N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

INTERNATIONAL STANDARD ©ISO/IEC ISO/IEC 9899:yyyy

Programming languages — C
Reply To: JeanHeyd Meneide <wg14@soasis.org>
Freek Wiedijk <freek@cs.ru.nl>

Abstract

(This cover sheet to be replaced by ISO.)

This document specifies the form and establishes the interpretation of programs expressed in the
programming language C. Its purpose is to promote portability, reliability, maintainability, and
efficient execution of C language programs on a variety of computing systems.

Clauses are included that detail the C language itself and the contents of the C language execution
library. Annexes summarize aspects of both of them, and enumerate factors that influence the
portability of C programs.

Although this document is intended to guide knowledgeable C language programmers as well as
implementors of C language translation systems, the document itself is not designed to serve as a
tutorial.

Recipients of this draft are invited to submit, with their comments, notification of any relevant
patent rights of which they are aware and to provide supporting documentation.

The following documents, for all intents and purposes, have been applied to this draft from before
and during the October 2019 Meeting:

DR 476 volatile semantics for lvalues

DR 488 cl6rtomb () on wide characters encoded as multiple charl6_t
DR 494 Part 1: Alignment specifier expression evaluation

DR 496 offsetof and subobjects (with editorial modification)
DR 497 "white-space character" defined in two places

DR 499 Anonymous structure in union behavior

DR 500 Ambiguous specification for FLT_EVAL_METHOD

DR 501 make DECIMAL_DIG obsolescent

FPDR 13 totalorder parameters

FPDR 20 changes for obsolescing DECIMAL_DIG

FPDR21 printf of one-digit character string

FPDR 22 changes for obsolescing DECIMAL_DIG, Part 2

FP DR 23 1lquantexp invalid case

FPDR 24 remainder NaN case

FP DR 25 totalorder parameters

N2124 and N2319 rounding direction macro FE_TONEARESTFROMZERO
N2186 Alternative to N2166

N2212 type generic cbrt (with editorial changes)

Abstract i


mailto:wg14@soasis.org
mailto:freek@cs.ru.nl

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

ii

N2260 Clarifying the restrict Keyword v2
N2265 Harmonizing static_assert with C++
N2267 nodiscard attribute

N2270 maybe_unused attribute

N2271 CR for pow divide-by-zero case

N2293 Alignment requirements for memory management functions
N2314 TS 18661-1 plus CR/DRs for C2X
N2322 preprocessor line numbers unspecified

N2325 DBL_NORM_MAX etc

N2326 floating-point zero and other normalization
N2334 deprecated attribute

N2335 attributes

N2337 strftime, with'b’ and 'B’ swapped

N2338 error indicator for encoding errors in fgetwc
N2341 TS 18661-2 plus CR/DRs for C2X
N2345 editors, resolve ambiguity of a semicolon

N2349 the memccpy function

N2350 defining new types in offsetof
N2353 the strdup and strndup functions
N2356 update for payload functions
N2358 no internal state for mblen

N2359 part 2 (remove WANT macros from numbered clauses) and part 3 (version macros for
changed library clauses)

N2401 TS 18661-4a for C2X

N2408 The fallthrough attribute

N2412 Two’s complement sign representation for C2x

N2417 Section 6: Add time conversion functions that are relatively thread-safe
N2418 Adding the u8 character prefix

N2432 Remove support for function definitions with identifier lists
N2508 Free Positioning of Labels Inside Compound Statements
N2554 Minor attribute wording cleanups

The following documents have been applied to this draft from the October 2019 Meeting:

N2379 *_IS_TIEC_60559 Feature Test Macros.

N2416 Floating Point Negation and Conversion.

N2384 Annex F.8 Update for Implementation Extensions and Rounding.
N2424 Why logpl as a Function Name.

N2406 Signaling NaN Initializers.

N2393 —Bool Definitions For true and false.

The following documents have been applied to this draft from the March/April 2020 Virtual
Meeting:

N2444 More optionally per-thread state for the library.

N2446 printf of NAN().

N2448 [[nodiscard("should have a reason")]l].

N2459 Add an interface to query resolution of time bases, v3.

N2464 Zero-size Reallocations are Undefined Behavior.

Abstract



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)
N2476 Names and Locations of Floating Point Entities.
N2480 Allowing unnamed parameters in function definitions.

N2490 Why no wide string strfrom functions.

The following documents have been applied to this draft from the August 2019 Virtual Meeting;:

N2491 powr justification

N2492 Note About Math Function Properties.

N2506 Range Errors in Math Functions.

N2508 Free Positioning of Labels.

N2517 Clarification Request for C17 Example of Undefined Behavior.
N2532 Min-max Functions.

N2553 Querying Attribute Support.

N2554 Minor Attribute Wording Cleanup.

In addition to these, the document has undergone some editorial changes, namely

The synopsis lists in Annex B are now generated automatically and classified according to
the feature test or WANT macros that are required to make them available.

Addition of a new non-normative clause J.6 to Annex J that categorizes identifiers used by
this document.

Renaming of the syntax term “struct declaration”, “struct declaration list” “struct declarator”,
and “struct declarator list” to the more appropriate “member declaration”, “member declaration

list”, “member declarator” and “member declarator list”, respectively.

"o

Mispelling of “invokation” fixed to “invocation”.

A positional reference to a table was changed to be a more direct reference due to unfortunate
page breaks.

Add missing macros from <float.h>and <limits.h>.

Add a footnote for simple atomic assignment (6.5.16).

Abstract

iii



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

iv Abstract



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)
Contents
Foreword xiii
Introduction XV
1 Scope 1
2 Normative references 2
3 Terms, definitions, and symbols 3
4 Conformance 8
5 Environment 9
51 Conceptualmodels . . . .. ... ... .. 9
5.1.1 Translationenvironment . . . . . . . . . . . . i e e e e 9
5.1.2 Executionenvironments . . . . . . . . . . . i e e e e 10
5.2 Environmental considerations . . . . . . . . .. ... .. e 17
521 Charactersets . . . . . . . . . . e 17
522 Character display semantics . . . . .. .. ... .. ... . Lo oL 19
523 Signalsandinterrupts . . . . ... ... . oo 19
524 Environmental imits . . . . . . . . ... 19
6 Language 32
6.1 Notation . . . . . . . e e e 32
6.2 Concepts . . . . ... .. 32
6.2.1 Scopesofidentifiers . . ... ... ... ... .. o o Lo 32
6.2.2 Linkages ofidentifiers . . . . ... ... ... .. .. . . o L oL 33
6.2.3 Namespacesofidentifiers. . . . . ... .. ... ... . o o oL 33
6.24 Storage durationsofobjects . . . . ... ... L oL oL oL 34
625 Types . . . . .. 35
6.2.6 Representationsoftypes . . . . . . ... .. ... ... L. 39
6.2.7 Compatible type and compositetype . . ... .. ... ... ... ... ... 40
6.2.8 Alignmentofobjects . . . ... ... ... ... o o oL 41
6.3 CONVEISIONS . . . vt v o v e e e e e 42
6.3.1 Arithmeticoperands . . . . ... ... ... ... ... o o 42
6.32 Otheroperands . . . .. ... ... ... .. ... ... 45
6.4 Lexicalelements . . . . . . . . . . 47
641 Keywords . . .. ... ... 48
6.42 Identifiers . . . . . . . . . .. 48
Contents v



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Vi

6.5

6.6
6.7

6.8

6.4.3 Universal characternames. . . . . ... ... ... .. ... .. ..... 49
644 Constants . . . . ... ... .. 51
6.45 Stringliterals . . . ... .. ... 58
6.4.6 Punctuators . ... ... ... ... ... 59
647 Headernames . .. ... ... ... ... ... 60
6.4.8 Preprocessingnumbers . . .. ... ... L L L Lo oL 61
649 Comments . . . ... ... ... 61
Expressions . . . ... ... ... 63
6.5.1 Primaryexpressions . . . ... . .. ... ... e 64
6.5.2 Postfixoperators . . . . . ... ... 65
6.5.3 Unaryoperators . . ... ...... ... ... ... ... 71
654 Castoperators. . . . .. ... ... ... 73
6.5.5 Multiplicative operators . . . . . . ... ... L L L Lo 74
6.5.6 Additiveoperators . . . ... ... L 74
6.5.7 Bitwiseshiftoperators . . . ... ... ... .. o oo 76
6.5.8 Relationaloperators . . . ... ... ... . ... .. L L oo 76
6.5.9 Equalityoperators . .. ... ... ... .. ... ... 77
6.5.10 Bitwise ANDoperator . . . . ... .................. .. ..... 78
6.5.11 Bitwise exclusive ORoperator . . .. ... ... ... . ... .......... 78
6.5.12 Bitwise inclusive OR operator . . . . . ... ...... .. ........... 79
6.5.13 Logical ANDoperator . . . . ............................ 79
6.5.14 Logical ORoperator . . . ... .. ... ... ... ... .. .. .. .. ..... 79
6.5.15 Conditionaloperator . . . . .. ... ... ... L L o 79
6.5.16 Assignmentoperators . .. .. .. ... ... ... oL 81
6.5.17 Commaoperator . . .. ... ... ... ... .. ... 83
Constantexpressions . . . . .. ... ... . L 84
Declarations . . . . . . ... .. . e 86
6.7.1 Storage-classspecifiers . . . . ... ... ... Lo 87
6.72 Typespecifiers . .. .. .. ... ... 88
6.73 Typequalifiers . . . .. .. ... ... 96
6.74 Functionspecifiers . . . . ... ... ... o 101
6.7.5 Alignmentspecifier. . . ... ... ... ... o oo 102
6.7.6 Declarators . . . .. .. ... ... 103
6.77 Typenames . . .. ... ... ... ... 108
6.7.8 Typedefinitions . . . . . ... ... ... L 109
6.7.9 Initialization . . . . . . . ... L 111
6.7.10 Staticassertions . . . . . ... ... ... 116
6.7.11 Attributes . . . . . ... 116
Statementsand blocks . . . ... ... o Lo o 122
6.8.1 Labeledstatements . . . . . ... ... ... ... ... . . 122

Contents



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

6.8.2 Compound statement . . ... ... ... ... ... ... ... ... ... .. 123

6.8.3 Expressionandnull statements . . . . ... ...... ... ... ... ... .. 123

6.84 Selectionstatements . . .. ... ... ... ... L L o L 124

6.8.5 [Iterationstatements . ... ... ... ... ... . ... o L 125

6.8.6 Jumpstatements . ... ... ... ... .. oo 126

6.9 Externaldefinitions . . . . . ... ... .. L 129
6.9.1 Functiondefinitions . . .. .. ... ... ... .. .. o L. 129

6.9.2 External objectdefinitions . . . . . . ... ... . L L L Lo 131

6.10 Preprocessing directives . . . . ... .. ... .. L L 133
6.10.1 Conditionalinclusion . . ... .. ... ... .. .. .. .. . . .. 134
6.10.2 Sourcefileinclusion . . .. ... ... .. L L o 136
6.10.3 Macroreplacement . . . . .. ... ... L L L 137
6.104 Linecontrol . . . . .. . ... .. e 143
6.10.5 Errordirective. . . . . . . . ... 144
6.10.6 Pragmadirective . . . . .. .. ... .. .. L 144
6.10.7 Nulldirective . . . . .. . . ... . 145
6.10.8 Predefined macronames. . . . . ... ... ... ... .. . 145
6.10.9 Pragmaoperator . . ... ... ... .. ... ... 147

6.11 Futurelanguagedirections . . . . .. ... ... ... ... ... . L. 148
6.11.1 Floatingtypes . . . . . . . . .. . .. .. 148
6.11.2 Linkages ofidentifiers . . . . ... ... ... . ... ... ... ... . 148
6.11.3 Externalnames . . .. . ... ... ... ... 148
6.11.4 Character escape SEQUENCES . . . . . . . v vt vt 148
6.11.5 Storage-classspecifiers . . . . . ... ... ... L L Lo oL 148
6.11.6 Functiondeclarators . . . ... ... ... ... ... .. .. .. .. .. ... 148
6.11.7 Pragmadirectives. . . . . .. ... ... ... .. 148
6.11.8 Predefined macronames . . . . . ... ... ... L o 148

7 Library 149
71 Introduction . . ... ... ... e 149
71.1 Definitionsof terms . . . . ... ... ... L L 149

712 Standardheaders . . . ... ... ... ... L o 149

713 Reservedidentifiers . ... ... ... ... ... ... o o 150

714 Useoflibrary functions . ... ... ........ ... ... ... ... ..., 151

7.2 Diagnostics<assert.h> . .. .. ... ... .. ... ... . 153
721 Programdiagnostics . . . ... ... ... ... 153

7.3 Complex arithmetic <complex.h> . . ... ... ... ... ... .. .. .. ...... 154
731 Introduction . ... .. ... ... . .. ... 154

732 Conventions . . . . ... ... ... ... ... e 154

733 Branchcuts ... ... ... .. ... 154

Contents vii



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

74

7.5
7.6

7.7
7.8

7.9
7.10
7.11

7.12

viii

734 The CX_LIMITED_RANGE pragma . . .. . ... ... ... ... ......... 155
7.3.5 Trigonometric functions . . . . ... ... ... ... .. L L oL 155
7.3.6 Hyperbolicfunctions . . . . . ... ... ... ... L 157
7.3.7 Exponential and logarithmic functions . . ... ... ... ... ........ 158
7.3.8 Power and absolute-value functions . . . . .. ... ... ... ... .. ... 159
7.3.9 Manipulation functions . . . . ... ... L oL Lo 160
Character handling <ctype.h> . . . .. ... ... ... ... .. .. L. 163
741 Character classification functions . . . . . . .. ... .. ... Lo L. 163
742 Character case mapping functions . . . . ... ... ... L L Lo 165
Errors<errno.h> . . . . . ... 167
Floating-point environment <fenv.h> . . . .. . ... ... ... ... . ... ... .. 168
7.6.1 The FENV_ACCESS pragma . . . . . . . . . ..ot v v i ii i 170
762 The FENV_ROUND pragma . . . . . . .. .. .. .. ..o .. 171
7.6.3 The FENV_.DEC_ROUND pragma . . . . ... ... ... ... ............ 172
7.6.4 Floating-pointexceptions . . . .. ... .. ... ... . ... . . L. 173
7.6.5 Rounding and other controlmodes . . . . .. ... .. ... .. .. ... .. 176
7.6.6 Environment . . . . . .. ... 178
Characteristics of floating types <float.h> . . . ... ... .. ... .. .. .. ..... 180
Format conversion of integer types <inttypes.h> . . ... ... ... .. ....... 181
7.8.1 Macros for format specifiers . . . . . .. ... L L Lo 181
7.8.2 Functions for greatest-width integer types . . . ... ... ... ... ... .. 182
Alternative spellings <is0646.h>. . . . .. ... ... ... .. . o o oL 184
Characteristics of integer types <limits.h>. . .. ... ... ... .. ... ...... 185
Localization <locale.h>. . . . . . .. . ... . . e 186
711.1 Localecontrol . . . . . . . . . .. e 186
7.11.2 Numeric formatting convention inquiry . . . . .. ... .. .. ... ... ... 187
Mathematics <math.h> . . . . . . ... . 192
7.12.1 Treatment of error conditions . . . . . . . .. ... ... ... .. 195
7122 The FP_CONTRACT pragma . . . . . . . . . .o vt v vttt 196
7123 Classificaion macros . . . . . . . . .o vttt 196
7.12.4 Trigonometric functions . . . . ... ... ... ... L L 199
7125 Hyperbolicfunctions . . . . . ... .. ... ... .. .. . o o 204
7.12.6 Exponential and logarithmic functions . . ... ... ... ... .. ... .. 206
7.12.7 Power and absolute-value functions . . . . .. ... ... ... ......... 213
7.12.8 Error and gamma functions . . . . . ... ... ... L 217
7129 Nearestinteger functions . . . ... .. .. ... ... . oL L L 219
712,10 Remainder functions . . . . . . . . . ... 223
7.12.11 Manipulation functions . . . . ... ... ... L oL 224
7.12.12 Maximum, minimum, and positive difference functions . ... ... ... .. 227
7.12.13 Floating multiply-add . . . . ... ... ... .. .. .. L oo 231

Contents



N2573

7.13

7.14

7.15

7.16

7.17

7.18
7.19
7.20

7.21

working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7.12.14 Functions that round result to narrower type . . . . . ... ... ... ... .. 232
7.12.15 Quantum and quantum exponent functions . . .. ... ... ... ... ... 234
7.12.16 Decimal re-encoding functions . . . . . . ... ... ... . L L L. 235
71217 CompariSOn MaCrOS . . . . . o o v v vt e e e 237
Nonlocal jumps <setjmp.h>. . . .. ... ... ... .. L o 240
7.13.1 Savecallingenvironment . . .. ... ... ... ... ... .. .. .. ... 240
7.13.2 Restore calling environment . . . . .. ... ... ... ... .. .. .. ..., 240
Signal handling <signal.h>. . . ... ... ... ... ... ... ... ... ..... 242
7.14.1 Specifysignalhandling . .. ... ... ... ... .. .. .. .. .. .. .. .. 242
7142 Sendsignal . ... .. ... 243
Alignment <stdalign.h> . .. ... ... ... ... ... . L oo 245
Variable arguments <stdarg.h> . ... ... ... ... .. .. .. . o 0 0L 246
7.16.1 Variable argument listaccessmacros . . . . . . ... ... ... ... ... ... 246
Atomics <stdatomic.h> . . .. ... ... ... ... . L oo 249
7171 Introduction . . . . . . . ... 249
7.17.2 Initialization . . . . . ... ... L 250
7173 Orderand consistency . . .. ... ... .. .. ... .. ... .. .. .. .. .. 250
7174 Fences . . .. . . ... 253
7.17.5 Lock-freeproperty . . ... ... ... .. .. ... 254
717.6 Atomicintegertypes . . . . . . . ... ... L L 254
7.17.7 Operations on atomictypes . . . .. ... ... ... .. ........... 255
7.17.8 Atomic flag type and operations . . . . ... ... L Lo L 257
Boolean type and values <stdbool.h> . . . . ... ... .. .. .. .. .. ... ... 259
Common definitions <stddef.h>. . . ... ... ... ... ... ... ... . ... .. 260
Integer types <stdint.h> . . ... ... ... ... ... o 261
720.1 Integertypes . . . . . ... .. ... e 261
7.20.2 Widths of specified-width integer types . . . . . ... ... ... ... ... .. 262
7.20.3 Width of otherintegertypes. . . . . ... ... ... .. ... ... .. .. 263
7.20.4 Macros for integer constants . . . . ... ... oo L L L L 264
7.20.5 Maximal and minimal values of integer types . . . . ... ... ... ... .. 264
Input/output <stdio.h>. . ... ... ... .. L o 265
721.1 Introduction . . . . . . . ... 265
7212 Streams . .. .. ... 267
7213 Files . . ... 268
7214 Operationsonfiles . . ... ... ... .. ... ... ... .. 269
7215 Fileaccess functions . . . . .. ... . ... .. 271
7.21.6 Formatted input/output functions . . . . . .. ... .. ... ... ... 274
7.21.7 Character input/output functions . . . .. ... ... ... 0L 290
7.21.8 Direct input/output functions . . . . ... ... ... L L L L 293
7.21.9 File positioning functions . . . . . . ... ... oL L L Lo L 294

Contents ix



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

7.21.10 Error-handling functions . . . ... ... ... ... .. L 296

7.22 General utilities <stdlib.h> . . .. ... .. .. Lo o Lo 298
7.22.1 Numeric conversion functions . . . . ... ... ... . ... ... ...... 298
7.22.2 Pseudo-random sequence generation functions . . . ... ... ... ... .. 304
7.22.3 Memory management functions . . .. ... ... ... ... . L 305
7.22.4 Communication with the environment . . ... ... ... ... .. ... .. 307
7.22.5 Searching and sorting utilities . . . . ... ... .. ... .. .. . . 310
7.22.6 Integer arithmetic functions . . . . . ... ... ... ... ... L. 312
7.22.7 Multibyte/wide character conversion functions . . . ... ... ... .. ... 313
7.22.8 Multibyte/wide string conversion functions . . . .. ... ... ... ... .. 314

723 _Noreturn <stdnoreturn.h>. . .. ... ... ... .. ... ... ... ... ... 316
7.24 String handling <string.h>. . .. ... ... ... ... .. .. .o o 317
7.24.1 String function conventions . . . . . .. ... Lo L L L 317
7242 Copyingfunctions . . ... .... ... .. ... ... ... .. .. ... ... 317
7.24.3 Concatenation functions . . . . . ... ... ... L L Lo 318
7244 Comparisonfunctions . . . . ... ... ... .. ... L L L oL 319
7245 Searchfunctions . . ... ... ... . ... 320
7.24.6 Miscellaneous functions . . . . . .. ... ... . o o oo 323

7.25 Type-generic math <tgmath.h> . . . .. ... ... ... ... ... .. .. .. .. .. 325
7.26 Threads <threads.h> . .. .. ... ... .. ... ... .. .. .. ... ... .. .. 329
726.1 Introduction . . . . ... ... . L 329
7.26.2 Initialization functions . . . . . . .. ... L Lo L Lo 330
7.26.3 Condition variable functions . . . . . ... ... ... ... . L L. 330
7264 Mutex functions . . . ... ... L 332
7265 Thread functions . . . . .. ... ... ... ... ... L 334
7.26.6 Thread-specific storage functions . . . . . ... ... .............. 336

7.27 Dateand time <time.h> . . . .. ... ... .. . o oo o 339
7271 Componentsoftime . ... ... ... ... .................... 339
7.27.2 Time manipulation functions . . . . ... ... ... .. ... ... . L. 340
7.27.3 Time conversion functions . . . . . . .. .. ... .o L oL 342

7.28 Unicode utilities <uchar.h> . . . .. .. ... ... ... . o o oo 347
7.28.1 Restartable multibyte/wide character conversion functions . . ... ... .. 347

7.29 Extended multibyte and wide character utilities <wchar.h>. . . . .. ... ... ... 350
729.1 Introduction . . . . ... .. L L 350
7.29.2 Formatted wide character input/output functions . . . . . ... ... ... .. 350
7.29.3 Wide character input/output functions . . . ... ... ... .. ... ... .. 363
7.29.4 General wide string utilities . . . . . . ... ... .. o o o oL 367
7.29.41 Wide string numeric conversion functions . . . . .. ... ... ... 367

7.29.4.2 Wide string copying functions . . . . .. ... ... ... ... 371

7.29.4.3 Wide string concatenation functions . . ... ... ... ... .. .. 372

Contents



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)
7.29.4.4 Wide string comparison functions . . . . .. ... ... ... ... 373
7.29.45 Wide string search functions . . . . .. ....... ... ... ..., 374
7.29.4.6 Miscellaneous functions . . .. ... ... ... ... .. .. .. ... 378
7.29.5 Wide character time conversion functions . . . . ... ... ... ... ... .. 378
7.29.6 Extended multibyte/wide character conversion utilities . . ... .. .. ... 379
7.29.6.1 Single-byte/wide character conversion functions . . . . ... .. .. 379
7.29.6.2 Conversion state functions . . . . .. ... ... ... ... ... . 379
7.29.6.3 Restartable multibyte/wide character conversion functions . . . . . 380
7.29.6.4 Restartable multibyte/wide string conversion functions . . . . . . . 381
7.30 Wide character classification and mapping utilities <wctype.h> . . .. ... ... .. 384
7.30.1 Introduction . . . . . . .. ... 384
7.30.2 Wide character classification utilities . . . . .. ... .. .. ... .. ... ... 384
7.30.2.1 Wide character classification functions . . . .. ... ... ... ... 384
7.30.2.2 Extensible wide character classification functions . . . . . .. .. .. 387
7.30.3 Wide character case mapping utilities . . . .. .. ... ... .. .. ... ... 388
7.30.3.1 Wide character case mapping functions. . . . . ... ... ... ... 388
7.30.3.2 Extensible wide character case mapping functions . . ... ... .. 388
7.31 Future library directions . . . . .. ... ... .. ... 390
7.31.1 Complex arithmetic <complex.h> . . .. ... ... ... .. .. .. ...... 390
7.31.2 Character handling <ctype.h> . . . . ... ... ... .. .. .. .. .. .. .. 390
7313 Errors<errno.h>. . . . .. ... 390
7.31.4 Floating-point environment <fenv.h>. . .. .. ... ... ... .. ... ... 390
7.31.5 Characteristics of floating types <float.h> . . . ... ... ... ... .. .. 390
7.31.6 Format conversion of integer types <inttypes.h>. ... ... ... ... ... 390
7.31.7 Localization <locale.h> . . .. ... ... ... ... .. .. .. .. .... 390
7.31.8 Mathematics<math.h> . .. .. ... ... ... .. .. ... . . 0. 390
7.319 Signal handling <signal.h> . ... ... ... ... .. ... .. ... .... 391
7.31.10 Atomics <stdatomic.h>. . . . .. ... .. ... L 391
7.31.11 Boolean type and values <stdbool.h> . ... .................. 391
7.31.12 Integer types <stdint.h> . . . ... ... ... .. o oo 391
7.31.13 Input/output <stdio.h> . . .. ... ... .o oL L Lo 391
7.31.14 General utilities <stdlib.h> . . . . ... .. .. .o o oL L 391
7.31.15String handling <string.h> . . ... ... ... ... ... .. . L. 391
7.31.16 Date and time <time.h> . . . . . .. ... L L L Lo 391
7.31.17 Threads <threads.h> . . . ... ... .. ... ... .. ... .. .. .. .... 392
7.31.18 Extended multibyte and wide character utilities <wchar.h> . . ... ... .. 392
7.31.19 Wide character classification and mapping utilities <wctype.h> . . . . . . .. 392
Annex A (informative) Language syntax summary 393
Annex B (informative) Library summary 407

Contents X1



ISO/IEC 9899:202x (E) working draft — October 1, 2020

Annex C (informative) Sequence points

Annex D (normative) Universal character names for identifiers
Annex E (informative) Implementation limits

Annex F (normative) IEC 60559 floating-point arithmetic
Annex G (normative) IEC 60559-compatible complex arithmetic
Annex H (informative) Language independent arithmetic
Annex I (informative) Common warnings

Annex J (informative) Portability issues

Annex K (normative) Bounds-checking interfaces

Annex L (normative) Analyzability

Annex M (informative) Change History

Bibliography

Index

xii Contents

N2573

433

434

435

438

468

479

483

484

519

567

569

572

573



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that
are member of ISO or IEC participate in the development of International Standards through
technical committees established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work. In the field of information technology, ISO and IEC have established a joint
technical committee, ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for
the different types of document should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent
rights. Details of any patent rights identified during the development of the document will be in the
Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does
not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO’s adherence to
the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see the
following URL: www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/IEC JTC 1, Information technology, Sub-
committee SC 22, Programming languages, their environments and system software interfaces.

This fifth edition cancels and replaces the fourth edition, ISO/IEC 9899:2018. Major changes from
the previous edition include:

— remove obsolete sign representations and integer width constraints
— added a one-argument version of _Static_assert

— support for function definitions with identifier lists has been removed
— harmonization with ISO/IEC 9945 (POSIX):

o extended month name formats for strftime

e integration of functions: asctime_r, ctime_r, gmtime_r, localtime_r, memccpy,
strdup, strndup

— harmonization with floating point standard IEC 60559:

e integration of binary floating-point technical specification TS 18661-1
e integration of decimal floating-point technical specification TS 18661-2

e integration of decimal floating-point technical specification TS 18661-4a
— the macro DECIMAL_DIG is declared obsolescent
— added version test macros to certain library headers
— added the attributes feature

— added deprecated, fallthrough, maybe_unused, and nodiscard attributes

Foreword x1ii


https://www.iso.org/directives
https://www.iso.org/patents
https://www.iso.org/iso/foreword.html

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

— added the u8 character prefix

8 A complete change history can be found in Annex M.

xiv Foreword



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Introduction

With the introduction of new devices and extended character sets, new features could be added to
this document. Subclauses in the language and library clauses warn implementors and programmers
of usages which, though valid in themselves, could conflict with future additions.

Certain features are obsolescent, which means that they could be considered for withdrawal in future
revisions of this document. They are retained because of their widespread use, but their use in
new implementations (for implementation features) or new programs (for language [6.11] or library
features [7.31]) is discouraged.

This document is divided into four major subdivisions:

— preliminary elements (Clauses 1-4);
— the characteristics of environments that translate and execute C programs (Clause 5);
— the language syntax, constraints, and semantics (Clause 6);

— the library facilities (Clause 7).

Examples are provided to illustrate possible forms of the constructions described. Footnotes are
provided to emphasize consequences of the rules described in that subclause or elsewhere in this
document. References are used to refer to other related subclauses. Recommendations are provided
to give advice or guidance to implementors. Annexes define optional features, provide additional
information and summarize the information contained in this document. A bibliography lists
documents that were referred to during the preparation of this document.

The language clause (Clause 6) is derived from “The C Reference Manual”.
The library clause (Clause 7) is based on the 1984 /usr/group Standard.

The Working Group responsible for this document (WG 14) maintains a site on the World Wide Web
athttp://www.open-std.org/JTC1/5C22/WG14/ containing ancillary information that may be of
interest to some readers such as a Rationale for many of the decisions made during its preparation
and a log of Defect Reports and Responses.

Introduction XV


http://www.open-std.org/JTC1/SC22/WG14/

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

INTERNATIONAL STANDARD ©ISO/IEC ISO/IEC 9899:yyyy

Programming languages — C

1. Scope

1 This document specifies the form and establishes the interpretation of programs written in the C
programming language.? It specifies
— the representation of C programs;
— the syntax and constraints of the C language;
— the semantic rules for interpreting C programs;
— the representation of input data to be processed by C programs;
— the representation of output data produced by C programs;

— the restrictions and limits imposed by a conforming implementation of C.
2 This document does not specify

— the mechanism by which C programs are transformed for use by a data-processing system;
— the mechanism by which C programs are invoked for use by a data-processing system;

— the mechanism by which input data are transformed for use by a C program;

— the mechanism by which output data are transformed after being produced by a C program;

— the size or complexity of a program and its data that will exceed the capacity of any specific
data-processing system or the capacity of a particular processor;

— all minimal requirements of a data-processing system that is capable of supporting a conform-
ing implementation.

DThis document is designed to promote the portability of C programs among a variety of data-processing systems. It is
intended for use by implementors and programmers. Annex ] gives an overview of portability issues that a C program might
encounter.

§1 General 1



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

2. Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any amendments)
applies.

ISO/IEC 2382:2015, Information technology — Vocabulary. Available from the ISO online browsing
platform at http://www.iso.org/obp.

ISO 4217, Codes for the representation of currencies and funds.

ISO 8601, Data elements and interchange formats — Information interchange — Representation of dates and
times.

ISO/IEC 10646, Information technology — Universal Coded Character Set (UCS). Available from the
ISO/IEC Information Technology Task Force (ITTF) web site at http://isotc.iso.org/livelink/
livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm.

IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems (previously designated
IEC 559:1989).

ISO 800002, Quantities and units — Part 2: Mathematical signs and symbols to be used in the natural
sciences and technology.

2 General §2


http://www.iso.org/obp
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

3. Terms, definitions, and symbols

For the purposes of this document, the terms and definitions given in ISO/IEC 2382, ISO 80000-2,
and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https://www.iso.org/obp

— IEC Electropedia: available at http://www.electropedia.org/

Additional terms are defined where they appear in italic type or on the left side of a syntax rule.
Terms explicitly defined in this document are not to be presumed to refer implicitly to similar terms
defined elsewhere.

3.1

access (verb)

(execution-time action) to read or modify the value of an object
Note 1 to entry: Where only one of these two actions is meant, “read” or “modify” is used.
Note 2 to entry: “Modify” includes the case where the new value being stored is the same as the previous value.

Note 3 to entry: Expressions that are not evaluated do not access objects.

3.2

alignment

requirement that objects of a particular type be located on storage boundaries with addresses that
are particular multiples of a byte address

3.3

argument
actual argument (DEPRECATED: actual parameter)

expression in the comma-separated list bounded by the parentheses in a function call expression, or
a sequence of preprocessing tokens in the comma-separated list bounded by the parentheses in a
function-like macro invocation

34

behavior

external appearance or action

3.4.1

implementation-defined behavior

unspecified behavior where each implementation documents how the choice is made

Note 1 to entry: ].3 gives an overview over properties of C programs that lead to implementation-defined behavior.

EXAMPLE An example of implementation-defined behavior is the propagation of the high-order bit when a signed integer
is shifted right.

3.4.2

locale-specific behavior

behavior that depends on local conventions of nationality, culture, and language that each implemen-
tation documents

Note 1 to entry: ].4 gives an overview over properties of C programs that lead to locale-specific behavior.

§3.4.2 General 3


https://www.iso.org/obp
http://www.electropedia.org/

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

EXAMPLE An example of locale-specific behavior is whether the islower function returns true for characters other than
the 26 lowercase Latin letters.

3.4.3

undefined behavior

behavior, upon use of a nonportable or erroneous program construct or of erroneous data, for which
this document imposes no requirements

Note 1 to entry: Possible undefined behavior ranges from ignoring the situation completely with unpredictable results,
to behaving during translation or program execution in a documented manner characteristic of the environment (with or
without the issuance of a diagnostic message), to terminating a translation or execution (with the issuance of a diagnostic
message).

Note 2 to entry: ].2 gives an overview over properties of C programs that lead to undefined behavior.

EXAMPLE An example of undefined behavior is the behavior on dereferencing a null pointer.

3.4.4

unspecified behavior

behavior, that results from the use of an unspecified value, or other behavior upon which this
document provides two or more possibilities and imposes no further requirements on which is
chosen in any instance

Note 1 to entry: ].1 gives an overview over properties of C programs that lead to unspecified behavior.

EXAMPLE An example of unspecified behavior is the order in which the arguments to a function are evaluated.

3.5

bit

unit of data storage in the execution environment large enough to hold an object that can have one
of two values

Note 1 to entry: It need not be possible to express the address of each individual bit of an object.

3.6
byte

addressable unit of data storage large enough to hold any member of the basic character set of the
execution environment

Note 1 to entry: It is possible to express the address of each individual byte of an object uniquely.

Note 2 to entry: A byte is composed of a contiguous sequence of bits, the number of which is implementation-defined. The
least significant bit is called the low-order bit; the most significant bit is called the high-order bit.

3.7

character

(abstract) member of a set of elements used for the organization, control, or representation of data

3.71

character
single-byte character

(C) bit representation that fits in a byte

3.7.2

multibyte character

sequence of one or more bytes representing a member of the extended character set of either the
source or the execution environment

Note 1 to entry: The extended character set is a superset of the basic character set.

4 General §3.7.2



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

3.7.3

wide character

value representable by an object of type wchar_t, capable of representing any character in the
current locale

3.8

constraint

restriction, either syntactic or semantic, by which the exposition of language elements is to be
interpreted

3.9

correctly rounded result

representation in the result format that is nearest in value, subject to the current rounding mode, to
what the result would be given unlimited range and precision

Note 1 to entry: In this document, when the words “correctly rounded” are not immediately followed by “result”, this is the
intended usage.

3.10

diagnostic message

message belonging to an implementation-defined subset of the implementation’s message output

3.11
forward reference

reference to a later subclause of this document that contains additional information relevant to this
subclause

3.12
implementation
particular set of software, running in a particular translation environment under particular con-

trol options, that performs translation of programs for, and supports execution of functions in, a
particular execution environment

3.13

implementation limit

restriction imposed upon programs by the implementation

3.14

memory location

either an object of scalar type, or a maximal sequence of adjacent bit-fields all having nonzero width

Note 1 to entry: Two threads of execution can update and access separate memory locations without interfering with each
other.

Note 2 to entry: A bit-field and an adjacent non-bit-field member are in separate memory locations. The same applies to
two bit-fields, if one is declared inside a nested structure declaration and the other is not, or if the two are separated by a
zero-length bit-field declaration, or if they are separated by a non-bit-field member declaration. It is not safe to concurrently
update two non-atomic bit-fields in the same structure if all members declared between them are also (nonzero-length)
bit-fields, no matter what the sizes of those intervening bit-fields happen to be.

EXAMPLE A structure declared as

struct {
char a;
int b:5, c:11,:0, d:8;
struct { int ee:8; } e;

§3.14 General 5



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

contains four separate memory locations: The member a, and bit-fields d and e.ee are each separate memory locations,
and can be modified concurrently without interfering with each other. The bit-fields b and c together constitute the fourth
memory location. The bit-fields b and ¢ cannot be concurrently modified, but b and a, for example, can be.

3.15
object

region of data storage in the execution environment, the contents of which can represent values

Note 1 to entry: When referenced, an object can be interpreted as having a particular type; see 6.3.2.1.

3.16

parameter
formal parameter
DEPRECATED: formal argument

object declared as part of a function declaration or definition that acquires a value on entry to the
function, or an identifier from the comma-separated list bounded by the parentheses immediately
following the macro name in a function-like macro definition

3.17

recommended practice

specification that is strongly recommended as being in keeping with the intent of the standard, but
that might be impractical for some implementations

3.18

runtime-constraint

requirement on a program when calling a library function

Note 1 to entry: Despite the similar terms, a runtime-constraint is not a kind of constraint as defined by 3.8, and need not be
diagnosed at translation time.

Note 2 to entry: Implementations that support the extensions in Annex K are required to verify that the runtime-constraints
for a library function are not violated by the program; see K.3.1.4.

Note 3 to entry: Implementations that support Annex L are permitted to invoke a runtime-constraint handler when they
perform a trap.

3.19

value

precise meaning of the contents of an object when interpreted as having a specific type

3.19.1

implementation-defined value

unspecified value where each implementation documents how the choice is made

3.19.2

indeterminate value

either an unspecified value or a trap representation

3.19.3

unspecified value

valid value of the relevant type where this document imposes no requirements on which value is
chosen in any instance

Note 1 to entry: An unspecified value cannot be a trap representation.

6 General §3.19.3



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

3.19.4

trap representation

an object representation that need not represent a value of the object type

3.19.5
perform a trap
interrupt execution of the program such that no further operations are performed

Note 1 to entry: In this document, when the word “trap” is not immediately followed by “representation”, this is the
intended usage.?)

Note 2 to entry: Implementations that support Annex L are permitted to invoke a runtime-constraint handler when they
perform a trap.

3.20

[«]

ceiling of x

the least integer greater than or equal to =
EXAMPLE [2.4]is 3, [—2.4] is —2.

3.21
lz]
floor of x

the greatest integer less than or equal to =
EXAMPLE [2.4]is 2, |—2.4] is —3.

IFor example, “Trapping or stopping (if supported) is disabled ...” (F.8.2). Note that fetching a trap representation might
perform a trap but is not required to (see 6.2.6.1).

§3.21 General 7



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

4. Conformance

In this document, “shall” is to be interpreted as a requirement on an implementation or on a program;
conversely, “shall not” is to be interpreted as a prohibition.

If a “shall” or “shall not” requirement that appears outside of a constraint or runtime-constraint is
violated, the behavior is undefined. Undefined behavior is otherwise indicated in this document by
the words “undefined behavior” or by the omission of any explicit definition of behavior. There is
no difference in emphasis among these three; they all describe “behavior that is undefined”.

A program that is correct in all other aspects, operating on correct data, containing unspecified
behavior shall be a correct program and act in accordance with 5.1.2.3.

The implementation shall not successfully translate a preprocessing translation unit containing a
#error preprocessing directive unless it is part of a group skipped by conditional inclusion.

A strictly conforming program shall use only those features of the language and library specified
in this document.® It shall not produce output dependent on any unspecified, undefined, or
implementation-defined behavior, and shall not exceed any minimum implementation limit.

The two forms of conforming implementation are hosted and freestanding. A conforming hosted
implementation shall accept any strictly conforming program. A conforming freestanding implemen-
tation shall accept any strictly conforming program in which the use of the features specified
in the library clause (Clause 7) is confined to the contents of the standard headers <float.h>,
<is0646.h>, <limits.h>, <stdalign.h>, <stdarg.h>, <stdbool.h>, <stddef.h>, <stdint.h>,
and <stdnoreturn.h>. A conforming implementation may have extensions (including additional
library functions), provided they do not alter the behavior of any strictly conforming program.?

The strictly conforming programs that shall be accepted by a conforming freestanding implementa-
tion that defines __STDC_IEC_60559_BFP__ or __STDC_IEC_60559_DFP__ may also use features in
the contents of the standard headers <fenv.h> and <math.h> and the numeric conversion functions
(7.22.1) of the standard header <stdlib.h>. All identifiers that are reserved when <stdlib.h>is
included in a hosted implementation are reserved when it is included in a freestanding implementa-
tion.

A conforming program is one that is acceptable to a conforming implementation.’)

An implementation shall be accompanied by a document that defines all implementation-defined
and locale-specific characteristics and all extensions.

Forward references: conditional inclusion (6.10.1), error directive (6.10.5), characteristics of floating
types <float.h> (7.7), alternative spellings <is0646.h> (7.9), sizes of integer types <limits.h>
(7.10), alignment <stdalign.h> (7.15), variable arguments <stdarg.h> (7.16), boolean type and
values <stdbool.h>(7.18), common definitions <stddef . h>(7.19), integer types <stdint.h> (7.20),
<stdnoreturn.h> (7.23).

3 A strictly conforming program can use conditional features (see 6.10.8.3) provided the use is guarded by an appropriate
conditional inclusion preprocessing directive using the related macro. For example:

#ifdef _STDC_IEC_60559_BFP__ /*x FE_UPWARD defined x*/
/* ... %/
fesetround (FE_UPWARD) ;
/*x ... %/

#endif

YThis implies that a conforming implementation reserves no identifiers other than those explicitly reserved in this
document.

S)Strictly conforming programs are intended to be maximally portable among conforming implementations. Conforming
programs can depend upon nonportable features of a conforming implementation.

8 General §4



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

5. Environment

An implementation translates C source files and executes C programs in two data-processing-system
environments, which will be called the translation environment and the execution environment in this
document. Their characteristics define and constrain the results of executing conforming C programs
constructed according to the syntactic and semantic rules for conforming implementations.

Forward references: In this clause, only a few of many possible forward references have been
noted.

5.1 Conceptual models
5.1.1 Translation environment

5.1.1.1 Program structure

A C program need not all be translated at the same time. The text of the program is kept in units
called source files, (or preprocessing files) in this document. A source file together with all the headers
and source files included via the preprocessing directive #include is known as a preprocessing
translation unit. After preprocessing, a preprocessing translation unit is called a translation unit.
Previously translated translation units may be preserved individually or in libraries. The separate
translation units of a program communicate by (for example) calls to functions whose identifiers have
external linkage, manipulation of objects whose identifiers have external linkage, or manipulation
of data files. Translation units may be separately translated and then later linked to produce an
executable program.

Forward references: linkages of identifiers (6.2.2), external definitions (6.9), preprocessing direc-
tives (6.10).

5.1.1.2 Translation phases

The precedence among the syntax rules of translation is specified by the following phases.?)

1. Physical source file multibyte characters are mapped, in an implementation-defined manner, to
the source character set (introducing new-line characters for end-of-line indicators) if necessary.
Trigraph sequences are replaced by corresponding single-character internal representations.

2. Each instance of a backslash character (\) immediately followed by a new-line character is
deleted, splicing physical source lines to form logical source lines. Only the last backslash on
any physical source line shall be eligible for being part of such a splice. A source file that is
not empty shall end in a new-line character, which shall not be immediately preceded by a
backslash character before any such splicing takes place.

3. The source file is decomposed into preprocessing tokens” and sequences of white-space
characters (including comments). A source file shall not end in a partial preprocessing token or
in a partial comment. Each comment is replaced by one space character. New-line characters
are retained. Whether each nonempty sequence of white-space characters other than new-line
is retained or replaced by one space character is implementation-defined.

4. Preprocessing directives are executed, macro invocations are expanded, and _Pragma unary
operator expressions are executed. If a character sequence that matches the syntax of a univer-
sal character name is produced by token concatenation (6.10.3.3), the behavior is undefined. A
#include preprocessing directive causes the named header or source file to be processed from
phase 1 through phase 4, recursively. All preprocessing directives are then deleted.

®This requires implementations to behave as if these separate phases occur, even though many are typically folded
together in practice. Source files, translation units, and translated translation units need not necessarily be stored as files,
nor need there be any one-to-one correspondence between these entities and any external representation. The description is
conceptual only, and does not specify any particular implementation.

7) As described in 6.4, the process of dividing a source file’s characters into preprocessing tokens is context-dependent. For
example, see the handling of < within a #include preprocessing directive.

§5.1.1.2 Environment 9



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

5. Each source character set member and escape sequence in character constants and string
literals is converted to the corresponding member of the execution character set; if there is no
corresponding member, it is converted to an implementation-defined member other than the
null (wide) character.®)

6. Adjacent string literal tokens are concatenated.

7. White-space characters separating tokens are no longer significant. Each preprocessing token
is converted into a token. The resulting tokens are syntactically and semantically analyzed
and translated as a translation unit.

8. All external object and function references are resolved. Library components are linked to
satisfy external references to functions and objects not defined in the current translation. All
such translator output is collected into a program image which contains information needed
for execution in its execution environment.

Forward references: universal character names (6.4.3), lexical elements (6.4), preprocessing direc-
tives (6.10), trigraph sequences (5.2.1.1), external definitions (6.9).

5.1.1.3 Diagnostics

A conforming implementation shall produce at least one diagnostic message (identified in an imple-
mentation-defined manner) if a preprocessing translation unit or translation unit contains a violation
of any syntax rule or constraint, even if the behavior is also explicitly specified as undefined or
implementation-defined. Diagnostic messages need not be produced in other circumstances.”)

EXAMPLE An implementation is required to issue a diagnostic for the translation unit:

char i;
int i;

because in those cases where wording in this document describes the behavior for a construct as being both a constraint error
and resulting in undefined behavior, the constraint error is still required to be diagnosed.

5.1.2 Execution environments

Two execution environments are defined: freestanding and hosted. In both cases, program startup
occurs when a designated C function is called by the execution environment. All objects with static
storage duration shall be initialized (set to their initial values) before program startup. The manner
and timing of such initialization are otherwise unspecified. Program termination returns control to
the execution environment.

Forward references: storage durations of objects (6.2.4), initialization (6.7.9).

5.1.2.1 Freestanding environment

In a freestanding environment (in which C program execution may take place without any benefit
of an operating system), the name and type of the function called at program startup are implemen-
tation-defined. Any library facilities available to a freestanding program, other than the minimal set
required by Clause 4, are implementation-defined.

The effect of program termination in a freestanding environment is implementation-defined.

5.1.2.2 Hosted environment

A hosted environment need not be provided, but shall conform to the following specifications if
present.

8 An implementation need not convert all non-corresponding source characters to the same execution character.

9 An implementation is encouraged to identify the nature of, and where possible localize, each violation. Of course, an
implementation is free to produce any number of diagnostic messages, often referred to as warnings, as long as a valid
program is still correctly translated. It can also successfully translate an invalid program. Annex I lists a few of the more
common warnings.

10 Environment §5.1.2.2



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

5.1.2.2.1 Program startup

The function called at program startup is named main. The implementation declares no prototype
for this function. It shall be defined with a return type of int and with no parameters:

i int main(void) { /* ... %/ }
L

or with two parameters (referred to here as argc and argv, though any names may be used, as they
are local to the function in which they are declared):

i int main(int argc, char *argv([]) { /x ... %/ }
L

or equivalent;'” or in some other implementation-defined manner.

If they are declared, the parameters to the main function shall obey the following constraints:

— The value of argc shall be nonnegative.
— argv[argc] shall be a null pointer.

— If the value of argc is greater than zero, the array members argv[0] through argv[argc-1]
inclusive shall contain pointers to strings, which are given implementation-defined values
by the host environment prior to program startup. The intent is to supply to the program
information determined prior to program startup from elsewhere in the hosted environment.
If the host environment is not capable of supplying strings with letters in both uppercase and
lowercase, the implementation shall ensure that the strings are received in lowercase.

— If the value of argc is greater than zero, the string pointed to by argv[0] represents the
program name; argv[01[0] shall be the null character if the program name is not available
from the host environment. If the value of argc is greater than one, the strings pointed to by
argv[1] through argv[argc-1] represent the program parameters.

— The parameters argc and argv and the strings pointed to by the argv array shall be modifiable
by the program, and retain their last-stored values between program startup and program
termination.

5.1.2.2.2 Program execution

In a hosted environment, a program may use all the functions, macros, type definitions, and objects
described in the library clause (Clause 7).

5.1.2.2.3 Program termination

If the return type of the main function is a type compatible with int, a return from the initial call
to the main function is equivalent to calling the exit function with the value returned by the main
function as its argument;'V reaching the } that terminates the main function returns a value of 0. If
the return type is not compatible with int, the termination status returned to the host environment
is unspecified.

Forward references: definition of terms (7.1.1), the exit function (7.22.4.4).

5.1.2.3 Program execution
The semantic descriptions in this document describe the behavior of an abstract machine in which
issues of optimization are irrelevant.

An access to an object through the use of an lvalue of volatile-qualified type is a volatile access. A
volatile access to an object, modifying a file, or calling a function that does any of those operations

19Thus, int can be replaced by a typedef name defined as int, or the type of argv can be written as char *x argv, and so
on.

1DIn accordance with 6.2.4, the lifetimes of objects with automatic storage duration declared in main will have ended in the
former case, even where they would not have in the latter.

§5.1.23 Environment 11



10

11

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

are all side effects,'” which are changes in the state of the execution environment. Evaluation of
an expression in general includes both value computations and initiation of side effects. Value
computation for an Ivalue expression includes determining the identity of the designated object.

Sequenced before is an asymmetric, transitive, pair-wise relation between evaluations executed by a
single thread, which induces a partial order among those evaluations. Given any two evaluations
A and B, if A is sequenced before B, then the execution of A shall precede the execution of B.
(Conversely, if A is sequenced before B, then B is sequenced after A.) If A is not sequenced before or
after B, then A and B are unsequenced. Evaluations A and B are indeterminately sequenced when A is
sequenced either before or after B, but it is unspecified which.!® The presence of a sequence point
between the evaluation of expressions A and B implies that every value computation and side effect
associated with A is sequenced before every value computation and side effect associated with B. (A
summary of the sequence points is given in Annex C.)

In the abstract machine, all expressions are evaluated as specified by the semantics. An actual
implementation need not evaluate part of an expression if it can deduce that its value is not used
and that no needed side effects are produced (including any caused by calling a function or through
volatile access to an object).

When the processing of the abstract machine is interrupted by receipt of a signal, the values of
objects that are neither lock-free atomic objects nor of type volatile sig_atomic_t are unspecified,
as is the state of the dynamic floating-point environment. The value of any object modified by
the handler that is neither a lock-free atomic object nor of type volatile sig_atomic_t becomes
indeterminate when the handler exits, as does the state of the dynamic floating-point environment if
it is modified by the handler and not restored to its original state.

The least requirements on a conforming implementation are:

— Volatile accesses to objects are evaluated strictly according to the rules of the abstract machine.

— At program termination, all data written into files shall be identical to the result that execution
of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place as specified in 7.21.3.
The intent of these requirements is that unbuffered or line-buffered output appear as soon as
possible, to ensure that prompting messages actually appear prior to a program waiting for
input.

This is the observable behavior of the program.
What constitutes an interactive device is implementation-defined.

More stringent correspondences between abstract and actual semantics may be defined by each
implementation.

EXAMPLE 1 An implementation might define a one-to-one correspondence between abstract and actual semantics: at every
sequence point, the values of the actual objects would agree with those specified by the abstract semantics. The keyword
volatile would then be redundant.

Alternatively, an implementation might perform various optimizations within each translation unit, such that the actual
semantics would agree with the abstract semantics only when making function calls across translation unit boundaries. In
such an implementation, at the time of each function entry and function return where the calling function and the called
function are in different translation units, the values of all externally linked objects and of all objects accessible via pointers
therein would agree with the abstract semantics. Furthermore, at the time of each such function entry the values of the
parameters of the called function and of all objects accessible via pointers therein would agree with the abstract semantics. In
this type of implementation, objects referred to by interrupt service routines activated by the signal function would require
explicit specification of volatile storage, as well as other implementation-defined restrictions.

EXAMPLE 2 In executing the fragment

12)The IEC 60559 standard for binary floating-point arithmetic requires certain user-accessible status flags and control
modes. Floating-point operations implicitly set the status flags; modes affect result values of floating-point operations.
Implementations that support such floating-point state are required to regard changes to it as side effects — see Annex F for
details. The floating-point environment library <fenv.h> provides a programming facility for indicating when these side
effects matter, freeing the implementations in other cases.

13)The executions of unsequenced evaluations can interleave. Indeterminately sequenced evaluations cannot interleave, but
can be executed in any order.

12 Environment §5.1.2.3



12

13

14

15

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

char cl1, c2;
/* ... %/
cl = cl + c2;

the “integer promotions” require that the abstract machine promote the value of each variable to int size and then add
the two ints and truncate the sum. Provided the addition of two chars can be done without overflow, or with overflow
wrapping silently to produce the correct result, the actual execution need only produce the same result, possibly omitting the
promotions.

EXAMPLE 3 Similarly, in the fragment

float f1l, f2;
double d;

/*x ... x/

fl = f2 % d;

the multiplication can be executed using single-precision arithmetic if the implementation can ascertain that the result would
be the same as if it were executed using double-precision arithmetic (for example, if d were replaced by the constant 2.0,
which has type double).

EXAMPLE 4 Implementations employing wide registers have to take care to honor appropriate semantics. Values are
independent of whether they are represented in a register or in memory. For example, an implicit spilling of a register is
not permitted to alter the value. Also, an explicit store and load is required to round to the precision of the storage type. In
particular, casts and assignments are required to perform their specified conversion. For the fragment

double dl1, d2;

float f;

dl = f = expression;

d2 = (float) expression;

the values assigned to d1 and d2 are required to have been converted to float.

EXAMPLE 5 Rearrangement for floating-point expressions is often restricted because of limitations in precision as well as
range. The implementation cannot generally apply the mathematical associative rules for addition or multiplication, nor
the distributive rule, because of roundoff error, even in the absence of overflow and underflow. Likewise, implementations
cannot generally replace decimal constants in order to rearrange expressions. In the following fragment, rearrangements
suggested by mathematical rules for real numbers are often not valid (see E.9).

double x, vy, z;

/x ... %/

X = (x xy) x z; // not equivalent to x *=y * z;
z=(x-vy)+y; // not equivalent to z = x;

Z =X+ X *xYy; // not equivalent to z = x * (1.0 + vy);
y =x/ 5.0; // not equivalent to y = x * 0.2;

EXAMPLE 6 To illustrate the grouping behavior of expressions, in the following fragment

int a, b;
/* ... %/
a =a+ 32760 + b + 5;

the expression statement behaves exactly the same as

| a = (((a+32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of the sum (a + 32760) is next added to b, and
that result is then added to 5 which results in the value assigned to a. On a machine in which overflows produce an explicit
trap and in which the range of values representable by an int is [-32768, +32767], the implementation cannot rewrite this
expression as

| a = ((a+b) + 32765);

since if the values for a and b were, respectively, —32754 and —15, the sum a + b would produce a trap while the original
expression would not; nor can the expression be rewritten either as

\ a = ((a + 32765) + b);

§5.1.2.3 Environment 13



16

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

or

| a=(a+ (b+32765)); |

since the values for a and b might have been, respectively, 4 and —8 or —17 and 12. However, on a machine in which
overflow silently generates some value and where positive and negative overflows cancel, the above expression statement
can be rewritten by the implementation in any of the above ways because the same result will occur.

EXAMPLE 7 The grouping of an expression does not completely determine its evaluation. In the following fragment

#include <stdio.h>

int sum;

char xp;

/* ... x/

sum = sum *x 10 - ‘0’ + (*p++ = getchar());

the expression statement is grouped as if it were written as

| sum = (((sum * 10) - '0") + ((x(p++)) = (getchar()))); |

but the actual increment of p can occur at any time between the previous sequence point and the next sequence point (the ;),
and the call to getchar can occur at any point prior to the need of its returned value.

Forward references: expressions (6.5), type qualifiers (6.7.3), statements (6.8), floating-point envi-
ronment <fenv.h> (7.6), the signal function (7.14), files (7.21.3).

5.1.2.4 Multi-threaded executions and data races

Under a hosted implementation, a program can have more than one thread of execution (or thread)
running concurrently. The execution of each thread proceeds as defined by the remainder of this
document. The execution of the entire program consists of an execution of all of its threads.!¥
Under a freestanding implementation, it is implementation-defined whether a program can have
more than one thread of execution.

The value of an object visible to a thread T at a particular point is the initial value of the object, a
value stored in the object by T', or a value stored in the object by another thread, according to the
rules below.

NOTE1 In some cases, there could instead be undefined behavior. Much of this section is motivated by the desire to support

atomic operations with explicit and detailed visibility constraints. However, it also implicitly supports a simpler view for
more restricted programs.

Two expression evaluations conflict if one of them modifies a memory location and the other one
reads or modifies the same memory location.

The library defines a number of atomic operations (7.17) and operations on mutexes (7.26.4) that are
specially identified as synchronization operations. These operations play a special role in making
assignments in one thread visible to another. A synchronization operation on one or more memory
locations is either an acquire operation, a release operation, both an acquire and release operation, or a
consume operation. A synchronization operation without an associated memory location is a ferice and
can be either an acquire fence, a release fence, or both an acquire and release fence. In addition, there
are relaxed atomic operations, which are not synchronization operations, and atomic read-modify-write
operations, which have special characteristics.

NOTE 2 For example, a call that acquires a mutex will perform an acquire operation on the locations composing the mutex.
Correspondingly, a call that releases the same mutex will perform a release operation on those same locations. Informally,
performing a release operation on A forces prior side effects on other memory locations to become visible to other threads

that later perform an acquire or consume operation on A. Relaxed atomic operations are not included as synchronization
operations although, like synchronization operations, they cannot contribute to data races.

All modifications to a particular atomic object M occur in some particular total order, called the
modification order of M. If A and B are modifications of an atomic object M/, and A happens before B,
then A shall precede B in the modification order of M, which is defined below.

NOTE 3 This states that the modification orders are expected to respect the “happens before” relation.

149)The execution can usually be viewed as an interleaving of all of the threads. However, some kinds of atomic operations,
for example, allow executions inconsistent with a simple interleaving as described below.

14 Environment §5.124



10

11

12

13

14

15

16

17

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

NOTE 4 There is a separate order for each atomic object. There is no requirement that these can be combined into a single
total order for all objects. In general this will be impossible since different threads can observe modifications to different
variables in inconsistent orders.

A release sequence headed by a release operation A on an atomic object M is a maximal contiguous
sub-sequence of side effects in the modification order of M, where the first operation is A and every
subsequent operation either is performed by the same thread that performed the release or is an
atomic read-modify-write operation.

Certain library calls synchronize with other library calls performed by another thread. In particular,
an atomic operation A that performs a release operation on an object A/ synchronizes with an atomic
operation B that performs an acquire operation on M and reads a value written by any side effect in
the release sequence headed by A.

NOTE 5 Except in the specified cases, reading a later value does not necessarily ensure visibility as described below. Such a
requirement would sometimes interfere with efficient implementation.

NOTE 6 The specifications of the synchronization operations define when one reads the value written by another. For atomic
variables, the definition is clear. All operations on a given mutex occur in a single total order. Each mutex acquisition “reads
the value written” by the last mutex release.

An evaluation A carries a dependency' to an evaluation B if:

— the value of A is used as an operand of B, unless:
e Bis an invocation of the kill_dependency macro,
o Ais the left operand of a & or | | operator,
e Ais the left operand of a ?: operator, or
o Ais the left operand of a , operator;

or

— A writes a scalar object or bit-field M, B reads from M the value written by A, and A is
sequenced before B, or

— for some evaluation X, A carries a dependency to X and X carries a dependency to B.
An evaluation A is dependency-ordered before'® an evaluation B if:

— A performs a release operation on an atomic object M, and, in another thread, B performs a

consume operation on M and reads a value written by any side effect in the release sequence
headed by A, or

— for some evaluation X, A is dependency-ordered before X and X carries a dependency to B.

An evaluation A inter-thread happens before an evaluation B if A synchronizes with B, A is
dependency-ordered before B, or, for some evaluation X:

— A synchronizes with X and X is sequenced before B,
— A s sequenced before X and X inter-thread happens before B, or

— A inter-thread happens before X and X inter-thread happens before B.

a

NOTE 7 The “inter-thread happens before” relation describes arbitrary concatenations of “sequenced before”, “synchronizes
with”, and “dependency-ordered before” relationships, with two exceptions. The first exception is that a concatenation is
not permitted to end with “dependency-ordered before” followed by “sequenced before”. The reason for this limitation is
that a consume operation participating in a “dependency-ordered before” relationship provides ordering only with respect
to operations to which this consume operation actually carries a dependency. The reason that this limitation applies only
to the end of such a concatenation is that any subsequent release operation will provide the required ordering for a prior

15)The “carries a dependency” relation is a subset of the “sequenced before” relation, and is similarly strictly intra-thread.
19The “dependency-ordered before” relation is analogous to the “synchronizes with” relation, but uses release/consume in
place of release/acquire.

§5.124 Environment 15



18

19
20

21

22

23

24

25

26
27

28
29

30
31

32
33

34

35

36

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

consume operation. The second exception is that a concatenation is not permitted to consist entirely of “sequenced before”.
The reasons for this limitation are (1) to permit “inter-thread happens before” to be transitively closed and (2) the “happens
before” relation, defined below, provides for relationships consisting entirely of “sequenced before”.

An evaluation A happens before an evaluation B if A is sequenced before B or A inter-thread happens
before B. The implementation shall ensure that no program execution demonstrates a cycle in the
“happens before” relation.

NOTE 8 This cycle would otherwise be possible only through the use of consume operations.

A visible side effect A on an object M with respect to a value computation B of M satisfies the
conditions:

— A happens before B, and

— there is no other side effect X to M such that A happens before X and X happens before B.

The value of a non-atomic scalar object M, as determined by evaluation B, shall be the value stored
by the visible side effect A.

NOTE 9 If there is ambiguity about which side effect to a non-atomic object is visible, then there is a data race and the
behavior is undefined.

NOTE 10 This states that operations on ordinary variables are not visibly reordered. This is not actually detectable without
data races, but it is necessary to ensure that data races, as defined here, and with suitable restrictions on the use of atomics,
correspond to data races in a simple interleaved (sequentially consistent) execution.

The value of an atomic object M, as determined by evaluation B, shall be the value stored by some
side effect A that modifies M, where B does not happen before A.

NOTE 11 The set of side effects from which a given evaluation might take its value is also restricted by the rest of the rules
described here, and in particular, by the coherence requirements below.

If an operation A that modifies an atomic object M happens before an operation B that modifies ),
then A shall be earlier than B in the modification order of M.

NOTE 12 The requirement above is known as “write-write coherence”.

If a value computation A of an atomic object M happens before a value computation B of M, and A
takes its value from a side effect X on M, then the value computed by B shall either be the value
stored by X or the value stored by a side effect Y on M, where Y follows X in the modification
order of M.

NOTE 13 The requirement above is known as “read-read coherence”.

If a value computation A of an atomic object M happens before an operation B on M, then A shall
take its value from a side effect X on M, where X precedes B in the modification order of M.

NOTE 14 The requirement above is known as “read-write coherence”.

If a side effect X on an atomic object M happens before a value computation B of M, then the
evaluation B shall take its value from X or from a side effect Y that follows X in the modification
order of M.

NOTE 15 The requirement above is known as “write-read coherence”.

NOTE 16 This effectively disallows compiler reordering of atomic operations to a single object, even if both operations are
“relaxed” loads. By doing so, it effectively makes the “cache coherence” guarantee provided by most hardware available to C
atomic operations.

NOTE 17 The value observed by a load of an atomic object depends on the “happens before” relation, which in turn depends
on the values observed by loads of atomic objects. The intended reading is that there exists an association of atomic loads
with modifications they observe that, together with suitably chosen modification orders and the “happens before” relation
derived as described above, satisfy the resulting constraints as imposed here.

The execution of a program contains a data race if it contains two conflicting actions in different
threads, at least one of which is not atomic, and neither happens before the other. Any such data
race results in undefined behavior.

NOTE 18 It can be shown that programs that correctly use simple mutexes and memory_order_seq_cst operations to
prevent all data races, and use no other synchronization operations, behave as though the operations executed by their

constituent threads were simply interleaved, with each value computation of an object being the last value stored in that
interleaving. This is normally referred to as “sequential consistency”. However, this applies only to data-race-free programs,

16 Environment §5.124



37

38

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

and data-race-free programs cannot observe most program transformations that do not change single-threaded program
semantics. In fact, most single-threaded program transformations continue to be allowed, since any program that behaves
differently as a result necessarily has undefined behavior even before such a transformation is applied.

NOTE 19 Compiler transformations that introduce assignments to a potentially shared memory location that would not
be modified by the abstract machine are generally precluded by this document, since such an assignment might overwrite
another assignment by a different thread in cases in which an abstract machine execution would not have encountered a
data race. This includes implementations of data member assignment that overwrite adjacent members in separate memory
locations. Reordering of atomic loads in cases in which the atomics in question might alias is also generally precluded, since
this could violate the coherence requirements.

NOTE 20 Transformations that introduce a speculative read of a potentially shared memory location might not preserve
the semantics of the program as defined in this document, since they potentially introduce a data race. However, they are
typically valid in the context of an optimizing compiler that targets a specific machine with well-defined semantics for data
races. They would be invalid for a hypothetical machine that is not tolerant of races or provides hardware race detection.

5.2 Environmental considerations

5.2.1 Character sets

Two sets of characters and their associated collating sequences collating sequences shall be defined:
the set in which source files are written (the source character set), and the set interpreted in the
execution environment (the execution character set). Each set is further divided into a basic character
set, whose contents are given by this subclause, and a set of zero or more locale-specific members
(which are not members of the basic character set) called extended characters. The combined set is
also called the extended character set. The values of the members of the execution character set are
implementation-defined.

In a character constant or string literal, members of the execution character set shall be represented by
corresponding members of the source character set or by escape sequences consisting of the backslash
\ followed by one or more characters. A byte with all bits set to 0, called the null character, shall exist
in the basic execution character set; it is used to terminate a character string.

Both the basic source and basic execution character sets shall have the following members: the 26
uppercase letters of the Latin alphabet

A B CDETFGHTIJKILM

N OPQRSTUVWXY Z
the 26 lowercase letters of the Latin alphabet

a b cde f gh i j k 1 m

n o p g r s t u v w X z

the 10 decimal digits

\ © 1 2 3 456 7 809

the following 29 graphic characters

s &7 () o xo+ -0/
o< =>2 0 N1~ _ {11} ~

the space character, and control characters representing horizontal tab, vertical tab, and form feed.
The representation of each member of the source and execution basic character sets shall fit in a
byte. In both the source and execution basic character sets, the value of each character after 0 in
the above list of decimal digits shall be one greater than the value of the previous. In source files,
there shall be some way of indicating the end of each line of text; this document treats such an
end-of-line indicator as if it were a single new-line character. In the basic execution character set,
there shall be control characters representing alert, backspace, carriage return, and new line. If any
other characters are encountered in a source file (except in an identifier, a character constant, a string
literal, a header name, a comment, or a preprocessing token that is never converted to a token), the
behavior is undefined.

A letter is an uppercase letter or a lowercase letter as defined above; in this document the term does
not include other characters that are letters in other alphabets.

§52.1 Environment 17



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

5  The universal character name construct provides a way to name other characters.
Forward references: universal character names (6.4.3), character constants (6.4.4.4), preprocessing
directives (6.10), string literals (6.4.5), comments (6.4.9), string (7.1.1).

5.2.1.1 Trigraph sequences

1 Before any other processing takes place, each occurrence of one of the following sequences of three
characters (called trigraph sequences)'”) is replaced with the corresponding single character.

7= # ??7) 1] [

?77( [ ??7> }

2?7/ N\ < A ?77- ~
No other trigraph sequences exist. Each ? that does not begin one of the trigraphs listed above is not
changed.

2 EXAMPLE 1

i ??7=define arraycheck(a, b) a??(b??) ??12?! b??(a??)

becomes

#define arraycheck(a, b) a[b] || blal

3 EXAMPLE 2 The following source line

| printf("Eh??2/n");

becomes (after replacement of the trigraph sequence ??/)

i printf("Eh?\n");

5.2.1.2 Multibyte characters

1 The source character set may contain multibyte characters, used to represent members of the
extended character set. The execution character set may also contain multibyte characters, which
need not have the same encoding as for the source character set. For both character sets, the following
shall hold:

— The basic character set shall be present and each character shall be encoded as a single byte.
— The presence, meaning, and representation of any additional members is locale-specific.

— A multibyte character set may have a state-dependent encoding, wherein each sequence of
multibyte characters begins in an initial shift state and enters other locale-specific shift states
when specific multibyte characters are encountered in the sequence. While in the initial shift
state, all single-byte characters retain their usual interpretation and do not alter the shift state.
The interpretation for subsequent bytes in the sequence is a function of the current shift state.

— A byte with all bits zero shall be interpreted as a null character independent of shift state. Such
a byte shall not occur as part of any other multibyte character.

2 For source files, the following shall hold:

— An identifier, comment, string literal, character constant, or header name shall begin and end
in the initial shift state.

— An identifier, comment, string literal, character constant, or header name shall consist of a
sequence of valid multibyte characters.

17)The trigraph sequences enable the input of characters that are not defined in the Invariant Code Set as described in
ISO/IEC 646, which is a subset of the seven-bit US ASCII code set.

18 Environment §5.2.1.2



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

5.2.2 Character display semantics

The active position is that location on a display device where the next character output by the
fputc function would appear. The intent of writing a printing character (as defined by the isprint
function) to a display device is to display a graphic representation of that character at the active
position and then advance the active position to the next position on the current line. The direction
of writing is locale-specific. If the active position is at the final position of a line (if there is one), the
behavior of the display device is unspecified.

Alphabetic escape sequences representing nongraphic characters in the execution character set are
intended to produce actions on display devices as follows:

\a (alert) Produces an audible or visible alert without changing the active position.

\b (backspace) Moves the active position to the previous position on the current line. If the active
position is at the initial position of a line, the behavior of the display device is unspecified.

\T (form feed) Moves the active position to the initial position at the start of the next logical page.
\n (new line) Moves the active position to the initial position of the next line.
\r (carriage return) Moves the active position to the initial position of the current line.

\t (horizontal tab) Moves the active position to the next horizontal tabulation position on the current
line. If the active position is at or past the last defined horizontal tabulation position, the behavior
of the display device is unspecified.

\Vv (vertical tab) Moves the active position to the initial position of the next vertical tabulation
position. If the active position is at or past the last defined vertical tabulation position, the
behavior of the display device is unspecified.

Each of these escape sequences shall produce a unique implementation-defined value which can be
stored in a single char object. The external representations in a text file need not be identical to the
internal representations, and are outside the scope of this document.

Forward references: the isprint function (7.4.1.8), the fputc function (7.21.7.3).

5.2.3 Signals and interrupts

Functions shall be implemented such that they may be interrupted at any time by a signal, or may be
called by a signal handler, or both, with no alteration to earlier, but still active, invocations’ control
flow (after the interruption), function return values, or objects with automatic storage duration.
All such objects shall be maintained outside the function image (the instructions that compose the
executable representation of a function) on a per-invocation basis.

5.2.4 Environmental limits

Both the translation and execution environments constrain the implementation of language trans-
lators and libraries. The following summarizes the language-related environmental limits on a
conforming implementation; the library-related limits are discussed in Clause 7.

5.2.4.1 Translation limits

The implementation shall be able to translate and execute at least one program that contains at least

one instance of every one of the following limits:'®

— 127 nesting levels of blocks
— 63 nesting levels of conditional inclusion

— 12 pointer, array, and function declarators (in any combinations) modifying an arithmetic,
structure, union, or void type in a declaration

18 Implementations are encouraged to avoid imposing fixed translation limits whenever possible.

§524.1 Environment 19



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

— 63 nesting levels of parenthesized declarators within a full declarator

— 63 nesting levels of parenthesized expressions within a full expression

— 63 significant initial characters in an internal identifier or a macro name(each universal charac-

ter name or extended source character is considered a single character)

31 significant initial characters in an external identifier (each universal character name specify-
ing a short identifier of 0000FFFF or less is considered 6 characters, each universal character
name specifying a short identifier of 00010000 or more is considered 10 characters, and each
extended source character is considered the same number of characters as the corresponding
universal character name, if any)!”

4095 external identifiers in one translation unit

511 identifiers with block scope declared in one block

4095 macro identifiers simultaneously defined in one preprocessing translation unit
127 parameters in one function definition

127 arguments in one function call

127 parameters in one macro definition

127 arguments in one macro invocation

4095 characters in a logical source line

4095 characters in a string literal (after concatenation)

65535 bytes in an object (in a hosted environment only)

15 nesting levels for #included files

1023 case labels for a switch statement (excluding those for any nested switch statements)
1023 members in a single structure or union

1023 enumeration constants in a single enumeration

63 levels of nested structure or union definitions in a single member declaration list

5.2.4.2 Numerical limits

An implementation is required to document all the limits specified in this subclause, which are
specified in the headers <limits.h>and <float.h>. Additional limits are specified in <stdint.h>.

Forward references: integer types <stdint.h> (7.20).

5.2.4.2.1 Characteristics of integer types <limits.h>

The values given below shall be replaced by constant expressions suitable for use in #if preprocess-
ing directives. Their implementation-defined values shall be equal or greater to those shown.

— width for an object of type _Bool

[
| BOOL_WIDTH 1
L

— number of bits for smallest object that is not a bit-field (byte)

[
| CHAR_BIT 8
L

19)See “future language directions” (6.11.3).

20

Environment §524.21



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

The macros CHAR_WIDTH, SCHAR_WIDTH, and UCHAR_WIDTH that represent the width of the
types char, signed char and unsigned char shall expand to the same value as CHAR_BIT.

— width for an object of type unsigned short int

I
| USHRT_WIDTH 16
L

The macro SHRT_WIDTH represents the width of the type short int and shall expand to the
same value as USHRT_WIDTH.

— width for an object of type unsigned int

[
| UINT_WIDTH 16
L

The macro INT_WIDTH represents the width of the type int and shall expand to the same value
as UINT_WIDTH.

— width for an object of type unsigned long int

[
| ULONG_WIDTH 32
L

The macro LONG_WIDTH represents the width of the type long int and shall expand to the
same value as ULONG_WIDTH.

— width for an object of type unsigned long long int

[
| ULLONG_WIDTH 64
L

The macro LLONG_WIDTH represents the width of the type long long int and shall expand to
the same value as ULLONG_WIDTH.

— maximum number of bytes in a multibyte character, for any supported locale

I
| MB_LEN_MAX 1
L

For all unsigned integer types for which <limits.h> or <stdint.h> define a macro with suffix
—WIDTH holding its width NV, there is a macro with suffix _MAX holding the maximal value 2N 1
that is representable by the type, that is suitable for use in #if preprocessing directives and that
has the same type as would an expression that is an object of the corresponding type converted
according to the integer promotions.

For all signed integer types for which <limits.h> or <stdint.h> define a macro with suffix_WIDTH
holding its width NV, there are macros with suffix _MIN and _MAX holding the minimal and maximal
values —2V~1 and 2V~! — 1 that are representable by the type, that are suitable for use in #if
preprocessing directives and that have the same type as would an expression that is an object of the
corresponding type converted according to the integer promotions.

If an object of type char can hold negative values, the value of CHAR_MIN shall be the same as that of
SCHAR_MIN and the value of CHAR_MAX shall be the same as that of SCHAR_MAX. Otherwise, the value
of CHAR_MIN shall be 0 and the value of CHAR_MAX shall be the same as that of UCHAR_MAX.2)

Forward references: representations of types (6.2.6), conditional inclusion (6.10.1), integer types
<stdint.h> (7.20).

5.2.4.2.2 Characteristics of floating types <float.h>

The characteristics of floating types are defined in terms of a model that describes a representa-
tion of floating-point numbers and values that provide information about an implementation’s

20)Gee 6.2.5.

§524.22 Environment 21



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

floating-point arithmetic.?) An implementation that defines —_STDC_IEC_60559_BFP__ or
—STDC_IEC_559__ shall implement floating point types and arithmetic conforming to IEC 60559
as specified in Annex F. An implementation that defines —_STDC_IEC_60559_COMPLEX__ or
—STDC_IEC_559_COMPLEX__ shall implement complex types and arithmetic conforming to
IEC 60559 as specified in Annex G.

The following parameters are used to define the model for each floating-point type:
sign (1)

base or radix of exponent representation (an integer > 1)

exponent (an integer between a minimum e,;, and a maximum e, ax)

p  precision (the number of base-b digits in the significand)
frx nonnegative integers less than b (the significand digits)

[V

For each floating-point type, the parameters b, p, emin, and epax are fixed constants.

For each floating-point type, a floating-point number (x) is defined by the following model:
P
x = sb® Z fkb_k/ emin < € < €max
k=1

Floating types shall be able to represent zero (all f;, == 0) and all normalized floating-point numbers
(fi > 0 and all possible k digits and e exponents result in values representable in the type). In
addition, floating types may be able to contain other kinds of floating-point numbers,?? such as
negative zero, subnormal floating-point numbers (x # 0, e = emin, f1 = 0) and unnormalized floating-point
numbers (x # 0, € > emin, f1 = 0), and values that are not floating-point numbers, such as infinities
and NaNs. A NaN is a value signifying Not-a-Number. A quiet NaN propagates through almost
every arithmetic operation without raising a floating-point exception; a signaling NaN generally
raises a floating-point exception when occurring as an arithmetic operand.?

An implementation may give zero and values that are not floating-point numbers (such as infinities
and NaNs) a sign or may leave them unsigned. Wherever such values are unsigned, any requirement
in this document to retrieve the sign shall produce an unspecified sign, and any requirement to set
the sign shall be ignored.

An implementation may prefer particular representations of values that have multiple representa-
tions in a floating type, 6.2.6.1 not withstanding.?¥) The preferred representations of a floating type,
including unique representations of values in the type, are called canonical. A floating type may also
contain non-canonical representations, for example, redundant representations of some or all of its
values, or representations that are extraneous to the floating-point model.>> Typically, floating-point
operations deliver results with canonical representations. IEC 60559 operations deliver results with
canonical representations, unless specified otherwise.

The minimum range of representable values for a floating type is the most negative finite floating-
point number representable in that type through the most positive finite floating-point number
representable in that type. In addition, if negative infinity is representable in a type, the range of
that type is extended to all negative real numbers; likewise, if positive infinity is representable in a
type, the range of that type is extended to all positive real numbers.

The accuracy of the floating-point operations (+,- , *, /) and of the library functions in <math.h>
and <complex.h> that return floating-point results is implementation-defined, as is the accuracy of
the conversion between floating-point internal representations and string representations performed
by the library functions in <stdio.h>, <stdlib.h>, and <wchar.h>. The implementation may state

2DThe floating-point model is intended to clarify the description of each floating-point characteristic and does not require
the floating-point arithmetic of the implementation to be identical.

22)Some implementations have types that include finite numbers with extra range and/or precision that are not covered by
the model.

2)TEC 60559:1989 specifies quiet and signaling NaNs. For implementations that do not support IEC 60559:1989, the terms
quiet NaN and signaling NaN are intended to apply to values with similar behavior.

2YThe library operations iscanonical and canonicalize distinguish canonical (preferred) representations, but this
distinction alone does not imply that canonical and non-canonical representations are of different values.

2)Some of the values in the IEC 60559 decimal formats have non-canonical representations (as well as a canonical
representation).

22 Environment §524.22



10

11

12

13

14

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

that the accuracy is unknown. Decimal floating-point operations have stricter requirements.

All integer values in the <float.h> header, except FLT_ROUNDS, shall be constant expressions
suitable for use in #if preprocessing directives; all floating values shall be constant expressions.
All except CR_DECIMAL_DIG (E.5), DECIMAL_DIG, DEC_EVAL_METHOD, FLT_EVAL_METHOD, FLT_RADIX,
and FLT_ROUNDS have separate names for all floating-point types. The floating-point model repre-
sentation is provided for all values except DEC_EVAL_METHOD, FLT_EVAL_METHOD and FLT_ROUNDS.

The remainder of this subclause specifies characteristics of standard floating types.

The rounding mode for floating-point addition for standard floating types is characterized by the
implementation-defined value of FLT_ROUNDS. Evaluation of FLT_ROUNDS correctly reflects any
execution-time change of rounding mode through the function fesetround in <fenv.h>.

—1  indeterminable
0 toward zero
1 to nearest, ties to even
2 toward positive infinity
3 toward negative infinity

4 to nearest, ties away from zero

All other values for FLT_ROUNDS characterize implementation-defined rounding behavior.

Whether a type matches an IEC 60559 format (and perhaps, operations) is characterized
by the implementation-defined values of FLT_IS_IEC_66559, DBL_IS_IEC_60559, and
LDBL_IS_IEC_60559 (this does not imply conformance to Annex F):

0 type does not match an IEC 60559 format

1 type matches an IEC 60559 format

2 type matches an IEC 60559 format and operations

The values of floating type yielded by operators subject to the usual arithmetic conversions, including
the values yielded by the implicit conversion of operands, and the values of floating constants are
evaluated to a format whose range and precision may be greater than required by the type. Such a
format is called an evaluation format. In all cases, assignment and cast operators yield values in the

format of the type. The extent to which evaluation formats are used is characterized by the value of
FLT_EVAL_METHOD:*%)

-1 indeterminable;
0 evaluate all operations and constants just to the range and precision of the type;

1 evaluate operations and constants of type float and doub'le to the range and precision of
the double type, evaluate long double operations and constants to the range and precision
of the long double type;

2 evaluate all operations and constants to the range and precision of the long double type.
All other negative values for FLT_EVAL_METHOD characterize implementation-defined behavior. The
value of FLT_EVAL_METHOD does not characterize values returned by function calls (see 6.8.6.4, F.6).

The presence or absence of subnormal numbers is characterized by the implementation-defined
values of FLT_HAS_SUBNORM, DBL_HAS_SUBNORM, and LDBL_HAS_SUBNORM:

2)The evaluation method determines evaluation formats of expressions involving all floating types, not just real
types. For example, if FLT_EVAL_METHOD is 1, then the product of two float _Complex operands is represented in the
double _Complex format, and its parts are evaluated to double.

§524.22 Environment 23



15

16

17

18

19

20

21

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

—1  indeterminable?)
0 absent (type does not support subnormal numbers)?®

1 present (type does support subnormal numbers)

The signaling NaN macros

FLT_SNAN
DBL_SNAN
LDBL_SNAN

each is defined if and only if the respective type contains signaling NaNs. They expand to a constant
expression of the respective type representing a signaling NaN. If an optional unary + or - operator
followed by a signaling NaN macro is used as the initializer for initializing an object of the same
type that has static or thread-local storage duration, the object is initialized with a signaling NaN
value.

The decimal signaling NaN macros

D32_SNAN
D64_SNAN
D128_SNAN

each expands to a constant expression of the respective decimal floating type representing a signaling
NaN. If a signaling NaN macro is used for initializing an object of the same type that has static or
thread-local storage duration, the object is initialized with a signaling NaN value.

The macro

| INFINITY

expands to a constant expression of type float representing positive or unsigned infinity, if available;
else to a positive constant of type float that overflows at translation time. 2

The macro

\ DEC_INFINITY

expands to a constant expression of type _Decimal32 representing positive infinity.

The macro

\ NAN

is defined if and only if the implementation supports quiet NaNs for the float type. It expands to a
constant expression of type float representing a quiet NaN.

The macro

\ DEC_NAN

expands to a constant expression of type _Decimal32 representing a quiet NalN.

The values given in the following list shall be replaced by constant expressions with implementa-
tion-defined values that are greater or equal in magnitude (absolute value) to those shown, with the
same sign:

?7)Characterization as indeterminable is intended if floating-point operations do not consistently interpret subnormal
representations as zero, nor as nonzero.

28)Characterization as absent is intended if no floating-point operations produce subnormal results from non-subnormal
inputs, even if the type format includes representations of subnormal numbers.

2)In this case, using INFINITY will violate the constraint in 6.4.4 and thus require a diagnostic.

24 Environment §524.22



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

— radix of exponent representation, b

[
| FLT_RADIX 2
L

— number of base-FLT_RADIX digits in the floating-point significand, p

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

— number of decimal digits, n, such that any floating-point number with p radix b digits can be
rounded to a floating-point number with n decimal digits and back again without change to

the value,
plogyy b if bis a power of 10
[14 plog,,b] otherwise
FLT_DECIMAL_DIG 6
DBL_DECIMAL_DIG 10
LDBL_DECIMAL_DIG 10

— number of decimal digits, n, such that any floating-point number in the widest of the supported
floating types and the supported IEC 60559 encodings with py,.x radix b digits can be rounded
to a floating-point number with n decimal digits and back again without change to the value,

Dmax 10810 b if b is a power of 10
[1+4 pmax loggb] otherwise

[
| DECIMAL_DIG 10
L

This is an obsolescent feature, see 7.31.8.

— number of decimal digits, ¢, such that any floating-point number with ¢ decimal digits can be
rounded into a floating-point number with p radix b digits and back again without change to
the ¢ decimal digits,

plogigb if b is a power of 10
|(p—1)log,,b] otherwise
FLT_DIG 6
DBL_DIG 10
LDBL_DIG 10

— minimum negative integer such that FLT_RADIX raised to one less than that power is a normal-
ized floating-point number, iy,

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

— minimum negative integer such that 10 raised to that power is in the range of normalized
floating-point numbers, [log;ob®i 1|

FLT_MIN_10_EXP -37
DBL_MIN_10_EXP -37
LDBL_MIN_10_EXP -37

§524.22 Environment 25



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

— maximum integer such that FLT_RADIX raised to one less than that power is a representable
finite floating-point number, epax

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

— maximum integer such that 10 raised to that power is in the range of representable finite
floating-point numbers, [log1o((1 — b™P)bcmex) |

FLT_MAX_10_EXP +37
DBL_MAX_10_EXP +37
LDBL_MAX_10_EXP +37

22 The values given in the following list shall be replaced by constant expressions with implementa-
tion-defined values that are greater than or equal to those shown:

— maximum representable finite floating-point number; if that number is normalized, its value is

(]_ — b_p)bemax
| FLT_MAX 1E437
| DBL_MAX 1E+37

| LDBL_MAX 1E+37
L

— maximum normalized floating-point number, (1 — b=7)pcmax

FLT_NORM_MAX 1E+37
DBL_NORM_MAX 1E+37
LDBL_NORM_MAX 1E+37

23 The values given in the following list shall be replaced by constant expressions with implementa-
tion-defined (positive) values that are less than or equal to those shown:

— the difference between 1 and the least normalized value greater than 1 that is representable in
the given floating-point type, b~

[
| FLT_EPSILON 1E-5
| DBL_EPSILON 1E-9

| LDBL_EPSILON 1E-9
L

— minimum normalized positive floating-point number, p¢min—1

[
| FLT_MIN 1E-37
| DBL_MIN 1E-37
| LDBL_MIN 1E-37
L
— minimum positive floating-point number®”
[
| FLT_TRUE_MIN 1E-37
| DBL_TRUE_MIN 1E-37

‘ LDBL_TRUE_MIN 1E-37
L

30)If the presence or absence of subnormal numbers is indeterminable, then the value is intended to be a positive number
no greater than the minimum normalized positive number for the type.

26 Environment §524.22



N2573

Recommended practice

working draft — October 1, 2020

ISO/IEC 9899:202x (E)

24 Conversion between real floating type and decimal character sequence with at most T_DECIMAL_DIG
digits should be correctly rounded, where T is the macro prefix for the type. This assures conversion
from real floating type to decimal character sequence with T_DECIMAL_DIG digits and back, using
to-nearest rounding, is the identity function.

25 EXAMPLE 1 The following describes an artificial floating-point representation that meets the minimum requirements of this
document, and the appropriate values in a <float.h>header for type float:

6
z=s16° 3 frl67%, 31 <e< 432
k=

1

FLT_RADIX
FLT_MANT_DIG
FLT_EPSILON
FLT_DECIMAL_DIG
FLT_DIG
FLT_MIN_EXP
FLT_MIN
FLT_MIN_10_EXP
FLT_MAX_EXP
FLT_MAX
FLT_MAX_10_EXP

16

6
9.53674316E-07F
9

6

-31
2.93873588E-39F
-38

+32
3.40282347E+38F
+38

26 EXAMPLE 2 The following describes floating-point representations that also meet the requirements for single-precision and
double-precision numbers in IEC 60559,3) and the appropriate values in a <float . h> header for types float and double:

Ty = s2¢ % fe27k, —125<e< 4128
k=1
53
xg=82° Y fr27F, —1021 <e < 41024

k=1
FLT_IS_IEC_60559 2
FLT_RADIX 2
FLT_MANT_DIG 24
FLT_EPSILON 1.19209290E-07F
FLT_EPSILON O0X1P-23F
FLT_DECIMAL_DIG 9
FLT_DIG 6
FLT_MIN_EXP -125
FLT_MIN 1.17549435E-38F
FLT_MIN OX1P-126F
FLT_TRUE_MIN 1.40129846E-45F
FLT_TRUE_MIN 0X1P-149F
FLT_HAS_SUBNORM 1
FLT_MIN_10_EXP -37
FLT_MAX_EXP +128
FLT_MAX 3.40282347E+38F
FLT_MAX OX1.fffffeP127F
FLT_MAX_10_EXP +38
DBL_MANT_DIG 53
DBL_IS_IEC_60559 2

//
//

//
//
//
//

//
//

DBL_EPSILON  2.2204460492503131E-16 //
DBL_EPSILON 0X1P-52 //
DBL_DECIMAL_DIG 17
DBL_DIG 15
DBL_MIN_EXP -1021
DBL_MIN 2.2250738585072014E-308 //
DBL_MIN 0X1P-1022 //

decimal constant
hex constant

decimal constant
hex constant
decimal constant
hex constant

decimal constant
hex constant

decimal constant
hex constant

decimal constant
hex constant

3DThe floating-point model in that standard sums powers of b from zero, so the values of the exponent limits are one less

than shown here.

§5.2422

Environment

27




ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

DBL_TRUE_MIN 4.9406564584124654E-324 // decimal constant
DBL_TRUE_MIN 0X1P-1074 // hex constant
DBL_HAS_SUBNORM 1

DBL_MIN_10_EXP -307

DBL_MAX_EXP +1024

DBL_MAX 1.7976931348623157E+308 // decimal constant
DBL_MAX OX1.fffffffffffffP1023 // hex constant
DBL_MAX_10_EXP +308

Forward references: conditional inclusion (6.10.1), predefined macro names (6.10.8), complex arith-
metic <complex.h> (7.3), extended multibyte and wide character utilities <wchar.h> (7.29), floating-
point environment <fenv.h> (7.6), general utilities <stdlib.h> (7.22), input/output <stdio.h>
(7.21), mathematics <math.h> (7.12), IEC 60559 floating-point arithmetic (Annex F), IEC 60559-
compatible complex arithmetic (Annex G).

5.2.4.2.3 Characteristics of decimal floating types in <float.h>

This subclause specifies macros in <float.h> that provide characteristics of decimal floating types
in terms of the model presented in 5.2.4.2.2. An implementation that does not support decimal
floating types shall not provide these macros. The prefixes DEC32_, DEC64_, and DEC128_ denote
the types _Decimal32,_Decimal64, and _Decimall28 respectively.

DEC_EVAL_METHOD is the decimal floating-point analog of FLT_EVAL_METHOD (5.2.4.2.2). Its
implementation-defined value characterizes the use of evaluation formats for decimal floating

types:
-1 indeterminable;
0 evaluate all operations and constants just to the range and precision of the type;

1 evaluate operations and constants of type _Decimal32 and _Decimal64 to the range and
precision of the _Decimal64 type, evaluate _Decimall28 operations and constants to the
range and precision of the _Decimall28 type;

2 evaluate all operations and constants to the range and precision of the _Decimall28 type.

The integer values given in the following lists shall be replaced by constant expressions suitable for
use in #if preprocessing directives:

— radix of exponent representation, b(=10)

For the standard floating types, this value is implementation-defined and is specified by the
macro FLT_RADIX. For the decimal floating types there is no corresponding macro, since the
value 10 is an inherent property of the types. Wherever FLT_RADIX appears in a description
of a function that has versions that operate on decimal floating types, it is noted that for the
decimal floating-point versions the value used is implicitly 10, rather than FLT_RADIX.

— number of digits in the coefficient

DEC32_MANT_DIG 7
DEC64_MANT_DIG 16
DEC128_MANT_DIG 34

— minimum exponent

[
| DEC32_MIN_EXP -94
| DEC64_MIN_EXP -382

| DEC128_MIN_EXP -6142
L

— maximum exponent

28 Environment §524.23



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

DEC32_MAX_EXP 97
DEC64_MAX_EXP 385
DEC128_MAX_EXP 6145

— maximum representable finite decimal floating-point number (there are 6, 15 and 33 9’s after
the decimal points respectively)

DEC32_MAX 9.999999E96DF
DEC64_MAX 9.999999999999999E384DD
DEC128_MAX 9.999999999999999999999999999999999E6144DL

— the difference between 1 and the least value greater than 1 that is representable in the given

floating type
DEC32_EPSILON 1E-6DF
DEC64_EPSILON 1E-15DD
DEC128_EPSILON 1E-33DL

— minimum normalized positive decimal floating-point number

DEC32_MIN 1E-95DF
DEC64_MIN 1E-383DD
DEC128_MIN 1E-6143DL

— minimum positive subnormal decimal floating-point number

DEC32_TRUE_MIN 0.000001E-95DF
DEC64_TRUE_MIN 0.000000000000001E-383DD
DEC128_TRUE_MIN 0.000000000000000000000000000000001E-6143DL

For decimal floating-point arithmetic, it is often convenient to consider an alternate equivalent
model where the significand is represented with integer rather than fraction digits. With s, b, ¢, p,
and f; as defined in 5.2.4.2.2, a floating-point number z is defined by the model:

p
Tz =s-beP) Z fi - PR
k=1
With b fixed to 10, a decimal floating-point number z is thus:
P
z=5-10"7% " f - 1077F
k=1

The quantum exponent is ¢ = e — p and the coefficient is ¢ = fi fs - - - fp, which is an integer between
0 and 10~Y, inclusive. Thus, z = s - ¢ - 107 is represented by the triple of integers (s, ¢, q). The
quantum of x is 109, which is the value of a unit in the last place of the coefficient.

Quantum exponent ranges

Type —Decimal32 | _Decimal64 | _Decimall28
Maximum Quantum Exponent (¢,,q4) 90 369 6111
Minimum Quantum Exponent (¢,,in) —101 —398 —6176

For binary floating-point arithmetic following IEC 60559, representations in the model described
in 5.2.4.2.2 that have the same numerical value are indistinguishable in the arithmetic. However,

§524.23 Environment 29



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

for decimal floating-point arithmetic, representations that have the same numerical value but
different quantum exponents, e.g., (1,10, —1) representing 1.0 and (1, 100, —2) representing 1.00,
are distinguishable. To facilitate exact fixed-point calculation, operation results that are of decimal
floating type have a preferred quantum exponent, as specified in IEC 60559, which is determined
by the quantum exponents of the operands if they have decimal floating types (or by specific
rules for conversions from other types). The table below gives rules for determining preferred
quantum exponents for results of IEC 60559 operations, and for other operations specified in
this document. When exact, these operations produce a result with their preferred quantum
exponent, or as close to it as possible within the limitations of the type. When inexact, these
operations produce a result with the least possible quantum exponent. For example, the preferred
quantum exponent for addition is the minimum of the quantum exponents of the operands. Hence
(1,123, —-2) + (1,4000, —3) = (1,5230, —3) or 1.23 + 4.000 = 5.230.

