N2522 § , working draft — May 10, 2020 CORE 202005 (E)

JTC 1/SC 22/WG 14 © ISO/IEC 1990-2018 (C standard)
© Jens Gustedt 2020V (rationale, modifications)
document: N2522
version: CORE 202005
date: 2020-05-10

Programming languages — a common C/C++ core specification

Jens Gustedt — INRIA, France

Change history

vl: WG14 document N2494
v2: WG14 document N2522, this version, diffmarks from “cmin”
o clarifications: lambdas and longjmp, inline and scope, type char8_t, generic selection,
core:: unsequenced attribute
e three-way comparison (spaceship operator)
e “initializer” construct for captures of lambdas
e a tool for textual representation of all basic types and arrays, totext
e more attributes for allocated storage, core:: free, core:: realloc, core::noleak
e an attribute for tracking (or not) of initializations core::writethrough
e core::concurrent attribute

e constexpr based on core:: concurrent and annotation of some library calls with that
specifier

e for-loop and if with variable definitions
e harmonization of tag names between C and C++

e hammonization of the requirements for Unicode as an internal encoding

DThe part of this work that extends the C standard is licensed under the Creative Commons Attribution-ShareAlike 4.0
International (CC BY-SA 4.0) License.

Change history modifications to ISO/IEC 9899:2018, § page i



CORE 202005 (E) § , working draft — May 10, 2020 N2522

(no diff marks, here)

Abstract

The C and C++ programming languages have evolved from a common ancestor many years ago
and have always been developed in keeping a close eye on each other. Both responsible committees,
WG14 and WG21, have always sought both languages to be compatible as far as seemed possible;
on a binary level for mutual linkage of software components, and on a source-header level for
mutual access to the so linked components. Nevertheless, gratuitous incompatibilities have crept
into them, and cross-language programming is nowadays quite difficult to achieve and almost
impossible to teach.

On the positive side, in recent years the efforts to bridge the gap between the two language have
been renewed and several fruitful initiatives have been undertaken to unify the approaches in
several domains. These concern in particular atomic types and operations, sign representations of
integers, the memory model(s), and the attribute feature.

This specification is an attempt to strengthen these dynamics and to formulate a common language
core that ideally would be integrated in both languages and would provide a solid base for the
future development of both, and, that would be much simpler to use, to comprehend and to
implement. It is oriented to maintain and extend some principal characteristics that are already
present in the intersection:

— Strong static typing
— Type-genericity

— Efficiency
— Portability

This common core adds features to both languages, and thus it has not yet a complete implemen-
tation. Nevertheless, first experiments show that it should not be very complicated to provide
reference implementations within compiler frameworks that already have front-ends for both
languages, and that thus already have most of the features in one way or another.

Acknowledgments

Discussions with the following people (and probably others that I forgot to mention) contributed to
this proposal: Aaron Ballmann, Hubert Tong, JF Bastien, Kayvan Memarian, Lars Gullik Bjennes,
Martin Uecker, Niall Douglas, Peter Sewell.

modifications to ISO/IEC 9899:2018, § page ii Abstract



N2522 § , working draft — May 10, 2020 CORE 202005 (E)

(no diff marks, here)

Contents modifications to ISO/IEC 9899:2018, § page iii



CORE 202005 (E) § CONTENTS, working draft — May 10, 2020

N2522

Contents
Rationale
I CH+features . . . . . . . . L
Li Keywords . .. ... ... ... ... ... ...
Lii Types and other fundamental language features . . . . . . .. ..
Lii  Compile time constants and well defined behavior . .. ... ..
Liv.  Empty default initializers . . . ... ... ... ... ........
Lv Specificnamed constants . . . ... ... oL oL
Lvi Type inference and decltype . . ... ... ... ... .......
ILvii Lambda expressions and function literals . . . . .. ... ... ..
I Cfeatures . ... .. ... .. ... ... ...
ILi Genericselection . . . .. ... ... ... L L oL
ILii ~ Variable length arrays (VLA) . . . ... ...............
ILiii ~ Complex arithmetic . . . ... ... ... .. .. ..........
III' Modernization . . . . .. ... ... ... ... ... .
IIi  Mathematical functions . . . ... ... ... ... ... .....
i  Complextypes . .. ... ... ... .. .. ... .. ...
ILiii Functionattributes . . . .. ... ... .. .. ... ......
IILiv  Array size propagation. . . . ... .. ... ... ..........
OLv  Qualifier fidelity . ... .......... ... .. .. .. ....
IILvi Three-way comparison. . . . .. ... ................
IL.vii Textual representationsand output. . . . ... .. ... ... ...
IV Disambiguation . . . ... ... . ... ... .. .. .. . .
IVi  Inline functionsand objects . . . . ... ....... ... ... ...
IVii Lexingof punctuators . . . ... ...................
IViii Opaque types and void return from functions . .. ... ... ..
IViv Atomics . .. ... ... ... . ...
IV.v  Bit-fields and fixed-width types . . . . . ... ... ... .. ....
IVvi Identifiers . . . . . ... .. ..
V. Memorymodel . ... ....... ... ...
Vi Storageinstance . . . . . . ... ... ... . L o L.
Vii  Provenance-based aliasing analysis . . . ..............
Viii  Explicit aliasing deduction and storage allocation . . . . ... ..
Viv  Type-based aliasing analysis . . .. ... ..............
Vv Dataflowanalysis . ... ...... ... ... ... ........
V.vi  Const objects of static storage duration . ... ...........
VI Removal .. ... ... ... ... ..

....... XXV1iil

....... xxviii

modifications to ISO/IEC 9899:2018, § CONTENTS page iv

Contents



N2522 § CONTENTS, working draft — May 10, 2020 CORE 202005 (E)
VLi  Lvalue expressions and referencetypes . . . . ... ... ............ xxxi
VLii  Conversions from complextypes . . . . ... ........ ... ... ..... Xxxi
VILiii Imaginary typesand AnnexG . . ... ... ... oL xxxii
VILiv Bounds-checking interfaces (AnnexK). . . . . ... ... ... ... .. ... XXXii
VII Furtherdirections . . . . . . .. ... .. .. ... ... xxxii
Introduction XXXiV
1 Scope 3
2 Normative references 4
3 Terms, definitions, and symbols 5
4 Conformance 10
5 Environment 11
51 Conceptualmodels . . . . ... ... .. 11
51.1 Translationenvironment. . . . . .. ... ... ... ... . .. 11
5.1.2 Executionenvironments . . . . ... ... L. L Lo 12
52 Environmental considerations . . . . . . ... ... L L Lo L Lo 19
521 Charactersets . . . . ... ... ... .. 19
522 Character display semantics . . . . .. ... ... ... ... 0L 21
523 Signalsandinterrupts . . . . ... ... .. o oo 21
524 Environmental limits . . . . . ... ... .. o o L Lo o 22
6 Language 30
6.1 Notation . . . .. ... .. 30
6.2 Concepts . . . . ... 30
6.2.1 Scopesofidentifiers . ... ... ... ... ... oL 30
6.2.2 Linkagesofidentifiers . . . .. ... ....... ... ... ... ... .. 31
6.2.3 Namespacesofidentifiers. . . .. ... ... ... ... ... ... ... ... 31
6.24 Storage durations and object lifetimes . . . . . .. ... ... o oL L 32
625 Types . . . . .. 33
6.2.6 Representationsoftypes . . . . .. ... ... .. .. ... L L. 38
6.2.7 Compatible type and compositetype . ... ... ...... ... .. ... ... 41
6.2.8 Alignmentofobjects . . . ... ... ... L L oo 42
6.2.9 Mutual representability of types and objects . . . .. ... ... ... ... 43
6.3 Conversions . . . .. .. .. ... 46
6.3.1 Arithmeticoperands . . . ... .......... ... ... ... 46
632 Otheroperands . . . ... ... ... .. ... .. ... 49
6.4 Lexicalelements . . . . ... ... ... ... ... e 53
641 Keywords . . ... ... 54

Contents modifications to ISO/IEC 9899:2018, § CONTENTS page v



CORE 202005 (E) § CONTENTS, working draft — May 10, 2020 N2522

6.5

6.6
6.7

6.42 Identifiers . . . . .. ... ... 55
6.4.3 Universal characternames. . . . . . ... ... ... ... ... ... .. ..., 56
6.44 Constants . . ... ... ... 57
6.45 Stringliterals . . . ... ... ... ... ... 64
6.4.6 Punctuators . . . ... ... 66
647 Headernames. . . ... ... ... ... ... ... 67
6.4.8 Preprocessingnumbers . . ... ... ... L o 68
649 Comments . . ... ... ... ... ... e 69
Expressions . . . ... . ... ... e 70
6.5.1 Primaryexpressions . . . ... ... ... ... e 71
6.5.2 Postfixoperators . . . ... ... ... 73
6.5.3 Unaryoperators . ... ... ... ... ... .. ... . 85
654 Castoperators. . . . .. ... ... ... . e 87
6.5.5 Multiplicative operators . . . . . ... ... ..o L 88
6.5.6 Additiveoperators . . . ... ... L 88
6.5.7 Bitwiseshiftoperators . . . ... ... ... .. L L Lo o 90
6.5.8 Three-way comparison operator . .. .. ... .. ... ............. 90
6.5.9 Relationaloperators . . ... ....... ... ..., .. ... ... 91
6.5.10 Equality operators . . . .. ... ... ... ... .. .. ... .. 91
6.5.11 Bitwise ANDoperator . . . . .. ... ... .. ... ... ... .. 92
6.5.12 Bitwise exclusive ORoperator . . . ... ..................... 93
6.5.13 Bitwise inclusive ORoperator . . . ... ... ... .. .. ........... 93
6.5.14 Logical AND operator . . . . . ... ... ... ... .. .. .. .. .. .. ... 93
6.5.15 Logical ORoperator . . . ... ... ... ...................... 93
6.5.16 Conditionaloperator . . . . ... ... ... ... ... . L o 94
6.5.17 Assignmentoperators . . . .. ... ... ... ... 95
6.5.18 Commaoperator . . . . ... ... ... ... ... 98
Constantexpressions . . . ... ... ... ... ... ... 100
Declarations . . . . . . . . .. 102
6.7.1 Storage-classspecifiers . . . . . ... ... .. L L 104
6.72 Typespecifiers . .. ... ... ... ... ... .. .. 105
6.73 Typequalifiers . .. ... ... ... .. .. 115
6.74 The constexprspecifier . . . . ... ... ... L L oL L L 116
6.75 Theinlinespecifier . . ... ... ... ... .. . ... ... ... 120
6.7.6  Alignmentspecifier. . . ... ... ... ... L L 123
6.7.7 The_Noreturnspecifier . . . . . ... ... ... .. .. .. .. .. .. .. ... 124
6.7.8 Declarators . . . .. ... ... .. 124
6.79 Typenames . .. .. ... ... ... ... 131
6.7.10 Typedefinitions . . . . . . ... ... .. .. 131
6.7.11 Expressiontypes . . . .. ... ... ... ... e 133

modifications to ISO/IEC 9899:2018, § CONTENTS page vi Contents



N2522 § CONTENTS, working draft — May 10, 2020 CORE 202005 (E)
6.7.12 Initialization . . . . . . . . . .. e e 134
6.713 Typeinference. . . . . ... ... ... ... ... 139
6.7.14 Staticassertions . . . . . . . . . . e e e e 141
6.7.15 Attributes . . . . ... e e 141

6.8 Statementsandblocks . . . .. ... 172
6.8.1 Labeled statements . . . . . . ... ... .. 172

6.82 Compoundstatement . .. ... ... ... ... ... .. ... . .. 173

6.8.3 Expressionandnullstatements . . . . . ... ... ... ... ... .. .. ... 173

6.8.4 Selectionstatements . . . .. .. ... ... 174

6.8.5 Iterationstatements . . . ... ... ... ..o Lo 176

6.8.6 Jumpstatements . ... ... ... ... oL 177

6.9 External definitions . . . . . . . . . . . ... 181
6.9.1 Function definitions . . . . ... .. . ... ... ... 182

6.9.2 External object definitions . . . . . ... ... ... L oL L oL 184

6.10 Preprocessing directives . . . . . .. .. ... .. .. o o 186
6.10.1 Conditionalinclusion . . . . ... ... ... ... ... 187
6.10.2 Source fileinclusion . . . . . .. ... 189
6.10.3 Macroreplacement . . . ... ... ... 190
6.104 Linecontrol . . . . . . . .. . e 196
6.10.5 Errordirective . . . . . . . . .. e 197
6.10.6 Pragmadirective . . .. .. .. ... .. ... 197
6.10.7 Nulldirective . . . . . . . . . e 197
6.10.8 Predefined macronames . . . . . . . . . . .. ... 198
6.10.9 Pragmaoperator . .. ... ... ... ... ... ... 201

6.11 Future language directions . . . . . . . ... ... ... ... L L L L 203
6.11.1 Floatingtypes . . . . . ... ... . . ... 203
6.11.2 Linkages ofidentifiers . . . . .. ... ... ... .. .. ... o o oL 203
6.11.3 Externalnames . . . . . . . . . . . . ... 203
6.11.4 Character escape SeqUeNCES . . . . . . . . . vt v it 203
6.11.5 Storage-classspecifiers . . . . ... ... ... .. L oL Lo 203
6.11.6 Function declarators . . . . . . . . . . . . .. ... 203
6.11.7 Pragmadirectives. . . . ... ... ... ... ... 203
6.11.8 Predefined macronames . . . . . . . . . . . .. ... 203

