that insertion is performed as if through the following code fragment:

bool failed = use_facet<
 num_put<charT,ostreambuf_iterator<charT,traits> >
 >(getloc()).put(*this, *this, fill(), val). failed();

This doesn't work, because num_put<>::put is only overloaded for the types bool, long, unsigned long, double,
long double, and const void*. That is, the code fragment in the standard is incorrect (it is diagnosed as
ambiguous at compile time) for the types short, unsigned short, int, unsigned int, and float.

We must either add new member functions to num_put, or else change the description in ostream so that it only calls
functions that are actually there. I prefer the latter.

Proposed Resolution:

Replace 27.6.2.5.2, paragraph 1 with the following:

The classes num_get<> and num_put<> handle localedependent numeric formatting and parsing. These
inserter functions use the imbued locale value to perform numeric formatting. When val is of type
bool, long, unsigned long, double, long double, or const void*, the formatting conversion
occurs as if it performed the following code fragment:

bool failed = use_facet<
 num_put<charT,ostreambuf_iterator<charT,traits> >
 >(getloc()).put(*this, *this, fill(), val). failed();

When val is of type short or int the formatting conversion occurs as if it performed the following code
fragment:

Library Active Issues List Page 26 of 64

bool failed = use_facet<
 num_put<charT,ostreambuf_iterator<charT,traits> >
 >(getloc()).put(*this, *this, fill(), static_cast<long>(val)). failed();

When val is of type unsigned short or unsigned int the formatting conversion occurs as if it
performed the following code fragment:

bool failed = use_facet<
 num_put<charT,ostreambuf_iterator<charT,traits> >
 >(getloc()).put(*this, *this, fill(), static_cast<unsigned long>(val)). failed();

When val is of type float the formatting conversion occurs as if it performed the following code
fragment:

bool failed = use_facet<
 num_put<charT,ostreambuf_iterator<charT,traits> >
 >(getloc()).put(*this, *this, fill(), static_cast<double>(val)). failed();

[Dublin: The LWG feels this is probably correct, but would like to review it one more time with additonal technical
experts. Issue 118 is related.]

118. basic_istream uses nonexistent num_get member functions

Section: 27.6.1.2.2 lib.istream.formatted.arithmetic Status: Open Submitter: Matt Austern Date: 20 Nov 98

Formatted input is defined for the types short, unsigned short, int, unsigned int, long, unsigned long,
float, double, long double, bool, and void*. According to section 27.6.1.2.2, formatted input of a value x is
done as if by the following code fragment:

typedef num_get< charT,istreambuf_iterator<charT,traits> > numget;
iostate err = 0;
use_facet< numget >(loc).get(*this, 0, *this, err, val);
setstate(err);

According to section 22.2.2.1.1 lib.facet.num.get.members, however, num_get<>::get() is only overloaded for the
types bool, long, unsigned short, unsigned int, unsigned long, unsigned long, float, double, long
double, and void*. Comparing the lists from the two sections, we find that 27.6.1.2.2 is using a nonexistent function
for types short and int.

Proposed Resolution:

Add short and int overloads for num_get<>::get()

[Dublin: What about do_get? Aren't two functions need there too? Also, the LWG would like to see full wording for the
Proposed Resolution.]

119. Should virtual functions be allowed to strengthen the exception specification?

Section: 17.4.4.8 lib.res.on.exception.handling Status: Ready Submitter: Judy Ward Date: 15 Dec 1998

Section 17.4.4.8 lib.res.on.exception.handling states:

Library Active Issues List Page 27 of 64

"An implementation may strengthen the exception-specification for a function by removing listed exceptions."

The problem is that if an implementation is allowed to do this for virtual functions, then a library user cannot write a
class that portably derives from that class.

For example, this would not compile if ios_base::failure::~failure had an empty exception specification:

#include <ios>
#include <string>

class D : public std::ios_base::failure {
public:
 D(const std::string&);
 ~D(); // error - exception specification must be compatible with
 // overridden virtual function ios_base::failure::~failure()
};

Proposed Resolution:

Change Section 17.4.4.8 lib.res.on.exception.handling from:

 "may strengthen the exception-speciification for a function"

to:

 "may strengthen the exception-specification for a non-virtual function".

120. Can an implementor add specializations?

Section: 17.4.3.1 lib.reserved.names Status: Open Submitter: Judy Ward Date: 15 Dec 1998

Section 17.4.3.1 says:

It is undefined for a C++ program to add declarations or definitions to namespace std or namespaces
within namespace std unless otherwise specified. A program may add template specializations for any
standard library template to namespace std. Such a specialization (complete or partial) of a standard
library template results in undefined behavior unless the declaration depends on a user-defined name of
external linkage and unless the specialization meets the standard library requirements for the original
template...

This implies that it is ok for library users to add specializations, but not implementors. A user program can actually
detect this, for example, the following manual instantiation will not compile if the implementor has made
ctype<wchar_t> a specialization:

#include <locale>
#include <wchar.h>

template class std::ctype<wchar_t>; // can't be specialization

Lib-7047 [Matt Austern] comments:

The status quo is unclear, and probably contradictory. This issue applies both the explicit instantiations and to
specializations, since it is not permitted to provide both a specialization and an explicit instantiation.

Library Active Issues List Page 28 of 64

The specialization issue is actually more serious than the instantiation one. One could argue that there is a consistent
status quo as far as instantiations go, but one can't argue that in the case of specializations. The standard must either (1)
give library implementors license to provide explicit specializations of any library template; or (2) give a complete list of
exactly which specializations must be provided, and forbid library implementors from providing any specializations not
on that list. At present the standard does neither.

Proposed Resolution:

Add to 17.4.4 lib.conforming a section called Specializations with wording:

An implementation can define additional specializations for any of the template classes or functions in
the standard library if a use of any of these classes or functions behaves as if the implementation did not
define them.

[Kona: Wording should be added to the effect that users will not be allowed to manual instantiate any templates in the
standard library. Judy will work on the proposed wording. Also see issue 177.]

121. Detailed definition for ctype<wchar_t> specialization missing

Section: 22.1.1.1.1 lib.locale.category Status: Open Submitter: Judy Ward Date: 15 Dec 1998

Section 22.1.1.1.1 has the following listed in Table 51: ctype<char> , ctype<wchar_t>.

Also Section 22.2.1.1 lib.locale.ctype says:

The instantiations required in Table 51 (22.1.1.1.1) namely ctype<char> and ctype<wchar_t> ,
implement character classing appropriate to the implementation's native character set.

However, Section 22.2.1.3 lib.facet.ctype.special only has a detailed description of the ctype<char> specialization, not
the ctype<wchar_t> specialization.

Proposed Resolution:

Add the ctype<wchar_t> detailed class description to Section 22.2.1.3 lib.facet.ctype.special.

[Dublin: Judy will ask Nathan and Matt for their opinions.]

122. streambuf/wstreambuf description should not say they are specializations

Section: 27.5.2 lib.streambuf Status: Open Submitter: Judy Ward Date: 15 Dec 1998

Section 27.5.2 describes the streambuf classes this way:

The class streambuf is a specialization of the template class basic_streambuf specialized for the type char.

The class wstreambuf is a specialization of the template class basic_streambuf specialized for the type
wchar_t.

This implies that these classes must be template specializations, not typedefs.

Library Active Issues List Page 29 of 64

It doesn't seem this was intended, since Section 27.5 has them declared as typedefs.

Proposed Resolution:

Remove 27.5.2 lib.streambuf paragraphs 2 and 3 (the two above sentences).

Rationale:

The streambuf synopsis already has a declaration for the typedefs.

123. Should valarray helper arrays fill functions be const?

Section: 26.3.5.4 lib.slice.arr.fill, 26.3.7.4 lib.gslice.array.fill, 26.3.8.4 lib.mask.array.fill, 26.3.9.4 lib.indirect.array..fill
Status: Open Submitter: Judy Ward Date: 15 Dec 1998

One of the operator= in the valarray helper arrays is const and one is not. For example, look at slice_array. This
operator= in Section 26.3.5.2 lib.slice.arr.assign is const:

 void operator=(const valarray<T>&) const;

but this one in Section 26.3.5.4 lib.slice.arr.fill, is not:

 void operator=(const T&);

The description of the semantics for these two functions is similar.

Proposed Resolution:

Make the operator=(const T&) versions of slice_array, gslice_array, indirect_array, and mask_array const
member functions.

[Dublin: Pete Becker spoke to Daveed Vandevoorde about this and will work on a proposed resolution.]

127. auto_ptr<> conversion issues

Section: 20.4.5 lib.auto.ptr Status: Open Submitter: Greg Colvin Date: 17 Feb 99

There are two problems with the current auto_ptr wording in the standard:

First, the auto_ptr_ref definition cannot be nested because auto_ptr<Derived>::auto_ptr_ref is unrelated to
auto_ptr<Base>::auto_ptr_ref. Also submitted by Nathan Myers, with the same proposed resolution.

Second, there is no auto_ptr assignment operator taking an auto_ptr_ref argument.

I have discussed these problems with my proposal coauthor, Bill Gibbons, and with some compiler and library
implementers, and we believe that these problems are not desired or desirable implications of the standard.

25 Aug 99: The proposed resolution now reflects changes suggested by Dave Abrahams, with Greg Colvin's
concurrence; 1) changed "assignment operator" to "public assignment operator", 2) changed effects to specify use of

Library Active Issues List Page 30 of 64

release(), 3) made the conversion to auto_ptr_ref const.

2 Feb 00: Lisa Lippincott comments: [The resolution of] this issue states that the conversion from auto_ptr to
auto_ptr_ref should be const. This is not acceptable, because it would allow initialization and assignment from _any_
const auto_ptr! It also introduces an implementation difficulty in writing this conversion function -- namely, somewhere
along the line, a const_cast will be necessary to remove that const so that release() may be called. This may result in
undefined behavior > [7.1.5.1/4]. The conversion operator does not have to be const, because a non-const implicit object
parameter may be bound to an rvalue [13.3.3.1.4/3] [13.3.1/5].

