

Proposal for C2x

WG14 N3813
Title: Memory allocation with size feedback
Author, affiliation: Chris Kennelly, Google; Justin King, Google; Charles Munger, Google
Date: 2026-02-02
Proposal category: New features
Target audience: Developers working on on C codebases, allocator developers

Abstract: Provide a function that returns a size along with the allocated memory block, to
standardize a number of existing extensions and permit more effective use of memory.

Prior art: Numerous allocator extensions

Memory allocation with size feedback

Summary
Depending on the malloc implementation (referred to as the allocator), the requested allocation
size may be less than the actual allocated size. This results in memory being unused which is
equal to the difference between the requested allocation size and the actual allocated size.
Some allocators, such as the one used by glibc, return mmap’ed memory directly when the
requested size is over a certain threshold. In the worst case, this can result in close to a full
page size of memory being unused.

To make use of this unused memory, various allocator extensions may be used. These
extensions fall into two categories: querying size classes before allocating
(malloc_good_size/nallocx) and querying the actual allocated size after allocating
(malloc_usable_size/malloc_size/_msize). Some allocators support both, one, or rarely
none. Both approaches have shortcomings for this use case which are explained in detail later.
We propose standardizing on a third approach which avoids these shortcomings, by introducing
sibling functions for malloc and aligned_alloc which return the actual size of the allocation.
This is also known as size feedback.

Background & Motivation

Querying Size Classes
As mentioned in the summary, some allocators have exposed extensions for querying size
classes before allocating. The most prominent extensions are: nallocx (jemalloc/tcmalloc) and
malloc_good_size (Apple). No similar extension is exposed by glibc or Microsoft’s CRT. This
can be used as a basis for implementing size feedback, however we have avoided
standardizing on this approach for a few reasons. This approach has a couple downsides as it
requires two function calls to perform an allocation: nallocx/malloc_good_size followed by
malloc. The first downside is that the logic performed by nallocx/malloc_good_size to
determine the size class will have to be repeated by malloc as well, as it is unaware a size
class has already been determined. The second downside is the potential mismatch between
the size class picked by nallocx/malloc_good_size and malloc. For example, the
allocator could choose to return a slightly larger memory block that is in its freelist which would
result in unused memory.

Querying Allocation Size
As mentioned in the summary, some allocators have exposed extensions for querying the actual
size after allocating. The most prominent extensions are: malloc_usable_size
(glibc/jemalloc/tcmalloc/mimalloc), malloc_size (Apple), and _msize (Microsoft’s CRT). This
can be used as a basis for implementing size feedback, however we have avoided
standardizing on this approach for a few reasons. This approach requires three function calls to
perform an allocation: malloc followed by malloc_usable_size/malloc_size/_msize
potentially followed by realloc.

1.​ The logic for determining the size of the allocation by
malloc_usable_size/malloc_size/_msize is the same logic used by free and
avoided by free_sized/free_aligned_sized.

2.​ The program cannot actually make use of the potential extra memory reported by
malloc_usable_size/malloc_size/_msize without also calling realloc (or an
allocator extension equivalent) to expand the allocation. Some allocators do not explicitly
forbid it, but glibc’s allocator and Address Sanitizer’s allocator explicitly do. The call to
realloc will also perform the same size lookup required by
malloc_usable_size/malloc_size/_msize. Android’s version of the Scudo
allocator intentionally reports the requested size rather than the actual size from
malloc_usable_size, so that it doesn’t have to copy the full set of bytes into a new
allocation when realloc is used.

Use Cases

Dynamic Array
A common data structure is a resizable array that grows on insertions by reallocating. To
achieve amortized linear time, implementations allocate larger blocks of memory than they
actually need to hold the current set of items - if they could use additional space at low/no cost,
fewer resizes would be needed, minimizing copying and allocator churn.

Arena/Bump allocators
Repeated small allocations with the same lifetime can be grouped together by using malloc to
obtain a large block of memory, and then adding the size of each small allocation to the returned
pointer until it is full. If needed, allocate another block and repeat. However, chosen block sizes
can waste substantial memory if the requested sizes are a poor fit for underlying size classes
used by malloc.

C/C++‎

I/O Buffers
When streaming data to/from a file, the network, or some other system, we often don’t know
how much data we’ll move in advance. Larger buffers use more memory but often increase
throughput and decrease syscall and device overhead; if we can obtain a larger buffer than
required at no additional cost, we want to do so.

Workarounds
Various allocators provide facilities for querying the anticipated size of a future allocation so that
a request can be made precisely for it, or querying the actual size (so the allocation can be
realloc’d in place).

