
Proposal for C2y N3549 Resolved & discarded, IV 2025/05/23

N3549 - Resolved & discarded, IV

Author: Javier A. Múgica

Introduction

This proposal follows the series of proposals on the discarded and resolved concepts. It constitutes
a simplification of the previous one in several respects. In the first place, many points have been
extracted to separate proposals. Most notably the clarification of what "to evaluate" a type name
means.

In connection with the problem of evaluation of types, this papers takes the assumed interpretation
that integer constant expressions as part of type names “do not exist” for the purposes of containing
expressions. We find our previous approach more precise, but it was disliked. This interpretation
allows one to remove the main remaining complication of the proposal, that had to deal with the fact
that subexpressions of a discarded expression might be evaluated, contrary to common sense. It
is not that now they are not evaluated, but that they are ignored, in agreement with the common
interpretation.

The relative concept discarded relative to has been replaced by a “punctual” concept discarded at.
The old concept is implicit, without formulating it, when saying “an expression discarded at some
point within the expression”; this means, in the old terminology, that the first expression is discarded
relative to the latter.

The term value-discarded has been replaced with discarded, for it is how we used to refer to it.
Since an expression in C cannot be totally discarded, in the sense of being parsed only to check
syntax, the precision value- does not add more meaning. This way it also fits better with uses like
discarded at, discarded by, etc.

Finally, we have noted that discarded expressions also have its address discarded; or expressed
otherwise, that if an expression is needed only for its address it cannot be discarded. For example,
it is not possible to evaluate &ident if ident is not defined, nor &A[8] if A has less than eight
elements.

Other proposals that originated from this proposals and were separated from it modify parts of
the text also modified by this proposal. In particular, there are several modifications proposed to the
text on constant expressions. If needed, the author will provide a text integrating all the changes.

Examples

Constant expressions
The text on constant expressions includes the following constraint:

Constant expressions shall not contain assignment, increment, decrement, function-call, or
comma operators, except when they are contained within a subexpression that is not evaluated.

Consider then the expression

1 ? x : (2, 3)

according to the wording above, the expression (2, 3) here is an integer constant expression, for
its subexpression 2, 3 is not evaluated.

For another example, suppose an implementation accepting the following as constant expression:
a ? 0 : 0, and consider the following piece of code:

1

Proposal for C2y N3549 Resolved & discarded, IV 2025/05/23

if(1){
/* ... */

}else{
n = a++ ? 0 : 0;

}

Again, according to the letter of the standard a++ ? 0 : 0 here is a constant expression, since a++
is not evaluated.

The problem with an increment operator in a constant expression is that either the expression
cannot be replaced by a constant with its value and type, for the increment would be skipped, or the
translator keeps the increment, in which case the constant expressions would have side effects. In
this example the translator can replace all the expression by 0 without changing the semantics of the
program. But this should not imply that the expression is an integer constant expression. The latter
should be derived from properties internal to the expression, independent of where the expression is
placed in the code.

Here is another example:

int A[b ? 1 : (a++, 1)];

If he translator can guess that b cannot be zero at that point, then b ? 1 : (a++, 1) can be
taken as a constant expression, for it can be computed to be 1 (if the translator is smart enough) and
satisfies the constraint, since neither the increment nor the comma operator are evaluated. Suppose
now that the implementation does not support VLA. Then it may consider A to be a fixed length array
of length one.

Thus, the current wording of the constraint not only can “create” constant expressions depending
of its placement in the code, but makes some expressions constant expressions or not depending
on runtime conditions (in the example above, that b will never be zero).

Allowing constructs in not evaluated expressions
The standard allows the use of an identifier for which there is no definition in some contexts (6.9.1):

[...] there shall be exactly one external definition for the identifier [...], unless it is:

— part of the operand of a sizeof expression which is an integer constant expression;

— part of the operand of a _Countof expression which is is an integer constant expression;

— part of the operand of an alignof operator;

— part of the controlling expression of a generic selection;

— part of the expression in a generic association that is not the result expression of its generic
selection;

— or, part of the operand of any typeof operator whose result is not a variably modified type.

The whole list appears twice. Furthermore, it falls short, for it should also include the right operand
of an || or && operator when the first operand is an integer constant expression with value ̸= 0 or 0
respectively, the second or third operand of the conditional operator when the first one is an integer
constant expressions, and compound literals in function prototypes.