Proposed Resolution:

In 20.4.5 lib.auto.ptr, paragraph 2, move the auto_ptr_ref definition to namespace scope.

In 20.4.5 lib.auto.ptr, paragraph 2, add a public assignment operator to the auto_ptr definition:

auto_ptr& operator=(auto_ptr_ref<X> r) throw();

Also add the assignment operator to 20.4.5.3 lib.auto.ptr.conv:

auto_ptr& operator=(auto_ptr_ref<X> r) throw()

Effects: Calls reset(p.release()) for the auto_ptr p that r holds a reference to.
Returns: *this.

In 20.4.5 lib.auto.ptr, paragraph 2, and 20.4.5.3 lib.auto.ptr.conv, paragraph 2, make the conversion to auto_ptr_ref
const:

template<class Y> operator auto_ptr_ref<Y>() const throw();

129. Need error indication from seekp() and seekg()

Section: 27.6.1.3 lib.istream.unformatted and 27.6.2.4 lib.istream.seeks Status: Review Submitter: Angelika Langer
Date: February 22, 1999

Currently, the standard does not specify how seekg() and seekp() indicate failure. They are not required to set failbit,
and they can't return an error indication because they must return *this, i.e. the stream. Hence, it is undefined what
happens if they fail. And they _can_ fail, for instance, when a file stream is disconnected from the underlying file
(is_open()==false) or when a wide charaacter file stream must perform a state-dependent code conversion, etc.

The stream functions seekg() and seekp() should set failbit in the stream state in case of failure.

Proposed Resolution:

Add to the Effects: clause of seekg() in 27.6.1.3 lib.istream.unformatted and to the Effects: clause of seekp() in
27.6.2.4 lib.istream.seeks:

In case of failure, the function calls setstate(failbit) (which may throw ios_base::failure).

[Dublin: wording of PR "may call" changed to "calls".]

134. vector and deque constructors over specified

Library Active Issues List Page 31 of 64

Section: 23.2.4.1 lib.vector.cons Status: Open Submitter: Howard Hinnant Date: 6 Mar 99

The complexity description says: "It does at most 2N calls to the copy constructor of T and logN reallocations if they are
just input iterators ...".

This appears to be overly restrictive, dictating the precise memory/performance tradeoff for the implementor.

Proposed Resolution:

Change 23.2.1.1, paragraph 6 to:

-6- Complexity: If the iterators first and last are forward iterators, bidirectional iterators, or random access iterators the
constructor makes only N calls to the copy constructor, and performs no reallocations, where N is last - first. It makes
order N calls to the copy constructor of T and order log N reallocations if they are input iterators.*

And change 23.2.4.1, paragraph 1 to:

-1- Complexity: The constructor template <class InputIterator> vector(InputIterator first, InputIterator last) makes only
N calls to the copy constructor of T (where N is the distance between first and last) and no reallocations if iterators first
and last are of forward, bidirectional, or random access categories. It makes order N calls to the copy constructor of T
and order logN reallocations if they are just input iterators, since it is impossible to determine the distance between first
and last and then do copying.

[Dublin: The issues hinges on whether at "most 2N calls" is correct or not. There was a feeling that 2N is correct, so
this issue is NAD, but the issue will be left open to allow Howard to further analyze the complexity. Later in the meeting
Pete Becker said he had looked at it and 2N was correct.]

136. seekp, seekg setting wrong streams?

Section: 27.6.1.3 lib.istream.unformatted Status: Open Submitter: Howard Hinnant Date: 6 Mar 99

I may be misunderstanding the intent, but should not seekg set only the input stream and seekp set only the output
stream? The description seems to say that each should set both input and output streams. If that's really the intent, I
withdraw this proposal.

Proposed Resolution:

In section 27.6.1.3 change:

basic_istream<charT,traits>& seekg(pos_type pos);
Effects: If fail() != true, executes rdbuf()->pubseekpos(pos).

To:

basic_istream<charT,traits>& seekg(pos_type pos);
Effects: If fail() != true, executes rdbuf()->pubseekpos(pos, ios_base::in).

In section 27.6.1.3 change:

basic_istream<charT,traits>& seekg(off_type& off, ios_base::seekdir dir);
Effects: If fail() != true, executes rdbuf()->pubseekoff(off, dir).

Library Active Issues List Page 32 of 64

To:

basic_istream<charT,traits>& seekg(off_type& off, ios_base::seekdir dir);
Effects: If fail() != true, executes rdbuf()->pubseekoff(off, dir, ios_base::in).

In section 27.6.2.4, paragraph 2 change:

-2- Effects: If fail() != true, executes rdbuf()->pubseekpos(pos).

To:

-2- Effects: If fail() != true, executes rdbuf()->pubseekpos(pos, ios_base::out).

In section 27.6.2.4, paragraph 4 change:

-4- Effects: If fail() != true, executes rdbuf()->pubseekoff(off, dir).

To:

-4- Effects: If fail() != true, executes rdbuf()->pubseekoff(off, dir, ios_base::out).

[Dublin: Dietmar Kühl thinks this is probably correct, but would like the opinion of more iostream experts before
taking action.]

137. Do use_facet and has_facet look in the global locale?

Section: 22.1.1 lib.locale Status: Open Submitter: Angelika Langer Date: March 17, 1999

Section 22.1.1 lib.locale says:

-4- In the call to use_facet<Facet>(loc), the type argument chooses a facet, making available all members of the named
type. If Facet is not present in a locale (or, failing that, in the global locale), it throws the standard exception bad_cast.
A C++ program can check if a locale implements a particular facet with the template function has_facet<Facet>().

This contradicts the specification given in section 22.1.2 lib.locale.global.templates:

template <class Facet> const Facet& use_facet(const locale& loc);

-1- Get a reference to a facet of a locale.
-2- Returns: a reference to the corresponding facet of loc, if present.
-3- Throws: bad_cast if has_facet<Facet>(loc) is false.
-4- Notes: The reference returned remains valid at least as long as any copy of loc exists

Proposed Resolution:

If there's consensus that section 22.1.2 reflects the intent, then the phrase:

 (or, failing that, in the global locale)

should be removed from section 22.1.1.

[Dublin: The opinion of other iostream experts is required.]

Library Active Issues List Page 33 of 64

138. Class ctype_byname<char> redundant and misleading

Section: 22.2.1.4 lib.locale.ctype.byname.special Status: Open Submitter: Angelika Langer Date: March 18, 1999

Section 22.2.1.4 lib.locale.ctype.byname.special specifies that ctype_byname<char> must be a specialization of the
ctype_byname template.

It is common practice in the standard that specializations of class templates are only mentioned where the interface of
the specialization deviates from the interface of the template that it is a specialization of. Otherwise, the fact whether or
not a required instantiation is an actual instantiation or a specialization is left open as an implementation detail.

Clause 22.2.1.4 deviates from that practice and for that reason is misleading. The fact, that ctype_byname<char> is
specified as a specialization suggests that there must be something "special" about it, but it has the exact same interface
as the ctype_byname template. Clause 22.2.1.4 does not have any explanatory value, is at best redundant, at worst
misleading - unless I am missing anything.

Naturally, an implementation will most likely implement ctype_byname<char> as a specialization, because the base
class ctype<char> is a specialization with an interface different from the ctype template, but that's an implementation
detail and need not be mentioned in the standard.

Proposed Resolution:

Delete section 22.2.1.4 lib.locale.ctype.byname.special

[Dublin: A description of the function may be needed if it isn't going to be deleted. Dietmar Kühl will study the issue.]

141. basic_string::find_last_of, find_last_not_of say pos instead of xpos

Section: 21.3.6.4 lib.string::find.last.of, 21.3.6.6 lib.string::find.last.not.of Status: Ready Submitter: Arch Robison
Date: 28 Apr 99

Sections 21.3.6.4 paragraph 1 and 21.3.6.6 paragraph 1 surely have misprints where they say:

— xpos <= pos and pos < size();

Surely the document meant to say ``xpos < size()'' in both places.

Judy Ward also sent in this issue for 21.3.6.4 with the same resolution.

Proposed Resolution:

Change Sections 21.3.6.4 paragraph 1 and 21.3.6.6 paragraph 1, the line which says:

— xpos <= pos and pos < size();

to:

— xpos <= pos and xpos < size();

Library Active Issues List Page 34 of 64

142. lexicographical_compare complexity wrong

Section: 25.3.8 lib.alg.lex.comparison Status: Review Submitter: Howard Hinnant Date: 20 Jun 99

The lexicographical_compare complexity is specified as:

 "At most min((last1 - first1), (last2 - first2)) applications of the corresponding comparison."

The best I can do is twice that expensive.

Nicolai Josuttis comments in lib-6862: You mean, to check for equality you have to check both < and > ? Yes, IMO you
are right! (and Matt states this complexity in his book)

Proposed Resolution:

Change 25.3.8 [lib.alg.lex.comparison] complexity to:

At most 2*min((last1 - first1), (last2 - first2)) applications of the corresponding
comparison.

Change the example at the end of paragraph 3 to read:

[Example:

 for (; first1 != last1 && first2 != last2 ; ++first1, ++first2) {
 if (*first1 < *first2) return true;
 if (*first2 < *first1) return false;
 }
 return first1 == last1 && first2 != last2;

--end example]

[Kona: Matt Austern provided the proposed resolution wording at the request of the LWG.]

143. C .h header wording unclear

Section: D.5 depr.c.headers Status: Open Submitter: Christophe de Dinechin Date: 4 May 99

[depr.c.headers] paragraph 2 reads:

Each C header, whose name has the form name.h, behaves as if each name placed in the Standard library
namespace by the corresponding cname header is also placed within the namespace scope of the
namespace std and is followed by an explicit using-declaration (_namespace.udecl_)

I think it should mention the global name space somewhere... Currently, it indicates that name placed in std is also
placed in std...