The following table shows, for each operation delivering a result in decimal floating-point format,
how the preferred quantum exponents of the operands, Q(x), Q(y), etc., determine the preferred
quantum exponent of the operation result.

Preferred quantum exponents

Operation Preferred quantum exponent of result
roundeven, round, trunc, ceil, floor, | max(Q(x),0)

rint, nearbyint

nextup, nextdown, nextafter, nexttoward | least possible
remainder min(Q(x), Q(y))

fmin, fmax, fminimum, fmaximum, | Q(x) if x gives the result, Q(y) if y gives the result
fminimum_mag, fmaximum_mag,

fminimum_num, fmaximum_num,

fminimum_mag_num, fmaximum_mag_num

scalbn, scalbln Q(X)+n

ldexp Qx)+p

logb 0

+,d32add, d64add min(Q(x), Q(y))

- ,d32sub, d64sub min(Q(x), Q(y))

*, d32mul, d64mul Q(x) + Q(y)

/,d32div, d64div Qx) — Q(y)

sqrt, d32sqrt, d6é4sqrt |Q(x)/2]

fma, d32fma, d64fma min(Q(x) + Q(y), Q(z))
conversion from integer type 0

exact conversion from non-decimal floating | 0

type

inexact conversion from non-decimal floating | least possible

type

conversion between decimal floating types | Q(x)

*Cx returned by canonicalize Q(xx)

strto, westo, scanf, floating constants of | see 7.22.1.6

decimal floating type

- (x) Q(x)

fabs Q(x)

copysign Q(x)

quantize Qy)

quantum Q(x)

xencptr returned by encodedec, encodebin | Q(xxptr)

xxptr returned by decodedec, decodebin Q(xencptr)

fod min(Q(x), Q(y))

fdim min((Q(x), Q(y))ifx >y, 0ifx <y
chrt [Q0)/3]

30 Environment §524.23



N2573

working draft — October 1, 2020

ISO/IEC 9899:202x (E)

hypot min(Q(x), Q(y))

pow Ly x Q(x)]

mod f Q(value)

*iptr returned by modf max(Q(value),0)

frexp Q(value) if value = 0, —(length of coefficient of
value) otherwise

xres returned by setpayload, | 0 if pl does not represent a valid payload, not

setpayloadsig applicable otherwise (NaN returned)

getpayload 0 if *x is a NaN, unspecified otherwise

compoundn |7 x min(0, Q(x))]

pown [n x Q(z)]

powr Ly x Q(z)]

rootn |1Q(x)/n]

rsqrt —Q(z)/2]

transcendental functions 0

A function family listed in the table above indicates the functions for all decimal floating types,
where the function family is represented by the name of the functions without a suffix. For example,
ceil indicates the functions ceild32, ceild64, and ceild128.

Forward references: extended multibyte and wide character utilities <wchar.h> (7.29), floating-
point environment <fenv.h> (7.6), general utilities <stdlib.h> (7.22), input/output <stdio.h>
(7.21), mathematics <math.h> (7.12), type-generic mathematics <tgmath.h> (7.25), IEC 60559

floating-point arithmetic (Annex F).

§5.2423

Environment 31




ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

6. Language

6.1 Notation

In the syntax notation used in this clause, syntactic categories (nonterminals) are indicated by italic
type, and literal words and character set members (terminals) by bold type. A colon (:) following
a nonterminal introduces its definition. Alternative definitions are listed on separate lines, except
when prefaced by the words “one of”. An optional symbol is indicated by the subscript “opt”, so
that

{ expressionopt }
indicates an optional expression enclosed in braces.

When syntactic categories are referred to in the main text, they are not italicized and words are
separated by spaces instead of hyphens.

A summary of the language syntax is given in Annex A.

6.2 Concepts
6.2.1 Scopes of identifiers

Anidentifier can denote an object; a function; a tag or a member of a structure, union, or enumeration;
a typedef name; a label name; a macro name; or a macro parameter. The same identifier can denote
different entities at different points in the program. A member of an enumeration is called an
enumeration constant. Macro names and macro parameters are not considered further here, because
prior to the semantic phase of program translation any occurrences of macro names in the source file
are replaced by the preprocessing token sequences that constitute their macro definitions.

For each different entity that an identifier designates, the identifier is visible (i.e., can be used) only
within a region of program text called its scope. Different entities designated by the same identifier
either have different scopes, or are in different name spaces. There are four kinds of scopes: function,
file, block, and function prototype. (A function prototype is a declaration of a function that declares
the types of its parameters.)

A label name is the only kind of identifier that has function scope. It can be used (in a goto statement)
anywhere in the function in which it appears, and is declared implicitly by its syntactic appearance
(followed by a : and a statement).

Every other identifier has scope determined by the placement of its declaration (in a declarator or
type specifier). If the declarator or type specifier that declares the identifier appears outside of any
block or list of parameters, the identifier has file scope, which terminates at the end of the translation
unit. If the declarator or type specifier that declares the identifier appears inside a block or within the
list of parameter declarations in a function definition, the identifier has block scope, which terminates
at the end of the associated block. If the declarator or type specifier that declares the identifier
appears within the list of parameter declarations in a function prototype (not part of a function
definition), the identifier has function prototype scope, which terminates at the end of the function
declarator. If an identifier designates two different entities in the same name space, the scopes might
overlap. If so, the scope of one entity (the inner scope) will end strictly before the scope of the other
entity (the outer scope). Within the inner scope, the identifier designates the entity declared in the
inner scope; the entity declared in the outer scope is hidden (and not visible) within the inner scope.

Unless explicitly stated otherwise, where this document uses the term “identifier” to refer to some
entity (as opposed to the syntactic construct), it refers to the entity in the relevant name space whose
declaration is visible at the point the identifier occurs.

Two identifiers have the same scope if and only if their scopes terminate at the same point.

Structure, union, and enumeration tags have scope that begins just after the appearance of the tag in
a type specifier that declares the tag. Each enumeration constant has scope that begins just after the
appearance of its defining enumerator in an enumerator list. Any other identifier has scope that

32 Language §6.2.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

begins just after the completion of its declarator.

As a special case, a type name (which is not a declaration of an identifier) is considered to have
a scope that begins just after the place within the type name where the omitted identifier would
appear were it not omitted.

Forward references: declarations (6.7), function calls (6.5.2.2), function definitions (6.9.1), identifiers
(6.4.2), macro replacement (6.10.3), name spaces of identifiers (6.2.3), source file inclusion (6.10.2),
statements and blocks (6.8).

6.2.2 Linkages of identifiers

An identifier declared in different scopes or in the same scope more than once can be made to refer to
the same object or function by a process called linkage.*” There are three kinds of linkage: external,
internal, and none.

In the set of translation units and libraries that constitutes an entire program, each declaration of a
particular identifier with external linkage denotes the same object or function. Within one translation
unit, each declaration of an identifier with internal linkage denotes the same object or function. Each
declaration of an identifier with no linkage denotes a unique entity.

If the declaration of a file scope identifier for an object or a function contains the storage-class
specifier static, the identifier has internal linkage.>?

For an identifier declared with the storage-class specifier extern in a scope in which a prior dec-
laration of that identifier is visible,* if the prior declaration specifies internal or external linkage,
the linkage of the identifier at the later declaration is the same as the linkage specified at the prior
declaration. If no prior declaration is visible, or if the prior declaration specifies no linkage, then the
identifier has external linkage.

If the declaration of an identifier for a function has no storage-class specifier, its linkage is determined
exactly as if it were declared with the storage-class specifier extern. If the declaration of an identifier
for an object has file scope and no storage-class specifier, its linkage is external.

The following identifiers have no linkage: an identifier declared to be anything other than an object
or a function; an identifier declared to be a function parameter; a block scope identifier for an object
declared without the storage-class specifier extern.

If, within a translation unit, the same identifier appears with both internal and external linkage, the
behavior is undefined.

Forward references: declarations (6.7), expressions (6.5), external definitions (6.9), statements (6.8).

6.2.3 Name spaces of identifiers

If more than one declaration of a particular identifier is visible at any point in a translation unit, the
syntactic context disambiguates uses that refer to different entities. Thus, there are separate name
spaces for various categories of identifiers, as follows:

— label names (disambiguated by the syntax of the label declaration and use);

— the tags of structures, unions, and enumerations (disambiguated by following any® of the
keywords struct, union, or enum);

— the members of structures or unions; each structure or union has a separate name space for its
members (disambiguated by the type of the expression used to access the member via the . or
-> operator);

— standard attributes and attribute prefixes (disambiguated by the syntax of the attribute specifier
and name of the attribute token) (6.7.11);

32)There is no linkage between different identifiers.

33 A function declaration can contain the storage-class specifier static only if it is at file scope; see 6.7.1.
34) As specified in 6.2.1, the later declaration might hide the prior declaration.

%) There is only one name space for tags even though three are possible.

§6.2.3 Language 33



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

— the trailing identifier in an attribute prefixed token; each attribute prefix has a separate name
space for the implementation-defined attributes that it introduces (disambiguated by the
attribute prefix and the trailing identifier token);

— all other identifiers, called ordinary identifiers (declared in ordinary declarators or as enumera-
tion constants).

Forward references: enumeration specifiers (6.7.2.2), labeled statements (6.8.1), structure and union
specifiers (6.7.2.1), structure and union members (6.5.2.3), tags (6.7.2.3), the goto statement (6.8.6.1).

6.2.4 Storage durations of objects

An object has a storage duration that determines its lifetime. There are four storage durations: static,
thread, automatic, and allocated. Allocated storage is described in 7.22.3.

The lifetime of an object is the portion of program execution during which storage is guaranteed
to be reserved for it. An object exists, has a constant address,*® and retains its last-stored value
throughout its lifetime.?”) If an object is referred to outside of its lifetime, the behavior is undefined.
The value of a pointer becomes indeterminate when the object it points to (or just past) reaches the
end of its lifetime.

An object whose identifier is declared without the storage-class specifier _Thread_local, and either
with external or internal linkage or with the storage-class specifier static, has static storage duration.
Its lifetime is the entire execution of the program and its stored value is initialized only once, prior
to program startup.

An object whose identifier is declared with the storage-class specifier _Thread_local has thread
storage duration. Its lifetime is the entire execution of the thread for which it is created, and its
stored value is initialized when the thread is started. There is a distinct object per thread, and use of
the declared name in an expression refers to the object associated with the thread evaluating the
expression. The result of attempting to indirectly access an object with thread storage duration from
a thread other than the one with which the object is associated is implementation-defined.

An object whose identifier is declared with no linkage and without the storage-class specifier static
has automatic storage duration, as do some compound literals. The result of attempting to indirectly
access an object with automatic storage duration from a thread other than the one with which the
object is associated is implementation-defined.

For such an object that does not have a variable length array type, its lifetime extends from entry
into the block with which it is associated until execution of that block ends in any way. (Entering an
enclosed block or calling a function suspends, but does not end, execution of the current block.) If
the block is entered recursively, a new instance of the object is created each time. The initial value of
the object is indeterminate. If an initialization is specified for the object, it is performed each time
the declaration or compound literal is reached in the execution of the block; otherwise, the value
becomes indeterminate each time the declaration is reached.

For such an object that does have a variable length array type, its lifetime extends from the declaration
of the object until execution of the program leaves the scope of the declaration.®® If the scope is
entered recursively, a new instance of the object is created each time. The initial value of the object is
indeterminate.

A non-lvalue expression with structure or union type, where the structure or union contains a
member with array type (including, recursively, members of all contained structures and unions)
refers to an object with automatic storage duration and temporary lifetime.>® Its lifetime begins
when the expression is evaluated and its initial value is the value of the expression. Its lifetime ends
when the evaluation of the containing full expression ends. Any attempt to modify an object with

36)The term “constant address” means that two pointers to the object constructed at possibly different times will compare
equal. The address can be different during two different executions of the same program.

37)In the case of a volatile object, the last store need not be explicit in the program.

38)Leaving the innermost block containing the declaration, or jumping to a point in that block or an embedded block prior
to the declaration, leaves the scope of the declaration.

3)The address of such an object is taken implicitly when an array member is accessed.

34 Language §6.24



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

temporary lifetime results in undefined behavior. An object with temporary lifetime behaves as if it
were declared with the type of its value for the purposes of effective type. Such an object need not
have a unique address.

Forward references: array declarators (6.7.6.2), compound literals (6.5.2.5), declarators (6.7.6),
function calls (6.5.2.2), initialization (6.7.9), statements (6.8), effective type (6.5).

6.2.5 Types

The meaning of a value stored in an object or returned by a function is determined by the type of the
expression used to access it. (An identifier declared to be an object is the simplest such expression;
the type is specified in the declaration of the identifier.) Types are partitioned into object types (types
that describe objects) and function types (types that describe functions). At various points within a
translation unit an object type may be incomplete (lacking sufficient information to determine the
size of objects of that type) or complete (having sufficient information).*?

An object declared as type _Bool is large enough to store the values 0 and 1.

An object declared as type char is large enough to store any member of the basic execution character
set. If a member of the basic execution character set is stored in a char object, its value is guaranteed
to be nonnegative. If any other character is stored in a char object, the resulting value is implemen-
tation-defined but shall be within the range of values that can be represented in that type.

There are five standard signed integer types, designated as signed char, short int, int, long int,
and long long int. (These and other types may be designated in several additional ways, as
described in 6.7.2.) There may also be implementation-defined extended signed integer types.*V The
standard and extended signed integer types are collectively called signed integer types.*?

An object declared as type signed char occupies the same amount of storage as a “plain” char
object. A “plain” int object has the natural size suggested by the architecture of the execution
environment (large enough to contain any value in the range INT_MIN to INT_MAX as defined in the
header <limits.h>).

For each of the signed integer types, there is a corresponding (but different) unsigned integer type
(designated with the keyword unsigned) that uses the same amount of storage (including sign
information) and has the same alignment requirements. The type _Bool and the unsigned integer
types that correspond to the standard signed integer types are the standard unsigned integer types.
The unsigned integer types that correspond to the extended signed integer types are the extended
unsigned integer types. The standard and extended unsigned integer types are collectively called
unsigned integer types.*3)

The standard signed integer types and standard unsigned integer types are collectively called the
standard integer types; the extended signed integer types and extended unsigned integer types are
collectively called the extended integer types.

For any two integer types with the same signedness and different integer conversion rank (see
6.3.1.1), the range of values of the type with smaller integer conversion rank is a subrange of the
values of the other type.

The range of nonnegative values of a signed integer type is a subrange of the corresponding unsigned
integer type, and the representation of the same value in each type is the same.*¥ A computation
involving unsigned operands can never overflow, because a result that cannot be represented by the
resulting unsigned integer type is reduced modulo the number that is one greater than the largest
value that can be represented by the resulting type.

40 A type can be incomplete or complete throughout an entire translation unit, or it can change states at different points
within a translation unit.

4DImplementation-defined keywords have the form of an identifier reserved for any use as described in 7.1.3.

#2)Therefore, any statement in this document about signed integer types also applies to the extended signed integer types.

#3)Therefore, any statement in this document about unsigned integer types also applies to the extended unsigned integer
types.

“DThe same representation and alignment requirements are meant to imply interchangeability as arguments to functions,
return values from functions, and members of unions.

§6.2.5 Language 35



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

10 There are three standard floating types, designated as float, double, and long double.”> The set of
values of the type float is a subset of the set of values of the type double; the set of values of the
type double is a subset of the set of values of the type long double.

#)See “future language directions” (6.11.1).

36 Language §6.2.5



11

12

13

14

15

16

17

18

19

20

21

22

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

There are three decimal floating types, designated as _Decimal32, _Decimal64, and _Decimall28.
Respectively, they have the IEC 60559 formats: decimal32,%? decimal64, and decimal128. Decimal
floating types are real floating types.

The standard floating types and the decimal floating types are collectively called the real floating
types.

There are three complex types, designated as float _Complex, double _Complex, and long double
_Complex.?”) (Complex types are a conditional feature that implementations need not support; see
6.10.8.3.) The real floating and complex types are collectively called the floating types.

For each floating type there is a corresponding real type, which is always a real floating type. For real
floating types, it is the same type. For complex types, it is the type given by deleting the keyword
—Complex from the type name.

Each complex type has the same representation and alignment requirements as an array type
containing exactly two elements of the corresponding real type; the first element is equal to the real
part, and the second element to the imaginary part, of the complex number.

The type char, the signed and unsigned integer types, and the floating types are collectively called
the basic types. The basic types are complete object types. Even if the implementation defines two or
more basic types to have the same representation, they are nevertheless different types.*®)

The three types char, signed char, and unsigned char are collectively called the character types.
The implementation shall define char to have the same range, representation, and behavior as either
signed char or unsigned char.*

An enumeration comprises a set of named integer constant values. Each distinct enumeration
constitutes a different enumerated type.

The type char, the signed and unsigned integer types, and the enumerated types are collectively
called integer types. The integer and real floating types are collectively called real types.

Integer and floating types are collectively called arithmetic types.>” Each arithmetic type belongs to
one type domain: the real type domain comprises the real types, the complex type domain comprises the
complex types.

The void type comprises an empty set of values; it is an incomplete object type that cannot be
completed.

Any number of derived types can be constructed from the object and function types, as follows:

— An array type describes a contiguously allocated nonempty set of objects with a particular
member object type, called the element type. The element type shall be complete whenever the
array type is specified. Array types are characterized by their element type and by the number
of elements in the array. An array type is said to be derived from its element type, and if its
element type is T, the array type is sometimes called “array of T”. The construction of an array
type from an element type is called “array type derivation”.

— A structure type describes a sequentially allocated nonempty set of member objects (and, in
certain circumstances, an incomplete array), each of which has an optionally specified name
and possibly distinct type.

— A union type describes an overlapping nonempty set of member objects, each of which has an
optionally specified name and possibly distinct type.

40IEC 60559 specifies decimal32 as a data-interchange format that does not require arithmetic support; however,
_Decimal32 is a fully supported arithmetic type.

47) A specification for imaginary types is in Annex G.

48) An implementation can define new keywords that provide alternative ways to designate a basic (or any other) type; this
does not violate the requirement that all basic types be different. Implementation-defined keywords have the form of an
identifier reserved for any use as described in 7.1.3.

49) CHAR_MIN, defined in <limits.h>, will have one of the values 0 or SCHAR_MIN, and this can be used to distinguish the
two options. Irrespective of the choice made, char is a separate type from the other two and is not compatible with either.

50 Annex H documents the extent to which the C language supports the ISO/IEC 10967-1 standard for language-
independent arithmetic (LIA-1).

§6.2.5 Language 37



23

24

25
26

27

28

29

30

31

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

— A function type describes a function with specified return type. A function type is characterized
by its return type and the number and types of its parameters. A function type is said to
be derived from its return type, and if its return type is T, the function type is sometimes
called “function returning T”. The construction of a function type from a return type is called
“function type derivation”.

— A pointer type may be derived from a function type or an object type, called the referenced type. A
pointer type describes an object whose value provides a reference to an entity of the referenced
type. A pointer type derived from the referenced type T is sometimes called “pointer to T”.
The construction of a pointer type from a referenced type is called “pointer type derivation”.
A pointer type is a complete object type.

— An atomic type describes the type designated by the construct _Atomic (type-name). (Atomic
types are a conditional feature that implementations need not support; see 6.10.8.3.)

These methods of constructing derived types can be applied recursively.

Arithmetic types and pointer types are collectively called scalar types. Array and structure types are
collectively called aggregate types.>)

An array type of unknown size is an incomplete type. It is completed, for an identifier of that type,
by specifying the size in a later declaration (with internal or external linkage). A structure or union
type of unknown content (as described in 6.7.2.3) is an incomplete type. It is completed, for all
declarations of that type, by declaring the same structure or union tag with its defining content later
in the same scope.

A type has known constant size if the type is not incomplete and is not a variable length array type.

Array, function, and pointer types are collectively called derived declarator types. A declarator type
derivation from a type T is the construction of a derived declarator type from T by the application of
an array-type, a function-type, or a pointer-type derivation to T.

A type is characterized by its type category, which is either the outermost derivation of a derived
type (as noted above in the construction of derived types), or the type itself if the type consists of no
derived types.

Any type so far mentioned is an unqualified type. Each unqualified type has several qualified versions
of its type,® corresponding to the combinations of one, two, or all three of the const, volatile,
and restrict qualifiers. The qualified or unqualified versions of a type are distinct types that
belong to the same type category and have the same representation and alignment requirements.>®
A derived type is not qualified by the qualifiers (if any) of the type from which it is derived.

Further, there is the _Atomic qualifier. The presence of the _Atomic qualifier designates an atomic
type. The size, representation, and alignment of an atomic type need not be the same as those of
the corresponding unqualified type. Therefore, this document explicitly uses the phrase “atomic,
qualified, or unqualified type” whenever the atomic version of a type is permitted along with the
other qualified versions of a type. The phrase “qualified or unqualified type”, without specific
mention of atomic, does not include the atomic types.

A pointer to void shall have the same representation and alignment requirements as a pointer to a
character type.>® Similarly, pointers to qualified or unqualified versions of compatible types shall
have the same representation and alignment requirements. All pointers to structure types shall have
the same representation and alignment requirements as each other. All pointers to union types shall
have the same representation and alignment requirements as each other. Pointers to other types
need not have the same representation or alignment requirements.

EXAMPLE 1 The type designated as “float *” has type “pointer to float”. Its type category is pointer, not a floating type.

The const-qualified version of this type is designated as “float * const” whereas the type designated as “const float *”
is not a qualified type — its type is “pointer to const-qualified float” and is a pointer to a qualified type.

5DNote that aggregate type does not include union type because an object with union type can only contain one member at
a time.

52)See 6.7.3 regarding qualified array and function types.

53)The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,
return values from functions, and members of unions.

38 Language §6.2.5



32

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

EXAMPLE 2 The type designated as “struct tag (*[5]) (float)” has type “array of pointer to function returning
struct tag”. The array has length five and the function has a single parameter of type float. Its type category is array.

Forward references: compatible type and composite type (6.2.7), declarations (6.7).

6.2.6 Representations of types

6.2.6.1 General
The representations of all types are unspecified except as stated in this subclause.

Except for bit-fields, objects are composed of contiguous sequences of one or more bytes, the number,
order, and encoding of which are either explicitly specified or implementation-defined.

Values stored in unsigned bit-fields and objects of type unsigned char shall be represented using a
pure binary notation.>

Values stored in non-bit-field objects of any other object type consist of n x CHAR_BIT bits, where
n is the size of an object of that type, in bytes. The value may be copied into an object of type
unsigned char [n] (e.g., by memcpy); the resulting set of bytes is called the object representation of
the value. Values stored in bit-fields consist of m bits, where m is the size specified for the bit-field.
The object representation is the set of m bits the bit-field comprises in the addressable storage unit
holding it. Two values (other than NaNs) with the same object representation compare equal, but
values that compare equal may have different object representations.

Certain object representations need not represent a value of the object type. If the stored value of an
object has such a representation and is read by an lvalue expression that does not have character
type, the behavior is undefined. If such a representation is produced by a side effect that modifies
all or any part of the object by an lvalue expression that does not have character type, the behavior
is undefined.® Such a representation is called a trap representation.

When a value is stored in an object of structure or union type, including in a member object, the
bytes of the object representation that correspond to any padding bytes take unspecified values.>®
The value of a structure or union object is never a trap representation, even though the value of a
member of the structure or union object may be a trap representation.

When a value is stored in a member of an object of union type, the bytes of the object representation
that do not correspond to that member but do correspond to other members take unspecified values.

Where an operator is applied to a value that has more than one object representation, which object
representation is used shall not affect the value of the result.’”) Where a value is stored in an object
using a type that has more than one object representation for that value, it is unspecified which
representation is used, but a trap representation shall not be generated.

Loads and stores of objects with atomic types are done with memory_order_seq_cst semantics.

Forward references: declarations (6.7), expressions (6.5), Ivalues, arrays, and function designators
(6.3.2.1), order and consistency (7.17.3).

6.2.6.2 Integer types

For unsigned integer types the bits of the object representation shall be divided into two groups:
value bits and padding bits. If there are N value bits, each bit shall represent a different power of
2 between 1 and 2V ~!, so that objects of that type shall be capable of representing values from 0
to 2V — 1 using a pure binary representation; this shall be known as the value representation. The
values of any padding bits are unspecified. The number of value bits IV is called the width of the

54 A positional representation for integers that uses the binary digits 0 and 1, in which the values represented by successive
bits are additive, begin with 1, and are multiplied by successive integral powers of 2, except perhaps the bit with the highest
position. (Adapted from the American National Dictionary for Information Processing Systems.) A byte contains CHAR_BIT bits,
and the values of type unsigned char range from 0 to 2¢HARBIT _ 1,

5)Thus, an automatic variable can be initialized to a trap representation without causing undefined behavior, but the value
of the variable cannot be used until a proper value is stored in it.

%0)Thus, for example, structure assignment need not copy any padding bits.

571t is possible for objects x and y with the same effective type T to have the same value when they are accessed as objects
of type T, but to have different values in other contexts. In particular, if == is defined for type T, then x == y does not imply
that memcmp (&x, &y, sizeof (T))== 0. Furthermore, x == y does not necessarily imply that x and y have the same value;
other operations on values of type T might distinguish between them.

§6.2.6.2 Language 39



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

unsigned integer type. There need not be any padding bits; unsigned char shall not have any
padding bits.

For signed integer types, the bits of the object representation shall be divided into three groups:
value bits, padding bits, and the sign bit. If the corresponding unsigned type has width N, the
signed type uses the same number of IV bits, its width, as value bits and sign bit. N — 1 are value
bits and the remaining bit is the sign bit. Each bit that is a value bit shall have the same value as the
same bit in the object representation of the corresponding unsigned type. If the sign bit is zero, it
shall not affect the resulting value. If the sign bit is one, it has value —(2¥~1). There need not be any
padding bits; signed char shall not have any padding bits.

The values of any padding bits are unspecified. A valid (non-trap) object representation of a signed
integer type where the sign bit is zero is a valid object representation of the corresponding unsigned
type, and shall represent the same value. For any integer type, the object representation where all
the bits are zero shall be a representation of the value zero in that type.

The precision of an integer type is the number of value bits.

NOTE 1 Some combinations of padding bits might generate trap representations, for example, if one padding bit is a parity
bit. Regardless, no arithmetic operation on valid values can generate a trap representation other than as part of an exceptional
condition such as an overflow, and this cannot occur with unsigned types. All other combinations of padding bits are
alternative object representations of the value specified by the value bits.

NOTE 2 The sign representation defined in this document is called fwo’s complement. Previous revisions of this document
additionally allowed other sign representations.

NOTE 3 For unsigned integer types the width and precision are the same, while for signed integer types the width is one
greater than the precision.

6.2.7 Compatible type and composite type

Two types have compatible type if their types are the same. Additional rules for determining whether
two types are compatible are described in 6.7.2 for type specifiers, in 6.7.3 for type qualifiers, and in
6.7.6 for declarators.®® Moreover, two structure, union, or enumerated types declared in separate
translation units are compatible if their tags and members satisfy the following requirements: If
one is declared with a tag, the other shall be declared with the same tag. If both are completed
anywhere within their respective translation units, then the following additional requirements
apply: there shall be a one-to-one correspondence between their members such that each pair of
corresponding members are declared with compatible types; if one member of the pair is declared
with an alignment specifier, the other is declared with an equivalent alignment specifier; and if
one member of the pair is declared with a name, the other is declared with the same name. For
two structures, corresponding members shall be declared in the same order. For two structures or
unions, corresponding bit-fields shall have the same widths. For two enumerations, corresponding
members shall have the same values.

All declarations that refer to the same object or function shall have compatible type; otherwise, the
behavior is undefined.

A composite type can be constructed from two types that are compatible; it is a type that is compatible
with both of the two types and satisfies the following conditions:

— If both types are array types, the following rules are applied:

o If one type is an array of known constant size, the composite type is an array of that size.

o Otherwise, if one type is a variable length array whose size is specified by an expression
that is not evaluated, the behavior is undefined.

o Otherwise, if one type is a variable length array whose size is specified, the composite
type is a variable length array of that size.

o Otherwise, if one type is a variable length array of unspecified size, the composite type is
a variable length array of unspecified size.

o Otherwise, both types are arrays of unknown size and the composite type is an array of
unknown size.

%8)Two types need not be identical to be compatible.

40 Language §6.2.7



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

The element type of the composite type is the composite type of the two element types.

— If only one type is a function type with a parameter type list (a function prototype), the
composite type is a function prototype with the parameter type list.

— If both types are function types with parameter type lists, the type of each parameter in the
composite parameter type list is the composite type of the corresponding parameters.

These rules apply recursively to the types from which the two types are derived.

For an identifier with internal or external linkage declared in a scope in which a prior declaration of
that identifier is visible,® if the prior declaration specifies internal or external linkage, the type of
the identifier at the later declaration becomes the composite type.

Forward references: array declarators (6.7.6.2).

EXAMPLE Given the following two file scope declarations:

int f(int (*)(), double (*)[31);
int f(int (x)(char *), double (*)[]);

The resulting composite type for the function is:

| int f(int (%) (char %), double (x)[3]);

6.2.8 Alignment of objects

Complete object types have alignment requirements which place restrictions on the addresses at
which objects of that type may be allocated. An alignment is an implementation-defined integer
value representing the number of bytes between successive addresses at which a given object can be
allocated. An object type imposes an alignment requirement on every object of that type: stricter
alignment can be requested using the _Alignas keyword.

A fundamental alignment is a valid alignment less than or equal to _Alignof (max_align_t). Fun-
damental alignments shall be supported by the implementation for objects of all storage durations.
The alignment requirements of the following types shall be fundamental alignments:

— all atomic, qualified, or unqualified basic types;

— all atomic, qualified, or unqualified enumerated types;

— all atomic, qualified, or unqualified pointer types;

— all array types whose element type has a fundamental alignment requirement;
— all types specified in Clause 7 as complete object types;

— all structure or union types all of whose elements have types with fundamental alignment
requirements and none of whose elements have an alignment specifier specifying an alignment
that is not a fundamental alignment.

An extended alignment is represented by an alignment greater than _Alignof (max_align_t). Itis
implementation-defined whether any extended alignments are supported and the storage durations
for which they are supported. A type having an extended alignment requirement is an over-aligned

type.®0
Alignments are represented as values of the type size_t. Valid alignments include only fundamental

alignments, plus an additional implementation-defined set of values, which may be empty. Every
valid alignment value shall be a nonnegative integral power of two.

59 As specified in 6.2.1, the later declaration might hide the prior declaration.
®0)Every over-aligned type is, or contains, a structure or union type with a member to which an extended alignment has
been applied.

§6.2.8 Language 41



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

5  Alignments have an order from weaker to stronger or stricter alignments. Stricter alignments have
larger alignment values. An address that satisfies an alignment requirement also satisfies any weaker
valid alignment requirement.

6  The alignment requirement of a complete type can be queried using an _Alignof expression. The
types char, signed char, and unsigned char shall have the weakest alignment requirement.

7 Comparing alignments is meaningful and provides the obvious results:

— Two alignments are equal when their numeric values are equal.
— Two alignments are different when their numeric values are not equal.

— When an alignment is larger than another it represents a stricter alignment.

6.3 Conversions

1 Several operators convert operand values from one type to another automatically. This subclause
specifies the result required from such an implicit conversion, as well as those that result from a cast
operation (an explicit conversion). The list in 6.3.1.8 summarizes the conversions performed by most
ordinary operators; it is supplemented as required by the discussion of each operator in 6.5.

2 Unless explicitly stated otherwise, conversion of an operand value to a compatible type causes no
change to the value or the representation.

Forward references: cast operators (6.5.4).

6.3.1 Arithmetic operands

6.3.1.1 Boolean, characters, and integers
1 Every integer type has an integer conversion rank defined as follows:

— No two signed integer types shall have the same rank, even if they have the same representa-
tion.

— The rank of a signed integer type shall be greater than the rank of any signed integer type with
less precision.

— The rank of long long int shall be greater than the rank of long int, which shall be greater
than the rank of int, which shall be greater than the rank of short int, which shall be greater
than the rank of signed char.

— The rank of any unsigned integer type shall equal the rank of the corresponding signed integer
type, if any.

— The rank of any standard integer type shall be greater than the rank of any extended integer
type with the same width.

— The rank of char shall equal the rank of signed char and unsigned char.
— The rank of _Bool shall be less than the rank of all other standard integer types.

— The rank of any enumerated type shall equal the rank of the compatible integer type (see
6.7.2.2).

— The rank of any extended signed integer type relative to another extended signed integer
type with the same precision is implementation-defined, but still subject to the other rules for
determining the integer conversion rank.

— For all integer types T1, T2, and T3, if T1 has greater rank than T2 and T2 has greater rank than
T3, then T1 has greater rank than T3.

2 The following may be used in an expression wherever an int or unsigned int may be used:

42 Language §6.3.1.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

— An object or expression with an integer type (other than int or unsigned int) whose integer
conversion rank is less than or equal to the rank of int and unsigned int.

— A bit-field of type _Bool, int, signed int, or unsigned int.

If an int can represent all values of the original type (as restricted by the width, for a bit-field), the
value is converted to an int; otherwise, it is converted to an unsigned int. These are called the
integer promotions.®V  All other types are unchanged by the integer promotions.

The integer promotions preserve value including sign. As discussed earlier, whether a “plain” char
can hold negative values is implementation-defined.

Forward references: enumeration specifiers (6.7.2.2), structure and union specifiers (6.7.2.1).

6.3.1.2 Boolean type

When any scalar value is converted to _Bool, the result is 0 if the value compares equal to 0;
otherwise, the result is 1.6?

6.3.1.3 Signed and unsigned integers

When a value with integer type is converted to another integer type other than _Bool, if the value
can be represented by the new type, it is unchanged.

Otherwise, if the new type is unsigned, the value is converted by repeatedly adding or subtracting
one more than the maximum value that can be represented in the new type until the value is in the
range of the new type.®®

Otherwise, the new type is signed and the value cannot be represented in it; either the result is
implementation-defined or an implementation-defined signal is raised.

6.3.1.4 Real floating and integer

When a finite value of standard floating type is converted to an integer type other than _Bool, the
fractional part is discarded (i.e., the value is truncated toward zero). If the value of the integral part
cannot be represented by the integer type, the behavior is undefined.®¥

When a finite value of decimal floating type is converted to an integer type other than _Bool, the
fractional part is discarded (i.e., the value is truncated toward zero). If the value of the integral part
cannot be represented by the integer type, the “invalid” floating-point exception shall be raised and
the result of the conversion is unspecified.

When a value of integer type is converted to a standard floating type, if the value being converted
can be represented exactly in the new type, it is unchanged. If the value being converted is in the
range of values that can be represented but cannot be represented exactly, the result is either the
nearest higher or nearest lower representable value, chosen in an implementation-defined manner.
If the value being converted is outside the range of values that can be represented, the behavior is
undefined. Results of some implicit conversions may be represented in greater range and precision
than that required by the new type (see 6.3.1.8 and 6.8.6.4).

When a value of integer type is converted to a decimal floating type, if the value being converted
can be represented exactly in the new type, it is unchanged. If the value being converted cannot
be represented exactly, the result shall be correctly rounded with exceptions raised as specified in
IEC 60559.

®DThe integer promotions are applied only: as part of the usual arithmetic conversions, to certain argument expressions, to
the operands of the unary+,- , and ~ operators, and to both operands of the shift operators, as specified by their respective
subclauses.

62)NaNs do not compare equal to 0 and thus convert to 1.

63)The rules describe arithmetic on the mathematical value, not the value of a given type of expression.

69 The remaindering operation performed when a value of integer type is converted to unsigned type need not be
performed when a value of real floating type is converted to unsigned type. Thus, the range of portable real floating values is
(=1, Utype_MAX + 1).

§63.14 Language 43



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

6.3.1.5 Real floating types

When a value of real floating type is converted to a real floating type, if the value being converted
can be represented exactly in the new type, it is unchanged.

When a value of real floating type is converted to a standard floating type, if the value being
converted is in the range of values that can be represented but cannot be represented exactly, the
result is either the nearest higher or nearest lower representable value, chosen in an implementation-
defined manner. If the value being converted is outside the range of values that can be represented,
the behavior is undefined.

When a value of real floating type is converted to a decimal floating type, if the value being converted
cannot be represented exactly, the result is correctly rounded with exceptions raised as specified in
IEC 60559.

Results of some implicit conversions may be represented in greater range and precision than that
required by the new type (see 6.3.1.8 and 6.8.6.4).

6.3.1.6 Complex types

When a value of complex type is converted to another complex type, both the real and imaginary
parts follow the conversion rules for the corresponding real types.

6.3.1.7 Real and complex

When a value of real type is converted to a complex type, the real part of the complex result value is
determined by the rules of conversion to the corresponding real type and the imaginary part of the
complex result value is a positive zero or an unsigned zero.

When a value of complex type is converted to a real type other than _Bool,% the imaginary part of
the complex value is discarded and the value of the real part is converted according to the conversion
rules for the corresponding real type.

6.3.1.8 Usual arithmetic conversions

Many operators that expect operands of arithmetic type cause conversions and yield result types in
a similar way. The purpose is to determine a common real type for the operands and result. For the
specified operands, each operand is converted, without change of type domain, to a type whose
corresponding real type is the common real type. Unless explicitly stated otherwise, the common
real type is also the corresponding real type of the result, whose type domain is the type domain of
the operands if they are the same, and complex otherwise. This pattern is called the usual arithmetic
conversions:

If one operand has decimal floating type, the other operand shall not have standard floating,
Complex, or imaginary type.

First, if the type of either operand is _Decimall28, the other operand is converted to
—Decimall28.

Otherwise, if the type of either operand is _Decimal64, the other operand is converted to
—Decimalé64.

Otherwise, if the type of either operand is _Decimal32, the other operand is converted to
—Decimal32.

Otherwise, if the corresponding real type of either operand is long double, the other operand
is converted, without change of type domain, to a type whose corresponding real type is
long double.

Otherwise, if the corresponding real type of either operand is double, the other operand is
converted, without change of type domain, to a type whose corresponding real type is double.

5)See 6.3.1.2.

44 Language §6.3.1.8



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Otherwise, if the corresponding real type of either operand is float, the other operand is
converted, without change of type domain, to a type whose corresponding real type is float.®®

Otherwise, the integer promotions are performed on both operands. Then the following rules
are applied to the promoted operands:

If both operands have the same type, then no further conversion is needed.

Otherwise, if both operands have signed integer types or both have unsigned integer
types, the operand with the type of lesser integer conversion rank is converted to the type
of the operand with greater rank.

Otherwise, if the operand that has unsigned integer type has rank greater or equal to
the rank of the type of the other operand, then the operand with signed integer type is
converted to the type of the operand with unsigned integer type.

Otherwise, if the type of the operand with signed integer type can represent all of the
values of the type of the operand with unsigned integer type, then the operand with
unsigned integer type is converted to the type of the operand with signed integer type.

Otherwise, both operands are converted to the unsigned integer type corresponding to
the type of the operand with signed integer type.

The values of floating operands and of the results of floating expressions may be represented in
greater range and precision than that required by the type; the types are not changed thereby.
See 5.2.4.2.2 regarding evaluation formats.

6.3.2 Other operands

6.3.2.1 Lvalues, arrays, and function designators

An [value is an expression (with an object type other than void) that potentially designates an
object;*”) if an Ivalue does not designate an object when it is evaluated, the behavior is undefined.
When an object is said to have a particular type, the type is specified by the lvalue used to designate
the object. A modifiable lvalue is an lvalue that does not have array type, does not have an incomplete
type, does not have a const-qualified type, and if it is a structure or union, does not have any
member (including, recursively, any member or element of all contained aggregates or unions) with
a const-qualified type.

Except when it is the operand of the sizeof operator, the unary & operator, the ++ operator, the- -
operator, or the left operand of the . operator or an assignment operator, an Ivalue that does not
have array type is converted to the value stored in the designated object (and is no longer an Ivalue);
this is called lvalue conversion. If the Ivalue has qualified type, the value has the unqualified version
of the type of the lvalue; additionally, if the Ivalue has atomic type, the value has the non-atomic
version of the type of the lvalue; otherwise, the value has the type of the lvalue. If the Ivalue has an
incomplete type and does not have array type, the behavior is undefined. If the Ivalue designates an
object of automatic storage duration that could have been declared with the register storage class
(never had its address taken), and that object is uninitialized (not declared with an initializer and no
assignment to it has been performed prior to use), the behavior is undefined.

Except when it is the operand of the sizeof operator, or the unary & operator, or is a string literal
used to initialize an array, an expression that has type “array of type” is converted to an expression
with type “pointer to type” that points to the initial element of the array object and is not an Ivalue.
If the array object has register storage class, the behavior is undefined.

A function designator is an expression that has function type. Except when it is the operand of the

%)For example, addition of a double _Complex and a float entails just the conversion of the float operand to double
(and yields a double _Complex result).

7)The name “Ivalue” comes originally from the assignment expression E1 = E2, in which the left operand E1 is required to
be a (modifiable) Ivalue. It is perhaps better considered as representing an object “locator value”. What is sometimes called
“rvalue” is in this document described as the “value of an expression”.

An obvious example of an lvalue is an identifier of an object. As a further example, if E is a unary expression that is a
pointer to an object, *E is an Ivalue that designates the object to which E points.

§63.2.1 Language 45



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

sizeof operator,®® or the unary & operator, a function designator with type “function returning
type” is converted to an expression that has type “pointer to function returning type”.

Forward references: address and indirection operators (6.5.3.2), assignment operators (6.5.16),
common definitions <stddef.h> (7.19), initialization (6.7.9), postfix increment and decrement
operators (6.5.2.4), prefix increment and decrement operators (6.5.3.1), the sizeof and _Alignof
operators (6.5.3.4), structure and union members (6.5.2.3).

6.3.2.2 void

The (nonexistent) value of a void expression (an expression that has type void) shall not be used in any
way, and implicit or explicit conversions (except to void) shall not be applied to such an expression.
If an expression of any other type is evaluated as a void expression, its value or designator is
discarded. (A void expression is evaluated for its side effects.)

6.3.2.3 Pointers

A pointer to void may be converted to or from a pointer to any object type. A pointer to any object
type may be converted to a pointer to void and back again; the result shall compare equal to the
original pointer.

For any qualifier g, a pointer to a non-g-qualified type may be converted to a pointer to the g-qualified
version of the type; the values stored in the original and converted pointers shall compare equal.

An integer constant expression with the value 0, or such an expression cast to type void , is called
a null pointer constant.?”) If a null pointer constant is converted to a pointer type, the resulting
pointer, called a null pointer, is guaranteed to compare unequal to a pointer to any object or function.

Conversion of a null pointer to another pointer type yields a null pointer of that type. Any two null
pointers shall compare equal.

An integer may be converted to any pointer type. Except as previously specified, the result is imple-
mentation-defined, might not be correctly aligned, might not point to an entity of the referenced
type, and might be a trap representation.””

Any pointer type may be converted to an integer type. Except as previously specified, the result
is implementation-defined. If the result cannot be represented in the integer type, the behavior is
undefined. The result need not be in the range of values of any integer type.

A pointer to an object type may be converted to a pointer to a different object type. If the resulting
pointer is not correctly aligned”? for the referenced type, the behavior is undefined. Otherwise,
when converted back again, the result shall compare equal to the original pointer. When a pointer to
an object is converted to a pointer to a character type, the result points to the lowest addressed byte
of the object. Successive increments of the result, up to the size of the object, yield pointers to the
remaining bytes of the object.

A pointer to a function of one type may be converted to a pointer to a function of another type and
back again; the result shall compare equal to the original pointer. If a converted pointer is used to
call a function whose type is not compatible with the referenced type, the behavior is undefined.

Forward references: cast operators (6.5.4), equality operators (6.5.9), integer types capable of
holding object pointers (7.20.1.4), simple assignment (6.5.16.1).

68)Because this conversion does not occur, the operand of the sizeof operator remains a function designator and violates
the constraints in 6.5.3.4.

) The macro NULL is defined in <stddef. h> (and other headers) as a null pointer constant; see 7.19.

79 The mapping functions for converting a pointer to an integer or an integer to a pointer are intended to be consistent with
the addressing structure of the execution environment.

"DIn general, the concept “correctly aligned” is transitive: if a pointer to type A is correctly aligned for a pointer to type B,
which in turn is correctly aligned for a pointer to type C, then a pointer to type A is correctly aligned for a pointer to type C.

46 Language §6.3.23



1

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

6.4 Lexical elements

Syntax
token:
keyword
identifier
constant
string-literal
punctuator

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
punctuator
each non-white-space character that cannot be one of the above

Constraints

Each preprocessing token that is converted to a token shall have the lexical form of a keyword, an
identifier, a constant, a string literal, or a punctuator.

Semantics

A token is the minimal lexical element of the language in translation phases 7 and 8. The categories of
tokens are: keywords, identifiers, constants, string literals, and punctuators. A preprocessing token
is the minimal lexical element of the language in translation phases 3 through 6. The categories of
preprocessing tokens are: header names, identifiers, preprocessing numbers, character constants,
string literals, punctuators, and single non-white-space characters that do not lexically match the
other preprocessing token categories.”? Ifa’ ora " character matches the last category, the behavior
is undefined. Preprocessing tokens can be separated by white space; this consists of comments
(described later), or white-space characters (space, horizontal tab, new-line, vertical tab, and form-
feed), or both. As described in 6.10, in certain circumstances during translation phase 4, white
space (or the absence thereof) serves as more than preprocessing token separation. White space
may appear within a preprocessing token only as part of a header name or between the quotation
characters in a character constant or string literal.

If the input stream has been parsed into preprocessing tokens up to a given character, the next
preprocessing token is the longest sequence of characters that could constitute a preprocessing
token. There is one exception to this rule: header name preprocessing tokens are recognized only
within #include preprocessing directives and in implementation-defined locations within #pragma
directives. In such contexts, a sequence of characters that could be either a header name or a string
literal is recognized as the former.

EXAMPLE 1 The program fragment 1Ex is parsed as a preprocessing number token (one that is not a valid floating or integer
constant token), even though a parse as the pair of preprocessing tokens 1 and Ex might produce a valid expression (for

example, if Ex were a macro defined as+1). Similarly, the program fragment 1E1 is parsed as a preprocessing number (one
that is a valid floating constant token), whether or not E is a macro name.

EXAMPLE 2 The program fragment x+++++y is parsed as x ++ ++ + y, which violates a constraint on increment operators,
even though the parse x ++ + ++ y might yield a correct expression.

Forward references: character constants (6.4.4.4), comments (6.4.9), expressions (6.5), floating
constants (6.4.4.2), header names (6.4.7), macro replacement (6.10.3), postfix increment and decrement
operators (6.5.2.4), prefix increment and decrement operators (6.5.3.1), preprocessing directives (6.10),
preprocessing numbers (6.4.8), string literals (6.4.5).

72 An additional category, placemarkers, is used internally in translation phase 4 (see 6.10.3.3); it cannot occur in source
files.

§64 Language 47



1

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573
6.4.1 Keywords
Syntax
keyword: one of
auto float sizeof —Atomic
break for static —Bool
case goto struct —Complex
char if switch _Decimall28
const inline typedef _Decimal32
continue int union _Decimalé64
default long unsigned —Generic
do register void _Imaginary
double restrict volatile _Noreturn
else return while _Static_assert
enum short —Alignas —Thread_local
extern signed _Alignof

Semantics

The above tokens (case sensitive) are reserved (in translation phases 7 and 8) for use as keywords
except in an attribute token, and shall not be used otherwise. The keyword _Imaginary is reserved
for specifying imaginary types.”>

6.4.2 Identifiers

6.4.2.1 General

Syntax

identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit

identifier-nondigit:
nondigit
universal-character-name
other implementation-defined characters

nondigit: one of

=2 >S90
owo T
a-Nalk-s)
oo o
A m= o
DV T n =h
- o +@Q
cxTc =
< H < B
= U = .
X X X x
<r< ~
N =N 3

digit: one of
0123456789

Semantics

An identifier is a sequence of nondigit characters (including the underscore _, the lowercase and
uppercase Latin letters, and other characters) and digits, which designates one or more entities as
described in 6.2.1. Lowercase and uppercase letters are distinct. There is no specific limit on the
maximum length of an identifier.

The use of universal character names in identifiers is specified in Annex D: Each universal character
name in an identifier shall designate a character whose encoding in ISO/IEC 10646 falls into

73)One possible specification for imaginary types appears in Annex G.

48 Language §64.2.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

one of the ranges specified in D.1.7Y  The initial character shall not be a universal character

name designating a character whose encoding falls into one of the ranges specified in D.2. An
implementation may allow multibyte characters that are not part of the basic source character set to
appear in identifiers; which characters and their correspondence to universal character names is
implementation-defined.

When preprocessing tokens are converted to tokens during translation phase 7, if a preprocessing
token could be converted to either a keyword or an identifier, it is converted to a keyword except in
an attribute token.

Implementation limits

As discussed in 5.2.4.1, an implementation may limit the number of significant initial characters
in an identifier; the limit for an external name (an identifier that has external linkage) may be more
restrictive than that for an internal name (a macro name or an identifier that does not have external
linkage). The number of significant characters in an identifier is implementation-defined.

Any identifiers that differ in a significant character are different identifiers. If two identifiers differ
only in nonsignificant characters, the behavior is undefined.

Forward references: universal character names (6.4.3), macro replacement (6.10.3).

6.4.2.2 Predefined identifiers
Semantics

The identifier __func_ shall be implicitly declared by the translator as if, immediately following
the opening brace of each function definition, the declaration

\ static const char __func__[] = "function-name";
L

appeared, where function-name is the name of the lexically-enclosing function.”)

This name is encoded as if the implicit declaration had been written in the source character set and
then translated into the execution character set as indicated in translation phase 5.

EXAMPLE Consider the code fragment:

#include <stdio.h>

void myfunc(void)

{
printf("%s\n", _func_);
VAT Y

}

Each time the function is called, it will print to the standard output stream:

\ myfunc

Forward references: function definitions (6.9.1).

6.4.3 Universal character names

Syntax

universal-character-name:
\u hex-quad
\U hex-quad hex-quad

hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

78)0n systems in which linkers cannot accept extended characters, an encoding of the universal character name can be used
in forming valid external identifiers. For example, some otherwise unused character or sequence of characters can be used to
encode the \u in a universal character name. Extended characters can produce a long external identifier.

75Since the name —func_ is reserved for any use by the implementation (7.1.3), if any other identifier is explicitly declared
using the name __func_, the behavior is undefined.

§6.4.3 Language 49



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Constraints

A universal character name shall not specify a character whose short identifier is less than 00AQ
other than 0024 ($), 0040 (@), or 0060 (*), nor one in the range D800 through DFFF inclusive.”®)

Description

Universal character names may be used in identifiers, character constants, and string literals to
designate characters that are not in the basic character set.

Semantics

The universal character name \Unnnnnnnn designates the character whose eight-digit short identifier
(as specified by ISO/TEC 10646) is nnnnnnnn.””)  Similarly, the universal character name \unnnn
designates the character whose four-digit short identifier is nnnn (and whose eight-digit short
identifier is 0000nnnn).

70)The disallowed characters are the characters in the basic character set and the code positions reserved by ISO/IEC 10646
for control characters, the character DELETE, and the S-zone (reserved for use by UTF-16).
77)Short identifiers for characters were first specified in ISO/IEC 10646-1:1993/ Amd 9:1997.

50 Language §6.4.3



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

6.4.4 Constants

Syntax
1 constant:
integer-constant
floating-constant
enumeration-constant
character-constant
Constraints

2 Each constant shall have a type and the value of a constant shall be in the range of representable
values for its type.

Semantics
3  Each constant has a type, determined by its form and value, as detailed later.

6.4.4.1 Integer constants
Syntax

1 integer-constant:
decimal-constant integer-suffixopt
octal-constant integer-suffixop:
hexadecimal-constant integer-suffixopt

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

hexadecimal-constant:
hexadecimal-prefix hexadecimal-digit
hexadecimal-constant hexadecimal-digit

hexadecimal-prefix: one of
0x 0X

nonzero-digit: one of
123456789

octal-digit: one of
01234567

hexadecimal-digit: one of
0123456789
abcdef
ABCDEF
integer-suffix:
unsigned-suffix long-suffixopt
unsigned-suffix long-long-suffix
long-suffix unsigned-suffixopt
long-long-suffix unsigned-suffixopt

§64.4.1 Language 51



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

unsigned-suffix: one of
ud

long-suffix: one of
1L

long-long-suffix: one of
1L

Description
An integer constant begins with a digit, but has no period or exponent part. It may have a prefix
that specifies its base and a suffix that specifies its type.

A decimal constant begins with a nonzero digit and consists of a sequence of decimal digits. An
octal constant consists of the prefix 0 optionally followed by a sequence of the digits 0 through 7
only. A hexadecimal constant consists of the prefix 0x or 0X followed by a sequence of the decimal
digits and the letters a (or A) through f (or F) with values 10 through 15 respectively.

Semantics
The value of a decimal constant is computed base 10; that of an octal constant, base 8; that of a
hexadecimal constant, base 16. The lexically first digit is the most significant.

The type of an integer constant is the first of the corresponding list in which its value can be
represented.

Octal or Hexadecimal

Suffix Decimal Constant Constant
none int int
long int unsigned int
long long int long int

unsigned long int
long long int
unsigned long long int

uor U unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int | unsigned long long int
lor L long int long int
long long int unsigned long int

long long int
unsigned long long int

Both uor U unsigned long int unsigned long int
and lor L unsigned long long int | unsigned long long int
1lor LL long long int long long int

unsigned long long int
Both uor U unsigned long long int | unsigned long long int
and 1lor LL

If an integer constant cannot be represented by any type in its list, it may have an extended integer
type, if the extended integer type can represent its value. If all of the types in the list for the constant
are signed, the extended integer type shall be signed. If all of the types in the list for the constant
are unsigned, the extended integer type shall be unsigned. If the list contains both signed and
unsigned types, the extended integer type may be signed or unsigned. If an integer constant cannot
be represented by any type in its list and has no extended integer type, then the integer constant has
no type.

Forward references: preprocessing numbers (6.4.8), numeric conversion functions (7.22.1).

52 Language §64.4.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

6.4.4.2 Floating constants

Syntax

floating-constant:
decimal-floating-constant
hexadecimal-floating-constant

decimal-floating-constant:
fractional-constant exponent-partop: floating-suffixopt
digit-sequence exponent-part floating-suffixopt

hexadecimal-floating-constant:
hexadecimal-prefix hexadecimal-fractional-constant
binary-exponent-part floating-suffixopt
hexadecimal-prefix hexadecimal-digit-sequence
binary-exponent-part floating-suffixopt

fractional-constant:
digit-sequenceop . digit-sequence
digit-sequence .

exponent-part:
e signp digit-sequence
E signop digit-sequence

sign: one of

digit-sequence:
digit
digit-sequence digit

hexadecimal-fractional-constant:
hexadecimal-digit-sequenceqp . hexadecimal-digit-sequence
hexadecimal-digit-sequence .

binary-exponent-part:
P signop: digit-sequence
P signop digit-sequence

hexadecimal-digit-sequence:
hexadecimal-digit
hexadecimal-digit-sequence hexadecimal-digit

floating-suffix: one of
fLFL df dd dl DF DD DL

Constraints
A floating suffix df, dd, d1, DF, DD, or DL shall not be used in a hexadecimal floating constant.

Description

A floating constant has a significand part that may be followed by an exponent part and a suffix that
specifies its type. The components of the significand part may include a digit sequence representing
the whole-number part, followed by a period ( .), followed by a digit sequence representing the
fraction part. The components of the exponent part are an e, E, p, or P followed by an exponent
consisting of an optionally signed digit sequence. Either the whole-number part or the fraction part

§6.4.4.2 Language 53



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

has to be present; for decimal floating constants, either the period or the exponent part has to be
present.

Semantics

The significand part is interpreted as a (decimal or hexadecimal) rational number; the digit sequence
in the exponent part is interpreted as a decimal integer. For decimal floating constants, the exponent
indicates the power of 10 by which the significand part is to be scaled. For hexadecimal floating
constants, the exponent indicates the power of 2 by which the significand part is to be scaled. For
decimal floating constants, and also for hexadecimal floating constants when FLT_RADIX is not a
power of 2, the result is either the nearest representable value, or the larger or smaller representable
value immediately adjacent to the nearest representable value, chosen in an implementation-defined
manner. For hexadecimal floating constants when FLT_RADIX is a power of 2, the result is correctly
rounded.

An unsuffixed floating constant has type double. If suffixed by a floating suffix it has a type
according to the following table:

Sulffixes for floating-point constants

Suffix | Type

f, F float

1L long double
df, DF | _Decimal32

dd, DD | _Decimalé64

dl, DL | _Decimall28

The values of floating constants may be represented in greater range and precision than that required
by the type (determined by the suffix); the types are not changed thereby. See 5.2.4.2.2 regarding
evaluation formats.”®

Floating constants of decimal floating type that have the same numerical value but different quantum
exponents have distinguishable internal representations. The value shall be correctly rounded as
specified in IEC 60559. The coefficient ¢ and the quantum exponent ¢ of a finite converted decimal
floating-point number (see 5.2.4.2.3) are determined as follows:

— q is set to the value of sign,; digit-sequence in the exponent part, if any, or to 0, otherwise.

— If there is a fractional constant, ¢ is decreased by the number of digits to the right of the period
and the period is removed to form a digit sequence.

— cis set to the value of the digit sequence (after any period has been removed).

— Rounding required because of insufficient precision or range in the type of the result will
round c to the full precision available in the type, and will adjust ¢ accordingly within the
limits of the type, provided the rounding does not yield an infinity (in which case the result
is an appropriately signed internal representation of infinity). If the full precision of the type
would require ¢ to be smaller than the minimum for the type, then ¢ is pinned at the minimum
and c is adjusted through the subnormal range accordingly, perhaps to zero.

Floating constants are converted to internal format as if at translation-time. The conversion of a
floating constant shall not raise an exceptional condition or a floating-point exception at execution
time. All floating constants of the same source form’® shall convert to the same internal format with
the same value.

78)Hexadecimal floating constants can be used to obtain exact values in the semantic type that are independent of the
evaluation format. Casts produce values in the semantic type, though depend on the rounding mode and may raise the
inexact floating-point exception.

791.23,1.230, 123e-2,123e-02, and 1.23L are all different source forms and thus need not convert to the same internal
format and value.

54 Language §6.4.4.2



9

10

11

12

N2573

working draft — October 1, 2020 ISO/IEC 9899:202x (E)

EXAMPLE Following are floating constants of type _Decimal64 and their values as triples (s, c,q). Note that for
_Decimalé4, the precision (maximum coefficient length) is 16 and the quantum exponent range is —398 < g < 369.

0.dd ,0,0)
0.00dd ,0,—2)
123.dd ,123,0)
1.23E3dd ,1231)
1.23E+3dd ,123,1)
12.3E+7dd ,123,6)
12.0dd ,120,—1)
12.3dd ,123, 1)
0.00123dd ,123,—5)
1.23E-12dd ,123, —14)
1234.5E-4dd ,12345, —5)
OE+7dd ,0,7)

12345678901234567890.dd
1234E-400dd
1234E-402dd

1234567890123457, 4) assuming default rounding and DEC_EVAL_METHOD is 0 or 180
12, —398) assuming default rounding and DEC_EVAL_METHOD is O or 1
,0, —398) assuming default rounding and DEC_EVAL_METHOD is 0 or 1

= e e e e e e e e e e e e e e e e e e e e e e e e T e e e e e

o P P T P P P P . P s . =

1000. dd , 1000, 0)
.0001dd 1, —4)
1000. e0dd ,1000, 0)
.0001e0dd ,1,—4)
1000.0dd ,10000, —1)
0.0001dd ,1,—4)
1000.00dd , 100000, —2)
00.0001dd ,1,—4)
001000.dd , 1000, 0)
001000.0dd ,10000, —1)
001000.00dd , 100000, —2)
00.00dd ,0,—2)
00.dd ,0,0)

.00dd ,0,—2)
00.00e-5dd ,0,=7)
00.e-5dd ,0,—5)
.00e-5dd 0,-7)

Recommended practice

The implementation should produce a diagnostic message if a hexadecimal constant cannot be
represented exactly in its evaluation format; the implementation should then proceed with the
translation of the program.

The translation-time conversion of floating constants should match the execution-time conversion
of character strings by library functions, such as strtod, given matching inputs suitable for both
conversions, the same result format, and default execution-time rounding. 81)

NOTE Floating constants do not include a sign and are negated by the unary - operator (6.5.3.3) which negates the rounded
value of the constant. In contrast, the numeric conversion functions in the strto family (7.22.1.5, 7.22.1.6) include the sign as
part of the input value and convert and round the negated input. Negating before rounding and negating after rounding
might yield different results, depending on the rounding direction and whether the results are correctly rounded. For
example, the results are the same when both are correctly rounded using rounding to nearest or rounding toward zero, but
the results are different when they are inexact and correctly rounded using rounding toward positive infinity or rounding
toward negative infinity.

Conversions yielding exact results require no rounding, so are not affected by the order of negating and rounding. For
types with radix 10, decimal floating constants expressed within the precision and range of the evaluation format convert
exactly. For types whose radix is a power of 2, hexadecimal floating constants expressed within the precision and range of the
evaluation format convert exactly.

Forward references: preprocessing numbers (6.4.8), numeric conversion functions (7.22.1), the
strto function family (7.22.1.5, 7.22.1.6).

80)That is, assuming the default translation rounding-direction mode is not changed by an FENV_DEC_ROUND pragma (7.6.3).
8DThe specification for the library functions recommends more accurate conversion than required for floating constants
(see 7.22.1.5).

§6.4.4.2 Language 55



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

6.4.4.3 Enumeration constants

Syntax
1 enumeration-constant:
identifier
Semantics

2 Anidentifier declared as an enumeration constant has type int.

Forward references: enumeration specifiers (6.7.2.2).

6.4.4.4 Character constants

Syntax
1 character-constant:
encoding-prefixopt ' c-char-sequence '
encoding-prefix:
ug
u
U
L
c-char-sequence:
c-char

c-char-sequence c-char
c-char:
any member of the source character set except
the single-quote ', backslash \, or new-line character
escape-sequernce

escape-sequernce:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
universal-character-name

simple-escape-sequence: one of
VAN AN
\a\b\f\n\r\t\v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

Description

2 Aninteger character constant is a sequence of one or more multibyte characters enclosed in single-
quotes, as in 'x' . A UTF-8 character constant is the same, except prefixed by u8. A wide character
constant is the same, except prefixed by the letter L, u, or U. With a few exceptions detailed later,
the elements of the sequence are any members of the source character set; they are mapped in an
implementation-defined manner to members of the execution character set.

56 Language §64.44



10

11

12

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

The single-quote ’, the double-quote ", the question-mark ?, the backslash \, and arbitrary integer
values are representable according to the following table of escape sequences:

single quote ’ \’
double quote " \"
question mark ? \7?
backslash \ \\
octal character \octal digits

hexadecimal character \x hexadecimal digits

The double-quote " and question-mark ? are representable either by themselves or by the escape
sequences \" and \?, respectively, but the single-quote ' and the backslash \ shall be represented,
respectively, by the escape sequences \’ and \\.

The octal digits that follow the backslash in an octal escape sequence are taken to be part of the
construction of a single character for an integer character constant or of a single wide character for a
wide character constant. The numerical value of the octal integer so formed specifies the value of
the desired character or wide character.

The hexadecimal digits that follow the backslash and the letter x in a hexadecimal escape sequence
are taken to be part of the construction of a single character for an integer character constant or of a
single wide character for a wide character constant. The numerical value of the hexadecimal integer
so formed specifies the value of the desired character or wide character.

Each octal or hexadecimal escape sequence is the longest sequence of characters that can constitute
the escape sequence.

In addition, characters not in the basic character set are representable by universal character names
and certain nongraphic characters are representable by escape sequences consisting of the backslash \
followed by a lowercase letter: \a, \b, \f, \n, \r, \t, and \v.8?

Constraints
The value of an octal or hexadecimal escape sequence shall be in the range of representable values
for the corresponding type:

Prefix | Corresponding Type
none | unsigned char

u8 unsigned char

L the unsigned type corresponding to wchar_t
u charlé_t

u char32_t

A UTF-8 character constant shall not contain more than one character.?¥ The value shall be
representable with a single UTF-8 code unit.

Semantics

An integer character constant has type int. The value of an integer character constant containing
a single character that maps to a single-byte execution character is the numerical value of the
representation of the mapped character interpreted as an integer. The value of an integer character
constant containing more than one character (e.g.,"ab’ ), or containing a character or escape sequence
that does not map to a single-byte execution character, is implementation-defined. If an integer
character constant contains a single character or escape sequence, its value is the one that results
when an object with type char whose value is that of the single character or escape sequence is
converted to type int.

A UTEF-8 character constant has type unsigned char. The value of a UTF-8 character constant is
equal to its ISO/IEC 10646 code point value, provided that the code point value can be encoded as a
single UTF-8 code unit.

82)The semantics of these characters were discussed in 5.2.2. If any other character follows a backslash, the result is not a
token and a diagnostic is required. See “future language directions” (6.11.4).
83)For example u8’ab’ violates this constraint.

§64.44 Language 57



13

14
15

16

17

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

A wide character constant prefixed by the letter L has type wchar_t, an integer type defined in the

<stddef.h> header; a wide character constant prefixed by the letter u or U has type charl6_t or

char32_t, respectively, unsigned integer types defined in the <uchar.h> header. The value of a
wide character constant containing a single multibyte character that maps to a single member of the
extended execution character set is the wide character corresponding to that multibyte character,
as defined by the mbtowc, mbrtocl6, or mbrtoc32 function as appropriate for its type, with an
implementation-defined current locale. The value of a wide character constant containing more
than one multibyte character or a single multibyte character that maps to multiple members of
the extended execution character set, or containing a multibyte character or escape sequence not
represented in the extended execution character set, is implementation-defined.

EXAMPLE 1 The construction’\0’ is commonly used to represent the null character.

EXAMPLE 2 Consider implementations that use eight bits for objects that have type char. In an implementation in which
type char has the same range of values as signed char, the integer character constant '\xFF' has the value —1; if type
char has the same range of values as unsigned char, the character constant'\xFF’ has the value +255.

EXAMPLE 3 Even if eight bits are used for objects that have type char, the construction’\x123’ specifies an integer character
constant containing only one character, since a hexadecimal escape sequence is terminated only by a non-hexadecimal
character. To specify an integer character constant containing the two characters whose values are '\x12’ and '3’ , the
construction "\0223" can be used, since an octal escape sequence is terminated after three octal digits. (The value of this
two-character integer character constant is implementation-defined.)

EXAMPLE 4 Even if 12 or more bits are used for objects that have type wchar_t, the construction L'\1234" specifies the
implementation-defined value that results from the combination of the values 0123 and 4" .

Forward references: common definitions <stddef.h> (7.19), the mbtowc function (7.22.7.2), Uni-
code utilities <uchar.h> (7.28).

6.4.5 String literals
Syntax
string-literal:

encoding-prefixop: "' s-char-sequenceopt "
s-char-sequence:
s-char

s-char-sequence s-char

s-char:
any member of the source character set except
the double-quote ", backslash \, or new-line character
escape-sequence

Constraints

A sequence of adjacent string literal tokens shall not include both a wide string literal and a UTF-8
string literal.

Description

A character string literal is a sequence of zero or more multibyte characters enclosed in double-quotes,
asin "xyz". A UTF-8 string literal is the same, except prefixed by u8. A wide string literal is the same,
except prefixed by the letter L, u, or U.

The same considerations apply to each element of the sequence in a string literal as if it were in an
integer character constant (for a character or UTF-8 string literal) or a wide character constant (for a
wide string literal), except that the single-quote ' is representable either by itself or by the escape
sequence \ ', but the double-quote " shall be represented by the escape sequence \".

Semantics

In translation phase 6, the multibyte character sequences specified by any sequence of adjacent
character and identically-prefixed string literal tokens are concatenated into a single multibyte
character sequence. If any of the tokens has an encoding prefix, the resulting multibyte character

58 Language §6.4.5



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

sequence is treated as having the same prefix; otherwise, it is treated as a character string literal.
Whether differently-prefixed wide string literal tokens can be concatenated and, if so, the treatment
of the resulting multibyte character sequence are implementation-defined.

In translation phase 7, a byte or code of value zero is appended to each multibyte character sequence
that results from a string literal or literals.® The multibyte character sequence is then used to
initialize an array of static storage duration and length just sufficient to contain the sequence. For
character string literals, the array elements have type char, and are initialized with the individual
bytes of the multibyte character sequence. For UTF-8 string literals, the array elements have type
char, and are initialized with the characters of the multibyte character sequence, as encoded in
UTF-8. For wide string literals prefixed by the letter L, the array elements have type wchar_t
and are initialized with the sequence of wide characters corresponding to the multibyte character
sequence, as defined by the mbstowcs function with an implementation-defined current locale.
For wide string literals prefixed by the letter u or U, the array elements have type charl6_t or
char32_t, respectively, and are initialized with the sequence of wide characters corresponding
to the multibyte character sequence, as defined by successive calls to the mbrtocl6, or mbrtoc32
function as appropriate for its type, with an implementation-defined current locale. The value of a
string literal containing a multibyte character or escape sequence not represented in the execution
character set is implementation-defined.

It is unspecified whether these arrays are distinct provided their elements have the appropriate
values. If the program attempts to modify such an array, the behavior is undefined.

EXAMPLE 1 This pair of adjacent character string literals

\ "\x12" "3"

produces a single character string literal containing the two characters whose values are "\x12' and '3’ , because escape
sequences are converted into single members of the execution character set just prior to adjacent string literal concatenation.

EXAMPLE 2 Each of the sequences of adjacent string literal tokens

"a" "b" L"c"
"a" L"b" "c"
L"a" "b" L"c"
L"a" L"b" L"c"

is equivalent to the string literal

Luabcu

Likewise, each of the sequences

"a" "b" u"c"
"a" u"b" "c"
u"a" "b" u"c"
u"a" u"b" u"c"

is equivalent to

i u"abc"

Forward references: common definitions <stddef.h> (7.19), the mbstowcs function (7.22.8.1),
Unicode utilities <uchar.h> (7.28).

6.4.6 Punctuators

Syntax

punctuator: one of
1 ¢y {» . ->
+ -- & *x + - ~ |

84 A string literal might not be a string (see 7.1.1), because a null character can be embedded in it by a \0 escape sequence.

§6.4.6 Language 59



1

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

/ % << >> < > <= >= == I= ~ | & ||
? .
= k= = %= 4= == <<= >>= &= "= | =
# H#
< > <% %> % %:%

Semantics
A punctuator is a symbol that has independent syntactic and semantic significance. Depending on
context, it may specify an operation to be performed (which in turn may yield a value or a function
designator, produce a side effect, or some combination thereof) in which case it is known as an
operator (other forms of operator also exist in some contexts). An operand is an entity on which an
operator acts.
In all aspects of the language, the six tokens®

<: > <% %> % %i%:
behave, respectively, the same as the six tokens

[ 1 { 3}y # ##
except for their spelling.5?

Forward references: expressions (6.5), declarations (6.7), preprocessing directives (6.10), statements
(6.8).

6.4.7 Header names

Syntax

header-name:
< h-char-sequence >
" g-char-sequence "

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except

the new-line character and >

g-char-sequence:

g-char
g-char-sequence g-char
g-char:
any member of the source character set except
the new-line character and "
Semantics

The sequences in both forms of header names are mapped in an implementation-defined manner to
headers or external source file names as specified in 6.10.2.

If the characters ', \, ", //, or /* occur in the sequence between the < and > delimiters, the behavior
is undefined. Similarly, if the characters ', \, //, or /* occur in the sequence between the "

8)These tokens are sometimes called “digraphs”.
80)Thus [ and <: behave differently when “stringized” (see 6.10.3.2), but can otherwise be freely interchanged.

60 Language §64.7



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

delimiters, the behavior is undefined.?” Header name preprocessing tokens are recognized only
within #include preprocessing directives and in implementation-defined locations within #pragma
directives.®®

EXAMPLE The following sequence of characters:

0x3<1l/a.h>1le2
#include <1/a.h>
#define const.member@$

forms the following sequence of preprocessing tokens (with each individual preprocessing token delimited by a { on the left
and a / on the right).

{0x3{<}{1}{/}Ha}{.}{h}{>}{1e2}
{#}{include} {<1l/a.h>}
{#}{define} {const}{.}{member}{@}{$}

Forward references: source file inclusion (6.10.2).

6.4.8 Preprocessing numbers

Syntax

pp-number:
digit
. digit
pp-number digit
pp-number identifier-nondigit
pp-number e sign
pp-number E sign
pp-number p sign
pp-number P sign
pp-number .

Description
A preprocessing number begins with a digit optionally preceded by a period (.) and may be followed
by valid identifier characters and the character sequences e+, e-, E+, E-, p+, p-, P+ or P-.

Preprocessing number tokens lexically include all floating and integer constant tokens.

Semantics

A preprocessing number does not have type or a value; it acquires both after a successful conversion
(as part of translation phase 7) to a floating constant token or an integer constant token.

6.4.9 Comments

Except within a character constant, a string literal, or a comment, the characters /* introduce a
comment. The contents of such a comment are examined only to identify multibyte characters and
to find the characters */ that terminate it.8)

Except within a character constant, a string literal, or a comment, the characters // introduce a
comment that includes all multibyte characters up to, but not including, the next new-line character.
The contents of such a comment are examined only to identify multibyte characters and to find the
terminating new-line character.

EXAMPLE

\ "a//b" // four-character string literal

87)Thus, sequences of characters that resemble escape sequences cause undefined behavior.
89)For an example of a header name preprocessing token used in a #pragma directive, see 6.10.9.
89)Thus, /* ...*/ comments do not nest.

§64.9 Language 61



ISO/IEC 9899:202x (E)

#include "//e"

//

f = g/xx//h;

//
i(
/\
/

#define glue(x,y) x##y
glue(/,/) k();

/%
m

*/

\
)8

iQ);
//x/ 1();

= n//*x/0

+ P

working draft — October 1, 2020 N2573

//
//
//
//
//

//
//

//

undefined behavior
comment, not syntax error
equivalent to f =g / h;
part of a two-line comment

part of a two-line comment

syntax error, not comment
equivalent to 1();

equivalent tom =n + p;

62

Language §64.9




N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

6.5 Expressions

An expression is a sequence of operators and operands that specifies computation of a value,’ or
that designates an object or a function, or that generates side effects, or that performs a combination
thereof. The value computations of the operands of an operator are sequenced before the value
computation of the result of the operator.

If a side effect on a scalar object is unsequenced relative to either a different side effect on the
same scalar object or a value computation using the value of the same scalar object, the behavior
is undefined. If there are multiple allowable orderings of the subexpressions of an expression, the
behavior is undefined if such an unsequenced side effect occurs in any of the orderings.”")

The grouping of operators and operands is indicated by the syntax.?

effects and value computations of subexpressions are unsequenced.’®

Except as specified later, side

Some operators (the unary operator ~, and the binary operators <<, >>, & *, and |, collectively
described as bitwise operators) are required to have operands that have integer type. These operators
yield values that depend on the internal representations of integers, and have implementation-
defined and undefined aspects for signed types.

If an exceptional condition occurs during the evaluation of an expression (that is, if the result is not
mathematically defined or not in the range of representable values for its type), the behavior is
undefined.

The effective type of an object for an access to its stored value is the declared type of the object, if
any?® If a value is stored into an object having no declared type through an Ivalue having a type
that is not a character type, then the type of the Ivalue becomes the effective type of the object for
that access and for subsequent accesses that do not modify the stored value. If a value is copied into
an object having no declared type using memcpy or memmove, or is copied as an array of character
type, then the effective type of the modified object for that access and for subsequent accesses that
do not modify the value is the effective type of the object from which the value is copied, if it has
one. For all other accesses to an object having no declared type, the effective type of the object is
simply the type of the lvalue used for the access.

An object shall have its stored value accessed only by an lvalue expression that has one of the
following types:”

— a type compatible with the effective type of the object,

— a qualified version of a type compatible with the effective type of the object,

%) Annex H documents the extent to which the C language supports the ISO/IEC 10967-1 standard for language-
independent arithmetic (LIA-1).
9DThis paragraph renders undefined statement expressions such as

i=++1+ 1;
ali++] = i;

while allowing

92)The syntax specifies the precedence of operators in the evaluation of an expression, which is the same as the order of the
major subclauses of this subclause, highest precedence first. Thus, for example, the expressions allowed as the operands
of the binary + operator (6.5.6) are those expressions defined in 6.5.1 through 6.5.6. The exceptions are cast expressions
(6.5.4) as operands of unary operators (6.5.3), and an operand contained between any of the following pairs of operators:
grouping parentheses () (6.5.1), subscripting brackets [] (6.5.2.1), function-call parentheses () (6.5.2.2), and the conditional
operator ?: (6.5.15).

Within each major subclause, the operators have the same precedence. Left- or right-associativity is indicated in each
subclause by the syntax for the expressions discussed therein.

9)In an expression that is evaluated more than once during the execution of a program, unsequenced and indeterminately
sequenced evaluations of its subexpressions need not be performed consistently in different evaluations.

%) Allocated objects have no declared type.

%)The intent of this list is to specify those circumstances in which an object can or cannot be aliased.

§6.5 Language 63



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

— atype that is the signed or unsigned type corresponding to the effective type of the object,

— a type that is the signed or unsigned type corresponding to a qualified version of the effective
type of the object,

— an aggregate or union type that includes one of the aforementioned types among its members
(including, recursively, a member of a subaggregate or contained union), or

— a character type.

A floating expression may be contracted, that is, evaluated as though it were a single opera-
tion, thereby omitting rounding errors implied by the source code and the expression evalua-
tion method.”® The FP_CONTRACT pragma in <math.h> provides a way to disallow contracted
expressions. Otherwise, whether and how expressions are contracted is implementation-defined.®”

Operators involving decimal floating types are evaluated according to the semantics of IEC 60559,
including production of results with the preferred quantum exponent as specified in IEC 60559.

Forward references: the FP_CONTRACT pragma (7.12.2), copying functions (7.24.2).

6.5.1 Primary expressions

Syntax
primary-expression:
identifier
constant
string-literal
( expression )
generic-selection

Semantics

An identifier is a primary expression, provided it has been declared as designating an object (in
which case it is an lvalue) or a function (in which case it is a function designator).%)

A constant is a primary expression. Its type depends on its form and value, as detailed in 6.4.4.

A string literal is a primary expression. It is an lvalue with type as detailed in 6.4.5.

A parenthesized expression is a primary expression. Its type and value are identical to those of
the unparenthesized expression. It is an Ivalue, a function designator, or a void expression if the
unparenthesized expression is, respectively, an lvalue, a function designator, or a void expression.

A generic selection is a primary expression. Its type and value depend on the selected generic
association, as detailed in the following subclause.

Forward references: declarations (6.7).

6.5.1.1 Generic selection
Syntax

generic-selection:

—Generic ( assignment-expression , generic-assoc-list )
generic-assoc-list:

generic-association

generic-assoc-list , generic-association

%)The intermediate operations in the contracted expression are evaluated as if to infinite range and precision, while the
final operation is rounded to the format determined by the expression evaluation method. A contracted expression might
also omit the raising of floating-point exceptions.

97)This license is specifically intended to allow implementations to exploit fast machine instructions that combine multiple
C operators. As contractions potentially undermine predictability, and can even decrease accuracy for containing expressions,
their use needs to be well-defined and clearly documented.

98)Thus, an undeclared identifier is a violation of the syntax.

64 Language §65.1.1



1

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

generic-association:
type-name : assignment-expression
default : assignment-expression

Constraints

A generic selection shall have no more than one default generic association. The type name in a
generic association shall specify a complete object type other than a variably modified type. No two
generic associations in the same generic selection shall specify compatible types. The type of the
controlling expression is the type of the expression as if it had undergone an Ivalue conversion,’”
array to pointer conversion, or function to pointer conversion. That type shall be compatible with at
most one of the types named in the generic association list. If a generic selection has no default
generic association, its controlling expression shall have type compatible with exactly one of the
types named in its generic association list.

Semantics

The controlling expression of a generic selection is not evaluated. If a generic selection has a generic
association with a type name that is compatible with the type of the controlling expression, then the
result expression of the generic selection is the expression in that generic association. Otherwise, the
result expression of the generic selection is the expression in the default generic association. None
of the expressions from any other generic association of the generic selection is evaluated.

The type and value of a generic selection are identical to those of its result expression. It is an
lvalue, a function designator, or a void expression if its result expression is, respectively, an lvalue, a
function designator, or a void expression.

EXAMPLE The cbrt type-generic macro could be implemented as follows:

#define cbrt(X) _Generic((X),
long double: cbhrttl,
default: chrt,
float: cbrtf
) (X)

~

See 7.25 how such a macro could be implemented with the required rounding properties.

6.5.2 Postfix operators

Syntax

postfix-expression:
primary-expression
postfix-expression [ expression ]
postfix-expression ( argument-expression-listop; )
postfix-expression . identifier
postfix-expression =-> identifier
postfix-expression ++
postfix-expression = -
( type-name ) { initializer-list }
( type-name ) { initializer-list , }

arqument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

%) An value conversion drops type qualifiers.

§6.5.2 Language 65



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

6.5.2.1 Array subscripting
Constraints

One of the expressions shall have type “pointer to complete object fype”, the other expression shall
have integer type, and the result has type “type”.

Semantics

A postfix expression followed by an expression in square brackets [] is a subscripted designation of
an element of an array object. The definition of the subscript operator [] is that EL[E2] is identical
to (*((EL1)+(E2))). Because of the conversion rules that apply to the binary+ operator, if E1 is an
array object (equivalently, a pointer to the initial element of an array object) and E2 is an integer,
E1[E2] designates the E2 -th element of E1 (counting from zero).

Successive subscript operators designate an element of a multidimensional array object. If E is an
n-dimensional array (n > 2) with dimensions i x j x --- x k, then E (used as other than an lvalue) is
converted to a pointer to an (n — 1)-dimensional array with dimensions j x - - - x k. If the unary *
operator is applied to this pointer explicitly, or implicitly as a result of subscripting, the result is the
referenced (n — 1)-dimensional array, which itself is converted into a pointer if used as other than an
Ivalue. It follows from this that arrays are stored in row-major order (last subscript varies fastest).

EXAMPLE Consider the array object defined by the declaration

| int x[31(51;

Here x
isa 3 x 5 array of

int s; more precisely, x is an array of three element objects, each of which is an array of five int s. In the expression x[1],
which is equivalent to (*((x)+(1))), x is first converted to a pointer to the initial array of five int s. Then i is adjusted
according to the type of x, which conceptually entails multiplying i by the size of the object to which the pointer points,
namely an array of five int objects. The results are added and indirection is applied to yield an array of five int s. When
used in the expression x[1][]j], that array is in turn converted to a pointer to the first of the int's, so x[1]1[j] yields an int.

Forward references: additive operators (6.5.6), address and indirection operators (6.5.3.2), array
declarators (6.7.6.2).

6.5.2.2 Function calls
Constraints

The expression that denotes the called function'® shall have type pointer to function returning
void or returning a complete object type other than an array type.

If the expression that denotes the called function has a type that includes a prototype, the number of
arguments shall agree with the number of parameters. Each argument shall have a type such that its
value may be assigned to an object with the unqualified version of the type of its corresponding
parameter.

Semantics

A postfix expression followed by parentheses () containing a possibly empty, comma-separated
list of expressions is a function call. The postfix expression denotes the called function. The list of
expressions specifies the arguments to the function.

An argument may be an expression of any complete object type. In preparing for the call to a
function, the arguments are evaluated, and each parameter is assigned the value of the corresponding
argument.!oV)

If the expression that denotes the called function has type pointer to function returning an object
type, the function call expression has the same type as that object type, and has the value determined
as specified in 6.8.6.4. Otherwise, the function call has type void.

100)Most often, this is the result of converting an identifier that is a function designator.

10D A function can change the values of its parameters, but these changes cannot affect the values of the arguments. On the
other hand, it is possible to pass a pointer to an object, and the function can then change the value of the object pointed to. A
parameter declared to have array or function type is adjusted to have a pointer type as described in 6.9.1.

66 Language §6.5.22



10

11

12

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

If the expression that denotes the called function has a type that does not include a prototype, the
integer promotions are performed on each argument, and arguments that have type float are
promoted to double. These are called the default argument promotions. If the number of arguments
does not equal the number of parameters, the behavior is undefined. If the function is defined with
a type that includes a prototype, and either the prototype ends with an ellipsis (, ...) or the types
of the arguments after promotion are not compatible with the types of the parameters, the behavior
is undefined.

If the expression that denotes the called function has a type that does include a prototype, the
arguments are implicitly converted, as if by assignment, to the types of the corresponding parameters,
taking the type of each parameter to be the unqualified version of its declared type. The ellipsis
notation in a function prototype declarator causes argument type conversion to stop after the last
declared parameter. The default argument promotions are performed on trailing arguments.

No other conversions are performed implicitly; in particular, the number and types of arguments are
not compared with those of the parameters in a function definition that does not include a function
prototype declarator.

If the function is defined with a type that is not compatible with the type (of the expression) pointed
to by the expression that denotes the called function, the behavior is undefined.

There is a sequence point after the evaluations of the function designator and the actual arguments
but before the actual call. Every evaluation in the calling function (including other function calls)
that is not otherwise specifically sequenced before or after the execution of the body of the called
function is indeterminately sequenced with respect to the execution of the called function.'%?

Recursive function calls shall be permitted, both directly and indirectly through any chain of other
functions.

EXAMPLE In the function call

\ (xpf[f10)1) (f2(), f3() + f4())

the functions f1, f2, f3, and f4 can be called in any order. All side effects have to be completed before the function pointed
toby pf[f1()] is called.

Forward references: function declarators (6.7.6.3), function definitions (6.9.1), the return statement
(6.8.6.4), simple assignment (6.5.16.1).

6.5.2.3 Structure and union members
Constraints

The first operand of the . operator shall have an atomic, qualified, or unqualified structure or union
type, and the second operand shall name a member of that type.

The first operand of the-> operator shall have type “pointer to atomic, qualified, or unqualified
structure” or “pointer to atomic, qualified, or unqualified union”, and the second operand shall
name a member of the type pointed to.

Semantics

A postfix expression followed by the . operator and an identifier designates a member of a structure
or union object. The value is that of the named member,'%®) and is an lvalue if the first expression is
an lvalue. If the first expression has qualified type, the result has the so-qualified version of the type
of the designated member.

A postfix expression followed by the-> operator and an identifier designates a member of a structure
or union object. The value is that of the named member of the object to which the first expression
points, and is an lvalue.!® If the first expression is a pointer to a qualified type, the result has the

1021 other words, function executions do not “interleave” with each other.

103)]f the member used to read the contents of a union object is not the same as the member last used to store a value in the
object, the appropriate part of the object representation of the value is reinterpreted as an object representation in the new
type as described in 6.2.6 (a process sometimes called “type punning”). This might be a trap representation.

1091f &E is a valid pointer expression (where & is the “address-of” operator, which generates a pointer to its operand), the
expression (&E) ->MOS is the same as E.MOS.

§6.5.23 Language 67



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

so-qualified version of the type of the designated member.

Accessing a member of an atomic structure or union object results in undefined behavior.!%)

One special guarantee is made in order to simplify the use of unions: if a union contains several
structures that share a common initial sequence (see below), and if the union object currently contains
one of these structures, it is permitted to inspect the common initial part of any of them anywhere
that a declaration of the completed type of the union is visible. Two structures share a common initial
sequence if corresponding members have compatible types (and, for bit-fields, the same widths) for a
sequence of one or more initial members.

EXAMPLE 1 If f is a function returning a structure or union, and x is a member of that structure or union, f() .x is a valid
postfix expression but is not an lvalue.

EXAMPLE 2 In:

struct s { int i; const int ci; };
struct s s;

const struct s cs;

volatile struct s vs;

the various members have the types:
s.i int
s.ci const int
cs.i const int
cs.ci const int
vs.i volatile int
vs.ci volatile const int

EXAMPLE 3 The following is a valid fragment:

union {
struct {
int alltypes;
}on;
struct {
int type;
int intnode;
} ni;
struct {
int type;
double doublenode;
} nf;
Tou;
u.nf.type = 1;
u.nf.doublenode = 3.14;
/* ... %/
if (u.n.alltypes == 1)
if (sin(u.nf.doublenode) == 0.0)

/* ... %/

The following is not a valid fragment (because the union type is not visible within function f):

struct t1 { int m; };
struct t2 { int m; };
int f(struct tl *pl, struct t2 *p2)

{
if (pl->m < 0)
p2->m = -p2->m;
return pl->m;
}
int g()

105)For example, a data race would occur if access to the entire structure or union in one thread conflicts with access to a
member from another thread, where at least one access is a modification. Members can be safely accessed using a non-atomic
object which is assigned to or from the atomic object.

68 Language §6.5.2.3




N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

{
union {
struct tl1 sl;
struct t2 s2;
}ou;
/* ... x/
return f(&u.sl, &u.s2);
}

Forward references: address and indirection operators (6.5.3.2), structure and union specifiers
(6.7.2.1).

6.5.2.4 Postfix increment and decrement operators
Constraints

The operand of the postfix increment or decrement operator shall have atomic, qualified, or unquali-
fied real or pointer type, and shall be a modifiable lvalue.

Semantics

The result of the postfix ++ operator is the value of the operand. As a side effect, the value of the
operand object is incremented (that is, the value 1 of the appropriate type is added to it). See the
discussions of additive operators and compound assignment for information on constraints, types,
and conversions and the effects of operations on pointers. The value computation of the result is
sequenced before the side effect of updating the stored value of the operand. With respect to an
indeterminately-sequenced function call, the operation of postfix ++ is a single evaluation. Postfix

++ on an object with atomic type is a read-modify-write operation with memory_order_seq_cst
memory order semantics.!%

The postfix- - operator is analogous to the postfix++ operator, except that the value of the operand
is decremented (that is, the value 1 of the appropriate type is subtracted from it).

Forward references: additive operators (6.5.6), compound assignment (6.5.16.2).

6.5.2.5 Compound literals

Constraints

The type name shall specify a complete object type or an array of unknown size, but not a variable
length array type.

All the constraints for initializer lists in 6.7.9 also apply to compound literals.

Semantics

A postfix expression that consists of a parenthesized type name followed by a brace-enclosed list of
initializers is a compound literal. It provides an unnamed object whose value is given by the initializer
list.107)

If the type name specifies an array of unknown size, the size is determined by the initializer list as
specified in 6.7.9, and the type of the compound literal is that of the completed array type. Otherwise

106)Where a pointer to an atomic object can be formed and E has integer type, E++ is equivalent to the following code
sequence where T is the type of E:

T xaddr = &E;
T old = *addr;
T new;

do {

new = old + 1;
} while (!atomic_compare_exchange_strong(addr, &old, new));

with old being the result of the operation.
Special care is necessary if E has floating type; see 6.5.16.2.
107)Note that this differs from a cast expression. For example, a cast specifies a conversion to scalar types or void only, and
the result of a cast expression is not an Ivalue.

§6.5.2.5 Language 69



10

11

12

13

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

(when the type name specifies an object type), the type of the compound literal is that specified by
the type name. In either case, the result is an lvalue.

The value of the compound literal is that of an unnamed object initialized by the initializer list. If
the compound literal occurs outside the body of a function, the object has static storage duration;
otherwise, it has automatic storage duration associated with the enclosing block.

All the semantic rules for initializer lists in 6.7.9 also apply to compound literals.!®

String literals, and compound literals with const-qualified types, need not designate distinct ob-
acts 109)
jects.

EXAMPLE 1 The file scope definition

\ int xp = (int [1){2, 4};

initializes p to point to the first element of an array of two ints, the first having the value two and the second, four. The
expressions in this compound literal are required to be constant. The unnamed object has static storage duration.

EXAMPLE 2 In contrast, in

void f(void)
{
int *p;
/*...%/
p = (int [2]){*p};
/*...%/
}

p is assigned the address of the first element of an array of two ints, the first having the value previously pointed to by p and
the second, zero. The expressions in this compound literal need not be constant. The unnamed object has automatic storage
duration.

EXAMPLE 3 Initializers with designations can be combined with compound literals. Structure objects created using
compound literals can be passed to functions without depending on member order:

drawline((struct point){.x=1, .y=1},
(struct point){.x=3, .y=4});

Or, if drawline instead expected pointers to struct point:

drawline(&(struct point){.x=1, .y=1},
&(struct point){.x=3, .y=4});

EXAMPLE 4 A read-only compound literal can be specified through constructions like:

(const float []){1le0, 1lel, 1le2, 1le3, le4, 1le5, 1le6}

EXAMPLE 5 The following three expressions have different meanings:

"/tmp/ fileXXXXXX"
(char [1){"/tmp/fileXXXXXX"}
(const char []){"/tmp/fileXXXXXX"}

The first always has static storage duration and has type array of char, but need not be modifiable; the last two have
automatic storage duration when they occur within the body of a function, and the first of these two is modifiable.

EXAMPLE 6 Like string literals, const-qualified compound literals can be placed into read-only memory and can even be
shared. For example,

(const char []){"abc"} == "abc"

might yield 1 if the literals’ storage is shared.

19)For example, subobjects without explicit initializers are initialized to zero.

19 This allows implementations to share storage for string literals and constant compound literals with the same or
overlapping representations.

70 Language §6.5.25




14

15

16

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

EXAMPLE 7 Since compound literals are unnamed, a single compound literal cannot specify a circularly linked object. For
example, there is no way to write a self-referential compound literal that could be used as the function argument in place of
the named object endless_zeros below:

struct int_list { int car; struct int_list xcdr; };
struct int_list endless_zeros = {0, &endless_zeros};
eval(endless_zeros);

EXAMPLE 8 Each compound literal creates only a single object in a given scope:

struct s { int i; };

int f (void)

{
struct s *xp = 0, x*q;
int j = 0;
again:
g =p, p=~&((struct s){ j++ });
if (j < 2) goto again;
return p == q && q->i == 1;
}

The function f () always returns the value 1.

Note that if an iteration statement were used instead of an explicit goto and a label, the lifetime of the unnamed object would
be the body of the loop only, and on entry next time around p would have an indeterminate value, which would result in
undefined behavior.

Forward references: type names (6.7.7), initialization (6.7.9).

6.5.3 Unary operators
Syntax

unary-expression:
postfix-expression
++ unary-expression
- - unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof ( type-name )
—Alignof ( type-name )

unary-operator: one of
& * + - ~ 1

6.5.3.1 Prefix increment and decrement operators
Constraints

The operand of the prefix increment or decrement operator shall have atomic, qualified, or unquali-
fied real or pointer type, and shall be a modifiable lvalue.