Consider now the following code:

#define SAFE_ACCESS(a, x) (((x) < ARRAY_LENGTH(a)) ? a[x] : 0)
int a[3], b;
b = SAFE_ACCESS(a,8);

When expanded, the assignment becomes b = ((8<3) ? a[8] : 0). We would like to make
an access to an array of known constant length by a subscript which is an integer constant expression

2

Proposal for C2y N3549 Resolved & discarded, IV 2025/05/23

exceeding the length of the array a constraint violation. But it seems uses like the above should be
allowed. (If this constraint is introduced, the macro SAFE_ACCESS becomes superfluous, and writing
b = a[8] would raise a diagnostic, which is better than what the macro does. But that constraint
does not exist yet and introducing it now could break existing code.) Bounding the constraint by
“which is evaluated” (i.e., allowing those out of bound indices in expressions that are not evaluated)
is not possible for the same reason as for constant expressions. The allowed places have to be
identified otherwise. There are ten such places: the six in the above list plus those related to the
operators ||, && and ? :, and compound literals with function prototype scope.

Some concept capturing that set of locations is obviously needed.

The concepts introduced

The concept for expressions which are not evaluated during translation and can easily be determined
not to be ever evaluated during program execution is discarded. This is the concept to be written in
place of the above list whenever we want to allow some constructions to appear in those places:
Identifiers without definition, subscripts out of bounds, etc.

Discarded expressions are discarded at some point when translating the code. For example, if
the first operand of an || operator is a nonzero ICE, the second operand gets discarded, thereby
becoming discarded. Thus, discarded has two meanings: A static one, naming a property of an
expression, as can be being a constant, being long or being blue. On the other hand, a dynamic
property: the translator discards the expression at some point, or the expression is discarded at
some point. This is the concept to be used for the recursive definition of integer and arithmetic
constant expressions (and we hope, in a short future, for any constant expression).

A type name may also be said to be discarded, with obviuos semantics.
As long as there remain non-recursive definitions for constant expressions, there remains

with it the constraint that constant expressions cannot include certain kinds of operators. It is
necessary to replace in that constraint the current proviso "except when they are contained within a
subexpression that is not evaluated". As as been argued above, this formulation turns into integer
constant expressions many expressions that are not. Any piece of definition of constant expressions
shall be internal to the expressions; not refer to nor depend on anything containing the expression.
The correct formulation is "except when they are discarded at some point within the expression".
This expresses, without saying it, the old concept of discarded relative to.

Dicarding depending on constant expressions not ICE.

For coherence with ICE, we would like to mandate that (1.0+1.0) || n is an arithmetic constant
expression. However, since arithmetic constant expressions need not be evaluated during translation,
the previous expression would not be known during translation to be or not to be an arithmetic
constant expression, and this cannot be. We suggest to allow it as an implementation extension.

“The parenthesized name of a type”

For the sizeof operator, we think that saying that the operand may be "the parenthesized name
of a type" can be problematic for any sentence of the standard that may speak about operands
supposing they are expressions or type names and, since the () are part of the syntax, we believe
it is more correct to say that the operand is a type name, not the parenthesized name of a type. This
is the criterion followed by alignof. Had the syntax rule been written as sizeof paren-type-name,
with a rule following specifying that paren-type-name is (type-name), then it would be right to say that
the operand is a parenthesized type name. Therefore, we have applied the cirterion in alignof also
to sizeof.

3

Proposal for C2y N3549 Resolved & discarded, IV 2025/05/23

Proposal I. Terminology

5.2.2.4 Program semantics

3 Evaluation of an expression in general includes both value computations and initiation of side effects.
Value computation for an lvalue expression includes determining the identity of the designated
object. During translation, the value and side effects of some expressions are discarded, as well as its
address if it has one, but not its type. These expressions are called discarded. Discarded expressions
are not evaluated.

6.5 Expressions
6.5.1 General
Semantics

[...]