I don't know what is the correct wording. For instance, if struct tm is defined in time.h, ctime declares std::tm. However,
the current wording seems ambiguous regarding which of the following would occur for use of both ctime and time.h:

// version 1:
namespace std {
 struct tm { ... };
}

Library Active Issues List Page 35 of 64

using std::tm;

// version 2:
struct tm { ... };
namespace std {
 using ::tm;
}

// version 3:
struct tm { ... };
namespace std {
 struct tm { ... };
}

I think version 1 is intended.

Kona: The LWG agreed that this is a defect; the wording is not clear. It also agreed that version 1 is intended, version
2 is not equivalent to version 1, and version 3 is clearly not intended. The example below was constructed by Nathan
Myers to illustrate why version 2 is not equivalent to version 1.

Although not equivalent, the LWG is unsure if (2) is enough of a problem to be prohibited. Points discussed in favor of
allowing (2):

l It may be a convenience to implementors.
l The only cases that fail are structs, of which the C library contains only a few.

Example:

#include <time.h>
#include <utility>

int main() {
 std::tm * t;
 make_pair(t, t); // okay with version 1 due to Koenig lookup
 // fails with version 2; make_pair not found
 return 0;
}

Proposed Resolution:

Replace D.5 depr.c.headers paragraph 2 with:

Each C header, whose name has the form name.h, behaves as if each name placed in the Standard library
namespace by the corresponding cname header is also placed within the namespace scope of the
namespace std by name.h and is followed by an explicit using-declaration (_namespace.udecl_) in global
scope.

144. Deque constructor complexity wrong

Section: 23.2.1.1 lib.deque.cons Status: Ready Submitter: Herb Sutter Date: 9 May 99

In 23.2.1.1 paragraph 6, the deque ctor that takes an iterator range appears to have complexity requirements which are
incorrect, and which contradict the complexity requirements for insert(). I suspect that the text in question, below, was
taken from vector:

Complexity: If the iterators first and last are forward iterators, bidirectional iterators, or random access
iterators the constructor makes only N calls to the copy constructor, and performs no reallocations, where
N is last - first.

Library Active Issues List Page 36 of 64

The word "reallocations" does not really apply to deque. Further, all of the following appears to be spurious:

It makes at most 2N calls to the copy constructor of T and log N reallocations if they are input iterators.1)

1) The complexity is greater in the case of input iterators because each element must be added
individually: it is impossible to determine the distance between first abd last before doing the copying.

This makes perfect sense for vector, but not for deque. Why should deque gain an efficiency advantage from knowing in
advance the number of elements to insert?

Proposed Resolution:

In 23.2.1.1 paragraph 6, replace the Complexity description, including the footnote, with the following text (which also
corrects the "abd" typo):

Complexity: Makes last - first calls to the copy constructor of T.

[Kona: reviewed by the LWG.]

146. complex<T> Inserter and Extractor need sentries

Section: 26.2.6 lib.complex.ops Status: Review Submitter: Angelika Langer Date:12 May 99

The extractor for complex numbers is specified as:

template<class T, class charT, class traits>
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is, complex<T>& x);

Effects: Extracts a complex number x of the form: u, (u), or (u,v), where u is the real part and v is the
imaginary part (lib.istream.formatted).
Requires: The input values be convertible to T. If bad input is encountered, calls is.setstate(ios::failbit)
(which may throw ios::failure (lib.iostate.flags).
Returns: is .

Is it intended that the extractor for complex numbers does not skip whitespace, unlike all other extractors in the
standard library do? Shouldn't a sentry be used?

The inserter for complex numbers is specified as:

template<class T, class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& o, const complex<T>& x);

Effects: inserts the complex number x onto the stream o as if it were implemented as follows:

template<class T, class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& o, const complex<T>& x)
{
basic_ostringstream<charT, traits> s;
s.flags(o.flags());
s.imbue(o.getloc());

Library Active Issues List Page 37 of 64

s.precision(o.precision());
s << '(' << x.real() << "," << x.imag() << ')';
return o << s.str();
}

Is it intended that the inserter for complex numbers ignores the field width and does not do any padding? If, with the
suggested implementation above, the field width were set in the stream then the opening parentheses would be adjusted,
but the rest not, because the field width is reset to zero after each insertion.

I think that both operations should use sentries, for sake of consistency with the other inserters and extractors in the
library. Regarding the issue of padding in the inserter, I don't know what the intent was.

Proposed Resolution:

After 26.2.6 lib.complex.ops paragraph 14 (operator>>), add a Notes clause:

Notes: This extraction is performed as a series of simpler extractions. Therefore, the skipping of
whitespace is specified to be the same for each of the simpler extractions.

Rationale:

For extractors, the note is added to make it clear that skipping whitespace follows an "all-or-none" rule.

For inserters, the LWG believes there is no defect; the standard is correct as written.

147. Library Intro refers to global functions that aren't global

Section: 17.4.4.3 lib.global.functions Status: Review Submitter: Lois Goldthwaite Date: 4 Jun 99

The library had many global functions until 17.4.1.1 [lib.contents] paragraph 2 was added:

All library entities except macros, operator new and operator delete are defined within the namespace std
or namespaces nested within namespace std.

It appears "global function" was never updated in the following:

17.4.4.3 - Global functions [lib.global.functions]

-1- It is unspecified whether any global functions in the C++ Standard Library are defined as inline
(dcl.fct.spec).

-2- A call to a global function signature described in Clauses lib.language.support through
lib.input.output behaves the same as if the implementation declares no additional global function
signatures.*

[Footnote: A valid C++ program always calls the expected library global function. An implementation
may also define additional global functions that would otherwise not be called by a valid C++ program. --
- end footnote]

-3- A global function cannot be declared by the implementation as taking additional default arguments.

17.4.4.4 - Member functions [lib.member.functions]

-2- An implementation can declare additional non-virtual member function signatures within a class:

Library Active Issues List Page 38 of 64

-- by adding arguments with default values to a member function signature; The same
latitude does not extend to the implementation of virtual or global functions, however.

Proposed Resolution:

Change "global" to "global or non-member" in:

17.4.4.3 [lib.global.functions] section title,
17.4.4.3 [lib.global.functions] para 1,
17.4.4.3 [lib.global.functions] para 2 in 2 places plus 2 places in the footnote,
17.4.4.3 [lib.global.functions] para 3,
17.4.4.4 [lib.member.functions] para 2

[Kona: Because operator new and delete are global, the proposed resolution was changed from "non-member" to
"global or non-member.]

148. Functions in the example facet BoolNames should be const

Section: 22.2.8 lib.facets.examples Status: Ready Submitter: Jeremy Siek Date: 3 Jun 99

In 22.2.8 [lib.facets.examples] paragraph 13, the do_truename() and do_falsename() functions in the example facet
BoolNames should be const. The functions they are overriding in numpunct_byname<char> are const.

Proposed Resolution:

In 22.2.8 [lib.facets.examples] paragraph 13, insert "const" in two places:

string do_truename() const { return "Oui Oui!"; }
string do_falsename() const { return "Mais Non!"; }

150. Find_first_of says integer instead of iterator

Section: 25.1.4 lib.alg.find.first.of Status: Ready Submitter: Matt McClure Date: 30 Jun 99

Proposed Resolution:

Change 25.1.4 lib.alg.find.first.of paragraph 2 from:

Returns: The first iterator i in the range [first1, last1) such that for some integer j in the range [first2,
last2) ...

to:

Returns: The first iterator i in the range [first1, last1) such that for some iterator j in the range [first2,
last2) ...

151. Can't currently clear() empty container

Library Active Issues List Page 39 of 64

Section: 23.1.1 lib.sequence.reqmts Status: Ready Submitter: Ed Brey Date: 21 Jun 99

For both sequences and associative containers, a.clear() has the semantics of erase(a.begin(),a.end()), which is undefined
for an empty container since erase(q1,q2) requires that q1 be dereferenceable (23.1.1,3 and 23.1.2,7). When the
container is empty, a.begin() is not dereferenceable.

The requirement that q1 be unconditionally dereferenceable causes many operations to be intuitively undefined, of
which clearing an empty container is probably the most dire.

Since q1 and q2 are only referenced in the range [q1, q2), and [q1, q2) is required to be a valid range, stating that q1
and q2 must be iterators or certain kinds of iterators is unnecessary.

Proposed Resolution:

In 23.1.1, paragraph 3, change:

p and q2 denote valid iterators to a, q and q1 denote valid dereferenceable iterators to a, [q1, q2) denotes
a valid range

to:

p denotes a valid iterator to a, q denotes a valid dereferenceable iterator to a, [q1, q2) denotes a valid
range in a

In 23.1.2, paragraph 7, change:

p and q2 are valid iterators to a, q and q1 are valid dereferenceable iterators to a, [q1, q2) is a valid range

to

p is a valid iterator to a, q is a valid dereferenceable iterator to a, [q1, q2) is a valid range into a

152. Typo in scan_is() semantics

Section:: 22.2.1.1.2 lib.locale.ctype.virtuals Status: Ready Submitter: Dietmar Kühl Date: 20 Jul 99

The semantics of scan_is() (paragraphs 4 and 6) is not exactly described because there is no function is() which
only takes a character as argument. Also, in the effects clause (paragraph 3), the semantic is also kept vague.

Proposed resolution:

In 22.2.1.1.2 lib.locale.ctype.virtuals paragraphs 4 and 6, change the returns clause from:

"... such that is(*p) would..."

to: "... such that is(m, *p) would...."

153. Typo in narrow() semantics

Library Active Issues List Page 40 of 64

Section:: 22.2.1.3.2 lib.facet.ctype.char.members Status: Open Submitter: Dietmar Kühl Date: 20 Jul 99

The description of the array version of narrow() (in paragraph 11) is flawed: There is no member do_narrow()
which takes only there arguments because in addition to the range a default character is needed.

Proposed resolution:

Change 22.2.1.3.2 lib.facet.ctype.char.members narrow() (in paragraph 10) by removing the comments around
dfault (2 places).

Change 22.2.1.3.2 lib.facet.ctype.char.members narrow() (in paragraph 11) returns clause to:

Returns: do_narrow(low, high, dfault, to)

[Kona: Dietmar will improve the wording because 1) the problem occurs in additional places, 2) a user defined version
could be different.]