Semantics

The value of the operand of the prefix++ operator is incremented. The result is the new value of the
operand after incrementation. The expression++E is equivalent to (E+=1). See the discussions of
additive operators and compound assignment for information on constraints, types, side effects,
and conversions and the effects of operations on pointers.

The prefix- - operator is analogous to the prefix++ operator, except that the value of the operand is
decremented.

§6.5.3.1 Language 71



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Forward references: additive operators (6.5.6), compound assignment (6.5.16.2).

6.5.3.2 Address and indirection operators
Constraints

The operand of the unary & operator shall be either a function designator, the result of a [] or unary
* operator, or an lvalue that designates an object that is not a bit-field and is not declared with the
register storage-class specifier.

The operand of the unary * operator shall have pointer type.

Semantics

The unary & operator yields the address of its operand. If the operand has type “type”, the result has
type “pointer to type”. If the operand is the result of a unary * operator, neither that operator nor
the & operator is evaluated and the result is as if both were omitted, except that the constraints on
the operators still apply and the result is not an lvalue. Similarly, if the operand is the result of a []
operator, neither the & operator nor the unary * that is implied by the [] is evaluated and the result
is as if the & operator were removed and the [] operator were changed to a+ operator. Otherwise,
the result is a pointer to the object or function designated by its operand.

The unary * operator denotes indirection. If the operand points to a function, the result is a function
designator; if it points to an object, the result is an lvalue designating the object. If the operand has
type “pointer to type”, the result has type “type”. If an invalid value has been assigned to the pointer,
the behavior of the unary * operator is undefined.!!?

Forward references: storage-class specifiers (6.7.1), structure and union specifiers (6.7.2.1).

6.5.3.3 Unary arithmetic operators
Constraints

The operand of the unary+ or- operator shall have arithmetic type; of the ~ operator, integer type;
of the ! operator, scalar type.

Semantics

The result of the unary + operator is the value of its (promoted) operand. The integer promotions
are performed on the operand, and the result has the promoted type.

The result of the unary- operator is the negative of its (promoted) operand. The integer promotions
are performed on the operand, and the result has the promoted type.

The result of the ~ operator is the bitwise complement of its (promoted) operand (that is, each bit in
the result is set if and only if the corresponding bit in the converted operand is not set). The integer
promotions are performed on the operand, and the result has the promoted type. If the promoted
type is an unsigned type, the expression ~E is equivalent to the maximum value representable in
that type minus E.

The result of the logical negation operator ! is 0 if the value of its operand compares unequal to
0, 1 if the value of its operand compares equal to 0. The result has type int. The expression !E is
equivalent to (0==E).

6.5.3.4 The sizeof and _Alignof operators
Constraints

The sizeof operator shall not be applied to an expression that has function type or an incomplete
type, to the parenthesized name of such a type, or to an expression that designates a bit-field member.
The _Alignof operator shall not be applied to a function type or an incomplete type.

10 Thus, &+E is equivalent to E (even if E is a null pointer), and &(E1[E2]) to ( (E1)+(E2)). It is always true that if Eisa
function designator or an lvalue that is a valid operand of the unary & operator, *&E is a function designator or an lvalue
equal to E. If xP is an Ivalue and T is the name of an object pointer type, * (T)P is an lvalue that has a type compatible with
that to which T points.

Among the invalid values for dereferencing a pointer by the unary * operator are a null pointer, an address inappropriately
aligned for the type of object pointed to, and the address of an object after the end of its lifetime.

72 Language §6.5.34



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Semantics

The sizeof operator yields the size (in bytes) of its operand, which may be an expression or the
parenthesized name of a type. The size is determined from the type of the operand. The result
is an integer. If the type of the operand is a variable length array type, the operand is evaluated;
otherwise, the operand is not evaluated and the result is an integer constant.

The _Alignof operator yields the alignment requirement of its operand type. The operand is not
evaluated and the result is an integer constant. When applied to an array type, the result is the
alignment requirement of the element type.

When sizeof is applied to an operand that has type char, unsigned char, or signed char, (or
a qualified version thereof) the result is 1. When applied to an operand that has array type, the
result is the total number of bytes in the array.!') When applied to an operand that has structure or
union type, the result is the total number of bytes in such an object, including internal and trailing
padding.

The value of the result of both operators is implementation-defined, and its type (an unsigned
integer type) is size_t, defined in <stddef . h> (and other headers).

EXAMPLE 1 A principal use of the sizeof operator is in communication with routines such as storage allocators and I/O
systems. A storage-allocation function might accept a size (in bytes) of an object to allocate and return a pointer to void. For
example:

extern void xalloc(size_t);
double xdp = alloc(sizeof xdp);

The implementation of the alloc function presumably ensures that its return value is aligned suitably for conversion to a
pointer to double.

EXAMPLE 2 Another use of the sizeof operator is to compute the number of elements in an array:

sizeof array / sizeof array[0]
L

EXAMPLE 3 In this example, the size of a variable length array is computed and returned from a function:

#include <stddef.h>

size_t fsize3(int n)

{
char b[n+3]; // variable length array
return sizeof b; // execution time sizeof
}
int main()
{
size_t size;
size = fsize3(10); // fsize3 returns 13
return 0;
}

Forward references: common definitions <stddef . h>(7.19), declarations (6.7), structure and union
specifiers (6.7.2.1), type names (6.7.7), array declarators (6.7.6.2).

6.5.4 Cast operators

Syntax
cast-expression:
unary-expression
( type-name') cast-expression

IDWhen applied to a parameter declared to have array or function type, the sizeof operator yields the size of the adjusted

(pointer) type (see 6.9.1).

§6.5.4 Language 73



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Constraints
Unless the type name specifies a void type, the type name shall specify atomic, qualified, or
unqualified scalar type, and the operand shall have scalar type.

Conversions that involve pointers, other than where permitted by the constraints of 6.5.16.1, shall be
specified by means of an explicit cast.

A pointer type shall not be converted to any floating type. A floating type shall not be converted to
any pointer type.

Semantics

Preceding an expression by a parenthesized type name converts the value of the expression to the
unqualified version of the named type. This construction is called a cast.!'? A cast that specifies no
conversion has no effect on the type or value of an expression.

If the value of the expression is represented with greater range or precision than required by the type
named by the cast (6.3.1.8), then the cast specifies a conversion even if the type of the expression is
the same as the named type and removes any extra range and precision.

Forward references: equality operators (6.5.9), function declarators (6.7.6.3), simple assignment
(6.5.16.1), type names (6.7.7).

6.5.5 Multiplicative operators
Syntax

multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

Constraints
Each of the operands shall have arithmetic type. The operands of the % operator shall have integer

type.

If either operand has decimal floating type, the other operand shall not have standard floating type,
complex type, or imaginary type.

Semantics
The usual arithmetic conversions are performed on the operands.

The result of the binary * operator is the product of the operands.

The result of the / operator is the quotient from the division of the first operand by the second; the
result of the % operator is the remainder. In both operations, if the value of the second operand is
zero, the behavior is undefined.

When integers are divided, the result of the / operator is the algebraic quotient with any fractional
part discarded.!!® If the quotient a/b is representable, the expression (a/b)*b + a%b shall equal a;
otherwise, the behavior of both a/b and a%b is undefined.

6.5.6 Additive operators

Syntax

additive-expression:
multiplicative-expression

additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

112)A cast does not yield an Ivalue.
113)This is often called “truncation toward zero”.

74 Language §6.5.6



10

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Constraints

For addition, either both operands shall have arithmetic type, or one operand shall be a pointer to a
complete object type and the other shall have integer type. (Incrementing is equivalent to adding 1.)

For subtraction, one of the following shall hold:

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible complete object
types; or

— the left operand is a pointer to a complete object type and the right operand has integer type.

(Decrementing is equivalent to subtracting 1.)

If either operand has decimal floating type, the other operand shall not have standard floating type,
complex type, or imaginary type.

Semantics

If both operands have arithmetic type, the usual arithmetic conversions are performed on them.
The result of the binary + operator is the sum of the operands.

The result of the binary- operator is the difference resulting from the subtraction of the second
operand from the first.

For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

When an expression that has integer type is added to or subtracted from a pointer, the result has the
type of the pointer operand. If the pointer operand points to an element of an array object, and the
array is large enough, the result points to an element offset from the original element such that the
difference of the subscripts of the resulting and original array elements equals the integer expression.
In other words, if the expression P points to the i-th element of an array object, the expressions
(P)+N (equivalently, N+(P)) and (P) -N (where N has the value n) point to, respectively, the ¢ + n-th
and ¢ — n-th elements of the array object, provided they exist. Moreover, if the expression P points to
the last element of an array object, the expression (P)+1 points one past the last element of the array
object, and if the expression Q points one past the last element of an array object, the expression
(Q) -1 points to the last element of the array object. If both the pointer operand and the result point
to elements of the same array object, or one past the last element of the array object, the evaluation
shall not produce an overflow; otherwise, the behavior is undefined. If the result points one past
the last element of the array object, it shall not be used as the operand of a unary * operator that is
evaluated.

When two pointers are subtracted, both shall point to elements of the same array object, or one past
the last element of the array object; the result is the difference of the subscripts of the two array
elements. The size of the result is implementation-defined, and its type (a signed integer type) is
ptrdiff_t defined in the <stddef.h> header. If the result is not representable in an object of that
type, the behavior is undefined. In other words, if the expressions P and Q point to, respectively, the
i-th and j-th elements of an array object, the expression (P) - (Q) has the value i — j provided the
value fits in an object of type ptrdiff_t. Moreover, if the expression P points either to an element of
an array object or one past the last element of an array object, and the expression Q points to the last
element of the same array object, the expression ((Q)+1) - (P) has the same value as ((Q) - (P))+1
and as- ((P)-((Q)+1)) , and has the value zero if the expression P points one past the last element
of the array object, even though the expression (Q)+1 does not point to an element of the array
object.!¥)

114) Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In this scheme the

§6.5.6 Language 75



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

11 EXAMPLE Pointer arithmetic is well defined with pointers to variable length array types.

{
int n =4, m=3;
int a[nl[m];
int (xp)[m] = a; // p == &a[0]
p += 1; // p == &a[1]
(xp)[2] = 99; // alll[2] == 99
n=p-a; // n ==

}

12 If array a in the above example were declared to be an array of known constant size, and pointer p were declared to be a
pointer to an array of the same known constant size (pointing to a), the results would be the same.

Forward references: array declarators (6.7.6.2), common definitions <stddef.h> (7.19).

6.5.7 Bitwise shift operators

Syntax
1 shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression
Constraints

2 Each of the operands shall have integer type.

Semantics

3 The integer promotions are performed on each of the operands. The type of the result is that of the
promoted left operand. If the value of the right operand is negative or is greater than or equal to the
width of the promoted left operand, the behavior is undefined.

4  Theresult of E1 << E2is E1 left-shifted E2 bit positions; vacated bits are filled with zeros. If E1 has
an unsigned type, the value of the result is E1 x 282 reduced modulo one more than the maximum
value representable in the result type. If E1 has a signed type and nonnegative value, and E1 x 22 is
representable in the result type, then that is the resulting value; otherwise, the behavior is undefined.

5 Theresultof E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned type or if E1 has a
signed type and a nonnegative value, the value of the result is the integral part of the quotient of
E1/2%2. If E1 has a signed type and a negative value, the resulting value is implementation-defined.

6.5.8 Relational operators

Syntax
1 relational-expression:

shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

Constraints

2 One of the following shall hold:

— both operands have real type; or

integer expression added to or subtracted from the converted pointer is first multiplied by the size of the object originally
pointed to, and the resulting pointer is converted back to the original type. For pointer subtraction, the result of the difference
between the character pointers is similarly divided by the size of the object originally pointed to.

When viewed in this way, an implementation need only provide one extra byte (which can overlap another object in the
program) just after the end of the object in order to satisfy the “one past the last element” requirements.

76 Language §6.5.8



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

— both operands are pointers to qualified or unqualified versions of compatible object types.

If either operand has decimal floating type, the other operand shall not have standard floating type.

Semantics
If both of the operands have arithmetic type, the usual arithmetic conversions are performed.

For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

When two pointers are compared, the result depends on the relative locations in the address space
of the objects pointed to. If two pointers to object types both point to the same object, or both point
one past the last element of the same array object, they compare equal. If the objects pointed to
are members of the same aggregate object, pointers to structure members declared later compare
greater than pointers to members declared earlier in the structure, and pointers to array elements
with larger subscript values compare greater than pointers to elements of the same array with lower
subscript values. All pointers to members of the same union object compare equal. If the expression
P points to an element of an array object and the expression Q points to the last element of the same
array object, the pointer expression Q+1 compares greater than P. In all other cases, the behavior is
undefined.

Each of the operators < (less than), > (greater than), <= (less than or equal to), and >= (greater than or
equal to) shall yield 1 if the specified relation is true and 0 if it is false.l!> The result has type int.

6.5.9 Equality operators

Syntax

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression = relational-expression

Constraints
One of the following shall hold:

— both operands have arithmetic type;
— both operands are pointers to qualified or unqualified versions of compatible types;

— one operand is a pointer to an object type and the other is a pointer to a qualified or unqualified
version of void; or

— one operand is a pointer and the other is a null pointer constant.

If either operand has decimal floating type, the other operand shall not have standard floating type,
complex type, or imaginary type.

Semantics

The == (equal to) and != (not equal to) operators are analogous to the relational operators except for
their lower precedence.!'®) Each of the operators yields 1 if the specified relation is true and 0 if it is
false. The result has type int. For any pair of operands, exactly one of the relations is true.

If both of the operands have arithmetic type, the usual arithmetic conversions are performed. Values
of complex types are equal if and only if both their real parts are equal and also their imaginary parts

115)The expression a<b<c is not interpreted as in ordinary mathematics. As the syntax indicates, it means (a<b)<c; in other
words, “if a is less than b, compare 1 to c; otherwise, compare 0 to c”.
116)Because of the precedences, a<b == c<d is 1 whenever a<b and c<d have the same truth-value.

§6.5.9 Language 77



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

are equal. Any two values of arithmetic types from different type domains are equal if and only
if the results of their conversions to the (complex) result type determined by the usual arithmetic
conversions are equal.

Otherwise, at least one operand is a pointer. If one operand is a pointer and the other is a null
pointer constant, the null pointer constant is converted to the type of the pointer. If one operand is a
pointer to an object type and the other is a pointer to a qualified or unqualified version of void, the
former is converted to the type of the latter.

Two pointers compare equal if and only if both are null pointers, both are pointers to the same object
(including a pointer to an object and a subobject at its beginning) or function, both are pointers to
one past the last element of the same array object, or one is a pointer to one past the end of one array
object and the other is a pointer to the start of a different array object that happens to immediately
follow the first array object in the address space.!!”)

For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

6.5.10 Bitwise AND operator

Syntax
AND-expression:
equality-expression
AND-expression & equality-expression

Constraints
Each of the operands shall have integer type.

Semantics
The usual arithmetic conversions are performed on the operands.

The result of the binary & operator is the bitwise AND of the operands (that is, each bit in the result
is set if and only if each of the corresponding bits in the converted operands is set).

6.5.11 Bitwise exclusive OR operator

Syntax
exclusive-OR-expression:
AND-expression
exclusive-OR-expression ~ AND-expression

Constraints
Each of the operands shall have integer type.

Semantics
The usual arithmetic conversions are performed on the operands.

The result of the ~ operator is the bitwise exclusive OR of the operands (that is, each bit in the result
is set if and only if exactly one of the corresponding bits in the converted operands is set).

117)Two objects can be adjacent in memory because they are adjacent elements of a larger array or adjacent members
of a structure with no padding between them, or because the implementation chose to place them so, even though they
are unrelated. If prior invalid pointer operations (such as accesses outside array bounds) produced undefined behavior,
subsequent comparisons also produce undefined behavior.

78 Language §6.5.11



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

6.5.12 Bitwise inclusive OR operator
Syntax

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

Constraints
Each of the operands shall have integer type.

Semantics
The usual arithmetic conversions are performed on the operands.

The result of the | operator is the bitwise inclusive OR of the operands (that is, each bit in the result
is set if and only if at least one of the corresponding bits in the converted operands is set).

6.5.13 Logical AND operator

Syntax
logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

Constraints
Each of the operands shall have scalar type.

Semantics
The && operator shall yield 1 if both of its operands compare unequal to 0; otherwise, it yields 0. The
result has type int.

Unlike the bitwise binary & operator, the && operator guarantees left-to-right evaluation; if the
second operand is evaluated, there is a sequence point between the evaluations of the first and
second operands. If the first operand compares equal to 0, the second operand is not evaluated.

6.5.14 Logical OR operator

Syntax
logical-OR-expression:
logical-AND-expression
logical-OR-expression || logical-AND-expression

Constraints
Each of the operands shall have scalar type.

Semantics
The | | operator shall yield 1 if either of its operands compare unequal to 0; otherwise, it yields 0.
The result has type int.

Unlike the bitwise | operator, the | | operator guarantees left-to-right evaluation; if the second
operand is evaluated, there is a sequence point between the evaluations of the first and second
operands. If the first operand compares unequal to 0, the second operand is not evaluated.

6.5.15 Conditional operator

Syntax

conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

§6.5.15 Language 79



2

3

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Constraints
The first operand shall have scalar type.

One of the following shall hold for the second and third operands:

— both operands have arithmetic type;

— both operands have the same structure or union type;

— both operands have void type;

— both operands are pointers to qualified or unqualified versions of compatible types;
— one operand is a pointer and the other is a null pointer constant; or

— one operand is a pointer to an object type and the other is a pointer to a qualified or unqualified
version of void.

If either of the second or third operands has decimal floating type, the other operand shall not have
standard floating type, complex type, or imaginary type.

Semantics

The first operand is evaluated; there is a sequence point between its evaluation and the evaluation
of the second or third operand (whichever is evaluated). The second operand is evaluated only if
the first compares unequal to 0; the third operand is evaluated only if the first compares equal to 0;
the result is the value of the second or third operand (whichever is evaluated), converted to the type
described below.!'®

If both the second and third operands have arithmetic type, the result type that would be determined
by the usual arithmetic conversions, were they applied to those two operands, is the type of the
result. If both the operands have structure or union type, the result has that type. If both operands
have void type, the result has void type.

If both the second and third operands are pointers or one is a null pointer constant and the other
is a pointer, the result type is a pointer to a type qualified with all the type qualifiers of the types
referenced by both operands. Furthermore, if both operands are pointers to compatible types or to
differently qualified versions of compatible types, the result type is a pointer to an appropriately
qualified version of the composite type; if one operand is a null pointer constant, the result has the
type of the other operand; otherwise, one operand is a pointer to void or a qualified version of void,
in which case the result type is a pointer to an appropriately qualified version of void.

EXAMPLE The common type that results when the second and third operands are pointers is determined in two independent
stages. The appropriate qualifiers, for example, do not depend on whether the two pointers have compatible types.

Given the declarations

const void xc_vp;
void =*vp;

const int *c_ip;
volatile int *v_ip;
int xip;

const char xc_cp;

the third column in the following table is the common type that is the result of a conditional expression in which the first two
columns are the second and third operands (in either order):

c_.vp c_ip const void *

v_ip © volatile int =

c_ip v_ip const volatile int x
vp c_cp const void x

ip c_ip const int x*

vp ip void *

118) A conditional expression does not yield an lvalue.

80 Language §6.5.15



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

6.5.16 Assignment operators

Syntax

1 assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= x= /= %= 4= -= <<= >>= §&= "= | =

Constraints
2 An assignment operator shall have a modifiable lvalue as its left operand.

Semantics

3 An assignment operator stores a value in the object designated by the left operand. An assignment
expression has the value of the left operand after the assignment,''? but is not an Ivalue. The type of
an assignment expression is the type the left operand would have after Ivalue conversion. The side
effect of updating the stored value of the left operand is sequenced after the value computations of
the left and right operands. The evaluations of the operands are unsequenced.

6.5.16.1 Simple assignment
Constraints
1 One of the following shall hold:'??

— the left operand has atomic, qualified, or unqualified arithmetic type, and the right has
arithmetic type;

— the left operand has an atomic, qualified, or unqualified version of a structure or union type
compatible with the type of the right;

— the left operand has atomic, qualified, or unqualified pointer type, and (considering the type
the left operand would have after lvalue conversion) both operands are pointers to qualified
or unqualified versions of compatible types, and the type pointed to by the left has all the
qualifiers of the type pointed to by the right;

— the left operand has atomic, qualified, or unqualified pointer type, and (considering the type
the left operand would have after lvalue conversion) one operand is a pointer to an object type,
and the other is a pointer to a qualified or unqualified version of void, and the type pointed to
by the left has all the qualifiers of the type pointed to by the right;

— the left operand is an atomic, qualified, or unqualified pointer, and the right is a null pointer
constant; or

— the left operand has type atomic, qualified, or unqualified _Bool, and the right is a pointer.

Semantics
2 Insimple assignment (=), the value of the right operand is converted to the type of the assignment
expression and replaces the value stored in the object designated by the left operand. 2

3 If the value being stored in an object is read from another object that overlaps in any way the
storage of the first object, then the overlap shall be exact and the two objects shall have qualified or
unqualified versions of a compatible type; otherwise, the behavior is undefined.

4  EXAMPLE1 In the program fragment

119 The implementation is permitted to read the object to determine the value but is not required to, even when the object
has volatile-qualified type.

120)The asymmetric appearance of these constraints with respect to type qualifiers is due to the conversion (specified in
6.3.2.1) that changes Ivalues to “the value of the expression” and thus removes any type qualifiers that were applied to the
type category of the expression (for example, it removes const but not volatile from the type int volatile * const).

121) As described in 6.2.6.1, a store to an object with atomic type is done with memory_order_seq_cst semantics.

§6.5.16.1 Language 81



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

int f(void);

char c;

/* ... %/

if ((c = f()) == -1)
VE T V4

the int value returned by the function could be truncated when stored in the char, and then converted back to int width
prior to the comparison. In an implementation in which “plain” char has the same range of values as unsigned char (and
char is narrower than int), the result of the conversion cannot be negative, so the operands of the comparison can never
compare equal. Therefore, for full portability, the variable ¢ would be declared as int.

EXAMPLE 2 In the fragment:

char c;
int i;
long 1;

the value of i is converted to the type of the assignment expression ¢ = i, thatis, char type. The value of the expression
enclosed in parentheses is then converted to the type of the outer assignment expression, that is, Long int type.

EXAMPLE 3 Consider the fragment:

const char xxcpp;
char xp;
const char c = 'A’;

cpp = &p; // constraint violation
*cpp = &c; // valid
*p = 0; // valid

The first assignment is unsafe because it would allow the following valid code to attempt to change the value of the const
object c.

6.5.16.2 Compound assignment
Constraints

For the operators+= and-= only, either the left operand shall be an atomic, qualified, or unqualified
pointer to a complete object type, and the right shall have integer type; or the left operand shall have
atomic, qualified, or unqualified arithmetic type, and the right shall have arithmetic type.

For the other operators, the left operand shall have atomic, qualified, or unqualified arithmetic type,
and (considering the type the left operand would have after lvalue conversion) each operand shall
have arithmetic type consistent with those allowed by the corresponding binary operator.

If either operand has decimal floating type, the other operand shall not have standard floating type,
complex type, or imaginary type.

Semantics

A compound assignment of the form E1 op= E2 is equivalent to the simple assignment expression
El = E1 op (E2), except that the lvalue E1 is evaluated only once, and with respect to an inde-
terminately-sequenced function call, the operation of a compound assignment is a single evalu-
ation. If E1 has an atomic type, compound assignment is a read-modify-write operation with
memory_order_seq_cst memory order semantics.

NOTE Where a pointer to an atomic object can be formed and E1 and E2 have integer type, this is equivalent to the following
code sequence where T7 is the type of E1 and T2 is the type of E2:

T1 xaddr = &E1;

T2 val = (E2);
T1 new;
do {

[
|
\ T1 old = *addr;
|
|
|

new = old op val;

82 Language §6.5.16.2




N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

\ } while ('atomic_compare_exchange_strong(addr, &old, new));

with new being the result of the operation.

If E1 or E2 has floating type, then exceptional conditions or floating-point exceptions encountered during discarded
evaluations of new would also be discarded in order to satisfy the equivalence of E1 op= E2 and E1 = E1 op (E2). For
example, if Annex F is in effect, the floating types involved have IEC 60559 formats, and FLT_EVAL_METHOD is O, the
equivalent code would be:

#include <fenv.h>
#pragma STDC FENV_ACCESS ON
/*x ... x/
fenv_t fenv;
T1 *addr = &E1;
T2 val = E2;
T1 old = *addr;
T1 new;
feholdexcept(&fenv);
for (;;) {
new = old op val;
if (atomic_compare_exchange_strong(addr, &old, new))
break;
feclearexcept (FE_ALL_EXCEPT) ;
}

feupdateenv(&fenv) ;

If FLT_EVAL_METHOD is not 0, then T2 is expected to be a type with the range and precision to which E2 is evaluated in order
to satisfy the equivalence.

6.5.17 Comma operator

Syntax
expression:

assignment-expression

expression , assignment-expression
Semantics

The left operand of a comma operator is evaluated as a void expression; there is a sequence point
between its evaluation and that of the right operand. Then the right operand is evaluated; the result
has its type and value.!??

EXAMPLE As indicated by the syntax, the comma operator (as described in this subclause) cannot appear in contexts where
a comma is used to separate items in a list (such as arguments to functions or lists of initializers). On the other hand, it can be

used within a parenthesized expression or within the second expression of a conditional operator in such contexts. In the
function call

| f(a, (t=3, t+2), c)

the function has three arguments, the second of which has the value 5.

Forward references: initialization (6.7.9).

122) A comma operator does not yield an lvalue.

§6.5.17 Language 83



10

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

6.6 Constant expressions
Syntax

constant-expression:
conditional-expression

Description

A constant expression can be evaluated during translation rather than runtime, and accordingly
may be used in any place that a constant may be.

Constraints

Constant expressions shall not contain assignment, increment, decrement, function-call, or comma
operators, except when they are contained within a subexpression that is not evaluated.!?®

Each constant expression shall evaluate to a constant that is in the range of representable values for
its type.

Semantics

An expression that evaluates to a constant is required in several contexts. If a floating expression
is evaluated in the translation environment, the arithmetic range and precision shall be at least as
great as if the expression were being evaluated in the execution environment.'?%

An integer constant expression'?® shall have integer type and shall only have operands that are integer

constants, enumeration constants, character constants, sizeof expressions whose results are integer
constants, _Alignof expressions, and floating constants that are the immediate operands of casts.
Cast operators in an integer constant expression shall only convert arithmetic types to integer types,
except as part of an operand to the sizeof or _Alignof operator.

More latitude is permitted for constant expressions in initializers. Such a constant expression shall
be, or evaluate to, one of the following:

— an arithmetic constant expression,
— anull pointer constant,
— an address constant, or

— an address constant for a complete object type plus or minus an integer constant expression.

An arithmetic constant expression shall have arithmetic type and shall only have operands that are
integer constants, ﬂoating constants, enumeration constants, character constants, sizeof expressions
whose results are integer constants, and _Alignof expressions. Cast operators in an arithmetic
constant expression shall only convert arithmetic types to arithmetic types, except as part of an
operand to a sizeof or _Alignof operator.

An address constant is a null pointer, a pointer to an lvalue designating an object of static storage
duration, or a pointer to a function designator; it shall be created explicitly using the unary &
operator or an integer constant cast to pointer type, or implicitly by the use of an expression of array
or function type. The array-subscript [] and member-access . and-> operators, the address & and
indirection * unary operators, and pointer casts may be used in the creation of an address constant,
but the value of an object shall not be accessed by use of these operators.

An implementation may accept other forms of constant expressions.

123)The operand of a sizeof or _Alignof operator is usually not evaluated (6.5.3.4).

12)The use of evaluation formats as characterized by FLT_EVAL_METHOD also applies to evaluation in the translation
environment.

125) An integer constant expression is required in a number of contexts such as the size of a bit-field member of a structure,
the value of an enumeration constant, and the size of a non-variable length array. Further constraints that apply to the integer
constant expressions used in conditional-inclusion preprocessing directives are discussed in 6.10.1.

84 Language §6.6



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

The semantic rules for the evaluation of a constant expression are the same as for nonconstant
expressions.!20)

Forward references: array declarators (6.7.6.2), initialization (6.7.9).

126)Thus, in the following initialization,

[
static int i =2 || 1/ ©;

the expression is a valid integer constant expression with value one.

§6.6 Language 85



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

6.7 Declarations

Syntax

1 declaration:
declaration-specifiers init-declarator-listopt ;
attribute-specifier-sequence declaration-specifiers init-declarator-list ;
static_assert-declaration attribute-declaration
declaration-specifiers:
declaration-specifier attribute-specifier-sequenceopt
declaration-specifier declaration-specifiers
declaration-specifier:
storage-class-specifier
type-specifier-qualifier
function-specifier
init-declarator-list:
init-declarator
init-declarator-list , init-declarator
init-declarator:
declarator
declarator = initializer
attribute-declaration:
attribute-specifier-sequence ;

Constraints

2 A declaration other than a static_assert or attribute declaration shall declare at least a declarator
(other than the parameters of a function or the members of a structure or union), a tag, or the
members of an enumeration.

3 If an identifier has no linkage, there shall be no more than one declaration of the identifier (in a
declarator or type specifier) with the same scope and in the same name space, except that:

— atypedef name may be redefined to denote the same type as it currently does, provided that
type is not a variably modified type;

— tags may be redeclared as specified in 6.7.2.3.

4 All declarations in the same scope that refer to the same object or function shall specify compatible

types.

Semantics

5 A declaration specifies the interpretation and properties of a set of identifiers. A definition of an
identifier is a declaration for that identifier that:

— for an object, causes storage to be reserved for that object;

— for a function, includes the function body;'*”

— for an enumeration constant, is the (only) declaration of the identifier;

— for a typedef name, is the first (or only) declaration of the identifier.

6  The declaration specifiers consist of a sequence of specifiers, followed by an optional attribute
specifier sequence, that indicate the linkage, storage duration, and part of the type of the entities that
the declarators denote. The init declarator list is a comma-separated sequence of declarators, each of
which may have additional type information, or an initializer, or both. The declarators contain the
identifiers (if any) being declared. The optional attribute specifier sequence appertains to each of the
entities declared by the declarators of the init declarator list.

127)Bunction definitions have a different syntax, described in 6.9.1.

86 Language §6.7



10

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

If an identifier for an object is declared with no linkage, the type for the object shall be complete
by the end of its declarator, or by the end of its init-declarator if it has an initializer; in the case of
function parameters, it is the adjusted type (see 6.7.6.3) that is required to be complete.

The optional attribute specifier sequence terminating a sequence of declaration specifiers appertains
to the type determined by the preceding sequence of declaration specifiers. The attribute specifier
sequence affects the type only for the declaration it appears in, not other declarations involving the
same type.

Except where specified otherwise, the meaning of an attribute declaration is implementation-defined.

EXAMPLE In the declaration for an entity, attributes appertaining to that entity may appear at the start of the declaration
and after the identifier for that declaration.

\ [[deprecated]] void f [[deprecated]] (void); // valid

Forward references: declarators (6.7.6), enumeration specifiers (6.7.2.2), initialization (6.7.9), type
names (6.7.7), type qualifiers (6.7.3).

6.7.1 Storage-class specifiers
Syntax

storage-class-specifier:
typedef
extern
static
—Thread_local
auto
register

Constraints

At most, one storage-class specifier may be given in the declaration specifiers in a declaration, except
that _Thread_local may appear with static or extern.!?®

In the declaration of an object with block scope, if the declaration specifiers include _Thread_local,
they shall also include either static or extern. If _Thread_local appears in any declaration of an
object, it shall be present in every declaration of that object.

—Thread_local shall not appear in the declaration specifiers of a function declaration.

Semantics

The typedef specifier is called a “storage-class specifier” for syntactic convenience only; it is
discussed in 6.7.8. The meanings of the various linkages and storage durations were discussed in
6.2.2 and 6.2.4.

A declaration of an identifier for an object with storage-class specifier register suggests that
access to the object be as fast as possible. The extent to which such suggestions are effective is
implementation-defined.'?”)

The declaration of an identifier for a function that has block scope shall have no explicit storage-class
specifier other than extern.

If an aggregate or union object is declared with a storage-class specifier other than typedef, the
properties resulting from the storage-class specifier, except with respect to linkage, also apply to the
members of the object, and so on recursively for any aggregate or union member objects.

Forward references: type definitions (6.7.8).

128)See “future language directions” (6.11.5).

129)The implementation can treat any register declaration simply as an auto declaration. However, whether or not
addressable storage is actually used, the address of any part of an object declared with storage-class specifier register
cannot be computed, either explicitly (by use of the unary & operator as discussed in 6.5.3.2) or implicitly (by converting
an array name to a pointer as discussed in 6.3.2.1). Thus, the only operator that can be applied to an array declared with
storage-class specifier register is sizeof.

§6.7.1 Language 87



1

ISO/IEC 9899:202x (E)

6.7.2 Type specifiers

Syntax

type-specifier:

Constraints

void

char

short

int

long

float

double

signed

unsigned

—Bool

—Complex
—Decimal32
—Decimal64
—Decimall28
atomic-type-specifier
struct-or-union-specifier
enum-specifier
typedef-name

working draft — October 1, 2020

N2573

At least one type specifier shall be given in the declaration specifiers in each declaration, and in the
specifier-qualifier list in each member declaration and type name. Each list of type specifiers shall
be one of the following multisets (delimited by commas, when there is more than one multiset per
item); the type specifiers may occur in any order, possibly intermixed with the other declaration
specifiers.

88

void

char

signed char

unsigned char

short, signed short, short int, or signed short int

unsigned short, or unsigned short int

int, signed, or signed int

unsigned, or unsigned int

long, signed long, long int, or signed long int

unsigned long, or unsigned long int

long long, signed long long, long long int, or signed long long int
unsigned long long, or unsigned long long int

float

double

long double

_Decimal32
_Decimalé64

_Decimall28

—Bool

§6.7.2



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

— float _Complex

— double _Complex

— long double _Complex
— atomic type specifier

— struct or union specifier
— enum specifier

— typedef name

The type specifier _Complex shall not be used if the implementation does not support complex
types, and the type specifiers _Decimal32,_Decimal64, and _Decimall28 shall not be used if the
implementation does not support decimal floating types (see 6.10.8.3).

Semantics

Specifiers for structures, unions, enumerations, and atomic types are discussed in 6.7.2.1 through
6.7.2.4. Declarations of typedef names are discussed in 6.7.8. The characteristics of the other types
are discussed in 6.2.5.

Each of the comma-separated multisets designates the same type, except that for bit-fields, it is
implementation-defined whether the specifier int designates the same type as signed int or the
same type as unsigned int.

Forward references: atomic type specifiers (6.7.2.4), enumeration specifiers (6.7.2.2), structure and
union specifiers (6.7.2.1), tags (6.7.2.3), type definitions (6.7.8).

6.7.2.1 Structure and union specifiers

Syntax

struct-or-union-specifier:
struct-or-union attribute-specifier-sequenceop identifierop, { member-declaration-list }
struct-or-union attribute-specifier-sequenceop identifier

struct-or-union:
struct
union

member-declaration-list:
member-declaration
member-declaration-list member-declaration

member-declaration:
attribute-specifier-sequenceqp specifier-qualifier-list member-declarator-listop: ;
static_assert-declaration

specifier-qualifier-list:
type-specifier-qualifier attribute-specifier-sequenceqpt
type-specifier-qualifier specifier-qualifier-list

type-specifier-qualifier:
type-specifier
type-qualifier
alignment-specifier

§6.7.2.1 Language 89



10

11

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

member-declarator-list:
member-declarator
member-declarator-list , member-declarator

member-declarator:
declarator
declaratorop; = constant-expression

Constraints

A member declaration that does not declare an anonymous structure or anonymous union shall
contain a member declarator list.

A structure or union shall not contain a member with incomplete or function type (hence, a structure
shall not contain an instance of itself, but may contain a pointer to an instance of itself), except that
the last member of a structure with more than one named member may have incomplete array type;
such a structure (and any union containing, possibly recursively, a member that is such a structure)
shall not be a member of a structure or an element of an array.

The expression that specifies the width of a bit-field shall be an integer constant expression with a
nonnegative value that does not exceed the width of an object of the type that would be specified
were the colon and expression omitted.’3?  If the value is zero, the declaration shall have no
declarator.

A Dbit-field shall have a type that is a qualified or unqualified version of _Bool, signed int,
unsigned int, or some other implementation-defined type. It is implementation-defined whether
atomic types are permitted.

An attribute specifier sequence shall not appear in a struct-or-union specifier without a member
declaration list, except in a declaration of the form:

struct-or-union attribute-specifier-sequence identifier ;

The attributes in the attribute specifier sequence, if any, are thereafter considered attributes of the
struct or union whenever it is named.

Semantics

As discussed in 6.2.5, a structure is a type consisting of a sequence of members, whose storage is
allocated in an ordered sequence, and a union is a type consisting of a sequence of members whose
storage overlap.

Structure and union specifiers have the same form. The keywords struct and union indicate that
the type being specified is, respectively, a structure type or a union type.

The optional attribute specifier sequence in a struct-or-union specifier appertains to the structure
or union type being declared. The optional attribute specifier sequence in a member declaration
appertains to each of the members declared by the member declarator list; it shall not appear if the
optional member declarator list is omitted. The optional attribute specifier sequence in a specifier
qualifier list appertains to the type denoted by the preceding type specifier qualifiers. The attribute
specifier sequence affects the type only for the member declaration or type name it appears in, not
other types or declarations involving the same type.

The presence of a member declaration list in a struct-or-union specifier declares a new type, within
a translation unit. The member declaration list is a sequence of declarations for the members of
the structure or union. If the member declaration list does not contain any named members, either
directly or via an anonymous structure or anonymous union, the behavior is undefined. The type is
incomplete until immediately after the } that terminates the list, and complete thereafter.

A member of a structure or union may have any complete object type other than a variably modified
type.!®” In addition, a member may be declared to consist of a specified number of bits (including

130While the number of bits in a _Bool object is at least CHAR_BIT, the width of a _Bool can be just 1 bit.
13D A structure or union cannot contain a member with a variably modified type because member names are not ordinary

90 Language §6.7.2.1



12

13

14

15

16

17

18

19
20

21

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

a sign bit, if any). Such a member is called a bit-field;'*? its width is preceded by a colon.

A Dbit-field is interpreted as having a signed or unsigned integer type consisting of the specified
number of bits.’*¥ If the value 0 or 1 is stored into a nonzero-width bit-field of type _Bool, the
value of the bit-field shall compare equal to the value stored; a_Bool bit-field has the semantics of a
—Bool.

An implementation may allocate any addressable storage unit large enough to hold a bit-field. If
enough space remains, a bit-field that immediately follows another bit-field in a structure shall be
packed into adjacent bits of the same unit. If insufficient space remains, whether a bit-field that
does not fit is put into the next unit or overlaps adjacent units is implementation-defined. The
order of allocation of bit-fields within a unit (high-order to low-order or low-order to high-order) is
implementation-defined. The alignment of the addressable storage unit is unspecified.

A bit-field declaration with no declarator, but only a colon and a width, indicates an unnamed
bit-field.!*)  As a special case, a bit-field structure member with a width of 0 indicates that no
further bit-field is to be packed into the unit in which the previous bit-field, if any, was placed.

An unnamed member whose type specifier is a structure specifier with no tag is called an anonymous
structure; an unnamed member whose type specifier is a union specifier with no tag is called an
anonymous union. The members of an anonymous structure or union are considered to be members
of the containing structure or union, keeping their structure or union layout. This applies recursively
if the containing structure or union is also anonymous.

Each non-bit-field member of a structure or union object is aligned in an implementation-defined
manner appropriate to its type.

Within a structure object, the non-bit-field members and the units in which bit-fields reside have
addresses that increase in the order in which they are declared. A pointer to a structure object,
suitably converted, points to its initial member (or if that member is a bit-field, then to the unit in
which it resides), and vice versa. There may be unnamed padding within a structure object, but not
at its beginning.

The size of a union is sufficient to contain the largest of its members. The value of at most one of the
members can be stored in a union object at any time. A pointer to a union object, suitably converted,
points to each of its members (or if a member is a bit-field, then to the unit in which it resides), and
vice versa.

There may be unnamed padding at the end of a structure or union.

As a special case, the last member of a structure with more than one named member may have an
incomplete array type; this is called a flexible array member. In most situations, the flexible array
member is ignored. In particular, the size of the structure is as if the flexible array member were
omitted except that it may have more trailing padding than the omission would imply. However,
when a . (or->) operator has a left operand that is (a pointer to) a structure with a flexible array
member and the right operand names that member, it behaves as if that member were replaced with
the longest array (with the same element type) that would not make the structure larger than the
object being accessed; the offset of the array shall remain that of the flexible array member, even if
this would differ from that of the replacement array. If this array would have no elements, it behaves
as if it had one element but the behavior is undefined if any attempt is made to access that element
or to generate a pointer one past it.

EXAMPLE 1 The following declarations illustrate the behavior when an attribute is written on a tag declaration:

struct [[deprecated]] S; // valid, [[deprecated]] appertains to struct S

\ void f(struct S x*s); // valid, the struct S type has the [[deprecated]] \
\ // attribute \
\ struct S { // valid, struct S inherits the [[deprecated]] attribute |

identifiers as defined in 6.2.3.

132)The unary & (address-of) operator cannot be applied to a bit-field object; thus, there are no pointers to or arrays of bit-field
objects.

133) As specified in 6.7.2 above, if the actual type specifier used is int or a typedef-name defined as int, then it is implemen-
tation-defined whether the bit-field is signed or unsigned.

134 An unnamed bit-field structure member is useful for padding to conform to externally imposed layouts.

§6.7.2.1 Language 91



22

23

24

25

26

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

int a; // from the previous declaration
}i
void g(struct [[deprecated]] S s); // invalid

EXAMPLE 2 The following illustrates anonymous structures and unions:

struct v {
union { // anonymous union
struct { int i, j; }; // anonymous structure
struct { long k, 1; } w;
+
int m;
} vl

2; // valid
3; // invalid: 1inner structure is not anonymous
=5; // valid

vl.i
vl.k
vl.w.k

EXAMPLE 3 After the declaration:

struct s { int n; double d[]; };

the structure struct s has a flexible array member d. A typical way to use this is:

int m = /x some value */;
struct s *p = malloc(sizeof (struct s) + sizeof (double [m]));

and assuming that the call to malloc succeeds, the object pointed to by p behaves, for most purposes, as if p had been
declared as:

i struct { int n; double d[ml; } *p;

(there are circumstances in which this equivalence is broken; in particular, the offsets of member d might not be the same).

Following the above declaration:

struct s t1 = { 0 }; // valid

struct s t2 = { 1, { 4.2 }}; // invalid

tl.n = 4; // valid

t1.d[0] = 4.2; // might be undefined behavior

The initialization of t2 is invalid (and violates a constraint) because struct s is treated as if it did not contain member d.
The assignment to t1.d[0] is probably undefined behavior, but it is possible that

[
sizeof (struct s) >= offsetof(struct s, d) + sizeof (double)

in which case the assignment would be legitimate. Nevertheless, it cannot appear in strictly conforming code.

After the further declaration:

struct ss { int n; };

the expressions:

sizeof (struct s) >= sizeof (struct ss)
sizeof (struct s) >= offsetof(struct s, d)

are always equal to 1.

If sizeof (double) is 8, then after the following code is executed:

struct s *xsl;
struct s *s2;
sl = malloc(sizeof (struct s) + 64);
s2 = malloc(sizeof (struct s) + 46);

92 Language §6.7.2.1



27

28

29

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

and assuming that the calls to malloc succeed, the objects pointed to by s1 and s2 behave, for most purposes, as if the
identifiers had been declared as:

struct { int n; double d[8]; } xsl;
struct { int n; double d[5]; } *s2;

Following the further successful assignments:

sl
s2

malloc(sizeof (struct s) + 10);
malloc(sizeof (struct s) + 6);

they then behave as if the declarations were:

struct { int n; double d[1]; } =*sl, *s2;

and:
double xdp;
dp = &(s1->d[0]); // valid
xdp = 42; // valid
dp = &(s2->d[0]); // valid
xdp = 42; // undefined behavior

The assignment:

[
*S1 = *52;

only copies the member n; if any of the array elements are within the first sizeof (struct s) bytes of the structure, they
might be copied or simply overwritten with indeterminate values.

EXAMPLE 4 Because members of anonymous structures and unions are considered to be members of the containing
structure or union, struct s in the following example has more than one named member and thus the use of a flexible array
member is valid:

struct s {
struct { int i; };
int all;

i

Forward references: declarators (6.7.6), tags (6.7.2.3).

6.7.2.2 Enumeration specifiers

Syntax

enum-specifier:
enum attribute-specifier-sequenceop: identifierop: { enumerator-list }
enum attribute-specifier-sequenceop: identifierope { enumerator-list , }
enum identifier

enumerator-list:

enumerator

enumerator-list , enumerator
enumerator:

enumeration-constant attribute-specifier-sequencept

enumeration-constant attribute-specifier-sequenceopy = constant-expression
Constraints

The expression that defines the value of an enumeration constant shall be an integer constant
expression that has a value representable as an int.

Semantics

The optional attribute specifier sequence in the enum specifier appertains to the enumeration; the
attributes in that attribute specifier sequence are thereafter considered attributes of the enumeration

§6.7.22 Language 93



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

whenever it is named. The optional attribute specifier sequence in the enumerator appertains to that
enumerator.

The identifiers in an enumerator list are declared as constants that have type int and may appear
wherever such are permitted.!® An enumerator with = defines its enumeration constant as the
value of the constant expression. If the first enumerator has no =, the value of its enumeration
constant is 0. Each subsequent enumerator with no = defines its enumeration constant as the value
of the constant expression obtained by adding 1 to the value of the previous enumeration constant.
(The use of enumerators with = may produce enumeration constants with values that duplicate
other values in the same enumeration.) The enumerators of an enumeration are also known as its
members.

Each enumerated type shall be compatible with char, a signed integer type, or an unsigned integer
type. The choice of type is implementation-defined,'*® but shall be capable of representing the
values of all the members of the enumeration. The enumerated type is incomplete until immediately
after the } that terminates the list of enumerator declarations, and complete thereafter.

EXAMPLE The following fragment:

enum hue { chartreuse, burgundy, claret=20, winedark };
enum hue col, xcp;
col = claret;

cp = &col;
if (*cp != burgundy)
/* .. %/

makes hue the tag of an enumeration, and then declares col as an object that has that type and cp as a pointer to an object
that has that type. The enumerated values are in the set {0, 1,20, 21}.

Forward references: tags (6.7.2.3).

6.7.2.3 Tags
Constraints

A specific type shall have its content defined at most once.

Where two declarations that use the same tag declare the same type, they shall both use the same
choice of struct, union, or enum.

A type specifier of the form

enum identifier
without an enumerator list shall only appear after the type it specifies is complete.
A type specifier of the form

struct-or-union attribute-specifier-sequenceop: identifier

shall not contain an attribute specifier sequence.'>”)

Semantics

All declarations of structure, union, or enumerated types that have the same scope and use the same
tag declare the same type. Irrespective of whether there is a tag or what other declarations of the
type are in the same translation unit, the type is incomplete!® until immediately after the closing
brace of the list defining the content, and complete thereafter.

Two declarations of structure, union, or enumerated types which are in different scopes or use

135 Thus, the identifiers of enumeration constants declared in the same scope are all required to be distinct from each other
and from other identifiers declared in ordinary declarators.

136) An implementation can delay the choice of which integer type until all enumeration constants have been seen.

137) As specified in 6.7.2.1 above, the type specifier may be followed by a ; or a member declaration list.

138) An incomplete type can only be used when the size of an object of that type is not needed. It is not needed, for example,
when a typedef name is declared to be a specifier for a structure or union, or when a pointer to or a function returning a
structure or union is being declared. (See incomplete types in 6.2.5.) The specification has to be complete before such a
function is called or defined.

94 Language §6.7.23



10

11

12

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

different tags declare distinct types. Each declaration of a structure, union, or enumerated type
which does not include a tag declares a distinct type.

A type specifier of the form

struct-or-union attribute-specifier-sequenceqp identifierope { member-declaration-list }
or

enum attribute-specifier-sequenceqpy identifierop, { enumerator-list }
or

enum attribute-specifier-sequenceop: identifierops { enumerator-list , }

declares a structure, union, or enumerated type. The list defines the structure content, union content,
or enumeration content. If an identifier is provided,'®” the type specifier also declares the identifier to
be the tag of that type. The optional attribute specifier sequence appertains to the structure, union,
or enumeration type being declared; the attributes in that attribute specifier sequence are thereafter
considered attributes of the structure, union, or enumeration type whenever it is named.

A declaration of the form
struct-or-union attribute-specifier-sequencep identifier ;

specifies a structure or union type and declares the identifier as a tag of that type.!*?) The optional
attribute specifier sequence appertains to the structure or union type being declared; the attributes
in that attribute specifier sequence are thereafter considered attributes of the structure or union type
whenever it is named.

If a type specifier of the form
struct-or-union attribute-specifier-sequencep, identifier

occurs other than as part of one of the above forms, and no other declaration of the identifier as a
tag is visible, then it declares an incomplete structure or union type, and declares the identifier as
the tag of that type.!4?

If a type specifier of the form

struct-or-union attribute-specifier-sequencep, identifier
or

enum identifier

occurs other than as part of one of the above forms, and a declaration of the identifier as a tag is
visible, then it specifies the same type as that other declaration, and does not redeclare the tag.

EXAMPLE 1 This mechanism allows declaration of a self-referential structure.

struct tnode {

int count;

struct tnode xleft, *right;
I3

specifies a structure that contains an integer and two pointers to objects of the same type. Once this declaration has been
given, the declaration

struct tnode s, *sp;
L

declares s to be an object of the given type and sp to be a pointer to an object of the given type. With these declarations, the
expression sp->left refers to the left struct tnode pointer of the object to which sp points; the expression s. right->count
designates the count member of the right struct tnode pointed to from s.

The following alternative formulation uses the typedef mechanism:

139)1f there is no identifier, the type can, within the translation unit, only be referred to by the declaration of which it is a part.

Of course, when the declaration is of a typedef name, subsequent declarations can make use of that typedef name to declare
objects having the specified structure, union, or enumerated type.
140) A similar construction with enum does not exist.

§6.7.2.3 Language 95



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

typedef struct tnode TNODE;
struct tnode {

int count;

TNODE =*left, *right;
+
TNODE s, *sp;

EXAMPLE 2 To illustrate the use of prior declaration of a tag to specify a pair of mutually referential structures, the
declarations

struct sl { struct s2 xs2p; /* ... %/ }; // D1
struct s2 { struct sl xslp; /*x ... x/ }; // D2

specify a pair of structures that contain pointers to each other. Note, however, that if s2 were already declared as a tag in an
enclosing scope, the declaration D1 would refer to if, not to the tag s2 declared in D2. To eliminate this context sensitivity, the
declaration

struct s2;

can be inserted ahead of D1. This declares a new tag s2 in the inner scope; the declaration D2 then completes the specification
of the new type.

Forward references: declarators (6.7.6), type definitions (6.7.8).

6.7.2.4 Atomic type specifiers
Syntax
atomic-type-specifier:
—Atomic ( type-name )

Constraints
Atomic type specifiers shall not be used if the implementation does not support atomic types (see
6.10.8.3).

The type name in an atomic type specifier shall not refer to an array type, a function type, an atomic
type, or a qualified type.

Semantics

The properties associated with atomic types are meaningful only for expressions that are lvalues.
If the _Atomic keyword is immediately followed by a left parenthesis, it is interpreted as a type
specifier (with a type name), not as a type qualifier.

6.7.3 Type qualifiers

Syntax
type-qualifier:
const
restrict
volatile
_Atomic
Constraints

Types other than pointer types whose referenced type is an object type shall not be restrict-qualified.

The _Atomic qualifier shall not be used if the implementation does not support atomic types
(see 6.10.8.3).

The type modified by the _Atomic qualifier shall not be an array type or a function type.

96 Language §6.7.3



10

11

12

13

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Semantics

The properties associated with qualified types are meaningful only for expressions that are lval-
141)
ues.

If the same qualifier appears more than once in the same specifier-qualifier list or as declaration
specifiers, either directly or via one or more typedefs, the behavior is the same as if it appeared only
once. If other qualifiers appear along with the _Atomic qualifier the resulting type is the so-qualified
atomic type.

If an attempt is made to modify an object defined with a const-qualified type through use of an
lvalue with non-const-qualified type, the behavior is undefined. If an attempt is made to refer to an
object defined with a volatile-qualified type through use of an lvalue with non-volatile-qualified
type, the behavior is undefined.!*?)

An object that has volatile-qualified type may be modified in ways unknown to the implementation
or have other unknown side effects. Therefore any expression referring to such an object shall be
evaluated strictly according to the rules of the abstract machine, as described in 5.1.2.3. Furthermore,
at every sequence point the value last stored in the object shall agree with that prescribed by the
abstract machine, except as modified by the unknown factors mentioned previously.'*3 What
constitutes an access to an object that has volatile-qualified type is implementation-defined.

An object that is accessed through a restrict-qualified pointer has a special association with that
pointer. This association, defined in 6.7.3.1 below, requires that all accesses to that object use, directly
or indirectly, the value of that particular pointer.'*» The intended use of the restrict qualifier (like
the register storage class) is to promote optimization, and deleting all instances of the qualifier
from all preprocessing translation units composing a conforming program does not change its
meaning (i.e., observable behavior).

If the specification of an array type includes any type qualifiers, the element type is so-qualified, not
the array type. If the specification of a function type includes any type qualifiers, the behavior is
undefined.!*®

For two qualified types to be compatible, both shall have the identically qualified version of a
compatible type; the order of type qualifiers within a list of specifiers or qualifiers does not affect the
specified type.

EXAMPLE 1 An object declared

\ extern const volatile int real_time_clock;
L

might be modifiable by hardware, but cannot be assigned to, incremented, or decremented.

EXAMPLE 2 The following declarations and expressions illustrate the behavior when type qualifiers modify an aggregate
type:

const struct s { int mem; } cs = {1 };

struct s ncs; // the object ncs is modifiable

typedef int A[2][3];

const A a = {{4, 5, 6}, {7, 8, 9}}; // array of array of const int
int *pi;

const int x*pci;

ncs = cs; // valid
CS = Nncs; // violates modifiable lvalue constraint for =

14DThe implementation can place a const object that is not volatile in a read-only region of storage. Moreover, the

implementation need not allocate storage for such an object if its address is never used.

142)This applies to those objects that behave as if they were defined with qualified types, even if they are never actually
defined as objects in the program (such as an object at a memory-mapped input/output address).

143) A volatile declaration can be used to describe an object corresponding to a memory-mapped input/output port or an
object accessed by an asynchronously interrupting function. Actions on objects so declared are not allowed to be “optimized
out” by an implementation or reordered except as permitted by the rules for evaluating expressions.

149 For example, a statement that assigns a value returned by malloc to a single pointer establishes this association between
the allocated object and the pointer.

145)Both of these can occur through the use of typedef s.

§6.7.3 Language 97




14

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

\ pi = &ncs.mem; // valid \

\ pi = &cs.mem; // violates type constraints for = \

\ pci = &cs.mem; // valid \

‘ pi = a[0]; // invalid: al[0] has type “const int x” \
EXAMPLE 3 The declaration

[ ]

_Atomic volatile int =xp;

L |
specifies that p has the type “pointer to volatile atomic int”, a pointer to a volatile-qualified atomic type.

98 Language §6.7.3



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

6.7.3.1 Formal definition of restrict

Let D be a declaration of an ordinary identifier that provides a means of designating an object P as a
restrict-qualified pointer to type T.

If D appears inside a block and does not have storage class extern, let B denote the block. If D
appears in the list of parameter declarations of a function definition, let B denote the associated block.
Otherwise, let B denote the block of main (or the block of whatever function is called at program
startup in a freestanding environment).

In what follows, a pointer expression E is said to be based on object P if (at some sequence point in
the execution of B prior to the evaluation of E) modifying P to point to a copy of the array object into
which it formerly pointed would change the value of E.}® Note that “based” is defined only for
expressions with pointer types.

During each execution of B, let L be any lvalue that has &L based on P. If L is used to access the
value of the object X that it designates, and X is also modified (by any means), then the following
requirements apply: T shall not be const-qualified. Every other lvalue used to access the value of

X shall also have its address based on P. Every access that modifies X shall be considered also to
modify P, for the purposes of this subclause. If P is assigned the value of a pointer expression E that
is based on another restricted pointer object P2, associated with block B2, then either the execution
of B2 shall begin before the execution of B, or the execution of B2 shall end prior to the assignment.
If these requirements are not met, then the behavior is undefined.

Here an execution of B means that portion of the execution of the program that would correspond to
the lifetime of an object with scalar type and automatic storage duration associated with B.

A translator is free to ignore any or all aliasing implications of uses of restrict.
EXAMPLE 1 The file scope declarations

int * restrict a;
int * restrict b;
extern int c[];

assert that if an object is accessed using one of a, b, or ¢, and that object is modified anywhere in the program, then it is never
accessed using either of the other two.

EXAMPLE 2 The function parameter declarations in the following example

void f(int n, int x restrict p, int * restrict q)
{
while (n-- > 0)
KD+ = kQt+;
}

assert that, during each execution of the function, if an object is accessed through one of the pointer parameters, then it is not
also accessed through the other. The translator can make this no-aliasing inference based on the parameter declarations alone,
without analyzing the function body.

The benefit of the restrict qualifiers is that they enable a translator to make an effective dependence analysis of function f
without examining any of the calls of f in the program. The cost is that the programmer has to examine all of those calls to
ensure that none give undefined behavior. For example, the second call of f in g has undefined behavior because each of
d[1] through d[49] is accessed through both p and q.

void g(void)
{

extern int d[100];

(50, d + 50, d); // valid

f(50, d + 1, d); // undefined behavior
}

146)In other words, E depends on the value of P itself rather than on the value of an object referenced indirectly through P.
For example, if identifier p has type (int **restrict), then the pointer expressions p and p+1 are based on the restricted
pointer object designated by p, but the pointer expressions *p and p[1] are not.

§6.7.3.1 Language 99



10

11

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

EXAMPLE 3 The function parameter declarations

void h(int n, int x restrict p, int x restrict g, int * restrict r)
{
int i;
for (1 =0; i < n; i++)
plil = qlil + r[i];
)

illustrate how an unmodified object can be aliased through two restricted pointers. In particular, if a and b are disjoint arrays,
a call of the form h(100, a, b, b) has defined behavior, because array b is not modified within function h.

EXAMPLE 4 The rule limiting assignments between restricted pointers does not distinguish between a function call and
an equivalent nested block. With one exception, only “outer-to-inner” assignments between restricted pointers declared in
nested blocks have defined behavior.

{
int * restrict pl;
int * restrict ql;
pl = ql; // undefined behavior
{
int * restrict p2 = pl; // valid
int * restrict g2 = ql; // valid
pl = g2; // undefined behavior
p2 = q2; // undefined behavior
}
}

12 The one exception allows the value of a restricted pointer to be carried out of the block in which it (or, more precisely, the

13

14

ordinary identifier used to designate it) is declared when that block finishes execution. For example, this permits new_vector
to return a vector.

typedef struct { int n; float * restrict v; } vector;
vector new_vector(int n)
{
vector t;
t.n = n;
t.v = malloc(n * sizeof (float));
return t;
)

EXAMPLE 5 Suppose that a programmer knows that references of the form p[i] and q[]j] are never aliases in the body of a
function:

| void f(int n, int *p, int xq) { /x ... %/ }

There are several ways that this information could be conveyed to a translator using the restrict qualifier. Example 2 shows
the most effective way, qualifying all pointer parameters, and can be used provided that neither p nor q becomes based on
the other in the function body. A potentially effective alternative is:

[
void f(int n, int * restrict p, int x const q) { /x ... %/ }
L

Again it is possible for a translator to make the no-aliasing inference based on the parameter declarations alone, though now
it must use subtler reasoning: that the const-qualification of q precludes it becoming based on p. There is also a requirement
that g is not modified, so this alternative cannot be used for the function in Example 2, as written.

EXAMPLE 6 Another potentially effective alternative is:

void f(int n, int *p, int const * restrict q) { /x ... %/ }

Again it is possible for a translator to make the no-aliasing inference based on the parameter declarations alone, though
now it must use even subtler reasoning: that this combination of restrict and const means that objects referenced using q
cannot be modified, and so no modified object can be referenced using both p and g.

100 Language §6.7.3.1



15

10

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

EXAMPLE 7 The least effective alternative is:

[
void f(int n, int x restrict p, int xq) { /x ... *x/ }
L

Here the translator can make the no-aliasing inference only by analyzing the body of the function and proving that g cannot
become based on p. Some translator designs may choose to exclude this analysis, given availability of the more effective
alternatives above. Such a translator is required to assume that aliases are present because assuming that aliases are not
present may result in an incorrect translation. Also, a translator that attempts the analysis may not succeed in all cases and
thus need to conservatively assume that aliases are present.

6.7.4 Function specifiers

Syntax
function-specifier:
inline
—_Noreturn
Constraints

Function specifiers shall be used only in the declaration of an identifier for a function.

An inline definition of a function with external linkage shall not contain a definition of a modifiable
object with static or thread storage duration, and shall not contain a reference to an identifier with
internal linkage.

In a hosted environment, no function specifier(s) shall appear in a declaration of main.

Semantics

A function specifier may appear more than once; the behavior is the same as if it appeared only
once.

A function declared with an inline function specifier is an inline function. Making a function an
inline function suggests that calls to the function be as fast as possible.'*”) The extent to which such
suggestions are effective is implementation-defined.!4®)

Any function with internal linkage can be an inline function. For a function with external linkage,
the following restrictions apply: If a function is declared with an inline function specifier, then it
shall also be defined in the same translation unit. If all of the file scope declarations for a function in
a translation unit include the inline function specifier without extern, then the definition in that
translation unit is an inline definition. An inline definition does not provide an external definition
for the function, and does not forbid an external definition in another translation unit. An inline
definition provides an alternative to an external definition, which a translator may use to implement
any call to the function in the same translation unit. It is unspecified whether a call to the function
uses the inline definition or the external definition.!#"

A function declared with a _Noreturn function specifier shall not return to its caller.

Recommended practice
The implementation should produce a diagnostic message for a function declared with a_Noreturn
function specifier that appears to be capable of returning to its caller.

EXAMPLE 1 The declaration of an inline function with external linkage can result in either an external definition, or a
definition available for use only within the translation unit. A file scope declaration with extern creates an external definition.
The following example shows an entire translation unit.

147) By using, for example, an alternative to the usual function call mechanism, such as “inline substitution”. Inline
substitution is not textual substitution, nor does it create a new function. Therefore, for example, the expansion of a macro
used within the body of the function uses the definition it had at the point the function body appears, and not where the
function is called; and identifiers refer to the declarations in scope where the body occurs. Likewise, the function has a single
address, regardless of the number of inline definitions that occur in addition to the external definition.

148)For example, an implementation might never perform inline substitution, or might only perform inline substitutions to
calls in the scope of an inline declaration.

1499)Gince an inline definition is distinct from the corresponding external definition and from any other corresponding inline
definitions in other translation units, all corresponding objects with static storage duration are also distinct in each of the
definitions.

§6.7.4 Language 101



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

inline double fahr(double t)

{
return (9.0 *x t) / 5.0 + 32.0;
}
inline double cels(double t)
{
return (5.0 x (t - 32.0)) / 9.0;
)
extern double fahr(double); // creates an external definition

double convert(int is_fahr, double temp)

{
/* A translator may perform inline substitutions x*/
return is_fahr ? cels(temp): fahr(temp);

11 Note that the definition of fahr is an external definition because fahr is also declared with extern, but the definition of cels

12

is an inline definition. Because cels has external linkage and is referenced, an external definition has to appear in another
translation unit (see 6.9); the inline definition and the external definition are distinct and either can be used for the call.

EXAMPLE 2

_Noreturn void f () {
abort(); // ok
}

_Noreturn void g (int i) { // causes undefined behavior if i <= 0
if (i > 0) abort();

}

Forward references: function definitions (6.9.1).

6.7.5 Alignment specifier

Syntax

alignment-specifier:
_Alignas ( type-name )
_Alignas ( constant-expression )

Constraints

An alignment specifier shall appear only in the declaration specifiers of a declaration, or in the
specifier-qualifier list of a member declaration, or in the type name of a compound literal. An
alignment specifier shall not be used in conjunction with either of the storage-class specifiers
typedef or register, nor in a declaration of a function or bit-field.

The constant expression shall be an integer constant expression. It shall evaluate to a valid funda-
mental alignment, or to a valid extended alignment supported by the implementation for an object
of the storage duration (if any) being declared, or to zero.

An object shall not be declared with an over-aligned type with an extended alignment requirement
not supported by the implementation for an object of that storage duration.

The combined effect of all alignment specifiers in a declaration shall not specify an alignment that is
less strict than the alignment that would otherwise be required for the type of the object or member
being declared.

102 Language §6.7.5



1

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Semantics
The first form is equivalent to _Alignas (_Alignof ( type-name)).

The alignment requirement of the declared object or member is taken to be the specified alignment.
An alignment specification of zero has no effect.’>” When multiple alignment specifiers occur in a
declaration, the effective alignment requirement is the strictest specified alignment.

If the definition of an object has an alignment specifier, any other declaration of that object shall
either specify equivalent alignment or have no alignment specifier. If the definition of an object does
not have an alignment specifier, any other declaration of that object shall also have no alignment
specifier. If declarations of an object in different translation units have different alignment specifiers,
the behavior is undefined.

6.7.6 Declarators

Syntax

declarator:
pointerqp direct-declarator

direct-declarator:
identifier attribute-specifier-sequenceopt
( declarator )
array-declarator attribute-specifier-sequenceqpt
function-declarator attribute-specifier-sequenceqpt

array-declarator:
direct-declarator [ type-qualifier-list,p, assignment-expressiongp: 1
direct-declarator [  static type-qualifier-list.p, assignment-expression ]
direct-declarator [ type-qualifier-list static assignment-expression 1]
direct-declarator [ type-qualifier-listop; * ]

function-declarator:
direct-declarator ( parameter-type-list,y: )

pointer:
* attribute-specifier-sequenceop type-qualifier-listop:
* attribute-specifier-sequenceop type-qualifier-listop pointer
type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier
parameter-type-list:
parameter-list
parameter-list ,
parameter-list:
parameter-declaration
parameter-list , parameter-declaration
parameter-declaration:
attribute-specifier-sequenceqp declaration-specifiers declarator
attribute-specifier-sequence,p, declaration-specifiers abstract-declaratorp,

Semantics

Each declarator declares one identifier, and asserts that when an operand of the same form as
the declarator appears in an expression, it designates a function or object with the scope, storage
duration, and type indicated by the declaration specifiers.

A full declarator is a declarator that is not part of another declarator. If, in the nested sequence of

150) An alignment specification of zero also does not affect other alignment specifications in the same declaration.

§6.7.6 Language 103



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

declarators in a full declarator, there is a declarator specifying a variable length array type, the type
specified by the full declarator is said to be variably modified. Furthermore, any type derived by
declarator type derivation from a variably modified type is itself variably modified.

In the following subclauses, consider a declaration
TD1

where T contains the declaration specifiers that specify a type T (such as int) and D1 is a declarator
that contains an identifier ident. The type specified for the identifier ident in the various forms of
declarator is described inductively using this notation.

If, in the declaration “T D1”, D1 has the form
identifier attribute-specifier-sequenceqpt

then the type specified for ident is T and the optional attribute specifier sequence appertains to the
entity that is declared.

If, in the declaration “T D1”, D1 has the form
(D)

then ident has the type specified by the declaration “T D”. Thus, a declarator in parentheses is
identical to the unparenthesized declarator, but the binding of complicated declarators may be
altered by parentheses.

Implementation limits

As discussed in 5.2.4.1, an implementation may limit the number of pointer, array, and function
declarators that modify an arithmetic, structure, union, or void type, either directly or via one or
more typedef s.

Forward references: array declarators (6.7.6.2), type definitions (6.7.8).

6.7.6.1 Pointer declarators
Semantics
If, in the declaration “T D1”, D1 has the form

* attribute-specifier-sequenceop type-qualifier-listop: D

and the type specified for ident in the declaration “T D” is “derived-declarator-type-list T”, then the
type specified for ident is “derived-declarator-type-list type-qualifier-list pointer to T”. For each type
qualifier in the list, ident is a so-qualified pointer. The optional attribute specifier sequence appertains
to the pointer and not the object pointed to.

For two pointer types to be compatible, both shall be identically qualified and both shall be pointers
to compatible types.

’

EXAMPLE The following pair of declarations demonstrates the difference between a “variable pointer to a constant value”
and a “constant pointer to a variable value”.

const int *ptr_to_constant;
int *xconst constant_ptr;

The contents of any object pointed to by ptr_to_constant cannot be modified through that pointer, but ptr_to_constant
itself can be changed to point to another object. Similarly, the contents of the int pointed to by constant_ptr can be
modified, but constant_ptr itself always points to the same location.

The declaration of the constant pointer constant_ptr can be clarified by including a definition for the type “pointer to int”.

typedef int *xint_ptr;
const int_ptr constant_ptr;

declares constant_ptr as an object that has type “const-qualified pointer to int”.

104 Language §6.7.6.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

6.7.6.2 Array declarators
Constraints

In addition to optional type qualifiers and the keyword static, the [ and ] may delimit an expres-
sion or *. If they delimit an expression (which specifies the size of an array), the expression shall
have an integer type. If the expression is a constant expression, it shall have a value greater than
zero. The element type shall not be an incomplete or function type. The optional type qualifiers and
the keyword static shall appear only in a declaration of a function parameter with an array type,
and then only in the outermost array type derivation.

If an identifier is declared as having a variably modified type, it shall be an ordinary identifier (as
defined in 6.2.3), have no linkage, and have either block scope or function prototype scope. If an
identifier is declared to be an object with static or thread storage duration, it shall not have a variable
length array type.

Semantics
If, in the declaration “T D1”, D1 has one of the forms:

D [ type-qualifier-listop, assignment-expressionqp, 1 attribute-specifier-sequenceopt

D [ static type-qualifier-list,y, assignment-expression 1 attribute-specifier-sequenceopt
D [ type-qualifier-list static assignment-expression 1 attribute-specifier-sequenceqpt
D [ type-qualifier-listope * 1 attribute-specifier-sequenceopy

and the type specified for ident in the declaration “T D” is “derived-declarator-type-list T”, then the
type specified for ident is “derived-declarator-type-list array of T”.1) The optional attribute specifier
sequence appertains to the array. (See 6.7.6.3 for the meaning of the optional type qualifiers and the
keyword static.)

If the size is not present, the array type is an incomplete type. If the size is * instead of being an
expression, the array type is a variable length array type of unspecified size, which can only be used in
declarations or type names with function prototype scope;!®? such arrays are nonetheless complete
types. If the size is an integer constant expression and the element type has a known constant size,
the array type is not a variable length array type; otherwise, the array type is a variable length array
type. (Variable length arrays are a conditional feature that implementations need not support; see
6.10.8.3.)

If the size is an expression that is not an integer constant expression: if it occurs in a declaration at
function prototype scope, it is treated as if it were replaced by *; otherwise, each time it is evaluated
it shall have a value greater than zero. The size of each instance of a variable length array type
does not change during its lifetime. Where a size expression is part of the operand of a sizeof
operator and changing the value of the size expression would not affect the result of the operator, it
is unspecified whether or not the size expression is evaluated. Where a size expression is part of the
operand of an _Alignof operator, that expression is not evaluated.

For two array types to be compatible, both shall have compatible element types, and if both size
specifiers are present, and are integer constant expressions, then both size specifiers shall have
the same constant value. If the two array types are used in a context which requires them to be
compatible, it is undefined behavior if the two size specifiers evaluate to unequal values.

EXAMPLE 1

\ float fa[ll], *afp[l17];

declares an array of float numbers and an array of pointers to float numbers.

EXAMPLE 2 Note the distinction between the declarations

[

\ extern int xx;
\ extern int y[];
L

15DWhen several “array of” specifications are adjacent, a multidimensional array is declared.
152)Thus, * can be used only in function declarations that are not definitions (see 6.7.6.3).

§6.7.6.2 Language 105



9

10

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

The first declares x to be a pointer to int; the second declares y to be an array of int of unspecified size (an incomplete type),
the storage for which is defined elsewhere.

EXAMPLE 3 The following declarations demonstrate the compatibility rules for variably modified types.

extern int n;
extern int m;
void fcompat(void)
{
int a[n]l[6][m];
int (xp)[4][n+1];
int c[n][nl[6][m];
int (xr)[n][n][n+1];
p = a; // invalid: not compatible because 4 !'= 6
r=c¢; // compatible, but defined behavior only if
// n ==6 and m == n+l
}

EXAMPLE 4 All declarations of variably modified (VM) types have to be at either block scope or function prototype scope.
Array objects declared with the _Thread_local, static, or extern storage-class specifier cannot have a variable length
array (VLA) type. However, an object declared with the static storage-class specifier can have a VM type (that is, a pointer
to a VLA type). Finally, all identifiers declared with a VM type have to be ordinary identifiers and cannot, therefore, be
members of structures or unions.

extern int n;

int A[n]; // invalid: file scope VLA
extern int (xp2)[n]; // invalid: file scope VM
int B[100]; // valid: file scope but not VM
void fvla(int m, int C[m][m]); // valid: VLA with prototype scope
void fvla(int m, int C[m][m]) // valid: adjusted to auto pointer to VLA
{
typedef int VLA[m][m]; // valid: block scope typedef VLA
struct tag {
int (xy)I[nl; // invalid: 'y not ordinary identifier
int z[n]; // invalid: z not ordinary identifier
}
int D[m]; // valid: auto VLA
static int E[m]; // invalid: static block scope VLA
extern int F[m]; // invalid: F has linkage and is VLA
int (*s)[m]; // valid: auto pointer to VLA
extern int (xr)[m]; // invalid: r has linkage and points to VLA
static int (xq)[m] = &B; // valid: q is a static block pointer to VLA

Forward references: function declarators (6.7.6.3), function definitions (6.9.1), initialization (6.7.9).

6.7.6.3 Function declarators
Constraints

A function declarator shall not specify a return type that is a function type or an array type.
The only storage-class specifier that shall occur in a parameter declaration is register.

After adjustment, the parameters in a parameter type list in a function declarator that is part of a
definition of that function shall not have incomplete type.

Semantics
If, in the declaration “T D1”, D1 has the form

D ( parameter-type-liston ) attribute-specifier-sequenceqpt
and the type specified for ident in the declaration “T D” is “derived-declarator-type-list T”, then the

106 Language §6.7.6.3



10

11

12

13

14

15

16

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

type specified for ident is “derived-declarator-type-list function returning the unqualified version of T”.
The optional attribute specifier sequence appertains to the function type.

A parameter type list specifies the types of, and may declare identifiers for, the parameters of the
function.

A declaration of a parameter as “array of type” shall be adjusted to “qualified pointer to type”, where
the type qualifiers (if any) are those specified within the [ and ] of the array type derivation. If the
keyword static also appears within the [ and ] of the array type derivation, then for each call to
the function, the value of the corresponding actual argument shall provide access to the first element
of an array with at least as many elements as specified by the size expression.

A declaration of a parameter as “function returning fype” shall be adjusted to “pointer to function
returning type”, as in 6.3.2.1.

If the list terminates with an ellipsis (, ...), no information about the number or types of the
parameters after the comma is supplied.!>?

The special case of an unnamed parameter of type void as the only item in the list specifies that the
function has no parameters.

If, in a parameter declaration, an identifier can be treated either as a typedef name or as a parameter
name, it shall be taken as a typedef name.

If the function declarator is not part of a definition of that function, parameters may have incomplete
type and may use the [*] notation in their sequences of declarator specifiers to specify variable
length array types.

The storage class specifier in the declaration specifiers for a parameter declaration, if present, is
ignored unless the declared parameter is one of the members of the parameter type list for a function
definition. The optional attribute specifier sequence in a parameter declaration appertains to the
parameter.

For a function declarator without a parameter type list: if it is part of a definition of that function
the function has no parameters and the effect is as if it were declared with a parameter type list
consisting of the keyword void; otherwise it specifies that no information about the number or types
of the parameters is supplied.!> A function declarator provides a prototype for the function if it
includes a parameter type list.!> Otherwise, a function declaration is said to have no prototype.

For two function types to be compatible, both shall specify compatible return types. Moreover,
the parameter type lists, if both are present, shall agree in the number of parameters and in use
of the ellipsis terminator; corresponding parameters shall have compatible types. If one type has
a parameter type list and the other type has none and is not part of a function definition, the
parameter list shall not have an ellipsis terminator. In the determination of type compatibility and
of a composite type, each parameter declared with function or array type is taken as having the
adjusted type and each parameter declared with qualified type is taken as having the unqualified
version of its declared type.

EXAMPLE 1 The declaration

‘ int f(void), *fip(), (*pfi)();

declares a function f with no parameters returning an int, a function fip with no parameter specification returning a pointer
to an int, and a pointer pfi to a function with no parameter specification returning an int. It is especially useful to compare
the last two. The binding of *fip () is*(fip()), so that the declaration suggests, and the same construction in an expression
requires, the calling of a function fip, and then using indirection through the pointer result to yield an int. In the declarator
(*pfi) (), the extra parentheses are necessary to indicate that indirection through a pointer to a function yields a function
designator, which is then used to call the function; it returns an int.

If the declaration occurs outside of any function, the identifiers have file scope and external linkage. If the declaration
occurs inside a function, the identifiers of the functions f and fip have block scope and either internal or external linkage

153)The macros defined in the <stdarg. h> header (7.16) can be used to access arguments that correspond to the ellipsis.

159See “future language directions” (6.11.6).

155)This implies that a function definition without a parameter list provides a prototype, and that subsequent calls to that
function in the same translation unit are constrained not to provide any argument to the function call. Thus a definition of a
function without parameter list and one that has such a list consisting of the keyword void are fully equivalent.

§6.7.6.3 Language 107



17

18

19

20

1

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

(depending on what file scope declarations for these identifiers are visible), and the identifier of the pointer pfi has block
scope and no linkage.

EXAMPLE 2 The declaration

| int (xapfil[3]) (int *x, int *y);

declares an array apfi of three pointers to functions returning int. Each of these functions has two parameters that are
pointers to int. The identifiers x and y are declared for descriptive purposes only and go out of scope at the end of the
declaration of apfi.

EXAMPLE 3 The declaration

| int (+fpfi(int (x)(long), int))(int, ...):

declares a function fpfi that returns a pointer to a function returning an int. The function fpfi has two parameters: a
pointer to a function returning an int (with one parameter of type long int), and an int. The pointer returned by fpfi
points to a function that has one int parameter and accepts zero or more additional arguments of any type.

EXAMPLE 4 The following prototype has a variably modified parameter.

void addscalar(int n, int m,
double a[n][n*m+300], double x);

int main()

{
double b[4]1[308];
addscalar(4, 2, b, 2.17);
return 0;

}

void addscalar(int n, int m,
double a[n][n*m+300], double x)

{
for (int 1 = 0; i < n; i++)
for (int j = 0, k = nxm+300; j < k; j++)
// a 1is a pointer to a VLA with nxm+300 elements
alilljl += x;
}

EXAMPLE 5 The following are all compatible function prototype declarators.

double maximum(int n, );
double maximum(int n, int m, double a[*][*]);
double maximum(int n, int m, double a[ ][x*])

( n, int m, double a[ ][m])

int m, double a[n][m]

’

’

double maximum(int

as are:

void f(double (* restrict a)[5]);

void f(double al[restrict][5]);

void f(double a[restrict 3][5]);

void f(double a[restrict static 3][5]);

(Note that the last declaration also specifies that the argument corresponding to a in any call to f can be expected to be a
non-null pointer to the first of at least three arrays of 5 doubles, which the others do not.)

Forward references: function definitions (6.9.1), type names (6.7.7).

6.7.7 Type names

Syntax

type-name:
specifier-qualifier-list abstract-declaratorop;

108 Language §6.7.7



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

abstract-declarator:
pointer
pointerqp direct-abstract-declarator
direct-abstract-declarator:
( abstract-declarator )
array-abstract-declarator attribute-specifier-sequenceqpt
function-abstract-declarator attribute-specifier-sequenceopt
array-abstract-declarator:
direct-abstract-declaratorope [ type-qualifier-listop: assignment-expressionept 1
direct-abstract-declaratoropy [ static type-qualifier-listop assignment-expression ]
direct-abstract-declaratoryp, [ type-qualifier-list static assignment-expression ]
direct—abstract—declamtoropt [ *1

function-abstract-declarator:
direct-abstract-declaratoropy ( parameter-type-listopt )

Semantics

In several contexts, it is necessary to specify a type. This is accomplished using a type name, which is
syntactically a declaration for a function or an object of that type that omits the identifier.'>® The
optional attribute specifier sequence in a direct abstract declarator appertains to the preceding array
or function type. The attribute specifier sequence affects the type only for the declaration it appears
in, not other declarations involving the same type.

EXAMPLE The constructions

int

int x

int x[3]

int (*)[3]

int (%) [*]

int ()

int (%) (void)

int (xconst []) (unsigned int, ...)

~ o~~~ o~~~ —~
—_— — — — — — — ~—

a
b
C
d
e
f
9
h

name respectively the types (a) int, (b) pointer to int, (c) array of three pointers to int, (d) pointer to an array of three ints,
(e) pointer to a variable length array of an unspecified number of int s, (f) function with no parameter specification returning
a pointer to int, (g) pointer to function with no parameters returning an int, and (h) array of an unspecified number of
constant pointers to functions, each with one parameter that has type unsigned int and an unspecified number of other
parameters, returning an int.

6.7.8 Type definitions
Syntax

typedef-name:
identifier

Constraints
If a typedef name specifies a variably modified type then it shall have block scope.

Semantics

In a declaration whose storage-class specifier is typedef, each declarator defines an identifier to
be a typedef name that denotes the type specified for the identifier in the way described in 6.7.6.
Any array size expressions associated with variable length array declarators are evaluated each time
the declaration of the typedef name is reached in the order of execution. A typedef declaration

156) As indicated by the syntax, empty parentheses in a type name are interpreted as “function with no parameter specifica-
y Y pty p: YP! P p P

tion”, rather than redundant parentheses around the omitted identifier.

§6.7.8 Language 109



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

does not introduce a new type, only a synonym for the type so specified. That is, in the following
declarations:

typedef T type_ident;
type_ident D;

type_ident is defined as a typedef name with the type specified by the declaration specifiers in T
(known as T), and the identifier in D has the type “derived-declarator-type-list T” where the derived-
declarator-type-list is specified by the declarators of D. A typedef name shares the same name space
as other identifiers declared in ordinary declarators.

EXAMPLE 1 After

typedef int MILES, KLICKSP();
typedef struct { double hi, lo; } range;

the constructions

MILES distance;

extern KLICKSP xmetricp;
range Xx;

range z, *zp;

are all valid declarations. The type of distance is int, that of metricp is “pointer to function with no parameter specification
returning int”, and that of x and z is the specified structure; zp is a pointer to such a structure. The object distance has a
type compatible with any other int object.

EXAMPLE 2 After the declarations

typedef struct sl { int x; } tl1, xtpl;
typedef struct s2 { int x; } t2, *tp2;

type t1 and the type pointed to by tpl are compatible. Type t1 is also compatible with type struct s1, but not compatible
with the types struct s2, t2, the type pointed to by tp2, or int.

EXAMPLE 3 The following obscure constructions

typedef signed int t;

typedef int plain;

struct tag {
unsigned t:4;
const t:5;
plain r:5;

};

declare a typedef name t with type signed int, a typedef name plain with type int, and a structure with three bit-field
members, one named t that contains values in the range [0, 15], an unnamed const-qualified bit-field which (if it could
be accessed) would contain values in either the range [—15, +15] or [~16, +15], and one named r that contains values in
one of the ranges [0, 31], [-15, +15], or [—16, +15]. (The choice of range is implementation-defined.) The first two bit-field
declarations differ in that unsigned is a type specifier (which forces t to be the name of a structure member), while const is
a type qualifier (which modifies t which is still visible as a typedef name). If these declarations are followed in an inner scope

by

t f(t (1));
long t;

then a function f is declared with type “function returning signed int with one unnamed parameter with type pointer
to function returning signed int with one unnamed parameter with type signed int”, and an identifier t with type
long int.

EXAMPLE 4 On the other hand, typedef names can be used to improve code readability. All three of the following
declarations of the signal function specify exactly the same type, the first without making use of any typedef names.

i typedef void fv(int), (xpfv)(int);

void (xsignal(int, void (x)(int))) (int);

110 Language §6.7.8




8

1

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

\ fv *signal(int, fv *);
\ pfv signal(int, pfv);

EXAMPLE 5 If a typedef name denotes a variable length array type, the length of the array is fixed at the time the typedef
name is defined, not each time it is used:

void copyt(int n)

{
typedef int B[n]; // B is n ints, n evaluated now
n+=1;
B a; // a is n ints, n without += 1
int b[n]; // a and b are different sizes
for (int i = 1; i < n; i++)

afi-1] = b[i];
}

6.7.9 Initialization

Syntax

initializer:
assignment-expression
{ initializer-list }
{ initializer-list , }

initializer-list:
designationp initializer

initializer-list , designationopt initializer

designation:
designator-list =

designator-list:

designator

designator-list designator
designator:

[ constant-expression 1]

. identifier
Constraints

No initializer shall attempt to provide a value for an object not contained within the entity being
initialized.

The type of the entity to be initialized shall be an array of unknown size or a complete object type
that is not a variable length array type.

All the expressions in an initializer for an object that has static or thread storage duration shall be
constant expressions or string literals.

If the declaration of an identifier has block scope, and the identifier has external or internal linkage,
the declaration shall have no initializer for the identifier.

If a designator has the form
[ constant-expression 1

then the current object (defined below) shall have array type and the expression shall be an integer
constant expression. If the array is of unknown size, any nonnegative value is valid.

If a designator has the form
. identifier

§6.7.9 Language 111



10

11

12
13

14

15

16

17

18

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

then the current object (defined below) shall have structure or union type and the identifier shall be
the name of a member of that type.

Semantics
An initializer specifies the initial value stored in an object.

Except where explicitly stated otherwise, for the purposes of this subclause unnamed members
of objects of structure and union type do not participate in initialization. Unnamed members of
structure objects have indeterminate value even after initialization.

If an object that has automatic storage duration is not initialized explicitly, its value is indeterminate.
If an object that has static or thread storage duration is not initialized explicitly, then:

— if it has pointer type, it is initialized to a null pointer;
— if it has arithmetic type, it is initialized to (positive or unsigned) zero;

— if it is an aggregate, every member is initialized (recursively) according to these rules, and any
padding is initialized to zero bits;

— if it is a union, the first named member is initialized (recursively) according to these rules, and
any padding is initialized to zero bits;

The initializer for a scalar shall be a single expression, optionally enclosed in braces. The initial value
of the object is that of the expression (after conversion); the same type constraints and conversions
as for simple assignment apply, taking the type of the scalar to be the unqualified version of its
declared type.

The rest of this subclause deals with initializers for objects that have aggregate or union type.

The initializer for a structure or union object that has automatic storage duration shall be either
an initializer list as described below, or a single expression that has compatible structure or union
type. In the latter case, the initial value of the object, including unnamed members, is that of the
expression.

An array of character type may be initialized by a character string literal or UTF-8 string literal,
optionally enclosed in braces. Successive bytes of the string literal (including the terminating null
character if there is room or if the array is of unknown size) initialize the elements of the array.

An array with element type compatible with a qualified or unqualified version of wchar_t, charl6_t,
or char32_t may be initialized by a wide string literal with the corresponding encoding prefix (L,
u, or U, respectively), optionally enclosed in braces. Successive wide characters of the wide string
literal (including the terminating null wide character if there is room or if the array is of unknown
size) initialize the elements of the array.

Otherwise, the initializer for an object that has aggregate or union type shall be a brace-enclosed list
of initializers for the elements or named members.

Each brace-enclosed initializer list has an associated current object. When no designations are present,
subobjects of the current object are initialized in order according to the type of the current object:
array elements in increasing subscript order, structure members in declaration order, and the first
named member of a union.!) In contrast, a designation causes the following initializer to begin
initialization of the subobject described by the designator. Initialization then continues forward in
order, beginning with the next subobject after that described by the designator.!>®

Each designator list begins its description with the current object associated with the closest sur-
rounding brace pair. Each item in the designator list (in order) specifies a particular member of its

I57)1f the initializer list for a subaggregate or contained union does not begin with a left brace, its subobjects are initialized as
usual, but the subaggregate or contained union does not become the current object: current objects are associated only with
brace-enclosed initializer lists.

158) After a union member is initialized, the next object is not the next member of the union; instead, it is the next subobject of
an object containing the union.

112 Language §6.7.9



19

20

21

22

23

24

25

26

27

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

current object and changes the current object for the next designator (if any) to be that member.'”

The current object that results at the end of the designator list is the subobject to be initialized by the
following initializer.

The initialization shall occur in initializer list order, each initializer provided for a particular subobject
overriding any previously listed initializer for the same subobject;'®” all subobjects that are not
initialized explicitly shall be initialized implicitly the same as objects that have static storage duration.

If the aggregate or union contains elements or members that are aggregates or unions, these rules
apply recursively to the subaggregates or contained unions. If the initializer of a subaggregate or
contained union begins with a left brace, the initializers enclosed by that brace and its matching right
brace initialize the elements or members of the subaggregate or the contained union. Otherwise, only
enough initializers from the list are taken to account for the elements or members of the subaggregate
or the first member of the contained union; any remaining initializers are left to initialize the next
element or member of the aggregate of which the current subaggregate or contained union is a part.

If there are fewer initializers in a brace-enclosed list than there are elements or members of an
aggregate, or fewer characters in a string literal used to initialize an array of known size than there
are elements in the array, the remainder of the aggregate shall be initialized implicitly the same as
objects that have static storage duration.

If an array of unknown size is initialized, its size is determined by the largest indexed element with
an explicit initializer. The array type is completed at the end of its initializer list.

The evaluations of the initialization list expressions are indeterminately sequenced with respect to
one another and thus the order in which any side effects occur is unspecified.'®!)

EXAMPLE 1 Provided that <complex.h> has been #included, the declarations

int i = 3.5;
double complex ¢ =5 + 3 * I;

define and initialize i with the value 3 and ¢ with the value 5.0 + 43.0.

EXAMPLE 2 The declaration

‘ int x[1={1, 3,5}

defines and initializes x as a one-dimensional array object that has three elements, as no size was specified and there are three
initializers.

EXAMPLE 3 The declaration

is a definition with a fully bracketed initialization: 1, 3, and 5 initialize the first row of y (the array object y[0]), namely
y[01[0],y[0][1],and y[0][2]. Likewise the next two lines initialize y[1] and y[2]. The initializer ends early, so y[3] is
initialized with zeros. Precisely the same effect could have been achieved by

int y[4][3] = {
1, 3, 5,2, 4,6, 3,5, 7
i

The initializer for y[0] does not begin with a left brace, so three items from the list are used. Likewise the next three are
taken successively for y[1] and y[2].

EXAMPLE 4 The declaration

15)Thus, a designator can only specify a strict subobject of the aggregate or union that is associated with the surrounding
brace pair. Note, too, that each separate designator list is independent.

160) Any initializer for the subobject which is overridden and so not used to initialize that subobject might not be evaluated at
all.

16D1n particular, the evaluation order need not be the same as the order of subobject initialization.

§6.7.9 Language 113



28

29

30
31

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

int z[4]1[3] = {
{13} {2} {33} {41}
};

initializes the first column of z as specified and initializes the rest with zeros.

EXAMPLE 5 The declaration

i struct { int a[3], b; } w[l ={ {13}, 23%;

is a definition with an inconsistently bracketed initialization. It defines an array with two element structures: w[0].a[0] is 1
andw[1].a[0] is 2; all the other elements are zero.

EXAMPLE 6 The declaration

short q[4][3]1[2] = {
{1},
{2, 31},
{4,561}
};

contains an incompletely but consistently bracketed initialization. It defines a three-dimensional array object: q[0]1[0] [0]
is1,q[11[0][0]is2, q[1][0]1[1] is 3, and 4, 5, and 6 initialize q[2]1[0][0], q[2][0]1[1], and q[2][1][0], respectively;
all the rest are zero. The initializer for q[0][0] does not begin with a left brace, so up to six items from the current list
could be used. There is only one, so the values for the remaining five elements are initialized with zero. Likewise, the
initializers for q[1]1[0] and q[2][0] do not begin with a left brace, so each uses up to six items, initializing their respective
two-dimensional subaggregates. If there had been more than six items in any of the lists, a diagnostic message would have
been issued. The same initialization result could have been achieved by:

short q[4]1[3]1[2] = {
1, o, 6, 0, 0, O,
2, 3, 0, 0, 0, 0,
4, 5, 6
}i
or by:
short q[4]1[31[2] = {
{
{1},
T
{
{2, 31},
T
{
{4,51},
{6}
}

};

in a fully bracketed form.
Note that the fully bracketed and minimally bracketed forms of initialization are, in general, less likely to cause confusion.

EXAMPLE 7 One form of initialization that completes array types involves typedef names. Given the declaration

typedef int A[]; // OK - declared with block scope

the declaration

| Aa={1,2} b={3 4,5}

is identical to

| intall ={1,2}, bll={3,4, 5}

114 Language §6.7.9



32

33

34

35

36

37

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

due to the rules for incomplete types.
EXAMPLE 8 The declaration

char s[] = "abc", t[3] = "abc";

defines “plain” char array objects s and t whose elements are initialized with character string literals. This declaration is
identical to

char s[] { ’a’, 'b", 'c’, '\0" },
t[] ={ IaI, Ibl, ICI };

The contents of the arrays are modifiable. On the other hand, the declaration

char xp = "abc";
L

defines p with type “pointer to char” and initializes it to point to an object with type “array of char” with length 4 whose
elements are initialized with a character string literal. If an attempt is made to use p to modify the contents of the array, the
behavior is undefined.

EXAMPLE 9 Arrays can be initialized to correspond to the elements of an enumeration by using designators:

enum { member_one, member_two };
const char xnm[] = {
[member_two] = "member two",
[member_one] = "member one",

i

EXAMPLE 10 Structure members can be initialized to nonzero values without depending on their order:

[
‘ div_t answer = {.quot = 2, .rem = -1 };

EXAMPLE 11 Designators can be used to provide explicit initialization when unadorned initializer lists might be misunder-
stood:

struct { int a[3], b; } w[] =
{ [0].a = {1}, [1].a[0] =2 };

EXAMPLE 12
struct T {
int k;
int 1;
Y
struct S {
int i;
struct T t;
I8

struct T x = {.1 = 43, .k =42, };

void f(void)
{

struct S 1 ={1, .t=x, .t.1 =41, };
}

The value of 1. t.kis 42, because implicit initialization does not override explicit initialization.

EXAMPLE 13 Space can be “allocated” from both ends of an array by using a single designator:

int a[MAX] = {
1, 3, 5, 7, 9, [MAX-5] =8, 6, 4, 2, 0
}s

§6.7.9 Language 115



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

38 In the above, if MAX is greater than ten, there will be some zero-valued elements in the middle; if it is less than ten, some of

39

the values provided by the first five initializers will be overridden by the second five.

