
Representation of Pointers and Nullptr_t
Document: n3563

Author: Martin Uecker

Date: 2025-05-25

This paper proposes a non-normative change to move all rules about repre-
sentation of pointer types and of nullptr_t that are now scattered across the
standard into a new section “6.2.6.4 Pointer types and nullptr_t” under 6.2.6.
“Representations of types”.

It is further proposed to move the remaining semantic properties of nullptr_t
from the library section to “6-2.5 Types and”6.7.11 Initialization”.

Overall, I believe this makes the standard easier to follow and improves separa-
tion of the library from core language semantics.

Wording (n3550)
6.2.5 Types

25 Any number of derived types …

26 The type of the nullptr constant, i.e. nullptr_t, is an unqualified
complete scalar type that is different from all pointer or arithmetic
types and is neither an atomic or array type and has exactly one
value, nullptr.

33 A pointer to void shall have the same representation and alignment
requirements as a pointer to a character type.41) Similarly, pointers to qualified
or unqualified versions of compatible types shall have the same representation
and alignment requirements. All pointers to structure types shall have the
same representation and alignment requirements as each other. All pointers to
union types shall have the same representation and alignment requirements as
each other. Pointers to other types may not have the same representation or
alignment requirements

6.2.6.2 Integer types

6.2.6.3 Pointer types and nullptr_t

1 A pointer to void shall have the same representation and alignment
requirements as a pointer to a character type.41) Similarly, pointers
to qualified or unqualified versions of compatible types shall have
the same representation and alignment requirements. All pointers
to structure types shall have the same representation and alignment
requirements as each other. All pointers to union types shall have
the same representation and alignment requirements as each other.
Pointers to other types may not have the same representation or
alignment requirements.

2 The size and alignment of nullptr_t is the same as for a pointer
to character type. An object representation of the value nullptr is

1



the same as the object representation of a null pointer value of type
void*. All other object representations are non-value representations
for this type.

6.7.11 Initialization

14 If an object that has automatic storage duration is not initialized explicitly,
its representation is indeterminate. If an object that has static or thread storage
duration is not initialized explicitly, or any object is initialized with an empty
initializer, then it is subject to default initialization, which initializes an object
as follows:

— if it has pointer type, it is initialized to a null pointer

– if it has type nullptr_t, it is initialized to nullptr.

– …

7.22.3 The nullptr_t type

2 The nullptr_t type is the type of the nullptr predefined constant. It has only
a very limited use in contexts where this type is needed to distinguish nullptr
from other expression types. It is an unqualified complete scalar type that is
different from all pointer or arithmetic types and is neither an atomic or array
type and has exactly one value, nullptr. Default or empty initialization of an
object of this type is equivalent to an initialization by nullptr.

3 The size and alignment of nullptr_t is the same as for a pointer to character
type. An object representation of the value nullptr is the same as the object
representation of a null pointer value of type void*. An lvalue conversion of
an object of type nullptr_t with such an object representation has the value
nullptr; if the object representation is different, the behavior is undefined.

2


	Representation of Pointers and Nullptr_t
	Wording (n3550)