154. Missing double specifier for do_get()

Section:: 22.2.2.1.2 lib.facet.num.get.virtuals Status: Ready Submitter: Dietmar Kühl Date: 20 Jul 99

The table in paragraph 7 for the length modifier does not list the length modifier l to be applied if the type is double.
Thus, the standard asks the implementation to do undefined things when using scanf() (the missing length modifier
for scanf() when scanning doubles is actually a problem I found quite often in production code, too).

Proposed resolution:

In 22.2.2.1.2 lib.facet.num.get.virtuals, paragraph 7, add a row in the Length Modifier table to say that for double a
length modifier l is to be used.

Rationale:

The standard mades an embarrassing beginner's mistake.

155. Typo in naming the class defining the class Init

Section:: 27.3 lib.iostream.objects Status: Ready Submitter: Dietmar Kühl Date: 20 Jul 99

There are conflicting statements about where the class Init is defined. According to 27.3 (lib.iostream.objects)
paragraph 2 it is defined as basic_ios::Init, according to 27.4.2 (lib.ios.base) it is defined as ios_base::Init.

Proposed resolution:

Change 27.3 (lib.iostream.objects) paragraph 2 from "basic_ios::Init" to "ios_base::Init".

Rationale:

Although not strictly wrong, the standard was misleading enough to warrant the change.

Library Active Issues List Page 41 of 64

156. Typo in imbue() description

Section:: 27.4.2.3 lib.ios.base.locales Status: Ready Submitter: Dietmar Kühl Date: 20 Jul 99

There is a small discrepancy between the declarations of imbue(): in 27.4.2 (lib.ios.base) the argument is passed as
locale const& (correct), in 27.4.2.3 (lib.ios.base.locales) it is passed as locale const (wrong).

Proposed resolution:

In 27.4.2.3 (lib.ios.base.locales) change the imbue argument from "locale const" to "locale const&".

158. Underspecified semantics for setbuf()

Section:: 27.5.2.4.2 lib.streambuf.virt.buffer Status: Ready Submitter: Dietmar Kühl Date: 20 Jul 99

The default behavior of setbuf() is described only for the situation that gptr() != 0 && gptr() != egptr():
namely to do nothing. What has to be done in other situations is not described although there is actually only one
reasonable approach, namely to do nothing, too.

Since changing the buffer would almost certainly mess up most buffer management of derived classes unless these
classes do it themselves, the default behavior of setbuf() should always be to do nothing.

Proposed resolution:

Change 27.5.2.4.2 lib.streambuf.virt.buffer, paragraph 3, Default behavior, to: "Default behavior: Does nothing. Returns
this."

159. Strange use of underflow()

Section:: 27.5.2.4.3 lib.streambuf.virt.get Status: Review Submitter: Dietmar Kühl Date: 20 Jul 99

The description of the meaning of the result of showmanyc() seems to be rather strange: It uses calls to underflow().
Using underflow() is strange because this function only reads the current character but does not extract it, uflow()
would extract the current character. This should be fixed to use sbumpc() instead.

Proposed resolution:

Change 27.5.2.4.3 lib.streambuf.virt.get paragraph 1, showmanyc()returns clause, by replacing the word "supplied"
with the words "extracted from the stream".

160. Typo: Use of non-existing function exception()

Section:: 27.6.1.1 lib.istream Status: Ready Submitter: Dietmar Kühl Date: 20 Jul 99

The paragraph 4 refers to the function exception() which is not defined. Probably, the referred function is
basic_ios::exceptions().

Library Active Issues List Page 42 of 64

Proposed resolution:

In 27.6.1.1 lib.istream change "exception()" to "basic_ios::exceptions()".

[Note to Editor: in addition to adding "basic_ios::", "exceptions" with an "s" is the correct spelling.]

161. Typo: istream_iterator vs. istreambuf_iterator

Section:: 27.6.1.2.2 lib.istream.formatted.arithmetic Status: Ready Submitter: Dietmar Kühl Date: 20 Jul 99

The note in the second paragraph pretends that the first argument is an object of type istream_iterator. This is
wrong: It is an object of type istreambuf_iterator.

Proposed resolution:

Change 27.6.1.2.2 lib.istream.formatted.arithmetic from:

The first argument provides an object of the istream_iterator class...

to

The first argument provides an object of the istreambuf_iterator class...

164. do_put() has apparently unused fill argument

Section:: 22.2.5.3.2 lib.locale.time.put.virtuals Status: Review Submitter: Angelika Langer Date: 23 Jul 99

In [lib.locale.time.put.virtuals] the do_put() function is specified as taking a fill character as an argument, but the
description of the function does not say whether the character is used at all and, if so, in which way. The same holds for
any format control parameters that are accessible through the ios_base& argument, such as the adjustment or the field
width. Is strftime() supposed to use the fill character in any way? In any case, the specification of time_put.do_put()
looks inconsistent to me.

Is the signature of do_put() wrong, or is the effects clause incomplete?

Proposed resolution:

Add the following note after 22.2.5.3.2 lib.locale.time.put.virtuals paragraph 2:

[Note: the fill argument may be used in the implementation-defined formats, or by derivations. A space
character is a reasonable default for this argument. --end Note]

Rationale:

The LWG felt that while the normative text was correct, users need some guidance on what to pass for the fill
argument since the standard doesn't say how it's used.

165. xsputn(), pubsync() never called by basic_ostream members?

Library Active Issues List Page 43 of 64

Section:: 27.6.2.1 lib.ostream Status: Open Submitter: Dietmar Kühl Date: 20 Jul 99

Paragraph 2 explicitly states that none of the basic_ostream functions falling into one of the groups "formatted
output functions" and "unformatted output functions" calls any stream buffer function which might call a virtual
function other than overflow(). Basically this is fine but this implies that sputn() (this function would call the
virtual function xsputn()) is never called by any of the standard output functions. Is this really intended? At minimum
it would be convenient to call xsputn() for strings... Also, the statement that overflow() is the only virtual member
of basic_streambuf called is in conflict with the definition of flush() which calls rdbuf()->pubsync() and
thereby the virtual function sync() (flush() is listed under "unformatted output functions").

In addition, I guess that the sentence starting with "They may use other public members of basic_ostream ..."
probably was intended to start with "They may use other public members of basic_streamuf..." although the problem
with the virtual members exists in both cases.

Proposed resolution:

I see two obvious resolutions:

1. state in a footnote that this means that xsputn() will never be called by any ostream member and that this is
intended.

2. relax the restriction and allow calling overflow() and xsputn(). Of course, the problem with flush() has
to be resolved in some way.

[Kona: the LWG believes this is a problem. Wish to ask Jerry or PJP why the standard is written this way.]

167. Improper use of traits_type::length()

Section:: 27.6.2.5.4 lib.ostream.inserters.character Status: Open Submitter: Dietmar Kühl Date: 20 Jul 99

Paragraph 4 states that the length is determined using traits::length(s). Unfortunately, this function is not
defined for example if the character type is wchar_t and the type of s is char const*. Similar problems exist if the
character type is char and the type of s is either signed char const* or unsigned char const*.

Proposed resolution:

Make the case where s is of type a different type than typename traits::char_type const* a special case, where
eg. std::char_traits<...>::length() is used (with the ... replaced by the correct type, of course) However, this
resolution would require that char_traits is specialized for signed char and unsigned char which is currently
not the case, I think.

[Kona: It is clear to the LWG there is a defect here. Dietmar will supply specific wording.]

168. Type: formatted vs. unformatted

Section:: 27.6.2.6 lib.ostream.unformatted Status: Ready Submitter: Dietmar Kühl Date: 20 Jul 99

The first paragraph begins with a descriptions what has to be done in *formatted* output functions. Probably this is a
typo and the paragraph really want to describe unformatted output functions...

Proposed resolution:

Library Active Issues List Page 44 of 64

In 27.6.2.6 lib.ostream.unformatted paragraph 1, the first and last sentences, change the word "formatted" to
"unfomatted":

"Each unformatted output function begins ..."
"... value specified for the unformatted output function."

169. Bad efficiency of overflow() mandated

Section:: 27.7.1.3 lib.stringbuf.virtuals Status: Ready Submitter: Dietmar Kühl Date: 20 Jul 99

Paragraph 8, Notes, of this section seems to mandate an extremely inefficient way of buffer handling for
basic_stringbuf, especially in view of the restriction that basic_ostream member functions are not allowed to use
xsputn() (see 27.6.2.1 lib.ostream): For each character to be inserted, a new buffer is to be created.

Of course, the resolution below requires some handling of simultaneous input and output since it is no longer possible to
update egptr() whenever epptr() is changed. A possible solution is to handle this in underflow().

Proposed resolution:

In 27.7.1.3 lib.stringbuf.virtuals paragraph 8, Notes, insert the words "at least" as in the following:

To make a write position available, the function reallocates (or initially allocates) an array object with a
sufficient number of elements to hold the current array object (if any), plus at least one additional write
position.

170. Inconsistent definition of traits_type

Section:: 27.7.4 lib.stringstream Status: Review Submitter: Dietmar Kühl Date: 20 Jul 99

The classes basic_stringstream (27.7.4, lib.stringstream), basic_istringstream (27.7.2, lib.istringstream), and
basic_ostringstream (27.7.3, lib.ostringstream) are inconsistent in their definition of the type traits_type: For
istringstream, this type is defined, for the other two it is not. This should be consistent.

Proposed resolution:

To the declarations of basic_ostringstream (27.7.3, lib.ostringstream) and basic_stringstream (27.7.4,
lib.stringstream) add:

typedef traits traits_type;

171. Strange seekpos() semantics due to joint position

Section:: 27.8.1.4 lib.filebuf.virtuals Status: Open Submitter: Dietmar Kühl Date: 20 Jul 99

Overridden virtual functions, seekpos()

In 27.8.1.1 (lib.filebuf) paragraph 3, it is stated that a joint input and output position is maintained by basic_filebuf.
Still, the description of seekpos() seems to talk about different file positions. In particular, it is unclear (at least to me)

Library Active Issues List Page 45 of 64

what is supposed to happen to the output buffer (if there is one) if only the input position is changed. The standard
seems to mandate that the output buffer is kept and processed as if there was no positioning of the output position (by
changing the input position). Of course, this can be exactly what you want if the flag ios_base::ate is set. However,
I think, the standard should say something like this:

l If (which & mode) == 0 neither read nor write position is changed and the call fails. Otherwise, the joint
read and write position is altered to correspond to sp.

l If there is an output buffer, the output sequences is updated and any unshift sequence is written before the
position is altered.

l If there is an input buffer, the input sequence is updated after the position is altered.