4 The grouping of operators and operands is indicated by the syntax.82) If an expression is discarded at
some point, all its subexpression that were not yet discarded (that is, not discarded by the expression
or some of its subexpressions) are also discarded at that point. Except as specified later, side effects
and value computations of subexpressions are unsequenced.83)

6.5.2 Primary expressions
6.5.2.1 Generic selection

Semantics

3 The generic controlling operand is not evaluated. If a generic selection has a generic association
with a type name that is compatible with the controlling type, then the result expression of the
generic selection is the expression in that generic association. Otherwise, the result expression of the
generic selection is the expression in the default generic association. None of the expressions from
any other generic association of the generic selection is evaluated.The generic selection discards its
controlling operand and the expressions from the associations other than the result expression.

6.5.3.6 Compound literals

Semantics

5 For a compound literal associated with function prototype scope:

[...]

— if it is not a compound literal constant, neither the compound literal as a whole nor any of the
initializers are evaluated.; the parameter declaration of which it is part discards the compound
literal.

6.5.4 Unary operators
6.5.4.5 The sizeof, _Countof and alignof operators

Semantics

2 The sizeof operator yields the size (in bytes) of its operand, which may be an expression or a type
name. The size is determined from the type of the operand. The result is an integer. If the type of the
operand is a variable length array type, the operand is evaluated; otherwise, the operator discards
its operand.

3 The alignof operator yields the alignment requirement of its operand type. The operand is not
evaluated and the expression is an integer constant expression. When applied to an array type, the
result is the alignment requirement of the element type. The operator discards its operand.

5 The _Countof operator yields the number of elements of its operand. The number of elements is
determined from the type of the operand. The result is an integer. If the number of elements of the
array type is variable, the operand is evaluated; otherwise, the operand is not evaluated and the
expression is an integer constant expression.the operator discards its operand.

4

Proposal for C2y N3549 Resolved & discarded, IV 2025/05/23

6.5.14 Logical AND operator
4 Unlike the bitwise binary & operator, the && operator guarantees left-to-right evaluation; if the

second operand is evaluated, there is a sequence point between the evaluations of the first and
second operands. If the first operand compares equal to 0, the second operand is not evaluated.;
if, in addition, the first operand is an integer constant expression, the operator discards its second
operand.

6.5.15 Logical OR operator
4 Unlike the bitwise binary | operator, the || operator guarantees left-to-right evaluation; if the

second operand is evaluated, there is a sequence point between the evaluations of the first and
second operands. If the first operand compares unequal to 0, the second operand is not evaluated.;
if, in addition, the first operand is an integer constant expression, the operator discards its second
operand.

6.5.16 Conditional operator
5 The first operand is evaluated; there is a sequence point between its evaluation and the evaluation of

the second or third operand (whichever is evaluated). The second operand is evaluated only if the
first compares unequal to 0; the third operand is evaluated only if the first compares equal to 0;. If
the first operand is an integer constant expression, the conditional operator discards its unevaluated
operand. Tthe result is the value of the second or third operand (whichever is evaluated), converted
to the type described subsequently in this subclause.111)

6.6 Constant expressions
6.6.1 General
Constraints

3 Constant expressions shall not contain assignment, increment, decrement, function-call, or comma
operators, except when they are contained within a subexpression that is not evaluateddiscarded at
some point within the expression.116)

6.7 Declarations
6.7.3.6 Typeof specifiers

4 The typeof specifier applies the typeof operators to an expression (6.5.1) or a type name. If the typeof
operators are applied to an expression, they yield the type of their operand.149) Otherwise, they
designate the same type as the type name with any nested typeof specifier evaluated.150) If the type
of the operand is a variably modified type, the operand is evaluated; otherwise, the operand is not
evaluatedthe typeof specifer discards it operand.

6.7.6 Alignment specifier
7 The first form is equivalent to alignas(alignof(type-name)). In particular, the alignment specifier

discards the type name.

6.7.8 Type names
4 When a type name is discarded, the expressions it contains that are not integer constant expressions

are discarded.

6.9 External definitions
6.9.1 General
Constraints
[...]

3 There shall be no more than one external definition for each identifier declared with internal linkage
in a translation unit. Moreover, if an identifier declared with internal linkage is used in an expression
there shall be exactly one external definition for the identifier in the translation unit, unless it is
discarded.:
116)The operand of a typeof (6.7.3.6), sizeof, or alignof operator is usually not evaluateddiscarded (6.5.4.5)

5

Proposal for C2y N3549 Resolved & discarded, IV 2025/05/23

— part of the operand of a sizeof expression which is an integer constant expression;

— part of the operand of a _Countof expression which is an integer constant expression;

— part of the operand of an alignof operator;

— part of the controlling expression of a generic selection;

— part of the expression in a generic association that is not the result expression of its generic
selection;

— or, part of the operand of any typeof operator whose result is not a variably modified type.