●​ Apple: malloc_good_size+malloc, malloc_size
●​ jemalloc/tcmalloc: nallocx+malloc
●​ dlmalloc: realloc_in_place
●​ mimalloc: mi_expand
●​ Microsoft: _msize, _expand

Suggested Wording

7.24.3 Memory management functions
The order and contiguity of storage allocated by successive calls to the aligned_alloc,
aligned_alloc_at_least, alloc_at_least, calloc,
malloc, and realloc functions is unspecified.The pointer returned if the allocation succeeds
is suitably aligned so that it may be assigned to a pointer to any type of object with a
fundamental alignment requirement and size less than or equal to the size requested., or in the
case of aligned_alloc_at_least and alloc_at_least, the size returned. It may then
be used to access such an object or an array of such objects in the space allocated (until the
space is explicitly deallocated). [...]

The alloc_result_t type

Synopsis

#include <stdlib.h>
typedef struct {

C/C++‎

 void* ptr;
 size_t size;
} alloc_result_t

Description
ptr is NULL or the address of the resulting allocation.

size is the number of bytes available for use at ptr. If ptr is NULL, size must be 0.

The alloc_at_least function

Synopsis

#include <stdlib.h>
alloc_result_t alloc_at_least(size_t min_size);

Description
NOTE: A conforming implementation may simply call malloc, place the resulting address in
alloc_result_t.ptr, and update alloc_result_t.size to be 0 or min_size depending
on whether the resulting address was NULL or not.

Recommended practice
An allocator should return an actual size larger than the requested minimum size if the
additional memory could not be otherwise put to use until the returned pointer was freed.

NOTE: alloc_at_least(n).ptr is usable everywhere that the result of malloc(n) is,
however using alloc_at_least(n) and ignoring the resulting size should be avoided. If the
resulting size is not used, prefer malloc.

C/C++‎

Returns
The alloc_at_least function returns the type alloc_result_t which holds NULL or a
pointer to the allocated space. If the pointer is not NULL, the resulting size is guaranteed to be
greater than or equal to the requested size.

The aligned_alloc_at_least function

Synopsis

#include <stdlib.h>
alloc_result_t aligned_alloc_at_least(size_t alignment,
 size_t min_size);

Description
NOTE: A conforming implementation may simply call aligned_alloc, place the resulting
address in alloc_result_t.ptr, and update alloc_result_t.size to be 0 or min_size
depending on whether the resulting address was NULL or not.

Recommended practice
An allocator should return an actual size larger than the requested minimum size if the
additional memory could not be otherwise put to use until the returned pointer was freed.

NOTE: aligned_alloc_at_least(a, n).ptr is usable everywhere that the result of
aligned_alloc(a, n) is, however using aligned_alloc_at_least(a, n) and ignoring
the resulting size should be avoided. If the resulting size is not used, prefer aligned_alloc.

Returns
The aligned_alloc_at_least function returns the type alloc_result_t which holds
NULL or a pointer to the allocated space. If the pointer is not NULL, the pointer is aligned to at
least the requested alignment and the resulting size is guaranteed to be greater than or equal to
the requested size.

The free_sized function

Description
If ptr is a null pointer or the result obtained from a call to malloc, realloc, or calloc, where
size size is equal to the requested allocation size, this function is equivalent to free(ptr). If
ptr was allocated by alloc_at_least(n) and bytes >= size && size >= n, where
bytes is the size returned in alloc_result_t, this function is equivalent to free(ptr).
Otherwise, the behavior is undefined. The result of an aligned_alloc or
aligned_alloc_at_least call may not be passed to free_sized.

The free_aligned_sized function

Description
If ptr is a null pointer or the result obtained from a call to aligned_alloc, where alignment
is equal to the requested allocation alignment and size is equal to the requested allocation
size, this function is equivalent to free(ptr). If ptr was allocated by
aligned_alloc_at_least(alignment, n) and bytes >= size >= n, where bytes is
the size returned in alloc_result_t, this function is equivalent to free(ptr).
Otherwise, the behavior is undefined. The result of an malloc, calloc, or realloc, or
alloc_at_least call may not be passed to free_aligned_sized.

Design Discussion

Naming Bikeshed
The wording for this proposal uses alloc_at_least, but we have selected several
alternatives for consideration:

●​ alloc_at_least/aligned_alloc_at_least
●​ malloc_at_least/aligned_alloc_at_least
●​ sized_alloc/aligned_sized_alloc
●​ sized_malloc/aligned_sized_alloc
●​ size_returning_alloc/size_returning_aligned_alloc
●​ size_returning_malloc/sized_returning_aligned_alloc
●​ min_size_alloc/aligned_min_size_alloc

C/C++‎

C/C++‎

C/C++‎

Interaction with Sized Free
For allocations made with alloc_at_least and aligned_alloc_at_least, we need to
relax free_sized’s and free_aligned_sized’s size argument (7.25.4.5). For allocations of
T, the size quanta used by the allocator may not be a multiple of sizeof(T), leading to both
the original and returned sizes being unrecoverable at the time of deallocation.

