n3816 - Local functions
&& Function literals
(slides)

N3678 and N3679

Motivation

void async(void* data, void (*callback)(int result, void* data));

struct start_capture {
int value;

|3

static void start_callback(int result, void* data) {
struct start_capture* capture = data;
free(capture);

}

void start() {
struct start_capture* capture = calloc(1, sizeof *capture);
async(capture, start_callback);

}

do this, then that...

void part1_async(void* data, void (*callback)(int result, void* data));
void part2_async(void* data, void (*callback)(int result, void* data));

struct part1_capture {
int value;

h

struct part2_capture {
char ch;

h
static void part2_complete(int result, void* data);

static void part1_complete(int result, void* data) {
struct part1_capture* capture1 = data;

struct part2_capture* capture2 = calloc(1, sizeof *capture2);
part2_async(capture2, part2_complete);

free(capture2);

}

static void part2_complete(int result, void* data) {
struct part2_capture* capture2 = data;
free(capture2);

}

void start() {
struct part1_capture* capture1 = calloc(1, sizeof *capture1);
part1_async(capture1, part1_complete);

}

Motivation

void async(void* data, void (*callback)(int result, void* data));

struct start_capture {
int value;

|3

static void start_callback(int result, void* data) {
struct start_capture* capture = data;
free(capture);

}

void start() {
struct start_capture* capture = calloc(1, sizeof *capture);
async(capture, start_callback);

}

Local functions

void async(void* data, void (*callback)(int result, void* data));
void start() {

struct capture {
int value;

J#

static void callback(int result, void* data) {
struct capture* capture = data;
free(capture);

}

struct capture* capture = calloc(1, sizeof * capture);
async(capture, callback);

}

Literal functions

void async(void* data, void (*callback)(int result, void* data));
void start() {

struct capture {
int value;
} capture = calloc(1, sizeof * capture);

async(capture, (void (int result, void* data))
{
struct capture® capture = data;
free(capture);
)
}

Reusing captures

int main()

{

struct capture { int id; }* capture = calloc(1, sizeof * capture);
login_async(capture, (void (int id, void * p))

{
printf("login completed. id=%d\n", id);
struct capture * cap1 = p;
cap1->id = id;
get_data_async(cap1 /*moved®/, (void (const char* email, void * data)
{
struct capture * cap2 = data;
printf("your data='%s' from id=%d\n", email, cap2->id);
free(cap?2);
};
D

Captures on Stack

#include <stdio.h>

void for_each_file(const char* path,
void* data,
void (*f)(void* data, const char* filename)){}

int main(){

struct {
enum { ALL, SMALL } filter;
bool more_data;

} capture = { ALL, false };

for_each_file("c:", &capture, (void (void* p, const char* file_name))
{
typeof(capture) * captured = p;
if (captured->filter == ALL) {}
i
}

Static captures

#include <stdio.h>

void for_each_file(const char* path,
void* data,
void (*f)(void* data, const char* filename));

int main()
{
static int filter = 1;
for_each_file("c:", 0, (void (void* data, const char* file_name))
{
if (filter == 1) {}
b;
}

Async implementation |

void async(void* data, void (*callback)(int result, void* data))
{
struct capture {
void * data;
void (*callback)(int result, void* data);
} capture = calloc(1, sizeof * capture);

if (capture == NULL) {
callback(1, data);
return;

}

capture->data = data;
capture->callback = callback;

thread_pool(capture, (void (void* data))
{

struct capture* capture = data;
capture->callback(0, capture->data);
free(capture);

b;
}

Async implementation li

void async(void* data, void (*callback)(int result, void* data))

{

struct capture {

void * data*;

void (*callback)(int result, void* data);
} capture = {data, callback};

thread_pool(capture, sizeof capture, (void (void* data))

{

struct capture® capture = data;
[* task */

capture->callback(0, capture->data);

h;
}

Async implementation lll

void async(void* data, void (*callback)(int result, void* data))
{
struct capture {
void * data*;
void (*callback)(int result, void* data);
} capture = {data, callback};

thread_pool(capture, sizeof capture, (void (void* data))

{

struct capture® capture = data;
[* task */

dispatch(capture, sizeof capture, (void (void* data)))

{

struct capture® capture = data;

capture->callback(0, capture->data);

D
D;

}

Local function syntax

block-item:
l;iJ.nction-definition

function-definition:
attribute-specifier-sequence opt declaration-specifiers declarator function-body