Plus the appropriate error handling, that is...

Proposed resolution:

[Kona: Dietmar is working on a proposed resolution.]

172. Inconsistent types for basic_istream::ignore()

Section:: 27.6.1.3 lib.istream.unformatted Status: Ready Submitter: Greg Comeau, Dietmar Kühl Date: 23 Jul 99

In 27.6.1.1 (lib.istream) the function ignore() gets an object of type streamsize as first argument. However, in
27.6.1.3 (lib.istream.unformatted) paragraph 23 the first argument is of type int.

As far as I can see this is not really a contradiction because everything is consistent if streamsize is typedef to be int.
However, this is almost certainly not what was intended. The same thing happened to basic_filebuf::setbuf().

Darin Adler also submitted this issue, commenting: Either 27.6.1.1 should be modified to show a first parameter of type
int, or 27.6.1.3 should be modified to show a first parameter of type streamsize and use
numeric_limits<streamsize>::max.

Proposed resolution:

In 27.6.1.3 (lib.istream.unformatted) paragraph 23 and 24, change both uses of int in the description of ignore() to
streamsize.

173. Inconsistent types for basic_filebuf::setbuf()

Section:: 27.8.1.4 lib.filebuf.virtuals Status: Ready Submitter: Greg Comeau, Dietmar Kühl Date: 23 Jul 99

In 27.8.1.1 (lib.istream) the function setbuf() gets an object of type streamsize as second argument. However, in
27.8.1.4 (lib.istream.unformatted) paragraph 9 the second argument is of type int

. As far as I can see this is not really a contradiction because everything is consistent if streamsize is typedef to be
int. However, this is almost certainly not what was intended. The same thing happened to basic_istream::ignore
().

Proposed resolution:

In 27.8.1.4 (lib.istream.unformatted) paragraph 9, change all uses of int in the description of setbuf() to
streamsize.

Library Active Issues List Page 46 of 64

174. Typo: OFF_T vs. POS_T

Section:: D.6 depr.ios.members Status: Ready Submitter: Dietmar Kühl Date: 23 Jul 99

According to paragraph 1 of this section, streampos is the type OFF_T, the same type as streamoff. However, in
paragraph 6 the streampos gets the type POS_T

Proposed resolution:

Change D.6 depr.ios.members paragraph 1 from "typedef OFF_T streampos;" to "typedef POS_T
streampos;"

175. Ambiguity for basic_streambuf::pubseekpos() and a few other functions.

Section:: D.6 depr.ios.members Status: Ready Submitter: Dietmar Kühl Date: 23 Jul 99

According to paragraph 8 of this section, the methods basic_streambuf::pubseekpos(),
basic_ifstream::open(), and basic_ofstream::open "may" be overloaded by a version of this function taking
the type ios_base::open_mode as last argument argument instead of ios_base::openmode
(ios_base::open_mode is defined in this section to be an alias for one of the integral types). The clause specifies,
that the last argument has a default argument in three cases. However, this generates an ambiguity with the overloaded
version because now the arguments are absolutely identical if the last argument is not specified.

Proposed resolution:

In D.6 depr.ios.members paragraph 8, remove the default arguments for basic_streambuf::pubseekpos(),
basic_ifstream::open(), and basic_ofstream::open().

176. exceptions() in ios_base...?

Section:: D.6 depr.ios.members Status: Ready Submitter: Dietmar Kühl Date: 23 Jul 99

The "overload" for the function exceptions() in paragraph 8 gives the impression that there is another function of
this function defined in class ios_base. However, this is not the case. Thus, it is hard to tell how the semantics
(paragraph 9) can be implemented: "Call the corresponding member function specified in clause lib.input.output."

Proposed resolution:

In D.6 depr.ios.members paragraph 8, move the declaration of the function exceptions()into class basic_ios.

177. Complex operators cannot be explicitly instantiated

Section: 26.2.6 lib.complex.ops Status: Open Submitter: Judy Ward Date: 2 Jul 99

A user who tries to explicitly instantiate a complex non-member operator will get compilation errors. Below is a
simplified example of the reason why. The problem is that iterator_traits cannot be instantiated on a non-pointer type

Library Active Issues List Page 47 of 64

like float, yet when the compiler is trying to decide which operator+ needs to be instantiated it must instantiate the
declaration to figure out the first argument type of a reverse_iterator operator.

namespace std {
template <class Iterator>
struct iterator_traits
{
 typedef typename Iterator::value_type value_type;
};

template <class T> class reverse_iterator;

// reverse_iterator operator+
template <class T>
reverse_iterator<T> operator+
(typename iterator_traits<T>::difference_type, const reverse_iterator<T>&);

template <class T> struct complex {};

// complex operator +
template <class T>
complex<T> operator+ (const T& lhs, const complex<T>& rhs)
{ return complex<T>();}
}

// request for explicit instantiation
template std::complex<float> std::operator+<float>(const float&,
 const std::complex<float>&);

See also c++-stdlib reflector messages: lib-6814, 6815, 6816.

Proposed Resolution:

I'm not really sure. I think the choices are:

1. Do nothing. I think users will be surprised that there are certain functions in the standard library that cannot be
explicitly instantiated.

2. Add specializations of iterator_traits for the built-in types or specialize it in general for iterator_traits<T>.

3. Put the non-member operator functions that are currently all in namespace std in different namespaces, i.e. the
complex operators would have their own subnamespace, the reverse_iterator operators would have their own namespace,
etc.

[Kona: Should be resolved in sync with issue 120. Judy will continue to work on this issue.]

179. Comparison of const_iterators to iterators doesn't work

Section: 24.1.1 lib.iterator.requirements Status: Open Submitter: Judy Ward Date: 2 Jul 1998

Currently the following will not compile on two well-known standard library implementations:

#include <set>
using namespace std;

void f(const set<int> &s)
{
 set<int>::iterator i;
 if (i==s.end()); // s.end() returns a const_iterator
}

Library Active Issues List Page 48 of 64

The reason this doesn't compile is because operator== was implemented as a member function of the nested classes
set:iterator and set::const_iterator, and there is no conversion from const_iterator to iterator. Surprisingly, (s.end() == i)
does work, though, because of the conversion from iterator to const_iterator.

I don't see a requirement anywhere in the standard that this must work. Should there be one? If so, I think the
requirement would need to be added to the tables in section 24.1.1. I'm not sure about the wording. If this requirement
existed in the standard, I would think that implementors would have to make the comparison operators non-member
functions.

This issues was also raised on comp.std.c++ by Darin Adler. The example given was:

bool check_equal(std::deque<int>::iterator i,
std::deque<int>::const_iterator ci)
{
return i == ci;
}

Proposed Resolution:

[Kona: The LWG does wish the example to work. Judy will provide wording.]

180. Container member iterator arguments constness has unintended consequences

Section: 23 lib.containers Status: Open Submitter: Dave Abrahams Date: 1 Jul 99

It is the constness of the container which should control whether it can be modified through a member function such as
erase(), not the constness of the iterators. The iterators only serve to give positioning information.

Here's a simple and typical example problem which is currently very difficult or impossible to solve without the change
proposed below.

Wrap a standard container C in a class W which allows clients to find and read (but not modify) a subrange of (C.begin
(), C.end()]. The only modification clients are allowed to make to elements in this subrange is to erase them from C
through the use of a member function of W.

Proposed resolution:

Change all non-const iterator parameters of standard library container member functions to accept const_iterator
parameters. Note that this change applies to all library clauses, including strings.

For example, in 21.3.5.5 change:

 iterator erase(iterator p);

to:
 iterator erase(const_iterator p);

[Kona: The issue was discussed at length. It was generally agreed that 1) There is no major technical argument against
the change (although there is a minor argument that some obscure programs may break), and 2) Such a change would
not break const correctness. The concerns about making the change were 1) it is user detectable (although only in
boundary cases), and 2) it changes a large number of signatures.

Straw vote: 5- In favor of change, 6- NAD]

Library Active Issues List Page 49 of 64

181. make_pair() unintended behavior

Section: 20.2.2 lib.pairs Status: Open Submitter: Andrew Koenig Date: 3 Aug 99

The claim has surfaced in Usenet that expressions such as

 make_pair("abc", 3)

are illegal, notwithstanding their use in examples, because template instantiation tries to bind the first template
parameter to const char (&)[4], which type is uncopyable.

I doubt anyone intended that behavior...

Proposed resolution:

[Kona: The LWG agreed that this is a probable defect, but would like to see fixes spelled out to verify the fix isn't
worse that the problem.

Two potential fixes were suggested, 1) overloading with array arguments, and 2) use of a reference_traits class with a
specialization for arrays.

Matt Austern and Dietmar Kühl will work on wording for the two approaches.]

182. Ambiguous references to size_t

Section: 17 lib.library Status: Review Submitter: Al Stevens Date: 15 Aug 99

Many references to size_t throughout the document omit the std:: namespace qualification.

For example, 17.4.3.4 [lib.replacement.functions] paragraph 2:

— operator new(size_t)
— operator new(size_t, const std::nothrow_t&)
— operator new[](size_t)
— operator new[](size_t, const std::nothrow_t&)

Proposed resolution:

Throughout the library clauses of the Standard, qualify with std:: names from namespace std, such as size_t and
ptrdiff_t, unless their use is within the scope of namespace std.

Rationale:

The LWG believes correcting names like size_t and ptrdiff_t to std::size_t and std::ptrdiff_t to be
essentially editorial. The issue is treated as a Defect Report to make explicit the Project Editor's authority to make this
change.