Consider the memory allocated by:

typedef struct {
 uint64_t data[2];
} T;

alloc_result_t r = alloc_at_least(sizeof(T) * 4);
T* p = r.ptr;
size_t s = r.ptr / sizeof(T);

typedef struct {
 size_t count;
 uint64_t data[];
} T;

alloc_result_t r = alloc_at_least(offsetof(T, data[4]));

●​ The memory allocator may return a 72 byte object. Since there is no k such that

sizeof(T) * k == 72, we can’t provide that value to free_sized. The only option
would be storing 72 explicitly, which would be wasteful.

●​ The memory allocator may instead return an 80 byte object (5 T’s): We now cannot
represent the original request when deallocating without additional storage.

For allocations made with

alloc_result_t r = alloc_at_least(n);

we permit free_sized(r.ptr, s) where n <= s <= r.size.

Where s must fall between the requested size n and the actual allocated size. This behavior is
consistent with jemalloc’s sdallocx and tcmalloc’s size returning extensions. free_sized
(N2801) recommends implementations accept sizes up to the actual size provided by
extensions (i.e., r.size in this proposal) already.

Interaction with realloc
If a pointer obtained from alloc_at_least is passed to realloc, and realloc allocates a
new block, the new block contains the contents of the previous block up to the returned size
from alloc_at_least.

Why not realloc alone?
realloc must determine from the allocator’s metadata the true size of the block. Even if
paired with extensions like malloc_usable_size to resize to the precise, actual size, these
pointer-to-size lookups are costly. Avoiding this lookup was a motivation behind C++14’s sized
delete and C23’s free_sized features. When a program can make use of the added space,
the best time to determine it is at allocation time when the allocator has all of the relevant
metadata available.

While an allocator may obtain memory via facilities like mmap under the hood and leave an
opportunity to grow an allocation arbitrarily, this is not always possible in practice.

●​ Some allocators (like TCMalloc) cache deallocated objects rather than having a 1-to-1
correspondence between them and VMAs.

●​ VMA limitations (for example Linux’s /proc/sys/vm/max_map_count) may preclude
having too many independent regions for allocations, each of which is arbitrarily
growable. This motivates coalescing allocations onto fewer address regions, so another
allocation may be directly “after” the allocation we wish to grow.

Where is realloc_at_least?
Allocators have two options for implementing realloc when programs attempt to grow an
allocation: extending in-place or performing a new allocation, copying the memory from the old
allocation to the new allocation, deallocating the old allocation, and returning a pointer to the
new allocation. When the allocator hands back OS memory pages directly for an allocation, the
allocator may be able to use platform-specific optimizations to expand or shrink an allocation
such as mremap(2) on Linux. This is employed by glibc on Linux.

With alloc_at_least, the available memory was already reported to the program so it is
unlikely the allocator would be able to extend the allocation in-place, leaving the allocator to
copy which the program could do itself with alloc_at_least+memcpy+free_sized. Thus
we have chosen to not introduce realloc_at_least as it provides no clear benefit.

Alignment of alloc_at_least
The standard requires that allocated memory be “suitably aligned so that it may be assigned to
a pointer to any type of object with a fundamental alignment requirement and size less than or
equal to the size requested.” To preserve the behavior that the result is usable anywhere the
result of the same-sized malloc call is, we have to make the guaranteed alignment match the
returned size, not the requested one.

Implementation Experience
TCMalloc has had a C++-style implementation of this since 2018. Since mid-2025, it now has
an implementation of alloc_at_least.

Interaction with Bounds Checks
This proposal does not impede “hardened” allocators or sanitizers that wish to perform bounds
checks, and can replace the use of malloc_usable_size and _msize which make bounds
checking more difficult.

Avoiding Ossification (Hyrum’s Law)
Exposing the underlying size of allocations may result in code depending on the sizes returned
in practice. GWP-ASan returns the requested size rather than the actual size in tcmalloc, to
detect this possibly buggy code on a sampled basis, and other allocators wishing to be
defensive against dependence on implementation details can apply the same strategy.

	Memory allocation with size feedback
	Summary
	Background & Motivation
	Querying Size Classes
	Querying Allocation Size
	Use Cases
	Dynamic Array
	Arena/Bump allocators
	I/O Buffers
	Workarounds

	Suggested Wording
	7.24.3 Memory management functions
	The alloc_result_t type
	Synopsis
	Description

	The alloc_at_least function
	Synopsis
	Description
	Recommended practice
	Returns

	The aligned_alloc_at_least function
	Synopsis
	Description
	Recommended practice
	Returns

	The free_sized function
	Description

	The free_aligned_sized function
	Description

	Design Discussion
	Naming Bikeshed
	Interaction with Sized Free
	Interaction with realloc
	Why not realloc alone?
	Where is realloc_at_least?
	Alignment of alloc_at_least
	Implementation Experience
	Interaction with Bounds Checks
	Avoiding Ossification (Hyrum’s Law)

