
C2y, proposal N3547 - Quasi-constants 1

Author: Javier A. Múgica

Purpose: Clarification

Date: 2025 - may - 8

This paper intends to make clear the status of generic selections and parentheses sur-

rounding expressions of a certain kind, when at some points the standard mandates an ex-

pression of that kind.

Analysis

A literal is a kind of token at translation phase 7, endowed with a type and a value. Its defi-

nition is very precise, so that when a literal ismandated it does not follow that a parenthesised

literal is allowed, neither a generic selection where the selected expression is a literal. How-

ever, it is tacitly agreed that these are allowed, unless the mandate comes from a syntax rule.

Here follow cases where one or the other happens.

Cases

Literals in constant expressions

Integer constant expressions allow literals of arithmetic type as operands to casts. The

following code is accepted by compilers without warnings:

enum A{a=(int)(_Generic(0, int: (2.5)))};

Here, parentheses surround the literal 2.5 and the generic selection.

More generally, constant expressions of different kinds allow only operands of certain

types, but any operand in Generic which is not the selected expressions is not considered

for this:

constexpr int a= _Generic((float*)0, default:0);

String literals as initializers

Here the status of parentheses is made explicit by the standard: ... a string literal, option-
ally enclosed in braces, ...

const char s[]= ("word");
const char s[]= _Generic(0, default: "word");

Gcc warns on "Array initialized from parenthesis", while the other compilers tested give

no warning (clang, MSVC and ICX). No compiler warns because of _Generic.

Null pointer constant

The standard currently defines

An integer constant expressionwith the value 0, such an expression cast to type void*,
or the predefined constant nullptr is called a null pointer constant.

The following is accepted by compilers with no warning:



C2y, proposal N3547 - Quasi-constants 2

float (*f)(void) = (_Generic(1, default: (void*)0));

static assert

Here, neither parentheses nor Generic are allowed:

static_assert(1, ("Error message")); // Error

and similarly for _Generic.

attribute messages

The situation here is the same as for static_assert:

[[nodiscard(("Do not discard this"))]] int important_func(void); // Error

In both attributes and static assert the string literal is part of the syntax of the feature.

Solutions considered

Quasi-literal

Our first choice was the definition of quasi-literal, to be placed in the section on primary

expressions:

The following are quasi-literals:

—A literal.

— A generic selection where the selected expression is a quasi-literal.

— A parenthesized quasi-literal.

A quasi-literal is of the same kind as the literal on which it is based: integer quasi-
literal, string quasi-literal, etc.

And use quasi-literal instead of literal in a few places.

Generic replacement

The term quasi-literal is of no use for null pointer constants. It is for this reason that the

concept generic replacement was conceived:

Generic replacement refers to the process of replacing a generic selection by its result ex-
pression, enclosed in parentheses if the expression is not a primary expression. (There-
fore, the result of generic replacement is always a primary expression).

Using this term, the definition of null pointer constant would become

A null pointer constant is an expression that, after generic replacement and removal of
all surrounding parentheses, is an integer constant expression with the value 0 or such
an expression cast to type void *, or the predefined constant nullptr.

Quasi-constant

While the term generic replacement serves well for null pointer constants and string liter-

als as initializers, the wording for floating operands in integer constant expressions remains

very verbose, in part because it is not only literals that are allowed, but “floating, named, or



C2y, proposal N3547 - Quasi-constants 3

compound literal constants of arithmetic type”. All this must be subject to generic replace-

ment and parentheses removal, resulting in the wording seen in the proposal.

To simplify that wording, the use of a term, quasi-constant or other, is proposed. Its defi-

nition is not placed under “primary expressions”, where we intended that of quasi-literals to

be, but in the section for constant expressions, because it is only applied there. We propose

it separate from the main re-wording proposal.