7 Library 204
7.1 Introduction . . . . . . . . . . e 204
71.1 Definitionsofterms . . . . . . ... 204

712 Standard headers . . . . . . . . ... 204

7.1.3 Reservedidentifiers . ... .. .. .. ... ... 205

714 Useoflibrary functions . . ... ... ... ... ... .. .. .. .. ...... 206

Contents modifications to ISO/IEC 9899:2018, § CONTENTS page vii



CORE 202005 (E) § CONTENTS, working draft — May 10, 2020 N2522

7.2 Diagnostics<assert.h> . ... ... ... .. ... ... . o o 208
721 Programdiagnostics . . ... ... .. ... .. L 208
7.3 Complex arithmetic <complex.h> . ... ... ... ... ... ... ... .. ... 209
731 Introduction . . . . . . . . . . 209
732 Conventions . . . . . . . . ... e e e 209
733 Branchcuts . ... ... .. .. 209
734 The CX_LIMITED_RANGE pragma . . . . .. .. .. .. ... ... ... 210
7.3.5 Trigonometric functions . . . .. ... ... ... L L 210
73.6 Hyperbolicfunctions . . . . . ... ... ... ... . o o oo 212
7.3.7 Exponential and logarithmic functions . . ... ... ... ... .. ... .. 213
7.3.8 Power and absolute-value functions . . . . .. ... ... ... . L. 214
74 Character handling <ctype.h> . . ... ... ... ... .. .. ... . . 0. 217
7.4.1 Character classification functions . . . . . ... ... ... ... . ... ... 217
74.2 Character case mapping functions . . . . ... ... ... ... L. 219
75 Errors<errno.h> . . . ... 221
7.6 Floating-point environment <fenv.h> . . . . ... ... ... ... . . 0. 222
7.6.1 The FENV_ACCESSpragma . . . . . . . .. ..ot v ittt 223
7.6.2 Floating-pointexceptions . . . .. ... ... ... ............ .. .. 224
763 Rounding . ... .. ... ... ... 226
7.64 Environment . . . . . ... 227
7.7 Characteristics of floating types <float.h> . . ... ... ... ... ... ... . ... 229
7.8 Format conversion of integer types <inttypes.h> . . .. ... ... .. .. ... ... 230
7.8.1 Macros for format specifiers . . . . . .. ... Lo oL L Lo 230
7.8.2 Functions for greatest-width integer types . . . . ... ... ... ... . ... 231
7.9 Alternative spellings <iso646.h>. . . . .. . ... ... .. .. ... . . . L . 232
7.10 Characteristics of integer types <limits.h>. ... ... .. .. ... ... ... .... 233
7.11 Localization <locale.h>. . . . . . . .. . 234
711.1 Localecontrol . . . . . . . . . e 235
7.11.2 Numeric formatting convention inquiry . . . . . ... ... .. ... ... ... 236
7.12 Mathematics <math.h> . . . . . .. ... 241
7.12.1 Treatment of error conditions . . . . . . . .. ... ... ... . 244
7122 The FP_CONTRACT pragma . . . . . . . . . .t vt vt ittt 245
7123 Classification macros . . . . . . . . oo vttt 245
7.12.4 Trigonometric functions . . . .. ... ... ... .. o L L 247
7.12.5 Hyperbolicfunctions . . . . .. ... ... ... ... ... .. ... ... 249
7.12.6 Exponential and logarithmic functions . . ... ... ... ... .. ... .. 251
7.12.7 Power and absolute-value functions . . . . .. ... ... ... ......... 256
7.12.8 Error and gamma functions . . . .. ... ... ... .. L 259
7129 Nearestinteger functions . . . . ... ... ... ... .. L L L. 260
712,10 Remainder functions . . . . . . . . . ... 263

modifications to ISO/IEC 9899:2018, § CONTENTS page viii Contents



N2522 § CONTENTS, working draft — May 10, 2020 CORE 202005 (E)
7.12.11 Manipulation functions . . . . ... ... ... .. oL 265
7.12.12 Maximum, minimum, and positive difference functions . .. ... ... ... 267
7.12.13 Floating multiply-add . . . . ... ... .. ... ... . L L oo 270
71214 CompariSON MACIOS . . . . . v v v it e e e 270
7.12.15 Type propertiesand values . . . . .. ... ..... ... .. ... ... .. 272

7.13 Nonlocal jumps <setjmp.h>. . . . ... ... .. ... .. L o 275
7.13.1 Savecallingenvironment . . .. ... ......... . ... .. .. ... ... 275
7.13.2 Restore calling environment . . . . ... ... ... ... ... L., 275

7.14 Signal handling <signal.h>. . . .. ... ... ... ... .. .. .. .. .. .. .... 277
7.14.1 Specify signalhandling . .. ... ... ... ... .. .. .. .. .. .. ... 277
7142 Sendsignal . .. ... .. ... 279

715 Alignment <stdalign.h> . .. ... ... .. .. .. .. .. . o o 280

7.16 Variable arguments <stdarg.h> . . .. .. ... ... ... ... . L L L. 281
7.16.1 Variable argument listaccessmacros . . . . . . ... .... .. .. ....... 281

717 Atomics <stdatomic.h>. . ... ... .. ... ... . L L o 284
7171 Introduction . . . . ... ... L 284
7.17.2 Initialization . . . . . ... ... . L 285
7173 Orderandconsistency . . . ... ... ... .................... 286
7174 Fences . . . . . ... 288
7.17.5 Lock-free property . . .. .. .. ... ... 289
717.6 Atomicintegertypes . . . .. ... ... ... o 290
7.17.7 Operations on atomictypes . . . ... .. ... ... ... ... ... .. ..., 291
7.17.8 Atomic flag type and operations . . . .. ... ... L L L L 294

7.18 Boolean type and values <stdbool.h>. . . ... ....... ... .. .. .. ... ... 296

7.19 Common definitions <stddef.h>. . .. ... ... .. ... ... .. .. .. ..., 297

720 Integer types <stdint.h> . . ... ... ... ... L Lo 298
720.1 Integertypes . .. . . . . . ... 298
7.20.2 Widths of specified-width integertypes . . . . ... ... .. ... ... ..., 301
7.20.3 Widthof otherintegertypes. . . . . . ... ... ... . ... .. .. ... .. 301
7.20.4 Macros for integer constants . . . . . ... ... L oL 302
7.20.5 Maximal and minimal values of integer types . . . . ... ... ... ... .. 302

721 Input/output<stdio.h>. . . . ... ... .. Lo 303
7211 Introduction . . . . . ... ... L 303
7212 Streams . . . ... 304
7213 Files . . ... e 305
7214 Operationsonfiles . . . .. ... ... ... ... ... 307
7215 Fileaccessfunctions . . ... . ... ... ... ... .. o 309
7.21.6 Formatted input/output functions . . . . . ... ... ... . 0L 312
7.21.7 Character input/output functions . . . . ... ... ... .. ... .. 327
7.21.8 Direct input/output functions . . . ... ... ... Lo oL 331

Contents modifications to ISO/IEC 9899:2018, § CONTENTS page ix



CORE 202005 (E) § CONTENTS, working draft — May 10, 2020 N2522

7.21.9 File positioning functions . . . ... ... ... o Lo 332
7.21.10 Error-handling functions . . . . .. .. ... ... . o oL oL 335

7.22 General utilities <stdlib.h> . . .. .. .. ... . L 337
7.22.1 Numeric conversion functions . . . . . . .. ... .. ... ... .. ... 337
7.22.2 Textconversion functions . . . . . . . . . .. ... 341
7.22.3 Pseudo-random sequence generation functions . . ... ... ... ... ... 347
7.22.4 Storage management functions . . . . ... ... Lo 348
7.22.5 Communication with the environment . . .. ... ... ... ... ..... 350
7.22.6 Searching and sorting utilities . . . . . .. ... ... .. .. oL oL 354
7.22.7 Integer arithmetic functions . . . . . . ... ... ... L L L Lo 355
7.22.8 Multibyte/wide character conversion functions . . . ... ... ... ... .. 356
7.22.9 Multibyte/wide string conversion functions . . . . ... ... ... ... ... 358

723 _Noreturn <stdnoreturn.h> . . .. .. ... ... . ..o oL 360
7.24 String and storage handling <string.h> ... ... ... ... ... ... ... . ... 361
7241 Conventions . . . . . . . . . L e e e e e 361
7242 Copyingfunctions . .. ... .. ... .. .. ... 362
7.24.3 Concatenation functions . . . . . . . . . . . ... .. 364
7244 Comparisonfunctions . . .. ... ... ... ... ... .. ... ... .. 365
7245 Search functions . . . .. . . . . . . ... 367
7.24.6 Miscellaneous functions . . . . . . . . . ... L 370

7.25 Type-generic math <tgmath.h> . . . .. ... ... .. ... ... .. .. .. ... 375
726 Threads <threads.h> . . . . ... . . . . . . . . . . . . . 377
7.26.1 Introduction . . . . . . . . . . 377
7.26.2 Initialization functions . . . . . . . . . . . ... 378
7.26.3 Condition variable functions . . . . ... ... ... ... ... . . ... ... 378
7264 Mutex functions . . . . . . . ... 380
726.5 Thread functions . . . . . . . . . . . . .. . 382
7.26.6 Thread-specific storage functions . . . . . ... ... ... .. .. ... .. 385

727 Date and time <time.h> . . . . . . . ... 387
7271 Componentsoftime . . ... ... ... .. ... ... ... .. ... ... 387
7.27.2 Time manipulation functions . . . . ... ...... . ... ... ... ... 388
7.27.3 Time conversion functions . . . . . . . . . . . ... o e 390

7.28 Unicode utilities <uchar.h> . . . . .. ... . . 396
7.28.1 Restartable multibyte/wide character conversion functions . . ... ... .. 396

7.29 Extended multibyte and wide character utilities <wchar.h>. . . . ... ... ... .. 400
729.1 Introduction . . . . . . . . . . .. e e 400
7.29.2 Formatted wide character input/output functions . . . . . .. ... ... ... 401
7.29.3 Wide character input/output functions . . . ... ... .. ... ... ... 413
7.29.4 General utilities for wide characterarrays . . . . ... ... ... ... ..... 416
7.29.4.1 Wide string copying functions . . . . .. ... ... ... .. ... 419

modifications to ISO/IEC 9899:2018, § CONTENTS page x Contents



N2522 § CONTENTS, working draft — May 10, 2020 CORE 202005 (E)

7.29.4.2 Wide string comparison functions . . . . .. ... ... ... ... .. 420

7.29.4.3 Wide string search functions . . . . . . ... ... ... .. .. ... 421

72944 Miscellaneous functions . . ... ... ... ... ... 422

7.29.5 Wide character time conversion functions . . . . . ... ... ... ... ..., 423
7.29.6 Extended multibyte/wide character conversion utilities . . . ... ... ... 423
7.29.6.1 Single-byte/wide character conversion functions . . . . . .. .. .. 424

7.29.6.2 Conversion state functions . . . . .. ... ... ... ... ... ... 424

7.29.6.3 Restartable multibyte/wide character conversion functions . . . . . 425

7.29.6.4 Restartable multibyte/wide string conversion functions . . . . . . . 427

7.30 Wide character classification and mapping utilities <wctype.h> . . .. ... ... .. 429
7.30.1 Introduction . . . .. ... ... L 429
7.30.2 Wide character classification utilities . . . . . .. ... ... ... .. ... ... 429
7.30.2.1 Wide character classification functions . . . . ... ... ....... 429

7.30.2.2 Extensible wide character classification functions . . . . . .. .. .. 432

7.30.3 Wide character case mapping utilities . . . . . ... ... .. .. ... ... .. 433
7.30.3.1 Wide character case mapping functions. . . . . ... ... ... ... 433

7.30.3.2 Extensible wide character case mapping functions . ... ... ... 433

7.31 Three-way comparison <stdcompare.h> . .. ... ... ... ... .. .. ...... 435
731.1 Comparisontypes . . ... ... ... ... ... 435
7.31.2 Primary three-way comparison . . . . . . ... ... ... .. ... .. .. .. 438
7.31.3 Synthetic three-way comparison . . . .. ... ... .. ... ... ....... 439
7.31.4 Classification of comparison types and values . . ... ... ... ....... 440
73141 Thedisstrongmacro . .. ... . . ... ... 440

73142 Theissymmetricmacro ... ... ... ... ... .......... 441

73143 The toswitchmacro . ... ... ... . ... ... ........ 441

73144 Thetostrongmacro . .. ... ... ... ... ... 442

7.31.5 Searching and sorting utilities . . . . . .. ... ... ... ... . o L. 443
7.31.5.1 The tocomparemacro . . . . . . . . . . .. oo v v i i 443

7.31.5.2 The search type-genericmacro . .. .................. 444

7.31.5.3 The sort type-genericmacro. . . . .. ... ... .......... 444

7.32 Futurelibrary directions . . . . .. ... ... ... L L 446
7.32.1 Character handling <ctype.h> . . . . ... ... ... ... .. .. ...... 446
7322 Errors<errno.h>. .. ... ... ... ... 446
7.32.3 Floating-point environment <fenv.h>. . ... ... .. ... .. .. ...... 446
7.32.4 Format conversion of integer types <inttypes.h>. ... ... .. ... ... . 446
7.32.5 Localization <locale.h> . .. ... ... ... ... ... ... .. ... ... 446
7.32.6 Mathematics<math.h> . . ... ... ... .. ... ... ... .. . 0 .. 446
7.32.7 Signal handling <signal.h> .. ... ... ... ... ... .. ........ 446
7.32.8 Atomics <stdatomic.h>. . ... ... .. ... ... .. o o L. 446
7.32.9 Integer types<stdint.h> . . . ... ... ... ... ... .. oo L 447

Contents modifications to ISO/IEC 9899:2018, § CONTENTS page xi



CORE 202005 (E) § CONTENTS, working draft — May 10, 2020 N2522
7.3210Input/output <stdio.h> . . . ... ... ... L o 447

7.32.11 General utilities <stdlib.h> . . . . ... ... ... ... ... .. o L. 447

7.32.12 String and storage handling <string.h> . . ... ... ... .. .. ... ... 447

7.32.13 Date and time <time.h> . . . . . . ... . Lo Lo 447

7.32.14 Threads <threads.h> . . . . . ... ... ... .. ... ... ... . ... 447

7.32.15 Extended multibyte and wide character utilities <wchar.h> . .. .. ... .. 447

7.32.16 Wide character classification and mapping utilities <wctype.h> . . . . . . .. 447

Annex A (informative) Language syntax summary 448
Annex B (informative) Library summary 463
Annex C (informative) Sequence points 477
Annex D (normative) Universal character names for identifiers 478
Annex E (informative) Implementation limits 479
Annex F (normative) IEC 60559 floating-point arithmetic 481
Annex G (removed) IEC 60559-compatible complex arithmetic 499
Annex H (informative) Language independent arithmetic 500
Annex I (informative) Common warnings 505
Annex J (informative) Portability issues 506
Annex K (removed) Bounds-checking interfaces 535
Annex L (normative) Analyzability 536
Annex M (informative) Change History 538
Bibliography 542
Index 543
modifications to ISO/IEC 9899:2018, § CONTENTS page xii Contents



N2522 cmin..core § I, working draft — May 10, 2020 CORE 202005 (E)

Rationale

This document specifies the form and establishes the interpretation of programs expressed in a
future core language specification common to the programming languages C and C++. Its purpose
is to promote portability, reliability, maintainability, and efficient execution of programs written
within that core on a variety of computing systems.