183. I/O stream manipulators don't work for wide character streams

Section: 27.6.3 lib.std.manip Status: Open Submitter: Andy Sawyer Date: 7 Jul 99

27.6.3 [lib.std.manip] paragraph 3 says (clause numbering added for exposition):

Library Active Issues List Page 50 of 64

Returns: An object s of unspecified type such that if [1] out is an (instance of) basic_ostream then the expression out<<s
behaves as if f(s) were called, and if [2] in is an (instance of) basic_istream then the expression in>>s behaves as if f(s)
were called. Where f can be defined as: ios_base& f(ios_base& str, ios_base::fmtflags mask) { // reset specified flags
str.setf(ios_base::fmtflags(0), mask); return str; } [3] The expression out<<s has type ostream& and value out. [4] The
expression in>>s has type istream& and value in.

Given the definitions [1] and [2] for out and in, surely [3] should read: "The expression out << s has type
basic_ostream& ..." and [4] should read: "The expression in >> s has type basic_istream& ..."

If the wording in the standard is correct, I can see no way of implementing any of the manipulators so that they will
work with wide character streams.

e.g. wcout << setbase(16);

Must have value 'wcout' (which makes sense) and type 'ostream&' (which doesn't).

The same "cut'n'paste" type also seems to occur in Paras 4,5,7 and 8. In addition, Para 6 [setfill] has a similar error, but
relates only to ostreams.

I'd be happier if there was a better way of saying this, to make it clear that the value of the expression is "the same
specialization of basic_ostream as out"&

Proposed resolution:

Maybe replace [1] with "out is an instance of basic_ostream<charT,traitsT> for some charT and some traitsT" ... and [3]
with: "The expression out << s has type basic_ostream&<charT,traitsT>" ... and do something similar for [2]&[4]. But
this strikes me as being somewhat cumbersome.

[Kona: Andy Sawyer and Beman Dawes will work to improve the wording of the proposed resolution.]

184. numeric_limits<bool> wording problems

Section: 18.2.1 lib.limits Status: Open Submitter: Gabriel Dos Reis Date: 21 Jul 99

bools are defined by the standard to be of integer types, as per 3.9.1/7 [basic.fundamental]. However "integer types"
seems to have a special meaning for the author of 18.2. The net effect is an unclear and confusing specification for
numeric_limits<bool> as evidenced below.

18.2.1.2/7 says numeric_limits<>::digits is, for built-in integer types, the number of non-sign bits in the representation.

4.5/4 states that a bool promotes to int ; whereas 4.12/1 says any non zero arithmetical value converts to true.

I don't think it makes sense at all to require numeric_limits<bool>::digits and numeric_limits<bool>::digits10 to be
meaningful.

The standard defines what constitutes a signed (resp. unsigned) integer types. It doesn't categorize bool as being signed
or unsigned. And the set of values of bool type has only two elements.

I don't think it makes sense to require numeric_limits<bool>::is_signed to be meaningful.

18.2.1.2/18 for numeric_limits<integer_type>::radix says:

Library Active Issues List Page 51 of 64

For integer types, specifies the base of the representation.186)

This disposition is at best misleading and confusing for the standard requires a "pure binary numeration system" for
integer types as per 3.9.1/7

The footnote 186) says: "Distinguishes types with base other than 2 (e.g BCD)." This also erroneous as the standard
never defines any integer types with base representation other than 2.

Furthermore, numeric_limits<bool>::is_modulo and numeric_limits<bool>::is_signed have similar problems.

Proposed resolution:

Change 18.2.1 [lib.limits] paragraph 2, from:

Specializations shall be provided for each fundamental type, both floating point and integer, including
bool.

to:

Specializations shall be provided for each fundamental type, both floating point and integer, except bool.

Remove template<> class numeric_limits<bool>; from the synopsis, 18.2.1 paragraph 4.

Change18.2.1.2 lib.numeric.limits.members paragraph18 from:

For integer types, specifies the base of the representation.

to:

For all integer types other than bool, shall be 2 (3.9.1). Not meaningful for bool.

Remove footnote 186 which reads:

Distinguishes types with base other than 2 (e.g BCD).

[Kona: Matt Austern will provide wording that specifies an exact value.]

185. Questionable use of term "inline"

Section: 20.3 lib.function.objects Status: Open Submitter: UK Panel Date: 26 Jul 99

Paragraph 4 of 20.3 [lib.function.objects] says:

 [Example: To negate every element of a: transform(a.begin(), a.end(), a.begin(), negate<double>()); The
corresponding functions will inline the addition and the negation. end example]

(Note: The "addition" referred to in the above is in para 3) we can find no other wording, except this (non-normative)
example which suggests that any "inlining" will take place in this case.

Indeed both:

Library Active Issues List Page 52 of 64

17.4.4.3 Global Functions [lib.global.functions] 1 It is unspecified whether any global functions in the
C++ Standard Library are defined as inline (7.1.2).

and

17.4.4.4 Member Functions [lib.member.functions] 1 It is unspecified whether any member functions in
the C++ Standard Library are defined as inline (7.1.2).

take care to state that this may indeed NOT be the case.

Thus the example "mandates" behavior that is explicitly not required elsewhere.

Proposed resolution:

Change 20.3 [lib.function.objects] paragraph 2 from:

Using function objects together with function templates increases the expressive power of the library as
well as making the resulting code much more efficient.

to:

Using function objects together with function templates increases the expressive power of the library.

Option 1: Remove from 20.3 [lib.function.objects] paragraph 4 the sentence:

"The corresponding functions will inline the addition and the negation."

Option 2: Change "will" to "may" in 20.3 [lib.function.objects] paragraph 4 so the sentence becomes:

"The corresponding functions may inline the addition and the negation."

186. bitset::set() second parameter should be bool

Section: 23.3.5.2 lib.bitset.members Status: Open Submitter: Darin Adler Date: 13 Aug 99

In section 23.3.5.2 [lib.bitset.members], paragraph 13 defines the bitset::set operation to take a second parameter of type
int. The function tests whether this value is non-zero to determine whether to set the bit to true or false. The type of this
second parameter should be bool. For one thing, the intent is to specify a Boolean value. For another, the result type
from test() is bool. In addition, it's possible to slice an integer that's larger than an int. This can't happen with bool,
since conversion to bool has the semantic of translating 0 to false and any non-zero value to true.

Proposed resolution:

In 23.3.5.2 [lib.bitset.members], paragraph 13 and in 23.3.5 [lib.template.bitset] change the type of the second
parameter to bitset::set to bool

[Kona: The LWG agrees with the description. Andy Sawyers will work on better P/R wording.]

187. iter_swap underspecified

Library Active Issues List Page 53 of 64

Section: 25.2.2 lib.alg.swap Status: Ready Submitter: Andrew Koenig Date: 14 Aug 99

The description of iter_swap in 25.2.2 paragraph 7,says that it ``exchanges the values'' of the objects to which two
iterators refer.

What it doesn't say is whether it does so using swap or using the assignment operator and copy constructor.

This question is an important one to answer, because swap is specialized to work efficiently for standard containers.
For example:

vector<int> v1, v2;
iter_swap(&v1, &v2);

Is this call to iter_swap equivalent to calling swap(v1, v2)? Or is it equivalent to

{
vector<int> temp = v1;
v1 = v2;
v2 = temp;
}

The first alternative is O(1); the second is O(n).

A LWG member, Dave Abrahams, comments:

Not an objection necessarily, but I want to point out the cost of that requirement:

iter_swap(list<T>::iterator, list<T>::iterator)

can currently be specialized to be more efficient than iter_swap(T*,T*) for many T (by using splicing).
Your proposal would make that optimization illegal.

Proposed resolution:

Change the effect clause of iter_swap in 25.2.2 paragraph 7 from:

Exchanges the values pointed to by the two iterators a and b.

to

swap(*a, *b).

[Kona: The LWG notes the original need for iter_swap was proxy iterators which are no longer permitted.]

189. setprecision() not specified correctly

Section: 27.4.2.2 lib.fmtflags.state Status: Ready Submitter: Andrew Koenig Date: 25 Aug 99

27.4.2.2 paragraph 9 claims that setprecision() sets the precision, and includes a parenthetical note saying that it is the
number of digits after the decimal point.

This claim is not strictly correct. For example, in the default floating-point output format, setprecision sets the number
of significant digits printed, not the number of digits after the decimal point.

Library Active Issues List Page 54 of 64

I would like the committee to look at the definition carefully and correct the statement in 27.4.2.2

Proposed resolution:

Remove from 27.4.2.2 lib.fmtflags.state, paragraph 9, the text "(number of digits after the decimal point)".

193. Heap operations description incorrect

Section: 25.3.6 lib.alg.heap.operations Status: Ready Submitter: Markus Mauhart Date: 24 Sep 99

25.3.6 [lib.alg.heap.operations] states two key properties of a heap [a,b), the first of them is

 `"(1) *a is the largest element"

I think this is incorrect and should be changed to the wording in the proposed resolution.

Actually there are two independent changes:

A-"part of largest equivalence class" instead of "largest", cause 25.3 [lib.alg.sorting] asserts "strict weak
ordering" for all its sub clauses.

B-Take 'an oldest' from that equivalence class, otherwise the heap functions could not be used for a
priority queue as explained in 23.2.3.2.2 [lib.priqueue.members] (where I assume that a "priority queue"
respects priority AND time).

Proposed Resolution:

Change 25.3.6 [lib.alg.heap.operations] property (1) from:

(1) *a is the largest element

to:

(1) There is no element greater than *a

195. Should basic_istream::sentry's constructor ever set eofbit?

Section: 27.6.1.1.2 lib.istream::sentry Status: Ready Submitter: Matt Austern Date:13 Oct 99

Suppose that is.flags() & ios_base::skipws is nonzero. What should basic_istream<>::sentry's
constructor do if it reaches eof while skipping whitespace? 27.6.1.1.2/5 suggests it should set failbit. Should it set eofbit
as well? The standard doesn't seem to answer that question.