EXAMPLE 14 Any member of a union can be initialized:

\ union { /x ... %/ } u = {.any_member = 42 };

Forward references: common definitions <stddef.h> (7.19).

6.7.10 Static assertions

Syntax

static_assert-declaration:
_Static_assert ( constant-expression , string-literal ) ;
_Static_assert ( constant-expression ) ;

Constraints
The constant expression shall compare unequal to 0.

Semantics

The constant expression shall be an integer constant expression. If the value of the constant expres-
sion compares unequal to 0, the declaration has no effect. Otherwise, the constraint is violated and
the implementation shall produce a diagnostic message that includes the text of the string literal, if
present, except that characters not in the basic source character set are not required to appear in the
message.

Forward references: diagnostics (7.2).

6.7.11 Attributes

Attributes specify additional information for various source constructs such as types, variables,
identifiers, or blocks. They are identified by an attribute token, which can either be a attribute prefixed
token (for implementation-specific attributes) or a standard attribute specified by an identifier (for
attributes specified in this document).

Support for any of the standard attributes specified in this document is implementation-defined
and optional. For an attribute token (including an attribute prefixed token) not specified in this
document, the behavior is implementation-defined. Any attribute token that is not supported by the
implementation is ignored.

Attributes are said to appertain to some source construct, identified by the syntactic context where
they appear, and for each individual attribute, the corresponding clause constrains the syntactic
context in which this appertainance is valid. The attribute specifier sequence appertaining to some
source construct shall contain only attributes that are allowed to apply to that source construct.

In all aspects of the language, a standard attribute specified by this document as an identifier attr
and an identifier of the form __attr__ shall behave the same when used as an attribute token,
except for the spelling.'%?)

Recommended practice
It is recommended that implementations support all standard attributes as defined in this document.

6.7.11.1 General
Syntax
attribute-specifier-sequence:
attribute-specifier-sequenceqp attribute-specifier

attribute-specifier:
[ [ attribute-list 1 1

162)Thus, the attributes [ [nodiscard]] and [ [—_nodiscard__]] can be freely interchanged. Implementations are encour-
aged to behave similarly for attribute tokens (including attribute prefixed tokens) they provide.

116 Language §6.7.11.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

attribute-list:
attributeop;
attribute-list , attributeqp
attribute:
attribute-token attribute-argument-clauseopt
attribute-token:
standard-attribute
attribute-prefixed-token
standard-attribute:
identifier

attribute-prefixed-token:

attribute-prefix :: identifier
attribute-prefix:

identifier
attribute-arqument-clause:

( balunced—token—sequenceopt )
balanced-token-sequence:

balanced-token

balanced-token-sequence balanced-token
balanced-token:

( balunced—token—sequenceopt )

[ balanced—token—sequenceopt ]

{ balanced-token-sequenceop }

any token other than a parenthesis, a bracket, or a brace

Constraints
The identifier in a standard attribute shall be one of:

deprecated fallthrough maybe_unused nodiscard

Semantics

An attribute specifier that contains no attributes has no effect. The order in which attribute tokens
appear in an attribute list is not significant. If a keyword (6.4.1) that satisfies the syntactic require-
ments of an identifier (6.4.2) is contained in an attribute token, it is considered an identifier. A strictly
conforming program using a standard attribute remains strictly conforming in the absence of that
attribute. 163

The __has_c_attribute conditional inclusion expression (6.10.1) shall return the value 201904L
when given deprecated as the pp-tokens operand.

NOTE For each standard attribute, the form of the balanced token sequence, if any, will be specified.

Recommended Practice

Each implementation should choose a distinctive name for the attribute prefix in an attribute
prefixed token. Implementations should not define attributes without an attribute prefix unless it is
a standard attribute as specified in this document.

EXAMPLE 1 Suppose that an implementation chooses the attribute prefix hal and provides specific attributes named daisy
and rosie.

[[deprecated, hal::daisy]] double ninel000(double);
[[deprecated]] [[hal::daisy]] double ninelG00(double);
[[deprecated]] double ninel000 [[hal::daisy]] (double);

Then all the following declarations should be equivalent aside from the spelling:

163)Standard attributes specified by this document can be parsed but ignored by an implementation without changing the
semantics of a correct program; the same is not true for attributes not specified by this document.

§6.7.11.1 Language 117



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

[[—deprecated_—, __hal__::__daisy__]] double ninel000 (double);
[[—deprecated—]] [[__hal__::__daisy__]] double ninelG00(double);
[[—deprecated_—]] double ninel000 [[__hal__::__daisy 1] (double);

These use the alternate spelling that is required for all standard attributes and recommended for prefixed attributes. These
may be better-suited for use in header files, where the use of the alternate spelling avoids naming conflicts with user-provided
macros.

8 EXAMPLE 2 For the same implementation, the following two declarations are equivalent, because the ordering inside
attribute lists is not important.

[[hal::daisy, hal::rosie]l] double nine999(double);
[[hal::rosie, hal::daisy]l] double nine999(double);

On the other hand the following two declarations are not equivalent, because the ordering of different attribute specifiers
may affect the semantics.

[[hal::daisy]] [[hal::rosie]] double nine999(double);
[[hal::rosie]] [[hal::daisy]] double nine999(double); // may have different semantics

6.7.11.2 The nodiscard attribute
Constraint

1 The nodiscard attribute shall be applied to the identifier in a function declarator or to the definition
of a structure, union, or enumeration type. It shall appear at most once in each attribute list and no
attribute argument clause shall be present.

The nodiscard attribute shall be applied to the identifier in a function declaration or to the definition
of a structure, union, or enumeration type. It shall appear at most once in each attribute list. If an
attribute argument clause is present, it shall have the form:

( string-literal )

Semantics

2 The _has_c_attribute conditional inclusion expression (6.10.1) shall return the value 202003L
when given nodiscard as the pp-tokens operand.

3 A name or entity declared without the nodiscard attribute can later be redeclared with the attribute
and vice versa. An entity is considered marked after the first declaration that marks it.

Recommended Practice

4 A nodiscard call is a function call expression that calls a function previously declared with attribute
nodiscard, or whose return type is a structure, union, or enumeration type marked with attribute
nodiscard. Evaluation of a nodiscard call as a void expression (6.8.3) is discouraged unless explicitly
cast to void. Implementations are encouraged to issue a diagnostic in such cases. This is typically
because immediately discarding the return value of a nodiscard call has surprising consequences.

5  The diagnostic message may include text provided by the string literal within the attribute argument
clause of any nodiscard attribute applied to the name or entity.

6 EXAMPLE 1

struct [[nodiscard]] error_info { /x...x/ };

struct error_info enable_missile_safety_mode(void);

void launch_missiles(void);

void test _missiles(void) {
enable_missile_safety_mode();
launch_missiles();

A diagnostic for the call to enable_missile_safety_mode is encouraged.

7 EXAMPLE 2

118 Language §6.7.11.2



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

' [[nodiscard]] int important_func(void); \
'void call(void) { |
int i = important_func(); ‘

|
1}

No diagnostic for the call to important_func is encouraged despite the value of i not being used.

8 EXAMPLE 3

[[nodiscard("must check armed state")]]
bool arm_detonator(int);

void call(void) {
arm_detonator(3);
detonate();

A diagnostic for the call toarm_detonator using the string literal "must check armed state" from the attribute argument
clause is encouraged.

6.7.11.3 The maybe_unused attribute
Constraint

1 The maybe_unused attribute shall be applied to the declaration of a structure, a union, a typedef
name, a variable, a structure or union member, a function, an enumeration, or an enumerator. It
shall appear at most once in each attribute list and no attribute argument clause shall be present.

Semantics
2 The maybe_unused attribute indicates that a name or entity is possibly intentionally unused.

3 The _has_c_attribute conditional inclusion expression (6.10.1) shall return the value 201904L
when given maybe_unused as the pp-tokens operand.

A name or entity declared without the maybe_unused attribute can later be redeclared with the
attribute and vice versa. An entity is considered marked with the attribute after the first declaration
that marks it.

Recommended Practice
4 For an entity marked maybe_unused, implementations are encouraged not to emit a diagnostic that
the entity is unused, or that the entity is used despite the presence of the attribute.

5 EXAMPLE

[ [maybe_unused]] void f([[maybe_unused]] int i) {
[ [maybe_unused]] int j = i + 100;
assert(j);

Implementations are encouraged not to diagnose that j is unused, whether or not NDEBUG is defined.

6.7.11.4 The deprecated attribute
Constraint

1 The deprecated attribute shall be applied to the declaration of a structure, a union, a typedef name,
a variable, a structure or union member, a function, an enumeration, or an enumerator. It shall
appear at most once in each attribute list.

2 If an attribute argument clause is present, it shall have the form:

( string-literal )

§6.7.114 Language 119



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Semantics
The deprecated attribute can be used to mark names and entities whose use is still allowed, but is
discouraged for some reason. 109

The _has_c_attribute conditional inclusion expression (6.10.1) shall return the value 201904L
when given deprecated as the pp-tokens operand.

A name or entity declared without the deprecated attribute can later be redeclared with the attribute
and vice versa. An entity is considered marked with the attribute after the first declaration that
marks it.

Recommended Practice

Implementations should use the deprecated attribute to produce a diagnostic message in case the
program refers to a name or entity other than to declare it, after a declaration that specifies the
attribute, when the reference to the name or entity is not within the context of a related deprecated
entity. The diagnostic message may include text provided by the string literal within the attribute
argument clause of any deprecated attribute applied to the name or entity.

EXAMPLE

struct [[deprecated]] S {

int a;
+
enum [[deprecated]] E1 {
one
+
enum E2 {
two [[deprecated("use ’'three’ instead")]l],
three
+i

[[deprecated]] typedef int Foo;

void fl(struct S s) { // Diagnose use of S
int i = one; // Diagnose use of E1
int j two; // Diagnose use of two: "use ’'three’ instead"
int k = three;
Foo f; // Diagnose use of Foo

}

[[deprecated]] void f2(struct S s) {
int i = one;
int j = two;
int k = three;

Foo f;

}

struct [[deprecated]] T {
Foo f;
struct S s;

};

Implementations are encouraged to diagnose the use of deprecated entities within a context which is not itself deprecated, as
indicated for function f1, but not to diagnose within function f2 and struct T, as they are themselves deprecated.

169n particular, deprecated is appropriate for names and entities that are obsolescent, insecure, unsafe, or otherwise unfit
for purpose.

120 Language §6.7.114



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

6.7.11.5 The fallthrough attribute
Constraint

The attribute token fallthrough shall only appear in an attribute declaration (6.7); such a declara-
tion is a fallthrough declaration. The attribute token fallthrough shall appear at most once in each
attribute list and no attribute argument clause shall be present. A fallthrough declaration may only
appear within an enclosing switch statement (6.8.4.2). The next block item(6.8.2) that would be
encountered after a fallthrough declaration shall be a labeled statement whose label is a case label
or default label for the same switch statement.

Semantics

The __has_c_attribute conditional inclusion expression (6.10.1) shall return the value 201904L
when given fallthrough as the pp-tokens operand.

Recommended Practice

The use of a fallthrough declaration is intended to suppress a diagnostic that an implementation
might otherwise issue for a case or default label that is reachable from another case or default
label along some path of execution. Implementations are encouraged to issue a diagnostic if a
fallthrough declaration is not dynamically reachable.

EXAMPLE

void f(int n) {

void g(void), h(void), i(void);

switch (n) {

case 1: /x diagnostic on fallthrough discouraged x*/

case 2:
g();
[[fallthroughl]];

case 3: /x diagnostic on fallthrough discouraged x*/
h();

case 4: /x fallthrough diagnostic encouraged */
i();
[[fallthroughl]l; /* constraint violation x/

§6.7.11.5 Language 121



1

1

2

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

6.8 Statements and blocks

Syntax

Statement:
labeled-statement
unlabeled-statement

unlabeled-statement:
expression-statement
attribute-specifier-sequenceqp, compound-statement
attribute-specifier-sequenceqp selection-statement
attribute-specifier-sequenceqp, iteration-statement
attribute-specifier-sequenceqp jump-statement

Semantics

A statement specifies an action to be performed. Except as indicated, statements are executed in
sequence. The optional attribute specifier sequence appertains to the respective statement.

A block allows a set of declarations and statements to be grouped into one syntactic unit. The
initializers of objects that have automatic storage duration, and the variable length array declarators
of ordinary identifiers with block scope, are evaluated and the values are stored in the objects
(including storing an indeterminate value in objects without an initializer) each time the declaration
is reached in the order of execution, as if it were a statement, and within each declaration in the
order that declarators appear.

A full expression is an expression that is not part of another expression, nor part of a declarator
or abstract declarator. There is also an implicit full expression in which the non-constant size
expressions for a variably modified type are evaluated; within that full expression, the evaluation of
different size expressions are unsequenced with respect to one another. There is a sequence point
between the evaluation of a full expression and the evaluation of the next full expression to be
evaluated.

NOTE Each of the following is a full expression:

— a full declarator for a variably modified type,

— an initializer that is not part of a compound literal,

— the expression in an expression statement,

— the controlling expression of a selection statement (if or switch),
— the controlling expression of a while or do statement,

— each of the (optional) expressions of a for statement,

— the (optional) expression in a return statement.

While a constant expression satisfies the definition of a full expression, evaluating it does not depend on nor produce any
side effects, so the sequencing implications of being a full expression are not relevant to a constant expression.

Forward references: expression and null statements (6.8.3), selection statements (6.8.4), iteration
statements (6.8.5), the return statement (6.8.6.4).

6.8.1 Labeled statements

Syntax

label:
attribute-specifier-sequenceqp identifier :
attribute-specifier-sequence,p,; case constant-expression :
attribute-specifier-sequence,p; default :
labeled-statement:
label statement

Constraints

A case or default label shall appear only in a switch statement. Further constraints on such labels
are discussed under the switch statement.

122 Language §6.8.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Label names shall be unique within a function.

Semantics

Any statement may be preceded by a prefix that declares an identifier as a label name. The optional
attribute specifier sequence appertains to the label. Labels in themselves do not alter the flow of
control, which continues unimpeded across them.

Forward references: the goto statement (6.8.6.1), the switch statement (6.8.4.2).

6.8.2 Compound statement
Syntax

compound-statement:
{ Dblock-item-listopr }
block-item-list:

block-item
block-item-list block-item
block-item:
declaration
unlabeled-statement
label
Semantics

A compound statement is a block. A label shall be translated as if it were followed by a null statement.

6.8.3 Expression and null statements

Syntax

expression-statement:
expressionopt ;
attribute-specifier-sequence expression ;

Semantics
The attribute specifier sequence appertains to the expression. The expression in an expression
statement is evaluated as a void expression for its side effects.!®”

A null statement (consisting of just a semicolon) performs no operations.

EXAMPLE 1 If a function call is evaluated as an expression statement for its side effects only, the discarding of its value can
be made explicit by converting the expression to a void expression by means of a cast:

int p(int);
/* ... %/
(void)p(0);

EXAMPLE 2 In the program fragment

char xs;
/*x ... %/

while (*s++ != '\0")

’

a null statement is used to supply an empty loop body to the iteration statement.

Forward references: iteration statements (6.8.5).

165Such as assignments, and function calls which have side effects.

§6.8.3 Language 123



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

6.8.4 Selection statements

Syntax

selection-statement:
if (expression ) statement
if (expression ) statement else statement
switch ( expression ) statement

Semantics
A selection statement selects among a set of statements depending on the value of a controlling
expression.

A selection statement is a block whose scope is a strict subset of the scope of its enclosing block. Each
associated substatement is also a block whose scope is a strict subset of the scope of the selection
statement.

6.8.4.1 The if statement
Constraints
The controlling expression of an if statement shall have scalar type.

Semantics

In both forms, the first substatement is executed if the expression compares unequal to 0. In the
else form, the second substatement is executed if the expression compares equal to 0. If the first
substatement is reached via a label, the second substatement is not executed.

An else is associated with the lexically nearest preceding if that is allowed by the syntax.

6.8.4.2 The switch statement
Constraints
The controlling expression of a switch statement shall have integer type.

If a switch statement has an associated case or default label within the scope of an identifier with
a variably modified type, the entire switch statement shall be within the scope of that identifier.!®®

The expression of each case label shall be an integer constant expression and no two of the case
constant expressions in the same switch statement shall have the same value after conversion.
There may be at most one default label in a switch statement. (Any enclosed switch statement
may have a default label or case constant expressions with values that duplicate case constant
expressions in the enclosing switch statement.)

Semantics

A switch statement causes control to jump to, into, or past the statement that is the switch body,
depending on the value of a controlling expression, and on the presence of a default label and the
values of any case labels on or in the switch body. A case or default label is accessible only within
the closest enclosing switch statement.

The integer promotions are performed on the controlling expression. The constant expression in
each case label is converted to the promoted type of the controlling expression. If a converted value
matches that of the promoted controlling expression, control jumps to the statement following the
matched case label. Otherwise, if there is a default label, control jumps to the statement following
the default label. If no converted case constant expression matches and there is no default label,
no part of the switch body is executed.

Implementation limits

As discussed in 5.2.4.1, the implementation may limit the number of case values in a switch
statement.

166)That is, the declaration either precedes the switch statement, or it follows the last case or default label associated with
the switch that is in the block containing the declaration.

124 Language §6.8.4.2



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7 EXAMPLE In the artificial program fragment

switch (expr)
{
int i = 4;
f(i);
case 0:
i=17;
/*x falls through into default code x/
default:
printf("%d\n", 1i);

the object whose identifier is i exists with automatic storage duration (within the block) but is never initialized, and thus if
the controlling expression has a nonzero value, the call to the printf function will access an indeterminate value. Similarly,
the call to the function f cannot be reached.

6.8.5 Iteration statements

Syntax
1 iteration-statement:
while ( expression ) statement
do statement while ( expression ) ;
for (expressionop: ; expressionopt ; expressiongp: ) statement
for (declaration expressionept ; expressionop: ) statement
Constraints

2 The controlling expression of an iteration statement shall have scalar type.
3  The declaration part of a for statement shall only declare identifiers for objects having storage class
auto or register.

Semantics

4  Aniteration statement causes a statement called the loop body to be executed repeatedly until the
controlling expression compares equal to 0. The repetition occurs regardless of whether the loop
body is entered from the iteration statement or by a jump.'%”)

5 Aniteration statement is a block whose scope is a strict subset of the scope of its enclosing block.
The loop body is also a block whose scope is a strict subset of the scope of the iteration statement.

6  An iteration statement may be assumed by the implementation to terminate if its controlling
expression is not a constant expression,'®® and none of the following operations are performed in its
body, controlling expression or (in the case of a for statement) its expression-3:1%%

— input/output operations
— accessing a volatile object

— synchronization or atomic operations.
6.8.5.1 The while statement
1 The evaluation of the controlling expression takes place before each execution of the loop body.

6.8.5.2 The do statement
1 The evaluation of the controlling expression takes place after each execution of the loop body.

167)Code jumped over is not executed. In particular, the controlling expression of a for or while statement is not evaluated
before entering the loop body, nor is clause-1 of a for statement.

168) An omitted controlling expression is replaced by a nonzero constant, which is a constant expression.

169)This is intended to allow compiler transformations such as removal of empty loops even when termination cannot be
proven.

§6.8.5.2 Language 125



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

6.8.5.3 The for statement
The statement

\ for (clause-1; expression-2; expression-3) statement

behaves as follows: The expression expression-2 is the controlling expression that is evaluated before
each execution of the loop body. The expression expression-3 is evaluated as a void expression after
each execution of the loop body. If clause-1 is a declaration, the scope of any identifiers it declares
is the remainder of the declaration and the entire loop, including the other two expressions; it is
reached in the order of execution before the first evaluation of the controlling expression. If clause-1
is an expression, it is evaluated as a void expression before the first evaluation of the controlling
expression.!”?

Both clause-1 and expression-3 can be omitted. An omitted expression-2 is replaced by a nonzero
constant.

6.8.6 Jump statements
Syntax

jump-statement:
goto identifier ;
continue ;
break ;
return expressiongp: ;
Semantics

A jump statement causes an unconditional jump to another place.

6.8.6.1 The goto statement
Constraints

The identifier in a goto statement shall name a label located somewhere in the enclosing function. A
goto statement shall not jump from outside the scope of an identifier having a variably modified
type to inside the scope of that identifier.

Semantics

A goto statement causes an unconditional jump to the statement prefixed by the named label in the
enclosing function.

EXAMPLE 1 It is sometimes convenient to jump into the middle of a complicated set of statements. The following outline
presents one possible approach to a problem based on these three assumptions:

1. The general initialization code accesses objects only visible to the current function.
2. The general initialization code is too large to warrant duplication.

3. The code to determine the next operation is at the head of the loop. (To allow it to be reached by continue statements,
for example.)

/*x ... %/
goto first_time;
for (;;) {
// determine next operation

/* ... %/
if (need to reinitialize) {
// reinitialize-only code
/* ... %/
first_time:
// general initialization code

170 Thus, clause-1 specifies initialization for the loop, possibly declaring one or more variables for use in the loop; the
controlling expression, expression-2, specifies an evaluation made before each iteration, such that execution of the loop
continues until the expression compares equal to 0; and expression-3 specifies an operation (such as incrementing) that is
performed after each iteration.

126 Language §6.8.6.1




N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

\ /% ... %/

\ continue;

\ }

\ // handle other operations
} /¥ ... */

L

EXAMPLE 2 A goto statement is not allowed to jump past any declarations of objects with variably modified types. A jump
within the scope, however, is permitted.

goto lab3; // invalid: going INTO scope of VLA.
{
double a[n];
aljl = 4.4;
lab3:
aljl = 3.3;
goto lab4; // valid: going WITHIN scope of VLA.
aljl = 5.5;
lab4:
aljl = 6.6;
}
goto lab4; // invalid: going INTO scope of VLA.

6.8.6.2 The continue statement
Constraints
A continue statement shall appear only in or as a loop body.

Semantics

A continue statement causes a jump to the loop-continuation portion of the smallest enclosing
iteration statement; that is, to the end of the loop body. More precisely, in each of the statements

while (/* ... x/) { do { for (/x ... x/) {
/*x ... x/ /*x ... *x/ /*x ... %/
continue; continue; continue;
/x ... %/ /* ... *x/ /*x ... X/

contin: contin:; contin:

} } while (/* ... x/); }

unless the continue statement shown is in an enclosed iteration statement (in which case it is
interpreted within that statement), it is equivalent to goto contin;.!”

6.8.6.3 The break statement
Constraints
A break statement shall appear only in or as a switch body or loop body.

Semantics

A break statement terminates execution of the smallest enclosing switch or iteration statement.

6.8.6.4 The return statement
Constraints
A return statement with an expression shall not appear in a function whose return type is void. A

return statement without an expression shall only appear in a function whose return type is void.

7DFollowing the contin: label in the 2nd example is a null statement. The null statement in the first and third example is
implied by the label (6.8.2).

§6.8.6.4 Language 127



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Semantics

A return statement terminates execution of the current function and returns control to its caller. A
function may have any number of return statements.

If a return statement with an expression is executed, the value of the expression is returned to the
caller as the value of the function call expression. If the expression has a type different from the
return type of the function in which it appears, the value is converted as if by assignment to an
object having the return type of the function.!”?

EXAMPLE In:

struct s { double i; } f(void);

union {
struct {
int f1;
struct s f2;
} oul;
struct {
struct s f3;
int f4;
}ouz;
o
struct s f(void)
{
return g.ul.f2;
}
/* ... x/
g.u2.f3 = f();

there is no undefined behavior, although there would be if the assignment were done directly (without using a function call
to fetch the value).

172 The return statement is not an assignment. The overlap restriction of 6.5.16.1 does not apply to the case of function
return. The representation of floating-point values can have wider range or precision than implied by the type; a cast can be
used to remove this extra range and precision.

128 Language §6.8.6.4



1

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

6.9 External definitions

Syntax

translation-unit:
external-declaration
translation-unit external-declaration

external-declaration:
function-definition
declaration

Constraints
The storage-class specifiers auto and register shall not appear in the declaration specifiers in an
external declaration.

There shall be no more than one external definition for each identifier declared with internal linkage
in a translation unit. Moreover, if an identifier declared with internal linkage is used in an expression
(other than as a part of the operand of a sizeof or _Alignof operator whose result is an integer
constant), there shall be exactly one external definition for the identifier in the translation unit.

Semantics

As discussed in 5.1.1.1, the unit of program text after preprocessing is a translation unit, which
consists of a sequence of external declarations. These are described as “external” because they
appear outside any function (and hence have file scope). As discussed in 6.7, a declaration that also
causes storage to be reserved for an object or a function named by the identifier is a definition.

An external definition is an external declaration that is also a definition of a function (other than an
inline definition) or an object. If an identifier declared with external linkage is used in an expression
(other than as part of the operand of a sizeof or _Alignof operator whose result is an integer
constant), somewhere in the entire program there shall be exactly one external definition for the
identifier; otherwise, there shall be no more than one.”?

6.9.1 Function definitions

Syntax
function-definition:
attribute-specifier-sequence,p declaration-specifiers declarator function-body

function-body:
compound-statement

Constraints

The identifier declared in a function definition (which is the name of the function) shall have a
function type, as specified by the declarator portion of the function definition.

The return type of a function shall be void or a complete object type other than array type.
The storage-class specifier, if any, in the declaration specifiers shall be either extern or static.
If the parameter list consists of a single parameter of type void, the parameter declarator shall not

include an identifier.

Semantics
The optional attribute specifier sequence in a function definition appertains to the function.

179)Thus, if an identifier declared with external linkage is not used in an expression, there need be no external definition for
it.

§69.1 Language 129



10

11
12

13

14

15

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

The declarator in a function definition specifies the name of the function being defined and the
types (and optionally the names) of all the parameters; the declarator also serves as a function
prototype for later calls to the same function in the same translation unit. The type of each parameter
is adjusted as described in 6.7.6.3; the resulting type shall be a complete object type.

If a function that accepts a variable number of arguments is defined without a parameter type list
that ends with the ellipsis notation, the behavior is undefined.

Each parameter has automatic storage duration; its identifier, if any'’¥, is an lvalue.!” The layout
of the storage for parameters is unspecified.

On entry to the function, the size expressions of each variably modified parameter are evaluated
and the value of each argument expression is converted to the type of the corresponding parameter
as if by assignment. (Array expressions and function designators as arguments were converted to
pointers before the call.)

After all parameters have been assigned, the compound statement of the function body is executed.

Unless otherwise specified, if the} that terminates the function body is reached, and the value of the
function call is used by the caller, the behavior is undefined.

NOTE In a function definition, the type of the function and its prototype cannot be inherited from a typedef:

typedef int F(void); // type F is “function with no parameters
// returning int”

Ff, g // f and g both have type compatible with F
Ff{/«x ... x/7} // WRONG: syntax/constraint error

Fag() { /% ... %/} // WRONG: declares that g returns a function
int f(void) { /x ... x/ } // RIGHT: f has type compatible with F

int g() { /% ... %/ } // RIGHT: g has type compatible with F

F xe(void) { /x ... %/ } // e returns a pointer to a function

F x((e))(void) { /* ... %/ } // same: parentheses irrelevant

int (*fp) (void); // fp points to a function that has type F

F xFp; // Fp points to a function that has type F

EXAMPLE 1 In the following:

extern int max(int a, int b)

{

return a > b ? a: b;

}

extern is the storage-class specifier and int is the type specifier; max (int a, int b) is the function declarator; and

{ returna > b ? a: b; }

is the function body.
EXAMPLE 2 To pass one function to another, one might say

int f(void);
/* ... %/
g(f);

Then the definition of g might read

void g(int (xfuncp) (void))
{
/* ... x/
(xfuncp)(); /* or funcp(); ...x*/

or, equivalently,

174) A parameter that has no declared name is inaccessible within the function body.
175) A parameter identifier cannot be redeclared in the function body except in an enclosed block.

130 Language §69.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

void g(int func(void))
{

/* ... %/

func(); /x or (xfunc)(); ...x/
}

6.9.2 External object definitions

Semantics

If the declaration of an identifier for an object has file scope and an initializer, the declaration is an
external definition for the identifier.

A declaration of an identifier for an object that has file scope without an initializer, and without a
storage-class specifier or with the storage-class specifier static, constitutes a tentative definition. If a
translation unit contains one or more tentative definitions for an identifier, and the translation unit
contains no external definition for that identifier, then the behavior is exactly as if the translation
unit contains a file scope declaration of that identifier, with the composite type as of the end of the
translation unit, with an initializer equalto { 0 }.

If the declaration of an identifier for an object is a tentative definition and has internal linkage, the
declared type shall not be an incomplete type.

§69.2 Language 131



4

5

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573
EXAMPLE 1
int il = 1; // definition, external linkage
static int i2 = 2; // definition, internal linkage
extern int i3 = 3; // definition, external linkage
int i4; // tentative definition, external linkage
static int i5; // tentative definition, internal linkage
int il; // valid tentative definition, refers to previous
int i2; // 6.2.2 renders undefined, linkage disagreement
int i3; // valid tentative definition, refers to previous
int i4; // valid tentative definition, refers to previous
int i5; // 6.2.2 renders undefined, linkage disagreement
extern int il; // refers to previous, whose linkage is external
extern int i2; // refers to previous, whose linkage is internal
extern int i3; // refers to previous, whose linkage is external
extern int i4; // refers to previous, whose linkage is external
extern int i5; // refers to previous, whose linkage is internal

EXAMPLE 2 If at the end of the translation unit containing

int i[];

the array i still has incomplete type, the implicit initializer causes it to have one element, which is set to zero on program

startup.

132

Language

§69.2




N2573 working draft — October 1, 2020

6.10 Preprocessing directives

Syntax
preprocessing-file:
§roUpopt
group:
group-part
group group-part
group-part:
if-section
control-line
text-line
# non-directive
if-section:
if-group elif-groupsop else-groupqp endif-line
if-group:
# if constant-expression new-line groupgpt
# ifdef identifier new-line grouppt
# ifndef identifier new-line grouppt
elif-groups:
elif-group
elif-groups elif-group
elif-group:
# elif constant-expression new-line grouppt
else-group:
# else new-line groupopt
endif-line:

# endif new-line
control-line:
include pp-tokens new-line
define identifier replacement-list new-line
define identifier Iparen identifier-listopt )

# R R

ISO/IEC 9899:202x (E)

replacement-list new-line

#* H

define identifier Iparen identifier-list , ... )

define identifier lparen ... ) replacement-list new-line

replacement-list new-line

undef identifier new-line
line pp-tokens new-line
error pp-tokensqp, new-line
pragma pp-tokens,p; new-line
new-line

O W R

text-line:

pp-tokensop: new-line
non-directive:

pp-tokens new-line
Iparen:

a ( character not immediately preceded by white space
replacement-list:

pp-tokens,pt
pp-tokens:

preprocessing-token

pp-tokens preprocessing-token
new-line:

the new-line character
identifier-list:

identifier

identifier-list , identifier

§6.10 Language

133



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Description

A preprocessing directive consists of a sequence of preprocessing tokens that satisfies the following
constraints: The first token in the sequence is a # preprocessing token that (at the start of translation
phase 4) is either the first character in the source file (optionally after white space containing no
new-line characters) or that follows white space containing at least one new-line character. The last
token in the sequence is the first new-line character that follows the first token in the sequence.'”®
A new-line character ends the preprocessing directive even if it occurs within what would otherwise
be an invocation of a function-like macro.

A text line shall not begin with a # preprocessing token. A non-directive shall not begin with any of
the directive names appearing in the syntax.

When in a group that is skipped (6.10.1), the directive syntax is relaxed to allow any sequence of
preprocessing tokens to occur between the directive name and the following new-line character.

Constraints

The only white-space characters that shall appear between preprocessing tokens within a prepro-
cessing directive (from just after the introducing # preprocessing token through just before the
terminating new-line character) are space and horizontal-tab (including spaces that have replaced
comments or possibly other white-space characters in translation phase 3).

Semantics

The implementation can process and skip sections of source files conditionally, include other source
files, and replace macros. These capabilities are called preprocessing, because conceptually they occur
before translation of the resulting translation unit.

The preprocessing tokens within a preprocessing directive are not subject to macro expansion unless
otherwise stated.

EXAMPLE In:

#define EMPTY
EMPTY # include <file.h>

the sequence of preprocessing tokens on the second line is not a preprocessing directive, because it does not begin with a # at
the start of translation phase 4, even though it will do so after the macro EMPTY has been replaced.

The execution of a non-directive preprocessing directive results in undefined behavior.

6.10.1 Conditional inclusion

Constraints

The expression that controls conditional inclusion shall be an integer constant expression except that:
identifiers (including those lexically identical to keywords) are interpreted as described below 77) .

It may contain unary operator expressions of the form
defined identifier

or
defined ( identifier )

which evaluate to 1 if the identifier is currently defined as a macro name (that is, if it is predefined
or if it has been the subject of a #define preprocessing directive without an intervening #undef
directive with the same subject identifier), 0 if it is not.

The conditional inclusion expression may contain unary operator expressions of the form

176)Thus, preprocessing directives are commonly called “lines”. These “lines” have no other syntactic significance, as all
white space is equivalent except in certain situations during preprocessing (see the # character string literal creation operator
in 6.10.3.2, for example).

177)Because the controlling constant expression is evaluated during translation phase 4, all identifiers either are or are not
macro names — there simply are no keywords, enumeration constants, etc.

134 Language §6.10.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

—has_c_attribute ( pp-tokens )

which are replaced by a nonzero pp-number matching the form of an integer constant if the
implementation supports an attribute with the name specified by interpreting the pp-tokens as an
attribute token, and by 0 otherwise. The pp-tokens shall match the form of an attribute token.

Each preprocessing token that remains (in the list of preprocessing tokens that will become the
controlling expression) after all macro replacements have occurred shall be in the lexical form of a
token (6.4).

Semantics

The #ifdef and #ifndef directives, and the defined conditional inclusion operator, shall treat
—has_c_attribute as if it was the name of a defined macro. The identifier __has_c_attribute
shall not appear in any context not mentioned in this subclause.

Preprocessing directives of the forms

# if  constant-expression new-line groupopt
# elif constant-expression new-line grouppt

check whether the controlling constant expression evaluates to nonzero.

Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the control-
ling constant expression are replaced (except for those macro names modified by the defined unary
operator), just as in normal text. If the token defined is generated as a result of this replacement
process or use of the defined unary operator does not match one of the two specified forms prior
to macro replacement, the behavior is undefined. After all replacements due to macro expansion
and evaluations of the defined and __has_c_attribute unary operators have been performed,
all remaining identifiers (including those lexically identical to keywords) are replaced with the
pp-number 0, and then each preprocessing token is converted into a token. The resulting tokens
compose the controlling constant expression which is evaluated according to the rules of 6.6. For the
purposes of this token conversion and evaluation, all signed integer types and all unsigned integer
types act as if they have the same representation as, respectively, the types intmax_t and uintmax_t
defined in the header <stdint.h>. 178 This includes interpreting character constants, which may
involve converting escape sequences into execution character set members. Whether the numeric
value for these character constants matches the value obtained when an identical character constant
occurs in an expression (other than within a #1f or #elif directive) is implementation-defined.
179)

Also, whether a single-character character constant may have a negative value is implementation-
defined.

Preprocessing directives of the forms

# ifdef identifier new-line groupopt
# ifndef identifier new-line groupop:

check whether the identifier is or is not currently defined as a macro name. Their conditions are
equivalent to #if defined identifier and #if !defined identifier respectively.

Each directive’s condition is checked in order. If it evaluates to false (zero), the group that it
controls is skipped: directives are processed only through the name that determines the directive
in order to keep track of the level of nested conditionals; the rest of the directives’ preprocessing
tokens are ignored, as are the other preprocessing tokens in the group. Only the first group whose

178)Thus, on an implementation where INT_MAX is 0x7FFF and UINT_MAX is OxFFFF, the constant 0x8000 is signed and
positive within a #if expression even though it would be unsigned in translation phase 7.

179)Thus, the constant expression in the following #1if directive and if statement is not guaranteed to evaluate to the same
value in these two contexts.

#if 'z’ - 'a’ == 25
if ('z' - 'a' == 25)

§6.10.1 Language 135



10
11

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

control condition evaluates to true (nonzero) is processed; any following groups are skipped and
their controlling directives are processed as if they were in a group that is skipped. If none of the
conditions evaluates to true, and there is a #else directive, the group controlled by the #else is
processed; lacking a #else directive, all the groups until the #endif are skipped. 80

EXAMPLE

/* Fallback for compilers not yet implementing this feature. */
#ifndef __has_c_attribute

#define __has_c_attribute(x) 0

#endif /x __has_c_attribute x/

#if __has_c_attribute(fallthrough)

/* Standard attribute is available, use it. x/
#define FALLTHROUGH [[fallthrough]]

#elif __has_c_attribute(vendor::fallthrough)
/* Vendor attribute is available, use it. x/
#define FALLTHROUGH [[vendor::fallthrough]]
#else

/* Fallback implementation. x/

#define FALLTHROUGH

#endif

Forward references: macro replacement (6.10.3), source file inclusion (6.10.2), largest integer types
(7.20.1.5).

6.10.2 Source file inclusion

Constraints

A #include directive shall identify a header or source file that can be processed by the implementa-
tion.

Semantics
A preprocessing directive of the form

# include < h-char-sequence > new-line

searches a sequence of implementation-defined places for a header identified uniquely by the
specified sequence between the < and > delimiters, and causes the replacement of that directive
by the entire contents of the header. How the places are specified or the header identified is
implementation-defined.

A preprocessing directive of the form

# include " g-char-sequence " new-line

causes the replacement of that directive by the entire contents of the source file identified by the
specified sequence between the " delimiters. The named source file is searched for in an implementa-
tion-defined manner. If this search is not supported, or if the search fails, the directive is reprocessed
as if it read

# include < h-char-sequence > new-line
with the identical contained sequence (including > characters, if any) from the original directive.

A preprocessing directive of the form

180) As indicated by the syntax, no preprocessing tokens are allowed to follow a #else or #endif directive before the
terminating new-line character. However, comments can appear anywhere in a source file, including within a preprocessing
directive.

136 Language §6.10.2



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

# include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after
include in the directive are processed just as in normal text. (Each identifier currently defined as a
macro name is replaced by its replacement list of preprocessing tokens.) The directive resulting after
all replacements shall match one of the two previous forms.'®¥ The method by which a sequence
of preprocessing tokens between a< and a > preprocessing token pair or a pair of " characters is
combined into a single header name preprocessing token is implementation-defined.

The implementation shall provide unique mappings for sequences consisting of one or more nondig-
its or digits (6.4.2.1) followed by a period (.) and a single nondigit. The first character shall not be a
digit. The implementation may ignore distinctions of alphabetical case and restrict the mapping to
eight significant characters before the period.

A #include preprocessing directive may appear in a source file that has been read because of a
#include directive in another file, up to an implementation-defined nesting limit (see 5.2.4.1).

EXAMPLE 1 The most common uses of #include preprocessing directives are as in the following:

#include <stdio.h>
#include "myprog.h"

EXAMPLE 2 This illustrates macro-replaced #include directives:

#if VERSION ==
#define INCFILE "versl.h"
#elif VERSION ==
#define INCFILE "vers2.h" // and so on
#else
#define INCFILE "versN.h"
#endif
#include INCFILE

Forward references: macro replacement (6.10.3).

6.10.3 Macro replacement

Constraints

Two replacement lists are identical if and only if the preprocessing tokens in both have the same
number, ordering, spelling, and white-space separation, where all white-space separations are
considered identical.

An identifier currently defined as an object-like macro shall not be redefined by another #define
preprocessing directive unless the second definition is an object-like macro definition and the two
replacement lists are identical. Likewise, an identifier currently defined as a function-like macro
shall not be redefined by another #define preprocessing directive unless the second definition is a
function-like macro definition that has the same number and spelling of parameters, and the two
replacement lists are identical.

There shall be white space between the identifier and the replacement list in the definition of an
object-like macro.

If the identifier-list in the macro definition does not end with an ellipsis, the number of arguments
(including those arguments consisting of no preprocessing tokens) in an invocation of a function-like
macro shall equal the number of parameters in the macro definition. Otherwise, there shall be more
arguments in the invocation than there are parameters in the macro definition (excluding the .. .).
There shall exist a ) preprocessing token that terminates the invocation.

The identifier __VA_ARGS__ shall occur only in the replacement-list of a function-like macro that
uses the ellipsis notation in the parameters.

A parameter identifier in a function-like macro shall be uniquely declared within its scope.

18D Note that adjacent string literals are not concatenated into a single string literal (see the translation phases in 5.1.1.2);

thus, an expansion that results in two string literals is an invalid directive.

§6.10.3 Language 137



10

11

12

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Semantics

The identifier immediately following the define is called the macro name. There is one name
space for macro names. Any white-space characters preceding or following the replacement list of
preprocessing tokens are not considered part of the replacement list for either form of macro.

If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a prepro-
cessing directive could begin, the identifier is not subject to macro replacement.

A preprocessing directive of the form
# define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name'®? to be replaced
by the replacement list of preprocessing tokens that constitute the remainder of the directive. The
replacement list is then rescanned for more macro names as specified below.

A preprocessing directive of the form

# define identifier Iparen identifier-listope ) replacement-list new-line
# define identifier lparen ... ) replacement-list new-line
# define identifier lparen identifier-list , ... ) replacement-list new-line

defines a function-like macro with parameters, whose use is similar syntactically to a function call. The
parameters are specified by the optional list of identifiers, whose scope extends from their declaration
in the identifier list until the new-line character that terminates the #define preprocessing directive.
Each subsequent instance of the function-like macro name followed by a ( as the next preprocessing
token introduces the sequence of preprocessing tokens that is replaced by the replacement list
in the definition (an invocation of the macro). The replaced sequence of preprocessing tokens is
terminated by the matching ) preprocessing token, skipping intervening matched pairs of left and
right parenthesis preprocessing tokens. Within the sequence of preprocessing tokens making up an
invocation of a function-like macro, new-line is considered a normal white-space character.

The sequence of preprocessing tokens bounded by the outside-most matching parentheses forms
the list of arguments for the function-like macro. The individual arguments within the list are
separated by comma preprocessing tokens, but comma preprocessing tokens between matching
inner parentheses do not separate arguments. If there are sequences of preprocessing tokens within
the list of arguments that would otherwise act as preprocessing directives,'®® the behavior is
undefined.

If thereis a ... in the identifier-list in the macro definition, then the trailing arguments, including
any separating comma preprocessing tokens, are merged to form a single item: the variable arguments.
The number of arguments so combined is such that, following merger, the number of arguments is
one more than the number of parameters in the macro definition (excluding the .. .).

6.10.3.1 Argument substitution

After the arguments for the invocation of a function-like macro have been identified, argument
substitution takes place. A parameter in the replacement list, unless preceded by a # or ## prepro-
cessing token or followed by a ## preprocessing token (see below), is replaced by the corresponding
argument after all macros contained therein have been expanded. Before being substituted, each
argument’s preprocessing tokens are completely macro replaced as if they formed the rest of the
preprocessing file; no other preprocessing tokens are available.

Anidentifier __VA_ARGS__ that occurs in the replacement list shall be treated as if it were a parameter,
and the variable arguments shall form the preprocessing tokens used to replace it.

182)Since, by macro-replacement time, all character constants and string literals are preprocessing tokens, not sequences
possibly containing identifier-like subsequences (see 5.1.1.2, translation phases), they are never scanned for macro names or
parameters.

183)Despite the name, a non-directive is a preprocessing directive.

138 Language §6.10.3.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

6.10.3.2 The # operator
Constraints

Each # preprocessing token in the replacement list for a function-like macro shall be followed by a
parameter as the next preprocessing token in the replacement list.

Semantics

If, in the replacement list, a parameter is immediately preceded by a # preprocessing token, both
are replaced by a single character string literal preprocessing token that contains the spelling of
the preprocessing token sequence for the corresponding argument. Each occurrence of white space
between the argument’s preprocessing tokens becomes a single space character in the character
string literal. White space before the first preprocessing token and after the last preprocessing token
composing the argument is deleted. Otherwise, the original spelling of each preprocessing token in
the argument is retained in the character string literal, except for special handling for producing
the spelling of string literals and character constants: a \ character is inserted before each " and \
character of a character constant or string literal (including the delimiting " characters), except that
it is implementation-defined whether a \ character is inserted before the \ character beginning a
universal character name. If the replacement that results is not a valid character string literal, the
behavior is undefined. The character string literal corresponding to an empty argument is "". The
order of evaluation of # and ## operators is unspecified.

6.10.3.3 The ## operator
Constraints

A ## preprocessing token shall not occur at the beginning or at the end of a replacement list for
either form of macro definition.

Semantics

If, in the replacement list of a function-like macro, a parameter is immediately preceded or followed
by a ## preprocessing token, the parameter is replaced by the corresponding argument’s preprocess-
ing token sequence; however, if an argument consists of no preprocessing tokens, the parameter is
replaced by a placemarker preprocessing token instead.!8%

For both object-like and function-like macro invocations, before the replacement list is reexamined
for more macro names to replace, each instance of a ## preprocessing token in the replacement list
(not from an argument) is deleted and the preceding preprocessing token is concatenated with the
following preprocessing token. Placemarker preprocessing tokens are handled specially: concatena-
tion of two placemarkers results in a single placemarker preprocessing token, and concatenation
of a placemarker with a non-placemarker preprocessing token results in the non-placemarker pre-
processing token. If the result is not a valid preprocessing token, the behavior is undefined. The
resulting token is available for further macro replacement. The order of evaluation of ## operators is
unspecified.

EXAMPLE In the following fragment:

#define hash_hash # ## #

#define mkstr(a) # a

#define in_between(a) mkstr(a)

#define join(c, d) in_between(c hash_hash d)

char p[] = join(x, y); // equivalent to
// char p[] = "x ## y";

The expansion produces, at various stages:

join(x, vy)

in_between(x hash_hash y)

189 Placemarker preprocessing tokens do not appear in the syntax because they are temporary entities that exist only within

translation phase 4.

§6.10.3.3 Language 139




ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

in_between(x ## y)

| |
} mkstr(x ## y) }
\ X ## Y \
L |

In other words, expanding hash_hash produces a new token, consisting of two adjacent sharp signs, but this new token is
not the ## operator.

6.10.3.4 Rescanning and further replacement

After all parameters in the replacement list have been substituted and # and ## processing has
taken place, all placemarker preprocessing tokens are removed. The resulting preprocessing token
sequence is then rescanned, along with all subsequent preprocessing tokens of the source file, for
more macro names to replace.

If the name of the macro being replaced is found during this scan of the replacement list (not
including the rest of the source file’s preprocessing tokens), it is not replaced. Furthermore, if any
nested replacements encounter the name of the macro being replaced, it is not replaced. These
nonreplaced macro name preprocessing tokens are no longer available for further replacement even
if they are later (re)examined in contexts in which that macro name preprocessing token would
otherwise have been replaced.

The resulting completely macro-replaced preprocessing token sequence is not processed as a prepro-
cessing directive even if it resembles one, but all pragma unary operator expressions within it are
then processed as specified in 6.10.9 below.

EXAMPLE There are cases where it is not clear whether a replacement is nested or not. For example, given the following
macro definitions:

#define f(a) axg
#define g(a) f(a)

the invocation

f(2)(9)

could expand to either

2xf(9)

or

T 2*9*9 1

Strictly conforming programs are not permitted to depend on such unspecified behavior.

6.10.3.5 Scope of macro definitions

A macro definition lasts (independent of block structure) until a corresponding #undef directive is
encountered or (if none is encountered) until the end of the preprocessing translation unit. Macro
definitions have no significance after translation phase 4.

A preprocessing directive of the form
# undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. It is ignored if the specified
identifier is not currently defined as a macro name.

EXAMPLE 1 The simplest use of this facility is to define a “manifest constant”, as in

#define TABSIZE 100

int table[TABSIZE];

140 Language §6.10.3.5



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

EXAMPLE 2 The following defines a function-like macro whose value is the maximum of its arguments. It has the advantages
of working for any compatible types of the arguments and of generating in-line code without the overhead of function calling.
It has the disadvantages of evaluating one or the other of its arguments a second time (including side effects) and generating
more code than a function if invoked several times. It also cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a): (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.

EXAMPLE 3 To illustrate the rules for redefinition and reexamination, the sequence

#define x 3
#define f(a) f(x *x (a))
#undef x
#define x 2
#define g f
#define z z[0]
#define h g(\~{ }
#define m(a) a(w)
#define w 0,1
#define t(a) a
#define p() int
#define q(x) X
#define r(x,y) x ## y
#define str(x) # x
f(y+1l) + f(f(z)) % t(t(g)(0) + t)(1);
g(x+(3,4)-w) | h5) &m
(f)"m(m);
p() ilq()] = { q(1), r(2,3), r(4,), r(,5), r(,) };
char c[2][6] = { str(hello), str() };
results in
(2 x (y+1)) + (2 * (f(2 * (z[0])))) % f(2 * (0)) + t(1);
f(2 x (2+(3,4)-0,1)) | f(2 * (\~{ } 5)) & (2 x (0,1))"m(0,1);
int i[] = { 1, 23, 4, 5, };
char c[2][6] = { "hello", "" };

§6.10.3.5 Language 141



6

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

EXAMPLE 4 To illustrate the rules for creating character string literals and concatenating tokens, the sequence

#define str(s) # s

#define xstr(s) str(s)

#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \
X ## s, x ## t)

#define INCFILE(n) vers ## n

#define glue(a, b) a ## b

#define xglue(a, b) glue(a, b)

#define HIGHLOW "hello"
#define LOW LOW ", world"
debug(1l, 2);

fputs(str(strncmp("abc\0d", "abc", ’'\4’) // this goes away
== 0) str(: @\n), s);

#include xstr(INCFILE(2).h)

glue(HIGH, LOW);

xglue (HIGH, LOW)

results in
printf(llxll Illll II= %d' XIl II2II Il= %SII’ Xl, Xz);
fputs(
“Strncmp(\"abc\\@d\”, \IlabC\II, I\\4I) == OII II: @\nII’
s);
#include "vers2.h" (after macro replacement, before file access)
"hello";

"hello" ", world"

or, after concatenation of the character string literals,

printf("xl= %d, x2= %s", x1, x2);

fputs(

"strncmp(\"abc\\0d\", \"abc\", '\\4') == 0: @\n",

s);
#include "vers2.h" (after macro replacement, before file access)
"hello";

"hello, world"

Space around the # and ## tokens in the macro definition is optional.

EXAMPLE 5 To illustrate the rules for placemarker preprocessing tokens, the sequence

#define t(x,y,z) x ## y ## z
int j[] = { t(1,2,3), t(,4,5), t(6,,7), t(8,9,),
t(10,,), t(,11,), t(,,12), t(,,) };

results in

int j[] = { 123, 45, 67, 89,
10, 11, 12, };

EXAMPLE 6 To demonstrate the redefinition rules, the following sequence is valid.

#define OBJ_LIKE (1-1)
#define OBJ_LIKE /* white space */ (1-1) /* other x/
#define FUNC_LIKE(a) (a)
#define FUNC_LIKE(a) ( /* note the white space */ \
a /x other stuff on this line
*/)

But the following redefinitions are invalid:

142 Language §6.10.3.5




N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

\ #define OBJ_LIKE (0) // different token sequence

\ #define OBJ_LIKE (1 - 1) // different white space

\ #define FUNC_LIKE(b) (a) // different parameter usage

\ #define FUNC_LIKE(b) (b) // different parameter spelling

EXAMPLE 7 Finally, to show the variable argument list macro facilities:

#define debug(...) fprintf(stderr, _VA_ARGS_)
#define showlist(...) puts (#_VA_ARGS__)
#define report(test, ...) ((test)?puts(#test):\

printf(__VA_ARGS__))
debug("Flag");
debug ("X = %d\n", x);
showlist(The first, second, and third items.);
report(x>y, "x is %d but y is %d", x, y);

results in

fprintf(stderr, "Flag");
fprintf(stderr, "X = %d\n", x);
puts("The first, second, and third items.");
((x>y)?puts("x>y"):
printf("x is %d but y is %d", x, y));

6.10.4 Line control

Constraints
The string literal of a #line directive, if present, shall be a character string literal.

Semantics

The line number of the current source line is one greater than the number of new-line characters read
or introduced in translation phase 1 (5.1.1.2) while processing the source file to the current token.

If a preprocessing token (in particular __LINE__) spans two or more physical lines, it is unspecified
which of those line numbers is associated with that token. If a preprocessing directive spans two or
more physical lines, it is unspecified which of those line numbers is associated with the preprocessing
directive. If a macro invocation spans multiple physical or logical lines, it is unspecified which of
those line numbers is associated with that invocation. The line number of a preprocessing token is
independent of the context (in particular, as a macro argument or in a preprocessing directive). The
line number of a__LINE__ in a macro body is the line number of the macro invocation.

A preprocessing directive of the form
# line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a source
line that has a line number as specified by the digit sequence (interpreted as a decimal integer). The
digit sequence shall not specify zero, nor a number greater than 2147483647.

A preprocessing directive of the form

# line digit-sequence " s-char-sequenceqp; "' new-line

sets the presumed line number similarly and changes the presumed name of the source file to be the
contents of the character string literal.

A preprocessing directive of the form
# line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after
line on the directive are processed just as in normal text (each identifier currently defined as a
macro name is replaced by its replacement list of preprocessing tokens). The directive resulting after

§6.10.4 Language 143



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

all replacements shall match one of the two previous forms and is then processed as appropriate.'8

Recommended practice

The line number associated with a pp-foken should be the line number of the first character of the
pp-token. The line number associated with a preprocessing directive should be the line number of
the line with the first # token. The line number associated with a macro invocation should be the
line number of the first character of the macro name in the invocation.

6.10.5 Error directive
Semantics

A preprocessing directive of the form
# error pp-tokensop new-line

causes the implementation to produce a diagnostic message that includes the specified sequence of
preprocessing tokens.

6.10.6 Pragma directive

Semantics
A preprocessing directive of the form

# pragma pp-tokens,p, new-line

where the preprocessing token STDC does not immediately follow pragma in the directive (prior to
any macro replacement)!8®) causes the implementation to behave in an implementation-defined man-
ner. The behavior might cause translation to fail or cause the translator or the resulting program to
behave in a non-conforming manner. Any such pragma that is not recognized by the implementation
is ignored.

If the preprocessing token STDC does immediately follow pragma in the directive (prior to any macro
replacement), then no macro replacement is performed on the directive, and the directive shall have
one of the following forms'®”) whose meanings are described elsewhere:

standard-pragma:
# pragma STDC FP_CONTRACT on-off-switch
# pragma STDC FENV_ACCESS on-off-switch
# pragma STDC FENV_DEC_ROUND dec-direction
# pragma STDC FENV_ROUND direction
# pragma STDC CX_LIMITED_RANGE on-off-switch

on-off-switch: one of
ON OFF DEFAULT

direction: one of
FE_DOWNWARD FE_TONEAREST FE_TONEARESTFROMZERO
FE_TOWARDZERO FE_UPWARD FE_DYNAMIC

dec-direction: one of
FE_DEC_DOWNWARD FE_DEC_TONEAREST FE_DEC_TONEARESTFROMZERO
FE_DEC_TOWARDZERO FE_DEC_UPWARD FE_DEC_DYNAMIC

185)Because a new-line is explicitly included as part of the #line directive, the number of new-line characters read while
processing to the first pp-token can be different depending on whether or not the implementation uses a one-pass preprocessor.
Therefore, there are two possible values for the line number following a directive of the form #line __LINE__ new-line.

186) An implementation is not required to perform macro replacement in pragmas, but it is permitted except for in standard
pragmas (where STDC immediately follows pragma). If the result of macro replacement in a non-standard pragma has the
same form as a standard pragma, the behavior is still implementation-defined; an implementation is permitted to behave as
if it were the standard pragma, but is not required to.

187)See “future language directions” (6.11.7).

144 Language §6.10.6



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Forward references: the FP_CONTRACT pragma (7.12.2), the FENV_ACCESS pragma
(7.6.1), the FENV_DEC_ROUND pragma (7.6.3), the FENV_ROUND pragma (7.6.2), the
CX_LIMITED_RANGE pragma (7.3.4).

6.10.7 Null directive

Semantics
A preprocessing directive of the form

# new-line

has no effect.

6.10.8 Predefined macro names

188

The values of the predefined macros listed in the following subclauses'®® (except for —_FILE__ and

—LINE__) remain constant throughout the translation unit.

None of these macro names, nor the identifiers defined or __has_c_attribute, shall be the subject
of a #define or a #undef preprocessing directive. Any other predefined macro names shall begin
with a leading underscore followed by an uppercase letter or a second underscore.

The implementation shall not predefine the macro __cplusplus, nor shall it define it in any standard
header.

Forward references: standard headers (7.1.2).

6.10.8.1 Mandatory macros
The following macro names shall be defined by the implementation:

189)See “future language directions” (6.11.8).

§6.10.8.1 Language 145



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

—DATE__ The date of translation of the preprocessing translation unit: a character string literal of
the form "Mmm dd yyyy", where the names of the months are the same as those generated
by the asctime function, and the first character of dd is a space character if the value is
less than 10. If the date of translation is not available, an implementation-defined valid
date shall be supplied.

__FILE__ The presumed name of the current source file (a character string literal).!%"

—LINE__ The presumed line number (within the current source file) of the current source line (an
integer constant).!%?

—STDC__ The integer constant 1, intended to indicate a conforming implementation.

—STDC_HOSTED_ The integer constant 1 if the implementation is a hosted implementation or the
integer constant 0 if it is not.

—_STDC_VERSION__ The integer constant yyyymmL.!*?)

—TIME__ The time of translation of the preprocessing translation unit: a character string literal of
the form "hh:mm:ss" as in the time generated by the asctime functions. If the time of
translation is not available, an implementation-defined valid time shall be supplied.

Forward references: the asctime functions (7.27.3.1).

6.10.8.2 Environment macros
The following macro names are conditionally defined by the implementation:

—STDC_IS0_10646__ An integer constant of the form yyyymmL (for example, 199712L). If this
symbol is defined, then every character in the Unicode required set, when stored in an
object of type wchar_t, has the same value as the short identifier of that character. The
Unicode required set consists of all the characters that are defined by ISO/IEC 10646, along
with all amendments and technical corrigenda, as of the specified year and month. If
some other encoding is used, the macro shall not be defined and the actual encoding
used is implementation-defined.

—STDC_MB_MIGHT_NEQ_WC__ The integer constant 1, intended to indicate that, in the encoding for
wchar_t, a member of the basic character set need not have a code value equal to its
value when used as the lone character in an integer character constant.

—STDC_UTF_16_ The integer constant 1, intended to indicate that values of type charl6_t are
UTF-16 encoded. If some other encoding is used, the macro shall not be defined and the
actual encoding used is implementation-defined.

—STDC_UTF_32__ The integer constant 1, intended to indicate that values of type char32_t are
UTF-32 encoded. If some other encoding is used, the macro shall not be defined and the
actual encoding used is implementation-defined.

Forward references: common definitions (7.19), unicode utilities (7.28).
6.10.8.3 Conditional feature macros

The following macro names are conditionally defined by the implementation:

— STDC_ANALYZABLE__ The integer constant 1, intended to indicate conformance to the specifica-
tions in Annex L (Analyzability).

—STDC_IEC_60559_BFP__ The integer constant yyyymmL, intended to indicate conformance to
Annex F (IEC 60559 binary floating-point arithmetic).

189)The presumed source file name and line number can be changed by the #line directive.
190)See Annex M for the values in previous revisions. The intention is that this will remain an integer constant of type
long int that is increased with each revision of this document.

146 Language §6.10.8.3



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

—STDC_IEC_559__ The integer constant 1, intended to indicate conformance to the specifications
in Annex F (IEC 60559 floating-point arithmetic). Use of this macro is an obsolescent
feature.

—STDC_IEC_60559_DFP__ The integer constant yyyymmlL, intended to indicate support of deci-
mal floating types and conformance to Annex F for IEC 60559 decimal floating-point
arithmetic.

—STDC_IEC_60559_COMPLEX__ The integer constant yyyymnmL, intended to indicate conformance
to the specifications in Annex G (IEC 60559 compatible complex arithmetic).

—STDC_IEC_559_COMPLEX__ The integer constant 1, intended to indicate adherence to the specifi-
cations in Annex G (IEC 60559 compatible complex arithmetic). Use of this macro is an
obsolescent feature.

—STDC_LIB_EXT1 _ The integer constant yyyymmL, intended to indicate support for the extensions
defined in Annex K (Bounds-checking interfaces).!*?

—STDC_NO_ATOMICS__ The integer constant 1, intended to indicate that the implementation does
not support atomic types (including the _Atomic type qualifier) and the <stdatomic.h>
header.

—STDC_NO_COMPLEX__ The integer constant 1, intended to indicate that the implementation does
not support complex types or the <complex. h>header.

—STDC_NO_THREADS__ The integer constant 1, intended to indicate that the implementation does
not support the <threads . h> header.

—STDC_NO_VLA__ The integer constant 1, intended to indicate that the implementation does not
support variable length arrays or variably modified types.

An implementation that defines__STDC_NO_COMPLEX__ shall not define__STDC_IEC_60559_COMPLEX _
or __STDC_IEC_559_COMPLEX__.

6.10.9 Pragma operator
Semantics

A unary operator expression of the form:
—Pragma ( string-literal )

is processed as follows: The string literal is destringized by deleting any encoding prefix, deleting
the leading and trailing double-quotes, replacing each escape sequence \" by a double-quote, and
replacing each escape sequence \\ by a single backslash. The resulting sequence of characters
is processed through translation phase 3 to produce preprocessing tokens that are executed as if
they were the pp-tokens in a pragma directive. The original four preprocessing tokens in the unary
operator expression are removed.

EXAMPLE A directive of the form:

\ #pragma listing on "..\listing.dir" \

can also be expressed as:

i —Pragma ("listing on \"..\\listing.dir\"") i

The latter form is processed in the same way whether it appears literally as shown, or results from macro replacement, as in:

#define LISTING(x) PRAGMA(listing on #Xx)
#define PRAGMA(x) _Pragma(#x)

LISTING (..\listing.dir)

19DThe intention is that this will remain an integer constant of type long int that is increased with each revision of this

document.

§6.10.9 Language 147



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

6.11 Future language directions
6.11.1 Floating types

Future standardization may include additional floating-point types, including those with greater
range, precision, or both than long double.

6.11.2 Linkages of identifiers

Declaring an identifier with internal linkage at file scope without the static storage-class specifier
is an obsolescent feature.

6.11.3 External names

Restriction of the significance of an external name to fewer than 255 characters (considering each
universal character name or extended source character as a single character) is an obsolescent feature
that is a concession to existing implementations.

6.11.4 Character escape sequences

Lowercase letters as escape sequences are reserved for future standardization. Other characters may
be used in extensions.

6.11.5 Storage-class specifiers

The placement of a storage-class specifier other than at the beginning of the declaration specifiers in
a declaration is an obsolescent feature.

6.11.6 Function declarators
The use of function declarators without prototypes is an obsolescent feature.

6.11.7 Pragma directives
Pragmas whose first preprocessing token is STDC are reserved for future standardization.

6.11.8 Predefined macro names
Macro names beginning with __STDC_ are reserved for future standardization.

Uses of the __STDC_IEC_559__ and __STDC_IEC_559_COMPLEX__ macros are obsolescent features.

148 Language §6.11.8



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7. Library

7.1 Introduction

7.1.1 Definitions of terms

A string is a contiguous sequence of characters terminated by and including the first null character.
The term multibyte string is sometimes used instead to emphasize special processing given to
multibyte characters contained in the string or to avoid confusion with a wide string. A pointer to
a string is a pointer to its initial (lowest addressed) character. The length of a string is the number
of bytes preceding the null character and the value of a string is the sequence of the values of the
contained characters, in order.

The decimal-point character is the character used by functions that convert floating-point numbers
to or from character sequences to denote the beginning of the fractional part of such character
sequences.!?? It is represented in the text and examples by a period, but may be changed by the
setlocale function.

A null wide character is a wide character with code value zero.

A wide string is a contiguous sequence of wide characters terminated by and including the first null
wide character. A pointer to a wide string is a pointer to its initial (lowest addressed) wide character.
The length of a wide string is the number of wide characters preceding the null wide character and the
value of a wide string is the sequence of code values of the contained wide characters, in order.

A shift sequence is a contiguous sequence of bytes within a multibyte string that (potentially) causes
a change in shift state (see 5.2.1.2). A shift sequence shall not have a corresponding wide character;
it is instead taken to be an adjunct to an adjacent multibyte character.!®® In this clause, references to
“white-space character” refer to (execution) white-space character as defined by isspace. References to
“white-space wide character” refer to (execution) white-space wide character as defined by iswspace.

Forward references: character handling (7.4), the setlocale function (7.11.1.1).

7.1.2 Standard headers

Each library function is declared, with a type that includes a prototype, in a header,'*” whose contents
are made available by the #include preprocessing directive. The header declares a set of related
functions, plus any necessary types and additional macros needed to facilitate their use. In addition
to the provisions given in this clause, an implementation that defines __STDC_LIB_EXT1__ shall
conform to the specifications in Annex K and Subclause K.3 should be read as if it were merged into
the parallel structure of named subclauses of this clause. Declarations of types described here or in
Annex K shall not include type qualifiers, unless explicitly stated otherwise.

An implementation that does not support decimal floating types (6.10.8.3) need not support inter-
faces or aspects of interfaces that are specific to these types.

The standard headers are!®

<assert.h> <fenv.h> <limits.h>
<complex.h> <float.h> <locale.h>
<ctype.h> <inttypes.h> <math.h>
<errno.h> <i50646.h> <setjmp.h>

192)The functions that make use of the decimal-point character are the numeric conversion functions (7.22.1, 7.29.4.1) and the
formatted input/output functions (7.21.6, 7.29.2).

199)For state-dependent encodings, the values for MB_CUR_MAX and MB_LEN_MAX are thus required to be large enough to
count all the bytes in any complete multibyte character plus at least one adjacent shift sequence of maximum length. Whether
these counts provide for more than one shift sequence is the implementation’s choice.

199 A header is not necessarily a source file, nor are the< and > delimited sequences in header names necessarily valid source
file names.

195)The headers <complex.h>, <stdatomic.h>, and <threads.h> are conditional features that implementations need not
support; see 6.10.8.3.

§7.1.2 Library 149



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

<signal.h> <stdint.h> <threads.h>
<stdalign.h> <stdio.h> <time.h>
<stdarg.h> <stdlib.h> <uchar.h>
<stdatomic.h> <stdnoreturn.h> <wchar.h>
<stdbool.h> <string.h> <wctype.h>
<stddef.h> <tgmath.h>

If a file with the same name as one of the above < and > delimited sequences, not provided as part of
the implementation, is placed in any of the standard places that are searched for included source
files, the behavior is undefined.

Standard headers may be included in any order; each may be included more than once in a given
scope, with no effect different from being included only once, except that the effect of including
<assert.h>depends on the definition of NDEBUG (see 7.2). If used, a header shall be included outside
of any external declaration or definition, and it shall first be included before the first reference to
any of the functions or objects it declares, or to any of the types or macros it defines. However, if
an identifier is declared or defined in more than one header, the second and subsequent associated
headers may be included after the initial reference to the identifier. The program shall not have any
macros with names lexically identical to keywords currently defined prior to the inclusion of the
header or when any macro defined in the header is expanded.

Some standard headers define or declare identifiers that had not been present in previous versions
of this document. To allow implementations and users to adapt to that situation, they also define a
version macro for feature test of the form __STDC_VERSION_XXXX_H__ which expands to yyyymmL,
where XXXX is the all-caps spelling of the corresponding header <xxxx. h>.

Any definition of an object-like macro described in this clause or Annex K shall expand to code that
is fully protected by parentheses where necessary, so that it groups in an arbitrary expression as if it
were a single identifier.

Any declaration of a library function shall have external linkage.
A summary of the contents of the standard headers is given in Annex B.

Forward references: diagnostics (7.2).

7.1.3 Reserved identifiers

Each header declares or defines all identifiers listed in its associated subclause, and optionally
declares or defines identifiers listed in its associated future library directions subclause and identifiers
which are always reserved either for any use or for use as file scope identifiers.

— All identifiers that begin with an underscore and either an uppercase letter or another under-
score are always reserved for any use, except those identifiers which are lexically identical to
keywords.!%®)

— All identifiers that begin with an underscore are always reserved for use as identifiers with file
scope in both the ordinary and tag name spaces.

— Each macro name in any of the following subclauses (including the future library directions)
is reserved for use as specified if any of its associated headers is included; unless explicitly
stated otherwise (see 7.1.4).

— All identifiers with external linkage in any of the following subclauses (including the future
library directions) and errno are always reserved for use as identifiers with external linkage.'*”)

— Each identifier with file scope listed in any of the following subclauses (including the future
library directions) is reserved for use as a macro name and as an identifier with file scope in
the same name space if any of its associated headers is included.

196) Allowss identifiers spelled with a leading underscore followed by an uppercase letter that match the spelling of a keyword
to be used as macro names by the program.
197)The list of reserved identifiers with external linkage includes math_errhandling, setjmp, va_copy, and va_end.

150 Library §7.13



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

No other identifiers are reserved. If the program declares or defines an identifier in a context in
which it is reserved (other than as allowed by 7.1.4), or defines a reserved identifier or attribute
token described in 6.7.11 as a macro name, the behavior is undefined.

If the program removes (with #undef) any macro definition of an identifier in the first group listed
above or attribute token described in 6.7.11, the behavior is undefined.

7.1.4 Use of library functions

Each of the following statements applies unless explicitly stated otherwise in the detailed descrip-
tions that follow:

— If an argument to a function has an invalid value (such as a value outside the domain of the
function, or a pointer outside the address space of the program, or a null pointer, or a pointer
to non-modifiable storage when the corresponding parameter is not const-qualified) or a type
(after default argument promotion) not expected by a function with a variable number of
arguments, the behavior is undefined.

— If a function argument is described as being an array, the pointer actually passed to the function
shall have a value such that all address computations and accesses to objects (that would be
valid if the pointer did point to the first element of such an array) are in fact valid.

— Any function declared in a header may be additionally implemented as a function-like macro
defined in the header, so if a library function is declared explicitly when its header is included,
one of the techniques shown below can be used to ensure the declaration is not affected by
such a macro. Any macro definition of a function can be suppressed locally by enclosing
the name of the function in parentheses, because the name is then not followed by the left
parenthesis that indicates expansion of a macro function name. For the same syntactic reason,
it is permitted to take the address of a library function even if it is also defined as a macro.!*®
The use of #undef to remove any macro definition will also ensure that an actual function is
referred to.

— Any invocation of a library function that is implemented as a macro shall expand to code that
evaluates each of its arguments exactly once, fully protected by parentheses where necessary,
so it is generally safe to use arbitrary expressions as arguments.'*”

— Likewise, those function-like macros described in the following subclauses may be invoked in
an expression anywhere a function with a compatible return type could be called.???

— All object-like macros listed as expanding to integer constant expressions shall additionally be
suitable for use in #if preprocessing directives.

Provided that a library function can be declared without reference to any type defined in a header, it
is also permissible to declare the function and use it without including its associated header.

There is a sequence point immediately before a library function returns.

19)This means that an implementation is required to provide an actual function for each library function, even if it also
provides a macro for that function.

199)Such macros might not contain the sequence points that the corresponding function calls do.

200)Because external identifiers and some macro names beginning with an underscore are reserved, implementations can
provide special semantics for such names. For example, the identifier _-BUILTIN_abs could be used to indicate generation of
in-line code for the abs function. Thus, the appropriate header could specify

#define abs(x) _BUILTIN_abs(x)

for a compiler whose code generator will accept it.
In this manner, a user desiring to guarantee that a given library function such as abs will be a genuine function can write

#undef abs \

whether the implementation’s header provides a macro implementation of abs or a built-in implementation. The prototype
for the function, which precedes and is hidden by any macro definition, is thereby revealed also.

§7.14 Library 151



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

The functions in the standard library are not guaranteed to be reentrant and may modify objects
with static or thread storage duration.?'V

Unless explicitly stated otherwise in the detailed descriptions that follow, library functions shall
prevent data races as follows: A library function shall not directly or indirectly access objects
accessible by threads other than the current thread unless the objects are accessed directly or
indirectly via the function’s arguments. A library function shall not directly or indirectly modify
objects accessible by threads other than the current thread unless the objects are accessed directly
or indirectly via the function’s non-const arguments.?’”? Implementations may share their own
internal objects between threads if the objects are not visible to users and are protected against data
races.

Unless otherwise specified, library functions shall perform all operations solely within the current
thread if those operations have effects that are visible to users.?*®

EXAMPLE The function atoi can be used in any of several ways:

— Dby use of its associated header (possibly generating a macro expansion)

#include <stdlib.h>
const char xstr;

/*x ... x/

i = atoi(str);

— Dby use of its associated header (assuredly generating a true function reference)

#include <stdlib.h>
#undef atoi

const char xstr;

/* ... %/

i = atoi(str);

#include <stdlib.h>
const char xstr;

/* ... x/

i = (atoi)(str);

— by explicit declaration

extern int atoi(const char x);
const char xstr;

/* ... x/

i = atoi(str);

200 Thus, a signal handler cannot, in general, call standard library functions.

202)This means, for example, that an implementation is not permitted to use a static object for internal purposes without
synchronization because it could cause a data race even in programs that do not explicitly share objects between threads.
Similarly, an implementation of memcpy is not permitted to copy bytes beyond the specified length of the destination object
and then restore the original values because it could cause a data race if the program shared those bytes between threads.

203)This allows implementations to parallelize operations if there are no visible side effects.

152 Library §7.14



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7.2 Diagnostics <assert.h>

The header <assert.h> defines the assert and static_assert macros and refers to another
macro,

\ NDEBUG

which is not defined by <assert.h>. If NDEBUG is defined as a macro name at the point in the source
file where <assert. h>is included, the assert macro is defined simply as

\ #define assert(ignore) ((void)0)

The assert macro is redefined according to the current state of NDEBUG each time that <assert.h>
is included.

The assert macro shall be implemented as a macro, not as an actual function. If the macro definition
is suppressed in order to access an actual function, the behavior is undefined.

The macro

[
\ static_assert

expands to _Static_assert.

7.2.1 Program diagnostics
7.2.1.1 The assert macro
Synopsis

#include <assert.h>
void assert(scalar expression);

Description

The assert macro puts diagnostic tests into programs; it expands to a void expression. When it
is executed, if expression (which shall have a scalar type) is false (that is, compares equal to 0),
the assert macro writes information about the particular call that failed (including the text of the
argument, the name of the source file, the source line number, and the name of the enclosing function
— the latter are respectively the values of the preprocessing macros —FILE__ and __LINE__ and of
the identifier __func_) on the standard error stream in an implementation-defined format.?®¥ Tt
then calls the abort function.

Returns
The assert macro returns no value.

Forward references: the abort function (7.22.4.1).

209The message written might be of the form:

[
Assertion failed: expression, function abc, file xyz, line nnn.
L

§7211 Library 153



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

7.3 Complex arithmetic <complex.h>

7.3.1 Introduction

The header <complex . h> defines macros and declares functions that support complex arithmetic.2%
Implementations that define the macro —_STDC_NO_COMPLEX__ need not provide this header nor
support any of its facilities.

Each synopsis, other than for the CMPLX macros, specifies a family of functions consisting of a princi-
pal function with one or more double complex parameters and a double complex or double return
value; and other functions with the same name but with f and 1 suffixes which are corresponding
functions with float and long double parameters and return values.

The macro

\ complex

expands to _Complex; the macro

\ _Complex_I

expands to a constant expression of type const float _Complex, with the value of the imaginary
unit.?%®

The macros

\ imaginary

\ _Imaginary_I

are defined if and only if the implementation supports imaginary types;?” if defined, they expand
to_Imaginary and a constant expression of type const float _Imaginary with the value of the
imaginary unit.

The macro

[
\ I

expands to either _Imaginary_I or _Complex_I. If _Imaginary_I is not defined, I shall expand to
—Complex_I.

Notwithstanding the provisions of 7.1.3, a program may undefine and perhaps then redefine the
macros complex, imaginary, and I.

Forward references: the CMPLX macros (7.3.9.3), IEC 60559-compatible complex arithmetic (An-
nex G).

7.3.2 Conventions

Values are interpreted as radians, not degrees. An implementation may set errno but is not required
to.

7.3.3 Branch cuts

Some of the functions below have branch cuts, across which the function is discontinuous. For
implementations with a signed zero (including all IEC 60559 implementations) that follow the
specifications of Annex G, the sign of zero distinguishes one side of a cut from another so the
function is continuous (except for format limitations) as the cut is approached from either side. For

205)Gee “future library directions” (7.31.1).
206 The imaginary unit is a number i such that 2 = —1.
207) A specification for imaginary types is in Annex G.

154 Library §7.3.3



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

example, for the square root function, which has a branch cut along the negative real axis, the top of
the cut, with imaginary part+0, maps to the positive imaginary axis, and the bottom of the cut, with
imaginary part-0 , maps to the negative imaginary axis.

Implementations that do not support a signed zero (see Annex F) cannot distinguish the sides of
branch cuts. These implementations shall map a cut so the function is continuous as the cut is
approached coming around the finite endpoint of the cut in a counter clockwise direction. (Branch
cuts for the functions specified here have just one finite endpoint.) For example, for the square root
function, coming counter clockwise around the finite endpoint of the cut along the negative real axis
approaches the cut from above, so the cut maps to the positive imaginary axis.

7.3.4 The CX_LIMITED_RANGE pragma
Synopsis

#include <complex.h>
#pragma STDC CX_LIMITED_RANGE on-off-switch

Description

The usual mathematical formulas for complex multiply, divide, and absolute value are problem-
atic because of their treatment of infinities and because of undue overflow and underflow. The
CX_LIMITED_RANGE pragma can be used to inform the implementation that (where the state is “on”)
the usual mathematical formulas are acceptable.?’® The pragma can occur either outside external
declarations or preceding all explicit declarations and statements inside a compound statement.
When outside external declarations, the pragma takes effect from its occurrence until another
CX_LIMITED_RANGE pragma is encountered, or until the end of the translation unit. When inside a
compound statement, the pragma takes effect from its occurrence until another CX_LIMITED_RANGE
pragma is encountered (including within a nested compound statement), or until the end of the
compound statement; at the end of a compound statement the state for the pragma is restored to
its condition just before the compound statement. If this pragma is used in any other context, the
behavior is undefined. The default state for the pragma is “oft”.

7.3.5 Trigonometric functions
7.3.,5.1 The cacos functions
Synopsis

#include <complex.h>

double complex cacos(double complex z);

float complex cacosf(float complex z);

long double complex cacosl(long double complex z);

Description

The cacos functions compute the complex arc cosine of z, with branch cuts outside the interval
[—1,+1] along the real axis.

Returns

The cacos functions return the complex arc cosine value, in the range of a strip mathematically
unbounded along the imaginary axis and in the interval [0, 7] along the real axis.

208)The purpose of the pragma is to allow the implementation to use the formulas:

(z+iy) X (u+iw) = (zu—yv)+i(yu + zv)
(tiy) [ (utiv) = [(@utyo)+ilye—w0)]/(® +0%)

oty = Va? i

where the programmer can determine they are safe.

§73.5.1 Library 155



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

7.3.5.2 The casin functions
Synopsis

#include <complex.h>

double complex casin(double complex z);

float complex casinf(float complex z);

long double complex casinl(long double complex z);

Description

The casin functions compute the complex arc sine of z, with branch cuts outside the interval
[—1, +1] along the real axis.

Returns

The casin functions return the complex arc sine value, in the range of a strip mathematically
unbounded along the imaginary axis and in the interval [-7, +7] along the real axis.

7.3.5.3 The catan functions
Synopsis

#include <complex.h>

double complex catan(double complex z);

float complex catanf(float complex z);

long double complex catanl(long double complex z);

Description
The catan functions compute the complex arc tangent of z, with branch cuts outside the interval

[—1, +1i] along the imaginary axis.
Returns

The catan functions return the complex arc tangent value, in the range of a strip mathematically
unbounded along the imaginary axis and in the interval [-7, +7] along the real axis.

7.3.5.4 The ccos functions
Synopsis

#include <complex.h>

double complex ccos(double complex z);

float complex ccosf(float complex z);

long double complex ccosl(long double complex z);

Description
The ccos functions compute the complex cosine of z.

Returns
The ccos functions return the complex cosine value.

7.3.5.5 The csin functions
Synopsis

#include <complex.h>

double complex csin(double complex z);

float complex csinf(float complex z);

long double complex csinl(long double complex z);

Description
The csin functions compute the complex sine of z.

156 Library §7.3.55



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Returns
The csin functions return the complex sine value.

7.3.5.6 The ctan functions
Synopsis

#include <complex.h>

double complex ctan(double complex z);

float complex ctanf(float complex z);

long double complex ctanl(long double complex z);

Description
The ctan functions compute the complex tangent of z.

Returns
The ctan functions return the complex tangent value.

7.3.6 Hyperbolic functions

7.3.6.1 The cacosh functions
Synopsis

#include <complex.h>

double complex cacosh(double complex z);

float complex cacoshf(float complex z);

long double complex cacoshl(long double complex z);

Description

The cacosh functions compute the complex arc hyperbolic cosine of z, with a branch cut at values
less than 1 along the real axis.

Returns

The cacosh functions return the complex arc hyperbolic cosine value, in the range of a half-strip of
nonnegative values along the real axis and in the interval [—im, +in] along the imaginary axis.

7.3.6.2 The casinh functions
Synopsis

#include <complex.h>

double complex casinh(double complex z);

float complex casinhf(float complex z);

long double complex casinhl(long double complex z);

Description

The casinh functions compute the complex arc hyperbolic sine of z, with branch cuts outside the
interval [—i, +i] along the imaginary axis.

Returns

The casinh functions return the complex arc hyperbolic sine value, in the range of a strip mathe-
matically unbounded along the real axis and in the interval -, 4] along the imaginary axis.
7.3.6.3 The catanh functions

Synopsis

#include <complex.h>

double complex catanh(double complex z);

float complex catanhf(float complex z);

long double complex catanhl(long double complex z);

§7.3.6.3 Library 157



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Description

The catanh functions compute the complex arc hyperbolic tangent of z, with branch cuts outside
the interval [—1, +1] along the real axis.

Returns

The catanh functions return the complex arc hyperbolic tangent value, in the range of a strip
mathematically unbounded along the real axis and in the interval [, + 7] along the imaginary
axis.

7.3.6.4 The ccosh functions

Synopsis

#include <complex.h>

double complex ccosh(double complex z);

float complex ccoshf(float complex z);

long double complex ccoshl(long double complex z);

Description
The ccosh functions compute the complex hyperbolic cosine of z.

Returns
The ccosh functions return the complex hyperbolic cosine value.

7.3.6.5 The csinh functions
Synopsis

#include <complex.h>

double complex csinh(double complex z);

float complex csinhf(float complex z);

long double complex csinhl(long double complex z);

Description
The csinh functions compute the complex hyperbolic sine of z.

Returns
The csinh functions return the complex hyperbolic sine value.

7.3.6.6 The ctanh functions
Synopsis

#include <complex.h>

double complex ctanh(double complex z);

float complex ctanhf(float complex z);

long double complex ctanhl(long double complex z);

Description
The ctanh functions compute the complex hyperbolic tangent of z.

Returns
The ctanh functions return the complex hyperbolic tangent value.

7.3.7 Exponential and logarithmic functions
7.3.7.1 The cexp functions

Synopsis

\ #include <complex.h>
\ double complex cexp(double complex z);
\ float complex cexpf(float complex z);

158 Library §7.3.7.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

\ long double complex cexpl(long double complex z); \

Description
The cexp functions compute the complex base-e exponential of z.

Returns
The cexp functions return the complex base-e exponential value.

7.3.7.2 The clog functions
Synopsis

#include <complex.h>

double complex clog(double complex z);

float complex clogf(float complex z);

long double complex clogl(long double complex z);

Description

The clog functions compute the complex natural (base-¢) logarithm of z, with a branch cut along
the negative real axis.

Returns

The clog functions return the complex natural logarithm value, in the range of a strip mathematically
unbounded along the real axis and in the interval [—ir, +i7| along the imaginary axis.

7.3.8 Power and absolute-value functions

7.3.8.1 The cabs functions
Synopsis

#include <complex.h>

double cabs(double complex z);

float cabsf(float complex z);

long double cabsl(long double complex z);

Description

The cabs functions compute the complex absolute value (also called norm, modulus, or magnitude)
of z.

Returns
The cabs functions return the complex absolute value.

7.3.8.2 The cpow functions
Synopsis

i #include <complex.h> i
\ double complex cpow(double complex x, double complex y); \
\ float complex cpowf(float complex x, float complex y); \
\ long double complex cpowl(long double complex x, long double complex y); \

Description

The cpow functions compute the complex power function x¥, with a branch cut for the first parameter
along the negative real axis.

Returns
The cpow functions return the complex power function value.

§7.3.8.2 Library 159



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

7.3.8.3 The csqrt functions
Synopsis

#include <complex.h>

double complex csqrt(double complex z);

float complex csqrtf(float complex z);

long double complex csqrtl(long double complex z);

Description

The csqrt functions compute the complex square root of z, with a branch cut along the negative
real axis.

Returns
The csqrt functions return the complex square root value, in the range of the right half-plane

(including the imaginary axis).
7.3.9 Manipulation functions

7.3.9.1 The carg functions
Synopsis

#include <complex.h>

double carg(double complex z);

float cargf(float complex z);

long double cargl(long double complex z);

Description

The carg functions compute the argument (also called phase angle) of z, with a branch cut along
the negative real axis.

Returns
The carg functions return the value of the argument in the interval [—7, +7].

7.3.9.2 The cimag functions
Synopsis

#include <complex.h>

double cimag(double complex z);

float cimagf(float complex z);

long double cimagl(long double complex z);

Description

The cimag functions compute the imaginary part of z.2%)

Returns
The cimag functions return the imaginary part value (as a real).

7.3.9.3 The CMPLX macros
Synopsis

#include <complex.h>

double complex CMPLX(double x, double y);

float complex CMPLXF(float x, float y);

long double complex CMPLXL(long double x, long double y);

209 For a variable z of complex type, z == creal(z)+cimag(z)=I.

160 Library §73.9.3



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Description

The CMPLX macros expand to an expression of the specified complex type, with the real part having
the (converted) value of x and the imaginary part having the (converted) value of y. The resulting
expression shall be suitable for use as an initializer for an object with static or thread storage duration,
provided both arguments are likewise suitable.

Returns
The CMPLX macros return the complex value x + 7y.

NOTE These macros act as if the implementation supported imaginary types and the definitions were:

#define CMPLX(x, y) ((double complex) ((double)(x) + \
_Imaginary_I * (double)(y)))

#define CMPLXF(x, y) ((float complex) ((float)(x) + \
_Imaginary_I x (float)(y)))

#define CMPLXL(x, y) ((long double complex) ((long double)(x) + \
_Imaginary_I * (long double)(y)))

7.3.9.4 The conj functions
Synopsis

#include <complex.h>

double complex conj(double complex z);

float complex conjf(float complex z);

long double complex conjl(long double complex z);

Description
The conj functions compute the complex conjugate of z, by reversing the sign of its imaginary part.

Returns
The conj functions return the complex conjugate value.

7.3.9.5 The cproj functions
Synopsis

#include <complex.h>

double complex cproj(double complex z);

float complex cprojf(float complex z);

long double complex cprojl(long double complex z);

Description

The cproj functions compute a projection of z onto the Riemann sphere: z projects to z except that
all complex infinities (even those with one infinite part and one NaN part) project to positive infinity
on the real axis. If z has an infinite part, then cproj(z) is equivalent to

\ INFINITY + I * copysign(0.0, cimag(z))

Returns
The cproj functions return the value of the projection onto the Riemann sphere.

7.3.9.6 The creal functions
Synopsis

#include <complex.h>

double creal(double complex z);

float crealf(float complex z);

long double creall(long double complex z);

§7.3.9.6 Library 161



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Description

The creal functions compute the real part of z.21%

Returns
The creal functions return the real part value.

210)For a variable z of complex type, z == creal(z)+cimag(z)=I.

162 Library §7.3.9.6



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7.4 Character handling <ctype.h>

The header <ctype. h> declares several functions useful for classifying and mapping characters.?!!)

In all cases the argument is an int, the value of which shall be representable as an unsigned char
or shall equal the value of the macro EOF. If the argument has any other value, the behavior is
undefined.

The behavior of these functions is affected by the current locale. Those functions that have locale-
specific aspects only when not in the "C" locale are noted below.

The term printing character refers to a member of a locale-specific set of characters, each of which
occupies one printing position on a display device; the term control character refers to a member of a
locale-specific set of characters that are not printing characters.?!? All letters and digits are printing
characters.

Forward references: EOF (7.21.1), localization (7.11).

7.4.1 Character classification functions

The functions in this subclause return nonzero (true) if and only if the value of the argument ¢
conforms to that in the description of the function.

7.4.1.1 The isalnum function
Synopsis

#include <ctype.h>
int isalnum(int c);

Description
The isalnum function tests for any character for which isalpha or isdigit is true.

7.4.1.2 The isalpha function
Synopsis

#include <ctype.h>
int isalpha(int c);

Description

The isalpha function tests for any character for which isupper or islower is true, or any character
that is one of a locale-specific set of alphabetic characters for which none of iscntrl, isdigit,
ispunct, or isspace is true.’® In the "C" locale, isalpha returns true only for the characters for
which isupper or islower is true.

7.4.1.3 The isblank function
Synopsis

#include <ctype.h>
int isblank(int c);

Description

The ishlank function tests for any character that is a standard blank character or is one of a locale-
specific set of characters for which isspace is true and that is used to separate words within a line
of text. The standard blank characters are the following: space (" '), and horizontal tab ('\t’ ). In
the "C" locale, isblank returns true only for the standard blank characters.

2 See “future library directions” (7.31.2).

2121n an implementation that uses the seven-bit US ASCII character set, the printing characters are those whose values lie
from 0x20 (space) through 0x7E (tilde); the control characters are those whose values lie from 0 (NUL) through 0x1F (US),
and the character 0x7F (DEL).

213 The functions islower and isupper test true or false separately for each of these additional characters; all four combina-
tions are possible.

§74.13 Library 163



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

7.4.1.4 The iscntrl function
Synopsis

#include <ctype.h>
int iscntrl(int c);

Description
The iscntrl function tests for any control character.

7.4.1.5 The isdigit function
Synopsis

#include <ctype.h>
int isdigit(int c);

Description
The isdigit function tests for any decimal-digit character (as defined in 5.2.1).

7.4.1.6 The isgraph function
Synopsis

#include <ctype.h>
int isgraph(int c);

Description
The isgraph function tests for any printing character except space (" ).

7.4.1.7 The islower function
Synopsis

#include <ctype.h>
int islower(int c);

Description

The islower function tests for any character that is a lowercase letter or is one of a locale-specific set
of characters for which none of iscntrl, isdigit, ispunct, or isspace is true. In the "C" locale,
islower returns true only for the lowercase letters (as defined in 5.2.1).

7.4.1.8 The isprint function
Synopsis

#include <ctype.h>
int isprint(int c);

Description
The isprint function tests for any printing character including space (" *).

7.4.1.9 The ispunct function
Synopsis

#include <ctype.h>
int ispunct(int c);

Description

The ispunct function tests for any printing character that is one of a locale-specific set of punctuation
characters for which neither isspace nor isalnum is true. In the "C" locale, ispunct returns true
for every printing character for which neither isspace nor isalnum is true.

164 Library §74.19



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7.4.1.10 The isspace function
Synopsis

#include <ctype.h>
int isspace(int c);

Description

The isspace function tests for any character that is a standard white-space character or is one of
a locale-specific set of characters for which isalnum is false. The standard white-space characters
are the following: space (" '), form feed ("\f' ), new-line ("\n"), carriage return ("\r" ), horizontal
tab "\t ), and vertical tab ("\v"'). In the "C" locale, isspace returns true only for the standard
white-space characters.

7.4.1.11 The isupper function
Synopsis

#include <ctype.h>
int isupper(int c);

Description

The isupper function tests for any character that is an uppercase letter or is one of a locale-specific
set of characters for which none of iscntrl, isdigit, ispunct, or isspace is true. In the "C" locale,
isupper returns true only for the uppercase letters (as defined in 5.2.1).

7.4.1.12 The isxdigit function
Synopsis

#include <ctype.h>
int isxdigit(int c);

Description
The isxdigit function tests for any hexadecimal-digit character (as defined in 6.4.4.1).

7.4.2 Character case mapping functions
7.4.2.1 The tolower function
Synopsis

#include <ctype.h>
int tolower(int c);

Description
The tolower function converts an uppercase letter to a corresponding lowercase letter.

Returns

If the argument is a character for which isupper is true and there are one or more corresponding
characters, as specified by the current locale, for which islower is true, the tolower function returns
one of the corresponding characters (always the same one for any given locale); otherwise, the
argument is returned unchanged.

7.4.2.2 The toupper function
Synopsis

#include <ctype.h>
int toupper(int c);

Description
The toupper function converts a lowercase letter to a corresponding uppercase letter.

§7.4.22 Library 165



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Returns

If the argument is a character for which islower is true and there are one or more corresponding
characters, as specified by the current locale, for which isupper is true, the toupper function returns
one of the corresponding characters (always the same one for any given locale); otherwise, the
argument is returned unchanged.

166 Library §7.422



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7.5 Errors <errno.h>
The header <errno. h> defines several macros, all relating to the reporting of error conditions.

The macros are

EDOM
EILSEQ
ERANGE

which expand to integer constant expressions with type int, distinct positive values, and which are
suitable for use in #1f preprocessing directives; and

\ errno

which expands to a modifiable Ivalue?'¥) that has type int and thread local storage duration, the
value of which is set to a positive error number by several library functions. If a macro definition is
suppressed in order to access an actual object, or a program defines an identifier with the name
errno, the behavior is undefined.

The value of errno in the initial thread is zero at program startup (the initial value of errno in other
threads is an indeterminate value), but is never set to zero by any library function.?!> The value of
errno may be set to nonzero by a library function call whether or not there is an error, provided the
use of errno is not documented in the description of the function in this document.

Additional macro definitions, beginning with E and a digit or E and an uppercase letter,”!®) may also
be specified by the implementation.

219 The macro errno need not be the identifier of an object. It might expand to a modifiable lvalue resulting from a function

call (for example, xerrno()).

215Thus, a program that uses errno for error checking would set it to zero before a library function call, then inspect it
before a subsequent library function call. Of course, a library function can save the value of errno on entry and then set it to
zero, as long as the original value is restored if errno’s value is still zero just before the return.

216)See “future library directions” (7.31.3).

§7.5 Library 167



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

7.6 Floating-point environment <fenv.h>

The header <fenv. h> defines several macros, and declares types and functions that provide access to
the floating-point environment. The floating-point environment refers collectively to any floating-point
status flags and control modes supported by the implementation.?!”)

A floating-point status flag is a system variable whose value is set (but never cleared) when a floating-
point exception is raised, which occurs as a side effect of exceptional floating-point arithmetic to
provide auxiliary information.?!®) A floating-point control mode is a system variable whose value may
be set by the user to affect the subsequent behavior of floating-point arithmetic.