Clauses are included that detail the core itself and the contents of the C language execution library
that is common to that core. Annexes summarize aspects of both of them, and enumerate factors
that influence the portability of programs.

This document marks changes from version cmin to version core. They are indicated by striking-out
text that has been deleted and underlining text that has been added. Pages that contain changes are
marked with cmin..core and are listed under core CHANGES in the index.

The starting point of this document was ISO/IEC 9989:2018. We apply a series of changes to the C
programming language that are intended to ease the programming styles that are in synchronization
with modern advances in information technology and software engineering, and that augment
the common intersection with the programming language C++. As such, this core specification is
currently neither conforming to the C nor the C++ standard, but the intent is that the C and C++
standards as well as this document are subsequently modified until they converge to a common
core.

Changes that are integrated in this document come in several flavors:

— Changes that already have been integrated by WG14 into C for the upcoming specification of
C2x. Beware that not all changes that WG14 has integrated are reproduced here. In particular,
a lot of the changes to floating point types and libraries are currently too complex to be
integrated in a core language specification.

— Features that have been present in C++, that are well established and that ease the portability
of code between the two languages.

— Similarly, features that have been present in C for some time, that are commonly used and that
ease portability with C++.

— Features that modernize the language specification appropriately to the improved environ-
ments that are nowadays commonly available.

— Disambiguations of problematic parts of both languages, in particular a consistent and com-
prehensive memory and aliasing model.

— Convergence of features that have gratuitously distinct syntax in C and C++, such as atomics
and complex numbers.

— “Removal” of rarely used or underspecified parts of the languages that break compatibility
between C and C++. Here, removal means “removal from this specification” and not removal
from the corresponding language(s).

I C++ features
Ii Keywords

C has historically integrated some features that were invented for C++ but with a different syntax
and sometimes even slightly different semantic. It did this by using a spelling for keywords starting
with an underscore and a capital letter to avoid clashes with user space identifiers, and by only
introducing the “normal” form (that would be a keyword in C++) via additional headers. This
overcautious approach is in opposition to additions to the C library, where function names have
been added without the same precaution.

Rationale modifications to ISO/IEC 9899:2018, § Li page xiii



CORE 202005 (E) § Lii, working draft — May 10, 2020 N2522

Since these C++ keywords are present even in the C standard, user code targeting the C/C++ core
may reasonably expect to be able to use these keywords without precaution. Therefore this core
proposal moves forward to integrate them also as keywords to C and to deprecate the then useless
header files that provide them.

The transition to that new setting should be as smooth as possible, so for the moment we keep the
possibility that these keywords may be implemented as macros.

Another set of keywords that is introduced in this specification are eleven keywords that replace
punctuators that in some historic settings had been difficult to represent. These have been keywords
for C++ since the beginning and to accommodate C++ legacy code that might use them, we introduce
them, here. This addition also makes the header <is0646. h> obsolete.

We also add new features implemented through keywords that had not yet been present in C, yet.
Here also, to ease the transition it seems to be best to allow for them to be implemented as macros.

The keywords introduced by this change (6.4.1) are

alignas bool not true
alignof compl nullptr xor_eq
and_eq decltype or_eq xor
and false or

bitand generic_selection static_assert

bitor not_eq thread_local

Here the only semantic change that is necessary here is to impose that the type of the Boolean
constants false and true is bool and not int as it had been in C. The new features are nullptr
and decltype.

Overall, the C library headers that become obsolete are

<is0646.h> <stdalign.h> <stdbool. h> <stddef.h>

Other C keywords follow a similar pattern, but the resolution of conflicting semantics is more
complicated and will be handled below.

_Atomic _Generic _Noreturn
—Complex _Imaginary

Lii Types and other fundamental language features

C and C++ differ in the presentation of certain semantic types that occur independently as language
features, and this proposal attempts to provide a unified approach for them. Therefore the definition
of these types is withdrawn from C library headers and definitions for these types are predefined.
This allows to reconcile the fact that C has these types as typedef to basic types whereas for C++
some of them constitute proper types of their own.

We also add the type of the new nullptr constant to that list, 6.4.2.2. The types that become
universally available (6.2.5.1) are:

Type language feature

nullptr_t | the type of the nullptr constant

ptrdiff_t | the result of pointer difference

size_t the result of sizeof, alignof and offsetof operations
wchar_t the element type of L wide-string literals

char8_t the element type of u8 string literals

charl6e_t | the element type of u wide-string literals

char32_t | the element type of U wide-string literals

The encodings for the latter three are fixed for C++ to be UTF-8, UTF-16 and UTF-32, and so we
remove the parts of the C standard that made such encodings implementation-defined. Also we

modifications to ISO/IEC 9899:2018, § Lii page xiv Rationale



N2522 § Liii, working draft — May 10, 2020 CORE 202005 (E)

unify the approach for internal representation of extended character sets such that implementations
have to behave “as-if” the internal representation were Unicode. This ensures that the semantic of
all characters in these extended character sets is unique and that mapping extended characters to
Unicode and back is the identity.

In addition to these types, some other principal language features that in C were provided as macros
have been elevated to be predefined macros. As a consequence the <stddef.h>header also becomes
empty and is declared obsolete.

Liii Compile time constants and well defined behavior

In contrast to C++, C is missing an important feature, namely the possibility to declare named
constants of arbitrary type. The only possibilities that are currently offered are enumeration constants
Or macros.

Unfortunately, some of the paths that C++ has chosen to define such constants are not compatible
with C. In particular, for C++ const-qualified objects (that are not volatile-qualified) and that
have a known compile-time initializer are implicitly static and can stand in wherever a constant
can. Using that construct in C by defining such a const-object in a header would introduce binary
incompatibilities with existing code, and would thus not a path that C could easily chose to adapt.
Also, that would instantiate such an object in every translation unit that includes the header, and it
would results in multiple definitions if several such translation units are link into one executable.

The path chosen for this proposal is thus to use two features that are not yet present as such in C,
namely inline constants and constexpr, see 6.6. The first are special cases of qualified inline objects,
see below in IVi, 6.7.5. They provide a possibility to define constants that have a unique address in
the whole program, if such an address is needed.

constexpr are much more general feature, because this specifier can be applied to objects (similar to
inline constants) but also to functions and lambdas. Thereby it allows to advance almost arbitrary
computations to compile time and to ensure that such a computation only has defined behavior.
The properties for that specifier are relatively involved when spelled out in full, although the most
common cases are quite intuitive and can be verified automatically. We base the “implementation”
of that feature heavily on the core:: concurrent attribute, see below.

Liv Empty default initializers

In contrast to C, C++ allows empty braces{} as default initializers for all value types. C only has
{ 0 } toinitialize the very first (maybe recursive) member to 0 and then all other members to their
default. The later feature is commonly misunderstood and some compilers warn about this construct
when it is used to initialize a nested aggregate or union type. Therefore we think that such empty
initializers should be added to the C/C++ core. C implementations are invited to implement this as
an extension to C for the time being (and some do that already).

Such a feature also comes handy for types that have no value but that should nevertheless be
initialized. See opaque types (IV.iii) below.

I.v Specific named constants

This proposal adds the following specific named constants as language features: false, nullptr
and true.

— In contrast to traditional C the Boolean constants have type bool.

— nullptr is meant to replace all uses of NULL and 0 for the purpose of specifying a universal
null pointer constant. It is considered an error to use it in arithmetic and also to pass it as an
argument of a function where there is no prototype.

I.vi Type inference and decltype

One big hurdle in C to program type-generic macros is the lack of tools that allow to infer the type
of a variable from another one or from the type of an expression. We introduce two such tools, type
inference (AKA auto feature) and decltype.

Rationale modifications to ISO/IEC 9899:2018, § I.vi page xv



CORE 202005 (E) § L.vi.i, working draft — May 10, 2020 N2522

Lvii Type inference

Inferring type information from initializers, at least partially, is not completely new in C. In particular,
incomplete array types can be completed by an initializer that is used to determine the size of the
defined array.

Also, historically C had a default of “all int” for type declarations that were underspecified. In
fact, syntactically the possibility not to have a type specifier was present in all versions of C, as long
as the grammatical deduction was unambiguous; it was simply forbidden by a constraint to form
such “typeless” declarations. This disambiguation of assighments and declarations, e.g, is possible
whenever a storage class specifier is provided for a declaration. So a possible implementation of an
inference of the type of a variable from its initializer is to simply allow to omit the type specifier and
to set up rules how the type is inferred.

The rules to infer the type are also easy to set up: since we want to be compatible between C and
C++ we have translated C++’s rules into C. It happens to be that these rules are very much the same
as for type generic expressions generic_selection. So we abstracted these rules into a new feature
generic type: the generic type is the result type that we obtain when we do array and function decay
and drop all qualifiers from other types.

This idea of type inference even works for return types of functions. For functions that have a
storage class specifier, e.g auto, the return type can be inferred from the arguments to the return
statements, if there are any. The only constraint here is that the expressions in different return
statements must not only be compatible, but have the same generic type.

The integration in the C language would then straight forward, wouldn't it be for the fact that C++
extended the lexical “role” of the auto to be a kind of “placeholder” for the unknown type. This is
unnecessary for C, but doesn’t hurt much either. So we basically allow auto to appear along with
other storage class specifiers.

Lviii decltype specifiers

Type inference only works with values and not lvalues and uses initializers for this. Therefore atomic-
specifications get lost, and the type expression of interest must be such that it can be evaluated.
Such constraints are sometimes too strong, for example if the type in question does not allow for
evaluation or value initialization (e.g a mtx_t, see opaque types below) or if an automatic variable
from an outer scope cannot be evaluated (see lambdas below).

Since almost a decade C++ has introduced the decltype feature for this. A decltype specifier is just
a placeholder for a type, similar to a typedef. It reproduces the type “as-is” without dropping
qualifiers and without decaying functions or arrays. With this feature not only qualifiers and atomics
do not get dropped, but they can even be added.

Conceptually, integration into C is a bit more difficult than for type inference. This is because
for historic reasons C++ here mixes several concepts in an unfortunate way: for some types of
expressions decltype has a reference type for others it hasn’t. The line of when it does this is
not where one would expect it to be: most lvalues produce a reference type, but not all of them.
In particular, direct identification of variables or functions (by identifier) or of structure or union
members leads to direct types, without reference, but surrounding them with an expression that
conserves their “lvalueness” adds a reference to the type of the decltype specification.

It is quite unusual for C to have the type of an expression depend on surrounding (), but unfortu-
nately that ship has sailed. We try to mimic the behavior of C++ as close as possible such that we
capture all cases where the resulting type has no reference. The goal is to have the intersection of the
two languages as wide as possible.

Ivii Lambda expressions and function literals

Even in quite simple cases such as for a maximum operation, implementing type-generic macros
often requires extensions to the C language. This is because it is difficult to define local objects
within a macro that help to avoid multiple evaluation of macro arguments, and that don’t create
naming conflicts with existing identifiers. Also, C’s generic_selection has several drawbacks for
function-like interfaces that make it difficult to use beyond interfaces like tgmath.h, but see below

modifications to ISO/IEC 9899:2018, § L.vii page xvi Rationale



N2522 § Lvii, working draft — May 10, 2020 CORE 202005 (E)

for contexts where it actually is quite helpful:

— All possible type interpretation must be foreseen, new types can’t be added easily.
— All case expressions must be valid for all cases, even for those for which they are not evaluated.

— Type generic macros with several parameters often need a large set of combinations of cases to
be covered.

Another feature that is missing in current C, is the possibility to annotate and control specific block
statements. There is no syntax to specify that a block should not be jumped into (for example
into a loop body), to tighten the data flow that enters into such a block or to suspend strict type
interpretation of objects for a controlled span of the execution.

Among the different extensions that implementations have provided to ease type-generic program-
ming, C++’s lambdas seem to be the most promising. For their simpler variant (without references)
they don’t assume sophisticated heap-memory management, but can work with copies of lambda
values representing “frozen” state on the stack.

We propose a relatively straight forward implementation of lambdas, 6.5.2.6. Here some specific
subset of lambdas “function literals” play a special role. Function literals are the simplest type of
lambdas that don’t capture any automatic variables from the surrounding scopes. They basically
behave as if they were unnamed static inline functions and are convertible into classical function
pointers.

Other lambdas may capture automatic variables in surrounding scopes, but the access is restricted
to copies of the variables in read-only mode. The type of such lambdas cannot be declared, there is
no syntax for it, but it can only be inferred or specified through a decltype specifier. Thereby imple-
mentations are free to chose the implementation that suits them best, and reduce the overhead to a
minimum. Lambda values themselves allow only two types of operations, copying via initialization
or assignment, and function call. Conversion to function pointers is restricted to function literals.

Return types of lambdas in this proposal are always inferred. That is, there is no syntax to specify
a return type for a lambda, and so the only way to specify one is the inferred type of all return
expressions.

Since lambdas are expressions and not declarations, we can also allow type inference for the
parameters. If such “generic lambdas” also have captures, they can only be used directly in function
calls; the types of their parameters can then be inferred from their arguments. This allows to use
them much as traditional template functions would be used in traditional C++.

If a generic lambda X is also a function literal (has no captures) we can add another operation to the
tools. Such a generic function literals A can in fact be converted to any function pointer that presents
a possible prototype for it. The proposal has a relatively simple example for a generic sort macro,
SORT, that can be called with any type that has a< comparison defined for it.

Syntactically, lambdas from C++ are a bit weird, and used with their full potential they are getting
even weirder. Together with VLA and attributes they introduce lexical ambiguity which is usually
avoided for C:

const int val = 5;

const int * deprecated = &val;

double U[[deprecated]{ return deprecated; }[0]]; // U is a VLA, double[5]
double V[[deprecated]]; // V is a deprecated double.

It is only at the second ] or the{ that the parser may distinguish if it is in the middle of parsing a
lambda that would be the size of an array, or if this is an attribute.