On the one hand, nothing in 27.6.1.1.2 [lib.istream::sentry] says that basic_istream<>::sentry should ever set
eofbit. On the other hand, 27.6.1.1/4 [lib.istream] says that if extraction from a streambuf "returns traits::eof(),
then the input function, except as explicitly noted otherwise, completes its actions and does setstate(eofbit)". So
the question comes down to whether basic_istream<>::sentry's constructor is an input function.

Comments from Jerry Schwarz:

Library Active Issues List Page 55 of 64

It was always my intention that eofbit should be set any time that a virtual returned something to indicate
eof, no matter what reason iostream code had for calling the virtual.

The motivation for this is that I did not want to require streambufs to behave consistently if their virtuals
are called after they have signalled eof.

The classic case is a streambuf reading from a UNIX file. EOF isn't really a state for UNIX file
descriptors. The convention is that a read on UNIX returns 0 bytes to indicate "EOF", but the file
descriptor isn't shut down in any way and future reads do not neccessarily also return 0 bytes. In
particular, you can read from tty's on UNIX even after they have signalled "EOF". (It isn't always
understood that a ^D on UNIX is not an EOF indicator, but an EOL indicator. By typing a "line"
consisting solely of ^D you cause a read to return 0 bytes, and by convention this is interpreted as end of
file.)

Proposed Resolution:

Add a sentence to the end of 27.6.1.1.2 paragraph 2:

If is.rdbuf()->sbumpc() or is.rdbuf()->sgetc() returns traits::eof(), the function calls
setstate(failbit | eofbit) (which may throw ios_base::failure).

196. Placement new example has alignment problems

Section: 18.4.1.3 lib.new.delete.placement Status: New Submitter: Herb Sutter Date: 15 Dec 98

The example in 18.4.1.3 [lib.new.delete.placement] paragraph 4 reads:

[Example: This can be useful for constructing an object at a known address:

 char place[sizeof(Something)];
 Something* p = new (place) Something();

end example]

This example has potential alignment problems.

[Kona: This issue was previously Core-79; the core working group requested it be handled by the LWG.

It is, however, a duplicate of issue 114, but with a different propose resolution. This difference should be resolved.]

Proposed Resolution:

Change the code in the example in 18.4.1.3 [lib.new.delete.placement] paragraph 4 to:

char* place = new char[sizeof(Something)];
Something* p = new (place) Something();

197. max_size() underspecified

Section: 20.1.5 lib.allocator.requirements, 21.3.3 lib.string.capacity, 23.1 lib.container.requirements Status: New
Submitter: Andy Sawyer Date: 21 Oct 99

Library Active Issues List Page 56 of 64

Must the value returned by max_size() be unchanged from call to call?

Must the value returned from max_size() be meaningful?

Possible meanings identified in lib-6827:

1) The largest container the implementation can support given "best case" conditions - i.e. assume the run-time platform
is "configured to the max", and no overhead from the program itself. This may possibly be determined at the point the
library is written, but certainly no later than compile time.

2) The largest container the program could create, given "best case" conditions - i.e. same platform assumptions as (1),
but take into account any overhead for executing the program itself. (or, roughly "storage=storage-sizeof(program)").
This does NOT include any resource allocated by the program. This may (or may not) be determinable at compile time.

3) The largest container the current execution of the program could create, given knowledge of the actual run-time
platform, but again, not taking into account any currently allocated resource. This is probably best determined at
program start-up.

4) The largest container the current execution program could create at the point max_size() is called (or more correctly
at the point max_size() returns :-), given it's current environment (i.e. taking into account the actual currently available
resources). This, obviously, has to be determined dynamically each time max_size() is called.

Proposed Resolution:

[Kona: the LWG informally discussed this and asked that an issue be opened.]

198. Validity of references is unspecified after iterator destruction

Section: 23.1 lib.container.requirements Status: New Submitter: Beman Dawes Date: 3 Nov 99

Is a reference or pointer to a container element still valid after destruction of the iterator that the reference was obtained
from?

 // assume c is some non-empty standard library container
 T* p = &*c.begin();

 ... // is p still valid at this point?

 c.clear(); // clearly invalidates p

If references must remain valid after iterator destruction, it is not possible to implement standard conforming containers
which return iterators to cached elements. This is a particular problem for large disk-based containers like B-trees as
they cannot be portably implemented without caching elements.

Three well-known implementations of <algorithm> seem to be written as if references do not remain valid after iterator
destruction. Thus these implementations appear to already conform to the proposed resolution. Whether this is by design
or happenstance isn't known.

The standard doesn't appear to address this question. It needs to be made clear to both users and implementors.

Proposed Resolution:

Add a new paragraph at the end of 23.1 lib.container.requirements:

Library Active Issues List Page 57 of 64

Destruction of an iterator invalidates container element references and pointers previously obtained from
that iterator.

199. What does allocate(0) return?

Section: 20.1.5 lib.allocator.requirements Status: New Submitter: Matt Austern Date: 19 Nov 99

Suppose that A is a class that conforms to the Allocator requirements of Table 32, and a is an object of class A What
should be the return value of a.allocate(0)? Three reasonable possibilities: forbid the argument 0, return a null
pointer, or require that the return value be a unique non-null pointer.

Proposed Resolution:

Alternative A: Add a note to the allocate row of Table 32: "[Note: If n == 0, the return value is a null pointer. --
end note]"

Alternative B: Add a note to the allocate row of Table 32: "[Note: The return value is not a null pointer even when
n == 0. --end note]"

200. Forward iterator requirements don't allow constant iterators

Section: 24.1.3 lib.forward.iterators Status: New Submitter: Matt Austern Date: 19 Nov 99

In table 74, the return type of the expression *a is given as T&, where T is the iterator's value type. For constant
iterators, however, this is wrong. ("Value type" is never defined very precisely, but it is clear that the value type of, say,
std::list<int>::const_iterator is supposed to be int, not const int.)

Proposed Resolution:

In table 74, change the return type column for *a from "T&" to "T& if X is mutable, otherwise const T&".

201. Numeric limits terminology unclear

Section: 18.2.1 lib.limits Status: New Submitter: Stephen Cleary Date: 21 Dec 1999

In some places in this section, the terms "fundamental types" and "scalar types" are used when the term "arithmetic
types" is intended. The current usage is incorrect because void is a fundamental type and pointers are scalar types,
neither of which should have specializations of numeric_limits.

Proposed Resolution:

Change 18.2 [lib.support.limits] para 1 from:

The headers <limits>, <climits>, and <cfloat> supply characteristics of implementation-dependent
fundamental types (3.9.1).

to:

Library Active Issues List Page 58 of 64

The headers <limits>, <climits>, and <cfloat> supply characteristics of implementation-dependent
arithmetic types (3.9.1).

Change 18.2.1 [lib.limits] para 1 from:

The numeric_limits component provides a C++ program with information about various properties of the
implementation's representation of the fundamental types.

to:

The numeric_limits component provides a C++ program with information about various properties of the
implementation's representation of the arithmetic types.

Change 18.2.1 [lib.limits] para 2 from:

Specializations shall be provided for each fundamental type. . .

to:

Specializations shall be provided for each arithmetic type. . .

Change 18.2.1 [lib.limits] para 4 from:

Non-fundamental standard types. . .

to:

Non-arithmetic standard types. . .

Change 18.2.1.1 [lib.numeric.limits] para 1 from:

The member is_specialized makes it possible to distinguish between fundamental types, which have
specializations, and non-scalar types, which do not.

to:

The member is_specialized makes it possible to distinguish between arithmetic types, which have
specializations, and non-arithmetic types, which do not.

202. unique() effects unclear when predicate not an equivalence relation

Section: 25.2.8 lib.alg.unique Status: New Submitter: Andrew Koenig Date: 13 Jan 00

What should unique() do if you give it a predicate that is not an equivalence relation? There are at least two plausible
answers:

1. You can't, because 25.2.8 says that it it "eliminates all but the first element from every consecutive
group of equal elements..." and it wouldn't make sense to interpret "equal" as meaning anything but an
equivalence relation. [It also doesn't make sense to interpret "equal" as meaning ==, because then there
would never be any sense in giving a predicate as an argument at all.]

Library Active Issues List Page 59 of 64

2. The word "equal" should be interpreted to mean whatever the predicate says, even if it is not an
equivalence relation (and in particular, even if it is not transitive).

The example that raised this question is from Usenet:

int f[] = { 1, 3, 7, 1, 2 };
int* z = unique(f, f+5, greater<int>());

If one blindly applies the definition using the predicate greater<int>, and ignore the word "equal", you get:

Eliminates all but the first element from every consecutive group of elements referred to by the iterator i
in the range [first, last) for which *i > *(i - 1).

The first surprise is the order of the comparison. If we wanted to allow for the predicate not being an equivalence
relation, then we should surely compare elements the other way: pred(*(i - 1), *i). If we do that, then the description
would seem to say: "Break the sequence into subsequences whose elements are in strictly increasing order, and keep
only the first element of each subsequence". So the result would be 1, 1, 2. If we take the description at its word, it
would seem to call for strictly DEcreasing order, in which case the result should be 1, 3, 7, 2.

In fact, the SGI implementation of unique() does neither: It yields 1, 3, 7.

Proposed Resolution:

What should we do? I think there are two alternatives:

1. Impose an additional requirement that the predicate be an equivalence relation.

2. Drop the word "equal" from the description to make it clear that the intent is to compare pairs of
adjacent elements.

If we adopt (2), we also need to decide whether pred(*i, *(i - 1)) is really what we meant, or whether pred(*(i - 1), i) is
more appropriate.

203. basic_istream::sentry::sentry() is uninstantiable with ctype<user-defined type>

Section: 27.6.1.1.2 lib.istream::sentry Status: New Submitter: Matt McClure and Dietmar Kuehl Date: 1 Jan 00

27.6.1.1.2 Paragraph 4 states:

To decide if the character c is a whitespace character, the constructor performs ''as if'' it executes the
following code fragment:

const ctype<charT>& ctype = use_facet<ctype<charT> >(is.getloc());
if (ctype.is(ctype.space,c)!=0)
// c is a whitespace character.

