
n3816 - Local functions
&& Function literals

(slides)
N3678 and N3679

Motivation

void async(void* data, void (*callback)(int result, void* data));

struct start_capture {
int value;

};

static void start_callback(int result, void* data) {
struct start_capture* capture = data;
free(capture);

}

void start() {
struct start_capture* capture = calloc(1, sizeof *capture);

 async(capture, start_callback);
}

do this, then that...

void part1_async(void* data, void (*callback)(int result, void* data));
void part2_async(void* data, void (*callback)(int result, void* data));

struct part1_capture {
int value;

};

struct part2_capture {
char ch;

};

static void part2_complete(int result, void* data);

static void part1_complete(int result, void* data) {
struct part1_capture* capture1 = data;

struct part2_capture* capture2 = calloc(1, sizeof *capture2);
 part2_async(capture2, part2_complete);

free(capture2);
}

static void part2_complete(int result, void* data) {
struct part2_capture* capture2 = data;
free(capture2);

}

void start() {
struct part1_capture* capture1 = calloc(1, sizeof *capture1);

 part1_async(capture1, part1_complete);
}

Motivation

void async(void* data, void (*callback)(int result, void* data));

struct start_capture {
int value;

};

static void start_callback(int result, void* data) {
struct start_capture* capture = data;
free(capture);

}

void start() {
struct start_capture* capture = calloc(1, sizeof *capture);

 async(capture, start_callback);
}

Local functions

void async(void* data, void (*callback)(int result, void* data));

void start() {

struct capture {
int value;

 };

static void callback(int result, void* data) {
struct capture* capture = data;
free(capture);

 }

struct capture* capture = calloc(1, sizeof * capture);
 async(capture, callback);
}

Literal functions

void async(void* data, void (*callback)(int result, void* data));

void start() {

struct capture {
int value;

 } capture = calloc(1, sizeof * capture);

 async(capture, (void (int result, void* data))
 {

struct capture* capture = data;
free(capture);

 });
}

Reusing captures

int main()
{
struct capture { int id; }* capture = calloc(1, sizeof * capture);

 login_async(capture, (void (int id, void * p))
 {

printf("login completed. id=%d\n", id);
struct capture * cap1 = p;

 cap1->id = id;
 get_data_async(cap1 /*moved*/, (void (const char* email, void * data))
 {

struct capture * cap2 = data;
printf("your data='%s' from id=%d\n", email, cap2->id);
free(cap2);

 });
 });
}

Captures on Stack

#include <stdio.h>

void for_each_file(const char* path,
void* data,
void (*f)(void* data, const char* filename)){}

int main(){

struct {
enum { ALL, SMALL } filter;
bool more_data;

 } capture = { ALL, false };

 for_each_file("c:", &capture, (void (void* p, const char* file_name))
 {

typeof(capture) * captured = p;
if (captured->filter == ALL) {}

 });
}

Static captures

#include <stdio.h>

void for_each_file(const char* path,
void* data,
void (*f)(void* data, const char* filename));

int main()
{

static int filter = 1;
 for_each_file("c:", 0, (void (void* data, const char* file_name))
 {

if (filter == 1) {}
 });
}

Async implementation I

void async(void* data, void (*callback)(int result, void* data))
{
struct capture {

void * data;
void (*callback)(int result, void* data);

 } capture = calloc(1, sizeof * capture);

if (capture == NULL) {
 callback(1, data);

return;
 }

 capture->data = data;
 capture->callback = callback;

 thread_pool(capture, (void (void* data))
 {

struct capture* capture = data;
 capture->callback(0, capture->data);

free(capture);
 });
}

Async implementation II

void async(void* data, void (*callback)(int result, void* data))
{
struct capture {

void * data*;
void (*callback)(int result, void* data);

 } capture = {data, callback};

 thread_pool(capture, sizeof capture, (void (void* data))
 {

struct capture* capture = data;

/* task */

 capture->callback(0, capture->data);
 });
}

Async implementation III

void async(void* data, void (*callback)(int result, void* data))
{
struct capture {

void * data*;
void (*callback)(int result, void* data);

 } capture = {data, callback};

 thread_pool(capture, sizeof capture, (void (void* data))
 {

struct capture* capture = data;

/* task */

 dispatch(capture, sizeof capture, (void (void* data)))
 {

struct capture* capture = data;
 capture->callback(0, capture->data);
 });
 });
}

Local function syntax

block-item:
 ...

function-definition

function-definition:
 attribute-specifier-sequence opt declaration-specifiers declarator function-body