This kind of ambiguity can be lifted by using more diverse technical character sets. See below for a
proposal that allows to write the declaration of V with special double brackets:

| double V [[deprecated ] ;

Rationale modifications to ISO/IEC 9899:2018, § I.vii page xvii



CORE 202005 (E) § II, working draft — May 10, 2020 N2522

II C features

II.i Generic selection

C’s dedicated feature to program type-generic interfaces has been generic selection with a relatively
special syntax introduced by the _Generic keyword and case-like choices according to the generic
type of the controlling expression. The important feature here is that such a generic selection
is determined at compile time and the resulting type of the expression is the type of the chosen
expression.

This choice of types is much more powerful than the one that can be done by generic lambdas:

— For lambdas, the result type basically depends on established type derivation mechanism. It
is not easy to add such a mechanism that would not have been foreseen by predefined type
conversion rules.

— The controlling expression of a generic selection is not evaluated, and neither are those that
only occur in result expressions that are themselves not evaluated. Any mechanism that works
with lambdas or function overloading will normally evaluate such arguments for their side
effects.

A good example of the features that can be implemented with generic selection are type traits:

#define is_real_floating_type(X) \
generic_selection( (X), \
float: true, \
double: true, \
long double: true, \

default: false)

or value and type macros

#define unsigned_zero(X) \
generic_selection((X), \
long: OUL, \
unsigned long: OUL, \
long long: OULL, \
unsigned long long: OULL, \
default: 0U)
#define unsigned_type(X) decltype(unsigned_zero(X))

Currently C++ seems not to have a tool that can easily emulate this, in the contrary implementing
features that emulate multi-parameter generic selection is quite tedious. Usually the default case
gives rise to a function or class template, and the individual cases then are specializations, but then
additional boilerplate is needed to inhibit the evaluation of the controlling expression and more
generally of those arguments that should not be evaluated, either.

So such a feature should be added to the C/C++ core. To increase the acceptability of the feature, we
propose to rename the feature to generic_selection such that its purpose is more evident to the
untrained reader. Also, having it as a newly named feature would enable us to enforce some more
properties for the evaluation of the chosen result expression, if the discussion around this proposal
reveals that this could be usefull.

ILii Variable length arrays (VLA)

Traditionally, C and C++ differ in some of the aspects of array declarations, namely for arrays for
which the bounds are not integer constant expressions (ICE). Generally (but see below) C allows
them in block scope, whereas C++ has no such concept. C calls them variable length arrays, VLA, and
pointers to such types are variably modified types, VM. These features and the difference between C
and C++ has lead to endless debade, but it is commonly much misunderstood for its potential.

modifications to ISO/IEC 9899:2018, § IL.ii page xviii Rationale



N2522 § ILiii, working draft — May 10, 2020 CORE 202005 (E)

On one hand, VLA definitions in block scope can be dangerous, because they can lead to safety and
security issues: they can smash the execution stack of functions, maybe inadvertently, or maybe
even maliciously.

On the other hand, declarations of VLA (not necessarily definitions) are a convenient tool to enforce
propagation of array sizes. In particular such an enforcement is possible from the caller of a function
with array parameters into the function body, without changing function ABIs, without forcing
transfer of dynamically allocated type descriptions, and without jeopardizing performance or safety.

C has VM types since C99, but made them optional with a feature macro _STDC_NO_VLA__ in C11.
This possibility not withstanding, there is no known implementation that would conform to C17 that
defines that feature macro. C++ has no VM types. VM types, with the leeway for implementations
to forbid definitions of VLA in block scope, are nevertheless proposed for this core specification,
because they are fundamental for modern programming in C and because of the possibilities of
array bound propagation, see Section I1Liv.

Implementations may still opt-out from defining VLA by defining the feature macro
—CORE_NO_VLA__, see 6.10.8.2.

ILiii Complex arithmetic

C++ is quite restrictive for the arithmetic operations that it defines for complex types, namely the
other operand cannot not be a real type. Allowing such arithmetic is harmless because usually
no information loss can originate from such an operation. Therefore this specification explicitly
defines all four basic arithmetic operations that have both operands as arithmetic types. C++
implementations that want to target the common C/C++ core must either change their rules for
arithmetic conversion or provide a series or overloaded operator functions that implement all
possible operations for the for standard arithmetic operators.

IIT Modernization

II1.i Mathematical functions

The <math.h> header has accumulated a lot of baggage over the years and introduces a lot of
identifiers that are not protected by any naming convention. In the beginnings of C such an
approach was adequate, because it was useful to have linker symbols for different variants of
functions around.

Times have changed and the generic tools we propose here (inference, lambdas) go far beyond what
had been possible, formerly. They make the need for such heavy intrusion in the users name space
disappear.

In particular here we propose to replace most mathematical functions by type-generic macros, much
as they are overloaded functions for C++. Basically this covers all functions that previously had
been interfaced by the <tgmath.h> header. Compared to that header we introduce a big advantage:
type-generic macros that are implemented with lambdas (or as-if implemented with lambdas) can
be assigned to function pointers, such that applications can move function pointers around when
they need them (e.g to compute derivatives). By this change

— most of the individual functions in <math.h> become obsolete,

— together with the changes on <complex.h> the whole <tgmath.h> header becomes obsolete,
too.

There are some particular functions, where we go even a bit further, namely fabs, fmax, fmin,
fdim, abs and div. These are all functions that present more generic language features than they are
library features, and for which some historic choices have gone wrong.

For fabs and abs, there is first of all no real reason to distinguish floating point and integer interfaces.
Mathematically it is clear what all these functions should do, and users can expect to have a single
easy to use interface to address that feature. Second, abs had gone quite wrong for integer types:
in some case there are cases where calls are undefined, simply because the historic choice for the
return type was wrong. They probably date back in times where there were no unsigned types in

Rationale modifications to ISO/IEC 9899:2018, § IIL.i page xix



CORE 202005 (E) § IILii, working draft — May 10, 2020 N2522

C or where unsigned types could just mask out the sign bit. So the choice then had forcibly was a
return type that could not hold the absolute value for the minimum integer values in all cases.

The tide has turned, and today with the restrictions on sign representations that are in place now,
there is a set of return types that can hold the mathematical values, so we should just chose this: we
can simply force unsigned return values for all integer types.

Similar observations hold for maximum, minimum, and cut-off difference (fdim). With a proper
choice of return types, all these functions can be specified without error conditions.

The div functions are even more peculiar. Currently each of them needs a proper return type and
pollutes the name space with these mostly useless identifiers. We propose to change these into one
single type-generic macro for which the return types then can be inferred. Most likely nobody ever
is interested in the return of these functions for longer than some lines of code, so auto definitions
of objects that capture the results should be fine.

IIIii Complex types

Although they are ABI compatible (have the same representation), complex types are handled quite
differently in C and C++. In C there is the _Complex keyword that is used to specify complex types,
in C++ there are templates complex< F > for all real types. Syntactically it would be difficult to
reconcile these, so we don’t even try.

Instead, we go the way of most modern programming languages by requiring them as mandatory
builtin types. We introduce complex literals (with an additional i or I in the suffix) and as a
consequence the complex types could simply be deduced by decltype specifications.

Predefined macros are added to deal with these constructs more comfortably: there are
type macros (real_type(T) and complex_type(T)) and value macros (real_value(x) and
imaginary_value(x)). We assume that such macro names (with _type or _value) will not produce
to much conflicts in user space.

Some of the basic type-generic macros in <math.h> use complex arguments, without the need
to include the <complex.h> header, namely abs, conj, carg, and cproj. (The later might still
be subject to some name changes.) The functions creal and cimag are dropped bcause they are
superseded by the macros above.

As a consequence of these changes for the complex types and the <math. h> the <complex. h>header
can now be much simpler. It does not have to provide basic features for the types, and the interfaces
are only amendments to the corresponding interfaces in <math. h>. There is a new feature test macro
—CORE_NO_COMPLEX_ that should be set if the functional interfaces are not provided.

IILiii Function attributes

The recent addition of the attribute feature to C makes it possible to add specific common attributes
to both languages that may overcome the lack of precision for function and lambda interfaces that
the languages traditionally provide. In particular the information about a function that the translator
traditionally receives is limited to the parameters and to the return type, but completely ignores the
rest of the program state. Modern optimizers are able to process much more information if functions
and lambdas are annotated appropriately and produce executables that may perform orders of
magnitude better.

The new attributes defined by this specification provide, 6.7.15.4, such optimization opportunities
for functions and lambdas. Their main goal is to provide the translator with information about
the access of functions and objects coming from surrounding scopes and such that it may deduce
certified properties. This certification is ensured by forcing the attributes to be consistently present
at all declarations, and to force the same type of attributes on other functions or lambdas that are
called in the function body.

A first pair of attributes, core:: noleak and core::address_independent, makes assertions about
the behavior of functions with respect to the address space. The first guarantees that the function will
not leak any allocation, that is, that every newly allocated storage instance will either be deallocated
within the same function call, or a pointer to it will be returned as a core:: noalias pointer. The

modifications to ISO/IEC 9899:2018, § I1L.iii page xx Rationale



N2522 § IILiv, working draft — May 10, 2020 CORE 202005 (E)

second, forbids any exposure of storage instances or synthesis of pointers, and thus guarantees
that the execution of the function is independent of any properties of the address space or of any
particular address choices of any specific execution.

One set of attributes, core:: evaluates and core::modifies, works with visible identifiers and
establishes a strict framework of data flow from static or thread-local objects in and out of the
function body. In addition, the core:: stateless attribute guarantees that a function or lambda
can not hold hidden state in form of a local static or thread-local variable. The second set,
core:state_invariant, core:: state_conserving and core:: state_transparent go beyond
this by controlling not only which identifiers are accessed directly, but also which objects are
accessed through pointer indirections. Then, there are core::idempotent, core:: independent
and core::unsequenced, that are the most interesting attributes for optimization, but which can
themselves not easily asserted through syntax and strong typing.

We also propose a more narrowly targeted attribute, reentrant, for signal handlers and functions
that are used by them. Though this property can not be deduced automatically in all cases, it should
be capable to check many candidate functions for signal handlers without user intervention.

The core:: concurrent attribute describes a quite restricted set of functions or lambdas, too. Such
functions and lambdas that may be robustly executed within different threads of execution with-
out race conditions. Often they can even be performed once and for all at compile time if the
arguments are constant expressions, and therefore this attribute also forms a main ingreedient for
the formulation of the properties of the constexpr specifier for function definitions and lambda
expressions.

The specification of the core:: evaluates and core::modifies attributes use the names of the
global objects that are accessed by the annotated function. Unfortunately, not all global state in the
C library is identifiable by such a name. Therefore we extend the identifiers that are admissible to a
set of placeholder names (such as errno or stdout) that we call the C library channels. Therefore
the C library has been systematically combed for functions that make assumptions about a global
state, and hopefully all have been annotated with the corresponding attributes.

Additionally, there are also aliasing attributes core::noalias and core:: alias, that are also func-
tion attributes, but deal with much more, see Section Viii for explicit aliasing handling, and
the core::reinterpret attribute to handle type interpretation on function boundaries, see Sec-
tions IIL.iv and V.iv, below.

It is tedious to update large header files with these attributes. For cases were they a all the same for
a whole set of functions we provide a #pragma CORE FUNCTION_ATTRIBUTE that can apply a pragma
with arguments or switch it off if necessary.

IILiv Array size propagation

One of the worst traps that C and C++ have to offer, originate in the ambiguity between pointers
and arrays, namely that pointers are supposed to point to an array of the base type, but where the
size of that array is not known. This is particularly striking on the function call boundary, where
arrays are rewritten to pointers on both sides:

— On the definition side array and pointer parameters are “considered the same” in a very weird
way, namely most information that may even be present in the array specification is pretended
to be lost the moment we enter the function.

— On the calling side, arrays “decay” to pointers, and any information that might even present
in the interface, such as array sizes are not not enforced.

All of this is not only dangerous, it is also completely useless. Nowadays in many situations there is
not even a performance gain produced by these “features”. So we think that it is time to tighten the
rules such than array sizes can be propagated and checked without otherwise harming performance
or even productivity.

The idea for this is simple: enforce that function declarations are consistent, in particular that
specified array size expressions are the “same”. Here the same is modeled by something coined

Rationale modifications to ISO/IEC 9899:2018, § IIL.iv page xxi



CORE 202005 (E) § IIl.v, working draft — May 10, 2020 N2522

token equivalence, that is were declarations are equivalent as token sequences, with the possibility to
(re-)name function parameters and to adjust white-space and digraphs. But for example, array-to-
pointer rewrite would not be allowed in the declaration of a function were the definition would be
written with array notation.

Token equivalence warrants that both, the caller and the definition, see the same expressions for
array bounds. Thus the caller can check such conditions at compile time (or maybe at run-time) and
the definition may safely assume that the condition has been verified before any call.

Several mechanisms are put in place to ease array size propagation. First there is a function at-
tribute core:: reinterpret that (among other things) enforces that all declarations (including
definitions) are token equivalent. Then, there are function return type annotations, such as
core::noalias(size) for malloc or realloc that provide information about the size of the array
their returned pointer refers. Third, the consequent use of VM types (see above) for array parameters,
enforces that the translator must have a notion of a dynamic size that is associated to a pointer, and
VM types can be used to propagate the information from assignment to assignment.

All of this is certainly not yet complete, and other tools will have to be added later that, on one
hand, will ease such an analysis, and on the other will equip the programmer with tools to annotate
declarations with size (or more general, pointer and aliasing) information.

III.v  Qualifier fidelity

The C library has a lot of interfaces that can be used for write-privilege escalation: they accept
pointers to const-qualified objects and return a derived pointer that drops the qualifier. At the time
these were introduced, this was probably a good compromise for the usability of these interfaces;
a pointer to a non-qualified object can be passed into such a function without explicit conversion,
and then the return value still has the same qualification as the original. But, this technique has the
disadvantage that pointers to objects that are genuinely const-qualified, are then exposed with a
pointer that has the qualification dropped.

With type-generic interfaces all of this can be easily avoided, if the return type of such functions is
inferred from the argument.

Qualifier fidelity also has the advantage that generally arguments to such functions don’t have to
be converted at all. That is, for the (rare) case that objects are genuinely volatile-qualified, the
semantics for such objects are respected. This can be particularly important for security sensible
data, where applications must be guaranteed that copy or erasure operations on byte arrays are
effectively performed through the whole memory hierarchy. In particular, the memset type-generic
macro is guaranteed to overwrite a byte array that is passed in which has a volatile qualification.

III.vi Three-way comparison

Many other languages already have three-way comparison by means of an operator that is usually
denoted as<=>. It provides an interesting abstraction for search and sorting interfaces, because here
usually one wants to know three possible outcomes, if a value is less, equal (or equivalent) or greater
than another value.