Semantics

[...]

5 An external definition is an external declaration that is also a definition of a function (other than an
inline definition) or an object. If an identifier declared with external linkage is used in an expression
(other than as part of the operand of a typeof operator whose result is not a variably modified
type, part of the controlling expression of a generic selection, part of the expression in a generic
association that is not the result expression of its generic selection, or part of a sizeof or alignof
operator whose result is an integer constant expression)which is not discarded, somewhere in the
entire program there shall be exactly one external definition for the identifier; otherwise, there shall
be no more than one

Proposal II. Allowing discarded expressions when only the type is
needed

Subscript out of bounds

6.5.3.2 Array subscripting

We propose two alternatives. On the left, only “overbounds” are allowed. On the right, we also
allow underbounds:

If one of the operands has array type and the subscript is an integer constant expression, the value
of the subscript shall not be negative.

If one of the operands has array type and the sub-
script is an integer constant expression, the value of
the subscript shall not be negative; if further the ex-
pression is not discarded, the value of the subscript
shall be less than the length of the array or equal
to it, the latter only if the [] operator is followed
by zero or more [] operators with subscripts equal
to zero and the resulting postfix expression is the
operand of the unary & operator or is converted to
an expression of pointer type as described in 6.3.3.1.

If the expression is not discarded, one of the
operands has array type and the subscript is
an integer constant expression, the value of the
subscript shall not be negative and shall be less
than the length of the array or equal to it, the latter
only if the [] operator is followed by zero or more
[] operators with subscripts equal to zero and the
resulting postfix expression is the operand of the
unary & operator or is converted to an expression of
pointer type as described in 6.3.3.1.

(Within paragraph 4)

m shall not be negative and shall be less than the length of the array or equal to it; it shall only
equal the length of the array if the [] operator is followed by zero or more [] operators with
subscripts equal to zero and the resulting postfix expression is the operand of the unary & operator
or is converted to an expression with pointer type as described in 6.3.3.1.the latter only in the same
situation as expressed in the constraint.

6

Proposal for C2y N3549 Resolved & discarded, IV 2025/05/23

Constant expressions
Here we do not colour the text. All text is new and replaces the paragraphs defining integer and
arithmetic constant expressions.

6.6 Constant expressions
6.6.1 General

8 An integer constant expression is an expression of integer type, that satisfies the constraints for constant
expressions, and which is either

— a literal, a named constant or a compound literal constant;

— a cast expression where the operand is a floating, named or compound literal constant of
arithmetic type, possibly enclosed in parentheses;

— a parenthesized integer constant expression, or

— an expression where each of its operands is either discarded by the expression or an integer
constant expression.118)

10 An arithmetic constant expression is an expression of artithmetic type, that satisfies the constraints for
constant expressions, and which is either

— a literal, a named constant or a compound literal constant;

— a parenthesized arithmetic constant expression, or

— an expression where each of its operands is either discarded by the expression or an arithmetic
constant expression.

(Remove the last footnote in 6.6.1 and add the following example)

18 EXAMPLE In the following code sample

int a, *p;
int f(void);
static int i = 2 || 1 / 0;
static int j = 2 || a + f();
static int k = sizeof p[sizeof(int[a])];

the three initializers are valid integer constant expressions with values 1, 1 and sizeof(int) respectively.

118)In particular, an expression of integer type that discard all its operands is an integer constant expression. This is the case
of alignof and, in some cases, sizeof and _Countof.

7

Proposal for C2y N3549 Resolved & discarded, IV 2025/05/23

Integration with other proposals

The isolated sentence added on the meaning of “discarded” when applied to a type names fits better
if the text from What does to evaluate a type name mean? is included, putting the sentence after that
text. Thust it is also made clear that the exclusion of integer constant expression from the discarded
expressions is not because they are to remain, undiscarded, but because they disappear in the
process of translation of the type name.

