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1.0 Problem Description
C11 introduced a simple, forward-compatible mechanism for specifying alignments. The following code
snippet uses the alignment specifier to ensure that good_buff is properly aligned.

struct S {

int i; double d; char c;

};

int main(void) {

alignas(struct S) unsigned char good_buff[sizeof(struct S)];

struct S *good_s_ptr = (struct S *)good_buff;



*good_s_ptr = (struct S){ .d = 43.1 };

}

This example has undefined behavior from the underlying object good_buff being declared as an
array of objects of type unsigned char and being accessed through an lvalue of type struct S.
The cast to (struct S *), like any pointer cast, doesn’t change the underlying effective type (6.5,
paragraph 6) of the storage.

The following example builds cleanly at high warning levels and returns the correct answer on all
evaluated implementations (about a dozen):

struct S {

int i; double d; char c;

};

int main(void) {

alignas(struct S) unsigned char good_buff[sizeof(struct S)];

struct S *good_s_ptr = (struct S *)good_buff;

good_s_ptr->i = 100;

good_s_ptr->d = 12.7;

good_s_ptr->c = 'a';

return good_s_ptr->d;

}

Godbolt: https://godbolt.org/z/aGeKc68E3

The effective type rules defined in 6.5 Expressions, paragraph 7 allows an object to have its stored
value accessed only by an lvalue expression that has a character type. This proposal effectively allows
the inverse operation of allowing an array of a character type to be accessed by an lvalue expression
of any type.

It’s established practice to use areas of character type for low-level storage management. This paper
proposes a way to make such code conforming. This makes accessing correctly aligned and sized
arrays declared with a non-atomic character type using lvalues of different types well-defined.
Currently, these accesses have undefined behavior, but we have been unable to identify compilers
which exploit this UB for aliasing analysis. This asymmetric rule does not fit internal models used by
compilers for type-based aliasing analysis, which would decide whether two accesses can alias by

https://godbolt.org/z/aGeKc68E3


considering the types of the two lvalues used for the access. This behavior is unlikely to change
because doing so would likely break existing code.

2.0 Proposed Text
Text in green is added to the working draft. Text in red that has been struck through is removed from
the working draft. Two different wordings are provided. The first wording makes minimal changes to
the standard. The second wording defines allocation functions as returning an array of objects of type
unsigned char to simplify the conceptual behavior and description of effective type.

Proposed Wording 1

Add the following definition after 3.5, paragraph 2:

byte array
object having either no declared type or an array of objects declared with a byte type

byte type
non-atomic character type

Modify 6.5,paragraph 6:

The effective type of an object declared with a type other than an unqualified, byte type, for an access
to its stored value, is the declared type of the object, if any.97) If a value is stored into an object having
no declared type through an lvalue having a type that is not a non-atomic character byte type, then the
type of the lvalue becomes the effective type of the object for that access and for subsequent
accesses that do not modify the stored value. If a value is copied into an object having no declared
type a byte array using memcpy or memmove, or is copied as an array of character byte type, then the
effective type of the modified object for that access and for subsequent accesses that do not modify
the value is the effective type of the object from which the value is copied, if it has one. For all other
accesses to an object having no declared type or a byte array, the effective type of the object is simply
the type of the lvalue used for the access. XX)

xx) The object needs to have valid alignment and size for the effective type to be accessed.

Modify 7.17.2.1 p2, The atomic_init generic function

The atomic_init generic function initializes the atomic object pointed to by obj to the value value,
while also initializing any additional state that the implementation might need to carry for the atomic
object. If the object has no declared type is a byte array, after the call the effective type is the atomic
type A.



Proposed Wording 2

Add the following definition after 3.5, paragraph 2:

byte array
an array of objects declared with a byte type

byte type
non-atomic character type

Modify 6.5,paragraph 6:

The effective type of an object declared with a type other than an unqualified, byte type, for an access
to its stored value, is the declared type of the object, if any.98) If a value is stored into a byte array an
object having no declared through an lvalue having a type that is not a a non-atomic character byte
type, then the type of the lvalue becomes the effective type of the object for that access and for
subsequent accesses that do not modify the stored value. If a value is copied into an object having no
declared type a byte array using memcpy or memmove, or is copied as an array of non-atomic
character type, then the effective type of the modified object for that access and for subsequent
accesses that do not modify the value is the effective type of the object from which the value is copied,
if it has one. For all other accesses to an object having no declared as a byte array type, the effective
type of the object is simply the type of the lvalue used for the access.XX)

98) Allocated objects have no behave as if declared as an array of unsigned char type.

xx) The object needs to have valid alignment and size for the effective type to be accessed.

Modify 7.24.3, Memory management functions, paragraph 1

The order and contiguity of storage allocated by successive calls to the aligned_alloc, calloc,
malloc, and realloc functions is unspecified. The pointer returned if the allocation succeeds is
suitably aligned so that it may be assigned to a pointer to any type of object with a fundamental
alignment requirement and size less than or equal to the size requested. It may then be used to
access such an object or an array of such objects in the space allocated (until the space is explicitly
deallocated). The lifetime of an allocated object extends from the allocation until the deallocation. Each
such allocation shall yield a pointer to an object the first element (lowest byte address) of an array of
objects of type unsigned char that is disjoint from any other object, converted to void*. The
pointer returned points to the first element (lowest byte address) of. If the space cannot be allocated, a
null pointer is returned. If the size of the space requested is zero, the behavior is
implementation-defined: either a null pointer is returned to indicate an error, or the behavior is as if the
size were some nonzero value, except that the returned pointer shall not be used to access an object.

Modify 7.24.3.2 p2, the calloc function.



The calloc function allocates space for as an array of objects of type unsigned char suitable for
use as an array of nmemb objects, each of whose size is size. The space is initialized to all bits
zero.361)

Modify 7.17.2.1 p2, The atomic_init generic function

The atomic_init generic function initializes the atomic object pointed to by obj to the value value,
while also initializing any additional state that the implementation might need to carry for the atomic
object. If the object has no declared type is a byte array, after the call the effective type is the atomic
type A.

3.0 Acknowledgements
We would like to recognize the following people for their help with this work: Aaron Ballman, Hana
Dusíková, Javier Múgica, Carlos Andrés Ramírez Cataño, and Owen Davis.