Forward declarations

#include <stdio.h>

int main() {
void f();

f();
void f() { printf("local"); }

}
void f() { printf("extern"); }

GCC Nested function solution

#include <stdio.h>

int main() {
auto void f();

f();
[*auto*/ void () { printf("local"); }

}
void f() { printf("extern"); }

See also: N3579 auto as a placeholder type specifier

GCC Nested function solution

#include <stdio.h>

int main() {
void f();

f();
[*error: static declaration of 'f' follows non-static declaration®/
void f() { printf("local"); }

}
void f() { printf("extern"); }

Alternative | (static)

void f() { /*extern*/ }
int main() {

[*local functions®/
static void f(); /*local function declaration®*/
static void f() { }

[*GCC nested function®/
auto int f2();

inti=1;

int f2() { return i; }

Alternative Il (hybrid)

void f() { /"extern*/ }

int main() {
static void f();
void f() { }

[*static*/ int f1() { return O; }
inti=1;

int f1() { return i; /*GCC extension®/ }
}

Alternative lll (same as gcc)

void f() { /"extern*/ }

int main() {
auto void f();
[*auto*/ void f() { }

auto int f2();
inti=1;
int f2() { return i; /*GCC extension®/ }

GCC Curiosity |

#include <stdio.h>
int main()
{
auto void local();
/I error: nested function 'local' declared but never defined
void local() {
printf("1");
}

local();

auto void local();

GCC Curiosity Il

#include <stdio.h>

int main()

{ auto void local();
void local() { printf("1 "); }
local(); //prints 2

auto void local();

void local() { printf("2 "); }
local(); //prints 2

Local functions and scope

A local function must have only one definition per scope

Forward declarations are scoped.

warning: Forward declaration after the definition

warning: Multiple forward declarations

obs: not at the N3678 yet

Function Literal syntax

postfix-expression:
function-literal-definition
function-literal-definition:
(attribute-specifier-sequence opt declaration-specifiers abstract-declarator)

function-body

function-definition:
attribute-specifier-sequence opt declaration-specifiers declarator function-body

The abstract-declarator portion of a function literal definition must have a function type.

Disambiguation: Compound literals cannot have a function type.

Why not C++ lambda syntax?

o Keeps the grammar for functions and function literals in
sync.

o Keeps the existing scope rules for return types and
parameters.

¢ Return type deduction not required. (could be added with
auto)

[* C++ ¥/
int main() {
/lerror: return type 'struct main()::X"' is incomplete
[1()-> struct X {inti;}*{
return O;
10;
}

This could be necessary for someone using vec(int) with struct tag compatibility.

Why not C++ lambda syntax?

o Fits well with the existing concept of compound literals.
e Do not create the expectation that the C and C++ features
are identical.

[C *
int main() {
(struct X {inti; } *(void)) {
return O;

305

struct X x;

}

It does not create problems that were not considered before.

Semantics

e The function literal is a function designator. (Behaves like a
function, not a function pointer)

void main()
{
(void (*pf1)(void)) = (void (void))X}; /* ok */
(void (*pf2)(void)) = &(void (void))}; /* ok */
&(void (void)){} = 0; [* error: Ivalue required */

}

File scope function literals

auto f = (int (int a)){ returna * 2; }; /* ok */
int main()

{
}

| don't have a use case for that at the moment.

Labels

e Labels are not shared
o Statements are not shared (break; continue)

int main() {
L1:;
(void (void)) {
goto L1; /* error: label 'L1' used but not defined */

O

void local() {

goto L1; /* error: label 'L1" used but not defined */
3
}

Returning VM types

#include <stdio.h>
int main() {
intn=1;
auto typeof(int [n])* local(void);

n=2;
typeof(int [n])* local(void) {
return O;
¥
n=3;
auto r = local();
n = 4;
printf("%zu", _Countof(*r)); //returns 2

Following GCC implementation of nested functions

Argument evaluation

#include <stdio.h>

int main() {
intn=1;

void local(typeof(int[n])* p)

{
/ldoes it need address of n?
printf("%zu", _Countof(*p));

}

n=2;

int a[n];

local(&a);

/Ivoid (*pf) (typeof(int[n])* p) = local;
Ilpf(&a);

Argument evaluation

#include <stdio.h>

int main() {
intn=1;

void local(int n, typeof(int [n])* a)

{

}

inta[2] ={1, 2};
local(2, &a);

printf("%zu", _Countof(*a)); //prints 2

Following GCC implementation of nested functions

__func__

e The value of the string returned by _ func__is
implementation-defined.