A floating-point control mode may be constant (7.6.2) or dynamic. The dynamic floating-point en-
vironment includes the dynamic floating-point control modes and the floating-point status flags.

The dynamic floating-point environment has thread storage duration. The initial state for a thread’s
dynamic floating-point environment is the current state of the dynamic floating-point environment
of the thread that creates it at the time of creation.

Certain programming conventions support the intended model of use for the dynamic floating-point
environment:*!%)

— a function call does not alter its caller’s floating-point control modes, clear its caller’s floating-
point status flags, nor depend on the state of its caller’s floating-point status flags unless the
function is so documented;

— a function call is assumed to require default floating-point control modes, unless its documen-
tation promises otherwise;

— a function call is assumed to have the potential for raising floating-point exceptions, unless its
documentation promises otherwise.

The feature test macro __STDC_VERSION_FENV_H__ expands to the token yyyymmL.
The type

\ fenv_t

represents the entire dynamic floating-point environment.

The type

\ femode_t

represents the collection of dynamic floating-point control modes supported by the implementation,
including the dynamic rounding direction mode.

The type

i fexcept_t i

represents the floating-point status flags collectively, including any status the implementation
associates with the flags.

Each of the macros

217)This header is designed to support the floating-point exception status flags and rounding-direction control modes
required by IEC 60559, and other similar floating-point state information. It is also designed to facilitate code portability
among all systems.

218) A floating-point status flag is not an object and can be set more than once within an expression.

219With these conventions, a programmer can safely assume default floating-point control modes (or be unaware of them).
The responsibilities associated with accessing the floating-point environment fall on the programmer or program that does so
explicitly.

168 Library §7.6



10

11

12

13

14

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

FE_DIVBYZERO
FE_INEXACT
FE_INVALID
FE_OVERFLOW
FE_UNDERFLOW

is defined if and only if the implementation supports the floating-point exception by means of
the functions in 7.6.422Y  Additional implementation-defined floating-point exceptions, with
macro definitions beginning with FE_ and an uppercase letter,??)) may also be specified by the
implementation. The defined macros expand to integer constant expressions with values such that
bitwise ORs of all combinations of the macros result in distinct values, and furthermore, bitwise
AND:s of all combinations of the macros result in zero.???)

Decimal floating-point operations and IEC 60559 binary floating-point operations (Annex F) access
the same floating-point exception status flags.

The macro

| FE_DFL_MODE

represents the default state for the collection of dynamic floating-point control modes sup-
ported by the implementation — and has type “pointer to const-qualified femode_t”. Additional
implementation-defined states for the dynamic mode collection, with macro definitions beginning
with FE_ and an uppercase letter, and having type “pointer to const-qualified femode_t”, may also
be specified by the implementation.

The macro

| FE_ALL_EXCEPT

is simply the bitwise OR of all floating-point exception macros defined by the implementation. If no
such macros are defined, FE_ALL_EXCEPT shall be defined as 0.

Each of the macros

FE_DOWNWARD
FE_TONEAREST
FE_TONEARESTFROMZERO
FE_TOWARDZERO
FE_UPWARD

is defined if and only if the implementation supports getting and setting the represented rounding
direction by means of the fegetround and fesetround functions. Additional implementation-
defined rounding directions, with macro definitions beginning with FE_ and an uppercase letter,???)
may also be specified by the implementation.??%

If the implementation supports decimal floating types, each of the macros

FE_DEC_DOWNWARD
FE_DEC_TONEAREST
FE_DEC_TONEARESTFROMZERO
FE_DEC_TOWARDZERO
FE_DEC_UPWARD

220)The implementation supports a floating-point exception if there are circumstances where a call to at least one of the
functions in 7.6.4, using the macro as the appropriate argument, will succeed. It is not necessary for all the functions to
succeed all the time.

2D)GSee “future library directions” (7.31.4).

222)The macros are typically distinct powers of two.

223)Gee “future library directions” (7.31.4).

224 Even though the rounding direction macros might expand to constants corresponding to the values of FLT_ROUNDS, they
are not required to do so.

§7.6 Library 169




15

16

17

18

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

is defined for use with the fe_dec_getround and fe_dec_setround functions for getting and
setting the dynamic rounding direction mode, and with the FENV_DEC_ROUND rounding control
pragma (7.6.3) for specifying a constant rounding direction, for decimal floating-point operations.
The decimal rounding direction affects all (inexact) operations that produce a result of decimal
floating type and all operations that produce an integer or character sequence result and have an
operand of decimal floating type, unless stated otherwise. The macros expand to integer constant
expressions whose values are distinct nonnegative values.

During translation, constant rounding direction modes for decimal floating-point arithmetic are
in effect where specified. Elsewhere, during translation the decimal rounding direction mode is
FE_DEC_TONEAREST.

At program startup the dynamic rounding direction mode for decimal floating-point arithmetic is
initialized to FE_DEC_TONEAREST.

The macro

\ FE_DFL_ENV

represents the default dynamic floating-point environment — the one installed at program startup
— and has type “pointer to const-qualified fenv_t”. It can be used as an argument to <fenv.h>
functions that manage the dynamic floating-point environment.

Additional implementation-defined environments, with macro definitions beginning with FE_ and
an uppercase letter,”? and having type “pointer to const-qualified fenv_t”, may also be specified
by the implementation.

7.6.1 The FENV_ACCESS pragma
Synopsis

#include <fenv.h>
#pragma STDC FENV_ACCESS on-off-switch

Description

The FENV_ACCESS pragma provides a means to inform the implementation when a program might
access the floating-point environment to test floating-point status flags or run under non-default
floating-point control modes.??® The pragma shall occur either outside external declarations or
preceding all explicit declarations and statements inside a compound statement. When outside
external declarations, the pragma takes effect from its occurrence until another FENV_ACCESS pragma
is encountered, or until the end of the translation unit. When inside a compound statement, the
pragma takes effect from its occurrence until another FENV_ACCESS pragma is encountered (including
within a nested compound statement), or until the end of the compound statement; at the end of a
compound statement the state for the pragma is restored to its condition just before the compound
statement. If this pragma is used in any other context, the behavior is undefined. If part of a
program tests floating-point status flags or establishes non-default floating-point mode settings
using any means other than the FENV_ROUND pragmas, but was translated with the state for the
FENV_ACCESS pragma “off”, the behavior is undefined. The default state (“on” or “off”) for the
pragma is implementation-defined. (When execution passes from a part of the program translated
with FENV_ACCESS “off” to a part translated with FENV_ACCESS “on”, the state of the floating-point
status flags is unspecified and the floating-point control modes have their default settings.)

EXAMPLE

i #include <fenv.h>

\ void f(double x)

25)Gee “future library directions” (7.31.4).

226)The purpose of the FENV_ACCESS pragma is to allow certain optimizations that could subvert flag tests and mode changes
(e.g., global common subexpression elimination, code motion, and constant folding). In general, if the state of FENV_ACCESS
is “off”, the translator can assume that the flags are not tested, and that default modes are in effect, except where specified
otherwise by an FENV_ROUND pragma.

170 Library §7.6.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

{
#pragma STDC FENV_ACCESS ON
void g(double);
void h(double);
/* ... %/
g(x + 1);
h(x + 1);
/* ... %/
}

If the function g might depend on status flags set as a side effect of the first x + 1, or if the second x + 1 might depend on
control modes set as a side effect of the call to function g, then the program has to contain an appropriately placed invocation
of #pragma STDC FENV_ACCESS ON as shown.??)

7.6.2 The FENV_ROUND pragma
Synopsis

#include <fenv.h>
#pragma STDC FENV_ROUND direction
#pragma STDC FENV_ROUND FE_DYNAMIC

Description

The FENV_ROUND pragma provides a means to specify a constant rounding direction for floating-
point operations for standard floating types within a translation unit or compound statement. The
pragma shall occur either outside external declarations or preceding all explicit declarations and
statements inside a compound statement. When outside external declarations, the pragma takes
effect from its occurrence until another FENV_ROUND pragma is encountered, or until the end of the
translation unit. When inside a compound statement, the pragma takes effect from its occurrence
until another FENV_ROUND pragma is encountered (including within a nested compound statement),
or until the end of the compound statement; at the end of a compound statement the static rounding
mode is restored to its condition just before the compound statement. If this pragma is used in any
other context, its behavior is undefined.

direction shall be one of the names of the supported rounding direction macros for operations for
standard floating types (7.6), or FE_DYNAMIC. If any other value is specified, the behavior is unde-
fined. If no FENV_ROUND pragma is in effect, or the specified constant rounding mode is FE_DYNAMIC,
rounding is according to the mode specified by the dynamic floating-point environment, which is the
dynamic rounding mode that was established either at thread creation or by a call to fesetround,
fesetmode, fesetenv, or feupdateenv. If the FE_DYNAMIC mode is specified and FENV_ACCESS is
“off”, the translator may assume that the default rounding mode is in effect.

The FENV_ROUND pragma affects operations for standard floating types. Within the scope of an
FENV_ROUND pragma establishing a mode other than FE_DYNAMIC, floating-point operators, implicit
conversions (including the conversion of a value represented in a format wider than its semantic
types to its semantic type, as done by classification macros), and invocations of functions indicated
in the table below, for which macro replacement has not been suppressed (7.1.4), shall be evaluated
according to the specified constant rounding mode (as though no constant mode was specified
and the corresponding dynamic rounding mode had been established by a call to fesetround).
Invocations of functions for which macro replacement has been suppressed and invocations of
functions other than those indicated in the table below shall not be affected by constant rounding
modes — they are affected by (and affect) only the dynamic mode. Floating constants (6.4.4.2) of
a standard floating type that occur in the scope of a constant rounding mode shall be interpreted
according to that mode.

227)The side effects impose a temporal ordering that requires two evaluations of x + 1. On the other hand, without the

#pragma STDC FENV_ACCESS ON pragma, and assuming the default state is “off”, just one evaluation of x + 1 would suffice.

§7.6.2 Library 171



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Functions affected by constant rounding modes — for standard

floating types
Header Function families
<math.h> acos, acospi, asin, asinpi, atan, atan2, atan2pi, atanpi
<math.h> cos, cospi, sin, sinpi, tan, tanpi
<math.h> acosh, asinh, atanh
<math.h> cosh, sinh, tanh

<math.h> exp, expl0, explOml, exp2, exp2ml, expml
<math.h> log, Loglo, Logl0pl, Loglp, Log2, Log2pl, logpl
<math.h> scalbn, scalbln, ldexp

<math.h> cbrt, compoundn, hypot, pow, pown, powr, rootn, rsqrt, sqrt
<math.h> erf, erfc

<math.h> lgamma, tgamma

<math.h> rint, nearbyint, Lrint, 1lrint

<math.h> fdim

<math.h> fma

<math.h> fadd, dadd, fsub, dsub, fmul, dmul, fdiv, ddiv, ffma, dfma, fsqrt, dsqrt
<stdlib.h> | atof, strfrom, strto

<wchar.h> wcsto

<stdio.h> printf and scanf families

<wchar.h> | wprintf and wscanf families

A function family listed in the table above indicates the functions for all standard floating types,
where the function family is represented by the name of the functions without a suffix. For example,
acos indicates the functions acos, acosf, and acos'l.

NOTE Constant rounding modes (other than FE_DYNAMIC) could be implemented using dynamic rounding modes as
illustrated in the following example:

{
#pragma STDC FENV_ROUND direction
// compiler inserts:
// #pragma STDC FENV_ACCESS ON
// int __savedrnd;
// __savedrnd = __swapround(direction);
.. operations affected by constant rounding mode ...
// compiler inserts:
// __savedrnd = __swapround(__savedrnd);
.. operations not affected by constant rounding mode ...
// compiler inserts:
// __savedrnd = __swapround(__savedrnd);
.. operations affected by constant rounding mode ...
// compiler inserts:
// __swapround(__savedrnd);

where __swapround is defined by:

static inline int __swapround(const int new) {
const int old = fegetround();
fesetround(new) ;
return old;

7.6.3 The FENV_DEC_ROUND pragma
Synopsis

\ #include <fenv.h>

172 Library §7.6.3



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

\ #ifdef __STDC_IEC_60559_DFP__ \
\ #pragma STDC FENV_DEC_ROUND dec-direction \
\ #endif |
L |

Description

The FENV_DEC_ROUND pragma is a decimal floating-point analog of the FENV_ROUND pragma. If
FLT_RADIX is not 10, the FENV_DEC_ROUND pragma affects operators, functions, and floating con-
stants only for decimal floating types. The affected functions are listed in the table below. If
FLT_RADIX is 10, whether the FENV_ROUND and FENV_DEC_ROUND pragmas alter the rounding direc-
tion of both standard and decimal floating-point operations is implementation-defined. dec-direction
shall be one of the decimal rounding direction macro names (FE_DEC_DOWNWARD, FE_DEC_TONEAREST,
FE_DEC_TONEARESTFROMZERO, FE_DEC_TOWARDZERO, and FE_DEC_UPWARD) defined in 7.6, to specify
a constant rounding mode, or FE_DEC_DYNAMIC, to specify dynamic rounding. The corresponding
dynamic rounding mode can be established by a call to fe_dec_setround.

Functions affected by constant rounding modes — for decimal float-

ing types
Header Function families
<math.h> acos, acospi, asin, asinpi, atan, atan2, atan2pi, atanpi
<math.h> cos, cospi, sin, sinpi, tan, tanpi
<math.h> acosh, asinh, atanh
<math.h> cosh, sinh, tanh

<math.h> exp, expl0, explOml, exp2, exp2ml, expml
<math.h> log, Logl0, Logl0pl, Loglp, Log2, Log2pl, logpl
<math.h> scalbn, scalbln, ldexp

<math.h> cbrt, compoundn, hypot, pow, pown, powr, rootn, rsqrt, sqrt
<math.h> erf, erfc

<math.h> lgamma, tgamma

<math.h> rint, nearbyint, lrint, 1lrint

<math.h> quantize

<math.h> fdim

<math.h> fma

<math.h> d32add, d64add, d32sub, d64sub, d32mul, d64mul, d32div, d64div,
d32fma, d64fma, d32sqrt, d64sqrt

<stdlib.h> | strfrom, strto

<wchar.h> wcsto

<stdio.h> printf and scanf families

<wchar.h> | wprintf and wscanf families

A function family listed in the table above indicates the functions for all decimal floating types,
where the function family is represented by the name of the functions without a suffix. For example,
acos indicates the functions acosd32, acosd64, and acosd128.

7.6.4 Floating-point exceptions

The following functions provide access to the floating-point status flags.??® The int input argument
for the functions represents a subset of floating-point exceptions, and can be zero or the bitwise
OR of one or more floating-point exception macros, for example FE_OVERFLOW | FE_INEXACT. For
other argument values, the behavior of these functions is undefined.

7.6.4.1 The feclearexcept function

228)The functions fetestexcept, feraiseexcept, and feclearexcept support the basic abstraction of flags that are either
set or clear. An implementation can endow floating-point status flags with more information — for example, the address of
the code which first raised the floating-point exception; the functions fegetexceptflag and fesetexceptflag deal with
the full content of flags.

§7.64.1 Library 173



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Synopsis

#include <fenv.h>
int feclearexcept(int excepts);

Description

The feclearexcept function attempts to clear the supported floating-point exceptions represented
by its argument.

Returns

The feclearexcept function returns zero if the excepts argument is zero or if all the specified
exceptions were successfully cleared. Otherwise, it returns a nonzero value.

7.6.4.2 The fegetexceptflag function
Synopsis

#include <fenv.h>
int fegetexceptflag(fexcept_t xflagp, int excepts);

Description

The fegetexceptflag function attempts to store an implementation-defined representation of the
states of the floating-point status flags indicated by the argument excepts in the object pointed to
by the argument flagp.

Returns

The fegetexceptflag function returns zero if the representation was successfully stored. Otherwise,
it returns a nonzero value.

7.6.4.3 The feraiseexcept function
Synopsis

#include <fenv.h>
int feraiseexcept(int excepts);

Description

The feraiseexcept function attempts to raise the supported floating-point exceptions represented
by its argument.”?”) The order in which these floating-point exceptions are raised is unspecified,
except as stated in F.8.6. Whether the feraiseexcept function additionally raises the “inexact”
floating-point exception whenever it raises the “overflow” or “underflow” floating-point exception
is implementation-defined.

Returns

The feraiseexcept function returns zero if the excepts argument is zero or if all the specified
exceptions were successfully raised. Otherwise, it returns a nonzero value.

7.6.44 The fesetexcept function
Synopsis

#include <fenv.h>
int fesetexcept(int excepts);

Description

The fesetexcept function attempts to set the supported floating-point exception flags represented
by its argument. This function does not clear any floating-point exception flags. This function

29 The effect is intended to be similar to that of floating-point exceptions raised by arithmetic operations. Hence, enabled
traps for floating-point exceptions raised by this function are taken. The specification in E.8.6 is in the same spirit.

174 Library §7.644



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

changes the state of the floating-point exception flags, but does not cause any other side effects that
might be associated with raising floating-point exceptions.?*?)

Returns

The fesetexcept function returns zero if all the specified exceptions were successfully set or if the
excepts argument is zero. Otherwise, it returns a nonzero value.

7.6.4.5 The fesetexceptflag function
Synopsis

#include <fenv.h>
int fesetexceptflag(const fexcept_t xflagp, int excepts);

Description

The fesetexceptflag function attempts to set the floating-point status flags indicated by the
argument excepts to the states stored in the object pointed to by flagp. The value of xflagp shall
have been set by a previous call to fegetexceptflag whose second argument represented at least
those floating-point exceptions represented by the argument excepts. This function does not raise
floating-point exceptions, but only sets the state of the flags.

Returns

The fesetexceptflag function returns zero if the excepts argument is zero or if all the specified
flags were successfully set to the appropriate state. Otherwise, it returns a nonzero value.

7.6.4.6 The fetestexceptflag function
Synopsis

#include <fenv.h>
int fetestexceptflag(const fexcept_t * flagp, int excepts);

Description

The fetestexceptflag function determines which of a specified subset of the floating-point excep-
tion flags are set in the object pointed to by flagp. The value of *flagp shall have been set by a
previous call to fegetexceptflag whose second argument represented at least those floating-point
exceptions represented by the argument excepts. The excepts argument specifies the floating-point
status flags to be queried.

Returns

The fetestexceptflag function returns the value of the bitwise OR of the floating-point exception
macros included in excepts corresponding to the floating-point exceptions set in *flagp.

7.6.4.7 The fetestexcept function
Synopsis

#include <fenv.h>
int fetestexcept(int excepts);

Description

The fetestexcept function determines which of a specified subset of the floating-point excep-
tion flags are currently set. The excepts argument specifies the floating-point status flags to be
queried.?3V

Returns

The fetestexcept function returns the value of the bitwise OR of the floating-point exception
macros corresponding to the currently set floating-point exceptions included in excepts.

230)Enabled traps for floating-point exceptions are not taken.
2D This mechanism allows testing several floating-point exceptions with just one function call.

§7.64.7 Library 175



4

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

EXAMPLE Call f if “invalid” is set, then g if “overflow” is set:

#include <fenv.h>
/* .. %/
{
#pragma STDC FENV_ACCESS ON
int set_excepts;
feclearexcept (FE_INVALID | FE_OVERFLOW);
// maybe raise exceptions
set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW);
if (set_excepts & FE_INVALID) f();
if (set_excepts & FE_OVERFLOW) g();
/* .. %/

7.6.5 Rounding and other control modes

The fegetround and fesetround functions provide control of rounding direction modes. The
fegetmode and fesetmode functions manage all the implementation’s dynamic floating-point
control modes collectively.

7.6.5.1 The fegetmode function
Synopsis

#include <fenv.h>
int fegetmode(femode_t *modep);

Description

The fegetmode function attempts to store all the dynamic floating-point control modes in the object
pointed to by modep.

Returns

The fegetmode function returns zero if the modes were successfully stored. Otherwise, it returns a
nonzero value.

7.6.5.2 The fegetround function
Synopsis

#include <fenv.h>
int fegetround(void);

Description
The fegetround function gets the current value of the dynamic rounding direction mode.

Returns

The fegetround function returns the value of the rounding direction macro representing the current
dynamic rounding direction or a negative value if there is no such rounding direction macro or the
current dynamic rounding direction is not determinable.

7.6.5.3 The fe_dec_getround function
Synopsis

#include <fenv.h>

#ifdef _STDC_IEC_60559_DFP__
int fe_dec_getround(void);
#endif

176 Library §7.6.5.3



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Description

The fe_dec_getround function gets the current value of the dynamic rounding direction mode for
decimal floating-point operations.

Returns

The fe_dec_getround function returns the value of the rounding direction macro representing the
current dynamic rounding direction for decimal floating-point operations, or a negative value if
there is no such rounding macro or the current rounding direction is not determinable.

7.6.5.4 The fesetmode function
Synopsis

#include <fenv.h>
int fesetmode(const femode_t *modep);

Description

The fesetmode function attempts to establish the dynamic floating-point modes represented by the
object pointed to by modep. The argument modep shall point to an object set by a call to fegetmode,
or equal FE_DFL_MODE or a dynamic floating-point mode state macro defined by the implementation.

Returns

The fesetmode fesetmode function returns zero if the modes were successfully established. Other-
wise, it returns a nonzero value.

7.6.5.5 The fesetround function
Synopsis

#include <fenv.h>
int fesetround(int round);

Description

The fesetround function establishes the rounding direction represented by its argument round. If
the argument is not equal to the value of a rounding direction macro, the rounding direction is not
changed.

Returns

The fesetround function returns zero if and only if the dynamic rounding direction mode was set
to the requested rounding direction.

EXAMPLE Save, set, and restore the rounding direction. Report an error and abort if setting the rounding direction fails.

#include <fenv.h>
#include <assert.h>

void f(int round_dir)

{
#pragma STDC FENV_ACCESS ON
int save_round;
int setround_ok;
save_round = fegetround();
setround_ok = fesetround(round_dir);
assert(setround_ok == 0);
/*x ... %/
fesetround(save_round);
/* ... x/

7.6.5.6 The fe_dec_setround function

§7.6.5.6 Library 177



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Synopsis

#include <fenv.h>

#ifdef _STDC_IEC_60559_DFP__
int fe_dec_setround(int round);
#endif

Description

The fe_dec_setround function sets the dynamic rounding direction mode for decimal floating-
point operations to be the rounding direction represented by its argument round. If the argument is
not equal to the value of a decimal rounding direction macro, the rounding direction is not changed.

If FLT_RADIX is not 10, the rounding direction altered by the fesetround function is independent
of the rounding direction altered by the fe_dec_setround function; otherwise if FLT_RADIX is
10, whether the fesetround and fe_dec_setround functions alter the rounding direction of both
standard and decimal floating-point operations is implementation- defined.

Returns

The fe_dec_setround function returns a zero value if and only if the argument is equal to a decimal
rounding direction macro (that is, if and only if the dynamic rounding direction mode for decimal
floating-point operations was set to the requested rounding direction).

7.6.6 Environment

The functions in this section manage the floating-point environment — status flags and control
modes — as one entity.

7.6.6.1 The fegetenv function
Synopsis

#include <fenv.h>
int fegetenv(fenv_t xenvp);

Description

The fegetenv function attempts to store the current dynamic floating-point environment in the
object pointed to by envp.

Returns

The fegetenv function returns zero if the environment was successfully stored. Otherwise, it returns
a nonzero value.

7.6.6.2 The feholdexcept function

Synopsis

#include <fenv.h>
int feholdexcept(fenv_t *envp);

Description

The feholdexcept function saves the current dynamic floating-point environment in the object
pointed to by envp, clears the floating-point status flags, and then installs a non-stop (continue on
floating-point exceptions) mode, if available, for all floating-point exceptions.?*?

Returns

The feholdexcept function returns zero if and only if non-stop floating-point exception handling
was successfully installed.

22)[EC 60559 systems have a default non-stop mode, and typically at least one other mode for trap handling or aborting; if
the system provides only the non-stop mode then installing it is trivial. For such systems, the feholdexcept function can be
used in conjunction with the feupdateenv function to write routines that hide spurious floating-point exceptions from their
callers.

178 Library §7.6.6.2



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7.6.6.3 The fesetenv function
Synopsis

#include <fenv.h>
int fesetenv(const fenv_t xenvp);

Description

The fesetenv function attempts to establish the dynamic floating-point environment represented by
the object pointed to by envp. The argument envp shall point to an object set by a call to fegetenv or
feholdexcept, or equal a dynamic floating-point environment macro. Note that fesetenv merely
installs the state of the floating-point status flags represented through its argument, and does not
raise these floating-point exceptions.

Returns

The fesetenv function returns zero if the environment was successfully established. Otherwise, it
returns a nonzero value.

7.6.6.4 The feupdateenv function
Synopsis

#include <fenv.h>
int feupdateenv(const fenv_t xenvp);

Description

The feupdateenv function attempts to save the currently raised floating-point exceptions in its
automatic storage, install the dynamic floating-point environment represented by the object pointed
to by envp, and then raise the saved floating-point exceptions. The argument envp shall point to an
object set by a call to feholdexcept or fegetenv, or equal a dynamic floating-point environment
macro.

Returns

The feupdateenv function returns zero if all the actions were successfully carried out. Otherwise, it
returns a nonzero value.

EXAMPLE Hide spurious underflow floating-point exceptions:

#include <fenv.h>
double f(double x)
{
#pragma STDC FENV_ACCESS ON
double result;
fenv_t save_env;
if (feholdexcept(&save_env))
return /* indication of an environmental problem x/;
// compute result
if (/x test spurious underflow x/)
if (feclearexcept(FE_UNDERFLOW))
return /x indication of an environmental problem x/;
if (feupdateenv(&save_env))
return /* indication of an environmental problem x/;
return result;

§7.6.64 Library 179



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

7.7 Characteristics of floating types <float.h>
The header <float.h> defines several macros that expand to various limits and parameters of the
real floating types.

The macros, their meanings, and the constraints (or restrictions) on their values are listed in 5.2.4.2.2
and 5.2.4.2.3. A summary is given in Annex E.

180 Library §7.7



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7.8 Format conversion of integer types <inttypes.h>
The header <inttypes.h> includes the header <stdint.h> and extends it with additional facilities
provided by hosted implementations.

It declares functions for manipulating greatest-width integers and converting numeric character
strings to greatest-width integers, and it declares the type

i imaxdiv_t i

which is a structure type that is the type of the value returned by the imaxdiv function. For each
type declared in <stdint. h>, it defines corresponding macros for conversion specifiers for use with
the formatted input/output functions.?

Forward references: integer types <stdint.h> (7.20), formatted input/output functions (7.21.6),
formatted wide character input/output functions (7.29.2).

7.8.1 Macros for format specifiers

Each of the following object-like macros expands to a character string literal containing a conversion
specifier, possibly modified by a length modifier, suitable for use within the format argument of a
formatted input/output function when converting the corresponding integer type. These macro
names have the general form of PRI (character string literals for the fprintf and fwprintf family)
or SCN (character string literals for the fscanf and fwscanf family),?*¥ followed by the conversion
specifier, followed by a name corresponding to a similar type name in 7.20.1. In these names, N
represents the width of the type as described in 7.20.1. For example, PRIdFAST32 can be used in a
format string to print the value of an integer of type int_fast32_t.

The fprintf macros for signed integers are:

PRIAN PRIALEASTN PRIAFASTN PRIdMAX PRIdPTR
PRILIN PRIiLEASTN PRIiFASTN PRIiMAX PRIiPTR

The fprintf macros for unsigned integers are:

PRION PRIOLEASTN PRIoFASTN PRIoMAX PRIoPTR
PRIuN PRIuLEASTN PRIuFASTN PRIuMAX PRIuPTR
PRIXN PRIXLEASTN PRIXFASTN PRIxXMAX PRIxPTR
PRIXN PRIXLEASTN PRIXFASTN PRIXMAX PRIXPTR

The fscanf macros for signed integers are:

SCNdN SCNdLEASTN SCNdFASTN SCNdMAX SCNdPTR
SCNiN SCNiLEASTN SCNiFASTN SCNiMAX SCNiPTR

The fscanf macros for unsigned integers are:

SCNoN SCNoLEASTN SCNoFASTN SCNoMAX SCNoPTR
SCNuN SCNuLEASTN SCNuFASTN SCNuMAX SCNuPTR
SCNxN SCNXLEASTN SCNxFASTN SCNxMAX SCNxPTR

For each type that the implementation provides in <stdint.h>, the corresponding fprintf macros
shall be defined and the corresponding fscanf macros shall be defined unless the implementation
does not have a suitable fscanf length modifier for the type.

EXAMPLE

[ ]
\ #include <inttypes.h> \
\ #include <wchar.h> \
\ int main(void) \
| { |
\ uintmax_t i = UINTMAX_MAX; // this type always exists \
‘ wprintf(L"The largest integer value is %020" \

233)See “future library directions” (7.31.6).
234)Separate macros are given for use with fprintf and fscanf functions because, in the general case, different format
specifiers might be required for fprintf and fscanf, even when the type is the same.

§7.8.1 Library 181



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

| PRIXMAX "\n", i);

\ return 0; \
| |
| |

7.8.2 Functions for greatest-width integer types
7.8.2.1 The imaxabs function
Synopsis

#include <inttypes.h>
intmax_t imaxabs(intmax_t j);

Description

The imaxabs function computes the absolute value of an integer j. If the result cannot be represented,
the behavior is undefined.”>

Returns
The imaxabs function returns the absolute value.

7.8.2.2 The imaxdiv function
Synopsis

#include <inttypes.h>
imaxdiv_t imaxdiv(intmax_t numer, intmax_t denom);

Description
The imaxdiv function computes numer / denomand numer % denom in a single operation.

Returns

The imaxdiv function returns a structure of type imaxdiv_t comprising both the quotient and the
remainder. The structure shall contain (in either order) the members quot (the quotient) and rem
(the remainder), each of which has type intmax_t. If either part of the result cannot be represented,
the behavior is undefined.

7.8.2.3 The strtoimax and strtoumax functions
Synopsis

[

‘#include <inttypes.h>

\intmax_t strtoimax(const char * restrict nptr, char *x restrict endptr, int base);
\uintmax_t strtoumax(const char * restrict nptr, char *x restrict endptr, int base);
L

Description

The strtoimax and strtoumax functions are equivalent to the strtol, strtoll, strtoul, and
strtoull functions, except that the initial portion of the string is converted to intmax_t and
uintmax_t representation, respectively.

Returns

The strtoimax and strtoumax functions return the converted value, if any. If no conversion could
be performed, zero is returned. If the correct value is outside the range of representable values,
INTMAX_MAX, INTMAX_MIN, or UINTMAX_MAX is returned (according to the return type and sign of the
value, if any), and the value of the macro ERANGE is stored in errno.

Forward references: the strtol, strtoll, strtoul, and strtoull functions (7.22.1.7).

7.8.2.4 The wcstoimax and wcstoumax functions

235)The absolute value of the most negative number may not be representable.

182 Library §7.8.24



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Synopsis

#include <stddef.h> // for wchar_t

#include <inttypes.h>

intmax_t wcstoimax(const wchar_t xrestrict nptr, wchar_t xxrestrict endptr, int base);
uintmax_t wcstoumax(const wchar_t *restrict nptr, wchar_t *xxrestrict endptr, int base);

Description

The westoimax and westoumax functions are equivalent to the westol, westoll, westoul, and
westoull functions except that the initial portion of the wide string is converted to intmax_t and
uintmax_t representation, respectively.

Returns

The westoimax function returns the converted value, if any. If no conversion could be performed,
zero is returned. If the correct value is outside the range of representable values, INTMAX_MAX,
INTMAX_MIN, or UINTMAX_MAX is returned (according to the return type and sign of the value, if any),
and the value of the macro ERANGE is stored in errno.

Forward references: thewcstol,wcstoll, wcstoul, and westoull functions (7.29.4.1.3).

§7.824 Library 183



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

7.9 Alternative spellings <is0646.h>

1 The header <is0646. h> defines the following eleven macros (on the left) that expand to the corre-
sponding tokens (on the right):

and &&
and_eq =
bitand &
bitor |
compl ~
not !
not_eq !
or |
or_eq |
xor ~
xor_eq ~=

184 Library 8§79




N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7.10 Characteristics of integer types <limits.h>
The header <limits.h> defines several macros that expand to various limits and parameters of the
standard integer types.

The macros, their meanings, and the constraints (or restrictions) on their values are listed in 5.2.4.2.1.
A summary is given in Annex E.

§7.10 Library 185



3

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

7.11 Localization <locale.h>
The header <locale. h> declares two functions, one type, and defines several macros.

The type is

[
\ struct lconv

which contains members related to the formatting of numeric values. The structure shall contain
at least the following members, in any order. The semantics of the members and their normal
ranges are explained in 7.11.2.1. In the "C" locale, the members shall have the values specified in the
comments.

char xdecimal_point; // "t
char xthousands_sep; // """
char xgrouping; // """
char xmon_decimal_point; // """
char xmon_thousands_sep; // """
char xmon_grouping; // """
char xpositive_sign; // "
char *negative_sign; // "
char *xcurrency_symbol; // """
char frac_digits; // CHAR_MAX
char p_cs_precedes; // CHAR_MAX
char n_cs_precedes; // CHAR_MAX
char p_sep_by_space; // CHAR_MAX
char n_sep_by_space; // CHAR_MAX
char p_sign_posn; // CHAR_MAX
char n_sign_posn; // CHAR_MAX
char xint_curr_symbol; // """
char int_frac_digits; // CHAR_MAX
char int_p_cs_precedes; // CHAR_MAX
char int_n_cs_precedes; // CHAR_MAX
char int_p_sep_by_space; // CHAR_MAX
char int_n_sep_by_space; // CHAR_MAX
char int_p_sign_posn; // CHAR_MAX
char int_n_sign_posn; // CHAR_MAX

The macros defined are NULL (described in 7.19); and

LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME

which expand to integer constant expressions with distinct values, suitable for use as the first argu-
ment to the setlocale function.??® Additional macro definitions, beginning with the characters
LC_ and an uppercase letter,”?”) may also be specified by the implementation.

7.11.1 Locale control

7.11.1.1 The setlocale function
Synopsis

#include <locale.h>
char xsetlocale(int category, const char xlocale);

0[SO /TEC 9945-2 specifies locale and charmap formats that can be used to specify locales for C.
27)See “future library directions” (7.31.7).

186 Library §7.11.1.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Description

The setlocale function selects the appropriate portion of the program’s locale as specified by
the category and locale arguments. The setlocale function may be used to change or query
the program’s entire current locale or portions thereof. The value LC_ALL for category names
the program’s entire locale; the other values for category name only a portion of the program’s
locale. LC_COLLATE affects the behavior of the strcoll and strxfrm functions. LC_CTYPE affects
the behavior of the character handling functions®®® and the multibyte and wide character functions.
LC_MONETARY affects the monetary formatting information returned by the localeconv function.
LC_NUMERIC affects the decimal-point character for the formatted input/output functions and the
string conversion functions, as well as the nonmonetary formatting information returned by the
localeconv function. LC_TIME affects the behavior of the strftime and wesftime functions.

A value of "C" for locale specifies the minimal environment for C translation; a value of "" for
locale specifies the locale-specific native environment. Other implementation-defined strings may
be passed as the second argument to setlocale.

At program startup, the equivalent of

[
\ setlocale(LC_ALL, "C");
L

is executed.

A call to the setlocale function may introduce a data race with other calls to the setlocale
function or with calls to functions that are affected by the current locale. The implementation shall
behave as if no library function calls the setlocale function.

Returns

If a pointer to a string is given for locale and the selection can be honored, the setlocale function
returns a pointer to the string associated with the specified category for the new locale. If the
selection cannot be honored, the setlocale function returns a null pointer and the program’s locale
is not changed.

A null pointer for locale causes the setlocale function to return a pointer to the string associated
with the category for the program’s current locale; the program’s locale is not changed.””)

The pointer to string returned by the setlocale function is such that a subsequent call with that
string value and its associated category will restore that part of the program’s locale. The string
pointed to shall not be modified by the program. The behavior is undefined if the returned value
is used after a subsequent call to the setlocale function, or after the thread which called the
setlocale function to obtain the returned value has exited.

Forward references: formatted input/output functions (7.21.6), multibyte/wide character conver-
sion functions (7.22.7), multibyte/wide string conversion functions (7.22.8), numeric conversion
functions (7.22.1), the strcoll function (7.24.4.3), the strftime function (7.27.3.5), the strxfrm
function (7.24.4.5).

7.11.2 Numeric formatting convention inquiry
7.11.2.1 The localeconv function
Synopsis

#include <locale.h>
struct lconv xlocaleconv(void);

Description

The localeconv function sets the components of an object with type struct lconv with values
appropriate for the formatting of numeric quantities (monetary and otherwise) according to the
rules of the current locale.

238)The only functions in 7.4 whose behavior is not affected by the current locale are isdigit and isxdigit.
2 The implementation is thus required to arrange to encode in a string the various categories due to a heterogeneous locale
when category has the value LC_ALL.

§7.11.2.1 Library 187



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

The members of the structure with type char x are pointers to strings, any of which (except

decimal_point) can point to "", to indicate that the value is not available in the current locale or is
of zero length. Apart from grouping and mon_grouping, the strings shall start and end in the initial
shift state. The members with type char are nonnegative numbers, any of which can be CHAR_MAX
to indicate that the value is not available in the current locale. The members include the following:

char

char

char

char

char

char

char

char

char

char

char

char

char

char

char

188

xdecimal_point
The decimal-point character used to format nonmonetary quantities.

xthousands_sep

The character used to separate groups of digits before the decimal-point character in
formatted nonmonetary quantities.

xgrouping
A string whose elements indicate the size of each group of digits in formatted nonmon-
etary quantities.

xmon_decimal_point
The decimal-point used to format monetary quantities.

xmon_thousands_sep

The separator for groups of digits before the decimal-point in formatted monetary
quantities.

*mon_grouping
A string whose elements indicate the size of each group of digits in formatted monetary
quantities.

xpositive_sign
The string used to indicate a nonnegative-valued formatted monetary quantity.

xnegative_sign
The string used to indicate a negative-valued formatted monetary quantity.

xcurrency_symbol
The local currency symbol applicable to the current locale.

frac_digits

The number of fractional digits (those after the decimal-point) to be displayed in a
locally formatted monetary quantity.

p—cs_precedes

Set to 1 or 0 if the currency_symbol respectively precedes or succeeds the value for a
nonnegative locally formatted monetary quantity.

n_cs_precedes

Set to 1 or 0 if the currency_symbol respectively precedes or succeeds the value for a
negative locally formatted monetary quantity.

p—sep—_by_space
Set to a value indicating the separation of the currency_symbol, the sign string, and
the value for a nonnegative locally formatted monetary quantity.

n_sep_by_space

Set to a value indicating the separation of the currency_symbol, the sign string, and
the value for a negative locally formatted monetary quantity.

p—sign_posn
Set to a value indicating the positioning of the positive_sign for a nonnegative locally
formatted monetary quantity.

ibrar d1.2.
Library 7.11.2.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

char n_sign_posn

Set to a value indicating the positioning of the negative_sign for a negative locally
formatted monetary quantity.

char *xint_curr_symbol

The international currency symbol applicable to the current locale. The first three
characters contain the alphabetic international currency symbol in accordance with
those specified in ISO 4217. The fourth character (immediately preceding the null
character) is the character used to separate the international currency symbol from the
monetary quantity.

char int_frac_digits

The number of fractional digits (those after the decimal-point) to be displayed in an
internationally formatted monetary quantity.

char int_p_cs_precedes

Set to 1 or 0 if the int_curr_symbol respectively precedes or succeeds the value for a
nonnegative internationally formatted monetary quantity.

char int_n_cs_precedes

Set to 1 or 0 if the int_curr_symbol respectively precedes or succeeds the value for a
negative internationally formatted monetary quantity.

char int_p_sep_by_space

Set to a value indicating the separation of the int_curr_symbol, the sign string, and
the value for a nonnegative internationally formatted monetary quantity.

char int_n_sep_by_space

Set to a value indicating the separation of the int_curr_symbol, the sign string, and
the value for a negative internationally formatted monetary quantity.

char int_p_sign_posn

Set to a value indicating the positioning of the positive_sign for a nonnegative
internationally formatted monetary quantity.

char int_n_sign_posn
Set to a value indicating the positioning of the negative_sign for a negative interna-
tionally formatted monetary quantity.

The elements of grouping and mon_grouping are interpreted according to the following:

CHAR_MAX No further grouping is to be performed.

0 The previous element is to be repeatedly used for the remainder of the digits.

other The integer value is the number of digits that compose the current group. The next
element is examined to determine the size of the next group of digits before the current
group.

The values of p_sep_by_space, n_sep_by_space, int_p_sep_by_space, and
int_n_sep_by_space are interpreted according to the following;:

0 No space separates the currency symbol and value.

1 If the currency symbol and sign string are adjacent, a space separates them from the value;
otherwise, a space separates the currency symbol from the value.

2 If the currency symbol and sign string are adjacent, a space separates them; otherwise, a space
separates the sign string from the value.

§7.11.2.1 Library 189



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

For int_p_sep_by_space and int_n_sep_by_space, the fourth character of int_curr_symbol is
used instead of a space.

The values of p_sign_posn, n_sign_posn, int_p_sign_posn, and int_n_sign_posn are inter-
preted according to the following;:

0 Parentheses surround the quantity and currency symbol.

1 The sign string precedes the quantity and currency symbol.

2 The sign string succeeds the quantity and currency symbol.

3 The sign string immediately precedes the currency symbol.

4  The sign string immediately succeeds the currency symbol.

The implementation shall behave as if no library function calls the localeconv function.

Returns

The localeconv function returns a pointer to the filled-in object. The structure pointed to by the
return value shall not be modified by the program, but may be overwritten by a subsequent call
to the localeconv function. In addition, calls to the setlocale function with categories LC_ALL,
LC_MONETARY, or LC_NUMERIC may overwrite the contents of the structure.

EXAMPLE 1 The following table illustrates rules which might well be used by four countries to format monetary quantities.

Local format International format
Country Positive | Negative Positive | Negative
Countryl 1.234,56 mk -1.234,56 mk FIM 1.234,56 | FIM -1.234,56
Country2 L.1.234 -L.1.234 ITL 1.234 -ITL 1.234
Country3 £1.234,56 f-1.234,56 NLG 1.234,56 | NLG -1.234,56
Country4 SFrs.1,234.56 | SFrs.1,234.56C | CHF 1,234.56 | CHF 1,234.56C

10 For these four countries, the respective values for the monetary members of the structure returned by localeconv could be:

|| Countryl | Country2 | Country3 | Country4

mon_decimal_point . i . v
mon_thousands_sep o o " "
mon_grouping "\3" "\3" "\3" "\3"
positive_sign i R i R
negative_sign o L o "c"
currency_symbol "mk" "Lt "\ue192" "SFrs."
frac_digits 2 0 2 2
p—cs_precedes 0 1 1 1
n_cs_precedes 0 1 1 1
p—sep_by_space 1 0 1 0
n_sep_by_space 1 0 2 0
p—sign_posn 1 1 1 1
n_sign_posn 1 1 4 2
int_curr_symbol "FIM " "ITL " "NLG " "CHF "
int_frac_digits 2 0 2 2
int_p_cs_precedes 1 1 1 1
int_n_cs_precedes 1 1 1 1
int_p_sep_by_space 1 1 1 1
int_n_sep_by_space 2 1 2 1
int_p_sign_posn 1 1 1 1
int_n_sign_posn 4 1 4 2

190 Library §7.11.2.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

11  EXAMPLE 2 The following table illustrates how the cs_precedes, sep_by_space, and sign_posn members affect the
formatted value.

p—sep_by_space

p—cs_precedes | p_sign_posn 0 [1 [ 2

0 (1.25%) (1.25 %) (1.25%)
+1.25% +1.25 $ + 1.25%
1.25%+ 1.25 $+ 1.25% +
1.25+% 1.25 +$ 1.25+ $
1.25%+ 1.25 $+ 1.25% +
1 ($1.25) ($ 1.25) ($1.25)

+$1.25 +$ 1.25 + $1.25
$1.25+ $ 1.25+ $1.25 +
+$1.25 +$ 1.25 + $1.25
$+1.25 $+ 1.25 $ +1.25

PUWNRFROPWNEFEO

§7.11.2.1 Library 191



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

7.12 Mathematics <math.h>

The header <math.h> declares two types and many mathematical functions and defines several
macros. Most synopses specify a family of functions consisting of a principal function with one
or more double parameters, a double return value, or both; and other functions with the same
name but with f and 1 suffixes, which are corresponding functions with float and long double
parameters, return values, or both.??) Integer arithmetic functions and conversion functions are
discussed later.

The feature test macro __STDC_VERSION_MATH_H__ expands to the token yyyymmL.
The types

float_t
double_t

are floating types at least as wide as float and double, respectively, and such that double_t is
at least as wide as float_t. If FLT_EVAL_METHOD equals 0, float_t and double_t are float and
double, respectively; if FLT_EVAL_METHOD equals 1, they are both double; if FLT_EVAL_METHOD
equals 2, they are both long double; and for other values of FLT_EVAL_METHOD, they are otherwise
implementation-defined .4

The types

_Decimal32_t
_Decimal64_t

are decimal floating types at least as wide as _Decimal32 and _Decimal64, respectively,
and such that _Decimal64_t is at least as wide as _Decimal32_t. If DEC_EVAL_METHOD
equals 0, _Decimal32_t and _Decimal64_t are _Decimal32 and _Decimal64, respectively; if

DEC_EVAL_METHOD equals 1, they are both _Decimal64; if DEC_EVAL_METHOD equals 2, they are
both _Decimall28; and for other values of DEC_EVAL_METHOD, they are otherwise implementation-
defined.

The macro

\ HUGE_VAL

expands to a positive double constant expression, not necessarily representable as a float. The
macros

HUGE_VALF
HUGE_VALL

are respectively float and long double analogs of HUGE_VAL.24?

The macro

\ HUGE_VAL_D32

expands to a constant expression of type _Decimal32 representing positive infinity. The macros

HUGE_VAL_D64
HUGE_VAL_D128

240)Particularly on systems with wide expression evaluation, a <math. h> function might pass arguments and return values
in wider format than the synopsis prototype indicates.

2DThe types float_t and double_t are intended to be the implementation’s most efficient types at least as wide as
float and double, respectively. For FLT_EVAL_METHOD equal 0, 1, or 2, the type float_t is the narrowest type used by the
implementation to evaluate floating expressions.

242)HUGE_VAL, HUGE_VALF, and HUGE_VALL can be positive infinities in an implementation that supports infinities.

192 Library §7.12



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

are respectively _Decimal64 and _Decimall28 analogs of HUGE_VAL_D32.

The macro

\ INFINITY

expands to a constant expression of type float representing positive or unsigned infinity, if available;
else to a positive constant of type float that overflows at translation time. 243

The macro

\ DEC_INFINITY

expands to a constant expression of type _Decimal32 representing positive infinity.

The macro

\ NAN

is defined if and only if the implementation supports quiet NaNs for the float type. It expands to a
constant expression of type float representing a quiet NaN.

The macro

\ DEC_NAN

expands to a constant expression of type _Decimal32 representing a quiet NaN.

Use of the macros INFINITY, DEC_INFINITY, NAN, and DEC_NAN in <math.h> is an obsolescent
feature. Instead, use the same macros in <float.h>.

The number classification macros

FP_INFINITE
FP_NAN
FP_NORMAL
FP_SUBNORMAL
FP_ZERO

represent the mutually exclusive kinds of floating-point values. They expand to integer constant
expressions with distinct values. Additional implementation-defined floating-point classifications,
with macro definitions beginning with FP_ and an uppercase letter, may also be specified by the
implementation.

The math rounding direction macros

FP_INT_UPWARD
FP_INT_DOWNWARD
FP_INT_TOWARDZERO
FP_INT_TONEARESTFROMZERO
FP_INT_TONEAREST

represent the rounding directions of the functions ceil, floor, trunc, round, and roundeven,
respectively, that convert to integral values in floating-point formats. They expand to integer
constant expressions with distinct values suitable for use as the second argument to the fromfp,

ufromfp, fromfpx, and ufromfpx functions.

The macro

\ FP_FAST_FMA

293)In this case, using INFINITY will violate the constraint in 6.4.4 and thus require a diagnostic.

§7.12 Library 193



15

16

17

18

19

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

is optionally defined. If defined, it indicates that the fma function generally executes about as fast as,
or faster than, a multiply and an add of double operands.?*» The macros

FP_FAST_FMAF
FP_FAST_FMAL

are, respectively, float and long double analogs of FP_FAST_FMA. If defined, these macros expand
to the integer constant 1.

The macros

FP_FAST_FMAD32
FP_FAST_FMAD64
FP_FAST_FMAD128

are, respectively, _Decimal32, _Decimal64, and _Decimall28 analogs of FP_FAST_FMA.

Each of the macros

FP_FAST_FADD FP_FAST_DSUBL FP_FAST_FDIVL FP_FAST_FFMA
FP_FAST_FADDL FP_FAST_FMUL FP_FAST_DDIVL FP_FAST_FFMAL
FP_FAST_DADDL FP_FAST_FMULL FP_FAST_FSQRT FP_FAST_DFMAL
FP_FAST_FSUB FP_FAST_DMULL FP_FAST_FSQRTL

FP_FAST_FSUBL FP_FAST_FDIV FP_FAST_DSQRTL

is optionally defined. If defined, it indicates that the corresponding function generally executes
about as fast, or faster, than the corresponding operation or function of the argument type with
result type the same as the argument type followed by conversion to the narrower type. For
FP_FAST_FFMA, FP_FAST_FFMAL, and FP_FAST_DFMAL, the comparison is to a call to fma or fmal
followed by a conversion, not to separate multiply, add, and conversion. If defined, these macros
expand to the integer constant 1.

The macros

FP_FAST_D32ADDD64 FP_FAST_D32MULD64 FP_FAST_D32FMAD64

FP_FAST_D32ADDD128 FP_FAST_D32MULD128 FP_FAST_D32FMAD128
FP_FAST_D64ADDD128 FP_FAST_D64MULD128 FP_FAST_D64FMAD128
FP_FAST_D32SUBD64 FP_FAST_D32DIVD64 FP_FAST_D32SQRTD64
FP_FAST_D32SUBD128 FP_FAST_D32DIVD128 FP_FAST_D32SQRTD128
FP_FAST_D64SUBD128 FP_FAST_D64DIVD128 FP_FAST_D64SQRTD128

are analogs of FP_FAST_FADD, FP_FAST_FADDL, FP_FAST_DADDL, etc., for decimal floating types.

The macros

FP_ILOGBO
FP_ILOGBNAN

expand to integer constant expressions whose values are returned by ilogb(x) if x is zero or
NaN, respectively. The value of FP_ILOGBO shall be either INT_MIN or - INT_MAX . The value of
FP_ILOGBNAN shall be either INT_MAX or INT_MIN.

The macros

FP_LLOGBO
FP_LLOGBNAN

249 Typically, the FP_FAST_FMA macro is defined if and only if the fma function is implemented directly with a hardware
multiply-add instruction. Software implementations are expected to be substantially slower.

194 Library §7.12



20

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

expand to integer constant expressions whose values are returned by 1logh (x) if x is zero or NaN, re-
spectively. The value of FP_LLOGBO shall be LONG_MIN if the value of FP_ILOGB@ is INT_MIN, and shall
be-LONG_MAX if the value of FP_ILOGBO is- INT_MAX . The value of FP_LLOGBNAN shall be LONG_MAX
if the value of FP_ILOGBNAN is INT_MAX, and shall be LONG_MIN if the value of FP_ILOGBNAN is
INT_MIN.

The macros

MATH_ERRNO
MATH_ERREXCEPT

expand to the integer constants 1 and 2, respectively; the macro

[
\ math_errhandling
L

expands to an expression that has type int and the value MATH_ERRNO, MATH_ERREXCEPT, or the
bitwise OR of both. The value of math_errhandling is constant for the duration of the program. Itis
unspecified whether math_errhandling is a macro or an identifier with external linkage. If a macro
definition is suppressed or a program defines an identifier with the name math_errhandling, the
behavior is undefined. If the expression math_errhandling & MATH_ERREXCEPT can be nonzero,
the implementation shall define the macros FE_DIVBYZERO, FE_INVALID, and FE_OVERFLOW in
<fenv.h>.

7.12.1 Treatment of error conditions

The behavior of each of the functions in <math.h> is specified for all representable values of its
input arguments, except where explicitly stated otherwise. Each function shall execute as if it were a
single operation without raising SIGFPE and without generating any of the floating-point exceptions
“invalid”, “divide-by-zero”, or “overflow” except to reflect the result of the function.

For all functions, a domain error occurs if and only if an input argument is outside the domain over
which the mathematical function is defined. The description of each function lists any required
domain errors; an implementation may define additional domain errors, provided that such errors
are consistent with the mathematical definition of the function.*> Whether a signaling NaN
input causes a domain error is implementation-defined. On a domain error, the function returns
an implementation-defined value; if the integer expression math_errhandling & MATH_ERRNO
is nonzero, the integer expression errno acquires the value EDOM; if the integer expression

math_errhandling & MATH_ERREXCEPT is nonzero, the “invalid” floating-point exception is raised.

Similarly, a pole error (also known as a singularity or infinitary) occurs if and only if the mathematical
function has an exact infinite result as the finite input argument(s) are approached in the limit (for ex-
ample, Log(0.0)). The description of each function lists any required pole errors; an implementation
may define additional pole errors, provided that such errors are consistent with the mathematical
definition of the function. On a pole error, the function returns an implementation-defined value;
if the integer expression math_errhandling & MATH_ERRNO is nonzero, the integer expression
errno acquires the value ERANGE; if the integer expression math_errhandling & MATH_ERREXCEPT
is nonzero, the “divide-by-zero” floating-point exception is raised.

Likewise, a range error occurs if and only if the mathematical result of the function cannot be
represented in an object of the specified type, due to extreme magnitude. The description of each
function lists any required range errors; an implementation may define additional range errors,
provided that such errors are consistent with the mathematical definition of the function and are the
result of either overflow or underflow.

A floating result overflows if the magnitude (absolute value) of the mathematical result is finite but
so large that the mathematical result cannot be represented without extraordinary roundoff error
in an object of the specified type. If a floating result overflows and default rounding is in effect,
then the function returns the value of the macro HUGE_VAL, HUGE_VALF, or HUGE_VALL according to

29)In an implementation that supports infinities, this allows an infinity as an argument to be a domain error if the

mathematical domain of the function does not include the infinity.

§7.12.1 Library 195



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

the return type, with the same sign as the correct value of the function; if the integer expression
math_errhandling & MATH_ERRNO is nonzero, the integer expression errno acquires the value
ERANGE; if the integer expression math_errhandling & MATH_ERREXCEPT is nonzero, the “overflow”
floating-point exception is raised.

The result underflows if the magnitude (absolute value) of the mathematical result is nonzero and
less than the minimum normal number in the type.?#®) If the result underflows, the function returns
an implementation-defined value whose magnitude is no greater than the smallest normalized
positive number in the specified type; if the integer expression math_errhandling & MATH_ERRNO
is nonzero, whether errno acquires the value ERANGE is implementation-defined; if the integer
expression math_errhandling & MATH_ERREXCEPT is nonzero, whether the “underflow” floating-
point exception is raised is implementation-defined.

If a domain, pole, or range error occurs and the integer expression math_errhandling & MATH_ERRNO
is zero,?*”) then errno shall either be set to the value corresponding to the error or left unmodified. If
no such error occurs, errno shall be left unmodified regardless of the setting of math_errhandling.

7.12.2 The FP_CONTRACT pragma
Synopsis

#include <math.h>
#pragma STDC FP_CONTRACT on-off-switch

Description

The FP_CONTRACT pragma can be used to allow (if the state is “on”) or disallow (if the state is
“off”) the implementation to contract expressions (6.5). Each pragma can occur either outside
external declarations or preceding all explicit declarations and statements inside a compound
statement. When outside external declarations, the pragma takes effect from its occurrence until
another FP_CONTRACT pragma is encountered, or until the end of the translation unit. When inside
a compound statement, the pragma takes effect from its occurrence until another FP_CONTRACT
pragma is encountered (including within a nested compound statement), or until the end of the
compound statement; at the end of a compound statement the state for the pragma is restored to
its condition just before the compound statement. If this pragma is used in any other context, the
behavior is undefined. The default state (“on” or “off”) for the pragma is implementation-defined.

7.12.3 Classification macros

In the synopses in this subclause, real-floating indicates that the argument shall be an expression of
real floating type.

7.12.3.1 The fpclassify macro
Synopsis

#include <math.h>
int fpclassify(real-floating x);

Description

The fpclassify macro classifies its argument value as NaN, infinite, normal, subnormal, zero, or
into another implementation-defined category. First, an argument represented in a format wider
than its semantic type is converted to its semantic type. Then classification is based on the type of
the argument.%)

240)The term underflow here is intended to encompass both “gradual underflow” as in IEC 60559 and also “flush-to-zero”
underflow.

247)Math errors are being indicated by the floating-point exception flags rather than by errno.

248)Gince an expression can be evaluated with more range and precision than its type has, it is important to know the type
that classification is based on. For example, a normal long double value might become subnormal when converted to
double, and zero when converted to float.

196 Library §7.12.3.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Returns

The fpclassify macro returns the value of the number classification macro appropriate to the value
of its argument.

7.12.3.2 The iscanonical macro
Synopsis

#include <math.h>
int iscanonical(real-floating x);

Description

The iscanonical macro determines whether its argument value is canonical (5.2.4.2.2). First, an
argument represented in a format wider than its semantic type is converted to its semantic type.
Then, determination is based on the type of the argument.

Returns
The iscanonical macro returns a nonzero value if and only if its argument is canonical.

7.12.3.3 The isfinite macro
Synopsis

#include <math.h>
int isfinite(real-floating x);

Description

The isfinite macro determines whether its argument has a finite value (zero, subnormal, or
normal, and not infinite or NaN). First, an argument represented in a format wider than its semantic
type is converted to its semantic type. Then determination is based on the type of the argument.

Returns
The isfinite macro returns a nonzero value if and only if its argument has a finite value.

7.12.3.4 The isinf macro
Synopsis

#include <math.h>
int isinf(real-floating x);

Description

The isinf macro determines whether its argument value is an infinity (positive or negative). First,
an argument represented in a format wider than its semantic type is converted to its semantic type.
Then determination is based on the type of the argument.

Returns
The isinf macro returns a nonzero value if and only if its argument has an infinite value.

7.12.3.5 The isnan macro
Synopsis

#include <math.h>
int isnan(real-floating Xx);

Description

The isnan macro determines whether its argument value is a NaN. First, an argument represented
in a format wider than its semantic type is converted to its semantic type. Then determination is

§7.12.3.5 Library 197



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

based on the type of the argument.?*)

Returns
The isnan macro returns a nonzero value if and only if its argument has a NaN value.

7.12.3.6 The isnormal macro
Synopsis

#include <math.h>
int isnormal(real-floating x);

Description

The isnormal macro determines whether its argument value is normal (neither zero, subnormal,
infinite, nor NaN). First, an argument represented in a format wider than its semantic type is
converted to its semantic type. Then determination is based on the type of the argument.

Returns
The isnormal macro returns a nonzero value if and only if its argument has a normal value.

7.12.3.7 The signbit macro
Synopsis

#include <math.h>
int signbit(real-floating x);

Description

The signbit macro determines whether the sign of its argument value is negative.?>”

Returns
The signbit macro returns a nonzero value if and only if the sign of its argument value is negative.

7.12.3.8 The issignaling macro
Synopsis

#include <math.h>
int issignaling(real-floating x);

Description
The issignaling macro determines whether its argument value is a signaling NaN.

Returns

The issignaling macro returns a nonzero value if and only if its argument is a signaling NaN.?>"

7.12.3.9 The issubnormal macro
Synopsis

#include <math.h>
int issubnormal(real-floating x);

29 For the isnan macro, the type for determination does not matter unless the implementation supports NaNs in the
evaluation type but not in the semantic type.

250)The signbit macro reports the sign of all values, including infinities, zeros, and NaNs. If zero is unsigned, it is treated
as positive.

BDE3 specifies that issignaling (and all the other classification macros), raise no floating-point exception if the argument
is a variable, or any other expression whose value is represented in the format of its semantic type, even if the value is a
signaling NaN.

198 Library §7.12.3.9



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Description

The issubnormal macro determines whether its argument value is subnormal. First, an argument
represented in a format wider than its semantic type is converted to its semantic type. Then
determination is based on the type of the argument.

Returns
The issubnormal macro returns a nonzero value if and only if its argument is subnormal.

7.12.3.10 The iszero macro
Synopsis

#include <math.h>
int iszero(real-floating Xx);

Description

The iszero macro determines whether its argument value is (positive, negative, or unsigned) zero.
First, an argument represented in a format wider than its semantic type is converted to its semantic
type. Then, determination is based on the type of the argument.

Returns

The iszero macro returns a nonzero value if and only if its argument is zero.

7.12.4 Trigonometric functions
7.12.4.1 The acos functions
Synopsis

#include <math.h>

double acos(double x);

float acosf(float x);

long double acosl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 acosd32(_Decimal32 x);
_Decimal64 acosd64(_Decimal64 x);
_Decimall28 acosd128(_Decimall28 x);
#endif

Description

The acos functions compute the principal value of the arc cosine of x. A domain error occurs for
arguments not in the interval [—1, +1].

Returns
The acos functions return arccos x in the interval [0, 7] radians.

§7.124.1 Library 199



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

7.12.4.2 The asin functions
Synopsis

#include <math.h>

double asin(double x);

float asinf(float x);

long double asinl(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 asind32(_Decimal32 x);
_Decimal64 asind64(_Decimal64 x);
_Decimall28 asind128(_Decimall28 x);
#endif

Description
The asin functions compute the principal value of the arc sine of x. A domain error occurs for
arguments not in the interval [—1, +1]. A range error occurs if nonzero x is too close to zero.

Returns
The asin functions return arcsin x in the interval [-7, +7] radians.

7.12.4.3 The atan functions
Synopsis

#include <math.h>

double atan(double x);

float atanf(float x);

long double atanl(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 atand32(_Decimal32 x);
_Decimal64 atand64(_Decimal64 x);
_Decimall28 atand128(_Decimall28 x);
#endif

Description
The atan functions compute the principal value of the arc tangent of x. A range error occurs if
nonzero X is too close to zero.

Returns
The atan functions return arctan x in the interval [~ %, 45| radians.

7.12.4.4 The atan2 functions
Synopsis

#include <math.h>

double atan2(double y, double x);

float atan2f(float y, float x);

long double atan2l(long double y, long double x);
#ifdef _STDC_IEC_60559_DFP__

_Decimal32 atan2d32(_Decimal32 y, _Decimal32 x);
_Decimal6é4 atan2d64(_Decimal64 y, _Decimal64 x);
_Decimall28 atan2d128(_Decimall28 y, _Decimall28 x);
#endif

Description

The atan2 functions compute the value of the arc tangent of y/x, using the signs of both arguments
to determine the quadrant of the return value. A domain error may occur if both arguments are zero.
A range error occurs if x is positive and nonzero ¥ is too close to zero.

200 Library §7.12.4.4



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Returns
The atan2 functions return arctan y/x in the interval [—7, 47| radians.

7.12.4.5 The cos functions
Synopsis

#include <math.h>

double cos(double Xx);

float cosf(float x);

long double cosl(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 cosd32(_Decimal32 x);
_Decimal64 cosd64(_Decimal64 x);
_Decimall28 cosdl28(_Decimall28 x);
#endif

Description
The cos functions compute the cosine of x (measured in radians).

Returns
The cos functions return cos X.

7.12.4.6 The sin functions
Synopsis

#include <math.h>

double sin(double x);

float sinf(float x);

long double sinl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 sind32(_Decimal32 x);
_Decimal64 sind64(_Decimalé4 x);
_Decimall28 sind128(_Decimall28 x);
#endif

Description

The sin functions compute the sine of x (measured in radians). A range error occurs if nonzero x is
too close to zero.

Returns
The sin functions return sin x.

7.12.4.7 The tan functions
Synopsis

#include <math.h>

double tan(double x);

float tanf(float x);

long double tanl(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 tand32(_Decimal32 x);
_Decimal64 tand64(_Decimal64 x);
_Decimall28 tand128(_Decimall28 x);
#endif

Description

The tan functions return the tangent of x (measured in radians). A range error occurs if nonzero x is
too close to zero.

§7.124.7 Library 201



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Returns
The tan functions return tan X.

7.12.4.8 The acospi functions
Synopsis

#include <math.h>

double acospi(double x);

float acospif(float x);

long double acospil(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 acospid32(_Decimal32 x);
_Decimal64 acospid64(_Decimal64 x);
_Decimall28 acospidl128(_Decimall28 x);
#endif

Description

The acospi functions compute the principal value of the arc cosine of x, divided by 7, thus measur-
ing the angle in half-revolutions. A domain error occurs for arguments not in the interval [—1, +1].

Returns
The acospi functions return arccos(x)/m in the interval [0, 1].

7.12.4.9 The asinpi functions
Synopsis

#include <math.h>

double asinpi(double x);

float asinpif(float x);

long double asinpil(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 asinpid32(_Decimal32 x);
_Decimal64 asinpid64(_Decimal64 x);
_Decimall28 asinpid128(_Decimall28 x);
#endif

Description

The asinpi functions compute the principal value of the arc sine of x, divided by 7, thus measuring
the angle in half-revolutions. A domain error occurs for arguments not in the interval [-1,+1]. A
range error occurs if nonzero x is too close to zero.

Returns
The asinpi functions return arcsin(x)/ in the interval [—1, +1].

7.12.4.10 The atanpi functions
Synopsis

#include <math.h>

double atanpi(double x);

float atanpif(float x);

long double atanpil(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 atanpid32(_Decimal32 x);
_Decimal6é4 atanpid64(_Decimal64 x);
_Decimall28 atanpidl128(_Decimall28 x);
#endif

202 Library §7.12.4.10



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Description

The atanpi functions compute the principal value of the arc tangent of x, divided by =, thus
measuring the angle in half-revolutions. A range error occurs if nonzero x is too close to zero.
Returns

The atanpi functions return arctan(x) /= in the interval [—, +3].

7.12.4.11 The atan2pi functions
Synopsis

#include <math.h>

double atan2pi(double y, double x);

float atan2pif(float y, float x);

long double atan2pil(long double y, long double x);
#ifdef __STDC_IEC_60559_DFP__

_Decimal32 atan2pid32(_Decimal32 y, _Decimal32 x);
_Decimal64 atan2pid64(_Decimalé4 y, _Decimal64 x);
_Decimall28 atan2pidl28(_Decimall28 y, _Decimall28 x);
#endif

Description

The atan2pi functions compute the angle, measured in half-revolutions, subtended at the origin by
the point (x, y) and the positive x-axis. Thus, the atan2pi functions compute arctan(Z)/x, in the
range [—1, +1]. A domain error may occur if both arguments are zero. A range error occurs if x is
positive and nonzero £ is too close to zero.

Returns
The atan2pi functions return the computed angle, in the interval [—1, +1].

7.12.4.12 The cospi functions
Synopsis

#include <math.h>

double cospi(double x);

float cospif(float x);

long double cospil(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 cospid32(_Decimal32 x);
_Decimal64 cospid64(_Decimal64 x);
_Decimall28 cospidl28(_Decimall28 x);
#endif

Description

The cospi functions compute the cosine of = x x, thus regarding x as a measurement in half-
revolutions.

Returns
The cospi functions return cos(m x x).

7.12.4.13 The sinpi functions
Synopsis

#include <math.h>

double sinpi(double x);

float sinpif(float x);

long double sinpil(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 sinpid32(_Decimal32 x);
_Decimal6é4 sinpid64(_Decimal64 x);

§7.12.4.13 Library 203




ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

\ _Decimall28 sinpid128(_Decimall28 x);
#endif

Description

The sinpi functions compute the sine of 7 x x, thus regarding x as a measurement in half-revolutions.
A range error occurs if nonzero X is too close to zero.

Returns

The sinpi functions return sin(7 x X).

7.12.4.14 The tanpi functions
Synopsis

#include <math.h>

double tanpi(double x);

float tanpif(float x);

long double tanpil(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 tanpid32(_Decimal32 x);
_Decimal64 tanpid64(_Decimal64 x);
_Decimall28 tanpidl128(_Decimall28 x);
#endif

Description

The tanpi functions compute the tagent of = x x, thus regarding x as a measurement in half-
revolutions. A range error occurs if nonzero x is too close to zero.

Returns

The tanpi functions return tan(m x X).

7.12.5 Hyperbolic functions
7.12.5.1 The acosh functions
Synopsis

#include <math.h>

double acosh(double x);

float acoshf(float x);

long double acoshl(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 acoshd32(_Decimal32 x);
_Decimal64 acoshd64(_Decimal64 x);
_Decimall28 acoshd128(_Decimall28 x);
#endif

Description

The acosh functions compute the (nonnegative) arc hyperbolic cosine of x. A domain error occurs
for arguments less than 1.

Returns
The acosh functions return arcosh x in the interval [0, 4o0].

7.12.5.2 The asinh functions
Synopsis

i #include <math.h>

\ double asinh(double x);

\ float asinhf(float x):

\ long double asinhl(long double Xx);

204 Library §7.12.5.2



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

‘ #ifdef _STDC_IEC_60559_DFP__

\ _Decimal32 asinhd32(_Decimal32 x);

\ _Decimal64 asinhd64(_Decimal64 Xx);

\ _Decimall28 asinhd128(_Decimall28 x):
\ #endif

L

Description

The asinh functions compute the arc hyperbolic sine of x. A range error occurs if nonzero x is too
close to zero.

Returns
The asinh functions return arsinh x.

7.12.5.3 The atanh functions
Synopsis

#include <math.h>

double atanh(double x);

float atanhf(float x);

long double atanhl(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 tanhd32(_Decimal32 x);
_Decimal64 tanhd64(_Decimal64 x);
_Decimall28 tanhd128(_Decimall28 x);
#endif

Description

The atanh functions compute the arc hyperbolic tangent of x. A domain error occurs for arguments
not in the interval [—1, +1]. A pole error may occur if the argument equals-1 or+1. A range error
occurs if nonzero x is too close to zero.

Returns
The atanh functions return artanh x.

7.12.5.4 The cosh functions
Synopsis

#include <math.h>

double cosh(double x);

float coshf(float x);

long double coshl(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 coshd32(_Decimal32 x);
_Decimal64 coshd64(_Decimal64 x);
_Decimall28 coshd128(_Decimall28 x);
#endif

Description

The cosh functions compute the hyperbolic cosine of x. A range error occurs if the magnitude of
finite x is too large.

Returns
The cosh functions return cosh x.

7.12.5.5 The sinh functions
Synopsis

\ #include <math.h>

§7.12.5.5 Library 205



ISO/IEC 9899:202x (E) working draft — October 1, 2020

double sinh(double x);

float sinhf(float x);

long double sinhl(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 sinhd32(_Decimal32 x);
_Decimal64 sinhd64(_Decimal64 x);
_Decimall28 sinhd128(_Decimall28 x);
#endif

N2573

Description

The sinh functions compute the hyperbolic sine of x. A range error occurs if the magnitude of finite

x is too large or if nonzero x is too close to zero.

Returns
The sinh functions return sinh x.

7.12.5.6 The tanh functions
Synopsis

#include <math.h>

double tanh(double x);

float tanhf(float x);

long double tanhl(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 tanhd32(_Decimal32 x);
_Decimal64 tanhd64(_Decimal64 x);
_Decimall28 tanhd128(_Decimall28 x);
#endif

Description

The tanh functions compute the hyperbolic tangent of x. A range error occurs if nonzero x is too

close to zero.

Returns
The tanh functions return tanh x.

7.12.6 Exponential and logarithmic functions
7.12.6.1 The exp functions
Synopsis

#include <math.h>

double exp(double x);

float expf(float x);

long double expl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 expd32(_Decimal32 x);
_Decimal64 expd64(_Decimalé6d x);
_Decimall28 expdl28(_Decimall28 x);
#endif

Description

The exp functions compute the base-e exponential of x. A range error occurs if the magnitude of

finite x is too large.

Returns
The exp functions return e*.

7.12.6.2 The expl0 functions

206 Library

§7.12.6.2




N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Synopsis

#include <math.h>

double explO(double x);

float explof(float x);

long double explOl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 expl0d32(_Decimal32 x);
_Decimal64 expl0d64(_Decimal6d x);
_Decimall28 expl0d128(_Decimall28 x);
#endif

Description

The exp10 functions compute the base-10 exponential of x. A range error occurs if the magnitude of
finite x is too large.

Returns
The expl0 functions return 10*.

7.12.6.3 The explOml functions
Synopsis

#include <math.h>

double explOml(double x);

float explOmlf(float x);

long double explOmll(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 expl0Omld32(_Decimal32 x);
_Decimal64 explOmld64(_Decimalé4 x);
_Decimall28 explOmld128(_Decimall28 x);
#endif

Description

The expl0ml functions compute the base-10 exponential of the argument, minus 1. A range error
occurs if positive finite x is too large or if nonzero x is too close to zero.

Returns
The explOml functions return 10* — 1.

7.12.6.4 The exp2 functions
Synopsis

#include <math.h>

double exp2(double x);

float exp2f(float x);

long double exp2l(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 exp2d32(_Decimal32 x);
_Decimal6é4 exp2d64(_Decimal64 x);
_Decimall28 exp2d128(_Decimall28 x);
#endif

Description

The exp2 functions compute the base-2 exponential of x. A range error occurs if the magnitude of
finite x is too large.

Returns
The exp2 functions return 2.

§7.12.6.4 Library 207



ISO/IEC 9899:202x (E) working draft — October 1, 2020

7.12.6.5 The exp2ml functions
Synopsis

N2573

#include <math.h>

double exp2ml(double Xx);

float exp2mlf(float x);

long double exp2mll(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 exp2mld32(_Decimal32 x);
_Decimal6é4 exp2mld64(_Decimal64 x);
_Decimall28 exp2mld128(_Decimall28 x);
#endif

Description

The exp2ml functions compute the base-2 exponential of the argument, minus 1. A range error

occurs if positive finite x is too large or if nonzero x is too close to zero.

Returns
The exp2ml functions return 2* — 1.

7.12.6.6 The expml functions
Synopsis

#include <math.h>

double expml(double Xx);

float expmlf(float x);

long double expmll(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 expmld32(_Decimal32 x);
_Decimal64 expmld64(_Decimal64 x);
_Decimall28 expmld128(_Decimall28 x);
#endif

Description

The expml functions compute the base-e exponential of the argument, minus 1. A range error occurs

if positive finite x is too large or if nonzero x is close to zero. 2

Returns
The expml functions return e* — 1.

7.12.6.7 The frexp functions
Synopsis

#include <math.h>

double frexp(double value, int *p);

float frexpf(float value, int xp);

long double frexpl(long double value, int *p);
#ifdef _STDC_IEC_60559_DFP__

_Decimal32 frexpd32(_Decimal32 value, int xp);
_Decimal64 frexpd64(_Decimal64 value, int xp);
_Decimall28 frexpdl28(_Decimall28 value, int x*p);
#endif

Description

The frexp functions break a floating-point number into a normalized fraction and an integer
exponent. They store the integer in the int object pointed to by p. If the type of the function is a

22)For small magnitude x, expml(x) is expected to be more accurate than exp (x) -1.

208 Library

§7.12.6.7




N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

standard floating type, the exponent is an integral power of 2. If the type of the function is a decimal
floating type, the exponent is an integral power of 10.

Returns

If value is not a floating-point number or if the integral power is outside the range of int, the results
are unspecified. Otherwise, the frexp functions return the value x, such that x has a magnitude
in the interval [3, 1) or zero, and value equals x x 2'P, when the type of the function is a standard
floating type; or x has a magnitude in the interval [1/10, 1) or zero, and value equals x x 10*P, when
the type of the function is a decimal floating type. If value is zero, both parts of the result are zero.

7.12.6.8 The ilogb functions
Synopsis

#include <math.h>

int ilogb(double x);

int ilogbf(float x);

int ilogbl(long double x);
#ifdef _STDC_IEC_60559_DFP__
int iloghd32(_Decimal32 x);
int iloghd64(_Decimal64 x);
int iloghd128(_Decimall28 x);
#endif

Description

The ilogb functions extract the exponent of x as a signed int value. If x is zero they compute the
value FP_ILOGBO; if x is infinite they compute the value INT_MAX; if x is a NaN they compute the
value FP_ILOGBNAN; otherwise, they are equivalent to calling the corresponding logb function and
converting the returned value to type int. A domain error or range error may occur if x is zero,
infinite, or NaN. If the correct value is outside the range of the return type, the numeric result is
unspecified and a domain error or range error may occur.

Returns
The ilogb functions return the exponent of x as a signed int value.
Forward references: the logb functions (7.12.6.17).

7.12.6.9 The ldexp functions
Synopsis

#include <math.h>

double ldexp(double x, int p);

float ldexpf(float x, int p);

long double ldexpl(long double x, int p);
#ifdef __STDC_IEC_60559_DFP__

_Decimal32 ldexpd32(_Decimal32 x, int p);
_Decimal64 ldexpd64(_Decimal64 x, int p);
_Decimall28 ldexpdl128(_Decimall28 x, int p);
#endif

Description

The ldexp functions multiply a floating-point number by an integral power of 2 when the type of
the function is a standard floating type, or by an integral power of 10 when the type of the function
is a decimal floating type. A range error occurs for some finite x, depending on p.

Returns

The ldexp functions return x x 2° when the type of the function is a standard floating type, or return
x % 10P when the type of the function is a decimal floating type.

7.12.6.10 The 1logb functions

§7.12.6.10 Library 209



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Synopsis

#include <math.h>

long int 1logb(double x);

long int 1logbf(float x);

long int 1logbl(long double x);
#ifdef _STDC_IEC_60559_DFP__
long int 1loghd32(_Decimal32 x);
long int 1loghd64(_Decimal64 x);
long int 1logbhd128(_Decimall28 x);
#endif

Description

The 1logb functions extract the exponent of x as a signed long int value. If x is zero they compute
the value FP_LLOGB®; if x is infinite they compute the value LONG_MAX; if x is a NaN they compute
the value FP_LLOGBNAN; otherwise, they are equivalent to calling the corresponding logb function
and converting the returned value to type long int. A domain error or range error may occur if x is
zero, infinite, or NaN. If the correct value is outside the range of the return type, the numeric result
is unspecified.

Returns
The 1logb functions return the exponent of x as a signed long int value.

Forward references: the logb functions (7.12.6.17).

7.12.6.11 The log functions
Synopsis

#include <math.h>

double log(double x);

float logf(float x);

long double logl(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 logd32(_Decimal32 x);
_Decimal6é4 logd64(_Decimal6d x);
_Decimall28 logdl28(_Decimall28 x);
#endif

Description
The log functions compute the base-¢ (natural) logarithm of x. A domain error occurs if the
argument is negative. A pole error may occur if the argument is zero.

Returns
The log functions return log, x.

7.12.6.12 The logl0 functions
Synopsis

#include <math.h>

double logl0(double Xx);

float loglof(float x);

long double 10gl01l(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 1log10d32(_Decimal32 x);
_Decimal6é4 1ogl0d64(_Decimal64d x);
_Decimall28 1logl10d128(_Decimall28 x);
#endif

210 Library §7.12.6.12



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Description

The 10g10 functions compute the base-10 (common) logarithm of x. A domain error occurs if the
argument is negative. A pole error may occur if the argument is zero.

Returns
The 10910 functions return log; X.

7.12.6.13 The logl0p1l functions
Synopsis

#include <math.h>

double loglOpl(double x);

float logloplf(float x);

long double loglOpll(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 1logl10pld32(_Decimal32 x);
_Decimal64 1ogl0pld64(_Decimal6sd x);
_Decimall28 1logl0pld128(_Decimall28 x);
#endif

Description

The logl0pl functions compute the base-10 logarithm of 1 plus the argument. A domain error
occurs if the argument is less than —1. A pole error may occur if the argument equals —1. A range
error occurs if nonzero X is too close to zero.

Returns
The 1og10p1 functions return log; (1 + x).

7.12.6.14 The loglp and logpl functions
Synopsis

#include <math.h>

double loglp(double x);

float loglpf(float x);

long double loglpl(long double x);
double logpl(double x);

float logplf(float x);

long double logpll(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 loglpd32(_Decimal32 x);
_Decimal64 loglpd64(_Decimal6d x);
_Decimall28 loglpdl128(_Decimall28 x);
_Decimal32 logpld32(_Decimal32 x);
_Decimal64 logpld64(_Decimal6d x);
_Decimall28 logpld128(_Decimall28 x);
#endif

Description

The loglp functions are equivalent to the logpl functions.?®® These functions compute the base-e
(natural) logarithm of 1 plus the argument.”>” A domain error occurs if the A domain error occurs
if the argument is less than —1. A pole error may occur if the argument equals —1. A range error
occurs if nonzero x is too close to zero.

Returns
The loglp and logpl functions return log, (1 + x).

253)The logpl functions are preferred for name consistency with the Log1l0pl and log2pl functions.
29 For small magnitude x, Logpl(x) is expected to be more accurate than log(1 + x).

§7.12.6.14 Library 211



N

ISO/IEC 9899:202x (E) working draft — October 1, 2020

7.12.6.15 The log2 functions
Synopsis

N2573

#include <math.h>

double log2(double x);

float log2f(float x);

long double log21l(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 log2d32(_Decimal32 x);
_Decimal64 log2d64(_Decimalé4 x);
_Decimall28 log2d128(_Decimall28 x);
#endif

Description

The log2 functions compute the base-2 logarithm of x. A domain error occurs if the argument is less

than zero. A pole error may occur if the argument is zero.

Returns
The log2 functions return log, x.

7.12.6.16 The log2pl functions
Synopsis

#include <math.h>

double log2pl(double Xx);

float log2plf(float x);

long double log2pll(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 log2pld32(_Decimal32 x);
_Decimal64 log2pld64(_Decimal64d x);
_Decimall28 log2pld128(_Decimall28 x);
#endif

Description

The log2p1 functions compute the base-2 logarithm of 1 plus the argument. A domain error occurs
if the argument is less than —1. A pole error may occur if the argument equals —1. A range error

occurs if nonzero X is too close to zero.

Returns
The log2p1 functions return log, (1+x).

7.12.6.17 The logb functions
Synopsis

#include <math.h>

double logb(double x);

float logbf(float x);

long double logbl(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 logbd32(_Decimal32 x);
_Decimal64 logbd64(_Decimal64 x);
_Decimall28 loghd128(_Decimall28 x);
#endif

Description

The logb functions extract the exponent of x, as a signed integer value in floating-point format. If x

is subnormal it is treated as though it were normalized; thus, for positive finite x,

1< x x b~toghx)

212 Library

§7.12.6.17




N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

where b = FLT_RADIX if the type of the function is a standard floating type, or b = 10 if the type of
the function is a decimal floating type. A domain error or pole error may occur if the argument is
Zero.

Returns
The logb functions return the signed exponent of x.

7.12.6.18 The modf functions
Synopsis

#include <math.h>

double modf (double value, double *iptr);

float modff(float value, float xiptr);

long double modfl(long double value, long double xiptr);
#ifdef __STDC_IEC_60559_DFP__

_Decimal32 modfd32(_Decimal32 x, _Decimal32 xiptr);
_Decimal64 modfd64(_Decimalé64 x, _Decimal64 xiptr);
_Decimall28 modfd128(_Decimall28 x, _Decimall28 xiptr);
#endif

Description

The modf functions break the argument value into integral and fractional parts, each of which has
the same type and sign as the argument. They store the integral part (in floating-point format) in the
object pointed to by iptr.

Returns

The modf functions return the signed fractional part of value.

7.12.6.19 The scalbn and scalbln functions
Synopsis

#include <math.h>

double scalbn(double x, int n);

float scalbnf(float x, int n);

long double scalbnl(long double x, int n);
double scalbln(double x, long int n);

float scalblnf(float x, long int n);

long double scalblnl(long double x, long int n);
#ifdef _STDC_IEC_60559_DFP__

_Decimal32 scalbnd32(_Decimal32 x, int n);
_Decimal64 scalbnd64(_Decimal64 x, int n);
_Decimall28 scalbnd128(_Decimall28 x, int n);
—Decimal32 scalblnd32(_Decimal32 x, long int n);
—Decimal64 scalblnd64(_Decimal64 x, long int n);
_Decimall28 scalblnd128(_Decimall28 x, long int n);
#endif

Description

The scalbn and scalbln functions compute x x b", where b = FLT_RADIX if the type of the function
is a standard floating type, or b = 10 if the type of the function is a decimal floating type. A range
error occurs for some finite x, depending on n.

Returns
The scalbn and scalbln functions return x x b".

7.12.7 Power and absolute-value functions
7.12.7.1 The cbrt functions
Synopsis

§7.12.7.1 Library 213



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

#include <math.h>

double cbhrt(double x);

float cbrtf(float x);

long double chrtl(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 cbrtd32(_Decimal32 x);
_Decimal64 cbrtd64(_Decimal64 x);
_Decimall28 chrtd128(_Decimall28 x);
#endif

Description
The cbrt functions compute the real cube root of x.

Returns

The cbrt functions return x3.

7.12.7.2 The compoundn functions
Synopsis

#include <stdint.h>

#include <math.h>

double compoundn(double x, intmax_t n);

float compoundnf(float x, intmax_t n);

long double compoundnl(long double x, intmax_t n);
#ifdef _STDC_IEC_60559_DFP__

_Decimal32 compoundnd32(_Decimal32 x, intmax_t n);
_Decimal64 compoundnd64(_Decimal64 x, intmax_t n);
_Decimall28 compoundnd128(_Decimall28 x, intmax_t n);
#endif

Description

The compoundn functions compute 1 plus X, raised to the power n. A domain error occurs if x < —1.
A range error occurs if positive finite x is too large or if x is too near but not equal to —1, depending
on n. A pole error may occur if x equals —1 and n < 0.

Returns
The compoundn functions return (1 + x)".

7.12.7.3 The fabs functions
Synopsis

#include <math.h>

double fabs(double x);

float fabsf(float x);

long double fabsl(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 fabsd32(_Decimal32 x);
_Decimal64 fabsd64(_Decimal64 x);
_Decimall28 fabsd128(_Decimall28 x);
#endif

Description
The fabs functions compute the absolute value of a floating-point number x.

Returns
The fabs functions return |x|.

7.12.7.4 The hypot functions

214 Library §7.12.7.4



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Synopsis

#include <math.h>

double hypot(double x, double y);

float hypotf(float x, float y);

long double hypotl(long double x, long double y);
#ifdef _STDC_IEC_60559_DFP__

_Decimal32 hypotd32(_Decimal32 x, _Decimal32 y);
_Decimal64 hypotd64(_Decimal64 x, _Decimal64 y);
—Decimall28 hypotd128(_Decimall28 x, _Decimall28 y);
#endif

Description

The hypot functions compute the square root of the sum of the squares of x and y, without undue
overflow or underflow. A range error occurs for some finite arguments.

Returns
The hypot functions return /x2 + y2.

7.12.7.5 The pow functions
Synopsis

#include <math.h>

double pow(double x, double y);

float powf(float x, float y);

long double powl(long double x, long double y);
#ifdef _STDC_IEC_60559_DFP__

_Decimal32 powd32(_Decimal32 x, _Decimal32 y);
—Decimal64 powd64(_Decimal64 x, _Decimalé4 y);
—Decimall28 powd128(_Decimall28 x, _Decimall28 y);
#endif

Description

The pow functions compute x raised to the power y. A domain error occurs if x is finite and negative
and y is finite and not an integer value. A domain error may occur if x is zero and y is zero. A range
error occurs if the magnitude of nonzero finite x is too large or too near zero, depending on y. A
domain error or pole error may occur if x is zero and y is less than zero.

Returns
The pow functions return xY.

7.12.7.6 The pown functions
Synopsis

#include <stdint.h>

#include <math.h>

double pown(double x, intmax_t n);

float pownf(float x, intmax_t n);

long double pownl(long double x, intmax_t n);
#ifdef __STDC_IEC_60559_DFP__

_Decimal32 pownd32(_Decimal32 x, intmax_t n);
_Decimal6é4 pownd64(_Decimal64 x, intmax_t n);
—Decimall28 pownd128(_Decimall28 x, intmax_t n);
#endif

§7.12.7.6 Library 215



ISO/IEC 9899:202x (E) working draft — October 1, 2020

Description

N2573

The pown functions compute x raised to the n'' power. A pole error may occur if x equals 0 and n < 0.
A range error occurs if the magnitude of nonzero finite x is too large or too near zero, depending on

n.

Returns
The pown functions return x".

7.12.7.7 The powr functions
Synopsis

#include <math.h>

double powr(double y, double x);

float powrf(float y, float x);

long double powrl(long double y, long double x);
#ifdef _STDC_IEC_60559_DFP__

_Decimal32 powrd32(_Decimal32 y, _Decimal32 x);
_Decimal64 powrd64(_Decimal64 y, _Decimal64 x);
_Decimall28 powrd128(_Decimall28 y, _Decimall28 x);
#endif

Description

The powr functions compute x raised to the power y as €?1°8:*.29 A domain error occurs if x < 0
or if x and y are both zero. A range error occurs if positive nonzero finite x is too large or too near

zero, depending on y. A pole error may occur if x equals zero and finite y < 0.

Returns

The powr functions return e 98¢ X,

7.12.7.8 The rootn functions
Synopsis

#include <stdint.h>

#include <math.h>

double rootn(double x, intmax_t n);

float rootnf(float x, intmax_t n);

long double rootnl(long double x, intmax_t n);
#ifdef _STDC_IEC_60559_DFP__

_Decimal32 rootnd32(_Decimal32 x, intmax_t n);
_Decimal64 rootnd64(_Decimal64 x, intmax_t n);
_Decimall28 rootnd128(_Decimall28 x, intmax_t n);
#endif

Description

The rootn functions compute the principal n' root of x. A domain error occurs if nis 0 or if x < 0
and n is even. A range error occurs if n is —1 and the magnitude of nonzero finite x is too large or

too near zero. A pole error may occur if x equals zero and n < 0.

Returns
N 1
The rootn functions return xn.

7.12.7.9 The rsqrt functions
Synopsis

\ #include <math.h>
\ double rsqrt(double x);

25)Restricting the domain to that of the formula e¥ 8¢ X is intended to better meet expectations for a continuous power

function and to allow implementations with fewer tests for special cases.

216 Library

§7.12.7.9




N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

float rsqrtf(float x);

long double rsqrtl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 rsqrtd32(_Decimal32 x);
_Decimalé4 rsqrtd64(_Decimal64 x);
_Decimall28 rsqrtdl128(_Decimall28 x);
#endif

Description

The rsqrt functions compute the reciprocal of the square root of the argument. A domain error
occurs if the argument is less than zero. A pole error may occur if the argument equals zero.

Returns

: 1
The rsqrt functions return 7K

7.12.7.10 The sqrt functions
Synopsis

#include <math.h>

double sqrt(double x);

float sqrtf(float x);

long double sqrtl(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 sqrtd32(_Decimal32 x);
_Decimal64 sqrtd64(_Decimal64d x);
_Decimall28 sqrtd128(_Decimall28 x);
#endif

Description

The sqrt functions compute the nonnegative square root of x. A domain error occurs if the argument
is less than zero.

Returns
The sqrt functions return v/X.

7.12.8 Error and gamma functions
7.12.8.1 The erf functions
Synopsis

#include <math.h>

double erf(double x);

float erff(float x);

long double erfl(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 erfd32(_Decimal32 x);
_Decimal64 erfd64(_Decimal64 x);
_Decimall28 erfdl128(_Decimall28 x);
#endif

Description

The erf functions compute the error function of x. A range error occurs if nonzero x is too close to
zero.

Returns

S

X
The erf functions return erf x = = [ ¢~ dt.
0

§7.12.8.1 Library 217



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

7.12.8.2 The erfc functions
Synopsis

#include <math.h>

double erfc(double x);

float erfcf(float x);

long double erfcl(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 erfcd32(_Decimal32 x);
_Decimal64 erfcd64(_Decimal64 x);
_Decimall28 erfcdl128(_Decimall28 x);
#endif

Description
The erfc functions compute the complementary error function of x. A range error occurs if positive
finite x is too large.

Returns

oo

The erfc functions return erfcx = 1 — erf x = % et dt.

X

7.12.8.3 The lgamma functions
Synopsis

#include <math.h>

double lgamma(double Xx);

float lgammaf(float x);

long double lgammal(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 lgammad32(_Decimal32 x);
_Decimal6é4 lgammad64(_Decimal64 x);
_Decimall28 lgammadl28(_Decimall28 x);
#endif

Description

The 1gamma functions compute the natural logarithm of the absolute value of gamma of x. A range
error occurs if positive finite x is too large. A pole error may occur if x is a negative integer or zero.

Returns
The 1gamma functions return log, |T'(x)].

7.12.8.4 The tgamma functions
Synopsis

#include <math.h>

double tgamma(double x);

float tgammaf(float x);

long double tgammal(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 tgammad32(_Decimal32 x);
_Decimal64 tgammad64(_Decimal64 x);
_Decimall28 tgammadl28(_Decimall28 x);
#endif

Description

The tgamma functions compute the gamma function of x. A domain error or pole error may occur if
x is a negative integer or zero. A range error occurs for some negative finite x, if positive finite x is
too large, or nonzero x is too close to zero.

218 Library §7.12.8.4



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Returns
The tgamma functions return I'(x).

7.12.9 Nearest integer functions

7.12.9.1 The ceil functions
Synopsis

#include <math.h>

double ceil(double x);

float ceilf(float x);

long double ceill(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 ceild32(_Decimal32 x);
_Decimal64 ceild64(_Decimal64 x);
_Decimall28 ceild128(_Decimall28 x);
#endif

Description
The ceil functions compute the smallest integer value not less than x.

Returns
The ceil functions return [x], expressed as a floating-point number.

7.12.9.2 The floor functions
Synopsis

#include <math.h>

double floor(double x);

float floorf(float x);

long double floorl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 floord32(_Decimal32 x);
_Decimal64 floord64(_Decimal64 x);
_Decimall28 floordl128(_Decimall28 x);
#endif

Description
The floor functions compute the largest integer value not greater than x.

Returns
The floor functions return |x], expressed as a floating-point number.

7.12.9.3 The nearbyint functions
Synopsis

#include <math.h>

double nearbyint(double x);

float nearbyintf(float x);

long double nearbyintl(long double x);
#ifdef __STDC_IEC_60559_DFP__

—Decimal32 nearbyintd32(_Decimal32 x);
_Decimal64 nearbyintd64(_Decimal64 x);
—Decimall28 nearbyintd128(_Decimall28 x);
#endif

Description

The nearbyint functions round their argument to an integer value in floating-point format, using
the current rounding direction and without raising the “inexact” floating-point exception.

§7.1293 Library 219



ISO/IEC 9899:202x (E) working draft — October 1, 2020

Returns
The nearbyint functions return the rounded integer value.

7.12.9.4 The rint functions
Synopsis

N2573

#include <math.h>

double rint(double x);

float rintf(float x);

long double rintl(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 rintd32(_Decimal32 x);
_Decimal64 rintd64(_Decimal64 x);
_Decimall28 rintd128(_Decimall28 x);
#endif

Description

The rint functions differ from the nearbyint functions (7.12.9.3) only in that the rint functions
may raise the “inexact” floating-point exception if the result differs in value from the argument.