C++ has introduced such an operator recently, and it provides interesting features also for other
aspects:

— It can be made well-defined. That is, the only errors that can happen are constraint violations
that can be detected at compile time. No undefined behavior may result.

— They are composable, such that they can be extended to any aggregate type. Basically, for
aggregate types they define lexicographic ordering.

For C this means that we can add comparisons that have the following properties.

— It sorts all valid pointers and null pointers, regardless if they point to the same array or not.
Null pointers are here sorted as being smaller than any valid pointer, which relates with the
fact that most platforms have null pointers as all bit zero representations nowadays. This

modifications to ISO/IEC 9899:2018, § III.vi page xxii Rationale



N2522 § II.vii, working draft — May 10, 2020 CORE 202005 (E)

allows, e.g., to write checks for the intersection of arrays (provided by pointers), that would
otherwise encounter UB in some cases.

— It provides structured equality tests for all types, not only basic types and pointers.

— It allows to provide simple interfaces for searching and sorting utilities that are type-safe.

IIL.vii Textual representations and output

C and C++ have quite diverging tools for textual output and for textual representation of data in
general; C’s work horse for human targeted 1O is printf (and similar), whereas C++ mainly works
with the shift operator <<. None is really suited to replace the other.

C++’s operator approach is not easily transposed to C, because C does not have operator overloading.
Also, the possibilities to modify the textual representation that are provided via “manipulators”
usually switch modes for a whole output operation, where the C tool allows a more fine grained
handling of individual output items.

printf is clumsy and unsafe: it needs that the programmer manually maintains format strings.
Type mismatch between format strings are a common programming mistake, and the possibility to
have such format strings passed into printf dynamically opens a big security hole for stack attacks
and similar.

Generally speaking, a basic interface for string handling and user IO should only have defined
behavior and all programming errors should result in a constraint violation. This specification tries
thus to propose one new tool, the totext type-generic macro, see 7.22.2.1, that has these properties.
For its functionality, it is mainly based on the snprintf function, but without a requirement to
maintain a consistent format information, and by avoiding to have to specify a compile time property
as a string. It has several modes of operation:

— A simple mode for all basic types allows to generically store textual representations for
numbers, bool, pointers and strings. It deduces the “format” for the operation from the type
information.

— A string mode can be chosen to convert all three types of wide-strings to a textual multi-byte
representation.

— A set of (integer) flags allow to adapt the desired output, for example to adjust the precision or
to chose between different number bases or output formats. For example bool values may
be represented as “0” and “1” or as false and true; a character pointer can be interpreted as
pointing to a string or the address that it represents can be printed.

— An array mode allows to print entire arrays with a consistent set of flags and to separate the
individual elements by a user provident glue.

The features are chosen carefully such that most of the operations can be used within constexpr
function or lambdas. Exception from this rule are wide-string conversions because they need locale
information and textual representations of pointer values because they expose storage instances.

Then, the existing interfaces strlen, strdup, strndup, fputs and puts are extended similarly. For
example, puts prints the textual representation of its first argument followed by a newline to stdout.
If that first argument is a character pointer, the behavior is the same as it has always been, but if it is
a double the representation of the value is printed, if it is wide-string of some sort, the multi-byte
encoding of that wide-string is printed etc.

In all, these new interfaces provide simple means for textual representation and output that have
(mostly) defined behavior.

IV Disambiguation

In many places, C and C++ gratuitously differ in an annoying way, and unfortunately we will not be
able to resolve these differences easily; too many code builds on such properties in one or the other

Rationale modifications to ISO/IEC 9899:2018, § IV page xxiii



CORE 202005 (E) § IV, working draft — May 10, 2020 N2522

language. For the features treated in the next sections we identified a need for action(s), because
they are sufficiently central and important, such that there should be provided a way forward, now
and today.

Many other features, are not yet handled, either because we did not find them important enough, or
simply because there was no idea popping up on how to solve the problems. For these we added a
lot of Notes and footnotes that attempt to expose the problem and provide recommendations how
programmers that target the common C/C++ core should attempt to circumvent problems, and
how implementations could make life for people easier. This treatment of the standards text is yet
incomplete, and others will hopefully be added to this document over time.

IV.i Inline functions and objects

C and C++ differ slightly in their handling of inline functions. Whereas C enforces the use of an
external definition in certain situations, in particular if the address of an inline function is used other
than in a function call, C++ always guarantees that an external definition (called an instantiation) is
emitted if there is need for it. This choice for C is deliberate, because traditionally C is often used in
contexts that have severe constraints on the memory size for the program image. So a systematic
generation of unused function definitions in all translation units is avoided.

This specification, 6.7.5, follows C++ (and extends C) by requiring that the effective semantics of
inline and external definitions have to agree. It follows C (and extends C++) by requiring that no
non-const qualified objects with internal linkage may be accessed by inline functions.

C currently has no inline objects, so this specification imposes an extension of the C language. The
definitions presented here not only serve the purpose of programming invariantly in C and C++,
but also to provide a tool to specify compile time constants of any object type.

For both, functions and objects, the choice has been made to follow mostly the C model for instan-
tiation, that is, to require that an external definition must be presented explicitly for functions or
objects that use the address or that form a modifiable Ivalue. So this part of the specification extends
the C++ language by imposing more constraints on well-formed programs. The specification of

const-qualified objects allows to avoid the need for instantiations, if the address of the object is
never used.

IVii Lexing of punctuators

C and C++ have different lexing rules that are not always compatible. Whereas C indifferently applies
the “maximal crunch” rule, C++ partially implements semantical disambiguation, in particular
for >> tokens. The problems behind the possible lexical ambiguities had been introduced at times
where only a limited number of punctuation characters had been commonly available on computing
devices. (And even then there were nasty problems with the heterogenity of platforms.)

In a world of Unicode such problems just disappear in thin air, and it would be preposterous to
impose lexical acrobatics to future generations of C or C++ programmers, just because the standards
had not been clear at the beginning. Therefore we propose to change the definitions of all punctuators
that have reasonable definitions as Unicode points to such code points. This disambiguates the
following constructs

prefix x binary x

prefix & binary A

subscript or array size opening and lambda expression [[ | attribute opening [
nested array termination ] ] attribute closing |
nested template termination >> right shift &>

and generally leads to code that is easier to read and to comprehend.

For backwards compatibility we propose to keep the old definitions such as << or <= as digraphs.

IViii Opaque types and void return from functions

A certain set of types has quite different treatment between C and C++, namely types that have no
copyable value but only represent internal state. For C, these are fenv_t, fexcept_t, FILE, jmp_buf,
va_list and types in the thread and atomic extensions that have specific macros or functions for

modifications to ISO/IEC 9899:2018, § IV.iii page xxiv Rationale



N2522 § IV.iv, working draft — May 10, 2020 CORE 202005 (E)

initialization and that a priori cannot be copied. C has refused to provide sound semantics and is
silent about how to treat them for example if they are copied byte-by-byte.

In C++, such types typically have default initializers that are called automatically without explicit
mention in the code. Therefore we opted for the possibility of implicit and explicit initialization of
these types. The concept invented for this is “opaque types”, 6.2.5, that allows to capture types that
have no value but an internal state that cannot be copied.

We also extend this concept of opaque types to void (with a size of 1) such that we can allow the
definition of untyped byte arrays. On one hand, this permits to have statically allocated memory
arenas that can be used with changing effective type, much as allocated memory, and on the other
hand to annotate pointer arguments with no type (classicaly expressed as void* parameters) with a
size (by using a fixed or variable-length array parameter void[size]).

Using that, it is also easy to extend the return statement, such that it may have an expression even
if the return type of the function is void. This makes programming of type-generic macros and
lambdas much easier, since it avoids a case analysis concerning return types.

IV.iv Atomics

C and C++ have no reconcilable syntax for specifying an atomic derivation: C has a keyword
_Atomic thatis applied as a specifier (similar to here) and as a qualifier, C++ has a class template
atomic<type-name>. Since it even has ambiguities, sticking to the C syntax was not an option. The
specification as given here has straight forward implementations in the old syntax for both languages:
the type specifier atomic_type(T) can easily be set to _Atomic(T) for C and to atomic< T > for
Ct+.

The specification of the atomics extension in the C standard has been surprisingly loose, ambiguous
and incomplete. In order to become suitable for coding in the C/C++ core, a lot of cleanup work
had to be integrated to the specification. The main properties of this extension are

— Clarification which operations are synchronization operations.

— Type-generic macros are added that cover all operations that previously only had been pro-
vided by operators such as multiplication or bitshift.

— Type-generic macros (operation and then fetch) have been added that provide exactly the
same operations as the operators, and generalizes them to other memory_orders than
memory_order_seq_cst.

— The specification of the type-generic macros has been extended such that they now behave
like lambdas and may be converted to function pointers.

IV.v Bit-fields and fixed-width types

Both, C and C++, have the constructs of bit-fields that are conceptual objects on a scale below a
storage unit. Unfortunately both disagree on their interpretation in terms of types and possible
bounds to the number of bits. We provide a framework that is meant to cover the intersection of
these features for the two languages. Therefore we use the concept of integers of a given width
M, intwidth(}/) and uintwidth(A/). For these types we define simple rules how they are
represented (basically with a size that corresponds to the best fitting types intN_t), and how they
convert when used in expressions.

Second, we use the packing rules that are provided by the core::noalias and core:: alias, see be-
low, to describe how a bit-field “name: M/ ” translates into a fixed-width integer of type intwidth (/)
or uintwidth (/) with the proper attributes.

Otherwise, we restrict the admissible types for bit-fields to bool, signed or unsigned, because in
particular the specification of int can be different between the two languages, and also because
the only important information for integer types (that are not bool) are their signedness and their
width. The only implementation-defined parameter for bit-fields is then the maximal admissible
width for which we introduce the new feature test INT_BITFIELD_MAX.

Rationale modifications to ISO/IEC 9899:2018, § IV.v page xxv



CORE 202005 (E) § IV.vi, working draft — May 10, 2020 N2522

IV.vi Identifiers

For several points, C and C++ have subtle differences in the way they handle identifiers, namely the
scope for-loop variables or function parameters, tag names and :: -chained identifiers.

IV.vii Variables in for-loops

Here the difference is just an annoyance and only a historic artifact without much reason of existence.
The problem is that for C, the block of a for-loop constitutes a new scope of its own, such that there
are effectively two scopes, the one of the whole for-statement and the one of the loop body. For a
large majority of code this makes not much of a difference; such a difference only manifests if the
scope of the loop body declares a variable with the same name as the loop iterator declaration.

WG14 relatively recently had a proposal to fix this incompatibility to C++ but decided not to modify
the C rules for backwards compatibility. But in the context of a common C/C++ core it makes no
sense to stick to such a rule, because code that has a shadowing variable can never be ported as such
to C++.

The choice for this specification was then to recommend a diagnostic for such situations or to
implement the stronger C++ rules. We went for the latter because the diagnostic of such a situation is
always possible, because for C a constraint violation has no enforced impact other than to require a
diagnostic, anyhow, and because it seemed desirable that an implementation may refuse to produce
an executable in such cases.

IV.viii Visibility of parameters

C and C++ have different rules for the visibilty of function parameters: for C a parameter is visible
starting at the end of its declaration, whereas for C++ it is only visible starting in the function
body, if the declaration also happens to be a definition. This specification opted for the C variant,
because this rule implies that one parameter can be used for the declaration of the type of another.
That possibility is important wherever there is a need to ensure consistency between types or array
lengths.

In C a typical usage of that feature is array bound propagation, as in

‘double dotprot(size_t n, double A[n], double B[n]);

but with this specification of the common C/C++ core the use goes further, for example by using a
parameter that is already known within a decltype declaration of another parameter, or for using a
parameter name in an core::alias or core:: noalias attribute:

double dotprot(size_t n, double A[n], decltype(A) B);
void+ malloc(size_t size) [[core:noalias(size)]];
C+ memcpy(C * [[ core::noalias|] sl, D *[[ core:noalias|] s2, size_t n) [[core:alias(sl)]];

IV.viiii Use of tag names

C and C++ differ in the use of tag names (the identifiers in struct, union and enum declarators).
C++ allows the tag name to stand in for the type where that is possible without ambiguity, whereas
C clearly distinguishes “name spaces” (not to be mixed up with “namespaces” in C++) and does not
allow such a use. It is not easy to adopt that policies for C, because there are examples in the wild
where this feature is used, notably for the stat type and function in POSIX.

On the other hand, C and C++ have different policies concerning the reuse of tag names as identifiers.
Whereas C allows an unrestricted use, C++ does not allow it for typedef (or using), unless the so
specified type is effectively the type that has the tag.

As a compromise between those two sets of requirements we have adopted two measures:

1. Disallow the use of a visible tag for a typedef other than the tagged type.

2. Recommend the usage of trivial typedef that impose the introduction of a tag name as an
alias to the same type.

modifications to ISO/IEC 9899:2018, § IV.vi.iii page xxvi Rationale



N2522 § IV.viiv, working draft — May 10, 2020 CORE 202005 (E)

IV.viiiv Chained identifiers

C++ has a notation to access a member of a structure (class) or union, but without refering to an
object, that is completely absent from C. It works with identifiers that are chained with a :: token.
Translated into C an access as in the following

typedef struct A A;
typedef struct B B;
struct A { double a; };
struct B { A ba; };

sizeof (B::ba::a)

would be equivalent to

. sizeof(((B){ }).ba.a)

that is, to create a compound literal of the requested type (the first element in the identifier chain, B)
and then iteratively accessing the members of that compound literal (ba and a) with the . operator. C
has no structure or union members that would be allowed in evaluations without having a concrete
instance of such a type, and the use of such a construct would be restricted to contexts that are
not evaluated, that is sizeof, alignof, and the controlling expression in a generic selection (plus

decltype with this specification). Therefore, this feature seemed to be of minor importance for the
common C/C++ core and was not added.

The usage of that feature is not conforming to the syntax of C and is therefore a constraint violation.
All implementations that target the common C/C++ core should diagnose this use of the :: token.

V  Memory model

Both, C and C++, historically have had difficulties in describing consistent and comprehensive
memory models. Recently some effort has been made to accommodate these different models and
to bring them in alignment among each other (C and C++), and amoung expectations of users and
implementers. Therefore we apply modifications that try to simplify the existing C model and to
disambiguate it. It has already found acceptance by part of the C and C++ committees, so there is
hope that both languages converge to something that is similar as described by this document.