The text proposed here ignores, in integer constant expressions, generic selections where the
resulting expressions is a floating expression valid as the operand to an integer cast. This is the
current situation. Fixing this is part of the contents of the proposal Quasi-constants.

The situation of _Generic in other places in integer and arithmetic constant expressions is made
clear by the recursive definition and by the sentences saying, essentially, that _Generic discards
everything in it except the result expression. A technicality remains, though: the recursive rule
requires discarded operands. What the operands of _Generic are, is the subject of another proposal.

The text on integer constant expressions has to be adapted to reflect the proposal floating literals
converted to bool, in the event that it is accepted. Both proposals jointly, in turn, can be given a better
wording if the proposal phrase bool as bool is accepted (see the example wording below).

A further proposal that affects the text on integer constant expressions is array subscripting without
decay. The consideration of constexpr arrays as named constants has been split from that proposal
but is likely to be presented in a near future.

Two further questions

We suggest here two extensions at the choice of the implementation. If the answer to any of the
questions is positive, the corresponding extension will be presented in a future paper.

Does WG14 wish to allow implementations to make the ||, && and conditional operators discard
the second (or third) operand when the first one is a constant expression other than an integer
constant expression?

These are cases like 1.0+1.0 || E, where the OR expression may discard the second operand.

Does WG14 wish to allow implementations to make some operators discard an operand when it
can be determined that the operand will never be executed in the abstract machine?

These are cases like unsigned int f(void); (f()>=0) || E; Or like int n=1; (n==1) ||
E; This cannot create any new integer constant expression, because the operand that is not
discarded is not an integer constant expression (if it were, the other operand would have been
discarded without the need of this extension).

In both cases, since the second (or third) operand is, already, never evaluated, no observable
effect is being lost by discarding it. Discarding it implies that constructions that are only allowed
in discarded contexts would be allowed in those places. E.g., if A is an array of three elements,
to allow b>=0 || A[4]. It also implies, in the first case, that in situations like (1.0+1.0) || n, if
the implementation discards the second operand, the whole expression would become a constant
expression. We see no problem in this, but wording can be inserted so that, when an operand is
discarded as an implementation extension, the implementation is not required to consider the expres-
sion a constant expression. However, since at present all the definitions in “Constant expressions”
appertain only to standard constant expressions, leaving complete freedom to the implementation for
its extended constant expressions, there is no need to insert any wording. (But that complete freedom
and decoupling of extended vs. standard constant expressions seems an ad hoc introduction of
extended constant expressions, and a better specification is desirable. For instance, currently an
implementation is not required to consider the || of two constant expressions a constant expression.)

8

Proposal for C2y N3549 Resolved & discarded, IV 2025/05/23

Example of composed wording

As was pointed in the introduction, the author may provide a wording merging all proposals accepted
relating to constant expressions. In that case, it is also better to finish the rewriting of constant
expressions so that all kinds of constant expressions are defined recursively based on some atoms.
Here is an example of how that wording may look, including a small fix on the specification of
address constants (a more important fix for those kinds of constants is still needed). It also fixes a
mistake in the wording of the logical AND expressions: “The && operator shall yield 1 if both of its
operands compare unequal to zero”. No; consider 0 && 1/0. Here the second operand cannot be
compared to zero. When writing the proposal phrase bool as bool this mistake went unnoticed and was
not corrected. We also make explicit that the operands to those operators (!, &&, || and the first of ?
:) are converted to bool; i.e., that there is an implicit conversion.

6.5.4.4 Unary arithmetic operators

5 The logical negation operator ! converts its operand to bool; then negates it (the negation of false
is true, the negation of true is false), then converts the result to int. The result has type int.103)

6.5.14 Logical AND operator
3 The first operand is converted to bool. There is a sequence point after this conversion. If the result

of the conversion is false the second operand is not evaluated; otherwise, the second operand is
converted to bool. If any of the conversions result in false, the result of the AND expression is 0;
otherwise, it is 1. The result has type int. If (bool)(E1), where E1 is the first operand, is an integer
constant expression with value false, the AND operator discards its second operand.

(And analogously for the logical OR operator. The wording for the conditional operator can be taken
from phrase bool as bool without changes)

6.6 Constant expressions
6.6.1 General
Description

1 A constant expression can be evaluated during translation rather than runtime, and accordingly can
be used wherever a constant is required. Constant expressions are built from some primitive units
(e.g., literals), combining them in expressions together with operands discarded by the expressions.