Returns
The rint functions return the rounded integer value.

7.12.9.5 The lrint and 1lrint functions
Synopsis

#include <math.h>

long int lrint(double x);

long int lrintf(float x);

long int lrintl(long double x);

long long int 1lrint(double x);

long long int 1lrintf(float x);

long long int 1lrintl(long double Xx);
#ifdef _STDC_IEC_60559_DFP__

long int lrintd32(_Decimal32 x);

long int lrintd64(_Decimal64 x);

long int lrintd128(_Decimall28 x);
long long int 1lrintd32(_Decimal32 x);
long long int 1lrintd64(_Decimal64 x);
long long int 1lrintd128(_Decimall28 x);
#endif

Description

The lrint and 1lrint functions round their argument to the nearest integer value, rounding
according to the current rounding direction. If the rounded value is outside the range of the return

type, the numeric result is unspecified and a domain error or range error may occur.

Returns
The lrint and 11lrint functions return the rounded integer value.

7.12.9.6 The round functions
Synopsis

i #include <math.h>

\ double round(double Xx):

\ float roundf(float x);

\ long double roundl(long double x);
‘ #ifdef _STDC_IEC_60559_DFP__

\ _Decimal32 roundd32(_Decimal32 x);

220 Library

§7.12.9.6



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

\ _Decimal64 roundd64(_Decimal64 x):

\ _Decimall28 roundd128(_Decimall28 x);
\ #endif

L

Description

The round functions round their argument to the nearest integer value in floating-point format,
rounding halfway cases away from zero, regardless of the current rounding direction.

Returns
The round functions return the rounded integer value.

7.12.9.7 The lround and 1lround functions
Synopsis

#include <math.h>

long int lround(double x);

long int lroundf(float x);

long int lroundl(long double x);

long long int 1lround(double x);

long long int 1lroundf(float x);

long long int 1lroundl(long double x);
#ifdef _STDC_IEC_60559_DFP__

long int lroundd32(_Decimal32 x);

long int lroundd64(_Decimal64 x);

long int lroundd128(_Decimall28 x);
long long int 1lroundd32(_Decimal32 x);
long long int 1lroundd64(_Decimal64 x);
long long int 1lroundd128(_Decimall28 x);
#endif

Description

The lround and 1lround functions round their argument to the nearest integer value, rounding
halfway cases away from zero, regardless of the current rounding direction. If the rounded value is
outside the range of the return type, the numeric result is unspecified and a domain error or range
error may occur.

Returns
The lround and 1lround functions return the rounded integer value.

7.12.9.8 The roundeven functions
Synopsis

#include <math.h>

double roundeven(double x);

float roundevenf(float x);

long double roundevenl(long double x);
#ifdef _STDC_IEC_60559_DFP__

_Decimal32 roundevend32(_Decimal32 x);
_Decimal64 roundevend64(_Decimalé4 x);
_Decimall28 roundevendl28(_Decimall28 x);
#endif

Description

The roundeven functions round their argument to the nearest integer value in floating-point format,
rounding halfway cases to even (that is, to the nearest value that is an even integer), regardless of
the current rounding direction.

§7.129.8 Library 221



ISO/IEC 9899:202x (E) working draft — October 1, 2020

Returns
The roundeven functions return the rounded integer value.

7.12.9.9 The trunc functions
Synopsis

N2573

#include <math.h>

double trunc(double x);

float truncf(float x);

long double truncl(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 truncd32(_Decimal32 x);
_Decimal64 truncd64(_Decimal64 x);
_Decimall28 truncdl128(_Decimall28 x);
#endif

Description

The trunc functions round their argument to the integer value, in floating format, nearest to but no

larger in magnitude than the argument.

Returns
The trunc functions return the truncated integer value.

7.12.9.10 The fromfp and ufromfp functions
Synopsis

#include <stdint.h>

#include <math.h>

intmax_t fromfp(double x, int round, unsigned int width);

intmax_t fromfpf(float x, int round, unsigned int width);

intmax_t fromfpl(long double x, int round, unsigned int width);
uintmax_t ufromfp(double x, int round, unsigned int width);
uintmax_t ufromfpf(float x, int round, unsigned int width);
uintmax_t ufromfpl(long double x, int round, unsigned int width);
#ifdef _STDC_IEC_60559_DFP__

intmax_t fromfpd32(_Decimal32 x, int round, unsigned int width);
intmax_t fromfpd64(_Decimal64 x, int round, unsigned int width);
intmax_t fromfpdl28(_Decimall28 x, int round, unsigned int width);
uintmax_t ufromfpd32(_Decimal32 x, int round, unsigned int width);
uintmax_t ufromfpd64(_Decimal64 x, int round, unsigned int width);
uintmax_t ufromfpd128(_Decimall28 x, int round, unsigned int width);
#endif

Description

The fromfp and ufromfp functions round x, using the math rounding direction indicated by round,
to a signed or unsigned integer, respectively, of width bits, and return the result value in the integer
type designated by intmax_t or uintmax_t, respectively. If the value of the round argument is not
equal to the value of a math rounding direction macro, the direction of rounding is unspecified. If
the value of width exceeds the width of the function type, the rounding is to the full width of the
function type. The fromfp and ufromfp functions do not raise the “inexact” floating-point exception.
If x is infinite or NaN or rounds to an integral value that is outside the range of any supported integer
type of the specified width, or if width is zero, the functions return an unspecified value and a

domain error occurs.

Returns
The fromfp and ufromfp functions return the rounded integer value.

EXAMPLE Upward rounding of double x to type int, without raising the “inexact” floating-point exception, is achieved by

222 Library

§7.12.9.10




N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

‘ (int)fromfp(x, FP_INT_UPWARD, INT_WIDTH)

7.12.9.11 The fromfpx and ufromfpx functions
Synopsis

#include <stdint.h>

#include <math.h>

intmax_t fromfpx(double x, int round, unsigned int width);

intmax_t fromfpxf(float x, int round, unsigned int width);

intmax_t fromfpxl(long double x, int round, unsigned int width);
uintmax_t ufromfpx(double x, int round, unsigned int width);
uintmax_t ufromfpxf(float x, int round, unsigned int width);
uintmax_t ufromfpxl(long double x, int round, unsigned int width);
#ifdef _STDC_IEC_60559_DFP__

intmax_t fromfpxd32(_Decimal32 x, int round, unsigned int width);
intmax_t fromfpxd64(_Decimal6é4 x, int round, unsigned int width);
intmax_t fromfpxd128(_Decimall28 x, int round, unsigned int width);
uintmax_t ufromfpxd32(_Decimal32 x, int round, unsigned int width);
uintmax_t ufromfpxd64(_Decimal64 x, int round, unsigned int width);
uintmax_t ufromfpxd128(_Decimall28 x, int round, unsigned int width);
#endif

Description

The fromfpx and ufromfpx functions differ from the fromfp and ufromfp functions, respectively,
only in that the fromfpx and ufromfpx functions raise the “inexact” floating-point exception if a
rounded result not exceeding the specified width differs in value from the argument x.

Returns

The fromfpx and ufromfpx functions return the rounded integer value.

NOTE Conversions to integer types that are not required to raise the inexact exception can be done simply by rounding to
integral value in floating type and then converting to the target integer type. For example, the conversion of long double x
to uint64_t, using upward rounding, is done by

\ (uint64_t)ceill(x)

7.12.10 Remainder functions
7.12.10.1 The fmod functions
Synopsis

#include <math.h>

double fmod(double x, double y);

float fmodf(float x, float y);

long double fmodl(long double x, long double y);
#ifdef _STDC_IEC_60559_DFP__

_Decimal32 fmodd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fmodd64(_Decimal64 x, _Decimalé64d y);
_Decimall28 fmodd128(_Decimall28 x, _Decimall28 y);
#endif

Description
The fmod functions compute the floating-point remainder of x/y.

Returns

The fmod functions return the value x — ny, for some integer n such that, if y is nonzero, the result
has the same sign as x and magnitude less than the magnitude of y. If y is zero, whether a domain
error occurs or the fmod functions return zero is implementation-defined.

7.12.10.2 The remainder functions

§7.12.10.2 Library 223




ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Synopsis

#include <math.h>

double remainder(double x, double y);

float remainderf(float x, float y);

long double remainderl(long double x, long double y);
#ifdef _STDC_IEC_60559_DFP__

_Decimal32 remainderd32(_Decimal32 x, _Decimal32 y);
_Decimal6é4 remainderd64(_Decimal6é4 x, _Decimalé4d vy);
_Decimall28 remainderd128(_Decimall28 x, _Decimall28 y);
#endif

Description
The remainder functions compute the remainder x REM y required by IEC 60559. 2°¢)

Returns

The remainder functions return x REM vy. If y is zero, whether a domain error occurs or the functions
return zero is implementation-defined.

7.12.10.3 The remquo functions
Synopsis

#include <math.h>

double remquo(double x, double y, int *quo);

float remquof(float x, float y, int *quo);

long double remquol(long double x, long double y, int *quo);

Description

The remquo functions compute the same remainder as the remainder functions. In the object pointed
to by quo they store a value whose sign is the sign of x/y and whose magnitude is congruent modulo
2" to the magnitude of the integral quotient of x/y, where n is an implementation-defined integer
greater than or equal to 3.

Returns

The remquo functions return x REM y. If y is zero, the value stored in the object pointed to by quo
is unspecified and whether a domain error occurs or the functions return zero is implementation
defined.

NOTE There are no decimal floating-point versions of the remquo functions.

7.12.11 Manipulation functions

7.12.11.1 The copysign functions
Synopsis

#include <math.h>

double copysign(double x, double y);

float copysignf(float x, float y);

long double copysignl(long double x, long double y);
#ifdef _STDC_IEC_60559_DFP__

_Decimal32 copysignd32(_Decimal32 x, _Decimal32 y);
_Decimal64 copysignd64(_Decimalé4 x, _Decimal64 y);
_Decimall28 copysignd128(_Decimall28 x, _Decimall28 y);
#endif

256)“When y # 0, the remainder r = x REM y is defined regardless of the rounding mode by the mathematical relation
r = x — ny, where n is the integer nearest the exact value of % ; whenever |n — %| = %, then n is even. If r = 0, its sign shall

be that of «.” This definition is applicable for all implementations.

224 Library §7.12.11.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Description

The copysign functions produce a value with the magnitude of x and the sign of y. They produce a
NaN (with the sign of y) if x is a NaN. On implementations that represent a signed zero but do not
treat negative zero consistently in arithmetic operations, the copysign functions regard the sign of
zero as positive.

Returns
The copysign functions return a value with the magnitude of x and the sign of y.

7.12.11.2 The nan functions
Synopsis

#include <math.h>

double nan(const char xtagp);

float nanf(const char xtagp);

long double nanl(const char xtagp);
#ifdef _STDC_IEC_60559_DFP__
—Decimal32 nand32(const char xtagp);
_Decimal64 nand64(const char xtagp);
_Decimall28 nand128(const char xtagp);
#endif

Description

The nan, nanf, and nanl functions convert the string pointed to by tagp according to the
following rules. The call nan ( "n-char-sequence" ) is equivalent to strtod ( "NAN (n-char-sequence) ",
(charx*)NULL); the call nan("") is equivalent to strtod("NAN()", (charxx)NULL). If
tagp does not point to an n-char sequence or an empty string, the call is equivalent to
strtod("NAN", (charx*)NULL). Calls to nanf and nanl are equivalent to the corresponding calls
to strtof and strtold.

Returns

The nan functions return a quiet NaN, if available, with content indicated through tagp. If the
implementation does not support quiet NaNs, the functions return zero.

Forward references: the strtod, strtof, and strtold functions (7.22.1.5).

7.12.11.3 The nextafter functions
Synopsis

#include <math.h>

double nextafter(double x, double y);

float nextafterf(float x, float y);

long double nextafterl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__

—Decimal32 nextafterd32(_Decimal32 x, _Decimal32 y);
_Decimal64 nextafterd64(_Decimal64 x, _Decimalé4d y);
_Decimall28 nextafterdl128(_Decimall28 x, _Decimall28 y);
#endif

Description

The nextafter functions determine the next representable value, in the type of the function, after x
in the direction of y, where x and y are first converted to the type of the function.””) The nextafter
functions return y if x equals y. A range error may occur if the magnitude of x is the largest finite
value representable in the type and the result is infinite or not representable in the type.

257)The argument values are converted to the type of the function, even by a macro implementation of the function.

§7.12.11.3 Library 225



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Returns

The nextafter functions return the next representable value in the specified format after x in the
direction of y.

7.12.11.4 The nexttoward functions

Synopsis

#include <math.h>

double nexttoward(double x, long double y);

float nexttowardf(float x, long double y);

long double nexttowardl(long double x, long double y);
#ifdef _STDC_IEC_60559_DFP__

_Decimal32 nexttowardd32(_Decimal32 x, _Decimall28 y);
_Decimal64 nexttowardd64(_Decimal64 x, _Decimall28 y);
_Decimall28 nexttowarddl128(_Decimall28 x, _Decimall28 y);
#endif

Description

The nexttoward functions are equivalent to the nextafter functions except that the second param-
eter has type long double or _Decimall28 and the functions return y converted to the type of the
function if x equals y.2%®

7.12.11.5 The nextup functions
Synopsis

#include <math.h>

double nextup(double Xx);

float nextupf(float x);

long double nextupl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 nextupd32(_Decimal32 x);
_Decimal64 nextupd64(_Decimal64 x);
_Decimall28 nextupdl128(_Decimall28 x);
#endif

Description

The nextup functions determine the next representable value, in the type of the function, greater
than x. If x is the negative number of least magnitude in the type of x, nextup (x) is-0 if the type has
signed zeros and is 0 otherwise. If x is zero, nextup (x) is the positive number of least magnitude in
the type of x. nextup (HUGE_VAL) is HUGE_VAL.

Returns
The nextup functions return the next representable value in the specified type greater than x.

7.12.11.6 The nextdown functions
Synopsis

#include <math.h>

double nextdown(double x);

float nextdownf(float x);

long double nextdownl(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 nextdownd32(_Decimal32 x);
_Decimal64 nextdownd64(_Decimal64d x);
_Decimall28 nextdowndl28(_Decimall28 x);
#endif

28)The result of the nexttoward functions is determined in the type of the function, without loss of range or precision in a
floating second argument.

226 Library §7.12.11.6



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Description

The nextdown functions determine the next representable value, in the type of the function, less than
x. If x is the positive number of least magnitude in the type of x, nextdown (x) is+0 if the type has
signed zeros and is 0 otherwise. If x is zero, nextdown (x) is the negative number of least magnitude
in the type of x. nextdown ( -HUGE_VAL) is-HUGE_VAL .

Returns
The nextdown functions return the next representable value in the specified type less than x.

7.12.11.7 The canonicalize functions
Synopsis

#include <math.h>

int canonicalize(double * cx, const double * Xx);

int canonicalizef(float * cx, const float * x);

int canonicalizel(long double * cx, const long double * x);
#ifdef __STDC_IEC_60559_DFP__

int canonicalized32(_Decimal32 cx, const _Decimal32 * x);
int canonicalized64(_Decimalé64 cx, const _Decimalé4 x x);
int canonicalized128(_Decimall28 cx, const _Decimall28 x* Xx);
#endif

Description

The canonicalize functions attempt to produce a canonical version of the floating-point repre-
sentation in the object pointed to by the argument x, as if to a temporary object of the specified
type, and store the canonical result in the object pointed to by the argument cx.?? If the input xx
is a signaling NaN, the canonicalize functions are intended to store a canonical quiet NaN. If a
canonical result is not produced the object pointed to by cx is unchanged.

Returns

The canonicalize functions return zero if a canonical result is stored in the object pointed to by cx.
Otherwise they return a nonzero value.

712,12 Maximum, minimum, and positive difference functions
7.12.12.1 The fdim functions
Synopsis

#include <math.h>

double fdim(double x, double y);

float fdimf(float x, float y);

long double fdiml(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__

_Decimal32 fdimd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fdimd64(_Decimal64 x, _Decimalé6d y);
_Decimall28 fdimd128(_Decimall28 x, _Decimall28 y);
#endif

Description
The fdim functions determine the positive difference between their arguments:

X—y ifx>y
+0 ifx <y

A range error may occur.

Returns
The fdim functions return the positive difference value.

259 Arguments x and cx may point to the same object.

§7.12.12.1 Library 227



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

7.12.12.2 The fmax functions
Synopsis

#include <math.h>

double fmax(double x, double y);

float fmaxf(float x, float y);

long double fmaxl(long double x, long double y);
#ifdef _STDC_IEC_60559_DFP__

_Decimal32 fmaxd32(_Decimal32 x, _Decimal32 y);
_Decimal6é4 fmaxd64(_Decimalé4 x, _Decimalé4d vy);
_Decimall28 fmaxd128(_Decimall28 x, _Decimall28 y);
#endif

Description

The fmax functions determine the maximum numeric value of their arguments.?*?

Returns
The fmax functions return the maximum numeric value of their arguments.

7.12.12.3 The fmin functions
Synopsis

#include <math.h>

double fmin(double x, double y);

float fminf(float x, float y);

long double fminl(long double x, long double y);
#ifdef _STDC_IEC_60559_DFP__

_Decimal32 fmind32(_Decimal32 x, _Decimal32 y);
_Decimal6é4 fmind64(_Decimalé4 x, _Decimalé4 y);
_Decimall28 fmind128(_Decimall28 x, _Decimall28 y);
#endif

Description

The fmin functions determine the minimum numeric value of their arguments.?*?

Returns
The fmin functions return the minimum numeric value of their arguments.

7.12.12.4 The fmaximum functions
Synopsis

#include <math.h>

double fmaximum(double x, double y);

float fmaximumf(float x, float y);

long double fmaximuml(long double x, long double y);
#ifdef _STDC_IEC_60559_DFP__

_Decimal32 fmaximumd32(_Decimal32 x, _Decimal32 y);
_Decimalé4 fmaximumd64(_Decimal64 x, _Decimalé64d vy);
_Decimall28 fmaximumd1l28(_Decimall28 x, _Decimall28 y);
#endif

Description

The fmaximum functions determine the maximum value of their arguments. For these functions,+0
is considered greater than-0 . These functions differ from the fmaximum_num functions only in their
treatment of NaN arguments (see F.10.9.4, F.10.9.5).

260)Quiet NaN arguments are treated as missing data: if one argument is a quiet NaN and the other numeric, then the fmax
functions choose the numeric value. See F.10.9.2.
261)The fmin functions are analogous to the fmax functions in their treatment of quiet NaNs.

228 Library §7.12.12.4



N2573

Returns

working draft — October 1, 2020

ISO/IEC 9899:202x (E)

The fmaximum functions return the maximum value of their arguments.

7.12.12.5 The fminimum functions
Synopsis

#include <math.h>

double fminimum(double x, double y);
float fminimumf (float x, float y);
long double fminimuml(long double X,
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fminimumd32(_Decimal32 x,
_Decimal64 fminimumd64(_Decimal64 x,
_Decimall28 fminimumd128(_Decimall28
#endif

long double y);

_Decimal32 y);
_Decimalé4 y);
x, —Decimall28 vy);

Description

The fminimum functions determine the minimum value of their arguments. For these functions,
-0 is considered less than+0. These functions differ from the fminimum_num functions only in their

treatment of NaN arguments (see F.10.9.4, £.10.9.5).

Returns

The fminimum functions return the minimum value of their arguments.

7.12.12.6 The fmaximum_mag functions
Synopsis

#include <math.h>

double fmaximum_mag(double x, double y);
float fmaximum_magf (float x, float y);
long double fmaximum_magl(long double X,
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 fmaximum_magd32(_Decimal32 x,
_Decimal6é4 fmaximum_magd64(_Decimalé4d x,
_Decimall28 fmaximum_magd128(_Decimall28
#endif

long double y);

_Decimal32 y);
_Decimal64 y);
x, _Decimall28 y);

Description

The fmaximum_mag functions determine the value of the argument of maximum magnitude:
x if [x| > |y|, y if |y| > |x|, and fmaximum(x, y) otherwise. These functions differ from the
fmaximum_mag_num functions only in their treatment of NaN arguments (see F.10.9.4, F.10.9.5).

Returns

The fmaximum_mag functions return the value of the argument of maximum magnitude.

7.12.12.7 The fminimum_mag functions
Synopsis

#include <math.h>

double fminimum_mag(double x, double y);
float fminimum_magf(float x, float y);
long double fminimum_magl(long double x,
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fminimum_magd32(_Decimal32 x,
_Decimal64 fminimum_magd64(_Decimalé4 x,
—Decimall28 fminimum_magd128(_Decimall28
#endif

long double y);

_Decimal32 y);
_Decimalé4 y);
x, —Decimall28 y);

§7.12.12.7

Library

229




ISO/IEC 9899:202x (E)

Description

working draft — October 1, 2020

N2573

The fminimum_mag functions determine the value of the argument of minimum magnitude:
x if |x] < |y|, y if |y| < |x|, and fminimum(x, y) otherwise. These functions differ from the
fminimum_mag_num functions only in their treatment of NalN arguments (see F.10.9.4, £.10.9.5).

Returns

The fminimum_mag functions return the value of the argument of minimum magnitude.

7.12.12.8 The fmaximum_num functions
Synopsis

#include <math.h>

double fmaximum_num(double x, double y);
float fmaximum_numf(float x, float y);
long double fmaximum_numl(long double x,
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 fmaximum_numd32(_Decimal32 x,
_Decimal64 fmaximum_numd64(_Decimal64 x,
_Decimall28 fmaximum_numdl128(_Decimall28
#endif

long double y);

_Decimal32 y);
_Decimalé4 y);
x, —Decimall28 vy);

Description

The fmaximum_num functions determine the maximum value of their numeric arguments. They
determine the number if one argument is a number and the other is a NaN. These functions differ
from the fmaximum functions only in their treatment of NaN arguments (see F.10.9.4, £10.9.5).

Returns

The fmaximum_num functions return the maximum value of their numeric arguments.

7.12.12.9 The fminimum_num functions
Synopsis

#include <math.h>

double fminimum_num(double x, double y);
float fminimum_numf(float x, float y);
long double fminimum_numl(long double x,
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 fminimum_numd32(_Decimal32 x,
_Decimal64 fminimum_numd64(_Decimal64 x,
_Decimall28 fminimum_numd128(_Decimall28

long double y);

_Decimal32 y);
_Decimalé4 y);
x, —Decimall28 vy);

#endif

Description

The fminimum_num functions determine the minimum value of their numeric arguments. They
determine the number if one argument is a number and the other is a NaN. These functions differ
from the fminimum functions only in their treatment of NaN arguments (see F.10.9.4, F.10.9.5).

Returns
The fminimum_num functions return the minimum value of their numeric arguments.

7.12.12.10 The fmaximum_mag_num functions
Synopsis

i #include <math.h>

\ double fmaximum_mag_num(double x, double y);

\ float fmaximum_mag_numf(float x, float y);

\ long double fmaximum_mag_numl(long double x, long double y);
\ #ifdef __STDC_IEC_60559_DFP__

\ _Decimal32 fmaximum_mag_numd32(_Decimal32 x, _Decimal32 y);

230 §7.12.12.10

Library



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

\ _Decimal64 fmaximum_mag_numd64(_Decimal64 x, _Decimal64 y); \
\ —Decimall28 fmaximum_mag_numdl28(_Decimall28 x, _Decimall28 y); \
\ #endif |
L |

Description

The fmaximum_mag_num functions determine the value of a numeric argument of maximum mag-
nitude. They determine the number if one argument is a number and the other is a NaN. These
functions differ from the fmaximum_mag functions only in their treatment of NaN arguments (see
F10.9.4,F10.9.5).

Returns
The fmaximum_mag_num functions return the value of a numeric argument of maximum magnitude.

7.12.12.11 The fminimum_mag_num functions
Synopsis

#include <math.h>

double fminimum_mag_num(double x, double y);

float fminimum_mag_numf(float x, float y);

long double fminimum_mag_numl(long double x, long double y);
#ifdef _STDC_IEC_60559_DFP__

_Decimal32 fminimum_mag_numd32(_Decimal32 x, _Decimal32 y);
—Decimal64 fminimum_mag_numd64(_Decimal64 x, _Decimal64 vy);
_Decimall28 fminimum_mag_numd128(_Decimall28 x, _Decimall28 y);
#endif

Description

The fminimum_mag_num functions determine the value of a numeric argument of minimum mag-
nitude. They determine the number if one argument is a number and the other is a NaN. These
functions differ from the fminimum_mag functions only in their treatment of NaN arguments (see
F.10.9.4, F.10.9.5).

Returns
The fminimum_mag_num functions return the value of a numeric argument of mimum minagnitude.

NOTE The fmax and fmin functions are similar to the fmaximum_num and fminimum_num functions, though may differ in
which signed zero is returned when the arguments are differently signed zeros and in their treatment of signaling NaNs (see
F10.9.5).

7.12.13 Floating multiply-add
7.12.13.1 The fma functions
Synopsis

#include <math.h>

double fma(double x, double y, double z);

float fmaf(float x, float y, float z);

long double fmal(long double x, long double y, long double z);
#ifdef __STDC_IEC_60559_DFP__

_Decimal32 fmad32(_Decimal32 x, _Decimal32 y, _Decimal32 z);
_Decimal64 fmad64(_Decimal64 x, _Decimalé4 y, _Decimaléd z);
_Decimall28 fmad1l28(_Decimall28 x, _Decimall28 y, _Decimall28 z);
#endif

Description

The fma functions compute (x x y) 4 z, rounded as one ternary operation: they compute the value
(as if) to infinite precision and round once to the result format, according to the current rounding
mode. A range error occurs for some finite arguments.

§7.12.13.1 Library 231




ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Returns
The fma functions return (x x y) + z, rounded as one ternary operation.

7.12.14 Functions that round result to narrower type

The functions in this subclause round their results to a type typically narrower?®? than the parameter
types.

7.12.14.1 Add and round to narrower type

Synopsis

#include <math.h>

float fadd(double x, double y);

float faddl(long double x, long double y);

double daddl(long double x, long double y);

#ifdef _STDC_IEC_60559_DFP__

_Decimal32 d32addd64(_Decimal64 x, _Decimaléd y);
_Decimal32 d32addd128(_Decimall28 x, _Decimall28 y);
_Decimal64 d64addd128(_Decimall28 x, _Decimall28 y);
#endif

Description

These functions compute the sum of x + y, rounded to the type of the function. They compute
the sum (as if) to infinite precision and round once to the result format, according to the current
rounding mode. A range error may occur for finite arguments. A domain error may occur for infinite

arguments.

Returns
These functions return the sum of x + y, rounded to the type of the function.

7.12.14.2 Subtract and round to narrower type
Synopsis

#include <math.h>

float fsub(double x, double y);

float fsubl(long double x, long double y);

double dsubl(long double x, long double y);

#ifdef _STDC_IEC_60559_DFP__

_Decimal32 d32subd64(_Decimal64 x, _Decimalé4d y);
_Decimal32 d32subd128(_Decimall28 x, _Decimall28 y);
_Decimal6é4 d64subdl28(_Decimall28 x, _Decimall28 y);
#endif

Description

These functions compute the difference of x — y, rounded to the type of the function. They compute
the difference (as if) to infinite precision and round once to the result format, according to the current
rounding mode. A range error may occur for finite arguments. A domain error may occur for infinite
arguments.

Returns
These functions return the difference of x — y, rounded to the type of the function.

7.12.14.3 Multiply and round to narrower type
Synopsis

\ #include <math.h>
\ float fmul(double x, double y);

262)In some cases the destination type might not be narrower than the parameter types. For example, double might not be
narrower than long double.

232 Library §7.12.14.3




N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

float fmull(long double x, long double y);

double dmull(long double x, long double y);

#ifdef _STDC_IEC_60559_DFP__

_Decimal32 d32muld64(_Decimal64 x, _Decimalé4 y);
—Decimal32 d32muld128(_Decimall28 x, _Decimall28 y);
_Decimal64 d64muldl28(_Decimall28 x, _Decimall28 y);
#endif

Description

These functions compute the product x x y, rounded to the type of the function. They compute the
product (as if) to infinite precision and round once to the result format, according to the current
rounding mode. A range error may occur for finite arguments. A domain error occurs for one
infinite argument and one zero argument.

Returns
These functions return the product of x x y, rounded to the type of the function.

7.12.14.4 Divide and round to narrower type
Synopsis

#include <math.h>

float fdiv(double x, double y);

float fdivl(long double x, long double y);

double ddivl(long double x, long double y);

#ifdef _STDC_IEC_60559_DFP__

_Decimal32 d32divd64(_Decimal64 x, _Decimalé4 y);
—Decimal32 d32divd128(_Decimall28 x, _Decimall28 y);
_Decimal64 d64divd128(_Decimall28 x, _Decimall28 y);
#endif

Description

These functions compute the quotient x <y, rounded to the type of the function. They compute the
quotient (as if) to infinite precision and round once to the result format, according to the current
rounding mode. A range error may occur for finite arguments. A domain error occurs for either
both arguments infinite or both arguments zero. A pole error occurs for a finite x and a zero y.

Returns
These functions return the quotient x + y, rounded to the type of the function.

7.12.14.5 Floating point multiply-add and round to narrower type
Synopsis

#include <math.h>

float ffma(double x, double y, double z);

float ffmal(long double x, long double y, long double z);

double dfmal(long double x, long double y, long double z);

#ifdef _STDC_IEC_60559_DFP__

_Decimal32 d32fmad64(_Decimalé4 x, _Decimalé4 y, _Decimalé4d z);
_Decimal32 d32fmadl28(_Decimall28 x, _Decimall28 y, _Decimall28 z);
_Decimal64 d64fmadl28(_Decimall28 x, _Decimall28 y, _Decimall28 z);
#endif

Description

These functions compute (x X y) + z, rounded to the type of the function. They compute (x x y) + z
(as if) to infinite precision and round once to the result format, according to the current rounding
mode. A range error may occur for finite arguments. A domain error may occur for an infinite
argument.

§7.12.14.5 Library 233



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Returns
These functions return (x x y) + z, rounded to the type of the function.

7.12.14.6 Square root rounded to narrower type
Synopsis

#include <math.h>

float fsqrt(double x);

float fsqrtl(long double x);

double dsqrtl(long double x);

#ifdef _STDC_IEC_60559_DFP__
_Decimal32 d32sqrtd64(_Decimalé4 x);
_Decimal32 d32sqrtd128(_Decimall28 x);
_Decimal64 d64sqrtdl128(_Decimall28 x);
#endif

Description

These functions compute the square root of x, rounded to the type of the function. They compute the
square root (as if) to infinite precision and round once to the result format, according to the current
rounding mode. A range error may occur for finite positive arguments. A domain error occurs if the
argument is less than zero.

Returns
These functions return the square root of x, rounded to the type of the function.

7.12.15 Quantum and quantum exponent functions
7.12.15.1 The quantizedN functions
Synopsis

#include <math.h>

#ifdef _STDC_IEC_60559_DFP__

_Decimal32 quantized32(_Decimal32 x, _Decimal32 vy);
_Decimal6é4 quantized64(_Decimal64 x, _Decimal64 y);
_Decimall28 quantizedl28(_Decimall28 x, _Decimall28 y);
#endif

Description

The quantizedN functions compute, if possible, a value with the numerical value of x and the
quantum exponent of y. If the quantum exponent is being increased, the value shall be correctly
rounded; if the result does not have the same value as X, the “inexact” floating-point exception shall
be raised. If the quantum exponent is being decreased and the significand of the result has more
digits than the type would allow, the result is NaN, the “invalid” floating-point exception is raised,
and a domain error occurs. If one or both operands are NaN the result is NaN. Otherwise if only one
operand is infinite, the result is NaN, the “invalid” floating-point exception is raised, and a domain
error occurs. If both operands are infinite, the result is DEC_INFINITY with the sign of x, converted
to the type of the function. The quantizedN functions do not raise the “overflow” and “underflow”
floating-point exceptions.

Returns

The quantizedN functions return a value with the numerical value of x (except for any rounding)
and the quantum exponent of y.

7.12.15.2 The samequantumdN functions

Synopsis

\ #include <math.h>
‘ #ifdef _STDC_IEC_60559_DFP__
\ —Bool samequantumd32(_Decimal32 x, _Decimal32 y);

234 Library §7.12.15.2



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

\ —Bool samequantumd64(_Decimal64 x, _Decimalé4 y);

\ —Bool samequantumdl28(_Decimall28 x, _Decimall28 y);
\ #endif

L

Description

The samequantumdN functions determine if the quantum exponents of x and y are the same. If both
x and y are NaN, or both infinite, they have the same quantum exponents; if exactly one operand
is infinite or exactly one operand is NalN, they do not have the same quantum exponents. The
samequantumdN functions raise no floating-point exception.

Returns

The samequantumdN functions return nonzero (true) when x and y have the same quantum expo-
nents, zero (false) otherwise.

7.12.15.3 The quantumdN functions
Synopsis

#include <math.h>

#ifdef _STDC_IEC_60559_DFP__
—Decimal32 quantumd32(_Decimal32 x);
_Decimal64 quantumd64(_Decimalé4 x);
_Decimall28 quantumd128(_Decimall28 x);
#endif

Description

The quantumdN functions compute the quantum (5.2.4.2.3) of a finite argument. If x is infinite, the
result is +o0.

Returns
The quantumdN functions return the quantum of x.

7.12.15.4 The 1lquantexpdN functions
Synopsis

#include <math.h>

#ifdef __STDC_IEC_60559_DFP__

long long int 1lquantexpd32(_Decimal32 x);
long long int 1lquantexpd64(_Decimal64 x);
long long int llquantexpdl128(_Decimall28 x);
#endif

Description

The 1lquantexpdN functions compute the quantum exponent (5.2.4.2.3) of a finite argument. If x is
infinite or NaN, they compute LLONG_MIN, the “invalid” floating-point exception is raised, and a
domain error occurs.

Returns
The 1lquantexpdN functions return the quantum exponent of x.

7.12.16 Decimal re-encoding functions

IEC 60559 specifies two different schemes to encode significands in the object representation of a
decimal floating-point object: one based on decimal encoding (which packs three decimal digits
into 10 bits), the other based on binary encoding (as a binary integer). An implementation may use
either of these encoding schemes for its decimal floating types. The re-encoding functions in this
subclause provide conversions between external decimal data with a given encoding scheme and
the implementation’s corresponding decimal floating type.

§7.12.16 Library 235



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

7.12.16.1 The encodedecdN functions
Synopsis

#include <math.h>

#ifdef _STDC_IEC_60559_DFP__

void encodedecd32(unsigned char encptr[restrict static 4],
const _Decimal32xrestrict xptr);

void encodedecd64(unsigned char encptr[restrict static 8],
const _Decimal64x*restrict xptr);

void encodedecd128(unsigned char encptr[restrict static 16],
const _Decimall28xrestrict xptr);

#endif

Description

The encodedecdN functions convert *xptr into an IEC 60559 decimalN encoding in the encoding
scheme based on decimal encoding of the significand and store the resulting encoding as an N/8
element array, with 8 bits per array element, in the object pointed to by encptr. The order of bytes
in the array is implementation-defined. These functions preserve the value of *xptr and raise no
floating-point exceptions. If #*xptr is non-canonical, these functions may or may not produce a
canonical encoding.

Returns
The encodedecdN functions return no value.

7.12.16.2 The decodedecdN functions
Synopsis

#include <math.h>
#ifdef _STDC_IEC_60559_DFP__
void decodedecd32(_Decimal32 * restrict xptr,

const unsigned char encptr[restrict static 4]);
void decodedecd64(_Decimalé64 * restrict xptr,

const unsigned char encptr[restrict static 8]);
void decodedecd128(_Decimall28 * restrict xptr,

const unsigned char encptr[restrict static 16]);
#endif

Description
15

The decodedecdN functions interpret the N/8 element array pointed to by encptr as an IEC 60559
decimalN encoding, with 8 bits per array element, in the encoding scheme based on decimal
encoding of the significand. The order of bytes in the array is implementation-defined. These
functions convert the given encoding into a value of the decimal floating type, and store the result in
the object pointed to by xptr. These functions preserve the encoded value and raise no floating-point
exceptions. If the encoding is non-canonical, these functions may or may not produce a canonical
representation.

Returns
The decodedecdN functions return no value.

7.12.16.3 The encodebindN functions
Synopsis

i #include <math.h>

\ #ifdef __STDC_IEC_60559_DFP__

\ void encodebind32(unsigned char encptr[restrict static 4],
\ const _Decimal32 x restrict xptr);

\ void encodebind64(unsigned char encptr[restrict static 8],

236 Library §7.12.16.3



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

\ const _Decimal64 = restrict xptr);

\ void encodebind128(unsigned char encptr[restrict static 16],
\ const _Decimall28 * restrict xptr);

\ #endif

L

Description

The encodebindN functions convert *xptr into an IEC 60559 decimalN encoding in the encoding
scheme based on binary encoding of the significand and store the resulting encoding as an N/8
element array, with 8 bits per array element, in the object pointed to by encptr. The order of bytes
in the array is implementation-defined. These functions preserve the value of *xptr and raise no
floating-point exceptions. If *xptr is non-canonical, these functions may or may not produce a
canonical encoding.

Returns
The encodebindN functions return no value.

7.12.16.4 The decodebindN functions
Synopsis

#include <math.h>
#ifdef __STDC_IEC_60559_DFP__
void decodebind32(_Decimal32 * restrict xptr,

const unsigned char encptr[restrict static 4]);
void decodebind64(_Decimal64 * restrict xptr,

const unsigned char encptr[restrict static 8]);
void decodebindl28(_Decimall28 * restrict xptr,

const unsigned char encptrrestrict static 16]);
#endif

Description

The decodebindN functions interpret the N/8 element array pointed to by encptr as an IEC 60559
decimalN encoding, with 8 bits per array element, in the encoding scheme based on binary encoding
of the significand. The order of bytes in the array is implementation-defined. These functions convert
the given encoding into a value of decimal floating type, and store the result in the object pointed to
by xptr. These functions preserve the encoded value and raise no floating-point exceptions. If the
encoding is non-canonical, these functions may or may not produce a canonical representation.

Returns
The decodebindN functions return no value.

7.12.17 Comparison macros

The relational and equality operators support the usual mathematical relationships between numeric
values. For any ordered pair of numeric values exactly one of the relationships — less, greater, and
equal — is true. Relational operators may raise the “invalid” floating-point exception when argument
values are NaNs. For a NaN and a numeric value, or for two NaNs, just the unordered relationship
is true.®®  Subclauses 7.12.17.1 through 7.12.17.6 provide macros that are quiet versions of the
relational operators: the macros do not raise the “invalid” floating-point exception as an effect
of quiet NaN arguments. The comparison macros facilitate writing efficient code that accounts
for quiet NaNs without suffering the “invalid” floating-point exception. In the synopses in this
subclause, real-floating indicates that the argument shall be an expression of real floating type?*¥
(both arguments need not have the same type).2 If either argument has decimal floating type, the
other argument shall have decimal floating type as well.

23)[EC 60559 requires that the built-in relational operators raise the “invalid” floating-point exception if the operands
compare unordered, as an error indicator for programs written without consideration of NaNs; the result in these cases is
false.

264Tf any argument is of integer type, or any other type that is not a real floating type, the behavior is undefined.

265)Whether an argument represented in a format wider than its semantic type is converted to the semantic type is unspecified.

§7.12.17 Library 237



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

7.12.17.1 The isgreater macro
Synopsis

#include <math.h>
int isgreater(real-floating x, real-floating y);

Description

The isgreater macro determines whether its first argument is greater than its second argu-
ment. The value of isgreater(x,y) is always equal to (x)> (y); however, unlike (x)> (y),
isgreater(x,y) does not raise the “invalid” floating-point exception when x and y are unordered
and neither is a signaling NaN.

Returns
The isgreater macro returns the value of (x)> (y).

7.12.17.2 The isgreaterequal macro
Synopsis

#include <math.h>
int isgreaterequal(real-floating x, real-floating y);

Description

The isgreaterequal macro determines whether its first argument is greater than or equal to its
second argument. The value of isgreaterequal(x,y) is always equal to (x)>= (y); however,
unlike (x)>= (y), isgreaterequal(x,y) does not raise the “invalid” floating-point exception
when x and y are unordered and neither is a signaling NaN.

Returns
The isgreaterequal macro returns the value of (x)>= (y).

7.12.17.3 The isless macro
Synopsis

#include <math.h>
int isless(real-floating x, real-floating y);

Description

The isless macro determines whether its first argument is less than its second argument. The value
of isless(x,y) is always equal to (x)< (y); however, unlike (x)< (y), isless(x,y) does not
raise the “invalid” floating-point exception when x and y are unordered and neither is a signaling
NaN.

Returns
The isless macro returns the value of (x) < (y).

7.12.17.4 The islessequal macro
Synopsis

#include <math.h>
int islessequal(real-floating x, real-floating y);

Description

The islessequal macro determines whether its first argument is less than or equal to its sec-
ond argument. The value of islessequal(x,y) is always equal to (x)<= (y); however, unlike
(x)<= (y),islessequal(x,y) does not raise the “invalid” floating-point exception when x and y
are unordered and neither is a signaling NaN.

238 Library §7.12.17.4



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Returns
The islessequal macro returns the value of (x)<= (y).

7.12.17.5 The islessgreater macro
Synopsis

#include <math.h>
int islessgreater(real-floating x, real-floating y);

Description

The islessgreater macro determines whether its first argument is less than or greater than its
second argument. The islessgreater(x,y) macro is similar to (x)< (y)|| (x)> (y); however,
islessgreater(x,y) does not raise the “invalid” floating-point exception when x and y are un-
ordered and neither is a signaling NaN (nor does it evaluate x and y twice).

Returns
The islessgreater macro returns the value of (x)< (y) || (x)> (y).

7.12.17.6 The isunordered macro
Synopsis

#include <math.h>
int isunordered(real-floating x, real-floating y);

Description

The isunordered macro determines whether its arguments are unordered. It raises no floating-point
exceptions if neither argument is a signaling NaN.

Returns
The isunordered macro returns 1 if its arguments are unordered and 0 otherwise.

7.12.17.7 The iseqsig macro
Synopsis

#include <math.h>
int iseqsig(real-floating x, real-floating y);

Description

The iseqsig macro determines whether its arguments are equal. If an argument is a NaN, a domain
error occurs for the macro, as if a domain error occurred for a function (7.12.1).

Returns
The iseqsig macro returns 1 if its arguments are equal and 0 otherwise.

§7.12.17.7 Library 239



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

7.13 Nonlocal jumps <setjmp.h>

The header <setjmp.h> defines the macro setjmp, and declares one function and one type, for
bypassing the normal function call and return discipline.?®

The type declared is

i jmp_buf

which is an array type suitable for holding the information needed to restore a calling environment.
The environment of a call to the setjmp macro consists of information sufficient for a call to the
Tlongjmp function to return execution to the correct block and invocation of that block, were it called
recursively. It does not include the state of the floating-point status flags, of open files, or of any
other component of the abstract machine.

It is unspecified whether setjmp is a macro or an identifier declared with external linkage. If a
macro definition is suppressed in order to access an actual function, or a program defines an external
identifier with the name setjmp, the behavior is undefined.

7.13.1 Save calling environment

7.13.1.1 The setjmp macro
Synopsis

#include <setjmp.h>
int setjmp(jmp_buf env);

Description

The setjmp macro saves its calling environment in its jmp_buf argument for later use by the
longjmp function.

Returns

If the return is from a direct invocation, the setjmp macro returns the value zero. If the return is
from a call to the Longjmp function, the setjmp macro returns a nonzero value.

Environmental limits

An invocation of the setjmp macro shall appear only in one of the following contexts:

— the entire controlling expression of a selection or iteration statement;

— one operand of a relational or equality operator with the other operand an integer constant
expression, with the resulting expression being the entire controlling expression of a selection
or iteration statement;

— the operand of a unary ! operator with the resulting expression being the entire controlling
expression of a selection or iteration statement; or

— the entire expression of an expression statement (possibly cast to void).

If the invocation appears in any other context, the behavior is undefined.

7.13.2 Restore calling environment
7.13.2.1 The longjmp function
Synopsis

#include <setjmp.h>
_Noreturn void longjmp(jmp_buf env, int val);

266)These functions are useful for dealing with unusual conditions encountered in a low-level function of a program.

240 Library §7.13.2.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Description

The longjmp function restores the environment saved by the most recent invocation of the setjmp
macro in the same invocation of the program with the corresponding jmp_buf argument. If there
has been no such invocation, or if the invocation was from another thread of execution, or if the
function containing the invocation of the setjmp macro has terminated execution?”) in the interim,
or if the invocation of the setjmp macro was within the scope of an identifier with variably modified
type and execution has left that scope in the interim, the behavior is undefined.

All accessible objects have values, and all other components of the abstract machine?® have state,

as of the time the longjmp function was called, except that the values of objects of automatic storage
duration that are local to the function containing the invocation of the corresponding setjmp macro
that do not have volatile-qualified type and have been changed between the setjmp invocation and
longjmp call are indeterminate.

Returns

After longjmp is completed, thread execution continues as if the corresponding invocation of the
setjmp macro had just returned the value specified by val. The longjmp function cannot cause the
setjmp macro to return the value 0; if val is 0, the setjmp macro returns the value 1.

EXAMPLE The longjmp function that returns control back to the point of the setjmp invocation might cause memory
associated with a variable length array object to be squandered.

#include <setjmp.h>
jmp_buf buf;

void g(int n);

void h(int n);

int n = 6;

void f(void)

{
int x[n]; // valid: f is not terminated
setjmp(buf);
g(n);
}
void g(int n)
{
int a[n]; // a may remain allocated
h(n);
}
void h(int n)
{
int b[n]; // b may remain allocated
longjmp(buf, 2); // might cause memory loss
}

267)For example, by executing a return statement or because another longjmp call has caused a transfer to a setjmp
invocation in a function earlier in the set of nested calls.
268)This includes, but is not limited to, the floating-point status flags and the state of open files.

§7.13.2.1 Library 241



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

7.14 Signal handling <signal.h>

The header <signal.h> declares a type and two functions and defines several macros, for handling
various signals (conditions that may be reported during program execution).

The type defined is

\ sig_atomic_t
L

which is the (possibly volatile-qualified) integer type of an object that can be accessed as an atomic
entity, even in the presence of asynchronous interrupts.

The macros defined are

SIG_DFL
SIG_ERR
SIG_IGN

which expand to constant expressions with distinct values that have type compatible with the second
argument to, and the return value of, the signal function, and whose values compare unequal to
the address of any declarable function; and the following, which expand to positive integer constant
expressions with type int and distinct values that are the signal numbers, each corresponding to
the specified condition:

SIGABRT abnormal termination, such as is initiated by the abort function

SIGFPE an erroneous arithmetic operation, such as zero divide or an operation resulting in
overflow

SIGILL detection of an invalid function image, such as an invalid instruction
SIGINT receipt of an interactive attention signal
SIGSEGV an invalid access to storage

SIGTERM a termination request sent to the program

An implementation need not generate any of these signals, except as a result of explicit calls to the

raise function. Additional signals and pointers to undeclarable functions, with macro definitions
beginning, respectively, with the letters SIG and an uppercase letter or with SIG_ and an uppercase
letter,?®”) may also be specified by the implementation. The complete set of signals, their semantics,
and their default handling is implementation-defined; all signal numbers shall be positive.

7.14.1 Specify signal handling
7.14.1.1 The signal function
Synopsis

#include <signal.h>
void (*signal(int sig, void (xfunc)(int))) (int);

Description

The signal function chooses one of three ways in which receipt of the signal number sig is to
be subsequently handled. If the value of func is SIG_DFL, default handling for that signal will
occur. If the value of func is SIG_IGN, the signal will be ignored. Otherwise, func shall point to a
function to be called when that signal occurs. An invocation of such a function because of a signal, or
(recursively) of any further functions called by that invocation (other than functions in the standard
library),?? is called a signal handler.

209)See “future library directions” (7.31.9). The names of the signal numbers reflect the following terms (respectively): abort,
floating-point exception, illegal instruction, interrupt, segmentation violation, and termination.

270)This includes functions called indirectly via standard library functions (e.g., a SIGABRT handler called via the abort
function).

242 Library §7.14.1.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

When a signal occurs and func points to a function, it is implementation-defined whether the
equivalent of signal(sig, SIG_DFL); is executed or the implementation prevents some imple-
mentation-defined set of signals (at least including sig) from occurring until the current signal
handling has completed; in the case of SIGILL, the implementation may alternatively define that
no action is taken. Then the equivalent of (xfunc) (sig); is executed. If and when the function
returns, if the value of sig is SIGFPE, SIGILL, SIGSEGV, or any other implementation-defined value
corresponding to a computational exception, the behavior is undefined; otherwise the program will
resume execution at the point it was interrupted.

If the signal occurs as the result of calling the abort or raise function, the signal handler shall not
call the raise function.

If the signal occurs other than as the result of calling the abort or raise function, the behavior is
undefined if the signal handler refers to any object with static or thread storage duration that is
not a lock-free atomic object other than by assigning a value to an object declared as volatile
sig_atomic_t, or the signal handler calls any function in the standard library other than

— the abort function,
— the _Exit function,
— the quick_exit function,

— the functions in <stdatomic.h> (except where explicitly stated otherwise) when the atomic
arguments are lock-free,

— the atomic_is_lock_free function with any atomic argument, or

— the signal function with the first argument equal to the signal number corresponding to the
signal that caused the invocation of the handler. Furthermore, if such a call to the signal
function results in a SIG_ERR return, the value of errno is indeterminate.2’%

At program startup, the equivalent of

[
‘ signal(sig, SIG_IGN);

may be executed for some signals selected in an implementation-defined manner; the equivalent of

i signal(sig, SIG_DFL);

is executed for all other signals defined by the implementation.
Use of this function in a multi-threaded program results in undefined behavior. The implementation
shall behave as if no library function calls the signal function.

Returns

If the request can be honored, the signal function returns the value of func for the most recent
successful call to signal for the specified signal sig. Otherwise, a value of SIG_ERR is returned and
a positive value is stored in errno.

Forward references: the abort function (7.22.4.1), the exit function (7.22.4.4), the _Exit function
(7.22.4.5), the quick_exit function (7.22.4.7).
7.14.2 Send signal

7.14.2.1 The raise function
Synopsis

#include <signal.h>
int raise(int sig);

27D1f any signal is generated by an asynchronous signal handler, the behavior is undefined.

§7.14.2.1 Library 243



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Description

The raise function carries out the actions described in 7.14.1.1 for the signal sig. If a signal handler
is called, the raise function shall not return until after the signal handler does.

Returns
The raise function returns zero if successful, nonzero if unsuccessful.

244 Library §7.14.2.1



N2573 working draft — October 1, 2020

715 Alignment <stdalign.h>

The header <stdalign.h> defines four macros.

The macro

ISO/IEC 9899:202x (E)

\ alignas

expands to _Alignas; the macro

\ alignof

expands to _Alignof.

The remaining macros are suitable for use in #if preprocessing directives. They are

\ __alignas_is_defined

\ __alignof_is_defined
L

which both expand to the integer constant 1.

§7.15 Library

245



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

7.16 Variable arguments <stdarg.h>
The header <stdarg.h> declares a type and defines four macros, for advancing through a list of
arguments whose number and types are not known to the called function when it is translated.

A function may be called with a variable number of arguments of varying types. As described in
6.9.1, its parameter list contains one or more parameters. The rightmost parameter plays a special
role in the access mechanism, and will be designated parmN in this description.

The type declared is

\ va_list

which is a complete object type suitable for holding information needed by the macros va_start,
va_arg, va_end, and va_copy. If access to the varying arguments is desired, the called function
shall declare an object (generally referred to as ap in this subclause) having type va_list. The object
ap may be passed as an argument to another function; if that function invokes the va_arg macro
with parameter ap, the value of ap in the calling function is indeterminate and shall be passed to the
va_end macro prior to any further reference to ap.?’?

7.16.1 Variable argument list access macros

The va_start and va_arg macros described in this subclause shall be implemented as macros,
not functions. It is unspecified whether va_copy and va_end are macros or identifiers declared
with external linkage. If a macro definition is suppressed in order to access an actual function,
or a program defines an external identifier with the same name, the behavior is undefined. Each
invocation of the va_start and va_copy macros shall be matched by a corresponding invocation of
the va_end macro in the same function.

7.16.1.1 The va_arg macro
Synopsis

#include <stdarg.h>
type va_arg(va_list ap, type);

Description

The va_arg macro expands to an expression that has the specified type and the value of the next
argument in the call. The parameter ap shall have been initialized by the va_start or va_copy
macro (without an intervening invocation of the va_end macro for the same ap). Each invocation of
the va_arg macro modifies ap so that the values of successive arguments are returned in turn. The
parameter type shall be a type name specified such that the type of a pointer to an object that has the
specified type can be obtained simply by postfixing a * to type. If there is no actual next argument,
or if type is not compatible with the type of the actual next argument (as promoted according to the
default argument promotions), the behavior is undefined, except for the following cases:

— one type is a signed integer type, the other type is the corresponding unsigned integer type,
and the value is representable in both types;

— one type is pointer to void and the other is a pointer to a character type.

Returns

The first invocation of the va_arg macro after that of the va_start macro returns the value of the
argument after that specified by parmN. Successive invocations return the values of the remaining
arguments in succession.

272)1t is permitted to create a pointer to a va_list and pass that pointer to another function, in which case the original
function can make further use of the original list after the other function returns.

246 Library §7.16.1.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7.16.1.2 The va_copy macro
Synopsis

#include <stdarg.h>
void va_copy(va_list dest, va_list src);

Description

The va_copy macro initializes dest as a copy of src, as if the va_start macro had been applied
to dest followed by the same sequence of uses of the va_arg macro as had previously been used
to reach the present state of src. Neither the va_copy nor va_start macro shall be invoked to
reinitialize dest without an intervening invocation of the va_end macro for the same dest.

Returns
The va_copy macro returns no value.

7.16.1.3 The va_end macro
Synopsis

#include <stdarg.h>
void va_end(va_list ap);

Description

The va_end macro facilitates a normal return from the function whose variable argument list was
referred to by the expansion of the va_start macro, or the function containing the expansion of
the va_copy macro, that initialized the va_list ap. The va_end macro may modify ap so that it
is no longer usable (without being reinitialized by the va_start or va_copy macro). If there is no
corresponding invocation of the va_start or va_copy macro, or if the va_end macro is not invoked
before the return, the behavior is undefined.

Returns
The va_end macro returns no value.

7.16.1.4 The va_start macro
Synopsis

#include <stdarg.h>
void va_start(va_list ap, parmN);

Description
The va_start macro shall be invoked before any access to the unnamed arguments.
The va_start macro initializes ap for subsequent use by the va_arg and va_end macros. Neither the

va_start nor va_copy macro shall be invoked to reinitialize ap without an intervening invocation
of the va_end macro for the same ap.

The parameter parmN is the identifier of the rightmost parameter in the variable parameter list in
the function definition (the one just before the , ...). If the parameter parmN is declared with the
register storage class, with a function or array type, or with a type that is not compatible with the
type that results after application of the default argument promotions, the behavior is undefined.

Returns
The va_start macro returns no value.

EXAMPLE 1 The function f1 gathers into an array a list of arguments that are pointers to strings (but not more than MAXARGS
arguments), then passes the array as a single argument to function f2. The number of pointers is specified by the first
argument to f1.

§7.16.1.4 Library 247



ISO/IEC 9899:202x (E) working draft — October 1, 2020

N2573

#include <stdarg.h>
#define MAXARGS 31

void fl(int n_ptrs, ...)

{
va_list ap;
char xarray[MAXARGS];
int ptr_no = 0;

if (n_ptrs > MAXARGS)
n_ptrs = MAXARGS;
va_start(ap, n_ptrs);
while (ptr_no < n_ptrs)
array[ptr_no++] = va_arg(ap, char x);
va_end(ap) ;
f2(n_ptrs, array);

Each call to 1 is required to have visible the definition of the function or a declaration such as

void fl(int, ...);

EXAMPLE 2 The function 3 is similar, but saves the status of the variable argument list after the indicated number of
arguments; after f2 has been called once with the whole list, the trailing part of the list is gathered again and passed to

function f4.

#include <stdarg.h>
#define MAXARGS 31

void f3(int n_ptrs, int f4_after, ...)
{
va_list ap, ap_save;
char xarray[MAXARGS];
int ptr_no = 0;
if (n_ptrs > MAXARGS)
n_ptrs = MAXARGS;
va_start(ap, f4_after);
while (ptr_no < n_ptrs) {
array[ptr_no++] = va_arg(ap, char x);
if (ptr_no == f4_after)
va_copy (ap_save, ap);
}
va_end(ap);
f2(n_ptrs, array);

// Now process the saved copy.

n_ptrs -= f4_after;
ptr_no = 0;
while (ptr_no < n_ptrs)
array[ptr_no++] = va_arg(ap_save, char x);
va_end (ap_save) ;
f4(n_ptrs, array);

248 Library

§7.16.1.4




N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7.17 Atomics <stdatomic.h>
7.17.1 Introduction

The header <stdatomic.h> defines several macros and declares several types and functions for
performing atomic operations on data shared between threads.?”®

Implementations that define the macro __STDC_NO_ATOMICS__ need not provide this header nor
support any of its facilities.

The macros defined are the atomic lock-free macros

ATOMIC_BOOL_LOCK_FREE
ATOMIC_CHAR_LOCK_FREE
ATOMIC_CHAR16_T_LOCK_FREE
ATOMIC_CHAR32_T_LOCK_FREE
ATOMIC_WCHAR_T_LOCK_FREE
ATOMIC_SHORT_LOCK_FREE
ATOMIC_INT_LOCK_FREE
ATOMIC_LONG_LOCK_FREE
ATOMIC_LLONG_LOCK_FREE
ATOMIC_POINTER_LOCK_FREE

which expand to constant expressions suitable for use in #if preprocessing directives and which
indicate the lock-free property of the corresponding atomic types (both signed and unsigned); and

‘ ATOMIC_FLAG_INIT

which expands to an initializer for an object of type atomic_flag.

The types include

\ memory_order

which is an enumerated type whose enumerators identify memory ordering constraints;

\ atomic_flag

which is a structure type representing a lock-free, primitive atomic flag; and several atomic analogs
of integer types.

In the following synopses:

— An A refers to an atomic type.
— A Crefers to its corresponding non-atomic type.

— An M refers to the type of the other argument for arithmetic operations. For atomic integer
types, M is C. For atomic pointer types, M is ptrdiff_t.

— The functions not ending in _explicit have the same semantics as the corresponding
—explicit function with memory_order_seq_cst for the memory_order argument.

It is unspecified whether any generic function declared in <stdatomic. h>is a macro or an identifier
declared with external linkage. If a macro definition is suppressed in order to access an actual
function, or a program defines an external identifier with the name of a generic function, the
behavior is undefined.

NOTE Many operations are volatile-qualified. The “volatile as device register” semantics have not changed in the standard.
This qualification means that volatility is preserved when applying these operations to volatile objects.

273)See “future library directions” (7.31.10).

§7.17.1 Library 249



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

7.17.2 Initialization
7.17.2.1 The ATOMIC_VAR_INIT macro
Synopsis

#include <stdatomic.h>
#define ATOMIC_VAR_INIT(C value)

Description

The ATOMIC_VAR_INIT macro expands to a token sequence suitable for initializing an atomic object
of a type that is initialization-compatible with value. An atomic object with automatic storage
duration that is not explicitly initialized is initially in an indeterminate state; however, the default
(zero) initialization for objects with static or thread-local storage duration is guaranteed to produce
a valid state.”%

Concurrent access to the variable being initialized, even via an atomic operation, constitutes a data
race.

EXAMPLE

‘ atomic_int guide = ATOMIC_VAR_INIT(42);

7.17.2.2 The atomic_init generic function
Synopsis

#include <stdatomic.h>
void atomic_init(volatile A *xobj, C value);

Description

The atomic_init generic function initializes the atomic object pointed to by obj to the value value,
while also initializing any additional state that the implementation might need to carry for the
atomic object.

Although this function initializes an atomic object, it does not avoid data races; concurrent access to
the variable being initialized, even via an atomic operation, constitutes a data race.

If a signal occurs other than as the result of calling the abort or raise functions, the behavior is
undefined if the signal handler calls the atomic_init generic function.
Returns

The atomic_init generic function returns no value.
EXAMPLE

atomic_int guide;
atomic_init(&guide, 42);

7.17.3 Order and consistency

The enumerated type memory_order specifies the detailed regular (non-atomic) memory synchro-
nization operations as defined in 5.1.2.4 and may provide for operation ordering. Its enumeration
constants are as follows:?”)

memory_order_relaxed
memory_order—_consume
memory_order_acquire
memory_order_release
memory_order_acq-rel
memory_order_seq_cst

274See “future library directions” (7.31.10).
275)See “future library directions” (7.31.10).

250 Library §7.17.3



10

11

12

13

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

For memory_order_relaxed, no operation orders memory.

For memory_order_release, memory_order_acq_rel, and memory_order_seq_cst, a store opera-
tion performs a release operation on the affected memory location.

For memory_order_acquire, memory_order_acg_rel, and memory_order_seq_cst, a load opera-
tion performs an acquire operation on the affected memory location.

For memory_order_consume, a load operation performs a consume operation on the affected mem-
ory location.

There shall be a single total order S on all memory_order_seq_cst operations, consistent with the
“happens before” order and modification orders for all affected locations, such that each
memory_order_seq_cst operation B that loads a value from an atomic object M observes one of
the following values:

— the result of the last modification A of M that precedes B in §, if it exists, or

— if A exists, the result of some modification of M that is not memory_order_seg_cst and that
does not happen before A, or

— if A does not exist, the result of some modification of M that is not memory_order_seq_cst.

NOTE 1 Although it is not explicitly required that S include lock operations, it can always be extended to an order that does
include lock and unlock operations, since the ordering between those is already included in the “happens before” ordering.

NOTE 2 Atomic operations specifying memory_order_relaxed are relaxed only with respect to memory ordering. Imple-
mentations still guarantee that any given atomic access to a particular atomic object is indivisible with respect to all other
atomic accesses to that object.

For an atomic operation B that reads the value of an atomic object M, if there is a
memory_order_seq_cst fence X sequenced before B, then B observes either the last
memory_order_seq_cst modification of M preceding X in the total order S or a later mod-
ification of M in its modification order.

For atomic operations A and B on an atomic object M, where A modifies M and B takes its value, if
there is a memory_order_seq_cst fence X such that A is sequenced before X and B follows X in S,
then B observes either the effects of A or a later modification of M in its modification order.

For atomic modifications A and B of an atomic object M, B occurs later than A in the modification
order of M if:

— there is amemory_order_seq_cst fence X such that A is sequenced before X, and X precedes
Bin S, or

— there is a memory_order_seq_cst fence Y such that Y is sequenced before B, and A precedes
Yin S, or

— there are memory_order_seq_cst fences X and Y such that A is sequenced before X, Y is
sequenced before B, and X precedes Y in S.

Atomic read-modify-write operations shall always read the last value (in the modification order)
stored before the write associated with the read-modify-write operation.

An atomic store shall only store a value that has been computed from constants and program input
values by a finite sequence of program evaluations, such that each evaluation observes the values of
variables as computed by the last prior assignment in the sequence. The ordering of evaluations in
this sequence shall be such that

— If an evaluation B observes a value computed by A in a different thread, then B does not
happen before A.

— If an evaluation A is included in the sequence, then all evaluations that assign to the same
variable and happen before A are also included.

§7.17.3 Library 251



14

15

16

ISO/IEC 9899:202x (E)

working draft — October 1, 2020

N2573

NOTE 3 The second requirement disallows “out-of-thin-air”, or “speculative” stores of atomics when relaxed atomics are
used. Since unordered operations are involved, evaluations can appear in this sequence out of thread order. For example,

with x and y initially zero,

// Thread 1:
rl = atomic_load_explicit(&y,
atomic_store_explicit(&x, rl,

// Thread 2:
r2 = atomic_load_explicit(&x,
atomic_store_explicit(&y, 42,

memory_order_relaxed) ;
memory_order_relaxed) ;

memory_order_relaxed) ;
memory_order_relaxed) ;

is allowed to produce r1 == 42 && r2 == 42. The sequence of evaluations justifying this consists of:

atomic_store_explicit(&y, 42,
rl = atomic_load_explicit(&y,
atomic_store_explicit(&x, rl,
r2 = atomic_load_explicit(&x,

memory_order_relaxed)
memory_order_relaxed) ;
memory_order_relaxed) ;
memory_order_relaxed)

’

’

On the other hand,

// Thread 1:
rl = atomic_load_explicit(&y,
atomic_store_explicit(&x, ril,

// Thread 2:
r2 = atomic_load_explicit(&x,
atomic_store_explicit(&y, r2,

memory_order_relaxed) ;
memory_order_relaxed) ;

memory_order_relaxed) ;
memory_order_relaxed) ;

is not allowed to produce r1 == 42 && r2 == 42, since there is no sequence of evaluations that results in the computation
of 42. In the absence of “relaxed” operations and read-modify-write operations with weaker than memory_order_acq_rel
ordering, the second requirement has no impact.

Recommended practice

The requirements do not forbid r1 == 42 && r2 == 42 in the following example, with x and y
initially zero:

// Thread 1:
rl = atomic_load_explicit(&x, memory_order_relaxed);
if (r1 == 42)
atomic_store_explicit(&y, rl, memory_order_relaxed);

// Thread 2:
r2 = atomic_load_explicit(&y, memory_order_relaxed);
if (r2 == 42)
atomic_store_explicit(&x, 42, memory_order_relaxed);

However, this is not useful behavior, and implementations should not allow it.

Implementations should make atomic stores visible to atomic loads within a reasonable amount of
time.

7.17.3.1 The kill_dependency macro
Synopsis

#include <stdatomic.h>
type kill_dependency(type y);

Description

The kill_dependency macro terminates a dependency chain; the argument does not carry a depen-
dency to the return value.

252 Library §7.17.3.1




N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Returns
The kill_dependency macro returns the value of y.

7.17.4 Fences

This subclause introduces synchronization primitives called fences. Fences can have acquire seman-
tics, release semantics, or both. A fence with acquire semantics is called an acquire fence; a fence with
release semantics is called a release fence.

A release fence A synchronizes with an acquire fence B if there exist atomic operations X and Y,
both operating on some atomic object M, such that A is sequenced before X, X modifies M, Y is
sequenced before B, and Y reads the value written by X or a value written by any side effect in the
hypothetical release sequence X would head if it were a release operation.

A release fence A synchronizes with an atomic operation B that performs an acquire operation on an
atomic object M if there exists an atomic operation X such that A is sequenced before X, X modifies
M, and B reads the value written by X or a value written by any side effect in the hypothetical
release sequence X would head if it were a release operation.

An atomic operation A that is a release operation on an atomic object M synchronizes with an
acquire fence B if there exists some atomic operation X on M such that X is sequenced before B
and reads the value written by A or a value written by any side effect in the release sequence headed
by A.

7.17.4.1 The atomic_thread_fence function
Synopsis

#include <stdatomic.h>
void atomic_thread_fence(memory_order order);

Description
Depending on the value of order, this operation:

— has no effects, if order == memory_order_relaxed;

— isanacquire fence, if order == memory_order_acquireororder == memory_order_consume;

— is arelease fence, if order == memory_order_release;

— is both an acquire fence and a release fence, if order == memory_order_acq_rel;

— is a sequentially consistent acquire and release fence, if order == memory_order_seq_cst.
Returns

The atomic_thread_fence function returns no value.

7.17.4.2 The atomic_signal_fence function
Synopsis

#include <stdatomic.h>
void atomic_signal_fence(memory_order order);

Description

Equivalent to atomic_thread_fence(order), except that the resulting ordering constraints are
established only between a thread and a signal handler executed in the same thread.

NOTE 1 The atomic_signal_fence function can be used to specify the order in which actions performed by the thread
become visible to the signal handler.

NOTE 2 Compiler optimizations and reorderings of loads and stores are inhibited in the same way as with
atomic_thread_fence, but the hardware fence instructions that atomic_thread_fence would have inserted are not
emitted.

§7.17.4.2 Library 253



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Returns
The atomic_signal_fence function returns no value.

7.17.5 Lock-free property

The atomic lock-free macros indicate the lock-free property of integer and address atomic types. A
value of 0 indicates that the type is never lock-free; a value of 1 indicates that the type is sometimes
lock-free; a value of 2 indicates that the type is always lock-free.

Recommended practice

Operations that are lock-free should also be address-free. That is, atomic operations on the same
memory location via two different addresses will communicate atomically. The implementation
should not depend on any per-process state. This restriction enables communication via memory
mapped into a process more than once and memory shared between two processes.

7.17.5.1 The atomic_is_lock_free generic function
Synopsis

#include <stdatomic.h>
—Bool atomic_is_lock_free(const volatile A xobj);

Description

The atomic_is_lock_free generic function indicates whether or not atomic operations on objects
of the type pointed to by obj are lock-free.

Returns

The atomic_is_lock_free generic function returns nonzero (true) if and only if atomic operations
on objects of the type pointed to by the argument are lock-free. In any given program execution, the
result of the lock-free query shall be consistent for all pointers of the same type.?’®)

7.17.6 Atomic integer types

277 the atomic type name is declared as a type that has the same

278)

For each line in the following table,
representation and alignment requirements as the corresponding direct type.

Atomic type name Direct type

atomic_bool _Atomic _Bool
atomic_char —Atomic char
atomic_schar —Atomic signed char
atomic_uchar —Atomic unsigned char
atomic_short —Atomic short
atomic_ushort —Atomic unsigned short
atomic_int —Atomic int
atomic_uint _Atomic unsigned int
atomic_long _Atomic long
atomic_ulong —Atomic unsigned long
atomic_1llong —Atomic long long
atomic_ullong —Atomic unsigned long long
atomic_charle_t —Atomic charl6_t
atomic_char32_t —Atomic char32_t
atomic_wchar_t _Atomic wchar_t
atomic_int_least8_t —Atomic int_least8_t

atomic_uint_least8_t _Atomic uint_least8_t
atomic_int_leastl6_t _Atomic int_leastl6_t

276)0bj can be a null pointer.

277)See “future library directions” (7.31.10).

278)The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,
return values from functions, and members of unions.

254 Library §7.17.6



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Atomic type name Direct type

atomic_uint_leastl6_t _Atomic uint_leastl6_t
atomic_int_least32_t _Atomic int_least32_t
atomic_uint_least32_t _Atomic uint_least32_t

atomic_int_least64_t _Atomic int_least64_t
atomic_uint_least64_t _Atomic uint_least64_t
atomic_int_fast8_t _Atomic int_fast8_t
atomic_uint_fast8_t —Atomic uint_fast8_t
atomic_int_fastl6_t —Atomic int_fastl6_t
atomic_uint_fastl6_t _Atomic uint_fastlé_t
atomic_int_fast32_t _Atomic int_fast32_t
atomic_uint_fast32_t _Atomic uint_fast32_t
atomic_int_fast64_t _Atomic int_fast64_t
atomic_uint_fast64_t _Atomic uint_fast64_t
atomic_intptr_t _Atomic intptr_t
atomic_uintptr_t —_Atomic uintptr_t
atomic_size_t —Atomic size_t
atomic_ptrdiff_t _Atomic ptrdiff_t
atomic_intmax_t —Atomic intmax_t
atomic_uintmax_t _Atomic uintmax_t

Recommended practice

The representation of an atomic integer type is not required to have the same size as the correspond-
ing regular type but it should have the same size whenever possible, as it eases effort required to
port existing code.

7.17.7 Operations on atomic types

There are only a few kinds of operations on atomic types, though there are many instances of those
kinds. This subclause specifies each general kind.

7.17.7.1 The atomic_store generic functions
Synopsis

#include <stdatomic.h>
void atomic_store(volatile A *xobject, C desired);
void atomic_store_explicit(volatile A *object, C desired, memory_order order);

Description

The order argument shall not be memory_order_acquire, memory_order_consume, nor
memory_order_acq_rel. Atomically replace the value pointed to by object with the value of
desired. Memory is affected according to the value of order.

Returns
The atomic_store generic functions return no value.

7.17.7.2 The atomic_load generic functions
Synopsis

#include <stdatomic.h>
C atomic_load(const volatile A xobject);
C atomic_load_explicit(const volatile A xobject, memory_order order);

Description

The order argument shall not be memory_order_release nor memory_order_acq_rel. Memory is
affected according to the value of order.

§7.17.7.2 Library 255



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Returns
Atomically returns the value pointed to by object.

7.17.7.3 The atomic_exchange generic functions
Synopsis

#include <stdatomic.h>
C atomic_exchange(volatile A *object, C desired);
C atomic_exchange_explicit(volatile A *xobject, C desired, memory_order order);

Description

Atomically replace the value pointed to by object with desired. Memory is affected according to
the value of order. These operations are read-modify-write operations (5.1.2.4).

Returns
Atomically returns the value pointed to by object immediately before the effects.

7.17.7.4 The atomic_compare_exchange generic functions
Synopsis

#include <stdatomic.h>
_Bool atomic_compare_exchange_strong(volatile A xobject, C *expected, C desired);
_Bool atomic_compare_exchange_strong_explicit(volatile A xobject, C xexpected,

C desired, memory_order success, memory_order failure);
_Bool atomic_compare_exchange_weak(volatile A xobject, C xexpected, C desired);
_Bool atomic_compare_exchange_weak_explicit(volatile A *xobject, C *expected,

C desired, memory_order success, memory_order failure);

Description

The failure argument shall not be memory_order_release nor memory_order_acg_rel. The
failure argument shall be no stronger than the success argument.

Atomically, compares the contents of the memory pointed to by object for equality with that
pointed to by expected, and if true, replaces the contents of the memory pointed to by object
with desired, and if false, updates the contents of the memory pointed to by expected with that
pointed to by object. Further, if the comparison is true, memory is affected according to the value
of success, and if the comparison is false, memory is affected according to the value of failure.
These operations are atomic read-modify-write operations (5.1.2.4).

NOTE 1 For example, the effect of atomic_compare_exchange_strongis

if (memcmp(object, expected, sizeof (*object)) == 0)
memcpy (object, &desired, sizeof (xobject));
else
memcpy (expected, object, sizeof (xobject));

A weak compare-and-exchange operation may fail spuriously. That is, even when the contents
of memory referred to by expected and object are equal, it may return zero and store back to
expected the same memory contents that were originally there.

NOTE 2 This spurious failure enables implementation of compare-and-exchange on a broader class of machines, e.g.
load-locked store-conditional machines.

256 Library §7.17.7.4



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

EXAMPLE A consequence of spurious failure is that nearly all uses of weak compare-and-exchange will be in a loop.

exp = atomic_load(&cur);
do {
des = function(exp);
} while ('atomic_compare_exchange_weak(&cur, &exp, des));

When a compare-and-exchange is in a loop, the weak version will yield better performance on some platforms. When a weak
compare-and-exchange would require a loop and a strong one would not, the strong one is preferable.

Returns

The result of the comparison.

7.17.7.5 The atomic_fetch and modify generic functions

The following operations perform arithmetic and bitwise computations. All of these operations
are applicable to an object of any atomic integer type. None of these operations is applicable to
atomic_bool. The key, operator, and computation correspondence is:

key op computation
add + addition

sub - subtraction
or | bitwise inclusive or
xor * bitwise exclusive or

and & bitwise and

Synopsis

#include <stdatomic.h>
C atomic_fetch_key(volatile A *object, M operand);
C atomic_fetch_key_explicit(volatile A xobject, M operand, memory_order order);

Description

Atomically replaces the value pointed to by object with the result of the computation applied to
the value pointed to by object and the given operand. Memory is affected according to the value
of order. These operations are atomic read-modify-write operations (5.1.2.4). For signed integer
types, arithmetic is defined to use silent wrap-around on overflow; there are no undefined results.
For address types, the result may be an undefined address, but the operations otherwise have no
undefined behavior.

Returns
Atomically, the value pointed to by object immediately before the effects.

NOTE The operation of the atomic_fetch and modify generic functions are nearly equivalent to the operation of the
corresponding op= compound assignment operators. The only differences are that the compound assignment operators are
not guaranteed to operate atomically, and the value yielded by a compound assignment operator is the updated value of the
object, whereas the value returned by the atomic_fetch and modify generic functions is the previous value of the atomic
object.

7.17.8 Atomic flag type and operations
The atomic_flag type provides the classic test-and-set functionality. It has two states, set and clear.

Operations on an object of type atomic_flag shall be lock free.

NOTE Hence, as per 7.17.5, the operations should also be address-free. No other type requires lock-free operations, so the
atomic_flag type is the minimum hardware-implemented type needed to conform to this document. The remaining types
can be emulated with atomic_flag, though with less than ideal properties.

The macro ATOMIC_FLAG_INIT may be used to initialize an atomic_flag to the clear state. An

atomic_flag that is not explicitly initialized with ATOMIC_FLAG_INIT is initially in an indeterminate
state.

EXAMPLE

§7.17.8 Library 257



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

\ atomic_flag guard = ATOMIC_FLAG_INIT;

7.17.8.1 The atomic_flag_test_and_set functions
Synopsis

#include <stdatomic.h>
_Bool atomic_flag_test_and_set(volatile atomic_flag *object);
_Bool atomic_flag_test_and_set_explicit(volatile atomic_flag *object,
memory_order order);

Description

Atomically places the atomic flag pointed to by object in the set state and returns the value
corresponding to the immediately preceding state. Memory is affected according to the value of
order. These operations are atomic read-modify-write operations (5.1.2.4).

Returns

The atomic_flag_test_and_set functions return the value that corresponds to the state of the
atomic flag immediately before the effects. The return value true corresponds to the set state and the
return value false corresponds to the clear state.

7.17.8.2 The atomic_flag_clear functions
Synopsis

#include <stdatomic.h>

void atomic_flag_clear(volatile atomic_flag xobject);

void atomic_flag_clear_explicit(volatile atomic_flag *object,
memory_order order);

Description

The order argument shall not be memory_order_acquire nor memory_order_acg_rel. Atomically
places the atomic flag pointed to by object into the clear state. Memory is affected according to the
value of order.

Returns
The atomic_flag_clear functions return no value.

258 Library §7.17.8.2



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7.18 Boolean type and values <stdbool.h>
The header <stdbool. h> defines four macros.

The macro

\ bool

expands to _Bool.

The remaining three macros are suitable for use in #if preprocessing directives. They are

\ true

which expands to the integer constant ( (_Bool)+1u)),

\ false

which expands to the integer constant ( (_Bool)+0u) ), and

i __bool_true_false_are_defined
L

which expands to the integer constant 1.

Notwithstanding the provisions of 7.1.3, a program may undefine and perhaps then redefine the
macros bool, true, and false.?”?)

279)See “future library directions” (7.31.11).

§7.18 Library 259



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

7.19 Common definitions <stddef.h>

The header <stddef . h> defines the following macros and declares the following types. Some are
also defined in other headers, as noted in their respective subclauses.

The types are

\ ptrdiff_t

which is the signed integer type of the result of subtracting two pointers;

\ size_t

which is the unsigned integer type of the result of the sizeof operator;

[
\ max_align_t

which is an object type whose alignment is the greatest fundamental alignment; and

\ wchar_t

which is an integer type whose range of values can represent distinct codes for all members of the
largest extended character set specified among the supported locales; the null character shall have
the code value zero. Each member of the basic character set shall have a code value equal to its
value when used as the lone character in an integer character constant if an implementation does
not define __STDC_MB_MIGHT_NEQ_WC__.

The macros are

\ NULL

which expands to an implementation-defined null pointer constant; and

\ offsetof(type, member-designator)

which expands to an integer constant expression that has type size_t, the value of which is the
offset in bytes, to the subobject (designated by member-designator), from the beginning of any object
of type type. The type and member designator shall be such that given

\ static type t;

then the expression &(t. member-designator) evaluates to an address constant. If the specified type
defines a new type or if the specified member is a bit-field, the behavior is undefined.

Recommended practice

The types used for size_t and ptrdiff_t should not have an integer conversion rank greater than
that of signed long int unless the implementation supports objects large enough to make this
necessary.

260 Library §7.19



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7.20 Integer types <stdint.h>

The header <stdint.h> declares sets of integer types having specified widths, and defines corre-
sponding sets of macros.?®? It also defines macros that specify limits of integer types corresponding
to types defined in other standard headers.

Types are defined in the following categories:

— integer types having certain exact widths;

— integer types having at least certain specified widths;

— fastest integer types having at least certain specified widths;
— integer types wide enough to hold pointers to objects;

— integer types having greatest width.

(Some of these types may denote the same type.)
Corresponding macros specify limits of the declared types and construct suitable constants.

For each type described herein that the implementation provides,?®? <stdint . h> shall declare that
typedef name and define the associated macros. Conversely, for each type described herein that
the implementation does not provide, <stdint.h> shall not declare that typedef name nor shall it
define the associated macros. An implementation shall provide those types described as “required”,
but need not provide any of the others (described as “optional”).

The feature test macro __STDC_VERSION_STDINT_H__ expands to the token yyyymmL.

7.20.1 Integer types

When typedef names differing only in the absence or presence of the initial u are defined, they shall
denote corresponding signed and unsigned types as described in 6.2.5; an implementation providing
one of these corresponding types shall also provide the other.

In the following descriptions, the symbol N represents an unsigned decimal integer with no leading
zeros (e.g., 8 or 24, but not 04 or 048).

7.20.1.1 Exact-width integer types
The typedef name intN_t designates a signed integer type with width N and no padding bits. Thus,
int8_t denotes such a signed integer type with a width of exactly 8 bits.

The typedef name uintN_t designates an unsigned integer type with width N and no padding bits.
Thus, uint24_t denotes such an unsigned integer type with a width of exactly 24 bits.

These types are optional. However, if an implementation provides integer types with widths of 8,
16, 32, or 64 bits, and no padding bits, it shall define the corresponding typedef names.

7.20.1.2 Minimum-width integer types

The typedef name int_leastN_t designates a signed integer type with a width of at least N, such
that no signed integer type with lesser size has at least the specified width. Thus, int_least32_t
denotes a signed integer type with a width of at least 32 bits.

The typedef name uint_leastN_t designates an unsigned integer type with a width of at least
N, such that no unsigned integer type with lesser size has at least the specified width. Thus,
uint_least1l6_t denotes an unsigned integer type with a width of at least 16 bits.

The following types are required:

80)See “future library directions” (7.31.12).
28DSome of these types might denote implementation-defined extended integer types.

§7.20.1.2 Library 261



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

int_least8_t uint_least8_t

int_leastl6_t uint_leastl6_t
int_least32_t uint_least32_t
int_least64_t uint_least64_t

All other types of this form are optional.

7.20.1.3 Fastest minimum-width integer types

Each of the following types designates an integer type that is usually fastest?®? to operate with
among all integer types that have at least the specified width.

The typedef name int_fastN_t designates the fastest signed integer type with a width of at least
N. The typedef name uint_fastN_t designates the fastest unsigned integer type with a width of at
least N.

The following types are required:

int_fast8_t uint_fast8_t

int_fastl6_t uint_fastl6_t
int_fast32_t uint_fast32_t
int_fast64_t uint_fast64_t

All other types of this form are optional.

7.20.1.4 Integer types capable of holding object pointers

The following type designates a signed integer type with the property that any valid pointer to void
can be converted to this type, then converted back to pointer to void, and the result will compare
equal to the original pointer:

i intptr_t

The following type designates an unsigned integer type with the property that any valid pointer
to void can be converted to this type, then converted back to pointer to void, and the result will
compare equal to the original pointer:

[
\ uintptr_t
L

These types are optional.

7.20.1.5 Greatest-width integer types

The following type designates a signed integer type capable of representing any value of any signed
integer type:

\ intmax_t
L

The following type designates an unsigned integer type capable of representing any value of any
unsigned integer type:

\ uintmax_t

These types are required.

7.20.2 Widths of specified-width integer types

The following object-like macros specify the width of the types declared in <stdint.h>. Each macro
name corresponds to a similar type name in 7.20.1.

282)The designated type is not guaranteed to be fastest for all purposes; if the implementation has no clear grounds for
choosing one type over another, it will simply pick some integer type satisfying the signedness and width requirements.

262 Library §7.20.2



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Each instance of any defined macro shall be replaced by a constant expression suitable for use in
#if preprocessing directives. Its implementation-defined value shall be equal to or greater than
the value given below, except where stated to be exactly the given value. An implementation shall
define only the macros corresponding to those typedef names it actually provides.?3

7.20.2.1 Width of exact-width integer types

INTN_WIDTH exactly N
UINTN_WIDTH exactly N

7.20.2.2 Width of minimum-width integer types

INT_LEASTN_WIDTH exactly UINT_LEASTN_WIDTH
UINT_LEASTN_WIDTH N

7.20.2.3 Width of fastest minimum-width integer types

INT_FASTN_WIDTH exactly UINT_FASTN_WIDTH
UINT_FASTN_WIDTH N

7.20.2.4 Width of integer types capable of holding object pointers

INTPTR_WIDTH exactly UINTPTR_WIDTH
UINTPTR_WIDTH 16

7.20.2.5 Width of greatest-width integer types

INTMAX_WIDTH exactly UINTMAX_WIDTH
UINTMAX_WIDTH 64

7.20.3 Width of other integer types

The following object-like macros specify the width of integer types corresponding to types defined
in other standard headers.

Each instance of these macros shall be replaced by a constant expression suitable for use in #if
preprocessing directives. Its implementation-defined value shall be equal to or greater than the
corresponding value given below. An implementation shall define only the macros corresponding
to those typedef names it actually provides.?¥

7.20.3.1 Width of ptrdiff_t

[
‘ PTRDIFF_WIDTH 17
L

7.20.3.2 Width of sig_atomic_t

[
‘ SIG_ATOMIC_WIDTH 8
L

7.20.3.3 Width of size_t

I
| SIZE_WIDTH 16
L

283)The exact-width and pointer-holding integer types are optional.
24 A freestanding implementation need not provide all of these types.

§7.20.3.3 Library 263



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

7.20.3.4 Width of wchar_t

I
| WCHAR_WIDTH 8
L

7.20.3.5 Width of wint_t

[
| WINT_WIDTH 16
L

7.20.4 Macros for integer constants

The following function-like macros expand to integer constants suitable for initializing objects that
have integer types corresponding to types defined in <stdint.h>. Each macro name corresponds to
a similar type name in 7.20.1.2 or 7.20.1.5.

The argument in any instance of these macros shall be an unsuffixed integer constant (as defined in
6.4.4.1) with a value that does not exceed the limits for the corresponding type.

Each invocation of one of these macros shall expand to an integer constant expression suitable for
use in #if preprocessing directives. The type of the expression shall have the same type as would
an expression of the corresponding type converted according to the integer promotions. The value
of the expression shall be that of the argument.

7.20.4.1 Macros for minimum-width integer constants

The macro INTN_C(value) expands to an integer constant expression corresponding to the type
int_leastN_t. The macro UINTN_C(value) expands to an integer constant expression corre-
sponding to the type uint_leastN_t. For example, if uint_least64_t is a name for the type

unsigned long long int, then UINT64_C(0x123) might expand to the integer constant Ox123ULL.

7.20.4.2 Macros for greatest-width integer constants

The following macro expands to an integer constant expression having the value specified by its
argument and the type intmax_t:

| INTMAX_C (value) |

The following macro expands to an integer constant expression having the value specified by its
argument and the type uintmax_t:

| UINTMAX_C (value) |

7.20.5 Maximal and minimal values of integer types

For all integer types for which there is a macro with suffix _WIDTH holding the width, maximum
macros with suffix _MAX and, for all signed types, minimum macros with suffix _MIN are defined as
by 5.2.4.2. If it is unspecified if a type is signed or unsigned and the implementation has it as an
unsigned type, a minimum macro with extension _MIN, and value 0 of the corresponding type is
defined.

264 Library §7.20.5



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7.21 Input/output <stdio.h>

7.21.1 Introduction

The header <stdio.h> defines several macros, and declares three types and many functions for
performing input and output.

The types declared are size_t (described in 7.19);

\ FILE

which is an object type capable of recording all the information needed to control a stream, including
its file position indicator, a pointer to its associated buffer (if any), an error indicator that records
whether a read /write error has occurred, and an end-of-file indicator that records whether the end of
the file has been reached; and

i fpos_t

which is a complete object type other than an array type capable of recording all the information
needed to specify uniquely every position within a file.

The macros are NULL (described in 7.19);

_IOFBF
_IOLBF
_IONBF

which expand to integer constant expressions with distinct values, suitable for use as the third
argument to the setvbuf function;

\ BUFSIZ

which expands to an integer constant expression that is the size of the buffer used by the setbuf
function;

\ EOF

which expands to an integer constant expression, with type int and a negative value, that is returned
by several functions to indicate end-of-file, that is, no more input from a stream;

\ FOPEN_MAX

which expands to an integer constant expression that is the minimum number of files that the
implementation guarantees can be open simultaneously;

\ FILENAME_MAX

which expands to an integer constant expression that is the size needed for an array of char large
enough to hold the longest file name string that the implementation guarantees can be opened or, if
the implementation imposes no practical limit on the length of file name strings, the recommended

size of an array intended to hold a file name string®®® ;

25)0f course, file name string contents are subject to other system-specific constraints; therefore all possible strings of length

FILENAME_MAX cannot be expected to be opened successfully.

§721.1 Library 265



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

‘ —_PRINTF_NAN_LEN_MAX

which expands to an integer constant expression (suitable for use in #if preprocessing directives)
that is the maximum number of characters output for any

[-INAN(n-char-sequence)

sequence.?® If an implementation has no support for NaNs, it shall be 0. _PRINTF_NAN_LEN_MAX
shall be less than 64;

\ L_tmpnam
L

which expands to an integer constant expression that is the size needed for an array of char large
enough to hold a temporary file name string generated by the tmpnam function;

SEEK_CUR
SEEK_END
SEEK_SET

which expand to integer constant expressions with distinct values, suitable for use as the third
argument to the fseek function;

\ TMP_MAX

which expands to an integer constant expression that is the minimum number of unique file names
that can be generated by the tmpnam function;

stderr
stdin
stdout

which are expressions of type “pointer to FILE” that point to the FILE objects associated, respectively,
with the standard error, input, and output streams.

The header <wchar. h> declares a number of functions useful for wide character input and output.
The wide character input/output functions described in that subclause provide operations analogous
to most of those described here, except that the fundamental units internal to the program are
wide characters. The external representation (in the file) is a sequence of “generalized” multibyte
characters, as described further in 7.21.3.

The input/output functions are given the following collective terms:

— The wide character input functions — those functions described in 7.29 that perform input
into wide characters and wide strings: fgetwc, fgetws, getwc, getwchar, fwuscanf, wscanf,
vfwscanf, and vwscanf.

— The wide character output functions — those functions described in 7.29 that perform output from
wide characters and wide strings: fputwc, fputws, putwc, putwchar, fwprintf, wprintf,
vfwprintf, and vwprintf.

— The wide character input/output functions — the union of the ungetwc function, the wide charac-
ter input functions, and the wide character output functions.

— The byte input/output functions — those functions described in this subclause that perform
input/output: fgetc, fgets, fprintf, fputc, fputs, fread, fscanf, furite, getc, getchar,
printf, putc, putchar, puts, scanf, ungetc, vfprintf, vfscanf, vprintf, and vscanf.

Forward references: files (7.21.3), the fseek function (7.21.9.2), streams (7.21.2), the tmpnam func-
tion (7.21.4.4), <wchar.h> (7.29).

20)[f the implementation only uses the [-[NAN style, then _PRINTF_NAN_LEN_MAX would have the value 4.

266 Library §7.21.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7.21.2 Streams

Input and output, whether to or from physical devices such as terminals and tape drives, or whether
to or from files supported on structured storage devices, are mapped into logical data streams, whose
properties are more uniform than their various inputs and outputs. Two forms of mapping are
supported, for text streams and for binary streams.?8”)

A text stream is an ordered sequence of characters composed into lines, each line consisting of
zero or more characters plus a terminating new-line character. Whether the last line requires a
terminating new-line character is implementation-defined. Characters may have to be added, altered,
or deleted on input and output to conform to differing conventions for representing text in the host
environment. Thus, there need not be a one-to-one correspondence between the characters in a
stream and those in the external representation. Data read in from a text stream will necessarily
compare equal to the data that were earlier written out to that stream only if: the data consist only
of printing characters and the control characters horizontal tab and new-line; no new-line character
is immediately preceded by space characters; and the last character is a new-line character. Whether
space characters that are written out immediately before a new-line character appear when read in
is implementation-defined.

A binary stream is an ordered sequence of characters that can transparently record internal data.
Data read in from a binary stream shall compare equal to the data that were earlier written out to
that stream, under the same implementation. Such a stream may, however, have an implementation-
defined number of null characters appended to the end of the stream.

Each stream has an orientation. After a stream is associated with an external file, but before any
operations are performed on it, the stream is without orientation. Once a wide character input/out-
put function has been applied to a stream without orientation, the stream becomes a wide-oriented
stream. Similarly, once a byte input/output function has been applied to a stream without orien-
tation, the stream becomes a byte-oriented stream. Only a call to the freopen function or the fwide
function can otherwise alter the orientation of a stream. (A successful call to freopen removes any
orientation.)?®)

Byte input/output functions shall not be applied to a wide-oriented stream and wide character
input/output functions shall not be applied to a byte-oriented stream. The remaining stream
operations do not affect, and are not affected by, a stream’s orientation, except for the following
additional restrictions:

— Binary wide-oriented streams have the file-positioning restrictions ascribed to both text and
binary streams.

— For wide-oriented streams, after a successful call to a file-positioning function that leaves the
file position indicator prior to the end-of-file, a wide character output function can overwrite
a partial multibyte character; any file contents beyond the byte(s) written are henceforth
indeterminate.

Each wide-oriented stream has an associated mbstate_t object that stores the current parse state
of the stream. A successful call to fgetpos stores a representation of the value of this mbstate_t
object as part of the value of the fpos_t object. A later successful call to fsetpos using the same
stored fpos_t value restores the value of the associated mbstate_t object as well as the position
within the controlled stream.

Each stream has an associated lock that is used to prevent data races when multiple threads of
execution access a stream, and to restrict the interleaving of stream operations performed by multiple
threads. Only one thread may hold this lock at a time. The lock is reentrant: a single thread may
hold the lock multiple times at a given time.

All functions that read, write, position, or query the position of a stream lock the stream before
accessing it. They release the lock associated with the stream when the access is complete.

287) An implementation need not distinguish between text streams and binary streams. In such an implementation, there
need be no new-line characters in a text stream nor any limit to the length of a line.
288)The three predefined streams stdin, stdout, and stderr are unoriented at program startup.

§7.21.2 Library 267



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Environmental limits

An implementation shall support text files with lines containing at least 254 characters, including
the terminating new-line character. The value of the macro BUFSIZ shall be at least 256.

Forward references: the freopen function (7.21.5.4), the fwide function (7.29.3.5), mbstate_t
(7.29.1), the fgetpos function (7.21.9.1), the fsetpos function (7.21.9.3).