In particular, WG14 has recently agreed that a technical specification (TS) should be created for that
model. This specification here aims to be synchronized with that TS. To say whether or not C or
C++ already implement this model is moot, as the texts are ambiguous and there will be as many
opinions about this as there are C and C++ experts.

One of the strengths of C is its efficient handling of aliasing, respectively of its capacity to deduce
non-aliasing between given pointed-to objects, and to optimize code as a consequence. This property
of the language is due to the combination of the following;

— Type based aliasing: besides some exceptions, pointers with different target types cannot alias.

— Provenance based aliasing: two pointers that come from different object definitions or calls to
allocation functions cannot alias.

— Lack of references: most address-of operations are done explicitly.

— The restrict qualification of pointers allows to explicitly state the absence of aliasing between
given pointers.

— The register storage class can be used to inhibit the taking of addresses. (This feature not
used very often, though.)

These features have a lot of drawbacks, though. First of all, type-based aliasing (the effective type
rule) is poorly specified and has many ambiguities at its margins. Second, provenance based aliasing

Rationale modifications to ISO/IEC 9899:2018, § V page xxvii



CORE 202005 (E) § Vi, working draft — May 10, 2020 N2522

analysis is not even properly spelled out at all, but buried in some obscure and inconsistent “answer
to a defect report”, that still as of today can trigger passionate but fruitless discussions about the
turning of words and the world in general. Then there is the restrict qualification, that is only a
specification for a function definition and not contractually binding for the interface. A user of a
function can only successfully use the aliasing properties if it inspects the function body, the interface
isn’t enough.

V.i Storage instance

There is a lack of terminology to describe the entity that is reserved and released by either an
allocation (malloc/free) or by the definition of a variable or compound literal. We introduce the
new term storage instance to distinguish it clearly from the term object. We also use the opportunity
introduce and clarify terminology as for the start address, end address of storage instances and similar
concepts.

V.ii Provenance-based aliasing analysis

There has been reached wide consensus in the parts of the C and C++ committees that deal with
these questions that an important component of the memory model should be provenance-based
aliasing analysis. The idea is that two pointers that have different “origins” can never point to the
same entity, and thus they always can be assumed not to alias.

The variant implemented here sticks to the granularity of storage instances, called provenance. It
suggests that pointer arithmetic should never cross the boundaries of storage instances, and thus
pointers that originate in different storage instances should normally not run into each other. As
long as the application code does not play dirty tricks, see below, usual pointer arithmetic should
always warrant this, and so under most circumstances a compiler should be able to assume the
provenance of pointers to objects “as it sees them”.

All of this should even hold for pointers that are “off by 17, that is, where the address is just after a
storage instance. These appear relatively often in stop criteria for array traversals, but as long as
they are used consistently and only compared with pointers with the same provenance, there should
not be much of a problem.

There are several constructs that are identified as “dirty tricks” called out by this proposal as exposing
a storage instance. These are all constructs that interpret pointers differently or leak information
of their internal representation: pointer to integer casts, accesses to individual bytes of pointer
representations, IO of pointer representations. Once the information about the address of a storage
instance has been exposed, we cannot be sure that these addresses do not creep in incidentally or
accidentally. So objects that live in such exposed storage instances need special care and only a much
more restricted aliasing analysis can be performed with them.

Viii Explicit aliasing deduction and storage allocation

The keywords register and restrict are absent from modern C++ and it seemed necessary to be
able to propose new mechanisms, that can be introduced to both languages and that maintain or
even extend the capacities for aliasing analysis. Additionally, a mechanism is needed to describe
allocations. C has malloc and similar tools, C++ has new and delete, and these different tools are
difficult to reconcile.

The tool chosen for these extensions are attributes. These were not much explored in the C++
standard itself, and have only recently be added to C. Attributes allow to add properties to interfaces,
without necessarily extending the language. One set of attributes that help for the aliasing analysis
have already been introduced above. They make the changes of the execution state made by a
given function predictable and thus allow to draw certain conclusions about mutual aliasing (or
not) of pointers. This set is extended by four additional attributes, core::noalias core::alias,
core:: free and core:: realloc 6.7.15.3.

Depending to which construct it is applied, the core:: noalias combines properties of C’s restrict
and register, and gcc’s malloc attribute, and extends them. When applied to an identifier it is
similar to restrict and forbid to take the address of that identifier, so this is similar to register. The
application of that feature is more general, though, because it applies not only to block or function

modifications to ISO/IEC 9899:2018, § V.iii page xxviii Rationale



N2522 § V.iv, working draft — May 10, 2020 CORE 202005 (E)

scope, but can also be applied for globals. There it is interesting to ensure that an object or function
pointer can never escape from a translation unit and can thus be completely integrated in place. The
second usage of core:: noalias is drawn from restrict and its simplest usage is equivalent to that.
More sophisticated usages allow to add a size argument to the attribute, such that the translator can
infer overlap properties of arrays. Then, core:: noalias also allows to to annotate a pointer-return
from functions (such as malloc) as providing a freshly allocated storage instance. The latter notifies
the translator that the result pointer will not alias with anything known so far.

A complementary attribute core::alias has the inverse role, it can provide with aliasing infor-
mation, namely that the so annotated pointer aliases another one, in situations where such an
information is not deducible by the translator. This concerns in particular return values from
functions, that can be annotated for example with the names of the function parameters that they
return.

The other two attributes, core:: free and core:: realloc, complement the allocation management
aspects. Applied to a pointer parameter they indicate that the function behaves equivalent to free or
realloc, respectively. Thereby, these attributes allow to completely specify interfaces that allocate,
deallocate or reallocate storage instances, and enable the translator to actively track allocations, and
use that information for example to ensure the core:: noleak attribute as introduced above.

Both attributes core::noalias and core::alias are also used to specify packing rules for union or
structure members. A member that has a core:: noalias attribute cannot have its address taken,
and therefore alignment constraints can be relaxed. By that, padding between members can be
reduced and the effect is similar to the packed pragma that many implementations provide. The

core:alias can then be used to describe members that potentially share the same storage unit,
and that, if an address could be obtained, would alias each other.

V.iv Type-based aliasing analysis

Type-based aliasing analysis in C is a mess. It is guided by the “effective type rule” that, on the
surface, promotes a simple idea: if types are effectively enforced, two pointers to different types can
never alias each other. Unfortunately, the premise here is wrong, types are not enforced effectively,
and the language has several loop holes to “legally” mess with the type system.

The implementations of this in the C standard and also in the field has failed dramatically. There are
no two implementations out there that seem to interpret the rules consistently, and probably there
isn’t even one, that interprets them consistently within itself. Endless debates have not been able
to solve the underlying issues, and also C’s Memory Model Study Group has not yet been able to
complete even a full analysis of the problems.

The main issues are

1. Types of allocated regions (via malloc et al.) are not fixed, and there is not even a concrete
point in time when such an object acquires a types, or when such a type changes.

2. On the other hand, at least temporary reinterpretation of objects with some sort of typed-view
is common practice and much needed. Currently used features are type punning through
union, pointer type casts, passing a two-dimensional array as a one-dimensional one to a
function, direct manipulations of bytes of representations and probably many more.

3. Types can be nested, so a particular region of memory can be part of a nested hierarchy of
objects. There is no consensus so far how this type and object hierarchy can be visited, and
which implication the implicit knowledge about one object being part of a bigger one can have
on aliasing analysis.

Evidently, we cannot yet have a complete answer to all of these problems, but the

core: reinterpret attribute gives a partial answer to 1 and 2. It forceably places the boundary of
type interpretation at the level of a function or lambda call. The idea is that the translator of the
definition always has the description of a parameters in the prototype, so it may just assume that
these are the types of the underlying objects. The consistency of the core:: reinterpret attribute is
enforced in the interface (via token equivalence) such that there can be no denial: the caller knows
what types the function expects and the definition clearly indicates what types it expects to find.

Rationale modifications to ISO/IEC 9899:2018, § V.iv page xxix



CORE 202005 (E) § V.v, working draft — May 10, 2020 N2522

Because all of this happens at the call interface, there is no need, even conceptually, to trace a possible
previous “effective type” of an object. The only properties that have to be ensured is that the data
that the function finds has valid values for their parameters (viewed in the type they expect) and
that any manipulation of the pointed to objects guarantees that the caller still sees valid values for
the objects they happen to know.

The information about an object pointed-to by an argument/parameter pair that caller and function
share is not only the type, but also the concrete representation of that type on a particular platform,
and because of the enforced token-equivalence, the pointed-to size. So effectively the rules of
matching argument/parameter types can be relaxed to a notion that we call “equally represented”
types. This notion allows for example to pass a complex vector into a function that handles floating
points, or temporarily see a table of uint32_t as uint16_t or vice-versa.

The introduction of lambdas to the common core makes this attribute much more powerful than
it might look at a first glance. By reformulating a block of code as a lambda, the programmer can
clearly indicate the input/output into such a block and the core:: reinterpret attribute may then
force a certain type interpretation that is well contained within the body of the lambda.

V.v Data-flow analysis

Hardware capacity and data-flow analysis of modern compilers has very much improved over the
beginnings of C and C++. At that time, not providing default initialization for automatic variables of
basic types was probably unavoidable: the lack of hardware registers and techniques for dead-store
elimination called for performance improvements, and these were only possible by putting the
burden of the identification of the first effective store operation on the programmer. This strategy
of avoiding initialization has caused a lot of serious bugs over the years, and recent studies have
shown that a lot of attact vectors may simply vanish, when initialization of all defined objects is
enforced.

Things have much changed since these beginnings and other experiments show that situations were
a translator may not efficiently identify the first effective store are rare, and quite particular. Basically
there are three situations:

1. Initialization of an object is delegated to an external function, either by passing the address of
the object (mostly C) or a reference to it (only C++) as an argument.

2. Initialization is hidden in control flow for which the translator is not able to prove validity,
either because the control flow itself depends on execution state, or because only implicit
conditions (but known to the programmer) guarantee a valid initialization in all cases.

3. A function returns a pointer or reference to an object that had been allocated by one of the
storage allocation functions (malloc and friends) and the contents of that object has not been
initialized.

All three situations have in common, that the translator has to deal with an lvalue which it can’t
convert, but on which, before any other use, it must first perform a writethrough operation, that
is a store operation that stores without reading. For this specification we propose to capture this
by the core::writethrough attribute, which is a annotation of objects, pointer parameters and
return values, that allows programmers to emphasize that the lvalue in question is to be considered
uninitialized. With that knowledge, translators may then suppress initial values (if any) or may
ensure that objects that are passed into functions are effectively initialized in all cases.

Our hope is that such an attribute may help to switch from a model of “no default initialization for
automatic variables” to “default initialization unless explicitly excluded”, in a near future for both
languages.

V.vi Const objects of static storage duration

Differences for the representation of const-qualified objects with static storage duration between
C an C++ are subtle. In particular, the differences for such objects (such as __func__) that are
defined in inline functions are not apparent at a first look. The differences are mainly historical

modifications to ISO/IEC 9899:2018, § V.vi page xxx Rationale



N2522 § VI, working draft — May 10, 2020 CORE 202005 (E)

and seem not have a value as such. The present specification tries to alleviate the coding with these
differences and points out some of them as notes and by recommending certain diagnostics for
implementations.

VI Removal

Some features are so diverging between the two languages, that a huge effort or even sacrifice
would have to be made by one of them to able to compromise. We don’t think that expecting such a
convergence would be realistic, and we try thus to “remove” them from this specification. Here,
removal really means “removal from this specification” and not removal from the corresponding
language(s). Each of the languages should be able to handle their set of suplemental features all by
themselves.

VLi Lvalue expressions and reference types

C and C++ have very different strategies concerning the value category of expressions and C++ has
even a construct that allows to create aliases of Ivalues, namely references. C’s tradition is to be
much more restrictive with aliases (and aliasing) and therefore to drop the object information in
expressions and types as soon as possible. This has allowed the C object model to remain relatively
simple and to focus on computations in the abstract machine, instead of dragging representation
and aliasing information through optimization phases. Modern C compilers are coping with some
of the minor problems of this approach (such as copy elision) quite efficiently, and the hope is that
the tools that are presented here (such as constexpr and lambdas) will help them even to improve
on these possibilities.

Generally, for C++ expressions are lvalues whenever that is possible. In contrast to that, in C most
operators undergo lvalue conversion (see 6.3.2.1) before they enter an expression and the information
about the object(s) that entered into an expression is discarded. By that, a lot of expressions that
are valid for C++ are not valid for C. E.g in C++ the prefix increment operator ++ can be applied
multiple times in the same expression (++ ++a) or the ternary operator can be used on the left side
of an assignment (isit ? a : b)= 76;. Both are invalid for C.

For C, Ivalues only enter into expressions that are supposed to modify an object (such as assignment
operators, increment and decrement), that compute its address (address-of operator), that access
members (.member operator), or that query type properties such as size or alignment. The result of
an expression is only an Ivalue for the dereference operator * and for member access ([ ], . and —).

Programming for the C/C++ core implies not to use such constructs and we volutarily keep the
possibility of returning lvalues out of this core specification. So this specification “removes” the
lvalue feature from the following operators, but note that this only concerns these operators when
they are applied to basic types.

— prefix increment and decrement
— conditional operator
— assigment operators

— comma operator

Generally, the use of such constructs as modifiable lvalues should be rare and is widely considered
to be poor programming style. All such uses have always been constraint violations in C, so they
should be easy to diagnose, and this is what is expected from implementations that want to target
the common C/C++ core.

VLii Conversions from complex types

C allows conversions from complex types to real types by simply dropping the imaginary part.
This feature is not compatible with the more restrictive approach of C++ that basically requires all
conversions that may result in information loss to be explicit. Therefore for the common C / C++
core the only defined coversion from a complex type to a real type is if the real type is bool, For
arithmetic conversions that involve complex numbers see ILiii.

Rationale modifications to ISO/IEC 9899:2018, § VL.ii page xxxi



CORE 202005 (E) § VLiii, working draft — May 10, 2020 N2522

VLiii Imaginary types and Annex G

C has reserved the _Imaginary keyword for optinal imaginary types and provides Annex G for a
description of these. This has not found widespread support in the C community and has never
been adapted to C++. Therefore these interfaces are not part of the C/C++ core.