Forward declarations

#include <stdio.h>

int main() {
void f();

 f();
void f() { printf("local"); }

}

void f() { printf("extern"); }

GCC Nested function solution

#include <stdio.h>

int main() {
auto void f();

 f();
/*auto*/ void f() { printf("local"); }

}

void f() { printf("extern"); }

See also: N3579 auto as a placeholder type specifier

GCC Nested function solution

#include <stdio.h>

int main() {
void f();

 f();
/*error: static declaration of 'f' follows non-static declaration*/
void f() { printf("local"); }

}

void f() { printf("extern"); }

Alternative I (static)

void f() { /*extern*/ }

int main() {

/*local functions*/
static void f(); /*local function declaration*/
static void f() { }

/*GCC nested function*/
auto int f2();
int i = 1;
int f2() { return i; }

}

Alternative II (hybrid)

void f() { /*extern*/ }

int main() {
static void f();
void f() { }

/*static*/ int f1() { return 0; }

int i = 1;
int f1() { return i; /*GCC extension*/ }

}

Alternative III (same as gcc)

void f() { /*extern*/ }

int main() {
auto void f();
/*auto*/ void f() { }

auto int f2();
int i = 1;
int f2() { return i; /*GCC extension*/ }

}

GCC Curiosity I

#include <stdio.h>

int main()
{
auto void local();

// error: nested function 'local' declared but never defined
void local() {

printf("1 ");
 }

 local();

auto void local();

}

GCC Curiosity II

#include <stdio.h>

int main()
{
auto void local();

void local() { printf("1 "); }

 local(); //prints 2

auto void local();

void local() { printf("2 "); }
 local(); //prints 2
}

Local functions and scope

• A local function must have only one definition per scope

• Forward declarations are scoped.

• warning: Forward declaration after the definition

• warning: Multiple forward declarations

obs: not at the N3678 yet

Function Literal syntax

postfix-expression:
 ...

function-literal-definition

function-literal-definition:
 (attribute-specifier-sequence opt declaration-specifiers abstract-declarator)
 function-body

function-definition:
 attribute-specifier-sequence opt declaration-specifiers declarator function-body

The abstract-declarator portion of a function literal definition must have a function type.

Disambiguation: Compound literals cannot have a function type.

Why not C++ lambda syntax?

• Keeps the grammar for functions and function literals in

sync.

• Keeps the existing scope rules for return types and

parameters.

• Return type deduction not required. (could be added with

auto)

/* C++ */
int main() {

//error: return type 'struct main()::X' is incomplete
 [] () -> struct X { int i; } * {

return 0;
 }();
}

This could be necessary for someone using vec(int) with struct tag compatibility.

Why not C++ lambda syntax?

• Fits well with the existing concept of compound literals.

• Do not create the expectation that the C and C++ features

are identical.

/* C */
int main() {
 (struct X { int i; } *(void)) {

return 0;
 }();
struct X x;

}

It does not create problems that were not considered before.

Semantics

• The function literal is a function designator. (Behaves like a

function, not a function pointer)

void main()
{
 (void (*pf1)(void)) = (void (void)){}; /* ok */
 (void (*pf2)(void)) = &(void (void)){}; /* ok */
 &(void (void)){} = 0; /* error: lvalue required */
}

File scope function literals

auto f = (int (int a)){ return a * 2; }; /* ok */

int main()
{
}

I don't have a use case for that at the moment.

Labels

• Labels are not shared

• Statements are not shared (break; continue)

int main() {
 L1:;
 (void (void)) {

goto L1; /* error: label 'L1' used but not defined */
 }();

void local() {
goto L1; /* error: label 'L1' used but not defined */

 };
}

Returning VM types

#include <stdio.h>
int main() {

int n = 1;
auto typeof(int [n])* local(void);

 n = 2;
typeof(int [n])* local(void) {
return 0;

 }

 n = 3;
auto r = local();

 n = 4;
printf("%zu", _Countof(*r)); //returns 2

}

Following GCC implementation of nested functions

Argument evaluation

#include <stdio.h>

int main() {
int n = 1;

void local(typeof(int[n])* p)
 {

//does it need address of n?
printf("%zu", _Countof(*p));

 }
 n = 2;

int a[n];
 local(&a);

//void (*pf) (typeof(int[n])* p) = local;
//pf(&a);

}

Argument evaluation

#include <stdio.h>

int main() {
int n = 1;

void local(int n, typeof(int [n])* a)
 {

printf("%zu", _Countof(*a)); //prints 2
 }

int a[2] = {1, 2};
 local(2, &a);
}

Following GCC implementation of nested functions

__func__

• The value of the string returned by __func__ is

implementation-defined.