But Table 51 in 22.1.1.1.1 only requires an implementation to provide specializations for ctype<char> and
ctype<wchar_t>. If sentry's constructor is implemented using ctype, it will be uninstantiable for a user-defined character
type charT, unless the implementation has provided non-working (since it would be impossible to define a correct
ctype<charT> specialization for an arbitrary charT) definitions of ctype's virtual member functions.

It seems the intent the standard is that sentry should behave, in every respect, not just during execution, as if it were
implemented using ctype, with the burden of providing a ctype specialization falling on the user. But as it is written,

Library Active Issues List Page 60 of 64

nothing requires the translation of sentry's constructor to behave as if it used the above code, and it would seem
therefore, that sentry's constructor should be instantiable for all character types.

Note: If I have misinterpreted the intent of the standard with respect to sentry's constructor's instantiability, then a note
should be added to the following effect:

An implementation is forbidden from using the above code if it renders the constructor uninstantiable for an otherwise
valid character type.

In any event, some clarification is needed.

Proposed Resolution:

Change the first sentence of 27.6.1.1.2 paragraph 4:

To decide if the character c is a whitespace character, the constructor behaves, during translation and
execution ''as if'' it were implemented with the following code fragment: ...

204. distance(first, last) when "last" is before "first"

Section: 24.3.4 lib.iterator.operations Status: New Submitter: Rintala Matti Date: 28 Jan 00

Section 24.3.4 describes the function distance(first, last) (where first and last are iterators) which calculates "the number
of increments or decrements needed to get from 'first' to 'last'".

The function should work for forward, bidirectional and random access iterators, and there is a requirement 24.3.4.5
which states that "'last' must be reachable from 'first'".

With random access iterators the function is easy to implement as "last - first".

With forward iterators it's clear that 'first' must point to a place before 'last', because otherwise 'last' would not be
reachable from 'first'.

But what about bidirectional iterators? There 'last' is reachable from 'first' with the -- operator even if 'last' points to an
earlier position than 'first'. However, I cannot see how the distance() function could be implemented if the
implementation does not know which of the iterators points to an earlier position (you cannot use ++ or -- on either
iterator if you don't know which direction is the "safe way to travel").

The paragraph 24.3.4.1 states that "for ... bidirectional iterators they use ++ to provide linear time implementations".
However, the ++ operator is not mentioned in the reachability requirement. Furthermore 24.3.4.4 explicitly mentions
that distance() returns the number of increments _or decrements_, suggesting that it could return a negative number also
for bidirectional iterators when 'last' points to a position before 'first'.

Is a further requirement is needed to state that for forward and bidirectional iterators "'last' must be reachable from 'first'
using the ++ operator". Maybe this requirement might also apply to random access iterators so that distance() would
work the same way for every iterator category?

Proposed Resolution:

205. numeric_limits unclear on how to determine floating point types

Library Active Issues List Page 61 of 64

Section: 18.2.1.2 lib.numeric.limits.members Status: New Submitter: Steve Cleary Date: 28 Jan 00

In several places in 18.2.1.2 [lib.numeric.limits.members], a member is described as "Meaningful for all floating point
types." However, no clear method of determining a floating point type is provided.

In 18.2.1.5 [lib.numeric.special], paragraph 1 states ". . . (for example, epsilon() is only meaningful if is_integer is
false). . ." which suggests that a type is a floating point type if is_specialized is true and is_integer is false; however, this
is unclear.

When clarifying this, please keep in mind this need of users: what exactly is the definition of floating point? Would a
fixed point or rational representation be considered one? I guess my statement here is that there could also be types that
are neither integer or (strictly) floating point.

Proposed Resolution:

206. operator new(size_t, nothrow) may become unlinked to ordinary operator new if ordinary
version replaced

Section: 18.4.1.1 lib.new.delete.single Status: New Submitter: Howard Hinnant Date: 29 Aug 99

As specified, the implementation of the nothrow version of operator new does not necessarily call the ordinary operator
new, but may instead simply call the same underlying allocator and return a null pointer instead of throwing an
exception in case of failure.

Such an implementation breaks code that replaces the ordinary version of new, but not the nothrow version. If the
ordinary version of new/delete is replaced, and if the replaced delete is not compatible with pointers returned from the
library versions of new, then when the replaced delete receives a pointer allocated by the library new(nothrow), crash
follows.

The fix appears to be that the lib version of new(nothrow) must call the ordinary new. Thus when the ordinary new gets
replaced, the lib version will call the replaced ordinary new and things will continue to work.

An alternative would be to have the ordinary new call new(nothrow). This seems sub-optimal to me as the ordinary
version of new is the version most commonly replaced in practice. So one would still need to replace both ordinary and
nothrow versions if one wanted to replace the ordinary version.

Another alternative is to put in clear text that if one version is replaced, then the other must also be replaced to maintain
compatibility. Then the proposed resolution below would just be a quality of implementation issue. There is already such
text in paragraph 7 (under the new(nothrow) version). But this nuance is easily missed if one reads only the paragraphs
relating to the ordinary new.

Proposed resolution:

Change the default behavior of operator new (size_t, nothrow_t) in 18.4.1.1 lib.new.delete.single (paragraph 8) from:

-8- Default behavior:

l Executes a loop: Within the loop, the function first attempts to allocate the requested storage. Whether the
attempt involves a call to the Standard C library function malloc is unspecified.

l Returns a pointer to the allocated storage if the attempt is successful. Otherwise, if the last argument to
set_new_handler() was a null pointer, return a null pointer.

l Otherwise, the function calls the current new_handler (lib.new.handler). If the called function returns, the loop

Library Active Issues List Page 62 of 64

repeats.
l The loop terminates when an attempt to allocate the requested storage is successful or when a called

new_handler function does not return. If the called new_handler function terminates by throwing a bad_alloc
exception, the function returns a null pointer.

to

-8- Default behavior:

l Calls the ordinary operator new(size_t) returning the result, but catches any exceptions thrown.
l If an exception is caught, returns a null pointer.

207. ctype<char> members return clause incomplete

Section: 22.2.1.3.2 lib.facet.ctype.char.members Status: New Submitter: Robert Klarer Date: 2 Nov 99

Proposed Resolution:

Change the returns clause in 22.2.1.3.2 lib.facet.ctype.char.members paragraph 10 from:

 Returns: do_widen(low, high, to).

to:

 Returns: do_widen(c) or do_widen(low, high, to), respectively.

Change the returns clause in 22.2.1.3.2 lib.facet.ctype.char.members paragraph 11 from:

 Returns: do_narrow(low, high, to).

to:

 Returns: do_narrow(c) or do_narrow(low, high, to), respectively.

208. Unnecessary restriction on past-the-end iterators

Section: 24.1 lib.iterators Status: New Submitter: Stephen Cleary Date: 02 Feb 00

In 24.1 paragraph 5, it is stated ". . . Dereferenceable and past-the-end values are always non-singular."

This places an unnecessary restriction on past-the-end iterators for containers with forward iterators (for example, a
singly-linked list). If the past-the-end value on such a container was a well-known singular value, it would still satisfy
all forward iterator requirements.

Removing this restriction would allow, for example, a singly-linked list without a "footer" node.

This would have an impact on existing code that expects past-the-end iterators obtained from different (generic)
containers being not equal.

Proposed Resolution:

Library Active Issues List Page 63 of 64

Change the wording of 24.1 [Iterator requirements] paragraph 5 to ". . . Dereferenceable values are always non-singular.
If the iterator category is bidirectional or random access, a past-the-end value of that iterator is always non-singular."

209. basic_string declarations inconsistent

Section: 21.3 lib.basic.string Status: New Submitter: Igor Stauder Date: 11 Feb 00

In Section 21.3 [lib.basic.string] the basic_string member function declarations use a consistent style except for the
following functions:

void push_back(const charT);
basic_string& assign(const basic_string&);
void swap(basic_string<charT,traits,Allocator>&);

- push_back, assign, swap: missing argument name
- push_back: use of const with charT (i.e. POD type passed by value not by reference - should be charT or const
charT&)
- swap: redundant use of template parameters in argument basic_string<charT,traits,Allocator>&

Proposed Resolution:

In Section 21.3 [lib.basic.string] change the basic_string member function declarations push_back, assign, and swap to:

void push_back(charT c);
 or
void push_back(const charT& c);

basic_string& assign(const basic_string& str);
void swap(basic_string& str);

210. distance first and last confused

Section: 25 lib.algorithms Status: New Submitter: Lisa Lippincott Date: 15 Feb 00

In paragraph 9 of section 25 [lib.algorithms], it is written:

In the description of the algorithms operators + and - are used for some of the iterator categories for
which they do not have to be defined. In these cases the semantics of [...] a-b is the same as of

 return distance(a, b);

Proposed Resolution:

On the last line of paragraph 9 of section 25 [lib.algorithms] change return distance(a, b); to return
distance(b, a);

211. operator>>(istream&, string&) doesn't set failbit

Section: 21.3.7.9 lib.string.io Status: New Submitter: Scott Snyder Date: 4 Feb 00

Library Active Issues List Page 64 of 64

The description of the stream extraction operator for std::string (section 21.3.7.9 [lib.string.io]) does not contain a
requirement that failbit be set in the case that the operator fails to extract any characters from the input stream.

This implies that the typical construction

std::istream is;
std::string str;
...
while (is >> str) ... ;

(which tests failbit) is not required to terminate at EOF.

Furthermore, this is inconsistent with other extraction operators, which do include this requirement. (See sections
27.6.1.2 [lib.istream.formatted] and 27.6.1.3 [lib.istream.unformatted], where this requirement is present, either
explicitly or implicitly, for the extraction operators. It is also present explicitly in the description of getline (istream&,
string&, charT) in section 21.3.7.9 [lib.string.io] paragraph 8.)

Proposed Resolution:

Insert new paragraph after paragraph 2 in section 21.3.7.9 [lib.string.io]:

If the function extracts no characters, it calls is.setstate(ios::failbit) which may throw ios_base::failure
(27.4.4.3).

----- End of document -----