GCC returns the function name for nested functions

C++ returns "operator ()" in lambdas

Scope

e Function literals and local functions have access to the
enclosing scope at the point of its definition.

int main() {

struct X {int i; };
enum E {A};

(void (void)) {
struct X x = {}; /* ok */

X.i=A; /* ok */

X0;

void local() {
struct X x ={}; /* ok */
X.i=A; [* ok */
it
}

Automatic variables

|dentifiers referring to automatic variables of an enclosing
function cannot have their address resolved inside the body
of a function literal or local function. If they have VM types,
this restriction also apply to resolving their type.

int main() {
inti=2;
void local() {
int j = sizeof(i); /* ok */
int kK=1i; /* constraint violation */

int *p = &i; /* constraint violation */
3
}

Automatic variables

|dentifiers referring to automatic variables of an enclosing
function cannot have their address resolved inside the body
of a function literal or local function. If they have VM types,
this restriction also apply to resolving their type.

void start(int n) {

int a[n];
void local() {
typeof(a) k; /[* constrain violation */
int m = sizeof(a); /* constrain violation */
%

}

Constants

e The same restrictions apply to constants. However their
values can be read without accessing memory.

int main() {
constexprinta =1,
constintb=2; /*N3693 Implicitly constexpr*/
const int j = get();

void local() {
intx=a; /*ok?*
int *p = &a; /*constrain violation*/

X = b; /* ok */
p = &b; [*constrain violation*/

X=j; [*constrain violation*/

J»
}

Originally left as a possible option, it can be included

Non-automatic variables

staticintg = 1;

int main() {
staticinti=1;

void local() {

int j = sizeof(i); /* ok */
intk =i I* ok */
intm = g; /* ok */
it
}

Generic functions

#define SWAP(a, b)\
(void (typeof(a)* arg1, typeof(b)* arg2)) {\
typeof(a) temp = *arg1; *arg1 = *arg2; *arg2 = temp; \
}&(a), &(b))

int main() {
inta=1;
intb = 2;

SWAP(a, b);

(void (typeof(a)* arg1, typeof(b)* arg2)) {
typeof(a) temp = *arg1;
*arg1 = *arg2;
*arg2 = temp;

X&(a), &(b));

double da = 1.0;
double db = 2.0;
SWAP(da, db);

Function Literal address

¢ Distinct function literals are not required to have unique
addresses.
e Extend this to local functions?

int main(){
auto pf1 = (void ()) { return 1 + 1; };
auto pf2 = (void ()) { return 2; };
auto pf3 = (void ()) { return 2; };
[* pf1 and pf2 and pf3 can have the same address */

}

Static variables inside function

literals
e static variables inside function literals will generate distinct
functions
int main() {

auto pf1 = (void ()) { staticinti =0; };
auto pf2 = (void ()) { staticinti =0; };
assert(pf1 = pf2);

}

Key points

Almost zero learning curve

Existing practice

Does not require trampolines or other hidden features.

If it looks like a function, then it is a function.

No forced capture strategy (by reference, by copy, stack,

heap, etc.).

e Works with existing APIs that use void * callbacks

e We are not adding new problems.

e \We are adding convenience improving safety and
maintainability.

o Keeps the compiler simple

Road map

¢ Improving the proposal, add wording maybe merge in one
proposal?

¢ Deciding on forward-declaration syntax (static x auto)

e Experimental implementation http://cakecc.org/ (missing
VM types)

References

N3724: Discarded

N3622 Allow calling static inline within extern inline
N3579: auto as a placeholder type specifier
N3693: Integer Constant Expression

N3694: Functions with Data

N3654: Accessing the Context of Nested Functions
Reddit: https://www.reddit.com/r/C_Programming/
comments/1omrrra/closures_in_c_yes/
http://cakecc.org/

Thank You

Press «— — or Space to navigate.

Function literal emulation in GCC

int main() {
({int _(inta){returna™*2;} ;})(2);
}

Multiple forward declarations/
definitions

#include <stdio.h>

int main()

{
intn=1;
auto typeof(int [n])* f();
printf("%zu\n", _Countof(*f())); //1

n=2;
auto typeof(int [n])* f();
printf("%zu\n", _Countof(*f())); //2

n=3;
auto typeof(int [n])* f(){

}
printf("%zu\n", _Countof(*f())); //3