7.21.3 Files

A stream is associated with an external file (which may be a physical device) by opening a file, which
may involve creating a new file. Creating an existing file causes its former contents to be discarded,
if necessary. If a file can support positioning requests (such as a disk file, as opposed to a terminal),
then a file position indicator associated with the stream is positioned at the start (character number
zero) of the file, unless the file is opened with append mode in which case it is implementation-
defined whether the file position indicator is initially positioned at the beginning or the end of the
file. The file position indicator is maintained by subsequent reads, writes, and positioning requests,
to facilitate an orderly progression through the file.

Binary files are not truncated, except as defined in 7.21.5.3. Whether a write on a text stream causes
the associated file to be truncated beyond that point is implementation-defined.

When a stream is unbuffered, characters are intended to appear from the source or at the destination
as soon as possible. Otherwise characters may be accumulated and transmitted to or from the host
environment as a block. When a stream is fully buffered, characters are intended to be transmitted
to or from the host environment as a block when a buffer is filled. When a stream is line buffered,
characters are intended to be transmitted to or from the host environment as a block when a new-line
character is encountered. Furthermore, characters are intended to be transmitted as a block to the
host environment when a buffer is filled, when input is requested on an unbuffered stream, or when
input is requested on a line buffered stream that requires the transmission of characters from the
host environment. Support for these characteristics is implementation-defined, and may be affected
via the setbuf and setvbuf functions.

A file may be disassociated from a controlling stream by closing the file. Output streams are
flushed (any unwritten buffer contents are transmitted to the host environment) before the stream
is disassociated from the file. The value of a pointer to a FILE object is indeterminate after the
associated file is closed (including the standard text streams). Whether a file of zero length (on which
no characters have been written by an output stream) actually exists is implementation-defined.

The file may be subsequently reopened, by the same or another program execution, and its contents
reclaimed or modified (if it can be repositioned at its start). If the main function returns to its original
caller, or if the exit function is called, all open files are closed (hence all output streams are flushed)
before program termination. Other paths to program termination, such as calling the abort function,
need not close all files properly.

The address of the FILE object used to control a stream may be significant; a copy of a FILE object
need not serve in place of the original.

At program startup, three text streams are predefined and need not be opened explicitly — standard
input (for reading conventional input), standard output (for writing conventional output), and standard
error (for writing diagnostic output). As initially opened, the standard error stream is not fully
buffered; the standard input and standard output streams are fully buffered if and only if the stream
can be determined not to refer to an interactive device.

Functions that open additional (nontemporary) files require a file name, which is a string. The
rules for composing valid file names are implementation-defined. Whether the same file can be
simultaneously open multiple times is also implementation-defined.

Although both text and binary wide-oriented streams are conceptually sequences of wide characters,
the external file associated with a wide-oriented stream is a sequence of multibyte characters,
generalized as follows:

— Multibyte encodings within files may contain embedded null bytes (unlike multibyte encod-
ings valid for use internal to the program).

268 Library §7.21.3



10

11

12

13

14

15

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

— A file need not begin nor end in the initial shift state.?)

Moreover, the encodings used for multibyte characters may differ among files. Both the nature and
choice of such encodings are implementation-defined.

The wide character input functions read multibyte characters from the stream and convert them
to wide characters as if they were read by successive calls to the fgetwc function. Each conversion
occurs as if by a call to the mbrtowc function, with the conversion state described by the stream’s
own mbstate_t object. The byte input functions read characters from the stream as if by successive
calls to the fgetc function.

The wide character output functions convert wide characters to multibyte characters and write them
to the stream as if they were written by successive calls to the fputwc function. Each conversion
occurs as if by a call to the wertomb function, with the conversion state described by the stream’s
own mbstate_t object. The byte output functions write characters to the stream as if by successive
calls to the fputc function.

In some cases, some of the byte input/output functions also perform conversions between multibyte
characters and wide characters. These conversions also occur as if by calls to the mbrtowc and
wcrtomb functions.

An encoding error occurs if the character sequence presented to the underlying mbrtowc function
does not form a valid (generalized) multibyte character, or if the code value passed to the underlying
wcrtomb does not correspond to a valid (generalized) multibyte character. The wide character
input/output functions and the byte input/output functions store the value of the macro EILSEQ in
errno if and only if an encoding error occurs.

Environmental limits

The value of FOPEN_MAX shall be at least eight, including the three standard text streams.

Forward references: the exit function (7.22.4.4), the fgetc function (7.21.7.1), the fopen function
(7.21.5.3), the fputc function (7.21.7.3), the setbuf function (7.21.5.5), the setvbuf function (7.21.5.6),

the fgetwc function (7.29.3.1), the fputwc function (7.29.3.3), conversion state (7.29.6), the mbrtowc
function (7.29.6.3.2), the wcrtomb function (7.29.6.3.3).

7.21.4 Operations on files
7.21.4.1 The remove function
Synopsis

#include <stdio.h>
int remove(const char xfilename);

Description

The remove function causes the file whose name is the string pointed to by filename to be no longer
accessible by that name. A subsequent attempt to open that file using that name will fail, unless it is
created anew. If the file is open, the behavior of the remove function is implementation-defined.

Returns
The remove function returns zero if the operation succeeds, nonzero if it fails.

7.21.4.2 The rename function
Synopsis

#include <stdio.h>
int rename(const char xold, const char x*new);

289)Setting the file position indicator to end-of-file, as with fseek(file, ©, SEEK_END), has undefined behavior for a
binary stream (because of possible trailing null characters) or for any stream with state-dependent encoding that does not
assuredly end in the initial shift state.

§7.21.4.2 Library 269



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Description

The rename function causes the file whose name is the string pointed to by old to be henceforth
known by the name given by the string pointed to by new. The file named old is no longer accessible
by that name. If a file named by the string pointed to by new exists prior to the call to the rename
function, the behavior is implementation-defined.

Returns

The rename function returns zero if the operation succeeds, nonzero if it fails,?? in which case if the
file existed previously it is still known by its original name.

7.21.4.3 The tmpfile function

Synopsis

#include <stdio.h>
FILE *tmpfile(void);

Description

The tmpfile function creates a temporary binary file that is different from any other existing file
and that will automatically be removed when it is closed or at program termination. If the program
terminates abnormally, whether an open temporary file is removed is implementation-defined. The
file is opened for update with "wb+" mode.

Recommended practice

It should be possible to open at least TMP_MAX temporary files during the lifetime of the program
(this limit may be shared with tmpnam) and there should be no limit on the number simultaneously
open other than this limit and any limit on the number of open files (FOPEN_MAX).

Returns

The tmpfile function returns a pointer to the stream of the file that it created. If the file cannot be
created, the tmpfile function returns a null pointer.

Forward references: the fopen function (7.21.5.3).

7.21.4.4 The tmpnam function
Synopsis

#include <stdio.h>
char xtmpnam(char xs);

Description

The tmpnam function generates a string that is a valid file name and that is not the same as the name
of an existing file.”” The function is potentially capable of generating at least TMP_MAX different
strings, but any or all of them may already be in use by existing files and thus not be suitable return
values.

The tmpnam function generates a different string each time it is called.
Calls to the tmpnam function with a null pointer argument may introduce data races with each other.
The implementation shall behave as if no library function calls the tmpnam function.

Returns

If no suitable string can be generated, the tmpnam function returns a null pointer. Otherwise, if
the argument is a null pointer, the tmpnam function leaves its result in an internal static object and
returns a pointer to that object (subsequent calls to the tmpnam function may modify the same object).

290) Among the reasons the implementation could cause the rename function to fail are that the file is open or that it is
necessary to copy its contents to effectuate its renaming.

2DFiles created using strings generated by the tmpnam function are temporary only in the sense that their names are not
expected to collide with those generated by conventional naming rules for the implementation. It is still necessary to use the
remove function to remove such files when their use is ended, and before program termination.

270 Library §7.21.4.4



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

If the argument is not a null pointer, it is assumed to point to an array of at least L_tmpnam chars;
the tmpnam function writes its result in that array and returns the argument as its value.

Environmental limits
The value of the macro TMP_MAX shall be at least 25.

7.21.5 File access functions
7.21.5.1 The fclose function
Synopsis

#include <stdio.h>
int fclose(FILE xstream);

Description

A successful call to the fclose function causes the stream pointed to by stream to be flushed and
the associated file to be closed. Any unwritten buffered data for the stream are delivered to the host
environment to be written to the file; any unread buffered data are discarded. Whether or not the
call succeeds, the stream is disassociated from the file and any buffer set by the setbuf or setvbuf
function is disassociated from the stream (and deallocated if it was automatically allocated).

Returns

The fclose function returns zero if the stream was successfully closed, or EOF if any errors were
detected.

7.21.5.2 The fflush function
Synopsis

#include <stdio.h>
int fflush(FILE *stream);

Description

If stream points to an output stream or an update stream in which the most recent operation was
not input, the fflush function causes any unwritten data for that stream to be delivered to the host
environment to be written to the file; otherwise, the behavior is undefined.

If streamis a null pointer, the fflush function performs this flushing action on all streams for which
the behavior is defined above.

Returns

The fflush function sets the error indicator for the stream and returns EOF if a write error occurs,
otherwise it returns zero.

Forward references: the fopen function (7.21.5.3).

7.21.5.3 The fopen function
Synopsis

#include <stdio.h>
FILE xfopen(const char * restrict filename, const char * restrict mode);

Description

The fopen function opens the file whose name is the string pointed to by filename, and associates
a stream with it.

The argument mode points to a string. If the string is one of the following, the file is open in the
indicated mode. Otherwise, the behavior is undefined.??
292

)If the string begins with one of the listed mode sequences, the implementation might choose to ignore the remaining
characters, or it might use them to select different kinds of a file (some of which might not conform to the properties in 7.21.2).

§7.21.53 Library 271



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

r open text file for reading

w truncate to zero length or create text file for writing

WX create text file for writing

a append; open or create text file for writing at end-of-file

rb open binary file for reading

wb truncate to zero length or create binary file for writing

wbx create binary file for writing

ab append; open or create binary file for writing at end-of-file
r+ open text file for update (reading and writing)

w+ truncate to zero length or create text file for update

WX create text file for update

a+ append; open or create text file for update, writing at end-of-file
r+b or rb+ open binary file for update (reading and writing)

w+b or wb+ truncate to zero length or create binary file for update

w+bx or wb+x  create binary file for update

a+b or ab+ append; open or create binary file for update, writing at end-of-file

Opening a file with read mode (' r' as the first character in the mode argument) fails if the file does
not exist or cannot be read.

Opening a file with exclusive mode ('x’ as the last character in the mode argument) fails if the file
already exists or cannot be created. Otherwise, the file is created with exclusive (also known as
non-shared) access to the extent that the underlying system supports exclusive access.

Opening a file with append mode ("a’ as the first character in the mode argument) causes all
subsequent writes to the file to be forced to the then current end-of-file, regardless of intervening
calls to the fseek function. In some implementations, opening a binary file with append mode ('b’

as the second or third character in the above list of mode argument values) may initially position the
file position indicator for the stream beyond the last data written, because of null character padding.

When a file is opened with update mode ("+' as the second or third character in the above list
of mode argument values), both input and output may be performed on the associated stream.
However, output shall not be directly followed by input without an intervening call to the fflush
function or to a file positioning function (fseek, fsetpos, or rewind), and input shall not be directly
followed by output without an intervening call to a file positioning function, unless the input
operation encounters end-of-file. Opening (or creating) a text file with update mode may instead
open (or create) a binary stream in some implementations.

When opened, a stream is fully buffered if and only if it can be determined not to refer to an
interactive device. The error and end-of-file indicators for the stream are cleared.

Returns

The fopen function returns a pointer to the object controlling the stream. If the open operation fails,
fopen returns a null pointer.

Forward references: file positioning functions (7.21.9).

7.21.5.4 The freopen function
Synopsis

#include <stdio.h>
FILE xfreopen(const char * restrict filename, const char * restrict mode,
FILE * restrict stream);

272 Library §7.21.5.4



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Description
The freopen function opens the file whose name is the string pointed to by filename and associates
the stream pointed to by stream with it. The mode argument is used just as in the fopen function.?”®

If filename is a null pointer, the freopen function attempts to change the mode of the stream to
that specified by mode, as if the name of the file currently associated with the stream had been
used. It is implementation-defined which changes of mode are permitted (if any), and under what
circumstances.

The freopen function first attempts to close any file that is associated with the specified stream.
Failure to close the file is ignored. The error and end-of-file indicators for the stream are cleared.

Returns

The freopen function returns a null pointer if the open operation fails. Otherwise, freopen returns
the value of stream.

7.21.5.5 The setbuf function
Synopsis

#include <stdio.h>
void setbuf(FILE * restrict stream, char * restrict buf);

Description

Except that it returns no value, the setbuf function is equivalent to the setvbuf function invoked
with the values _IOFBF for mode and BUFSIZ for size, or (if buf is a null pointer), with the value
—IONBF for mode.

Returns
The setbuf function returns no value.

Forward references: the setvbuf function (7.21.5.6).

7.21.5.6 The setvbuf function
Synopsis

#include <stdio.h>
int setvbuf(FILE * restrict stream, char * restrict buf, int mode, size_t size);

Description

The setvbuf function may be used only after the stream pointed to by stream has been associated
with an open file and before any other operation (other than an unsuccessful call to setvbuf) is
performed on the stream. The argument mode determines how stream will be buffered, as follows:

_IOFBF causes input/output to be fully buffered;
—IOLBF causes input/output to be line buffered;

_IONBF causes input/output to be unbuffered.

If buf is not a null pointer, the array it points to may be used instead of a buffer allocated by the
setvbuf function® and the argument size specifies the size of the array; otherwise, size may
determine the size of a buffer allocated by the setvbuf function. The contents of the array at any
time are indeterminate.

23)The primary use of the freopen function is to change the file associated with a standard text stream (stderr, stdin,
or stdout), as those identifiers need not be modifiable lvalues to which the value returned by the fopen function could be
assigned.

29 The buffer has to have a lifetime at least as great as the open stream, so not closing the stream before a buffer that has
automatic storage duration is deallocated upon block exit results in undefined behavior.

§7.21.5.6 Library 273



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Returns

The setvbuf function returns zero on success, or nonzero if an invalid value is given for mode or if
the request cannot be honored.

7.21.6 Formatted input/output functions

The formatted input/output functions shall behave as if there is a sequence point after the actions
associated with each specifier.”)

7.21.6.1 The fprintf function

Synopsis

#include <stdio.h>

int fprintf(FILE * restrict stream, const char * restrict format, ...);
Description

The fprintf function writes output to the stream pointed to by stream, under control of the string
pointed to by format that specifies how subsequent arguments are converted for output. If there are
insufficient arguments for the format, the behavior is undefined. If the format is exhausted while
arguments remain, the excess arguments are evaluated (as always) but are otherwise ignored. The
fprintf function returns when the end of the format string is encountered.

The format shall be a multibyte character sequence, beginning and ending in its initial shift state.
The format is composed of zero or more directives: ordinary multibyte characters (not %), which
are copied unchanged to the output stream; and conversion specifications, each of which results
in fetching zero or more subsequent arguments, converting them, if applicable, according to the
corresponding conversion specifier, and then writing the result to the output stream.

Each conversion specification is introduced by the character %. After the %, the following appear in
sequence:

— Zero or more flags (in any order) that modify the meaning of the conversion specification.

— An optional minimum field width. If the converted value has fewer characters than the field
width, it is padded with spaces (by default) on the left (or right, if the left adjustment flag,
described later, has been given) to the field width. The field width takes the form of an asterisk
* (described later) or a nonnegative decimal integer.??®

— An optional precision that gives the minimum number of digits to appear for the d, i, 0, u, X,
and X conversions, the number of digits to appear after the decimal-point character for a, A, e,
E, f, and F conversions, the maximum number of significant digits for the g and G conversions,
or the maximum number of bytes to be written for s conversions. The precision takes the form
of a period (.) followed either by an asterisk * (described later) or by an optional nonnegative
decimal integer; if only the period is specified, the precision is taken as zero. If a precision
appears with any other conversion specifier, the behavior is undefined.

— An optional length modifier that specifies the size of the argument.

— A conversion specifier character that specifies the type of conversion to be applied.

As noted above, a field width, or precision, or both, may be indicated by an asterisk. In this case,
an int argument supplies the field width or precision. The arguments specifying field width, or
precision, or both, shall appear (in that order) before the argument (if any) to be converted. A
negative field width argument is taken as a - flag followed by a positive field width. A negative
precision argument is taken as if the precision were omitted.

The flag characters and their meanings are:

2%)The fprintf functions perform writes to memory for the %n specifier.
2%)Note that 0 is taken as a flag, not as the beginning of a field width.

274 Library §7.21.6.1



N2573

space

working draft — October 1, 2020 ISO/IEC 9899:202x (E)

The result of the conversion is left-justified within the field. (It is right-justified if this flag is
not specified.)

The result of a signed conversion always begins with a plus or minus sign. (It begins with a
sign only when a negative value is converted if this flag is not specified.)*”

If the first character of a signed conversion is not a sign, or if a signed conversion results in
no characters, a space is prefixed to the result. If the space and + flags both appear, the space
flag is ignored.

The result is converted to an “alternative form”. For o conversion, it increases the precision, if
and only if necessary, to force the first digit of the result to be a zero (if the value and precision
are both 0, a single 0 is printed). For x (or X) conversion, a nonzero result has 0x (or 0X)
prefixed to it. For a, A, e, E, f, F, g, and G conversions, the result of converting a floating-point
number always contains a decimal-point character, even if no digits follow it. (Normally, a
decimal-point character appears in the result of these conversions only if a digit follows it.)
For g and G conversions, trailing zeros are not removed from the result. For other conversions,
the behavior is undefined.

Ford,i,0,u,x,X a,A e E, f,F,g,and G conversions, leading zeros (following any indication
of sign or base) are used to pad to the field width rather than performing space padding,
except when converting an infinity or NaN. If the 0 and - flags both appear, the 0 flag is
ignored. For d, i, o, u, X, and X conversions, if a precision is specified, the 0 flag is ignored.
For other conversions, the behavior is undefined.

The length modifiers and their meanings are:

hh

1 (ell)

Specifies that a following d, i, 0, u, X, or X conversion specifier applies to a signed char
or unsigned char argument (the argument will have been promoted according to the
integer promotions, but its value shall be converted to signed char or unsigned char
before printing); or that a following n conversion specifier applies to a pointer to a
signed char argument.

Specifies that a following d, i, o, u, X, or X conversion specifier applies to a short int
or unsigned short int argument (the argument will have been promoted accord-
ing to the integer promotions, but its value shall be converted to short int or
unsigned short int before printing); or that a following n conversion specifier applies
to a pointer to a short int argument.

Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long int
or unsigned long int argument; that a following n conversion specifier applies to
a pointer to a long int argument; that a following c conversion specifier applies to
a wint_t argument; that a following s conversion specifier applies to a pointer to a
wchar_t argument; or has no effect on a following a, A, e, E, f, F, g, or G conversion
specifier.

11 (ell-ell) Specifies that a following d, i, o, u, X, or X conversion specifier applies to a

long long int or unsigned long long int argument; or that a following n con-
version specifier applies to a pointer to a long long int argument.

Specifies that a following d, i, o, u, X, or X conversion specifier applies to an intmax_t
or uintmax_t argument; or that a following n conversion specifier applies to a pointer
to an intmax_t argument.

Specifies that a following d, i, o, u, X, or X conversion specifier applies to a size_t or the
corresponding signed integer type argument; or that a following n conversion specifier
applies to a pointer to a signed integer type corresponding to size_t argument.

297)The results of all floating conversions of a negative zero, and of negative values that round to zero, include a minus sign.

§7.21.6.1 Library 275



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

DD

Specifies that a following d, i, o, u, X, or X conversion specifier applies to a ptrdiff_t
or the corresponding unsigned integer type argument; or that a following n conversion
specifier applies to a pointer to a ptrdiff_t argument.

Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a
long double argument.

Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a
—Decimal32 argument.

Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a
—_Decimal64 argument.

Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a
—Decimall28 argument.

If a length modifier appears with any conversion specifier other than as specified above, the behavior
is undefined.

The conversion specifiers and their meanings are:

d,i

o,u,x,X

f,F

9,6

The int argument is converted to signed decimal in the style [-Jdddd. The precision
specifies the minimum number of digits to appear; if the value being converted can be
represented in fewer digits, it is expanded with leading zeros. The default precision is 1.
The result of converting a zero value with a precision of zero is no characters.

The unsigned int argument is converted to unsigned octal (0), unsigned decimal (u), or
unsigned hexadecimal notation (x or X) in the style dddd; the letters abcdef are used for x
conversion and the letters ABCDEF for X conversion. The precision specifies the minimum
number of digits to appear; if the value being converted can be represented in fewer digits,
it is expanded with leading zeros. The default precision is 1. The result of converting a
zero value with a precision of zero is no characters.

A double argument representing a floating-point number is converted to decimal notation
in the style [-]ddd.ddd, where the number of digits after the decimal-point character is
equal to the precision specification. If the precision is missing, it is taken as 6; if the
precision is zero and the # flag is not specified, no decimal-point character appears. If a
decimal-point character appears, at least one digit appears before it. The value is rounded
to the appropriate number of digits.

A double argument representing an infinity is converted in one of the styles [-]inf or
[-]Jinfinity — which style is implementation-defined. A double argument representing a
NaN is converted in one of the styles [-]Jnan or [-Inan (n-char-sequence) — which style, and
the meaning of any n-char-sequence, is implementation-defined. The F conversion specifier
produces INF, INFINITY, or NAN instead of inf, infinity, or nan, respectively.’®

A double argument representing a floating-point number is converted in the style
[-]d.ddde+dd, where there is one digit (which is nonzero if the argument is nonzero) before
the decimal-point character and the number of digits after it is equal to the precision; if the
precision is missing, it is taken as 6; if the precision is zero and the # flag is not specified,
no decimal-point character appears. The value is rounded to the appropriate number of
digits. The E conversion specifier produces a number with E instead of e introducing the
exponent. The exponent always contains at least two digits, and only as many more digits
as necessary to represent the exponent. If the value is zero, the exponent is zero.

A double argument representing an infinity or NaN is converted in the style of an f or F
conversion specifier.

A double argument representing a floating-point number is converted in style f or e (or
in style F or E in the case of a G conversion specifier), depending on the value converted

2%8)When applied to infinite and NaN values, the -, +, and space flag characters have their usual meaning; the # and 0 flag
characters have no effect.

276

Library §7.21.6.1



N2573

a,A

working draft — October 1, 2020 ISO/IEC 9899:202x (E)

and the precision. Let P equal the precision if nonzero, 6 if the precision is omitted, or 1 if
the precision is zero. Then, if a conversion with style E would have an exponent of X:

if P > X > —4, the conversion is with style f (or F) and precision P — (X + 1).

otherwise, the conversion is with style e (or E) and precision P — 1.

Finally, unless the # flag is used, any trailing zeros are removed from the fractional portion
of the result and the decimal-point character is removed if there is no fractional portion
remaining.

A double argument representing an infinity or NaN is converted in the style of an f or F
conversion specifier.

A double argument representing a floating-point number is converted in the style
[-16xh.hhhhp=+d, where there is one hexadecimal digit (which is nonzero if the argument is a
normalized floating-point number and is otherwise unspecified) before the decimal-point
character® and the number of hexadecimal digits after it is equal to the precision; if the
precision is missing and FLT_RADIX is a power of 2, then the precision is sufficient for an
exact representation of the value; if the precision is missing and FLT_RADIX is not a power
of 2, then the precision is sufficient to distinguish®* values of type double, except that
trailing zeros may be omitted; if the precision is zero and the # flag is not specified, no
decimal-point character appears. The letters abcdef are used for a conversion and the
letters ABCDEF for A conversion. The A conversion specifier produces a number with X and
P instead of x and p. The exponent always contains at least one digit, and only as many
more digits as necessary to represent the decimal exponent of 2. If the value is zero, the
exponent is zero.

A double argument representing an infinity or NaN is converted in the style of an f or F
conversion specifier.

If an H, D, or DD modifier is present and the precision is missing, then for a decimal
floating type argument represented by a triple of integers (s, ¢, ¢), where n is the number
of significant digits in the coefficient c,

— if —(n+5) < ¢ <0, use style f (or style F in the case of an A conversion specifier)
with formatting precision equal to —g,

— otherwise, use style e (or style E in the case of an A conversion specifier) with format-
ting precision equal to n — 1, with the exceptions that if ¢ = 0 then the digit-sequence
in the exponent-part shall have the value ¢ (rather than 0), and that the exponent is
always expressed with the minimum number of digits required to represent its value
(the exponent never contains a leading zero).

If the precision P is present (in the conversion specification) and is zero or at least as
large as the precision p (5.2.4.2.2) of the decimal floating type, the conversion is as if the
precision were missing. If the precision P is present (and nonzero) and less than the
precision p of the decimal floating type, the conversion first obtains an intermediate result
as follows, where n is the number of significant digits in the coefficient:

— If n < P, set the intermediate result to the input.

— If n > P, round the input value, according to the current rounding direction for
decimal floating-point operations, to P decimal digits, with unbounded exponent
range, representing the result with a P-digit integer coefficient when in the form
(s,c.q).

Convert the intermediate result in the manner described above for the case where the
precision is missing.

2)Binary implementations can choose the hexadecimal digit to the left of the decimal-point character so that subsequent
digits align to nibble (4-bit) boundaries.

300)The precision p is sufficient to distinguish values of the source type if 16P~' > b™ where b is FLT_RADIX and n is the
number of base-b digits in the significand of the source type. A smaller p might suffice depending on the implementation’s
scheme for determining the digit to the left of the decimal-point character.

§7.21.6.1

Library 277



10

11

12

13

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

c If no 1 length modifier is present, the int argument is converted to an unsigned char,
and the resulting character is written.

If an 1 length modifier is present, the wint_t argument is converted as if by an 1s
conversion specification with no precision and an argument that points to the initial
element of a two-element array of wchar_t, the first element containing the wint_t
argument to the 1c conversion specification and the second a null wide character.

s If no 1 length modifier is present, the argument shall be a pointer to the initial element
of an array of character type.>®) Characters from the array are written up to (but not
including) the terminating null character. If the precision is specified, no more than that
many bytes are written. If the precision is not specified or is greater than the size of the
array, the array shall contain a null character.

If an 1 length modifier is present, the argument shall be a pointer to the initial element
of an array of wchar_t type. Wide characters from the array are converted to multibyte
characters (each as if by a call to the wertomb function, with the conversion state described
by an mbstate_t object initialized to zero before the first wide character is converted) up
to and including a terminating null wide character. The resulting multibyte characters are
written up to (but not including) the terminating null character (byte). If no precision is
specified, the array shall contain a null wide character. If a precision is specified, no more
than that many bytes are written (including shift sequences, if any), and the array shall
contain a null wide character if, to equal the multibyte character sequence length given by
the precision, the function would need to access a wide character one past the end of the
array. In no case is a partial multibyte character written.3%?

p The argument shall be a pointer to void. The value of the pointer is converted to a
sequence of printing characters, in an implementation-defined manner.

n The argument shall be a pointer to signed integer into which is written the number of
characters written to the output stream so far by this call to fprintf. No argument is
converted, but one is consumed. If the conversion specification includes any flags, a field
width, or a precision, the behavior is undefined.

o°

% character is written. No argument is converted. The complete conversion specification
shall be %%.

If a conversion specification is invalid, the behavior is undefined.’® If any argument is not the
correct type for the corresponding conversion specification, the behavior is undefined.

In no case does a nonexistent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field is expanded to contain the conversion result.

For a and A conversions, if FLT_RADIX is a power of 2, the value is correctly rounded to a hexadecimal
floating number with the given precision.

Recommended practice

For a and A conversions, if FLT_RADIX is not a power of 2 and the result is not exactly representable
in the given precision, the result should be one of the two adjacent numbers in hexadecimal floating
style with the given precision, with the extra stipulation that the error should have a correct sign for
the current rounding direction.

Fore, E, f, F, g, and G conversions, if the number of significant decimal digits is at most the maximum
value M of the T_DECIMAL_DIG macros (defined in <float.h>), then the result should be correctly
rounded.?® If the number of significant decimal digits is more than M but the source value is
exactly representable with M digits, then the result should be an exact representation with trailing
zeros. Otherwise, the source value is bounded by two adjacent decimal strings L < U, both having

30D)No special provisions are made for multibyte characters.

302)Redundant shift sequences can result if multibyte characters have a state-dependent encoding.

303)See “future library directions” (7.31.13).

304)For binary-to-decimal conversion, the result format’s values are the numbers representable with the given format specifier.
The number of significant digits is determined by the format specifier, and in the case of fixed-point conversion by the source
value as well.

278 Library §7.21.6.1



14

15
16

17

18

19

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

M significant digits; the value of the resultant decimal string D should satisfy L < D < U, with the
extra stipulation that the error should have a correct sign for the current rounding direction.

Returns
The fprintf function returns the number of characters transmitted, or a negative value if an output
or encoding error occurred.

Environmental limits
The number of characters that can be produced by any single conversion shall be at least 4095.

EXAMPLE 1 To print a date and time in the form “Sunday, July 3, 10:02” followed by = to five decimal places:

#include <math.h>

#include <stdio.h>

VA Y

char xweekday, *month; // pointers to strings

int day, hour, min;

fprintf(stdout, "%s, %s %d, %.2d:%.2d\n",
weekday, month, day, hour, min);

fprintf(stdout, "pi = %.5f\n", 4 % atan(1.0));

EXAMPLE 2 In this example, multibyte characters do not have a state-dependent encoding, and the members of the extended
character set that consist of more than one byte each consist of exactly two bytes, the first of which is denoted here by a []
and the second by an uppercase letter.

Given the following wide string with length seven,

static wchar_t wstr[] = L"CXOYabd ZW";

the seven calls

fprintf(stdout, "|1234567890123|\n");
fprintf(stdout, "|%131ls|\n", wstr);
fprintf(stdout, "|%-13.91ls|\n", wstr);
fprintf(stdout, "|%13.10ls|\n", wstr);
fprintf(stdout, "|%13.11ls|\n", wstr);
fprintf(stdout, "|%13.15ls|\n", &wstr[2]);
fprintf(stdout, "|%13lc|\n", (wint_t) wstr[5]);

will print the following seven lines:

| 1234567890123 |
| [CXOYabdZW|
OXYabdz |
|  DXOvabdZ|
| [XOYabdZW|
| abd ZW|
| LZ|

EXAMPLE 3 Following are representations of _Decimal64 arguments as triples (s, ¢, ¢) and the corresponding character
sequences fprintf produces with "%Da":

§7.21.6.1 Library 279



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573
(1,123,0) 123
(—1,123,0) -123
(1,123, -2) 1.23
(1,123,1) 1.23e+3
(—1,123,1) -1.23e+3
(1,123, -8) 0.00000123
(1,123, -9) 1.23e-7
(1,120, -8) 0.00000120
(1,120, —9) 1.20e-7
(1,1234567890123456, 0) 1234567890123456
(1,1234567890123456, 1) 1.234567890123456e+16
(1,1234567890123456, —1) 123456789012345.6
(1,1234567890123456, —21)  0.000001234567890123456
(1,1234567890123456, —22)  1.234567890123456e-7
(1,0,0) 0
(=1,0,0) -0
(1,0, —6) 0.000000
(1,0,—7) e-7
(1,0,2) 0e+2
(1,5,-6) 0.000005
(1,50, —7) 0.0000050
(1,5,—7) 5e-7
To illustrate the effects of a precision specification, the sequence:
—Decimal32 x = 6543.00DF; // (1, 654300, -2)
fprintf(stdout, "%Ha\n", x);
fprintf(stdout, "%.6Ha\n", Xx);
fprintf(stdout, "%.5Ha\n", Xx);
fprintf(stdout, "%.4Ha\n", Xx);
fprintf(stdout, "%.3Ha\n", x);
fprintf(stdout, "%.2Ha\n", Xx);
fprintf(stdout, "%.1lHa\n", Xx);
fprintf(stdout, "%.0Ha\n", Xx);
assuming default rounding, results in:
6543.00
6543.00
6543.0
6543
6.54e+3
6.5e+3
7e+3
6543.00
To illustrate the effects of the exponent range, the sequence:
—Decimal32 x = 9543210e87DF; // (1, 9543210, 87)
_Decimal32 y = 9500000e90DF; // (1, 9500000, 90)
fprintf(stdout, "%.6Ha\n", Xx);
fprintf(stdout, "%.5Ha\n", X);
fprintf(stdout, "%.4Ha\n", Xx);
fprintf(stdout, "%.3Ha\n", Xx);
fprintf(stdout, "%.2Ha\n", x);
fprintf(stdout, "%.1Ha\n", Xx);
fprintf(stdout, "%.1Ha\n", y);
assuming default rounding, results in:
9.54321e+93
9.5432e+93
9.543e+93
9.54e+93
9.5e+93
le+94
le+97
To further illustrate the effects of the exponent range, the sequence:
T
280 Library §7.21.6.1




N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

\ _Decimal32 x
\ _Decimal32 y
\ fprintf(stdout, "%.3Ha\n", x); \
\ fprintf(stdout, "%.2Ha\n", x); \
| |
L |

9512345e90DF; // (1, 9512345, 90)
9512345e86DF; // (1, 9512345, 86)

fprintf(stdout, "%.1Ha\n", x);
fprintf(stdout, "%.2Ha\n", y);

assuming default rounding, results in:

9.51e+96
9.5e+96
le+97
9.5e+92

Forward references: conversion state (7.29.6), the wcrtomb function (7.29.6.3.3).

7.21.6.2 The fscanf function
Synopsis

#include <stdio.h>
int fscanf(FILE x restrict stream, const char x restrict format, ...);

Description

The fscanf function reads input from the stream pointed to by stream, under control of the string
pointed to by format that specifies the admissible input sequences and how they are to be converted
for assignment, using subsequent arguments as pointers to the objects to receive the converted
input. If there are insufficient arguments for the format, the behavior is undefined. If the format
is exhausted while arguments remain, the excess arguments are evaluated (as always) but are
otherwise ignored.

The format shall be a multibyte character sequence, beginning and ending in its initial shift state.The
format is composed of zero or more directives: one or more white-space characters, an ordinary
multibyte character (neither % nor a white-space character), or a conversion specification. Each
conversion specification is introduced by the character %. After the %, the following appear in
sequence:

— An optional assignment-suppressing character *.

— An optional decimal integer greater than zero that specifies the maximum field width (in
characters).

— An optional length modifier that specifies the size of the receiving object.

— A conversion specifier character that specifies the type of conversion to be applied.

The fscanf function executes each directive of the format in turn. When all directives have been
executed, or if a directive fails (as detailed below), the function returns. Failures are described as
input failures (due to the occurrence of an encoding error or the unavailability of input characters),
or matching failures (due to inappropriate input).

A directive composed of white-space character(s) is executed by reading input up to the first non-
white-space character (which remains unread), or until no more characters can be read. The directive
never fails.

A directive that is an ordinary multibyte character is executed by reading the next characters of the
stream. If any of those characters differ from the ones composing the directive,the directive fails and
the differing and subsequent characters remain unread. Similarly, if end-of-file, an encoding error,
or a read error prevents a character from being read, the directive fails.

A directive that is a conversion specification defines a set of matching input sequences, as described
below for each specifier. A conversion specification is executed in the following steps:

Input white-space characters are skipped, unless the specification includes a [, ¢, or n specifier.>%

305 These white-space characters are not counted against a specified field width.

§7.21.6.2 Library 281



10

11

12

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

An input item is read from the stream, unless the specification includes an n specifier. An input
item is defined as the longest sequence of input characters which does not exceed any specified
field width and which is, or is a prefix of, a matching input sequence.’®® The first character, if any,
after the input item remains unread. If the length of the input item is zero, the execution of the
directive fails; this condition is a matching failure unless end-of-file, an encoding error, or a read
error prevented input from the stream, in which case it is an input failure.

Except in the case of a % specifier, the input item (or, in the case of a %n directive, the count of input
characters) is converted to a type appropriate to the conversion specifier. If the input item is not a
matching sequence, the execution of the directive fails: this condition is a matching failure. Unless
assignment suppression was indicated by a *, the result of the conversion is placed in the object
pointed to by the first argument following the format argument that has not already received a
conversion result. If this object does not have an appropriate type, or if the result of the conversion
cannot be represented in the object, the behavior is undefined.

The length modifiers and their meanings are:

hh Specifies that a following d, i, o, u, X, X, or n conversion specifier applies to an argument
with type pointer to signed char or unsigned char.

h Specifies that a following d, i, o, u, X, X, or n conversion specifier applies to an argument
with type pointer to short int or unsigned short int.

1 (ell) Specifies that a following d, i, o, u, X, X, or n conversion specifier applies to an argument
with type pointer to long int or unsigned long int; that a following a, A, e, E, f, F,
g, or G conversion specifier applies to an argument with type pointer to double; or that
a following ¢, s, or [ conversion specifier applies to an argument with type pointer to
wchar_t.

11 (ell-ell) Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to long long int or unsigned long long int.

j Specifies that a following d, i, o, u, X, X, or n conversion specifier applies to an argument
with type pointer to intmax_t or uintmax_t.

z Specifies that a following d, i, o, u, X, X, or n conversion specifier applies to an argument
with type pointer to size_t or the corresponding signed integer type.

t Specifies that a following d, i, o, u, X, X, or n conversion specifier applies to an argument
with type pointer to ptrdiff_t or the corresponding unsigned integer type.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an argument
with type pointer to long double.

H Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an argument
with type pointer to _Decimal32.

D Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an argument
with type pointer to _Decimal64.

DD Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an argument
with type pointer to _Decimall28.

If a length modifier appears with any conversion specifier other than as specified above, the behavior
is undefined.

The conversion specifiers and their meanings are:

306)fscanf pushes back at most one input character onto the input stream. Therefore, some sequences that are acceptable to
strtod, strtol, etc., are unacceptable to fscanf.

282 Library §7.21.6.2



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

d Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the strtol function with the value 10 for the base argument. The
corresponding argument shall be a pointer to signed integer.

i Matches an optionally signed integer, whose format is the same as expected for the
subject sequence of the strtol function with the value 0 for the base argument. The
corresponding argument shall be a pointer to signed integer.

0 Matches an optionally signed octal integer, whose format is the same as expected for the
subject sequence of the strtoul function with the value 8 for the base argument. The
corresponding argument shall be a pointer to unsigned integer.

u Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the strtoul function with the value 10 for the base argument.
The corresponding argument shall be a pointer to unsigned integer.

X Matches an optionally signed hexadecimal integer, whose format is the same as expected
for the subject sequence of the strtoul function with the value 16 for the base argument.
The corresponding argument shall be a pointer to unsigned integer.

a,e,f,g Matches an optionally signed floating-point number, infinity, or NaN, whose format is
the same as expected for the subject sequence of the strtod function. The corresponding
argument shall be a pointer to floating.

C Matches a sequence of characters of exactly the number specified by the field width (1 if
no field width is present in the directive).3?”)

If no 1 length modifier is present, the corresponding argument shall be a pointer to the

initial element of a character array large enough to accept the sequence. No null character
is added.

If an 1 length modifier is present, the input shall be a sequence of multibyte characters that
begins in the initial shift state. Each multibyte character in the sequence is converted to a
wide character as if by a call to the mbrtowc function, with the conversion state described
by an mbstate_t object initialized to zero before the first multibyte character is converted.
The corresponding argument shall be a pointer to the initial element of an array of wchar_t
large enough to accept the resulting sequence of wide characters.No null wide character is
added.

s Matches a sequence of non-white-space characters.3’”)

If no 1 length modifier is present, the corresponding argument shall be a pointer to the
initial element of a character array large enough to accept the sequence and a terminating
null character, which will be added automatically.

If an 1 length modifier is present, the input shall be a sequence of multibyte characters
that begins in the initial shift state. Each multibyte character is converted to a wide
character as if by a call to the mbrtowc function, with the conversion state described by an
mbstate_t object initialized to zero before the first multibyte character is converted. The
corresponding argument shall be a pointer to the initial element of an array of wchar_t
large enough to accept the sequence and the terminating null wide character, which will
be added automatically.

[ Matches a nonempty sequence of characters from a set of expected characters (the
scanset).3)

If no 1 length modifier is present, the corresponding argument shall be a pointer to the
initial element of a character array large enough to accept the sequence and a terminating
null character, which will be added automatically.

307 No special provisions are made for multibyte characters in the matching rules used by the c, s, and [ conversion specifiers
— the extent of the input field is determined on a byte-by-byte basis. The resulting field is nevertheless a sequence of multibyte
characters that begins in the initial shift state.

§7.21.6.2 Library 283



13
14

15

16

17

ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

If an 1 length modifier is present, the input shall be a sequence of multibyte characters
that begins in the initial shift state. Each multibyte character is converted to a wide
character as if by a call to the mbrtowc function, with the conversion state described by an
mbstate_t object initialized to zero before the first multibyte character is converted. The
corresponding argument shall be a pointer to the initial element of an array of wchar_t
large enough to accept the sequence and the terminating null wide character, which will
be added automatically.

The conversion specifier includes all subsequent characters in the format string, up to
and including the matching right bracket (]). The characters between the brackets (the
scanlist) compose the scanset, unless the character after the left bracket is a circumflex (*),
in which case the scanset contains all characters that do not appear in the scanlist between
the circumflex and the right bracket. If the conversion specifier begins with [] or [*], the
right bracket character is in the scanlist and the next following right bracket character is
the matching right bracket that ends the specification; otherwise the first following right
bracket character is the one that ends the specification. If a - character is in the scanlist
and is not the first, nor the second where the first character is a , nor the last character,
the behavior is implementation-defined.

p Matches an implementation-defined set of sequences, which should be the same as the
set of sequences that may be produced by the %p conversion of the fprintf function.
The corresponding argument shall be a pointer to a pointer to void. The input item is
converted to a pointer value in an implementation-defined manner. If the input item is a
value converted earlier during the same program execution, the pointer that results shall
compare equal to that value; otherwise the behavior of the %p conversion is undefined.

n No input is consumed. The corresponding argument shall be a pointer to signed integer
into which is to be written the number of characters read from the input stream so far
by this call to the fscanf function. Execution of a %n directive does not increment the
assignment count returned at the completion of execution of the fscanf function. No
argument is converted, but one is consumed. If the conversion specification includes an
assignment-suppressing character or a field width, the behavior is undefined.

o°

Matches a single % character; no conversion or assignment occurs. The complete conversion
specification shall be %%.

If a conversion specification is invalid, the behavior is undefined.3%)

The conversion specifiers A, E, F, G, and X are also valid and behave the same as, respectively, a, e, f,
g, and x.

Trailing white-space characters(including new-line characters) are left unread unless matched by a
directive. The success of literal matches and suppressed assignments is not directly determinable
other than via the %n directive.

Returns

The fscanf function returns the value of the macro EOF if an input failure occurs before the first
conversion (if any) has completed. Otherwise, the function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

EXAMPLE 1 The call:

#include <stdio.h>

/* ... *x/

int n, i; float x; char name[50];

n = fscanf(stdin, "%d%f%s", &i, &x, name);

with the input line:

308)See “future library directions” (7.31.13).

284 Library §7.21.6.2



18

19

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

25 54.32E-1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and to name the sequence thompson\0.

EXAMPLE 2 The call:

#include <stdio.h>

/* ... %/

int i; float x; char name[50];

fscanf(stdin, "%2d%f%xd %[0123456789]", &i, &x, name);

with input:

56789 0123 56a72

will assign to i the value 56 and to x the value 789.0, will skip 0123, and will assign to name the sequence 56\0. The next

character read from the input stream will be a.

EXAMPLE 3 To accept repeatedly from stdin a quantity, a unit of measure, and an item name:

#include <stdio.h>

/* ... x/
int count; float quant; char units[21], item[21];
do {

count = fscanf(stdin, "%f%20s of %20s", &quant, units, item);
fscanf (stdin, "%*[~\n]");
} while (!feof(stdin) && !'ferror(stdin));

20 If the stdin stream contains the following lines:

21

22

2 quarts of oil
-12.8degrees Celsius
lots of luck

10.0LBS of

dirt

100ergs of energy

the execution of the above example will be analogous to the following assignments:

quant = 2; strcpy(units, "quarts"); strcpy(item, "oil");
count = 3;

quant = -12.8; strcpy(units, "degrees");

count = 2; // "C" fails to match "o"

count = 0; // "l" fails to match "%f"

quant = 10.0; strcpy(units, "LBS"); strcpy(item, "dirt");

count = 3;
count = 0; // "100e" fails to match "%f"
count = EOF;

EXAMPLE 4 In:

#include <stdio.h>

/*x ... %/

int di1, d2, nl, n2, i;

i = sscanf("123", "%d%n%n%d", &d1l, &nl, &n2, &d2);

the value 123 is assigned to d1 and the value 3 to n1. Because %n can never get an input failure, the value of 3 is also assigned

to n2. The value of d2 is not affected. The value 1 is assigned to 1.

EXAMPLE 5 The call:

#include <stdio.h>

/% .. %/
int n, i;
n = sscanf("foo %bar 42", "foo%%bar%d", &i);

§7.21.6.2 Library



ISO/IEC 9899:202x (E)

working draft — October 1, 2020

N2573

will assign to n the value 1 and to i the value 42 because input white-space characters are skipped for both the % and d

conversion specifiers.

23 EXAMPLE 6 In these examples, multibyte characters do have a state-dependent encoding, and the members of the extended
character set that consist of more than one byte each consist of exactly two bytes, the first of which is denoted here by a [
and the second by an uppercase letter, but are only recognized as such when in the alternate shift state. The shift sequences
are denoted by 1" and |, in which the first causes entry into the alternate shift state.

24 After the call:

#include <stdio.h>
/* ... %/

char str[50];
fscanf(stdin, "a%s",

str);

with the input line:

attXY] bc

str will contain TIXOY]\\0 assuming that none of the bytes of the shift sequences (or of the multibyte characters, in the
more general case) appears to be a single-byte white-space character.

25 In contrast, after the call:

#include <stdio.h>
#include <stddef.h>
/* ... %/

wchar_t wstr[50];
fscanf(stdin, "a%ls",

wstr);

with the same input line, wstr will contain the two wide characters that correspond to [JX and [JY and a terminating null

wide character.

26 However, the call:

#include <stdio.h>
#include <stddef.h>
/* ... %/

wchar_t wstr[50];

fscanf(stdin, "aflX|%ls",

wstr);

with the same input line will return zero due to a matching failure against the | sequence in the format string.

27 Assuming that the first byte of the multibyte character [IX is the same as the first byte of the multibyte character LY, after the

call:

#include <stdio.h>
#include <stddef.h>
/* ... x/

wchar_t wstr[50];

fscanf(stdin, "afllY|%ls",

wstr);

with the same input line, zero will again be returned, but stdin will be left with a partially consumed multibyte character.

Forward references: the strtod, strtof, and strtold functions (7.22.1.5), the strtol, strtoll,
strtoul, and strtoull functions (7.22.1.7), conversion state (7.29.6), the wcrtomb function

(7.29.6.3.3).

7.21.6.3 The printf function
Synopsis

#include <stdio.h>

int printf(const char * restrict format, ...);

286

Library §7.21.6.3




N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Description

The printf function is equivalent to fprintf with the argument stdout interposed before the
arguments to printf.

Returns

The printf function returns the number of characters transmitted, or a negative value if an output
or encoding error occurred.

7.21.6.4 The scanf function
Synopsis

#include <stdio.h>
int scanf(const char *x restrict format, ...);

Description

The scanf function is equivalent to fscanf with the argument stdin interposed before the argu-
ments to scanf.

Returns

The scanf function returns the value of the macro EOF if an input failure occurs before the first
conversion (if any) has completed. Otherwise, the scanf function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

7.21.6.5 The snprintf function
Synopsis

#include <stdio.h>
int snprintf(char x restrict s, size_t n, const char * restrict format, ...);

Description

The snprintf function is equivalent to fprintf, except that the output is written into an array
(specified by argument s) rather than to a stream. If n is zero, nothing is written, and s may be a
null pointer. Otherwise, output characters beyond the n-1% are discarded rather than being written
to the array, and a null character is written at the end of the characters actually written into the array.
If copying takes place between objects that overlap, the behavior is undefined.

Returns

The snprintf function returns the number of characters that would have been written had n been
sufficiently large, not counting the terminating null character, or a negative value if an encoding
error occurred. Thus, the null-terminated output has been completely written if and only if the
returned value is nonnegative and less than n.

7.21.6.6 The sprintf function

Synopsis

#include <stdio.h>

int sprintf(char x restrict s, const char * restrict format, ...);
Description

The sprintf function is equivalent to fprintf, except that the output is written into an array
(specified by the argument s) rather than to a stream. A null character is written at the end of the
characters written; it is not counted as part of the returned value. If copying takes place between
objects that overlap, the behavior is undefined.

§7.21.6.6 Library 287



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Returns

The sprintf function returns the number of characters written in the array, not counting the
terminating null character, or a negative value if an encoding error occurred.

7.21.6.7 The sscanf function

Synopsis

#include <stdio.h>

int sscanf(const char * restrict s, const char * restrict format, ...);
Description

The sscanf function is equivalent to fscanf, except that input is obtained from a string (specified
by the argument s) rather than from a stream. Reaching the end of the string is equivalent to
encountering end-of-file for the fscanf function. If copying takes place between objects that overlap,
the behavior is undefined.

Returns

The sscanf function returns the value of the macro EOF if an input failure occurs before the first
conversion (if any) has completed. Otherwise, the sscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

7.21.6.8 The vfprintf function
Synopsis

#include <stdarg.h>
#include <stdio.h>
int vfprintf(FILE * restrict stream, const char * restrict format, va_list arg);

Description

The vfprintf function is equivalent to fprintf, with the variable argument list replaced by arg,
which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vfprintf function does not invoke the va_end macro.3%

Returns

The vfprintf function returns the number of characters transmitted, or a negative value if an
output or encoding error occurred.

EXAMPLE The following shows the use of the vfprintf function in a general error-reporting routine.

#include <stdarg.h>
#include <stdio.h>

void error(char xfunction_name, char xformat, ...)

{

va_list args;

va_start(args, format);

// print out name of function causing error
fprintf(stderr, "ERROR in %s: ", function_name);
// print out remainder of message
vfprintf(stderr, format, args);

va_end(args);

7.21.6.9 The vfscanf function

309 As the functions vfprintf, vfscanf, vprintf, vscanf, vsnprintf, vsprintf, and vsscanf invoke the va_arg macro,
the value of arg after the return is indeterminate.

288 Library §7.21.69



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Synopsis

#include <stdarg.h>
#include <stdio.h>
int vfscanf(FILE * restrict stream, const char * restrict format, va_list arg);

Description

The vfscanf function is equivalent to fscanf, with the variable argument list replaced by arg,
which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vfscanf function does not invoke the va_end macro.3%)

Returns

The vfscanf function returns the value of the macro EOF if an input failure occurs before the first
conversion (if any) has completed. Otherwise, the vfscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

7.21.6.10 The vprintf function
Synopsis

#include <stdarg.h>
#include <stdio.h>
int vprintf(const char * restrict format, va_list arg);

Description

The vprintf function is equivalent to printf, with the variable argument list replaced by arg,
which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vprintf function does not invoke the va_end macro.>”)

Returns

The vprintf function returns the number of characters transmitted, or a negative value if an output
or encoding error occurred.

7.21.6.11 The vscanf function

Synopsis

#include <stdarg.h>
#include <stdio.h>
int vscanf(const char * restrict format, va_list arg);

Description

The vscanf function is equivalent to scanf, with the variable argument list replaced by arg, which
shall have been initialized by the va_start macro (and possibly subsequent va_arg calls). The
vscanf function does not invoke the va_end macro.>*”

Returns

The vscanf function returns the value of the macro EOF if an input failure occurs before the first
conversion (if any) has completed. Otherwise, the vscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

7.21.6.12 The vsnprintf function
Synopsis

#include <stdarg.h>

#include <stdio.h>

int vsnprintf(char * restrict s, size_t n, const char * restrict format, va_list
arg);

§7.21.6.12 Library 289



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Description

The vsnprintf function is equivalent to snprintf, with the variable argument list replaced by arg,
which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vsnprintf function does not invoke the va_end macro.’® If copying takes place between
objects that overlap, the behavior is undefined.

Returns

The vsnprintf function returns the number of characters that would have been written had n been
sufficiently large, not counting the terminating null character, or a negative value if an encoding
error occurred. Thus, the null-terminated output has been completely written if and only if the
returned value is nonnegative and less than n.

7.21.6.13 The vsprintf function
Synopsis

#include <stdarg.h>
#include <stdio.h>
int vsprintf(char * restrict s, const char * restrict format, va_list arg);

Description

The vsprintf function is equivalent to sprintf, with the variable argument list replaced by arg,
which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vsprintf function does not invoke the va_end macro.3" If copying takes place between objects
that overlap, the behavior is undefined.

Returns

The vsprintf function returns the number of characters written in the array, not counting the
terminating null character, or a negative value if an encoding error occurred.

7.21.6.14 The vsscanf function

Synopsis

#include <stdarg.h>
#include <stdio.h>
int vsscanf(const char * restrict s, const char x restrict format, va_list arg);

Description

The vsscanf function is equivalent to sscanf, with the variable argument list replaced by arg,
which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vsscanf function does not invoke the va_end macro.>*)

Returns

The vsscanf function returns the value of the macro EOF if an input failure occurs before the first
conversion (if any) has completed. Otherwise, the vsscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

7.21.7 Character input/output functions
7.21.7.1 The fgetc function
Synopsis

#include <stdio.h>
int fgetc(FILE xstream);

Description

If the end-of-file indicator for the input stream pointed to by stream is not set and a next character
is present, the fgetc function obtains that character as an unsigned char converted to an int and

290 Library §7.21.7.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

advances the associated file position indicator for the stream (if defined).

Returns

If the end-of-file indicator for the stream is set, or if the stream is at end-of-file, the end-of-file
indicator for the stream is set and the fgetc function returns EOF. Otherwise, the fgetc function
returns the next character from the input stream pointed to by stream. If a read error occurs, the
error indicator for the stream is set and the fgetc function returns EOF.>'?

7.21.7.2 The fgets function
Synopsis

#include <stdio.h>
char xfgets(char * restrict s, int n, FILE x restrict stream);

Description

The fgets function reads at most one less than the number of characters specified by n from the
stream pointed to by stream into the array pointed to by s. No additional characters are read after a
new-line character (which is retained) or after end-of-file. A null character is written immediately
after the last character read into the array.

Returns

The fgets function returns s if successful. If end-of-file is encountered and no characters have been
read into the array, the contents of the array remain unchanged and a null pointer is returned. If a
read error occurs during the operation, the array contents are indeterminate and a null pointer is
returned.

7.21.7.3 The fputc function
Synopsis

#include <stdio.h>
int fputc(int c, FILE xstream);

Description

The fputc function writes the character specified by c (converted to an unsigned char) to the
output stream pointed to by stream, at the position indicated by the associated file position indicator
for the stream (if defined), and advances the indicator appropriately. If the file cannot support
positioning requests, or if the stream was opened with append mode, the character is appended to
the output stream.

Returns

The fputc function returns the character written. If a write error occurs, the error indicator for the
stream is set and fputc returns EOF.

7.21.7.4 The fputs function
Synopsis

#include <stdio.h>
int fputs(const char * restrict s, FILE * restrict stream);

Description

The fputs function writes the string pointed to by s to the stream pointed to by stream. The
terminating null character is not written.

Returns
The fputs function returns EOF if a write error occurs; otherwise it returns a nonnegative value.

310) An end-of-file and a read error can be distinguished by use of the feof and ferror functions.

§7.21.7.4 Library 291



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

7.21.7.5 The getc function
Synopsis

#include <stdio.h>
int getc(FILE xstream);

Description

The getc function is equivalent to fgetc, except that if it is implemented as a macro, it may evaluate
stream more than once, so the argument should never be an expression with side effects.

Returns

The getc function returns the next character from the input stream pointed to by stream. If the
stream is at end-of-file, the end-of-file indicator for the stream is set and getc returns EOF. If a read
error occurs, the error indicator for the stream is set and getc returns EOF.

7.21.7.6 The getchar function

Synopsis

#include <stdio.h>
int getchar(void);

Description
The getchar function is equivalent to getc with the argument stdin.

Returns

The getchar function returns the next character from the input stream pointed to by stdin. If the
stream is at end-of-file, the end-of-file indicator for the stream is set and getchar returns EOF. If a
read error occurs, the error indicator for the stream is set and getchar returns EOF.

7.21.7.7 The putc function

Synopsis

#include <stdio.h>
int putc(int c, FILE xstream);

Description

The putc function is equivalent to fputc, except that if it is implemented as a macro, it may evaluate
stream more than once, so that argument should never be an expression with side effects.
Returns

The putc function returns the character written. If a write error occurs, the error indicator for the
stream is set and putc returns EOF.

7.21.7.8 The putchar function

Synopsis

#include <stdio.h>
int putchar(int c);

Description
The putchar function is equivalent to putc with the second argument stdout.

Returns

The putchar function returns the character written. If a write error occurs, the error indicator for
the stream is set and putchar returns EOF.

292 Library §7.21.7.8



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7.21.7.9 The puts function
Synopsis

#include <stdio.h>
int puts(const char xs);

Description

The puts function writes the string pointed to by s to the stream pointed to by stdout, and appends
a new-line character to the output. The terminating null character is not written.

Returns

The puts function returns EOF if a write error occurs; otherwise it returns a nonnegative value.

7.21.7.10 The ungetc function
Synopsis

#include <stdio.h>
int ungetc(int c, FILE xstream);

Description

The ungetc function pushes the character specified by c (converted to an unsigned char) back
onto the input stream pointed to by stream. Pushed-back characters will be returned by subsequent
reads on that stream in the reverse order of their pushing. A successful intervening call (with the
stream pointed to by stream) to a file positioning function (fseek, fsetpos, or rewind) discards
any pushed-back characters for the stream. The external storage corresponding to the stream is
unchanged.

One character of pushback is guaranteed. If the ungetc function is called too many times on the
same stream without an intervening read or file positioning operation on that stream, the operation
may fail.

If the value of ¢ equals that of the macro EOF, the operation fails and the input stream is unchanged.
A successful call to the ungetc function clears the end-of-file indicator for the stream. The value
of the file position indicator for the stream after reading or discarding all pushed-back characters
shall be the same as it was before the characters were pushed back.>!?) For a text stream, the value
of its file position indicator after a successful call to the ungetc function is unspecified until all
pushed-back characters are read or discarded. For a binary stream, its file position indicator is

decremented by each successful call to the ungetc function; if its value was zero before a call, it is
indeterminate after the call.?!?

Returns

The ungetc function returns the character pushed back after conversion, or EOF if the operation
fails.

Forward references: file positioning functions (7.21.9).

7.21.8 Direct input/output functions
7.21.8.1 The fread function
Synopsis

#include <stdio.h>
size_t fread(void * restrict ptr, size_t size, size_t nmemb,
FILE * restrict stream);

31D Note that a file positioning function could further modify the file position indicator after discarding any pushed-back
characters.
312)Gee “future library directions” (7.31.13).

§7.21.8.1 Library 293



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Description

The fread function reads, into the array pointed to by ptr, up to nmemb elements whose size is
specified by size, from the stream pointed to by stream. For each object, size calls are made to
the fgetc function and the results stored, in the order read, in an array of unsigned char exactly
overlaying the object. The file position indicator for the stream (if defined) is advanced by the
number of characters successfully read. If an error occurs, the resulting value of the file position
indicator for the stream is indeterminate. If a partial element is read, its value is indeterminate.

Returns

The fread function returns the number of elements successfully read, which may be less than nmemb
if a read error or end-of-file is encountered. If size or nmemb is zero, fread returns zero and the
contents of the array and the state of the stream remain unchanged.

7.21.8.2 The fwrite function

Synopsis

#include <stdio.h>
size_t fwrite(const void * restrict ptr, size_t size, size_t nmemb,
FILE * restrict stream);

Description

The fwrite function writes, from the array pointed to by ptr, up to nmemb elements whose size is
specified by size, to the stream pointed to by stream. For each object, size calls are made to the
fputc function, taking the values (in order) from an array of unsigned char exactly overlaying the
object. The file position indicator for the stream (if defined) is advanced by the number of characters
successfully written. If an error occurs, the resulting value of the file position indicator for the stream
is indeterminate.

Returns

The fwrite function returns the number of elements successfully written, which will be less than
nmemb only if a write error is encountered. If size or nmemb is zero, fwrite returns zero and the
state of the stream remains unchanged.

7.21.9 File positioning functions

7.21.9.1 The fgetpos function
Synopsis

#include <stdio.h>
int fgetpos(FILE * restrict stream, fpos_t * restrict pos);

Description

The fgetpos function stores the current values of the parse state (if any) and file position indicator
for the stream pointed to by stream in the object pointed to by pos. The values stored contain
unspecified information usable by the fsetpos function for repositioning the stream to its position
at the time of the call to the fgetpos function.

Returns

If successful, the fgetpos function returns zero; on failure, the fgetpos function returns nonzero
and stores an implementation-defined positive value in errno.

Forward references: the fsetpos function (7.21.9.3).

294 Library §7.219.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7.21.9.2 The fseek function
Synopsis

#include <stdio.h>
int fseek(FILE xstream, long int offset, int whence);

Description

The fseek function sets the file position indicator for the stream pointed to by stream. If a read or
write error occurs, the error indicator for the stream is set and fseek fails.

For a binary stream, the new position, measured in characters from the beginning of the file, is
obtained by adding offset to the position specified by whence. The specified position is the
beginning of the file if whence is SEEK_SET, the current value of the file position indicator if
SEEK_CUR, or end-of-file if SEEK_END. A binary stream need not meaningfully support fseek calls
with a whence value of SEEK_END.

For a text stream, either offset shall be zero, or offset shall be a value returned by an earlier
successful call to the ftell function on a stream associated with the same file and whence shall be
SEEK_SET.

After determining the new position, a successful call to the fseek function undoes any effects of the
ungetc function on the stream, clears the end-of-file indicator for the stream, and then establishes
the new position. After a successful fseek call, the next operation on an update stream may be
either input or output.

Returns
The fseek function returns nonzero only for a request that cannot be satisfied.

Forward references: the ftell function (7.21.9.4).

7.21.9.3 The fsetpos function
Synopsis

#include <stdio.h>
int fsetpos(FILE xstream, const fpos_t xpos);

Description

The fsetpos function sets the mbstate_t object (if any) and file position indicator for the stream
pointed to by stream according to the value of the object pointed to by pos, which shall be a value
obtained from an earlier successful call to the fgetpos function on a stream associated with the
same file. If a read or write error occurs, the error indicator for the stream is set and fsetpos fails.

A successful call to the fsetpos function undoes any effects of the ungetc function on the stream,
clears the end-of-file indicator for the stream, and then establishes the new parse state and position.
After a successful fsetpos call, the next operation on an update stream may be either input or
output.

Returns

If successful, the fsetpos function returns zero; on failure, the fsetpos function returns nonzero
and stores an implementation-defined positive value in errno.

7.21.9.4 The ftell function

Synopsis

#include <stdio.h>
long int ftell(FILE xstream);

Description

The ftell function obtains the current value of the file position indicator for the stream pointed to
by stream. For a binary stream, the value is the number of characters from the beginning of the file.

§7.21.9.4 Library 295



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

For a text stream, its file position indicator contains unspecified information, usable by the fseek
function for returning the file position indicator for the stream to its position at the time of the ftell
call; the difference between two such return values is not necessarily a meaningful measure of the
number of characters written or read.

Returns

If successful, the ftell function returns the current value of the file position indicator for the stream.
On failure, the ftell function returns —1L and stores an implementation-defined positive value in
errno.

7.21.9.5 The rewind function

Synopsis

#include <stdio.h>
void rewind(FILE *stream);

Description

The rewind function sets the file position indicator for the stream pointed to by stream to the
beginning of the file. It is equivalent to

\ (void) fseek(stream, OL, SEEK_SET)

except that the error indicator for the stream is also cleared.

Returns
The rewind function returns no value.

7.21.10 Error-handling functions
7.21.10.1 The clearerr function
Synopsis

#include <stdio.h>
void clearerr(FILE xstream);

Description

The clearerr function clears the end-of-file and error indicators for the stream pointed to by
stream.

Returns

The clearerr function returns no value.

7.21.10.2 The feof function
Synopsis

#include <stdio.h>
int feof (FILE xstream);

Description
The feof function tests the end-of-file indicator for the stream pointed to by stream.

Returns
The feof function returns nonzero if and only if the end-of-file indicator is set for stream.

296 Library §7.21.10.2



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7.21.10.3 The ferror function
Synopsis

#include <stdio.h>
int ferror(FILE xstream);

Description
The ferror function tests the error indicator for the stream pointed to by stream.

Returns
The ferror function returns nonzero if and only if the error indicator is set for stream.

7.21.10.4 The perror function
Synopsis

#include <stdio.h>
void perror(const char xs);

Description

The perror function maps the error number in the integer expression errno to an error message.
It writes a sequence of characters to the standard error stream thus: first (if s is not a null pointer
and the character pointed to by s is not the null character), the string pointed to by s followed by a
colon (:) and a space; then an appropriate error message string followed by a new-line character.
The contents of the error message strings are the same as those returned by the strerror function
with argument errno.

Returns
The perror function returns no value.

Forward references: the strerror function (7.24.6.2).

§7.21.10.4 Library 297



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

7.22 General utilities <stdlib.h>

The header <stdlib.h> declares five types and several functions of general utility, and defines
several macros.*%)

The feature test macro __STDC_VERSION_STDLIB_H__ expands to the token yyyymmL.
The types declared are size_t and wchar_t (both described in 7.19),

\ div_t

which is a structure type that is the type of the value returned by the div function,

‘ ldiv_t

which is a structure type that is the type of the value returned by the ldiv function, and

| lldiv_t

which is a structure type that is the type of the value returned by the 11div function.
The macros defined are NULL (described in 7.19);

| EXIT_FAILURE

\ EXIT_SUCCESS

which expand to integer constant expressions that can be used as the argument to the exit function
to return unsuccessful or successful termination status, respectively, to the host environment;

\ RAND_MAX

which expands to an integer constant expression that is the maximum value returned by the rand
function; and

\ MB_CUR_MAX

which expands to a positive integer expression with type size_t that is the maximum number of
bytes in a multibyte character for the extended character set specified by the current locale (category
LC_CTYPE), which is never greater than MB_LEN_MAX.

7.22.1 Numeric conversion functions

The functions atof, atoi, atol, and atoll need not affect the value of the integer expression errno
on an error. If the value of the result cannot be represented, the behavior is undefined.

7.22.1.1 The atof function
Synopsis

#include <stdlib.h>
double atof(const char xnptr);

Description

The atof function converts the initial portion of the string pointed to by nptr to double representa-
tion. Except for the behavior on error, it is equivalent to

\ strtod(nptr, (char **)NULL)

313)Gee “future library directions” (7.31.14).

298 Library §7.22.1.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Returns
The atof function returns the converted value.

Forward references: the strtod, strtof, and strtold functions (7.22.1.5).

7.22.1.2 The atoi, atol, and atoll functions
Synopsis

#include <stdlib.h>

int atoi(const char x*nptr);

long int atol(const char *nptr);

long long int atoll(const char *nptr);

Description

The atoi, atol, and atoll functions convert the initial portion of the string pointed to by nptr to
int, long int, and long long int representation, respectively. Except for the behavior on error,
they are equivalent to

atoi: (int)strtol(nptr, (char =x)NULL, 10)
atol: strtol(nptr, (char *x)NULL, 10)
atoll: strtoll(nptr, (char xx)NULL, 10)

Returns
The atoi, atol, and atoll functions return the converted value.

Forward references: the strtol, strtoll, strtoul, and strtoull functions (7.22.1.7).

7.22.1.3 The strfromd, strfromf, and strfroml functions
Synopsis

#include <stdlib.h>

int strfromd(char *xrestrict s, size_t n, const char xrestrict format, double fp);

int strfromf(char xrestrict s, size_t n, const char xrestrict format, float fp);

int strfroml(char xrestrict s, size_t n, const char xrestrict format, long double fp);

Description

The strfromd, strfromf, and strfroml functions are equivalent to snprintf(s, n, format, fp)
(7.21.6.5), except that the format string shall only contain the character %, an optional precision that
does not contain an asterisk *, and one of the conversion specifiers a, A, e, E, f, F, g, or G, which
applies to the type (double, float, or Llong double) indicated by the function suffix (rather than by
a length modifier).

Returns

The strfromd, strfromf, and strfroml functions return the number of characters that would have
been written had n been sufficiently large, not counting the terminating null character. Thus, the
null-terminated output has been completely written if and only if the returned value is less than n.

7.22.1.4 The strfromdN functions
Synopsis

#include <stdlib.h>

#ifdef __STDC_IEC_60559_DFP__

int strfromd32(charxrestrict s, size_t n, const charxrestrict format, _Decimal32 fp);
int strfromd64(charxrestrict s, size_t n, const charxrestrict format, _Decimal64 fp);
int strfromd128(charxrestrict s, size_t n, const charxrestrict format, _Decimall28 fp);
#endif

§7.22.1.4 Library 299



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Description

The strfromdN functions are equivalent to snprintf(s, n, format, fp) (7.21.6.5), except the
format string contains only the character %, an optional precision that does not contain an asterisk *,
and one of the conversion specifiers a, A, e, E, f, F, g, or G, which applies to the type (_Decimal32,
—Decimalé4, or _Decimall28) indicated by the function suffix (rather than by a length modifier).
Use of these functions with any other format string results in undefined behavior.

Returns

The strfromdN functions return the number of characters that would have been written had n been
sufficiently large, not counting the terminating null character. Thus, the null-terminated output has
been completely written if and only if the returned value is less than n.

7.22.1.5 The strtod, strtof, and strtold functions
Synopsis

#include <stdlib.h>

double strtod(const char xrestrict nptr, char *xrestrict endptr);
float strtof(const char xrestrict nptr, char *xrestrict endptr);

long double strtold(const char xrestrict nptr, char *xrestrict endptr);

Description

The strtod, strtof, and strtold functions convert the initial portion of the string pointed to by

nptr to double, float, and long double representation, respectively. First, they decompose the
input string into three parts: an initial, possibly empty, sequence of white-space characters, a subject
sequence resembling a floating-point constant or representing an infinity or NaN; and a final string
of one or more unrecognized characters, including the terminating null character of the input string.
Then, they attempt to convert the subject sequence to a floating-point number, and return the result.

The expected form of the subject sequence is an optional plus or minus sign, then one of the
following:

— anonempty sequence of decimal digits optionally containing a decimal-point character, then
an optional exponent part as defined in 6.4.4.2;

— a Ox or 0X, then a nonempty sequence of hexadecimal digits optionally containing a decimal-
point character, then an optional binary exponent part as defined in 6.4.4.2;

— INF or INFINITY, ignoring case

— NAN or NAN (n-char-sequencey; ), ignoring case in the NAN part, where:

n-char-sequence:
digit
nondigit
n-char-sequence digit
n-char-sequence nondigit

The subject sequence is defined as the longest initial subsequence of the input string, starting with
the first non-white-space character, that is of the expected form. The subject sequence contains no
characters if the input string is not of the expected form.

If the subject sequence has the expected form for a floating-point number, the sequence of characters
starting with the first digit or the decimal-point character (whichever occurs first) is interpreted as a
floating constant according to the rules of 6.4.4.2, except that the decimal-point character is used
in place of a period, and that if neither an exponent part nor a decimal-point character appears in
a decimal floating-point number, or if a binary exponent part does not appear in a hexadecimal
floating-point number, an exponent part of the appropriate type with value zero is assumed to
follow the last digit in the string. If the subject sequence begins with a minus sign, the sequence

300 Library §7.22.1.5



10

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

is interpreted as negated.3'¥ A character sequence INF or INFINITY is interpreted as an infinity,
if representable in the return type, else like a floating constant that is too large for the range of the
return type. A character sequence NAN or NAN (n-char-sequence,y;) is interpreted as a quiet NaN, if
supported in the return type, else like a subject sequence part that does not have the expected form;
the meaning of the n-char sequence is implementation-defined.>!® A pointer to the final string is
stored in the object pointed to by endptr, provided that endptr is not a null pointer.

If the subject sequence has the hexadecimal form and FLT_RADIX is a power of 2, the value resulting
from the conversion is correctly rounded.

In other than the "C" locale, additional locale-specific subject sequence forms may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is performed; the
value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

Recommended practice

If the subject sequence has the hexadecimal form, FLT_RADIX is not a power of 2, and the result is
not exactly representable, the result should be one of the two numbers in the appropriate internal
format that are adjacent to the hexadecimal floating source value, with the extra stipulation that the
error should have a correct sign for the current rounding direction.

If the subject sequence has the decimal form and at most M significant digits, where M is the
maximum value of the T_DECIMAL_DIG macros (defined in <float.h>), the result should be correctly
rounded. If the subject sequence D has the decimal form and more than M significant digits, consider
the two bounding, adjacent decimal strings L and U, both having M significant digits, such that the
values of L, D, and U satisfy L < D < U. The result should be one of the (equal or adjacent) values
that would be obtained by correctly rounding L and U according to the current rounding direction,
with the extra stipulation that the error with respect to D should have a correct sign for the current
rounding direction.!®)

Returns

The functions return the converted value, if any. If no conversion could be performed, zero is
returned. If the correct value overflows and default rounding is in effect (7.12.1), plus or minus
HUGE_VAL, HUGE_VALF, or HUGE_VALL is returned (according to the return type and sign of the value),
and the value of the macro ERANGE is stored in errno. If the result underflows (7.12.1), the functions
return a value whose magnitude is no greater than the smallest normalized positive number in the
return type; whether errno acquires the value ERANGE is implementation-defined.

7.22.1.6 The strtodN functions
Synopsis

#include <stdlib.h>

#ifdef _STDC_IEC_60559_DFP__

_Decimal32 strtod32(const char * restrict nptr, char *xx restrict endptr);
_Decimal64 strtod64(const char * restrict nptr,char *x restrict endptr);
_Decimall28 strtodl28(const char * restrict nptr,char xx restrict endptr);
#endif

Description

The strtodN functions convert the initial portion of the string pointed to by nptr to decimal floating
type representation. First, they decompose the input string into three parts: an initial, possibly
empty, sequence of white-space characters; a subject sequence resembling a floating constant or
representing an infinity or NaN; and a final string of one or more unrecognized characters, including

3191t is unspecified whether a minus-signed sequence is converted to a negative number directly or by negating the value
resulting from converting the corresponding unsigned sequence (see E.5); the two methods could yield different results if
rounding is toward positive or negative infinity. In either case, the functions honor the sign of zero if floating-point arithmetic
supports signed zeros.

315) An implementation can use the n-char sequence to determine extra information to be represented in the NaN’s significand.

316) M is sufficiently large that L and U will usually correctly round to the same internal floating value, but if not will correctly
round to adjacent values.

§7.22.1.6 Library 301



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

the terminating null character of the input string. Then, they attempt to convert the subject sequence
to a floating-point number, and return the result.

The expected form of the subject sequence is an optional plus or minus sign, then one of the
following:

— anonempty sequence of decimal digits optionally containing a decimal-point character, then
an optional exponent part as defined in 6.4.4.2

— INF or INFINITY, ignoring case

— NAN or NAN (d-char-sequencey ), ignoring case in the NAN part, where:

d-char-sequence:
digit
nondigit
d-char-sequence digit
d-char-sequence nondigit

The subject sequence is defined as the longest initial subsequence of the input string, starting with
the first non-white-space character, that is of the expected form. The subject sequence contains no
characters if the input string is not of the expected form.

If the subject sequence has the expected form for a floating-point number, the sequence of characters
starting with the first digit or the decimal-point character (whichever occurs first) is interpreted as a
floating constant according to the rules of 6.4.4.2, including correct rounding and determination of
the coefficient ¢ and the quantum exponent ¢, with the following exceptions:

— It is not a hexadecimal floating number.
— The decimal-point character is used in place of a period.

— If neither an exponent part nor a decimal-point character appears in a decimal floating-point
number, an exponent part of the appropriate type with value zero is assumed to follow the
last digit in the string.

If the subject sequence begins with a minus sign, the sequence is interpreted as negated (before
rounding) and the sign s is set to —1, else s is set to 1. A character sequence INF or INFINITY is
interpreted as an infinity. A character sequence NAN or NAN (d-char-sequenceyy), is interpreted as a
quiet NaNj; the meaning of the d-char sequence is implementation-defined.*'”) A pointer to the final
string is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

In other than the "C" locale, additional locale-specific subject sequence forms may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is performed; the
value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

Returns

The strtodN functions return the correctly rounded converted value, if any. If no conversion could
be performed, the value of the triple (1,0, 0) is returned. If the correct value overflows, the value of
the macro ERANGE is stored in errno. If the result underflows (7.12.1), whether errno acquires the
value ERANGE is implementation-defined.

EXAMPLE Following are subject sequences of the decimal form and the resulting triples (s, ¢, ¢) produced by strtod64.

Note that for _Decimal64, the precision (maximum coefficient length) is 16 and the quantum exponent range is —398 < ¢ <
369.

317) An implementation may use the d-char sequence to determine extra information to be represented in the NaN’s
significand.

302 Library §7.22.1.6



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)
g (1,0,0)
"9.00" (1,0,-2)
"123" (1,123,0)
".123" (~1,123,0)
"1.23E3" (1,123,1)
"1.23E+3" (1,123,1)
"12.3E+7" (1,123,6)
"12.0" (1,120, —1)
"12.3" (1,123,-1)
"0.00123" (1,123, -5)
".1.23E-12" (—1,123,—14)
"1234.5E-4" (1,12345, —5)
n_gn (=1,0,0)
".0.00" (—1,0,-2)
"QE+T" (1,0,7)
"_QE-7" (-1,0,—7
"12345678901234567890"  (1,1234567890123457,4) or (1,1234567890123456,4) depending on rounding mode
"1234E-400" (1,12, —-398) or (1, 13, —398) depending on rounding mode
"1234E-402" (1,0,—398) or (1, 1, —398) depending on rounding mode
"1000." (1,1000, 0)
" 0001" (1,1, —4)
"1000.e0" (1,1000, 0)
".0001e0" (1,1,-4)
"1000.0" (1,10000, —1)
"0.0001" (1,1, —4)
"1000.00" (1,100000, —2)
"00.0001" (1,1, —4)
"001000. " (1,1000,0)
"001000.0" (1,10000, —1)
"001000.00" (1,100000, —2)
"00.00" (1,0, —2)
"90. " (1,0,0)
".00" (1,0, —2)
"00.00e-5" (1,0,=7)
"00.e-5" (1,0, —5)
".00e-5" (1,0,—7)
"0x1.8p+4" (1,0,0), and a pointer to "x1.8p+4" is stored in the object pointed to by endptr,
provided endptr is not a null pointer
"infinite" infinity, and a pointer to "inite" is stored in the object pointed to by endptr, provided

endptr is not a null pointer

7.22.1.7 The strtol, strtoll, strtoul, and strtoull functions

Synopsis

#include <stdlib.h>

base);

long int strtol(const char xrestrict nptr, char xxrestrict endptr, int base);

long long int strtoll(const char xrestrict nptr, char *xrestrict endptr, int base);
unsigned long int strtoul(const char xrestrict nptr, char xxrestrict endptr, int base);
unsigned long long int strtoull(const char xrestrict nptr, char *xrestrict endptr, int

Description

The strtol, strtoll, strtoul, and strtoull functions convert the initial portion of
the string pointed to by nptr to long int, long long int, unsigned long int, and

unsigned long long int representation, respectively. First, they decompose the input
string into three parts: an initial, possibly empty, sequence of white-space characters, a subject
sequence resembling an integer represented in some radix determined by the value of base, and a
final string of one or more unrecognized characters, including the terminating null character of the
input string. Then, they attempt to convert the subject sequence to an integer, and return the result.

If the value of base is zero, the expected form of the subject sequence is that of an integer constant as
described in 6.4.4.1, optionally preceded by a plus or minus sign, but not including an integer suffix.
If the value of base is between 2 and 36 (inclusive), the expected form of the subject sequence is a
sequence of letters and digits representing an integer with the radix specified by base, optionally
preceded by a plus or minus sign, but not including an integer suffix. The letters from a (or A)

§7.22.1.7 Library 303



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

through z (or Z) are ascribed the values 10 through 35; only letters and digits whose ascribed values
are less than that of base are permitted. If the value of base is 16, the characters 0x or 60X may
optionally precede the sequence of letters and digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input string, starting with
the first non-white-space character, that is of the expected form. The subject sequence contains no
characters if the input string is empty or consists entirely of white-space characters, or if the first
non-white-space character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of characters
starting with the first digit is interpreted as an integer constant according to the rules of 6.4.4.1. If
the subject sequence has the expected form and the value of base is between 2 and 36, it is used as
the base for conversion, ascribing to each letter its value as given above. If the subject sequence
begins with a minus sign, the value resulting from the conversion is negated (in the return type). A
pointer to the final string is stored in the object pointed to by endptr, provided that endptris nota
null pointer.

In other than the "C" locale, additional locale-specific subject sequence forms may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is performed; the
value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

Returns

The strtol, strtoll, strtoul, and strtoull functions return the converted value, if any. If
no conversion could be performed, zero is returned. If the correct value is outside the range of
representable values, LONG_MIN, LONG_MAX, LLONG_MIN, LLONG_MAX, ULONG_MAX, or ULLONG_MAX is
returned (according to the return type and sign of the value, if any), and the value of the macro
ERANGE is stored in errno.

7.22.2 Pseudo-random sequence generation functions
7.22.2.1 The rand function
Synopsis

#include <stdlib.h>
int rand(void);

Description
The rand function computes a sequence of pseudo-random integers in the range 0 to RAND_MAX
inclusive.

The rand function is not required to avoid data races with other calls to pseudo-random sequence
generation functions. The implementation shall behave as if no library function calls the rand
function.

Recommended practice

There are no guarantees as to the quality of the random sequence produced and some implementa-
tions are known to produce sequences with distressingly non-random low-order bits. Applications
with particular requirements should use a generator that is known to be sufficient for their needs.
Returns

The rand function returns a pseudo-random integer.

Environmental limits
The value of the RAND_MAX macro shall be at least 32767.

7.22.2.2 The srand function
Synopsis

#include <stdlib.h>
void srand(unsigned int seed);

304 Library §7.22.2.2



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Description

The srand function uses the argument as a seed for a new sequence of pseudo-random numbers
to be returned by subsequent calls to rand. If srand is then called with the same seed value, the
sequence of pseudo-random numbers shall be repeated. If rand is called before any calls to srand
have been made, the same sequence shall be generated as when srand is first called with a seed
value of 1.

The srand function is not required to avoid data races with other calls to pseudo-random sequence
generation functions. The implementation shall behave as if no library function calls the srand
function.

Returns
The srand function returns no value.

EXAMPLE The following functions define a portable implementation of rand and srand.

static unsigned long int next = 1;

int rand(void) // RAND_MAX assumed to be 32767

{
next = next x 1103515245 + 12345;
return (unsigned int) (next/65536) % 32768;
}
void srand(unsigned int seed)
{
next = seed;
}

7.22.3 Memory management functions

The order and contiguity of storage allocated by successive calls to the aligned_alloc, calloc,
malloc, and realloc functions is unspecified. The pointer returned if the allocation succeeds is
suitably aligned so that it may be assigned to a pointer to any type of object with a fundamental
alignment requirement and size less than or equal to the size requested. It may then be used to
access such an object or an array of such objects in the space allocated (until the space is explicitly
deallocated). The lifetime of an allocated object extends from the allocation until the deallocation.
Each such allocation shall yield a pointer to an object disjoint from any other object. The pointer
returned points to the start (lowest byte address) of the allocated space. If the space cannot be
allocated, a null pointer is returned. If the size of the space requested is zero, the behavior is
implementation-defined: either a null pointer is returned to indicate an error, or the behavior is as if
the size were some nonzero value, except that the returned pointer shall not be used to access an
object.

For purposes of determining the existence of a data race, memory allocation functions behave as
though they accessed only memory locations accessible through their arguments and not other
static duration storage. These functions may, however, visibly modify the storage that they allocate
or deallocate. Calls to these functions that allocate or deallocate a particular region of memory
shall occur in a single total order, and each such deallocation call shall synchronize with the next
allocation (if any) in this order.

7.22.3.1 The aligned_alloc function
Synopsis

#include <stdlib.h>
void *xaligned_alloc(size_t alignment, size_t size);

Description

The aligned_alloc function allocates space for an object whose alignment is specified by
alignment, whose size is specified by size, and whose value is indeterminate. If the value of

§7.22.3.1 Library 305



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

alignment is not a valid alignment supported by the implementation the function shall fail by
returning a null pointer.

Returns
The aligned_alloc function returns either a null pointer or a pointer to the allocated space.

7.22.3.2 The calloc function
Synopsis

#include <stdlib.h>
void xcalloc(size_t nmemb, size_t size);

Description

The calloc function allocates space for an array of nmemb objects, each of whose size is size. The
space is initialized to all bits zero.>!®)

Returns

The calloc function returns either a null pointer or a pointer to the allocated space.

7.22.3.3 The free function
Synopsis

\ #include <stdlib.h> ‘
\ void free(void xptr); ‘

Description

The free function causes the space pointed to by ptr to be deallocated, that is, made available
for further allocation. If ptr is a null pointer, no action occurs. Otherwise, if the argument does
not match a pointer earlier returned by a memory management function, or if the space has been
deallocated by a call to free or realloc, the behavior is undefined.

Returns
The free function returns no value.

7.22.3.4 The malloc function
Synopsis

#include <stdlib.h>
void xmalloc(size_t size);

Description

The malloc function allocates space for an object whose size is specified by size and whose value
is indeterminate.

Returns

The malloc function returns either a null pointer or a pointer to the allocated space.

7.22.3.5 The realloc function
Synopsis

#include <stdlib.h>
void *xrealloc(void *ptr, size_t size);

Description

The realloc function deallocates the old object pointed to by ptr and returns a pointer to a new
object that has the size specified by size. The contents of the new object shall be the same as that of

318)Note that this need not be the same as the representation of floating-point zero or a null pointer constant.

306 Library §7.223.5



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

the old object prior to deallocation, up to the lesser of the new and old sizes. Any bytes in the new
object beyond the size of the old object have indeterminate values.

If ptris a null pointer, the realloc function behaves like the malloc function for the specified size.
Otherwise, if ptr does not match a pointer earlier returned by a memory management function, or
if the space has been deallocated by a call to the free or realloc function, or if the size is zero, the
behavior is undefined. If memory for the new object is not allocated, the old object is not deallocated
and its value is unchanged.

Returns

The realloc function returns a pointer to the new object (which may have the same value as a
pointer to the old object), or a null pointer if the new object has not been allocated.

7.22.4 Communication with the environment
7.22.4.1 The abort function
Synopsis

#include <stdlib.h>
_Noreturn void abort(void);

Description

The abort function causes abnormal program termination to occur, unless the signal SIGABRT
is being caught and the signal handler does not return. Whether open streams with unwritten
buffered data are flushed, open streams are closed, or temporary files are removed is implementa-
tion-defined. An implementation-defined form of the status unsuccessful termination is returned to
the host environment by means of the function call raise (SIGABRT).

Returns
The abort function does not return to its caller.

7.22.4.2 The atexit function
Synopsis

#include <stdlib.h>
int atexit(void (*func) (void));

Description

The atexit function registers the function pointed to by func, to be called without arguments at
normal program termination.*® It is unspecified whether a call to the atexit function that does
not happen before the exit function is called will succeed.

Environmental limits
The implementation shall support the registration of at least 32 functions.

Returns
The atexit function returns zero if the registration succeeds, nonzero if it fails.

Forward references: the at_quick_exit function (7.22.4.3), the exit function (7.22.4.4).

7.22.4.3 The at_quick_exit function
Synopsis

#include <stdlib.h>
int at_quick_exit(void (*func) (void));

319The atexit function registrations are distinct from the at_quick_exit registrations, so applications might need to call

both registration functions with the same argument.

§7.22.4.3 Library 307



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Description

The at_quick_exit function registers the function pointed to by func, to be called without argu-
ments should quick_exit be called.’® It is unspecified whether a call to the at_quick_exit
function that does not happen before the quick_exit function is called will succeed.

Environmental limits
The implementation shall support the registration of at least 32 functions.

Returns
The at_quick_exit function returns zero if the registration succeeds, nonzero if it fails.

Forward references: the quick_exit function (7.22.4.7).

7.22.4.4 The exit function
Synopsis

#include <stdlib.h>
_Noreturn void exit(int status);

Description

The exit function causes normal program termination to occur. No functions registered by the
at_quick_exit function are called. If a program calls the exit function more than once, or calls the
quick_exit function in addition to the exit function, the behavior is undefined.

First, all functions registered by the atexit function are called, in the reverse order of their registra-
tion,3?) except that a function is called after any previously registered functions that had already
been called at the time it was registered. If, during the call to any such function, a call to the Longjmp
function is made that would terminate the call to the registered function, the behavior is undefined.

Next, all open streams with unwritten buffered data are flushed, all open streams are closed, and all
files created by the tmpfile function are removed.

Finally, control is returned to the host environment. If the value of status is zero or EXIT_SUCCESS,
an implementation-defined form of the status successful termination is returned. If the value of
status is EXIT_FAILURE, an implementation-defined form of the status unsuccessful termination is
returned. Otherwise the status returned is implementation-defined.

Returns
The exit function cannot return to its caller.

7.22.4.5 The _Exit function
Synopsis

#include <stdlib.h>
_Noreturn void _Exit(int status);

Description

The _Exit function causes normal program termination to occur and control to be returned to the
host environment. No functions registered by the atexit function, the at_quick_exit function,
or signal handlers registered by the signal function are called. The status returned to the host
environment is determined in the same way as for the exit function (7.22.4.4). Whether open
streams with unwritten buffered data are flushed, open streams are closed, or temporary files are
removed is implementation-defined.

320)The at_quick_exit function registrations are distinct from the atexit registrations, so applications might need to call
both registration functions with the same argument.

32DEach function is called as many times as it was registered, and in the correct order with respect to other registered
functions.

308 Library §7.22.4.5



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Returns
The _Exit function cannot return to its caller.

7.22.4.6 The getenv function
Synopsis

#include <stdlib.h>
char xgetenv(const char xname);

Description

The getenv function searches an environment list, provided by the host environment, for a string that
matches the string pointed to by name. The set of environment names and the method for altering
the environment list are implementation-defined. The getenv function need not avoid data races
with other threads of execution that modify the environment list.3??)

The implementation shall behave as if no library function calls the getenv function.

Returns

The getenv function returns a pointer to a string associated with the matched list member. The
string pointed to shall not be modified by the program, but may be overwritten by a subsequent call
to the getenv function. If the specified name cannot be found, a null pointer is returned.

7.22.4.7 The quick_exit function
Synopsis

#include <stdlib.h>
_Noreturn void quick_exit(int status);

Description

The quick_exit function causes normal program termination to occur. No functions registered by
the atexit function or signal handlers registered by the signal function are called. If a program calls
the quick_exit function more than once, or calls the exit function in addition to the quick_exit
function, the behavior is undefined. If a signal is raised while the quick_exit function is executing,
the behavior is undefined.

The quick_exit function first calls all functions registered by the at_quick_exit function, in the
reverse order of their registration,??® except that a function is called after any previously registered
functions that had already been called at the time it was registered. If, during the call to any such
function, a call to the longjmp function is made that would terminate the call to the registered
function, the behavior is undefined.

Then control is returned to the host environment by means of the function call _Exit(status).

Returns
The quick_exit function cannot return to its caller.

7.22.4.8 The system function
Synopsis

|
\ #include <stdlib.h> \
\ int system(const char *string); \
L |

Description

If string is a null pointer, the system function determines whether the host environment has a
command processor. If string is not a null pointer, the system function passes the string pointed to

32)Many implementations provide non-standard functions that modify the environment list.
323)Each function is called as many times as it was registered, and in the correct order with respect to other registered
functions.

§7.22.4.8 Library 309



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

by string to that command processor to be executed in a manner which the implementation shall
document; this might then cause the program calling system to behave in a non-conforming manner
or to terminate.

Returns

If the argument is a null pointer, the system function returns nonzero only if a command processor
is available. If the argument is not a null pointer, and the system function does return, it returns an
implementation-defined value.

7.22.5 Searching and sorting utilities

These utilities make use of a comparison function to search or sort arrays of unspecified type. Where
an argument declared as size_t nmemb specifies the length of the array for a function, nmemb can
have the value zero on a call to that function; the comparison function is not called, a search finds no
matching element, and sorting performs no rearrangement. Pointer arguments on such a call shall
still have valid values, as described in 7.1.4.

The implementation shall ensure that the second argument of the comparison function (when called
from bsearch), or both arguments (when called from gsort), are pointers to elements of the array.*?%
The first argument when called from bsearch shall equal key.

The comparison function shall not alter the contents of the array. The implementation may reorder
elements of the array between calls to the comparison function, but shall not alter the contents of
any individual element.

When the same objects (consisting of size bytes, irrespective of their current positions in the array)
are passed more than once to the comparison function, the results shall be consistent with one
another. That is, for qsort they shall define a total ordering on the array, and for bsearch the same
object shall always compare the same way with the key.

A sequence point occurs immediately before and immediately after each call to the comparison
function, and also between any call to the comparison function and any movement of the objects
passed as arguments to that call.

7.22.5.1 The bsearch function
Synopsis

#include <stdlib.h>
void xbsearch(const void xkey, const void xbase, size_t nmemb, size_t size,
int (*compar) (const void *, const void x));

Description

The bsearch function searches an array of nmemb objects, the initial element of which is pointed to
by base, for an element that matches the object pointed to by key. The size of each element of the
array is specified by size.

The comparison function pointed to by compar is called with two arguments that point to the key
object and to an array element, in that order. The function shall return an integer less than, equal to,
or greater than zero if the key object is considered, respectively, to be less than, to match, or to be
greater than the array element. The array shall consist of: all the elements that compare less than, all
the elements that compare equal to, and all the elements that compare greater than the key object, in
that order.>®)

324)That is, if the value passed is p, then the following expressions are always nonzero:

((char *x)p - (char x)base) % size ==
(char *x)p >= (char x)base
(char x)p < (char x)base + nmemb * size

32)In practice, the entire array is sorted according to the comparison function.

310 Library §7.225.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Returns

The bsearch function returns a pointer to a matching element of the array, or a null pointer if no
match is found. If two elements compare as equal, which element is matched is unspecified.

§7.225.1 Library 311



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

7.22.5.2 The gsort function
Synopsis

#include <stdlib.h>
void qsort(void *base, size_t nmemb, size_t size,
int (xcompar)(const void *, const void x));

Description
The qsort function sorts an array of nmemb objects, the initial element of which is pointed to by
base. The size of each object is specified by size.

The contents of the array are sorted into ascending order according to a comparison function pointed
to by compar, which is called with two arguments that point to the objects being compared. The
function shall return an integer less than, equal to, or greater than zero if the first argument is
considered to be respectively less than, equal to, or greater than the second.

If two elements compare as equal, their order in the resulting sorted array is unspecified.

Returns
The gsort function returns no value.

7.22.6 Integer arithmetic functions

7.22.6.1 The abs, labs, and 1labs functions
Synopsis

#include <stdlib.h>

int abs(int j);

long int labs(long int j);

long long int 1labs(long long int j);

Description

The abs, labs, and 11labs functions compute the absolute value of an integer j. If the result cannot
be represented, the behavior is undefined.???)