VLiv Bounds-checking interfaces (Annex K)

For C, there is a large and complicated annex (Annex K) that describes a set of extensions that are
only scarcely implemented on real platforms and have a lot of issues. It has not found consensus in
the C community and has never been adapted to C++. Therefore these interfaces are not part of the
C/C++ core.

VII Further directions

Some work is still missing such that this proposal would be consistent in itself, and to integrate and
to mutually adapt it and the two standards to which it relates. Additionally, we foresee to address
the following features and questions:

— Introduce enumeration types with specified base type?

— How to handle _Noreturn?

— Do we want new syntax for number tokens, such as thousands separators or base 2?

— Do we keep qualifiers inside the [] array bounds for array parameters?

— Do we keep static in array declarations?

— Shall we treat padding as void arrays?

modifications to ISO/IEC 9899:2018, § VII page xxxii Contents



N2522 § VII, working draft — May 10, 2020 CORE 202005 (E)

(no diff marks, here) Foreword to be provided by the committee responsible for publishing.

Contents modifications to ISO/IEC 9899:2018, § VII page xxxiii



CORE 202005 (E) § VII, working draft — May 10, 2020 N2522

Introduction

With the introduction of new devices and extended character sets, new features could be added to
this document. Subclauses in the language and library clauses warn implementors and programmers
of usages which, though valid in themselves, could conflict with future additions.

Certain features are obsolescent, which means that they could be considered for withdrawal in future
revisions of this document. They are retained because of their widespread use, but their use in
new implementations (for implementation features) or new programs (for language [6.11] or library
features [7.32]) is discouraged.

This document is divided into four major subdivisions:

— preliminary elements (Clauses 1-4);
— the characteristics of environments that translate and execute programs (Clause 5);
— the language syntax, constraints, and semantics (Clause 6);

— the library facilities (Clause 7).

Examples are provided to illustrate possible forms of the constructions described. Footnotes are
provided to emphasize consequences of the rules described in that subclause or elsewhere in this
document. References are used to refer to other related subclauses. Recommendations are provided
to give advice or guidance to implementors. Annexes define optional features, provide additional
information and summarize the information contained in this document. A bibliography lists
documents that were referred to during the preparation of this document.

The language clause (Clause 6) is derived from “The C Reference Manual”.

The library clause (Clause 7) is based on the 1984 /usr/group Standard.

modifications to ISO/IEC 9899:2018, § VII page xxxiv Introduction



N2522 § VII, working draft — May 10, 2020 CORE 202005 (E)

(no diff marks, here)

Introduction modifications to ISO/IEC 9899:2018, § VII page 1



CORE 202005 (E) § VII, working draft — May 10, 2020 N2522

modifications to ISO/IEC 9899:2018, § VII page 2 Introduction



N2522 cmin..core § 1, working draft — May 10, 2020 CORE 202005 (E)

JTC 1/SC 22/WG 14 © ISO/IEC 1990-2018 (C standard)
© Jens Gustedt 2020 (rationale, modifications)
document: N2522
version: CORE 202005
date: 2020-05-10

1. Scope

1 This document specifies the form and establishes the interpretation of programs written in the €
programminglanguagecore of the C or C++ programming languages.?) It specifies

— the representation of €&-programs;

— the syntax and constraints of the Clanguagecore of the two languages;
— the semantic rules for interpreting €such programs;

— the representation of input data to be processed by C and C++ programs;
— the representation of output data produced by C and C++ programs;

— the restrictions and limits imposed by a conforming implementation of-Cto be successfull
translated in C or C++ environments.

2 This document does not specify

— the mechanism by which €programs are transformed for use by a data-processing system;
— the mechanism by which €programs are invoked for use by a data-processing system;

— the mechanism by which input data are transformed for use by a €program;

— the mechanism by which output data are transformed after being produced by a €program;

— the size or complexity of a program and its data that will exceed the capacity of any specific
data-processing system or the capacity of a particular processor;

— all minimal requirements of a data-processing system that is capable of supporting a conform-
ing implementation.

2The part of this work that extends the C standard is licensed under the Creative Commons Attribution-ShareAlike 4.0
International (CC BY-SA 4.0) License.

3)This document is designed to promote the portability of C and C++ programs among a variety of data-processing systems.
It is intended for use by implementors and programmers. Annex J gives an overview of portability issues that a program
might encounter.

General modifications to ISO/IEC 9899:2018, § 1 page 3



CORE 202005 (E) § 2, working draft — May 10, 2020 cmin..core N2522

2. Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any amendments)
applies.

ISO/IEC 2382:2015, Information technology — Vocabulary. Available from the ISO online browsing
platform at http://www.iso.org/obp.

ISO 4217, Codes for the representation of currencies and funds.

ISO 8601, Data elements and interchange formats — Information interchange — Representation of dates and
times.

ISO/IEC 10646, Information technology — Universal Coded Character Set (UCS). Available from the
ISO/IEC Information Technology Task Force (ITTF) web site at http://isotc.iso.org/livelink/
livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm.

IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems (previously designated
IEC 559:1989).

ISO 80000-2, Quantities and units — Part 2: Mathematical signs and symbols to be used in the natural
sciences and technology.

Also add ISO 80000-3, space and time
Also add ISO 80000-13, Information science and technolo

modifications to ISO/IEC 9899:2018, § 2 page 4 General


http://www.iso.org/obp
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm

N2522 § 3, working draft — May 10, 2020 CORE 202005 (E)

3. Terms, definitions, and symbols

For the purposes of this document, the terms and definitions given in ISO/IEC 2382, ISO 800002,
and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https://www.iso.org/obp

— IEC Electropedia: available at http://www.electropedia.org/

Additional terms are defined where they appear in italic type or on the left side of a syntax rule.
Terms explicitly defined in this document are not to be presumed to refer implicitly to similar terms
defined elsewhere.

3.1

access (verb)

(execution-time action) to read or modify the value of an object
Note 1 to entry: Where only one of these two actions is meant, “read” or “modify” is used.
Note 2 to entry: “Modify” includes the case where the new value being stored is the same as the previous value.

Note 3 to entry: Expressions that are not evaluated do not access objects.

3.2

alignment

requirement that objects of a particular type be located on storage boundaries with addresses that
are particular multiples of a byte address

3.3

argument
actual argument
DEPRECATED: actual parameter

expression in the comma-separated list bounded by the parentheses in a function call expression, or
a sequence of preprocessing tokens in the comma-separated list bounded by the parentheses in a
function-like macro invocation

3.4

behavior

external appearance or action

3.4.1

implementation-defined behavior

unspecified behavior where each implementation documents how the choice is made

Note 1 to entry: ].3 gives an overview over properties of C programs that lead to implementation-defined behavior.

EXAMPLE An example of implementation-defined behavior is the propagation of the high-order bit when a signed integer
is shifted right.

3.4.2

locale-specific behavior

behavior that depends on local conventions of nationality, culture, and language that each implemen-
tation documents

General modifications to ISO/IEC 9899:2018, § 3.4.2 page 5


https://www.iso.org/obp
http://www.electropedia.org/

CORE 202005 (E) § 3.4.3, working draft — May 10, 2020 N2522

Note 1 to entry: ].4 gives an overview over properties of C programs that lead to locale-specific behavior.

EXAMPLE An example of locale-specific behavior is whether the islower function returns true for characters other than
the 26 lowercase Latin letters.

3.4.3

undefined behavior

behavior, upon use of a nonportable or erroneous program construct or of erroneous data, for which
this document imposes no requirements

Note 1 to entry: Possible undefined behavior ranges from ignoring the situation completely with unpredictable results,
to behaving during translation or program execution in a documented manner characteristic of the environment (with or
without the issuance of a diagnostic message), to terminating a translation or execution (with the issuance of a diagnostic
message).

Note 2 to entry: ].2 gives an overview over properties of C programs that lead to undefined behavior.

EXAMPLE An example of undefined behavior is the behavior on integer overflow.

3.4.4

unspecified behavior

behavior, that results from the use of an unspecified value, or other behavior upon which this
document provides two or more possibilities and imposes no further requirements on which is
chosen in any instance

Note 1 to entry: ].1 gives an overview over properties of C programs that lead to unspecified behavior.

EXAMPLE An example of unspecified behavior is the order in which the arguments to a function are evaluated.

3.5

bit

unit of data storage in the execution environment large enough to hold an object that can have one
of two values

Note 1 to entry: It need not be possible to express the address of each individual bit of an object.

3.6
byte

addressable unit of data storage large enough to hold any member of the basic character set of the
execution environment

Note 1 to entry: It is possible to express the address of each individual byte of an object uniquely.

Note 2 to entry: A byte is composed of a contiguous sequence of bits, the number of which is implementation-defined. The
least significant bit is called the low-order bit; the most significant bit is called the high-order bit.

3.7

character

(abstract) member of a set of elements used for the organization, control, or representation of data

3.7.1

character
single-byte character

(C) bit representation that fits in a byte

3.7.2

multibyte character

sequence of one or more bytes representing a member of the extended character set of either the
source or the execution environment

Note 1 to entry: The extended character set is a superset of the basic character set.

modifications to ISO/IEC 9899:2018, § 3.7.2 page 6 General



N2522 cmin..core § 3.7.3, working draft — May 10, 2020 CORE 202005 (E)

3.7.3

wide character

value representable by an object of type wchar_t, capable of representing any character in the
current locale

3.8

constraint

restriction, either syntactic or semantic, by which the exposition of language elements is to be
interpreted

3.9

correctly rounded result

representation in the result format that is nearest in value, subject to the current rounding mode, to
what the result would be given unlimited range and precision

Note 1 to entry: In this document, when the words “correctly rounded” are not immediately followed by “result”, this is the
intended usage.

3.10

diagnostic message

message belonging to an implementation-defined subset of the implementation’s message output

3.11

forward reference

reference to a later subclause of this document that contains additional information relevant to this
subclause

3.12

implementation

particular set of software, running in a particular translation environment under particular con-
trol options, that performs translation of programs for, and supports execution of functions in, a
particular execution environment

3.13

implementation limit

restriction imposed upon programs by the implementation

3.14

memory location

either an object of scalar type, or a m
pack

Note 1 to entry: Two threads of execution can update and access separate memory locations without interfering with each
other.

Note 2 to entry: A bit-fiekdbmember with core:: alias attribute and an adjacent ren-bit-field-membermember without are
in separate memory locations. The same applies to two bit-fieldssuch members with the attribute, if one is declared inside a
nested structure declaration and the other is not, or if the two are separated by a zero-length bit-field declaration, or if they
are separated by a nen-bit-fietd-member-deelaration-member declaration without the attribute. It is not safe to concurrently
update two such non-atomic bﬁ-ﬁe}dir/r}/e\p\l/‘t\)/e\;\s/\l/f\%a/@Vm the same strueture-ifallmembers-declared-between-them-are

a{s&(-ﬂeﬁzefe—}eﬁg%h}—bﬁ—ﬁe}dsgg\glé no matter what the sizes of those intervening bit-fields happen to be.
EXAMPLE A structure declared as

| struct { |
\ char a: \
| kb 5—er |

General modifications to ISO/IEC 9899:2018, § 3.14 page 7



CORE 202005 (E) § 3.15, working draft — May 10, 2020 cmin..core N2522

| ———————struct{inteet8;ter

' .__.___signed b:5, c:11,:0, d:8;
struct core::alias signed char ee; } e;

‘rv\,rvvx,rv\,

\ }

contains four separate memory locations: The member-a;andbit-fietlds-members a, d and e. ee are each separate memory
locations, and can be modified concurrently without interfering with each other. The bit-fields b and ¢ together constitute the
fourth memory location. The bit-fields b and ¢ cannot be concurrently modified, but b and a, for example, can be.

3.15
object

region of data storage in the execution environment, the contents of which can represent values

Note 1 to entry: When referenced, an object can be interpreted as having a particular type; see 6.3.2.1.

3.16
pack

a maximal sequence of adjacent members that have the core:: alias attribute
3.17

parameter

formal parameter

DEPRECATED: formal argument

object declared as part of a function declaration or definition that acquires a value on entry to the
function, or an identifier from the comma-separated list bounded by the parentheses immediately
following the macro name in a function-like macro definition

3.18

pointer provenance

provenance

storage instance that holds the object to which a valid pointer value refers

3.19

recommended practice

specification that is strongly recommended as being in keeping with the intent of the standard, but

that might be impractical for some implementations

3.20

runtime-constraint

requirement on a program when calling a library function

Note 1 to entry: Despite the similar terms, a runtime-constraint is not a kind of constraint as defined by 3.8, and need not be
diagnosed at translation time.

N ote 2 to entry Implementatlons that support thee&eﬂﬁeﬂﬁ%fﬁe@med%%eﬂ%y’thﬂﬁhemﬁﬁmeﬁm%mm%ﬁ

Annex L are permitted to invoke a

runtlme constramt handler when they perforrn a trap

3.21

storage instance

the inclusion-maximal region of data storage in the execution environment that is created when
either an object definition or an allocation is encountered

Note 1 to entry: Storage instances are created and destroyed when specific language constructs (6.2.4) are met durin:

rogram execution, including program startup, or when specific library functions (7.22.4) are called.

Note 2 to entry: A given storage instance may or may not have a memory address, and may or may not be accessible from

modifications to ISO/IEC 9899:2018, § 3.21 page 8 General



N2522 cmin..core § 3.22, working draft — May 10, 2020 CORE 202005 (E)

all threads of execution.

Note 3 to entry: Storage instances have identities which are unique across the program execution.

Note 4 to entry: A storage instance with a memory address occupies a region of zero or more bytes of contiguous data
storage in the execution environment.

Note 5 to entry: One or more objects may be represented within the same storage instance, such as two subobjects within
an object of structure type, two const-qualified compound literals with identical object representation, or two string literals
where one is the terminal character sequence of the other.

3.22
value

precise meaning of the contents of an object when interpreted as having a specific type

3.22.1

implementation-defined value

unspecified value where each implementation documents how the choice is made

3.22.2

indeterminate value

either an unspecified value or a trap representation

3.22.3

unspecified value

valid value of the relevant type where this document imposes no requirements on which value is
chosen in any instance

Note 1 to entry: An unspecified value cannot be a trap representation.

3.22.4

trap representation

an object representation that need not represent a value of the object type

3.22.5
perform a trap

interrupt execution of the program such that no further operations are performed

Note 1 to entry: In this document, when the word “trap” is not immediately followed by “representation”, this is the
intended usage.?