Our first thought for the name of the term was quasi-constant. We are not satisfied with

it. Contrary to quasi-literals, where the term emphasizes that they are not literals, we do not

want that bias in the term for constants. atomic constant was considered, since they are the

atomic pieces out of which integer or arithmetic constant expressions are build. But atomic

already has a very different meaning. Continue with the idea that they are the atomic pieces,

primary constant was also considered. It hints that they are primary expressions, which is

true except for the compound literal constant. Other terms that came to mind are root, seed,

idecomposable. The latter can lead to confusion. The other two follow the argument that they

are the atomic pieces for constant expressions. Along the same lines, the term immediate

constant seems better. The term immediate is only used by the standard in the construction

immediate operand, and only twice: once in an example and the other one precisely hrer, in

immediate operands of casts.

Finally, we propose to the committee two choices: quasi-constant and immediate con-

stant.

Not addressed

Thewording we propose for integer constant expressions takes care of generic selections

and surrounding parentheses for the literals and constants of arithmetic type that are allowed

as operands to casts. We do not take care of any operand that may be in that situation, for

integers or for arithmetic constant expressions, as for example

_Generic(sqrt(2.0), default: sizeof(float))

In order to handle this in the wording, an “after generic replacement” would have to be

inserted preceding the enumeration of all possible operands.

We do not do that because we believe that this is better achieved by a deeper change of

the wording for these two kinds of expressions, that would list the atomic ones and then a

point saying that an expression is an ICE if its operands are either discarded by the expression

or ICEs, and similarly for ACE. That change is the subject of another proposal.

This notwithstanding, the introduction of the term quasi-constant, in addition of simpli-

fying the wording, handles generic selections for all cases when the result expression is a

constant or literal.

Wording

Main proposal

Add at the end of the semantics of generic selections, the following:

Generic replacement refers to the process of replacing a generic selection by its result expres-
sion, enclosed in parentheses if the expression is not a primary expression. (Therefore, the
result of generic replacement is always a primary expression). When the term is applied to



C2y, proposal N3547 - Quasi-constants 4

an expression, it refers to the application of generic replacement in it till no generic selections
remain.

Change also, in “6.3.3.3 Pointers”:

A null pointer constant is an expression that, after generic replacement and removal of all sur-
rounding parentheses, is an integer constant expressionwith the value 0 or such an expression
cast to type void *, or the predefined constant nullptr.

And maybe add a forward reference to generic selection.

In 6.6 Constant expressions,

An integer constant expression shall have integer type and shall only have operands that are inte-
ger literals, named and compound literal constants of integer type, character literals, sizeof or
_Countof expressions which are integer constant expressions, alignof expressions, and float-
ing, named, or compound literal constants of arithmetic typethat are the immediate operands
of casts.; when these operands have floating type, they shall only appear in cast expressions of
integer type where the operand, after generic replacement, is such an operand optionally en-
closed in an arbitrary number of parentheses. Cast operators in an integer constant expression
shall only convert arithmetic types to integer types, except as part of an operand to the typeof
operators, sizeof operator, _Countof operator, or alignof operator.

In 6.7.11 Initialization,

The initializer for an array shall be either a string literal optionally enclosed in braces , possibly
after generic replacement, or a brace-enclosed list of initializers for the elements.

Quasi-constant

With the introduction of a term here, the text on integer and arithmetic constant expressions

reduces to the following. We have used immediate constant, but propose also quasi-constant

in its place.

8 An immediate constant is an expression that, after generic replacement and removal of sur-
rounding parentheses, is a literal, a compound literal constant or a named constant.

9 An integer constant expression shall have integer type and shall only have operands that are im-
mediate constants of integer type, sizeof or _Countof expressions which are integer constant
expressions, alignof expressions, and immediate constants of arithmetic type that are the im-
mediate operands of casts. Cast operators in an integer constant expression shall only convert
arithmetic types to integer types, except as part of an operand to the typeof operators, sizeof
operator, _Countof operator, or alignof operator.

11 An arithmetic constant expression shall have arithmetic type and shall only have operands that
are immediate constants of arithmetic type and integer constant expressions. Cast operators
in an arithmetic constant expression shall only convert arithmetic types to arithmetic types,
except as part of an operand to the typeof operators, sizeof operator, _Countof operator, or
alignof operator.