Returns
The abs, labs, and 1labs, functions return the absolute value.

7.22.6.2 The div, Ldiv, and 1ldiv functions
Synopsis

#include <stdlib.h>

div_t div(int numer, int denom);

ldiv_t ldiv(long int numer, long int denom);

1ldiv_t 1ldiv(long long int numer, long long int denom);

Description
The div, ldiv, and 1ldiv, functions compute numer/denom and numer%sdenom in a single operation.

Returns

The div, ldiv, and 1ldiv functions return a structure of type div_t, ldiv_t, and 1ldiv_t, respec-
tively, comprising both the quotient and the remainder. The structures shall contain (in either order)
the members quot (the quotient) and rem (the remainder), each of which has the same type as
the arguments numer and denom. If either part of the result cannot be represented, the behavior is
undefined.

326)The absolute value of the most negative number may not be representable.

312 Library §7.22.6.2



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7.22.7 Multibyte/wide character conversion functions

The behavior of the multibyte character functions is affected by the LC_CTYPE category of the current
locale. For a state-dependent encoding, each of the mbtowc and wctomb functions is placed into its
initial conversion state prior to the first call to the function and can be returned to that state by a
call for which its character pointer argument, s, is a null pointer. Subsequent calls with s as other
than a null pointer cause the internal conversion state of the function to be altered as necessary. It is
implementation-defined whether internal conversion state has thread storage duration, and whether
a newly created thread has the same state as the current thread at the time of creation, or the initial
conversion state. A call with s as a null pointer causes these functions to return a nonzero value if
encodings have state dependency, and zero otherwise.

Changing the LC_CTYPE category causes the conversion state of the mbtowc and wctomb functions to
be indeterminate.

7.22.7.1 The mblen function
Synopsis

#include <stdlib.h>
int mblen(const char *s, size_t n);

Description

If s is not a null pointer, the mblen function determines the number of bytes contained in the
multibyte character pointed to by s. Except that the conversion state of the mbtowc function is not
affected, it is equivalent to

mbtowc ( (wchar—_t x)0, (const char )0, 0);
mbtowc ( (wchar_t *)0, s, n);

Returns

If s is a null pointer, the mblen function returns a nonzero or zero value, if multibyte character
encodings, respectively, do or do not have state-dependent encodings. If s is not a null pointer, the
mblen function either returns 0 (if s points to the null character), or returns the number of bytes
that are contained in the multibyte character (if the next n or fewer bytes form a valid multibyte
character), or returns-1 (if they do not form a valid multibyte character).

Forward references: the mbtowc function (7.22.7.2).

7.22.7.2 The mbtowc function
Synopsis

#include <stdlib.h>
int mbtowc(wchar_t * restrict pwc, const char * restrict s, size_t n);

Description

If s is not a null pointer, the mbtowc function inspects at most n bytes beginning with the byte
pointed to by s to determine the number of bytes needed to complete the next multibyte character
(including any shift sequences). If the function determines that the next multibyte character is
complete and valid, it determines the value of the corresponding wide character and then, if pwc
is not a null pointer, stores that value in the object pointed to by pwc. If the corresponding wide
character is the null wide character, the function is left in the initial conversion state.

The implementation shall behave as if no library function calls the mbtowc function.

Returns

If s is a null pointer, the mbtowc function returns a nonzero or zero value, if multibyte character
encodings, respectively, do or do not have state-dependent encodings. If s is not a null pointer, the
mbtowc function either returns 0 (if s points to the null character), or returns the number of bytes
that are contained in the converted multibyte character (if the next n or fewer bytes form a valid

§7.22.7.2 Library 313



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

multibyte character), or returns-1 (if they do not form a valid multibyte character).
In no case will the value returned be greater than n or the value of the MB_CUR_MAX macro.

7.22.7.3 The wctomb function
Synopsis

#include <stdlib.h>
int wctomb(char s, wchar_t wc);

Description

The wctomb function determines the number of bytes needed to represent the multibyte character
corresponding to the wide character given by wc (including any shift sequences), and stores the
multibyte character representation in the array whose first element is pointed to by s (if s is not a
null pointer). At most MB_CUR_MAX characters are stored. If wc is a null wide character, a null byte is
stored, preceded by any shift sequence needed to restore the initial shift state, and the function is
left in the initial conversion state.

The implementation shall behave as if no library function calls the wetomb function.

Returns

If s is a null pointer, the wctomb function returns a nonzero or zero value, if multibyte character
encodings, respectively, do or do not have state-dependent encodings. If s is not a null pointer, the
wctomb function returns-1 if the value of wc does not correspond to a valid multibyte character, or
returns the number of bytes that are contained in the multibyte character corresponding to the value
of wc.

In no case will the value returned be greater than the value of the MB_CUR_MAX macro.

7.22.8 Multibyte/wide string conversion functions

The behavior of the multibyte string functions is affected by the LC_CTYPE category of the current
locale.

7.22.8.1 The mbstowcs function

Synopsis

#include <stdlib.h>
size_t mbstowcs(wchar—_t * restrict pwcs, const char x restrict s, size_t n);

Description

The mbstowcs function converts a sequence of multibyte characters that begins in the initial shift
state from the array pointed to by s into a sequence of corresponding wide characters and stores not
more than n wide characters into the array pointed to by pwcs. No multibyte characters that follow
a null character (which is converted into a null wide character) will be examined or converted. Each
multibyte character is converted as if by a call to the mbtowc function, except that the conversion
state of the mbtowc function is not affected.

No more than n elements will be modified in the array pointed to by pwcs. If copying takes place
between objects that overlap, the behavior is undefined.

Returns

If an invalid multibyte character is encountered, the mbstowcs function returns (size_t)(-1).
Otherwise, the mbstowcs function returns the number of array elements modified, not including a
terminating null wide character, if any.>?”

327)The array will not be null-terminated if the value returned is n.

314 Library §7.22.8.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7.22.8.2 The wcstombs function
Synopsis

#include <stdlib.h>
size_t wcstombs(char * restrict s, const wchar_t * restrict pwcs, size_t n);

Description

The westombs function converts a sequence of wide characters from the array pointed to by pwcs
into a sequence of corresponding multibyte characters that begins in the initial shift state, and stores
these multibyte characters into the array pointed to by s, stopping if a multibyte character would
exceed the limit of n total bytes or if a null character is stored. Each wide character is converted
as if by a call to the wctomb function, except that the conversion state of the wctomb function is not
affected.

No more than n bytes will be modified in the array pointed to by s. If copying takes place between
objects that overlap, the behavior is undefined.

Returns

If a wide character is encountered that does not correspond to a valid multibyte character, the
wcstombs function returns (size_t) (-1). Otherwise, the wcstombs function returns the number
of bytes modified, not including a terminating null character, if any.32”)

§7.22.8.2 Library 315



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

7.23 _Noreturn <stdnoreturn.h>
1 The header <stdnoreturn.h> defines the macro

\ noreturn

which expands to _Noreturn.

316 Library §7.23



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7.24 String handling <string.h>

7.24.1 String function conventions

The header <string.h> declares one type and several functions, and defines one macro useful
for manipulating arrays of character type and other objects treated as arrays of character type.32?)
The type is size_t and the macro is NULL (both described in 7.19). Various methods are used for
determining the lengths of the arrays, but in all cases a char * or void * argument points to the
initial (lowest addressed) character of the array. If an array is accessed beyond the end of an object,
the behavior is undefined.

Where an argument declared as size_t n specifies the length of the array for a function, n can have
the value zero on a call to that function. Unless explicitly stated otherwise in the description of a
particular function in this subclause, pointer arguments on such a call shall still have valid values, as
described in 7.1.4. On such a call, a function that locates a character finds no occurrence, a function
that compares two character sequences returns zero, and a function that copies characters copies
zero characters.

For all functions in this subclause, each character shall be interpreted as if it had the type
unsigned char (and therefore every possible object representation is valid and has a different
value).

7.24.2 Copying functions

7.24.2.1 The memcpy function
Synopsis

#include <string.h>
void xmemcpy(void * restrict sl, const void * restrict s2, size_t n);

Description

The memcpy function copies n characters from the object pointed to by s2 into the object pointed to
by s1. If copying takes place between objects that overlap, the behavior is undefined.

Returns
The memcpy function returns the value of s1.

7.24.2.2 The memccpy function
Synopsis

#include <string.h>
void *xmemccpy(void * restrict sl, const void * restrict s2, int c, size_t n);

Description

The memccpy function copies characters from the object pointed to by s2 into the object pointed to
by s1, stopping after the first occurrence of character c (converted to an unsigned char) is copied,
or after n characters are copied, whichever comes first. If copying takes place between objects that
overlap, the behavior is undefined.

Returns

The memccpy function returns a pointer to the character after the copy of ¢ in s1, or a null pointer if
¢ was not found in the first n characters of s2.

7.24.2.3 The memmove function
Synopsis

#include <string.h>
void *xmemmove(void *sl, const void *s2, size_t n);

328)See “future library directions” (7.31.15).

§7.24.2.3 Library 317



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Description

The memmove function copies n characters from the object pointed to by s2 into the object pointed to
by s1. Copying takes place as if the n characters from the object pointed to by s2 are first copied
into a temporary array of n characters that does not overlap the objects pointed to by s1 and s2, and
then the n characters from the temporary array are copied into the object pointed to by s1.

Returns
The memmove function returns the value of s1.

7.24.2.4 The strcpy function
Synopsis

#include <string.h>
char xstrcpy(char * restrict sl, const char * restrict s2);

Description

The strcpy function copies the string pointed to by s2 (including the terminating null character)
into the array pointed to by s1. If copying takes place between objects that overlap, the behavior is
undefined.

Returns
The strcpy function returns the value of s1.

7.24.2.5 The strncpy function
Synopsis

#include <string.h>
char xstrncpy(char * restrict sl, const char * restrict s2, size_t n);

Description

The strncpy function copies not more than n characters (characters that follow a null character are
not copied) from the array pointed to by s2 to the array pointed to by s1.3%) If copying takes place
between objects that overlap, the behavior is undefined.

If the array pointed to by s2 is a string that is shorter than n characters, null characters are appended
to the copy in the array pointed to by s1, until n characters in all have been written.

Returns
The strncpy function returns the value of s1.

7.24.3 Concatenation functions

7.24.3.1 The strcat function
Synopsis

\ #include <string.h>
\ char xstrcat(char * restrict sl, const char * restrict s2);
L

Description

The strcat function appends a copy of the string pointed to by s2 (including the terminating null
character) to the end of the string pointed to by s1. The initial character of s2 overwrites the null
character at the end of s1. If copying takes place between objects that overlap, the behavior is
undefined.

Returns
The strcat function returns the value of s1.

32)Thus, if there is no null character in the first n characters of the array pointed to by s2, the result will not be null-
terminated.

318 Library §7.24.3.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7.24.3.2 The strncat function
Synopsis

#include <string.h>
char xstrncat(char * restrict sl, const char * restrict s2, size_t n);

Description

The strncat function appends not more than n characters (a null character and characters that
follow it are not appended) from the array pointed to by s2 to the end of the string pointed to by
s1. The initial character of s2 overwrites the null character at the end of s1. A terminating null
character is always appended to the result.3? If copying takes place between objects that overlap,
the behavior is undefined.

Returns
The strncat function returns the value of s1.

Forward references: the strlen function (7.24.6.3).

7.24.4 Comparison functions

The sign of a nonzero value returned by the comparison functions memcmp, strcmp, and strncmp
is determined by the sign of the difference between the values of the first pair of characters (both
interpreted as unsigned char) that differ in the objects being compared.

7.24.4.1 The memcmp function
Synopsis

#include <string.h>
int memcmp(const void *sl, const void *s2, size_t n);

Description

The mememp function compares the first n characters of the object pointed to by s1 to the first n
characters of the object pointed to by 52.33

Returns

The memcmp function returns an integer greater than, equal to, or less than zero, accordingly as the
object pointed to by s1 is greater than, equal to, or less than the object pointed to by s2.

7.24.4.2 The strcmp function

Synopsis

#include <string.h>
int strcmp(const char *sl, const char *s2);

Description
The stremp function compares the string pointed to by s1 to the string pointed to by s2.

Returns

The stremp function returns an integer greater than, equal to, or less than zero, accordingly as the
string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2.

7.24.4.3 The strcoll function

Synopsis

#include <string.h>
int strcoll(const char xsl, const char xs2);

330)Thus, the maximum number of characters that can end up in the array pointed to by s1is strlen(sl)+n+1.
3D The contents of “holes” used as padding for purposes of alignment within structure objects are indeterminate. Strings
shorter than their allocated space and unions can also cause problems in comparison.

§7.244.3 Library 319



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Description

The strcoll function compares the string pointed to by s1 to the string pointed to by s2, both
interpreted as appropriate to the LC_COLLATE category of the current locale.

Returns

The strcoll function returns an integer greater than, equal to, or less than zero, accordingly as the
string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2 when both
are interpreted as appropriate to the current locale.

7.24.4.4 The strncmp function
Synopsis

#include <string.h>
int strncmp(const char *sl, const char *xs2, size_t n);

Description

The strncmp function compares not more than n characters (characters that follow a null character
are not compared) from the array pointed to by s1 to the array pointed to by s2.

Returns

The strncmp function returns an integer greater than, equal to, or less than zero, accordingly as the
possibly null-terminated array pointed to by s1 is greater than, equal to, or less than the possibly
null-terminated array pointed to by s2.

7.24.4.5 The strxfrm function
Synopsis

#include <string.h>
size_t strxfrm(char * restrict sl, const char * restrict s2, size_t n);

Description

The strxfrm function transforms the string pointed to by s2 and places the resulting string into
the array pointed to by s1. The transformation is such that if the strcmp function is applied to two
transformed strings, it returns a value greater than, equal to, or less than zero, corresponding to the
result of the strcoll function applied to the same two original strings. No more than n characters
are placed into the resulting array pointed to by s1, including the terminating null character. If n is
zero, s1 is permitted to be a null pointer. If copying takes place between objects that overlap, the
behavior is undefined.

Returns

The strxfrm function returns the length of the transformed string (not including the terminating
null character). If the value returned is n or more, the contents of the array pointed to by s1 are
indeterminate.

EXAMPLE The value of the following expression is the size of the array needed to hold the transformation of the string
pointed to by s.

\ 1 + strxfrm(NULL, s, 0)

7.24.5 Search functions
7.24.5.1 The memchr function
Synopsis

#include <string.h>
void *memchr(const void *s, int c, size_t n);

320 Library §7.245.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Description

The memchr function locates the first occurrence of ¢ (converted to an unsigned char) in the initial
n characters (each interpreted as unsigned char) of the object pointed to by s. The implementation
shall behave as if it reads the characters sequentially and stops as soon as a matching character is
found.

Returns

The memchr function returns a pointer to the located character, or a null pointer if the character does
not occur in the object.

7.24.5.2 The strchr function
Synopsis

#include <string.h>
char xstrchr(const char *xs, int c);

Description

The strchr function locates the first occurrence of ¢ (converted to a char) in the string pointed to
by s. The terminating null character is considered to be part of the string.

Returns

The strchr function returns a pointer to the located character, or a null pointer if the character does
not occur in the string.

7.24.5.3 The strcspn function
Synopsis

#include <string.h>
size_t strcspn(const char xsl, const char *s2);

Description

The strcspn function computes the length of the maximum initial segment of the string pointed to
by s1 which consists entirely of characters not from the string pointed to by s2.

Returns
The strcspn function returns the length of the segment.

7.24.5.4 The strpbrk function
Synopsis

#include <string.h>
char xstrpbrk(const char *sl, const char xs2);

Description

The strpbrk function locates the first occurrence in the string pointed to by s1 of any character
from the string pointed to by s2.

Returns

The strpbrk function returns a pointer to the character, or a null pointer if no character from s2
occurs in s1.

7.24.5.5 The strrchr function
Synopsis

#include <string.h>
char xstrrchr(const char *s, int c);

§7.24.5.5 Library 321



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Description

The strrchr function locates the last occurrence of ¢ (converted to a char) in the string pointed to
by s. The terminating null character is considered to be part of the string.

Returns

The strrchr function returns a pointer to the character, or a null pointer if ¢ does not occur in the
string.

7.24.5.6 The strspn function

Synopsis

#include <string.h>
size_t strspn(const char *sl, const char xs2);

Description

The strspn function computes the length of the maximum initial segment of the string pointed to
by s1 which consists entirely of characters from the string pointed to by s2.

Returns

The strspn function returns the length of the segment.

7.24.5.7 The strstr function
Synopsis

#include <string.h>
char xstrstr(const char *sl, const char xs2);

Description

The strstr function locates the first occurrence in the string pointed to by s1 of the sequence of
characters (excluding the terminating null character) in the string pointed to by s2.

Returns

The strstr function returns a pointer to the located string, or a null pointer if the string is not found.
If s2 points to a string with zero length, the function returns s1.

7.24.5.8 The strtok function

Synopsis

#include <string.h>
char xstrtok(char * restrict sl, const char * restrict s2);

Description

A sequence of calls to the strtok function breaks the string pointed to by s1 into a sequence of
tokens, each of which is delimited by a character from the string pointed to by s2. The first call
in the sequence has a non-null first argument; subsequent calls in the sequence have a null first
argument. If any of the subsequent calls in the sequence is made by a different thread than the first,
the behavior is undefined. The separator string pointed to by s2 may be different from call to call.

The first call in the sequence searches the string pointed to by s1 for the first character that is not
contained in the current separator string pointed to by s2. If no such character is found, then there
are no tokens in the string pointed to by s1 and the strtok function returns a null pointer. If such a
character is found, it is the start of the first token.

The strtok function then searches from there for a character that is contained in the current separator
string. If no such character is found, the current token extends to the end of the string pointed to by
s1, and subsequent searches for a token will return a null pointer. If such a character is found, it is
overwritten by a null character, which terminates the current token. The strtok function saves a
pointer to the following character, from which the next search for a token will start.

322 Library §7.245.8



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Each subsequent call, with a null pointer as the value of the first argument, starts searching from the
saved pointer and behaves as described above.

The strtok function is not required to avoid data races with other calls to the strtok function.®?

The implementation shall behave as if no library function calls the strtok function.

Returns

The strtok function returns a pointer to the first character of a token, or a null pointer if there is no
token.

EXAMPLE
#include <string.h>
static char str[] = "?a???b,,,#c";
char xt;
t = strtok(str, "?"); // t points to the token "a"
t = strtok(NULL, ","); // t points to the token "?7?b"
t = strtok(NULL, "#,"); // t points to the token "c"
t = strtok(NULL, "?"); // t is a null pointer

Forward references: The strtok_s function (K.3.7.3.1).

7.24.6 Miscellaneous functions
7.24.6.1 The memset function
Synopsis

#include <string.h>
void *memset(void xs, int c, size_t n);

Description

The memset function copies the value of ¢ (converted to an unsigned char) into each of the first n
characters of the object pointed to by s.

Returns

The memset function returns the value of s.

7.24.6.2 The strerror function
Synopsis

#include <string.h>
char xstrerror(int errnum);

Description
The strerror function maps the number in errnum to a message string. Typically, the values for
errnum come from errno, but strerror shall map any value of type int to a message.

The strerror function is not required to avoid data races with other calls to the strerror func-
tion.33¥ The implementation shall behave as if no library function calls the strerror function.

Returns

The strerror function returns a pointer to the string, the contents of which are locale-specific. The
array pointed to shall not be modified by the program. The behavior is undefined if the returned
value is used after a subsequent call to the strerror function, or after the thread which called the
function to obtain the returned value has exited.

Forward references: The strerror_s function (K.3.7.4.2).

332)The strtok_s function can be used instead to avoid data races.
333)The strerror_s function can be used instead to avoid data races.

§7.24.6.2 Library 323



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

7.24.6.3 The strlen function
Synopsis

#include <string.h>
size_t strlen(const char xs);

Description
The strlen function computes the length of the string pointed to by s.

Returns
The strlen function returns the number of characters that precede the terminating null character.

7.24.6.4 The strdup function
Synopsis

#include <string.h>
char xstrdup(const char *s);

Description
The strdup function creates a copy of the string pointed to by s in a space allocated as if by a call to

malloc.

Returns

The strdup function returns a pointer to the first character of the duplicate string. The returned
pointer can be passed to free. If no space can be allocated the strdup function returns a null pointer.

7.24.6.5 The strndup function
Synopsis

#include <string.h>
char xstrndup(const char *s, size_t size);

Description

The strndup function creates a string initialized with no more than size initial characters of the
array pointed to by s and up to the first null character, whichever comes first, in a space allocated
as if by a call to malloc. If the array pointed to by s does not contain a null within the first size
characters, a null is appended to the copy of the array.

Returns

The strndup function returns a pointer to the first character of the created string. The returned
pointer can be passed to free. If no space can be allocated the strndup function returns a null
pointer.

324 Library §7.24.6.5



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7.25 Type-generic math <tgmath.h>

The header <tgmath.h> includes the headers <math.h> and <complex.h> and defines several
type-generic macros.

The feature test macro __STDC_VERSION_TGMATH_H__ expands to the token yyyymmL.

This clause specifies a many-to-one correspondence of functions in <math . h>and <complex.h> with
type-generic macros.®*¥ Use of a type-generic macro invokes a corresponding function whose type is
determined by the types of the arguments for particular parameters called the generic parameters.>*

Of the <math . h>and <complex. h> functions without an f (float) or 1 (long double) suffix, several
have one or more parameters whose corresponding real type is double. For each such function,
except the functions that round result to narrower type (7.12.14) (which are covered below) and
modf,

there is a corresponding type-generic macro. The parameters whose corresponding real type is
double in the function synopsis are generic parameters.

Some of the <math. h> functions for decimal floating types have no unsuffixed counterpart. Of these
functions with a d64 suffix, some have one or more parameters whose type is _Decimal64. For each
such function, except decodedecd64, encodedecd64, decodebind64, and encodebind64, there is a
corresponding type-generic macro. The parameters whose real type is _Decimal64 in the function
synopsis are generic parameters.

If arguments for generic parameters of a type-generic macro are such that some argument has a
corresponding real type that is of standard floating type and another argument is of decimal floating
type, the behavior is undefined.

Except for the macros for functions that round result to a narrower type (7.12.14), use of a type-
generic macro invokes a function whose generic parameters have the corresponding real type
determined by the types of the arguments for the generic parameters as follows:

— Arguments of integer type are regarded as having type _Decimal64 if any argument has
decimal floating type, and as having type double otherwise.

— If the function has exactly one generic parameter, the type determined is the corresponding
real type of the argument for the generic parameter.

— If the function has exactly two generic parameters, the type determined is the corresponding
real type determined by the usual arithmetic conversions (6.3.1.8) applied to the arguments for
the generic parameters.

— If the function has more than two generic parameters, the type determined is the corresponding
real type determined by repeatedly applying the usual arithmetic conversions, first to the first
two arguments for generic parameters, then to that result type and the next argument for a
generic parameter, and so forth until the usual arithmetic conversions have been applied to
the last argument for a generic parameter.

If neither <math.h> and <complex.h> define a function whose generic parameters have the deter-
mined corresponding real type, the behavior is undefined.

For each unsuffixed function in <math.h> for which there is a function in <complex.h> with the
same name except for a c prefix, the corresponding type-generic macro (for both functions) has the
same name as the function in <math.h>. The corresponding type-generic macro for fabs and cabs
is fabs.

334 Like other function-like macros in standard libraries, each type-generic macro can be suppressed to make available the

corresponding ordinary function.
3)1f the type of the argument is not compatible with the type of the parameter for the selected function, the behavior is
undefined.

§7.25 Library 325



10

11

ISO/IEC 9899:202x (E)

<math.h> <complex.h> type-generic
function function macro
acos cacos acos
asin casin asin
atan catan atan
acosh cacosh acosh
asinh casinh asinh
atanh catanh atanh
cos ccos cos
sin csin sin
tan ctan tan
cosh ccosh cosh
sinh csinh sinh
tanh ctanh tanh
exp cexp exp
log clog log
pow cpow pow
sqrt csqrt sqrt
fabs cabs fabs

working draft — October 1, 2020

N2573

If at least one argument for a generic parameter is complex, then use of the macro invokes a complex
function; otherwise, use of the macro invokes a real function.

For each unsuffixed function in <math . h> without a c-prefixed counterpart in <complex.h> (except
functions that round result to narrower type, modf, and canonicalize), the corresponding type-
generic macro has the same name as the function. These type-generic macros are:

acospi exp2 fmod log2 rootn
asinpi expml frexp logb roundeven
atan2pi fdim fromfpx logpl round
atan2 floor fromfp lrint rsqrt
atanpi fmax hypot lround scalbln
cbhrt fmaximum ilogb nearbyint scalbn
ceil fmaximum_mag ldexp nextafter sinpi
compoundn fmaximum_num lgamma nextdown tanpi
copysign fmaximum_mag_num 1logb nexttoward tgamma
cospi fma 1lrint nextup trunc
erfc fmin 1lround pown ufromfpx
erf fminimum loglopl powr ufromfp
exploml fminimum_mag loglo remainder

explo fminimum_num loglp remquo

exp2ml fminimum_mag_num log2pl rint

If all arguments for generic parameters are real, then use of the macro invokes a real function
(provided <math.h> defines a function of the determined type); otherwise, use of the macro is
undefined.

For each unsuffixed function in <complex.h> that is not a c-prefixed counterpart to a function
in <math.h>, the corresponding type-generic macro has the same name as the function. These
type-generic macros are:

creal

carg cimag conj cproj

Use of the macro with any argument of standard floating or complex type invokes a complex
function. Use of the macro with an argument of decimal floating type is undefined.

The functions that round result to a narrower type have type-generic macros whose names are
obtained by omitting any suffix from the function names. Thus, the macros with f or d prefix are:

326 Library §7.25



12

13

14

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

fadd fsub fmul fdiv ffma fsqrt
dadd dsub dmul ddiv dfma dsqrt

and the macros with d32 or d64 prefix are:

d32add d32sub d32mul d32div d32fma d32sqrt
d64add d64sub d64mul d64div d64fma d64sqrt

All arguments shall be real. If the macro prefix is f or d, use of an argument of decimal floating
type is undefined. If the macro prefix is d32 or d64, use of an argument of standard floating type is
undefined. The function invoked is determined as follows:

— If any argument has type _Decimall28, or if the macro prefix is d64, the function invoked has
the name of the macro, with a d128 suffix.

— Otherwise, if the macro prefix is d32, the function invoked has the name of the macro, with a
d64 suffix.

— Otherwise, if any argument has type long double, or if the macro prefix is d, the function
invoked has the name of the macro, with an 1 suffix.

— Otherwise, the function invoked has the name of the macro (with no suffix).

For each d64-suffixed function in <math.h>, except decodedecd64, encodedecd64, decodebind64,
and encodebind64, that does not have an unsuffixed counterpart, the corresponding type-generic
macro has the name of the function, but without the suffix. These type-generic macros are:

<math.h> type-generic
function macro
quantizedN quantize
samequantumdN samequantum
quantumdN quantum

1lquantexpdN 1lquantexp

Use of the macro with an argument of standard floating or complex type or with only integer type
arguments is undefined.

A type-generic macro corresponding to a function indicated in the table in 7.6.2 is affected by
constant rounding modes (7.6.4).

NOTE The type-generic macro definition in the example in 6.5.1.1 does not conform to this specification. A conforming
macro could be implemented as follows:

#define cbrt(X) \
_Generic((X), \
long double: _Roundwise_cbrtl, \
default: _Roundwise_cbrt, \

float: _Roundwise_cbrtf \

) (X)

where where _Roundwise_cbrtl, _Roundwise_cbrt, and _Roundwise_cbrtf are pointers to functions that are equivalent
to cbrtl, cbrt, and cbrtf, respectively, but that are guaranteed to be affected by constant rounding modes (7.6.2).

§7.25 Library 327



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573
15 EXAMPLE With the declarations
#include <tgmath.h>
int n;
float f;
double d;
long double 1d;
float complex fc;
double complex dc;
long double complex ldc;
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 d32;
_Decimal64 do64;
_Decimall28 d128;
#endif
functions invoked by use of type-generic macros are shown in the following table:
macro use invocation
exp(n) exp(n), the function
acosh(f) acoshf(f)
sin(d) sin(d), the function
atan(ld) atanl(ld)
log(fc) clogf(fc)
sqrt(dc) csqrt(dc)
pow(ldc, f) cpowl(ldc, f)
remainder(n, n) remainder(n, n), the function
nextafter(d, f) nextafter(d, f),the function
nexttoward(f, 1d) nexttowardf(f, 1d)
copysign(n, 1d) copysignl(n, 1d)
ceil(fc) undefined
rint(dc) undefined
fmax(ldc, 1d) undefined
carg(n) carg(n), the function
cproj(f) cprojf(f)
creal(d) creal(d), the function
cimag(ld) cimagl(ld)
fabs(fc) cabsf(fc)
carg(dc) carg(dc), the function
cproj(ldc) cprojl(ldc)
fsub(f, 1d) fsubl(f, 1d)
fdiv(d, n) fdiv(d, n),the function
dfma(f, d, 1d) dfmal(f, d, ld)
dadd(f, f) daddl(f, f)
dsqrt(dc) undefined
exp(d64) expd64(d64)
sqrt(d32) sqrtd32(d32)
fmax(d64, d128) fmaxd128(d64, d128)
pow(d32, n) powd64(d32, n)
remainder(d64, d) undefined
creal(d64) undefined
remquo(d32, d32, &n) undefined
1lquantexp(d) undefined
quantize(dc) undefined
samequantum(n, n) undefined
d32sub(d32, d128) d32subd128(d32, d128)
d32div(d64, n) d32divd64(d64, n)
dé4fma(d32, de64, d128) de64fmadl28(d32, d64, d128)
d64add(d32, d32) d64addd128(d32, d32)
d64sqrt(d) undefined
dadd(n, d64) undefined
328 Library §7.25




N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7.26 Threads <threads.h>

7.26.1 Introduction

The header <threads . h> includes the header <time.h>, defines macros, and declares types, enu-
meration constants, and functions that support multiple threads of execution.**®

Implementations that define the macro __STDC_NO_THREADS__ need not provide this header nor
support any of its facilities.

The macros are

\ thread_local

which expands to the keyword _Thread_locatl;

\ ONCE_FLAG_INIT

which expands to a value that can be used to initialize an object of type once_flag; and

‘ TSS_DTOR_ITERATIONS

which expands to an integer constant expression representing the maximum number of times that
destructors will be called when a thread terminates.

The types are

\ cnd_t

which is a complete object type that holds an identifier for a condition variable;

\ thrd_t

which is a complete object type that holds an identifier for a thread;

\ tss_t

which is a complete object type that holds an identifier for a thread-specific storage pointer;

\ mtx_t

which is a complete object type that holds an identifier for a mutex;

tss_dtor_t

which is the function pointer type void () (voidx), used for a destructor for a thread-specific
storage pointer;

\ thrd_start_t

which is the function pointer type int (*) (void*) that is passed to thrd_create to create a new
thread; and

\ once_flag

which is a complete object type that holds a flag for use by call_once.

The enumeration constants are

\ mtx_plain

336)See “future library directions” (7.31.17).

§7.26.1 Library 329



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

which is passed to mtx_init to create a mutex object that does not support timeout;

\ mtx_recursive
L

which is passed to mtx_init to create a mutex object that supports recursive locking;

[
\ mtx_timed

which is passed to mtx_init to create a mutex object that supports timeout;

\ thrd_timedout

which is returned by a timed wait function to indicate that the time specified in the call was reached
without acquiring the requested resource;

\ thrd_success

which is returned by a function to indicate that the requested operation succeeded;

\ thrd_busy

which is returned by a function to indicate that the requested operation failed because a resource
requested by a test and return function is already in use;

\ thrd_error
L

which is returned by a function to indicate that the requested operation failed; and

\ thrd_nomem
L

which is returned by a function to indicate that the requested operation failed because it was unable
to allocate memory.

Forward references: date and time (7.27).

7.26.2 Initialization functions

7.26.2.1 The call_once function
Synopsis

#include <threads.h>
void call_once(once_flag *flag, void (xfunc)(void));

Description

The call_once function uses the once_flag pointed to by flag to ensure that func is called exactly
once, the first time the call_once function is called with that value of flag. Completion of an
effective call to the call_once function synchronizes with all subsequent calls to the call_once
function with the same value of flag.

Returns

The call_once function returns no value.

7.26.3 Condition variable functions
7.26.3.1 The cnd_broadcast function
Synopsis

#include <threads.h>
int cnd_broadcast(cnd_t *cond);

330 Library §7.26.3.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Description

The cnd_broadcast function unblocks all of the threads that are blocked on the condition variable
pointed to by cond at the time of the call. If no threads are blocked on the condition variable pointed
to by cond at the time of the call, the function does nothing.

Returns

The cnd_broadcast function returns thrd_success on success, or thrd_error if the request could
not be honored.

7.26.3.2 The cnd_destroy function

Synopsis

#include <threads.h>
void cnd_destroy(cnd_t *cond);

Description

The cnd_destroy function releases all resources used by the condition variable pointed to by cond.
The cnd_destroy function requires that no threads be blocked waiting for the condition variable
pointed to by cond.

Returns
The cnd_destroy function returns no value.

7.26.3.3 The cnd_init function
Synopsis

#include <threads.h>
int cnd_init(cnd_t *cond);

Description

The cnd_init function creates a condition variable. If it succeeds it sets the variable pointed to by
cond to a value that uniquely identifies the newly created condition variable. A thread that calls
cnd_wait on a newly created condition variable will block.

Returns

The cnd_init function returns thrd_success on success, or thrd_nomem if no memory could be
allocated for the newly created condition, or thrd_error if the request could not be honored.
7.26.3.4 The cnd_signal function

Synopsis

#include <threads.h>
int cnd_signal(cnd_t *cond);

Description

The cnd_signal function unblocks one of the threads that are blocked on the condition variable
pointed to by cond at the time of the call. If no threads are blocked on the condition variable at the
time of the call, the function does nothing and returns success.

Returns

The cnd_signal function returns thrd_success on success or thrd_error if the request could not
be honored.

7.26.3.5 The cnd_timedwait function

Synopsis

#include <threads.h>
int cnd_timedwait(cnd_t *restrict cond, mtx_t xrestrict mtx,
const struct timespec xrestrict ts);

§7.26.3.5 Library 331



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Description

The cnd_timedwait function atomically unlocks the mutex pointed to by mtx and blocks until the
condition variable pointed to by cond is signaled by a call to cnd_signal or to cnd_broadcast, or
until after the TIME_UTC-based calendar time pointed to by ts, or until it is unblocked due to an
unspecified reason. When the calling thread becomes unblocked it locks the variable pointed to by
mtx before it returns. The cnd_timedwait function requires that the mutex pointed to by mtx be
locked by the calling thread.

Returns

The cnd_timedwait function returns thrd_success upon success, or thrd_timedout if the time
specified in the call was reached without acquiring the requested resource, or thrd_error if the
request could not be honored.

7.26.3.6 The cnd_wait function
Synopsis

#include <threads.h>
int cnd_wait(cnd_t *xcond, mtx_t *mtx);

Description

The cnd_wait function atomically unlocks the mutex pointed to by mtx and blocks until the condi-
tion variable pointed to by cond is signaled by a call to cnd_signal or to cnd_broadcast, or until it
is unblocked due to an unspecified reason. When the calling thread becomes unblocked it locks the
mutex pointed to by mtx before it returns. The cnd_wait function requires that the mutex pointed
to by mtx be locked by the calling thread.

Returns

The cnd_wait function returns thrd_success on success or thrd_error if the request could not be
honored.

7.26.4 Mutex functions

For purposes of determining the existence of a data race, lock and unlock operations behave as
atomic operations. All lock and unlock operations on a particular mutex occur in some particular
total order.

NOTE This total order can be viewed as the modification order of the mutex.

7.26.4.1 The mtx_destroy function
Synopsis

#include <threads.h>
void mtx_destroy(mtx_t *mtx);

Description

The mtx_destroy function releases any resources used by the mutex pointed to by mtx. No threads
can be blocked waiting for the mutex pointed to by mtx.

Returns
The mtx_destroy function returns no value.

7.26.4.2 The mtx_init function
Synopsis

#include <threads.h>
int mtx_init(mtx_t *mtx, int type);

332 Library §7.26.4.2



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Description

The mtx_init function creates a mutex object with properties indicated by type, which shall have
one of these values:

mtx_plain for a simple non-recursive mutex,
mtx_timed for a non-recursive mutex that supports timeout,
mtx_plain | mtx_recursive for asimple recursive mutex, or

mtx_timed | mtx_recursive for arecursive mutex that supports timeout.

If the mtx_init function succeeds, it sets the mutex pointed to by mtx to a value that uniquely
identifies the newly created mutex.

Returns

The mtx_init function returns thrd_success on success, or thrd_error if the request could not
be honored.

7.26.4.3 The mtx_lock function
Synopsis

#include <threads.h>
int mtx_lock(mtx_t *mtx);

Description

The mtx_lock function blocks until it locks the mutex pointed to by mtx. If the mutex is non-
recursive, it shall not be locked by the calling thread. Prior calls to mtx_unlock on the same mutex
synchronize with this operation.

Returns

The mtx_lock function returns thrd_success on success, or thrd_error if the request could not
be honored.

7.26.4.4 The mtx_timedlock function
Synopsis

#include <threads.h>
int mtx_timedlock (mtx_t *restrict mtx, const struct timespec xrestrict ts);

Description

The mtx_timedlock function endeavors to block until it locks the mutex pointed to by mtx or
until after the TIME_UTC-based calendar time pointed to by ts. The specified mutex shall support
timeout. If the operation succeeds, prior calls to mtx_unlock on the same mutex synchronize with
this operation.

Returns

The mtx_timedlock function returns thrd_success on success, or thrd_timedout if the time
specified was reached without acquiring the requested resource, or thrd_error if the request could
not be honored.

7.26.4.5 The mtx_trylock function
Synopsis

#include <threads.h>
int mtx_trylock(mtx_t *mtx);

§7.26.4.5 Library 333



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Description

The mtx_trylock function endeavors to lock the mutex pointed to by mtx. If the mutex is already
locked, the function returns without blocking. If the operation succeeds, prior calls to mtx_unlock
on the same mutex synchronize with this operation.

Returns

The mtx_trylock function returns thrd_success on success, or thrd_busy if the resource requested
is already in use, or thrd_error if the request could not be honored. mtx_trylock may spuriously
fail to lock an unused resource, in which case it returns thrd_busy.

7.26.4.6 The mtx_unlock function
Synopsis

#include <threads.h>
int mtx_unlock(mtx_t *mtx);

Description

The mtx_unlock function unlocks the mutex pointed to by mtx. The mutex pointed to by mtx shall
be locked by the calling thread.

Returns

The mtx_unlock function returns thrd_success on success or thrd_error if the request could not
be honored.

7.26.5 Thread functions

7.26.5.1 The thrd_create function
Synopsis

#include <threads.h>
int thrd_create(thrd_t xthr, thrd_start_t func, void x*arg);

Description

The thrd_create function creates a new thread executing func(arg). If the thrd_create function
succeeds, it sets the object pointed to by thr to the identifier of the newly created thread. (A thread’s
identifier may be reused for a different thread once the original thread has exited and either been
detached or joined to another thread.) The completion of the thrd_create function synchronizes
with the beginning of the execution of the new thread.

Returning from func has the same behavior as invoking thrd_exit with the value returned from
func.

Returns

The thrd_create function returns thrd_success on success, or thrd_nomem if no memory could
be allocated for the thread requested, or thrd_error if the request could not be honored.

7.26.5.2 The thrd_current function
Synopsis

#include <threads.h>
thrd_t thrd_current(void);

Description
The thrd_current function identifies the thread that called it.

Returns
The thrd_current function returns the identifier of the thread that called it.

334 Library §7.26.5.2



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7.26.5.3 The thrd_detach function
Synopsis

#include <threads.h>
int thrd_detach(thrd_t thr);

Description

The thrd_detach function tells the operating system to dispose of any resources allocated to the
thread identified by thr when that thread terminates. The thread identified by thr shall not have
been previously detached or joined with another thread.

Returns

The thrd_detach function returns thrd_success on success or thrd_error if the request could
not be honored.

7.26.5.4 The thrd_equal function
Synopsis

#include <threads.h>
int thrd_equal(thrd_t thr0, thrd_t thrl);

Description
The thrd_equal function will determine whether the thread identified by thro refers to the thread

identified by thrl.

Returns

The thrd_equal function returns zero if the thread thr0 and the thread thrl refer to different
threads. Otherwise the thrd_equal function returns a nonzero value.

7.26.5.5 The thrd_exit function
Synopsis

#include <threads.h>
_Noreturn void thrd_exit(int res);

Description

For every thread-specific storage key which was created with a non-null destructor and for which
the value is non-null, thrd_exit sets the value associated with the key to a null pointer value and
then invokes the destructor with its previous value. The order in which destructors are invoked is
unspecified.

If after this process there remain keys with both non-null destructors and values, the implementation
repeats this process up to TSS_DTOR_ITERATIONS times.

Following this, the thrd_exit function terminates execution of the calling thread and sets its result
code to res.

The program terminates normally after the last thread has been terminated. The behavior is as if the
program called the exit function with the status EXIT_SUCCESS at thread termination time.

Returns
The thrd_exit function returns no value.

7.26.5.6 The thrd_join function
Synopsis

#include <threads.h>
int thrd_join(thrd_t thr, int xres);

§7.26.5.6 Library 335



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Description

The thrd_join function joins the thread identified by thr with the current thread by blocking until
the other thread has terminated. If the parameter res is not a null pointer, it stores the thread’s result
code in the integer pointed to by res. The termination of the other thread synchronizes with the
completion of the thrd_join function. The thread identified by thr shall not have been previously
detached or joined with another thread.

Returns

The thrd_join function returns thrd_success on success or thrd_error if the request could not
be honored.

7.26.5.7 The thrd_sleep function
Synopsis

#include <threads.h>
int thrd_sleep(const struct timespec *xduration, struct timespec *remaining);

Description

The thrd_sleep function suspends execution of the calling thread until either the interval specified
by duration has elapsed or a signal which is not being ignored is received. If interrupted by a signal
and the remaining argument is not null, the amount of time remaining (the requested interval
minus the time actually slept) is stored in the interval it points to. The duration and remaining
arguments may point to the same object.

The suspension time may be longer than requested because the interval is rounded up to an integer
multiple of the sleep resolution or because of the scheduling of other activity by the system. But,
except for the case of being interrupted by a signal, the suspension time will not be less than that
specified, as measured by the system clock TIME_UTC.

Returns

The thrd_sleep function returns zero if the requested time has elapsed, —1 if it has been interrupted
by a signal, or a negative value (which may also be —1) if it fails.

7.26.5.8 The thrd_yield function
Synopsis

#include <threads.h>
void thrd_yield(void);

Description

The thrd_yield function endeavors to permit other threads to run, even if the current thread would
ordinarily continue to run.

Returns
The thrd_yield function returns no value.

7.26.6 Thread-specific storage functions
7.26.6.1 The tss_create function
Synopsis

#include <threads.h>
int tss_create(tss_t xkey, tss_dtor_t dtor);

Description

The tss_create function creates a thread-specific storage pointer with destructor dtor, which may
be null.

336 Library §7.26.6.1



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

A null pointer value is associated with the newly created key in all existing threads. Upon subsequent
thread creation, the value associated with all keys is initialized to a null pointer value in the new
thread.

Destructors associated with thread-specific storage are not invoked at program termination.

The tss_create function shall not be called from within a destructor.

Returns

If the tss_create function is successful, it sets the thread-specific storage pointed to by key to a
value that uniquely identifies the newly created pointer and returns thrd_success; otherwise,
thrd_error is returned and the thread-specific storage pointed to by key is set to an indeterminate
value.

7.26.6.2 The tss_delete function
Synopsis

#include <threads.h>
void tss_delete(tss_t key);

Description

The tss_delete function releases any resources used by the thread-specific storage identified by
key. The tss_delete function shall only be called with a value for key that was returned by a call
to tss_create before the thread commenced executing destructors.

If tss_delete is called while another thread is executing destructors, whether this will affect the
number of invocations of the destructor associated with key on that thread is unspecified.

Calling tss_delete will not result in the invocation of any destructors.

Returns
The tss_delete function returns no value.

7.26.6.3 The tss_get function
Synopsis

#include <threads.h>
void *xtss_get(tss_t key);

Description

The tss_get function returns the value for the current thread held in the thread-specific storage
identified by key. The tss_get function shall only be called with a value for key that was returned
by a call to tss_create before the thread commenced executing destructors.

Returns
The tss_get function returns the value for the current thread if successful, or zero if unsuccessful.

7.26.6.4 The tss_set function
Synopsis

#include <threads.h>
int tss_set(tss_t key, void *val);

Description

The tss_set function sets the value for the current thread held in the thread-specific storage
identified by key to val. The tss_set function shall only be called with a value for key that was
returned by a call to tss_create before the thread commenced executing destructors.

This action will not invoke the destructor associated with the key on the value being replaced.

§7.26.6.4 Library 337



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

Returns

4  The tss_set function returns thrd_success on success or thrd_error if the request could not be
honored.

338 Library §7.26.6.4



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7.27 Date and time <time.h>

7.27.1 Components of time

The header <time. h> defines several macros, and declares types and functions for manipulating
time. Many functions deal with a calendar time that represents the current date (according to the
Gregorian calendar) and time. Some functions deal with local time, which is the calendar time
expressed for some specific time zone, and with Daylight Saving Time, which is a temporary change
in the algorithm for determining local time. The local time zone and Daylight Saving Time are
implementation-defined.

The feature test macro__STDC_VERSION_TIME_H__ expands to the token yyyymmL. The other macros
defined are NULL (described in 7.19);

| CLOCKS_PER_SEC

which expands to an expression with type clock_t (described below) that is the number per second
of the value returned by the clock function; and

‘ TIME_UTC

which expands to an integer constant greater than 0 that designates the UTC time base.3%”)

The types declared are size_t (described in 7.19);

\ clock_t

\ time_t

which are real types capable of representing times;

\ struct timespec

which holds an interval specified in seconds and nanoseconds (which may represent a calendar time
based on a particular epoch); and

\ struct tm

which holds the components of a calendar time, called the broken-down time.

The range and precision of times representable in clock_t and time_t are implementation-defined.
The timespec structure shall contain at least the following members, in any order. The semantics of
the members and their normal ranges are expressed in the comments.**®)

time_t tv_sec; // whole seconds -- >0
long tv_nsec; // nanoseconds -- [0, 999999999]

The tm structure shall contain at least the following members, in any order. The semantics of the

members and their normal ranges are expressed in the comments.**
int tm_sec; // seconds after the minute -- [0, 60]
int tm_min; // minutes after the hour -- [0, 59]

int tm_mday; // day of the month -- [1, 31]

[
‘ int tm_hour; // hours since midnight -- [0, 23]
\ int tm_mon; // months since January -- [0, 11]

337) Implementations can define additional time bases, but are only required to support a real time clock based on UTC.
33)The tv_sec member is a linear count of seconds and might not have the normal semantics of a time_t.
33 The range [0, 60] for tm_sec allows for a positive leap second.

§7.27.1 Library 339



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

\ int tm_year; // years since 1900

\ int tm_wday; // days since Sunday -- [0, 6]

\ int tm_yday; // days since January 1 -- [0, 365]
\ int tm_isdst; // Daylight Saving Time flag

The value of tm_isdst is positive if Daylight Saving Time is in effect, zero if Daylight Saving Time
is not in effect, and negative if the information is not available.

7.27.2 Time manipulation functions
7.27.2.1 The clock function
Synopsis

#include <time.h>
clock_t clock(void);

Description
The clock function determines the processor time used.

Returns

The clock function returns the implementation’s best approximation to the processor time used
by the program since the beginning of an implementation-defined era related only to the program
invocation. To determine the time in seconds, the value returned by the clock function should be
divided by the value of the macro CLOCKS_PER_SEC. If the processor time used is not available, the
function returns the value (clock_t) (—1). If the value cannot be represented, the function returns
an unspecified value.34

7.27.2.2 The difftime function
Synopsis

#include <time.h>
double difftime(time_t timel, time_t time0);

Description
The difftime function computes the difference between two calendar times: timel - time®.

Returns
The difftime function returns the difference expressed in seconds as a double.

7.27.2.3 The mktime function
Synopsis

#include <time.h>
time_t mktime(struct tm xtimeptr);

Description

The mktime function converts the broken-down time, expressed as local time, in the structure
pointed to by timeptr into a calendar time value with the same encoding as that of the values
returned by the time function. The original values of the tm_wday and tm_yday components of the
structure are ignored, and the original values of the other components are not restricted to the ranges
indicated above.®*") On successful completion, the values of the tm_wday and tm_yday components
of the structure are set appropriately, and the other components are set to represent the specified
calendar time, but with their values forced to the ranges indicated above; the final value of tm_mday
is not set until tm_mon and tm_year are determined.

340)This could be due to overflow of the clock_t type.

34D Thus, a positive or zero value for tm_isdst causes the mktime function to presume initially that Daylight Saving Time,
respectively, is or is not in effect for the specified time. A negative value causes it to attempt to determine whether Daylight
Saving Time is in effect for the specified time.

340 Library §7.27.2.3



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Returns

The mktime function returns the specified calendar time encoded as a value of type time_t. If the
calendar time cannot be represented, the function returns the value (time_t) (—1).

EXAMPLE What day of the week is July 4, 2001?

#include <stdio.h>
#include <time.h>
static const char xconst wday[] = {
"Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday", "-unknown-"
}
struct tm time_str;
/* ... %/
time_str.tm_year = 2001 - 1900;
time_str.tm_mon =7 -1;
time_str.tm_mday = 4;
time_str.tm_hour =0;
time_str.tm_min = 0;
time_str.tm_sec =1;

time_str.tm_isdst -1;

if (mktime(&time_str) == (time_t)(-1))
time_str.tm_wday = 7;

printf("%ss\n", wday[time_str.tm_wday]);

7.27.2.4 The time function
Synopsis

#include <time.h>
time_t time(time_t xtimer);

Description
The time function determines the current calendar time. The encoding of the value is unspecified.

Returns

The time function returns the implementation’s best approximation to the current calendar time.
The value (time_t) (—1) is returned if the calendar time is not available. If timer is not a null
pointer, the return value is also assigned to the object it points to.

7.27.2.5 The timespec_get function
Synopsis

#include <time.h>
int timespec_get(struct timespec xts, int base);

Description
The timespec_get function sets the interval pointed to by ts to hold the current calendar time
based on the specified time base.

If base is TIME_UTC, the tv_sec member is set to the number of seconds since an implementation
defined epoch, truncated to a whole value and the tv_nsec member is set to the integral number of
nanoseconds, rounded to the resolution of the system clock.3*?

Returns

If the timespec_get function is successful it returns the nonzero value base; otherwise, it returns
Zero.

342)Al’though a struct timespec object describes times with nanosecond resolution, the available resolution is system

dependent and could even be greater than 1 second.

§7.27.2.5 Library 341



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

7.27.2.6 The timespec_getres function
Synopsis

#include <time.h>
int timespec_getres(struct timespec *ts ,int base);

Description

If ts is non-null and base is supported by the timespec_get function, the timespec_getres
function returns the resolution of the time provided by the timespec_get function for base
in the timespec structure pointed to by ts. For each supported base, multiple calls to the
timespec_getres function during the same program execution shall have identical results.

Returns

If the value base is supported by the timespec_get function, the timespec_getres function returns
the nonzero value base; otherwise, it returns zero.

7.27.3 Time conversion functions

Functions with a _r suffix place the result of the conversion into the buffer referred by buf and
return that pointer. These functions and the function strftime shall not be subject to data races,
unless the time or calendar state is changed in a multi-thread execution.>*

Functions asctime, ctime, gmtime, and localtime are the same as their counterparts suffixed with
_r. these functions use a pointer to an object and return it: one or two broken-down time structures
races with each other. Accessing the returned pointer after the thread that called the function that
returned it has exited results in undefined behavior.

7.27.3.1 The asctime functions
Synopsis

#include <time.h>
char xasctime(const struct tm xtimeptr);
char xasctime_r(const struct tm xtimeptr, char xbuf);

Description

The asctime functions convert the broken-down time in the structure pointed to by timeptr into a
string in the form

\ Sun Sep 16 01:03:52 1973\n\0@

using the equivalent of the following algorithm.

char xasctime_r(const struct tm xtimeptr, char xbuf)
{
static const char wday_name[7][3] = {
"SUn", IIMonII’ IITueII’ ”Wed“, IIThuII’ IIFriII’ IISatII
+
static const char mon_name[12]1[3] = {
IIJanII' IIFebII’ IIMarII’ IIAprII' IIMayII' IIJunII'
IIJU'LII’ IIAugII’ ”Sep", ”OCt”, "NOV”, IIDeCII
+

snprintf(buf, 26, "%.3s %.35%3d %.2d:%.2d:%.2d %d\n",
wday_name[timeptr->tm_wday],
mon_name[timeptr->tm_mon],
timeptr->tm_mday, timeptr->tm_hour,

343)This does not mean that these functions may not read global state that describes the time and calendar settings of the
execution, such as the LC_TIME locale or the implementation defined specification of the local time zone. Only the setting of
that state by setlocale or by means of implementation-defined functions may constitute races.

342 Library §7.27.3.1




N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

\ timeptr->tm_min, timeptr->tm_sec, \
\ 1900 + timeptr->tm_year); \
\ return buf; \
| |
L |

}

If any of the members of the broken-down time contain values that are outside their normal
ranges,*? the behavior of the asctime functions is undefined. Likewise, if the calculated year
exceeds four digits or is less than the year 1000, the behavior is undefined. The buf parameter for
asctime_r shall point to a buffer of at least 26 bytes.

Returns
The asctime functions return a pointer to the string.

7.27.3.2 The ctime functions
Synopsis

#include <time.h>
char xctime(const time_t xtimer);
char xctime_r(const time_t xtimer, char xbuf);

Description

The ctime functions convert the calendar time pointed to by timer to local time in the form of a
string. They are equivalent to

\ asctime(localtime_r(timer, (struct tm[1]){ 0 })) \

\ asctime_r(localtime_r(timer, (struct tm[1]){ O }), buf)
L |

The buf parameter for ctime_r shall point to a buffer of at least 26 bytes.

Returns

The ctime functions return the pointer returned by the asctime functions with that broken-down
time as argument.

Forward references: the localtime functions (7.27.3.4).

7.27.3.3 The gmtime functions
Synopsis

#include <time.h>
struct tm xgmtime(const time_t xtimer);
struct tm xgmtime_r(const time_t xtimer, struct tm xbuf);

Description

The gmtime functions convert the calendar time pointed to by timer into a broken-down time,
expressed as UTC.

Returns

The gmtime functions return a pointer to the broken-down time, or a null pointer if the specified
time cannot be converted to UTC.

7.27.3.4 The localtime functions

Synopsis

[ |
\ #include <time.h>

344)Gee 7.27.1.

§7.27.3.4 Library 343



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

\ struct tm xlocaltime(const time_t xtimer);
\ struct tm xlocaltime_r(const time_t *xtimer, struct tm xbuf);

Description

The localtime functions converts the calendar time pointed to by timer into a broken-down time,
expressed as local time.

Returns

The localtime functions return a pointer to the broken-down time, or a null pointer if the specified
time cannot be converted to local time.

7.27.3.5 The strftime function
Synopsis

#include <time.h>
size_t strftime(char * restrict s, size_t maxsize, const char *x restrict format,
const struct tm *x restrict timeptr);

Description

The strftime function places characters into the array pointed to by s as controlled by the string
pointed to by format. The format shall be a multibyte character sequence, beginning and ending in
its initial shift state. The format string consists of zero or more conversion specifiers and ordinary
multibyte characters. A conversion specifier consists of a % character, possibly followed by an E or 0
modifier character (described below), followed by a character that determines the behavior of the
conversion specifier. All ordinary multibyte characters (including the terminating null character) are
copied unchanged into the array. If copying takes place between objects that overlap, the behavior is
undefined. No more than maxsize characters are placed into the array.

Each conversion specifier shall be replaced by appropriate characters as described in the following
list. The appropriate characters shall be determined using the LC_TIME category of the current
locale and by the values of zero or more members of the broken-down time structure pointed to
by timeptr, as specified in brackets in the description. If any of the specified values is outside the
normal range, the characters stored are unspecified.

o°

a isreplaced by the locale’s abbreviated weekday name. [tm_wday]

o°
=

is replaced by the locale’s full weekday name. [tm_wday]

o°
(on

is replaced by the locale’s abbreviated month name. [tm_mon]

o°
@

is replaced by the locale’s full month name. [tm_mon]

o°
@]

is replaced by the locale’s appropriate date and time representation. [all specified in 7.27.1]

o°
(@]

is replaced by the year divided by 100 and truncated to an integer, as a decimal number (00-99).
[tm_year]

o
o

is replaced by the day of the month as a decimal number (01-31). [tm_mday]

o°
(ws)

is equivalent to “%m/%d/%y”. [tm_mon, tm_mday, tm_year]

o
(0]

is replaced by the day of the month as a decimal number (1-31); a single digit is preceded by a
space. [tm_mday]

o°
i

is equivalent to “%Y-%m-%d” (the ISO 8601 date format). [tm_year, tm_mon, tm_mday]

is replaced by the last 2 digits of the week-based year (see below) as a decimal number (00-99).
[tm_year, tm_wday, tm_yday]

oP
()

o°
(]

is replaced by the week-based year (see below) as a decimal number (e.g., 1997). [tm_year,
tm_wday, tm_yday]

of
=

is equivalent to “%b”. [tm_mon]

o°
-

is replaced by the hour (24-hour clock) as a decimal number (00-23). [tm_hour]

344 Library §7.273.5



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

® ° o ° o°
S5 X2 3 < H

o°
©

o ° ° o° o° o°
c - ~+ U0V XX S

o°
c

o°
<

o®  o°
= =

o ° o°
< X X

o® o°
N <

o°
N

o°
o°

is replaced by the hour (12-hour clock) as a decimal number (01-12). [tm_hour]
is replaced by the day of the year as a decimal number (001-366). [tm_yday]

is replaced by the month as a decimal number (01-12). [tm_mon]

is replaced by the minute as a decimal number (00-59). [tm_min]

is replaced by a new-line character.

is replaced by the locale’s equivalent of the AM/PM designations associated with a 12-hour
clock. [tm_hour]

is replaced by the locale’s 12-hour clock time. [tm_hour, tm_min, tm_sec]

is equivalent to “%H:%M”. [tm_hour, tm_min ]

is replaced by the second as a decimal number (00-60). [tm_sec]

is replaced by a horizontal-tab character.

is equivalent to “%H:%M:%S” (the ISO 8601 time format). [tm_hour, tm_min, tm_sec]

is replaced by the ISO 8601 weekday as a decimal number (1-7), where Monday is 1. [tm_wday]

is replaced by the week number of the year (the first Sunday as the first day of week 1) as a
decimal number (00-53). [tm_year, tm_wday, tm_yday]

is replaced by the ISO 8601 week number (see below) as a decimal number (01-53). [tm_year,
tm_wday, tm_yday]

is replaced by the weekday as a decimal number (0—6), where Sunday is 0. [tm_wday]

is replaced by the week number of the year (the first Monday as the first day of week 1) as a
decimal number (00-53). [tm_year, tm_wday, tm_yday]

is replaced by the locale’s appropriate date representation. [all specified in 7.27.1]
is replaced by the locale’s appropriate time representation. [all specified in 7.27.1]
is replaced by the last 2 digits of the year as a decimal number (00-99). [tm_year]
is replaced by the year as a decimal number (e.g., 1997). [tm_year]

is replaced by the offset from UTC in the ISO 8601 format “-0430” (meaning 4 hours 30
minutes behind UTC, west of Greenwich), or by no characters if no time zone is determinable.
[tm_isdst]

is replaced by the locale’s time zone name or abbreviation, or by no characters if no time zone is
determinable. [tm_isdst]

is replaced by %.

Some conversion specifiers can be modified by the inclusion of an E or 0 modifier character to
indicate an alternative format or specification. If the alternative format or specification does not
exist for the current locale, the modifier is ignored.

is replaced by the locale’s alternative date and time representation.

is replaced by the name of the base year (period) in the locale’s alternative representation.
is replaced by the locale’s alternative date representation.

is replaced by the locale’s alternative time representation.

is replaced by the offset from %EC (year only) in the locale’s alternative representation.

is replaced by the locale’s full alternative year representation.

is replaced by the locale’s abbreviated alternative month name.

is replaced by the locale’s alternative appropriate full month name.

is replaced by the day of the month, using the locale’s alternative numeric symbols (filled as
needed with leading zeros, or with leading spaces if there is no alternative symbol for zero).

is replaced by the day of the month, using the locale’s alternative numeric symbols (filled as
needed with leading spaces).

§7.27.3.5 Library 345



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

%0H is replaced by the hour (24-hour clock), using the locale’s alternative numeric symbols.
%01 is replaced by the hour (12-hour clock), using the locale’s alternative numeric symbols.

%s0m is replaced by the month, using the locale’s alternative numeric symbols.

%0M is replaced by the minutes, using the locale’s alternative numeric symbols.
%05 is replaced by the seconds, using the locale’s alternative numeric symbols.
%0u is replaced by the ISO 8601 weekday as a number in the locale’s alternative representation,

where Monday is 1.
%0U is replaced by the week number, using the locale’s alternative numeric symbols.

%0V is replaced by the ISO 8601 week number, using the locale’s alternative numeric symbols.

%0w is replaced by the weekday as a number, using the locale’s alternative numeric symbols.
%0W is replaced by the week number of the year, using the locale’s alternative numeric symbols.
%0y is replaced by the last 2 digits of the year, using the locale’s alternative numeric symbols.

%0, %G, and %V give values according to the ISO 8601 week-based year. In this system, weeks begin
on a Monday and week 1 of the year is the week that includes January 4th, which is also the week
that includes the first Thursday of the year, and is also the first week that contains at least four days
in the year. If the first Monday of January is the 2nd, 3rd, or 4th, the preceding days are part of the
last week of the preceding year; thus, for Saturday 2nd January 1999, %G is replaced by 1998 and %V
is replaced by 53. If December 29th, 30th, or 31st is a Monday, it and any following days are part of
week 1 of the following year. Thus, for Tuesday 30th December 1997, %G is replaced by 1998 and %V
is replaced by 01.

If a conversion specifier is not one of the above, the behavior is undefined.
In the "C" locale, the E and 0 modifiers are ignored and the replacement strings for the following

specifiers are:

the first three characters of %A.

o°
Q

a7

one of “Sunday”, “Monday”, ..., “Saturday”.

o®  o°
o >

the first three characters of %B.

”oou

one of “January”, “February”, ..., “December”.

o°
o

o
@]

equivalent to “%a %b %e ST %Y”.
one of “AM” or “PM”.

equivalent to “%I:%M:%S %p”.

o® o
S5 O

o°
x

equivalent to “%sm/%d/%y”.

o°
>

equivalent to %T.

o
N

implementation-defined.

Returns

If the total number of resulting characters including the terminating null character is not more than
maxsize, the strftime function returns the number of characters placed into the array pointed to
by s not including the terminating null character. Otherwise, zero is returned and the contents of
the array are indeterminate.

346 Library §7.273.5



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7.28 Unicode utilities <uchar.h>
The header <uchar. h> declares types and functions for manipulating Unicode characters.

The types declared are mbstate_t (described in 7.29.1) and size_t (described in 7.19);

\ charl6_t

which is an unsigned integer type used for 16-bit characters and is the same type as uint_least16_t
(described in 7.20.1.2); and

\ char32_t

which is an unsigned integer type used for 32-bit characters and is the same type as uint_least32_t
(also described in 7.20.1.2).

7.28.1 Restartable multibyte/wide character conversion functions

These functions have a parameter, ps, of type pointer to mbstate_t that points to an object that can
completely describe the current conversion state of the associated multibyte character sequence,
which the functions alter as necessary. If ps is a null pointer, each function uses its own internal

mbstate_t object instead, which is initialized prior to the first call to the function to the initial
conversion state; the functions are not required to avoid data races with other calls to the same
function in this case. It is implementation-defined whether the internal mbstate_t object has thread
storage duration; if it has thread storage duration, it is initialized to the initial conversion state
prior to the first call to the function on the new thread. The implementation behaves as if no library
function calls these functions with a null pointer for ps.

7.28.1.1 The mbrtocl6 function
Synopsis

#include <uchar.h>
size_t mbrtocl6(charl6é_t x restrict pcl6, const char * restrict s, size_t n,
mbstate_t * restrict ps);

Description
If s is a null pointer, the mbrtoc16 function is equivalent to the call:

‘ mbrtocl6(NULL, "", 1, ps)

In this case, the values of the parameters pc16 and n are ignored.

If s is not a null pointer, the mbrtoc16 function inspects at most n bytes beginning with the byte
pointed to by s to determine the number of bytes needed to complete the next multibyte character
(including any shift sequences). If the function determines that the next multibyte character is
complete and valid, it determines the values of the corresponding wide characters and then, if pc16
is not a null pointer, stores the value of the first (or only) such character in the object pointed to by
pcl6. Subsequent calls will store successive wide characters without consuming any additional
input until all the characters have been stored. If the corresponding wide character is the null wide
character, the resulting state described is the initial conversion state.

Returns

The mbrtoc16 function returns the first of the following that applies (given the current conversion
state):

0 if the next n or fewer bytes complete the multibyte character that corresponds to
the null wide character (which is the value stored).

between 1 and n inclusive if the next n or fewer bytes complete a valid multibyte character (which
is the value stored); the value returned is the number of bytes that complete the
multibyte character.

§7.28.1.1 Library 347



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

(size_t)(—3) if the next character resulting from a previous call has been stored (no bytes from
the input have been consumed by this call).

(size_t)(—2) if the next n bytes contribute to an incomplete (but potentially valid) multibyte
character, and all n bytes have been processed (no value is stored).3*?

(size_t)(—1) if anencoding error occurs, in which case the next n or fewer bytes do not contribute
to a complete and valid multibyte character (no value is stored); the value of the
macro EILSEQ is stored in errno, and the conversion state is unspecified.

7.28.1.2 The cl6rtomb function
Synopsis

#include <uchar.h>
size_t clé6rtomb(char * restrict s, charlé_t c16, mbstate_t * restrict ps);

Description
If s is a null pointer, the c16rtomb function is equivalent to the call

| cl6rtomb(buf, L'\@’, ps)

where buf is an internal buffer.

If s is not a null pointer, the c16rtomb function determines the number of bytes needed to represent
the multibyte character that corresponds to the wide character given or completed by c16 (including
any shift sequences), and stores the multibyte character representation in the array whose first
element is pointed to by s, or stores nothing if c16 does not represent a complete character. At
most MB_CUR_MAX bytes are stored. If c16 is a null wide character, a null byte is stored, preceded by
any shift sequence needed to restore the initial shift state; the resulting state described is the initial
conversion state.

Returns

The c16rtomb function returns the number of bytes stored in the array object (including any shift
sequences). When c16 is not a valid wide character, an encoding error occurs: the function stores the
value of the macro EILSEQ in errno and returns (size_t) (—1); the conversion state is unspecified.
7.28.1.3 The mbrtoc32 function

Synopsis

#include <uchar.h>
size_t mbrtoc32(char32_t * restrict pc32, const char * restrict s, size_t n,
mbstate_t * restrict ps);

Description
If s is a null pointer, the mbrtoc32 function is equivalent to the call:

‘ mbrtoc32(NULL, "", 1, ps)

In this case, the values of the parameters pc32 and n are ignored.

If s is not a null pointer, the mbrtoc32 function inspects at most n bytes beginning with the byte
pointed to by s to determine the number of bytes needed to complete the next multibyte character
(including any shift sequences). If the function determines that the next multibyte character is
complete and valid, it determines the values of the corresponding wide characters and then, if pc32
is not a null pointer, stores the value of the first (or only) such character in the object pointed to by
pc32. Subsequent calls will store successive wide characters without consuming any additional

345 When n has at least the value of the MB_CUR_MAX macro, this case can only occur if s points at a sequence of redundant
shift sequences (for implementations with state-dependent encodings).

348 Library §7.28.1.3



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

input until all the characters have been stored. If the corresponding wide character is the null wide
character, the resulting state described is the initial conversion state.

Returns

The mbrtoc32 function returns the first of the following that applies (given the current conversion
state):

0 if the next n or fewer bytes complete the multibyte character that corresponds to
the null wide character (which is the value stored).

between 1 and n inclusive if the next n or fewer bytes complete a valid multibyte character (which
is the value stored); the value returned is the number of bytes that complete the
multibyte character.

(size_t)(—3) if the next character resulting from a previous call has been stored (no bytes from
the input have been consumed by this call).

(size_t)(—2) if the next n bytes contribute to an incomplete (but potentially valid) multibyte
character, and all n bytes have been processed (no value is stored).34%)

(size_t)(—1) ifan encoding error occurs, in which case the next n or fewer bytes do not contribute
to a complete and valid multibyte character (no value is stored); the value of the
macro EILSEQ is stored in errno, and the conversion state is unspecified.

7.28.1.4 The c32rtomb function
Synopsis

#include <uchar.h>
size_t c32rtomb(char * restrict s, char32_t c32, mbstate_t x restrict ps);

Description
If s is a null pointer, the ¢32rtomb function is equivalent to the call

i c32rtomb(buf, L'\O’, ps)

where buf is an internal buffer.

If s is not a null pointer, the c32rtomb function determines the number of bytes needed to represent
the multibyte character that corresponds to the wide character given by ¢32 (including any shift
sequences), and stores the multibyte character representation in the array whose first element is
pointed to by s. At most MB_CUR_MAX bytes are stored. If c32 is a null wide character, a null byte is
stored, preceded by any shift sequence needed to restore the initial shift state; the resulting state
described is the initial conversion state.

Returns

The ¢32rtomb function returns the number of bytes stored in the array object (including any shift
sequences). When ¢32 is not a valid wide character, an encoding error occurs: the function stores the
value of the macro EILSEQ in errno and returns (size_t) (—1); the conversion state is unspecified.

346)When n has at least the value of the MB_CUR_MAX macro, this case can only occur if s points at a sequence of redundant
shift sequences (for implementations with state-dependent encodings).

§7.28.1.4 Library 349



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

7.29 Extended multibyte and wide character utilities <wchar.h>

7.29.1 Introduction

The header <wchar.h> defines four macros, and declares four data types, one tag, and many
functions.?¥

The types declared are wchar_t and size_t (both described in 7.19);

\ mbstate_t

which is a complete object type other than an array type that can hold the conversion state informa-
tion necessary to convert between sequences of multibyte characters and wide characters;

\ wint_t
L

which is an integer type unchanged by default argument promotions that can hold any value
corresponding to members of the extended character set, as well as at least one value that does not
correspond to any member of the extended character set (see WEOF below) ;349 and

\ struct tm

which is declared as an incomplete structure type (the contents are described in 7.27.1).

The macros defined are NULL (described in 7.19); WCHAR_MIN, WCHAR_MAX, and WCHAR_WIDTH (de-
scribed in 7.20); and

\ WEOF

which expands to a constant expression of type wint_t whose value does not correspond to any
member of the extended character set.’®? It is accepted (and returned) by several functions in
this subclause to indicate end-of-file, that is, no more input from a stream. It is also used as a wide
character value that does not correspond to any member of the extended character set.

The functions declared are grouped as follows:

— Functions that perform input and output of wide characters, or multibyte characters, or both;
— Functions that provide wide string numeric conversion;

— Functions that perform general wide string manipulation;

— Functions for wide string date and time conversion; and

— Functions that provide extended capabilities for conversion between multibyte and wide
character sequences.

Arguments to the functions in this subclause may point to arrays containing wchar_t values that do
not correspond to members of the extended character set. Such values shall be processed according
to the specified semantics, except that it is unspecified whether an encoding error occurs if such a
value appears in the format string for a function in 7.29.2 or 7.29.5 and the specified semantics do
not require that value to be processed by wcrtomb.

Unless explicitly stated otherwise, if the execution of a function described in this subclause causes
copying to take place between objects that overlap, the behavior is undefined.

7.29.2 Formatted wide character input/output functions

The formatted wide character input/output functions shall behave as if there is a sequence point
after the actions associated with each specifier.*>”

347)See “future library directions” (7.31.18).

348)wchar_t and wint_t can be the same integer type.

349 The value of the macro WEOF can differ from that of EOF and need not be negative.
350)The fwprintf functions perform writes to memory for the %n specifier.

350 Library §7.29.2



N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

7.29.2.1 The fwprintf function
Synopsis

#include <stdio.h>
#include <wchar.h>
int fwprintf(FILE * restrict stream, const wchar_t * restrict format, ...);

Description

The fwprintf function writes output to the stream pointed to by stream, under control of the wide
string pointed to by format that specifies how subsequent arguments are converted for output. If
there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted
while arguments remain, the excess arguments are evaluated (as always) but are otherwise ignored.
The fwprintf function returns when the end of the format string is encountered.

The format is composed of zero or more directives: ordinary wide characters (not %), which are
copied unchanged to the output stream; and conversion specifications, each of which results in
fetching zero or more subsequent arguments, converting them, if applicable, according to the
corresponding conversion specifier, and then writing the result to the output stream.

Each conversion specification is introduced by the wide character %. After the %, the following
appear in sequence:

— Zero or more flags (in any order) that modify the meaning of the conversion specification.

— An optional minimum field width. If the converted value has fewer wide characters than the
field width, it is padded with spaces (by default) on the left (or right, if the left adjustment flag,
described later, has been given) to the field width. The field width takes the form of an asterisk
* (described later) or a nonnegative decimal integer.*>!)

— An optional precision that gives the minimum number of digits to appear for the d, i, o, u,
x, and X conversions, the number of digits to appear after the decimal-point wide character
fora, A, e, E, f, and F conversions, the maximum number of significant digits for the g and G
conversions, or the maximum number of wide characters to be written for s conversions. The
precision takes the form of a period (. ) followed either by an asterisk * (described later) or by
an optional nonnegative decimal integer; if only the period is specified, the precision is taken
as zero. If a precision appears with any other conversion specifier, the behavior is undefined.

— An optional length modifier that specifies the size of the argument.

— A conversion specifier wide character that specifies the type of conversion to be applied.

As noted above, a field width, or precision, or both, may be indicated by an asterisk. In this case,
an int argument supplies the field width or precision. The arguments specifying field width, or
precision, or both, shall appear (in that order) before the argument (if any) to be converted. A
negative field width argument is taken as a - flag followed by a positive field width. A negative
precision argument is taken as if the precision were omitted.

The flag wide characters and their meanings are:

- The result of the conversion is left-justified within the field. (It is right-justified if this flag is
not specified.)

+ The result of a signed conversion always begins with a plus or minus sign. (It begins with a
sign only when a negative value is converted if this flag is not specified.)*?

space 1f the first wide character of a signed conversion is not a sign, or if a signed conversion results
in no wide characters, a space is prefixed to the result. If the space and + flags both appear,
the space flag is ignored.

3D Note that 0 is taken as a flag, not as the beginning of a field width.
32)The results of all floating conversions of a negative zero, and of negative values that round to zero, include a minus sign.

§7.29.2.1 Library 351



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

The result is converted to an “alternative form”. For o conversion, it increases the precision,
if and only if necessary, to force the first digit of the result to be a zero (if the value and
precision are both 0, a single 0 is printed). For x (or X) conversion, a nonzero result has
0x (or 0X) prefixed to it. For a, A, e, E, f, F, g, and G conversions, the result of converting
a floating-point number always contains a decimal-point wide character, even if no digits
follow it. (Normally, a decimal-point wide character appears in the result of these conversions
only if a digit follows it.) For g and G conversions, trailing zeros are not removed from the
result. For other conversions, the behavior is undefined.

Ford,i,0,u,x,X a,A e E f, F, g,and G conversions, leading zeros (following any indication
of sign or base) are used to pad to the field width rather than performing space padding,
except when converting an infinity or NaN. If the 0 and - flags both appear, the 0 flag is
ignored. For d, i, 0, u, X, and X conversions, if a precision is specified, the 0 flag is ignored.
For other conversions, the behavior is undefined.

The length modifiers and their meanings are:

hh

1 (ell)

Specifies that a following d, i, 0, u, X, or X conversion specifier applies to a signed char
or unsigned char argument (the argument will have been promoted according to the
integer promotions, but its value shall be converted to signed char or unsigned char
before printing); or that a following n conversion specifier applies to a pointer to a
signed char argument.

Specifies that a following d, i, o, u, X, or X conversion specifier applies to a short int
or unsigned short int argument (the argument will have been promoted accord-
ing to the integer promotions, but its value shall be converted to short int or
unsigned short int before printing); or that a following n conversion specifier applies
to a pointer to a short int argument.

Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long int
or unsigned long int argument; that a following n conversion specifier applies to
a pointer to a long int argument; that a following c conversion specifier applies to
a wint_t argument; that a following s conversion specifier applies to a pointer to a
wchar_t argument; or has no effect on a following a, A, e, E, f, F, g, or G conversion
specifier.

11 (ell-ell) Specifies that a following d, i, o, u, X, or X conversion specifier applies to a

352

long long int or unsigned long long int argument; or that a following n con-
version specifier applies to a pointer to a long long int argument.

Specifies that a following d, i, o, u, X, or X conversion specifier applies to an intmax_t
or uintmax_t argument; or that a following n conversion specifier applies to a pointer
to an intmax_t argument.

Specifies that a following d, i, o, u, X, or X conversion specifier applies to a size_t or the
corresponding signed integer type argument; or that a following n conversion specifier
applies to a pointer to a signed integer type corresponding to size_t argument.

Specifies that a following d, i, 0, u, X, or X conversion specifier applies to a ptrdiff_t
or the corresponding unsigned integer type argument; or that a following n conversion
specifier applies to a pointer to a ptrdiff_t argument.

Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a
long double argument.

Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a
—Decimal32 argument.

Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a
—_Decimal64 argument.

Library §7.29.2.1



N2573

DD

working draft — October 1, 2020 ISO/IEC 9899:202x (E)

Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a
—Decimall28 argument.

If a length modifier appears with any conversion specifier other than as specified above, the behavior
is undefined.

The conversion specifiers and their meanings are:

d,i

o,u,x,X

f,F

e,E

9,6

The int argument is converted to signed decimal in the style [-]dddd. The precision
specifies the minimum number of digits to appear; if the value being converted can be
represented in fewer digits, it is expanded with leading zeros. The default precision is 1.
The result of converting a zero value with a precision of zero is no wide characters.

The unsigned int argument is converted to unsigned octal (0), unsigned decimal (u), or
unsigned hexadecimal notation (x or X) in the style dddd; the letters abcdef are used for x
conversion and the letters ABCDEF for X conversion. The precision specifies the minimum
number of digits to appear; if the value being converted can be represented in fewer digits,
it is expanded with leading zeros. The default precision is 1. The result of converting a
zero value with a precision of zero is no wide characters.

A double argument representing a floating-point number is converted to decimal notation
in the style [-]ddd.ddd, where the number of digits after the decimal-point wide character
is equal to the precision specification. If the precision is missing, it is taken as 6; if the
precision is zero and the # flag is not specified, no decimal-point wide character appears.
If a decimal-point wide character appears, at least one digit appears before it. The value is
rounded to the appropriate number of digits.

A double argument representing an infinity is converted in one of the styles [-]inf or
[-]Jinfinity — which style is implementation-defined. A double argument representing
a NaN is converted in one of the styles [-/nan or [-]nan (n-wchar-sequence) — which style,
and the meaning of any n-wchar-sequence, is implementation-defined. The F conversion
specifier produces INF, INFINITY, or NAN instead of inf, infinity, or nan, respectively.>>?

A double argument representing a floating-point number is converted in the style
[-]1d.ddde+tdd, where there is one digit (which is nonzero if the argument is nonzero)
before the decimal-point wide character and the number of digits after it is equal to the
precision; if the precision is missing, it is taken as 6; if the precision is zero and the #
flag is not specified, no decimal-point wide character appears. The value is rounded to
the appropriate number of digits. The E conversion specifier produces a number with E
instead of e introducing the exponent. The exponent always contains at least two digits,
and only as many more digits as necessary to represent the exponent. If the value is zero,
the exponent is zero.

A double argument representing an infinity or NaN is converted in the style of an f or F
conversion specifier.

A double argument representing a floating-point number is converted in style f or e (or
in style F or E in the case of a G conversion specifier), depending on the value converted
and the precision. Let P equal the precision if nonzero, 6 if the precision is omitted, or 1 if
the precision is zero. Then, if a conversion with style E would have an exponent of X:

if P > X > —4, the conversion is with style f (or F) and precision P — (X + 1).
otherwise, the conversion is with style e (or E) and precision P — 1.
Finally, unless the # flag is used, any trailing zeros are removed from the fractional portion

of the result and the decimal-point wide character is removed if there is no fractional
portion remaining.

A double argument representing an infinity or NaN is converted in the style of an f or F
conversion specifier.

353)When applied to infinite and NaN values, the -, +, and space flag wide characters have their usual meaning; the # and 0
flag wide characters have no effect.

§7.29.2.1

Library 353



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

a,A

A double argument representing a floating-point number is converted in the style
[-]0xh.hhhhp+d, where there is one hexadecimal digit (which is nonzero if the argument is a
normalized floating-point number and is otherwise unspecified) before the decimal-point
wide character®> and the number of hexadecimal digits after it is equal to the precision;
if the precision is missing and FLT_RADIX is a power of 2, then the precision is sufficient
for an exact representation of the value; if the precision is missing and FLT_RADIX is not a
power of 2, then the precision is sufficient to distinguish®> values of type double, except
that trailing zeros may be omitted; if the precision is zero and the # flag is not specified, no
decimal-point wide character appears. The letters abcdef are used for a conversion and
the letters ABCDEF for A conversion. The A conversion specifier produces a number with
X and P instead of x and p. The exponent always contains at least one digit, and only as
many more digits as necessary to represent the decimal exponent of 2. If the value is zero,
the exponent is zero.

A double argument representing an infinity or NaN is converted in the style of an f or F
conversion specifier.

If an H, D, or DD modifier is present and the precision is missing, then for a decimal
floating type argument represented by a triple of integers (s, ¢, ¢), where n is the number
of significant digits in the coefficient c,

— if —(n+5) < ¢ <0, use style f (or style F in the case of an A conversion specifier)
with formatting precision equal to —g,

— otherwise, use style e (or style E in the case of an A conversion specifier) with format-
ting precision equal to n — 1, with the exceptions that if ¢ = 0 then the digit-sequence
in the exponent-part shall have the value ¢ (rather than 0), and that the exponent is
always expressed with the minimum number of digits required to represent its value
(the exponent never contains a leading zero).

If the precision P is present (in the conversion specification) and is zero or at least as
large as the precision p (5.2.4.2.2) of the decimal floating type, the conversion is as if the
precision were missing. If the precision P is present (and nonzero) and less than the
precision p of the decimal floating type, the conversion first obtains an intermediate result
as follows, where n is the number of significant digits in the coefficient:

— If n < P, set the intermediate result to the input.

— If n > P, round the input value, according to the current rounding direction for
decimal floating-point operations, to P decimal digits, with unbounded exponent
range, representing the result with a P-digit integer coefficient when in the form

(s,¢,q).

Convert the intermediate result in the manner described above for the case where the
precision is missing.

If no 1 length modifier is present, the int argument is converted to a wide character as if
by calling btowc and the resulting wide character is written.

If an 1 length modifier is present, the wint_t argument is converted to wchar_t and
written.

If no 1 length modifier is present, the argument shall be a pointer to the initial element
of a character array containing a multibyte character sequence beginning in the initial
shift state. Characters from the array are converted as if by repeated calls to the mbrtowc
function, with the conversion state described by an mbstate_t object initialized to zero
before the first multibyte character is converted, and written up to (but not including) the

354)Binary implementations can choose the hexadecimal digit to the left of the decimal-point wide character so that subsequent
digits align to nibble (4-bit) boundaries.

3%)The precision p is sufficient to distinguish values of the source type if 16°~! > b™ where b is FLT_RADIX and n is the
number of base-b digits in the significand of the source type. A smaller p might suffice depending on the implementation’s
scheme for determining the digit to the left of the decimal-point wide character.

354

Library §7.29.2.1



10

11

12

13

14

15
16

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

terminating null wide character. If the precision is specified, no more than that many wide
characters are written. If the precision is not specified or is greater than the size of the
converted array, the converted array shall contain a null wide character.

If an 1 length modifier is present, the argument shall be a pointer to the initial element
of an array of wchar_t type. Wide characters from the array are written up to (but not
including) a terminating null wide character. If the precision is specified, no more than
that many wide characters are written. If the precision is not specified or is greater than
the size of the array, the array shall contain a null wide character.

p The argument shall be a pointer to void. The value of the pointer is converted to a
sequence of printing wide characters, in an implementation-defined manner.

n The argument shall be a pointer to signed integer into which is written the number of wide
characters written to the output stream so far by this call to fwprintf. No argument is
converted, but one is consumed. If the conversion specification includes any flags, a field
width, or a precision, the behavior is undefined.

o°

A % wide character is written. No argument is converted. The complete conversion
specification shall be %%.

If a conversion specification is invalid, the behavior is undefined.®*® If any argument is not the
correct type for the corresponding conversion specification, the behavior is undefined.

In no case does a nonexistent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field is expanded to contain the conversion result.

For a and A conversions, if FLT_RADIX is a power of 2, the value is correctly rounded to a hexadecimal
floating number with the given precision.

Recommended practice

For a and A conversions, if FLT_RADIX is not a power of 2 and the result is not exactly representable
in the given precision, the result should be one of the two adjacent numbers in hexadecimal floating
style with the given precision, with the extra stipulation that the error should have a correct sign for
the current rounding direction.

Fore, E, f, F, g, and G conversions, if the number of significant decimal digits is at most the maximum
value M of the T_DECIMAL_DIG macros (defined in <float.h>), then the result should be correctly
rounded.®”) If the number of significant decimal digits is more than M but the source value is
exactly representable with M digits, then the result should be an exact representation with trailing
zeros. Otherwise, the source value is bounded by two adjacent decimal strings L < U, both having
M significant digits; the value of the resultant decimal string D should satisfy L < D < U, with the
extra stipulation that the error should have a correct sign for the current rounding direction.

Returns

The fwprintf function returns the number of wide characters transmitted, or a negative value if an
output or encoding error occurred.

Environmental limits
The number of wide characters that can be produced by any single conversion shall be at least 4095.

EXAMPLE To print a date and time in the form “Sunday, July 3, 10:02” followed by = to five decimal places:

i #include <math.h>
\ #include <stdio.h>
\ #include <wchar.h>
\ /% ... %/

\ wchar_t xweekday, *month; // pointers to wide strings
\ int day, hour, min;

356)See “future library directions” (7.31.18).

357)For binary-to-decimal conversion, the result format’s values are the numbers representable with the given format specifier.
The number of significant digits is determined by the format specifier, and in the case of fixed-point conversion by the source
value as well.

§7.29.2.1 Library 355



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

\ fwprintf(stdout, L"%ls, %ls %d, %.2d:%.2d\n",

\ weekday, month, day, hour, min);

\ fwprintf(stdout, L"pi = %.5f\n", 4 * atan(1.0));
L

Forward references: the btowc function (7.29.6.1.1), the mbrtowc function (7.29.6.3.2).

7.29.2.2 The fwscanf function
Synopsis

#include <stdio.h>
#include <wchar.h>
int fwscanf(FILE x restrict stream, const wchar_t * restrict format, ...);

Description

The fwscanf function reads input from the stream pointed to by stream, under control of the wide
string pointed to by format that specifies the admissible input sequences and how they are to be
converted for assignment, using subsequent arguments as pointers to the objects to receive the
converted input. If there are insufficient arguments for the format, the behavior is undefined. If the
format is exhausted while arguments remain, the excess arguments are evaluated (as always) but
are otherwise ignored.

The format is composed of zero or more directives: one or more white-space wide characters, an
ordinary wide character (neither % nor a white-space wide character), or a conversion specification.
Each conversion specification is introduced by the wide character %. After the %, the following
appear in sequence:

— An optional assignment-suppressing wide character *.

— An optional decimal integer greater than zero that specifies the maximum field width (in wide
characters).

— An optional length modifier that specifies the size of the receiving object.

— A conwversion specifier wide character that specifies the type of conversion to be applied.

The fwscanf function executes each directive of the format in turn. When all directives have been
executed, or if a directive fails (as detailed below), the function returns. Failures are described as
input failures (due to the occurrence of an encoding error or the unavailability of input characters),
or matching failures (due to inappropriate input).

A directive composed of white-space wide character(s) is executed by reading input up to the first
non-white-space wide character (which remains unread), or until no more wide characters can be
read. The directive never fails.

A directive that is an ordinary wide character is executed by reading the next wide character of
the stream. If that wide character differs from the directive,the directive fails and the differing and
subsequent wide characters remain unread. Similarly, if end-of-file, an encoding error, or a read
error prevents a wide character from being read, the directive fails.

A directive that is a conversion specification defines a set of matching input sequences, as described
below for each specifier. A conversion specification is executed in the following steps:

Input white-space wide characters are skipped, unless the specification includes a [, c, or n speci-
fier.%®)

An input item is read from the stream, unless the specification includes an n specifier. An input item
is defined as the longest sequence of input wide characters which does not exceed any specified
field width and which is, or is a prefix of, a matching input sequence.’ The first wide character, if

3%8) These white-space wide characters are not counted against a specified field width.
39 fwscanf pushes back at most one input wide character onto the input stream. Therefore, some sequences that are
acceptable to westod, westol, etc., are unacceptable to fwscanf.

356 Library §7.29.2.2



10

11

12

N2573 working draft — October 1, 2020 ISO/IEC 9899:202x (E)

any, after the input item remains unread. If the length of the input item is zero, the execution of the
directive fails; this condition is a matching failure unless end-of-file, an encoding error, or a read
error prevented input from the stream, in which case it is an input failure.

Except in the case of a % specifier, the input item (oz, in the case of a %n directive, the count of input
wide characters) is converted to a type appropriate to the conversion specifier. If the input item is
not a matching sequence, the execution of the directive fails: this condition is a matching failure.
Unless assignment suppression was indicated by a *, the result of the conversion is placed in the
object pointed to by the first argument following the format argument that has not already received
a conversion result. If this object does not have an appropriate type, or if the result of the conversion
cannot be represented in the object, the behavior is undefined.

The length modifiers and their meanings are:

hh Specifies that a following d, i, o, u, X, X, or n conversion specifier applies to an argument
with type pointer to signed char or unsigned char.

h Specifies that a following d, i, o, u, X, X, or n conversion specifier applies to an argument
with type pointer to short int or unsigned short int.

1 (ell) Specifies that a following d, i, o, u, X, X, or n conversion specifier applies to an argument
with type pointer to long int or unsigned long int; that a following a, A, e, E, f, F,
g, or G conversion specifier applies to an argument with type pointer to doub'le; or that
a following ¢, s, or [ conversion specifier applies to an argument with type pointer to
wchar_t.

11 (ell-ell) Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument
with type pointer to long long int or unsigned long long int.

j Specifies that a following d, i, o, u, X, X, or n conversion specifier applies to an argument
with type pointer to intmax_t or uintmax_t.

z Specifies that a following d, i, o, u, X, X, or n conversion specifier applies to an argument
with type pointer to size_t or the corresponding signed integer type.

t Specifies that a following d, i, o, u, X, X, or n conversion specifier applies to an argument
with type pointer to ptrdiff_t or the corresponding unsigned integer type.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an argument
with type pointer to Long double.

H Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an argument
with type pointer to _Decimal32.

D Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an argument
with type pointer to _Decimal64.

DD Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an argument
with type pointer to _Decimal128.

If a length modifier appears with any conversion specifier other than as specified above, the behavior
is undefined.

The conversion specifiers and their meanings are:

d Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the westol function with the value 10 for the base argument. The
corresponding argument shall be a pointer to signed integer.

i Matches an optionally signed integer, whose format is the same as expected for the
subject sequence of the westol function with the value 0 for the base argument. The
corresponding argument shall be a pointer to signed integer.

§7.29.2.2 Library 357



ISO/IEC 9899:202x (E) working draft — October 1, 2020 N2573

a,e,f,g

358

Matches an optionally signed octal integer, whose format is the same as expected for the
subject sequence of the westoul function with the value 8 for the base argument. The
corresponding argument shall be a pointer to unsigned integer.

Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the westoul function with the value 10 for the base argument.
The corresponding argument shall be a pointer to unsigned integer.

Matches an optionally signed hexadecimal integer, whose format is the same as expected
for the subject sequence of the westoul function with the value 16 for the base argument.
The corresponding argument shall be a pointer to unsigned integer.

Matches an optionally signed floating-point number, infinity, or NaN, whose format is
the same as expected for the subject sequence of the westod function. The corresponding
argument shall be a pointer to floating.

Matches a sequence of wide characters of exactly the number specified by the field width
(1 if no field width is present in the directive).

If no 1 length modifier is present, characters from the input field are converted as if
by repeated calls to the wertomb function, with the conversion state described by an
mbstate_t object initialized to zero before the first wide character is converted. The
corresponding argument shall be a pointer to the initial element of a character array large
enough to accept the sequence. No null character is added.

If an 1 length modifier is present, the corresponding argument shall be a pointer to the
initial element of an array of wchar_t large enough to accept the sequence.No null wide
character is added.

Matches a sequence of non-white-space wide characters.

If no 1 length modifier is present, characters from the input field are converted as if
by repeated calls to the wertomb function, with the conversion state described by an
mbstate_t object initialized to zero before the first wide character is converted. The
corresponding argument shall be a pointer to the initial element of a character array large
enough to accept the sequence and a terminating null character, which will be added
automatically.

If an 1 length modifier is present, the corresponding argument shall be a pointer to
the initial element of an array of wchar_t large enough to accept the sequence and the
terminating null wide character, which will be added automatically.

Matches a nonempty sequence of wide characters from a set of expected characters (the
scanset).

If no 1 length modifier is present, characters from the input field are converted as if
by repeated calls to the wertomb function, with the conversion state described by an
mbstate_t object initialized to zero before the first wide character is converted. The
corresponding argument shall be a pointer to the initial element of a character array large
enough to accept the sequence and a terminating null character, which will be added
automatically.

If an 1 length modifier is present, the corresponding argument shall be a pointer to
the initial element of an array of wchar_t large enough to accept the sequence and the
terminating null wide character, which will be added automatically.

The conversion specifier includes all subsequent wide characters in the format string,
up to and including the matching right bracket (1). The wide characters between the
brackets (the scanlist) compose the scanset, unless the wide character after the left bracket
is a circumflex (*), in which case the scanset contains all wide characters that do not
appear in the scanlist between the circumflex and the right bracket. If the conversion
specifier begins with [] or [*], the right bracket wide character is in the scanlist and
the next following right bracket wide character is the matching right bracket that ends

Library §7.29.2.2



13
14

15

16

N2573

o°

working draft — October 1, 2020 ISO/IEC 9899:202x (E)

the specification; otherwise the first following right bracket wide character is the one
that ends the specification. If a - wide character is in the scanlist and is not the first, nor
the second where the first wide character is a *, nor the last character, the behavior is
implementation-defined.

Matches an implementation-defined set of sequences, which should be the same as the
set of sequences that may be produced by the %p conversion of the fwprintf function.
The corresponding argument shall be a pointer to a pointer to veid. The input item is
converted to a po