2 A compound literal with storage-class specifier constexpr is a compound literal constant.

3 An identifier that is:

— an enumeration constant,

— a predefined constant, or

— declared with storage-class specifier constexpr and has an object type,

is a named constant.

4 A postfix expression that applies the . member access operator to a named or compound literal
constant of structure or union type, or the subscript [] operator to a named or compound literal
constant of array type where the subscript is an integer constant expression with a value within the
range of the array, is a named or compound literal constant, respectively.

5 A structure or union constant is a named constant or compound literal constant with structure or
union type, respectively.

6 An immediate address constant is a unary & expression where the operand is a function designator
or an object of static storage duration, such an object of array type that is implicitly converted to a
pointer or a function designator that is implicitly converted to a pointer.

103) If we represent by ¬ an operator interchanging true and false, for an operand E of any scalar type the expression !E is
equivalent to (int)¬(bool)E.

9

Proposal for C2y N3549 Resolved & discarded, IV 2025/05/23

7 Literals, named constants, compound literal constants, immediate address constants and the literal
nullptr are collectively called immediate constant expressions.

8 A formal constant expression is one of the following:

— An immediate constant expression.

— An expression other than a comma expression where each of its operands is either discarded
by the expression or a formal constant expression.

9 A constant expression is a formal constant expression that evaluates to a constant that is in the range
of representable values for its type.

10 All (formal) constant expressions described thus far are standard (formal) constant expressions. An
implementation may accept other forms of constant expressions, called extended constant expressions.

11 EXAMPLE 1

void func(int n){
int i= INT_MAX + INT_MAX + n;
int j= n + INT_MAX + INT_MAX;

}

The expression used to initialize i includes the formal constant expression INT_MAX + INT_MAX that is not a
constant expression (and violates a constraint expressed in the next subclause). On the other hand, the initializer
for j is grouped as (n+INT_MAX) + INT_MAX and this situation does not arise.

Semantics

12 If a floating expression is evaluated in the translation environment, the arithmetic range and precision
is at least as great as if the expression were being evaluated in the execution environment.

13 If the member-access operator . accesses a member of a union constant, the accessed member shall
be the same as the member that is initialized by the union constant’s initializer.

14 It is implementation-defined whether extended constant expressions are usable in the same manner
as standard constant expressions.

15 The semantic rules for the evaluation of a constant expression are the same as for nonconstant
expressions.

6.6.2 Integer, arithmetic and address constant expressions
Description

1 Integer and arithmetic constant expressions are not just constant expressions of integer and arithmetic
type respectively. In their recursive structure as constant expressions they are subject to restrictions
on the primitive units they are based on, so that integer constant expressions can be evaluated
during translation phase 7 and likewise arithmetic constant expressions when the implementation
can perform floating point arithmetic during translation.

2 The following paragraphs provide inductive definitions for formal integer constant expressions,
formal arithmetic constant expressions, and formal address constants. At the base of the induction
stand immediate constant expressions. The three kinds of formal constant expression defined and
the corresponding constant expressions are the standard ones. It is implementation defined what
extended constant expressions belong to each category, except that any extended integer constant
expression is an extended arithmetic constant expression.

3 A formal integer constant expression is a formal constant expression of integer type having one of the
following forms:

— An immediate constant expression.

— A cast expression with integer type where the operand is, after generic replacement and
removal of all surrounding parentheses, an immediate constant expression of arithmetic type.

10

Proposal for C2y N3549 Resolved & discarded, IV 2025/05/23

— A parenthesized formal integer constant expression.

— An expression where each operand is either discarded, or a formal integer constant expression,
or where the operand undergoes an implicit conversion to bool and the same operand cast to
bool would be a formal integer constant expression.

An integer constant expression is a formal integer constant expression that is a constant expression.

4 A formal arithmetic constant expression is a formal constant expression of arithmetic type having one
of the following forms:

— An immediate constant expression.

— A parenthesized formal arithmetic constant expression.

— An expression where each operand is either discarded or a formal arithmetic constant expres-
sion.

An arithmetic constant expression is a formal arithmetic constant expression that is a constant expres-
sion.

5 A formal address constant is a formal constant expression of pointer type having one of the following
forms:

— An immediate address constant, optionally plus or minus a formal integer constant expression.