GCC returns the function name for nested functions

C++ returns "operator ()" in lambdas

Scope

• Function literals and local functions have access to the

enclosing scope at the point of its definition.

int main() {

struct X {int i; };
enum E {A};

 (void (void)) {
struct X x = {}; /* ok */

 x.i = A; /* ok */
 }();

void local() {
struct X x = {}; /* ok */

 x.i = A; /* ok */
 };
}

Automatic variables

• Identifiers referring to automatic variables of an enclosing

function cannot have their address resolved inside the body

of a function literal or local function. If they have VM types,

this restriction also apply to resolving their type.

int main() {
int i = 2;
void local() {

int j = sizeof(i); /* ok */
int k = i; /* constraint violation */
int *p = &i; /* constraint violation */

 };
}

Automatic variables

• Identifiers referring to automatic variables of an enclosing

function cannot have their address resolved inside the body

of a function literal or local function. If they have VM types,

this restriction also apply to resolving their type.

void start(int n) {
int a[n];
void local() {

typeof(a) k; /* constrain violation */
int m = sizeof(a); /* constrain violation */

 };
}

Constants

• The same restrictions apply to constants. However their

values can be read without accessing memory.

int main() {
constexpr int a = 1;
const int b = 2; /*N3693 Implicitly constexpr*/
const int j = get();

void local() {
int x = a; /* ok */
int *p = &a; /*constrain violation*/

 x = b; /* ok */
 p = &b; /*constrain violation*/

 x = j; /*constrain violation*/
 };
}

Originally left as a possible option, it can be included

Non-automatic variables

static int g = 1;

int main() {
static int i = 1;

void local() {
int j = sizeof(i); /* ok */
int k = i; /* ok */
int m = g; /* ok */

 };
}

Generic functions

#define SWAP(a, b)\
 (void (typeof(a)* arg1, typeof(b)* arg2)) { \
 typeof(a) temp = *arg1; *arg1 = *arg2; *arg2 = temp; \
 }(&(a), &(b))

int main() {
int a = 1;
int b = 2;

 SWAP(a, b);

 (void (typeof(a)* arg1, typeof(b)* arg2)) {
typeof(a) temp = *arg1;

 *arg1 = *arg2;
 *arg2 = temp;
 }(&(a), &(b));

double da = 1.0;
double db = 2.0;

 SWAP(da, db);
}

Function Literal address

• Distinct function literals are not required to have unique

addresses.

• Extend this to local functions?

int main(){
auto pf1 = (void ()) { return 1 + 1; };
auto pf2 = (void ()) { return 2; };
auto pf3 = (void ()) { return 2; };
/* pf1 and pf2 and pf3 can have the same address */

}

Static variables inside function
literals

• static variables inside function literals will generate distinct

functions

int main() {
auto pf1 = (void ()) { static int i = 0; };
auto pf2 = (void ()) { static int i = 0; };
assert(pf1 != pf2);

}

Key points

• Almost zero learning curve

• Existing practice

• Does not require trampolines or other hidden features.

• If it looks like a function, then it is a function.

• No forced capture strategy (by reference, by copy, stack,

heap, etc.).

• Works with existing APIs that use void * callbacks

• We are not adding new problems.

• We are adding convenience improving safety and

maintainability.

• Keeps the compiler simple

Road map

• Improving the proposal, add wording maybe merge in one

proposal?

• Deciding on forward-declaration syntax (static x auto)

• Experimental implementation http://cakecc.org/ (missing

VM types)

References

• N3724: Discarded

• N3622 Allow calling static inline within extern inline

• N3579: auto as a placeholder type specifier

• N3693: Integer Constant Expression

• N3694: Functions with Data

• N3654: Accessing the Context of Nested Functions

• Reddit: https://www.reddit.com/r/C_Programming/

comments/1omrrra/closures_in_c_yes/

• http://cakecc.org/

Thank You
Press ← → or Space to navigate.

Function literal emulation in GCC

int main() {
 ({int _(int a) { return a * 2; } _;})(2);
}

Multiple forward declarations/
definitions

#include <stdio.h>

int main()
{

int n = 1;
auto typeof(int [n])* f();
printf("%zu\n", _Countof(*f())); //1

 n = 2;
auto typeof(int [n])* f();
printf("%zu\n", _Countof(*f())); //2

 n = 3;
auto typeof(int [n])* f(){

 }
printf("%zu\n", _Countof(*f())); //3

}