— An expression that, after generic replacement and removal of all surrounding parentheses, is a
formal address constant.

An address constant is a formal address constant that is a constant expression.

Constraints
6 A formal integer constant expression that is not discarded shall be a constant expression.

7 A format arithmetic constant expression in a place where an arithmetic constant expression would
be evaluated during translation phase 7 shall be an arithmetic constant expression.1)

Semantics
8 Integer constant expressions are always evaluated during translation phase 7. It is implementation-

defined whether an arithmetic constant expression or an address constant is evaluated during
translation phase 7 or later.

9 EXAMPLE 1 The expression

(int)(1.0+1.0)

is a constant expression of integer type but not a standard integer constant expression.

Likewise, the initializer for x in

static int i;
void func(void){

float x=(float)(uintptr_t)&i;
}

is not a standard arithmetic constant expression.

10 EXAMPLE 2 In the following code sample

int a, *p;
int f(void);
static int i = 2 || 1 / 0;
static int j = 2 || a + f();
static int k = sizeof p[sizeof(int[a])];

the three initializers are valid integer constant expressions with values 1, 1 and sizeof(int) respectively.

1)Thus, implementations that evaluate arithmetic constant expressions during translation are required to produce a
diagnostic when such an evaluation fails.

11

Proposal for C2y N3549 Resolved & discarded, IV 2025/05/23

Further changes can be performed on top of this wording. First, extended constant expressions
should be introduced sooner, at the level of immediate constant expressions, so that, for example, if
A and B are arithmetic constant expressions, A + B is an arithmetic constant expressions. Or that if
A is an integer constant expression with value 0, A && E is an integer constant expression (provided
E is an expression of scalar type). This is currently not mandated. In doing so, and if the possibility is
given to implementations of discarding more operands than the minimum the standard mandates,
an exception in the last rule for forming formal constant expressions recursively should be added, so
that discarding operands does not force the implementation to introduce more constant expressions.
For example,

, except that if an operand gets discarded as an implementation extension, it is implementation
defined whether the expression is a formal constant expression or not.

and similarly for integer and arithmetic constant expressions. This way, an implementation that
discards the second operand in (1.0+1.0) || n is allowed but not required to consider it a constant
expression. But if it considers (bool)(1.0+1.0) an integer constant expression, then it is required
to treat (1.0+1.0) || n as an integer constant expression, because the discarding of the second
operand of || when the first one, cast to bool, is an ICE with value true is not implementation
defined. (In the latter example the extension is not in discarding operands in more situations than
the minimum, but in considering more integer constant expressions than the standard ones).

In the above example wording we have included the “plus or minus a (formal) integer constant
expression” in the definition of (formal) address constants, because there is currently no place in the
standard that needs “address constant” as defined now, without the optional integer offset. Further,
we believe that in an approach to constant expressions as the one taken here, address constant
should be any constant expression of pointer type. Address constants, in any case, need to be fixed
to allow, e.g., &a.arr[E] only when E is an integer constant expression (and within bounds).

The address constants consisting of an immediate address constant ± an ICE (and recursively)
can be subject to a constraint: A formal address constant that is not discarded shall be an address
constant. (footnote: While it may not be possible to evaluate these constants during translation
phase 7, it is possible to know whether they will evaluate to a valid constant or not.)

12

	Introduction
	Examples
	Constant expressions
	Allowing constructs in not evaluated expressions

	The concepts introduced
	Dicarding depending on constant expressions not ICE.
	``The parenthesized name of a type''
	Proposal I. Terminology
	Program semantics
	Expressions
	General
	Primary expressions
	Generic selection
	Compound literals

	Unary operators
	The sizeof, _Countof and alignof operators

	Logical AND operator
	Logical OR operator
	Conditional operator

	Constant expressions
	General
	Declarations
	Typeof specifiers
	Alignment specifier
	Type names

	External definitions
	General

	Proposal II. Allowing discarded expressions when only the type is needed
	Subscript out of bounds
	Array subscripting

	Constant expressions
	Constant expressions
	General
	Integration with other proposals
	Two further questions
	Example of composed wording
	Unary arithmetic operators
	Logical AND operator

	Constant expressions
	General
	Integer, arithmetic and address constant expressions