Note 2 to entry: Implementations that support Annex L are permitted to invoke a runtime-constraint handler when they
perform a trap.

3.23

]

ceiling of x

the least integer greater than or equal to =
EXAMPLE [2.4]is 3, [—2.4] is —2.

3.24

L]

floor of

the greatest integer less than or equal to
EXAMPLE [2.4]is 2, |—2.4] is —3.

YFor example, “Trapping or stopping (if supported) is disabled ...” (F.8.2). Note that fetching a trap representation might
perform a trap but is not required to (see 6.2.6.1).

General modifications to ISO/IEC 9899:2018, § 3.24 page 9



CORE 202005 (E) § 4, working draft — May 10, 2020 cmin..core N2522

4. Conformance

In this document, “shall” is to be interpreted as a requirement on an implementation or on a program;
conversely, “shall not” is to be interpreted as a prohibition.

If a “shall” or “shall not” requirement that appears outside of a constraint or runtime-constraint is
violated, the behavior is undefined. Undefined behavior is otherwise indicated in this document by
the words “undefined behavior” or by the omission of any explicit definition of behavior. There is
no difference in emphasis among these three; they all describe “behavior that is undefined”.

A program that is correct in all other aspects, operating on correct data, containing unspecified
behavior shall be a correct program and act in accordance with 5.1.2.3.

The implementation shall not successfully translate a preprocessing translation unit containing a
#error preprocessing directive unless it is part of a group skipped by conditional inclusion.

A strictly conforming program shall use only those features of the language and library specified
in this document.”) It shall not produce output dependent on any unspecified, undefined, or
implementation-defined behavior, and shall not exceed any minimum implementation limit.

The two forms of conforming implementation are hosted and freestanding. A conforming hosted
implementation shall accept any strictly conforming program. A conforming freestanding implementation
shall accept any strictly conforming program in which the use of the features specified in the library
clause (Clause 7) is confined to the contents of the standard headers <float.h>, ;<limits.h>, -
<stdarg.h>, <stdint.h>, and <stdnoreturn. h>.9 A conforming implementation may have
extensions (including additional library functions), provided they do not alter the behavior of any
strictly conforming program.”

A conforming program is one that is acceptable to a conforming implementation.®)

An implementation shall be accompanied by a document that defines all implementation-defined
and locale-specific characteristics and all extensions.

Forward references: conditional inclusion (6.10.1), error directive (6.10.5), characteristics of floating
types <float.h> (7.7), alternative spellings <is0646.h> (7.9), sizes of integer types <limits.h>
(7.10), alignment <stdalign.h> (7.15), variable arguments <stdarg.h> (7.16), boolean type and
values <stdbool.h>(7.18), common definitions <stddef . h>(7.19), integer types <stdint.h> (7.20),
<stdnoreturn.h> (7.23).

5 A strictly conforming program can use conditional features (see 6.10.8.2) provided the use is guarded by an appropriate
conditional inclusion preprocessing directive using the related macro. For example:

#ifdef _STDC_IEC_559__ /* FE_UPWARD defined */
/*x ... %/
fesetround (FE_UPWARD) ;
/* ... */

#endif

®'The features that historically had been presented by the headers <is0646.h>  <stdalign.h>  <stdbool.h>  and
<stddef.h>are properly integrated into the C/C++ core and do not need to be present as separate headers.

7This implies that a conforming implementation reserves no identifiers other than those explicitly reserved in this
document.

8)Strictly conforming programs are intended to be maximally portable among conforming implementations. Conforming
programs can depend upon nonportable features of a conforming implementation.

modifications to ISO/IEC 9899:2018, § 4 page 10 General



N2522 cmin..core § 5, working draft — May 10, 2020 CORE 202005 (E)

5. Environment

An implementation translates C source files and executes C programs in two data-processing-system
environments, which will be called the translation environment and the execution environment in this
document. Their characteristics define and constrain the results of executing conforming C programs
constructed according to the syntactic and semantic rules for conforming implementations.

Forward references: In this clause, only a few of many possible forward references have been
noted.

5.1 Conceptual models
5.1.1 Translation environment

5.1.1.1 Program structure

A C program need not all be translated at the same time. The text of the program is kept in units
called source files, (or preprocessing files) in this document. A source file together with all the headers
and source files included via the preprocessing directive #include is known as a preprocessing
translation unit. After preprocessing, a preprocessing translation unit is called a translation unit.
Previously translated translation units may be preserved individually or in libraries. The separate
translation units of a program communicate by (for example) calls to functions whose identifiers have
external linkage, manipulation of objects whose identifiers have external linkage, or manipulation
of data files. Translation units may be separately translated and then later linked to produce an
executable program.

Forward references: linkages of identifiers (6.2.2), external definitions (6.9), preprocessing direc-
tives (6.10).

5.1.1.2 Translation phases

The precedence among the syntax rules of translation is specified by the following phases.”

1. Physical source file multibyte characters are mapped, in an implementation-defined man-
ner, to the source character set (1ntroduc1r1g new-line characters for end-of- hne indica-
tors) if necessary.

Wlo)&wmm
by the universal character name that designates that character. An implementation may use
any internal encoding, so long as an actual extended character encountered in the source file,
and the same extended character expressed in the source file as a universal character name
(e.g., using the \uXXXX notation), are handled equivalently.

2. Each instance of a backslash character (\) immediately followed by a new-line character is
deleted, splicing physical source lines to form logical source lines. Only the last backslash
on any physical source line shall be eligible for being part of such a splice. If a splice results
in a character sequence that matches the syntax of a universal character name, the behavior
is undefined. A source file that is not empty shall end in a new-line character, which shall not
be immediately preceded by a backslash character before any such splicing takes place.

3. The source file is decomposed into preprocessing tokens!'!) and sequences of white-space
characters (including comments). A source file shall not end in a partial preprocessing token or
in a partial comment. Each comment is replaced by one space character. New-line characters

)This requires implementations to behave as if these separate phases occur, even though many are typically folded
together in practice. Source files, translation units, and translated translation units need not necessarily be stored as files,
nor need there be any one-to-one correspondence between these entities and any external representation. The description is
conceptual only, and does not specify any particular implementation.

"9 Historically, in this phase also trigraph sequences would have been replaced by corresponding single-character internal
1D As described in 6.4, the process of dividing a source file’s characters into preprocessing tokens is context-dependent. For
example, see the handling of < within a #include preprocessing directive.

Environment modifications to ISO/IEC 9899:2018, § 5.1.1.2 page 11



CORE 202005 (E) § 5.1.1.3, working draft — May 10, 2020 cmin..core N2522

are retained. Whether each nonempty sequence of white-space characters other than new-line
is retained or replaced by one space character is implementation-defined.

4. Preprocessing directives are executed, macro invocations are expanded, and _Pragma unary
operator expressions are executed. If a character sequence that matches the syntax of a univer-
sal character name is produced by token concatenation (6.10.3.3), the behavior is undefined. A
#include preprocessing directive causes the named header or source file to be processed from
phase 1 through phase 4, recursively. All preprocessing directives are then deleted.

5. Each source character set memberand-eseape-sequenee—, escape sequence and universal
character name in character constants and string literals is converted to the corresponding

member of the execution character set; if there is no corresponding member, it is converted to
an implementation-defined member other than the null (wide) character.'?

6. Adjacent string literal tokens are concatenated.

7. White-space characters separating tokens are no longer significant. Each preprocessing token
is converted into a token. The resulting tokens are syntactically and semantically analyzed
and translated as a translation unit.

8. All external object and function references are resolved. Library components are linked to
satisfy external references to functions and objects not defined in the current translation. All
such translator output is collected into a program image which contains information needed
for execution in its execution environment.

Forward references: universal character names (6.4.3), lexical elements (6.4), preprocessing direc-

tives (6.10), trigraphsequences<(??);-external definitions (6.9).

5.1.1.3 Diagnostics

A conforming implementation shall produce at least one diagnostic message (identified in an imple-
mentation-defined manner) if a preprocessing translation unit or translation unit contains a violation
of any syntax rule or constraint, even if the behavior is also explicitly specified as undefined or
implementation-defined. Diagnostic messages need not be produced in other circumstances.'®

EXAMPLE An implementation is required to issue a diagnostic for the translation unit:

char i;
int i;

because in those cases where wording in this document describes the behavior for a construct as being both a constraint error
and resulting in undefined behavior, the constraint error is still required to be diagnosed.

5.1.2 Execution environments

Two execution environments are defined: freestanding and hosted. In both cases, program startup
occurs when a designated C function is called by the execution environment. All objects with static
storage duration shall be initialized (set to their initial values) before program startup. The manner
and timing of such initialization are otherwise unspecified. Program termination returns control to
the execution environment.

Forward references: storage durations of objects (6.2.4 ), initialization (6.7.12).

5.1.2.1 Freestanding environment

In a freestanding environment (in which C program execution may take place without any benefit
of an operating system), the name and type of the function called at program startup are implemen-
tation-defined. Any library facilities available to a freestanding program, other than the minimal set
required by Clause 4, are implementation-defined.

12) An implementation need not convert all non-corresponding source characters to the same execution character.

13 An implementation is encouraged to identify the nature of, and where possible localize, each violation. Of course, an
implementation is free to produce any number of diagnostic messages, often referred to as warnings, as long as a valid
program is still correctly translated. It can also successfully translate an invalid program. Annex I lists a few of the more
common warnings.

modifications to ISO/IEC 9899:2018, § 5.1.2.1 page 12 Environment



N2522 §5.1.2.2, working draft — May 10, 2020 CORE 202005 (E)

The effect of program termination in a freestanding environment is implementation-defined.

5.1.2.2 Hosted environment

A hosted environment need not be provided, but shall conform to the following specifications if
present.

5.1.2.2.1 Program startup

The function called at program startup is named main. The implementation declares no prototype
for this function. It shall be defined with a return type of int and with no parameters:

i int main(void) { /x ... %/ }
L

or with two parameters (referred to here as argc and argv, though any names may be used, as they
are local to the function in which they are declared):

\ int main(int argc, char xargv[]) { /x ... %/ }

or equivalent;'¥ or in some other implementation-defined manner.

If they are declared, the parameters to the main function shall obey the following constraints:

— The value of argc shall be nonnegative.
— argv[argc] shall be a null pointer.

— If the value of argc is greater than zero, the array members argv[0] through argv[argc-1]
inclusive shall contain pointers to strings, which are given implementation-defined values
by the host environment prior to program startup. The intent is to supply to the program
information determined prior to program startup from elsewhere in the hosted environment.
If the host environment is not capable of supplying strings with letters in both uppercase and
lowercase, the implementation shall ensure that the strings are received in lowercase.

— If the value of argc is greater than zero, the string pointed to by argv[0] represents the
program name; argv[01[0] shall be the null character if the program name is not available
from the host environment. If the value of argc is greater than one, the strings pointed to by
argv[1] through argv[argc-1] represent the program parameters.

— The parameters argc and argv and the strings pointed to by the argv array shall be modifiable
by the program, and retain their last-stored values between program startup and program
termination.

5.1.2.2.2 Program execution

In a hosted environment, a program may use all the functions, macros, type definitions, and objects
described in the library clause (Clause 7).

5.1.2.2.3 Program termination

If the return type of the main function is a type compatible with int, a return from the initial call
to the main function is equivalent to calling the exit function with the value returned by the main
function as its argument;'® reaching the } that terminates the main function returns a value of 0. If
the return type is not compatible with int, the termination status returned to the host environment
is unspecified.

Forward references: definition of terms (7.1.1), the exit function (7.22.5.4).

M Thus, int can be replaced by a typedef name defined as int, or the type of argv can be written as char *x argv, and so
on.

191n accordance with 6.2.4, the lifetimes of objects with automatic storage duration declared in main will have ended in the
former case, even where they would not have in the latter.

Environment modifications to ISO/IEC 9899:2018, § 5.1.2.2.3 page 13



10

CORE 202005 (E) § 5.1.2.3, working draft — May 10, 2020 N2522

5.1.2.3 Program execution

The semantic descriptions in this document describe the behavior of an abstract machine in which
issues of optimization are irrelevant.

An access to an object through the use of an lvalue of volatile-qualified type is a volatile access. A
volatile access to an object, modifying a file, or calling a function that does any of those operations
are all side effects,'® which are changes in the state of the execution environment. Evaluation of
an expression in general includes both value computations and initiation of side effects. Value
computation for an Ivalue expression includes determining the identity of the designated object.

Sequenced before is an asymmetric, transitive, pair-wise relation between evaluations executed by a
single thread, which induces a partial order among those evaluations. Given any two evaluations
A and B, if A is sequenced before B, then the execution of A shall precede the execution of B.
(Conversely, if A is sequenced before B, then B is sequenced after A.) If A is not sequenced before or
after B, then A and B are unsequenced. Evaluations A and B are indeterminately sequenced when A is
sequenced either before or after B, but it is unspecified which.!” The presence of a sequence point
between the evaluation of expressions A and B implies that every value computation and side effect
associated with A is sequenced before every value computation and side effect associated with B. (A
summary of the sequence points is given in Annex C.)

In the abstract machine, all expressions are evaluated as specified by the semantics. An actual
implementation need not evaluate part of an expression if it can deduce that its value is not used
and that no needed side effects are produced (including any caused by calling a function or through
volatile access to an object).

When the processing of the abstract machine is interrupted by receipt of a signal, the values of
objects that are neither lock-free atomic objects nor of type volatile sig_atomic_t are unspecified,
as is the state of the floating-point environment. The value of any object modified by the handler
that is neither a lock-free atomic object nor of type volatile sig_atomic_t becomes indeterminate
when the handler exits, as does the state of the floating-point environment if it is modified by the
handler and not restored to its original state.

The least requirements on a conforming implementation are:

— Volatile accesses to objects are evaluated strictly according to the rules of the abstract machine.

— At program termination, all data written into files shall be identical to the result that execution
of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place as specified in 7.21.3.
The intent of these requirements is that unbuffered or line-buffered output appear as soon as
possible, to ensure that prompting messages actually appear prior to a program waiting for
input.

This is the observable behavior of the program.

What constitutes an interactive device is implementation-defined.

More stringent correspondences between abstract and actual semantics may be defined by each
implementation.

EXAMPLE 1 An implementation might define a one-to-one correspondence between abstract and actual semantics: at every
sequence point, the values of the actual objects would agree with those specified by the abstract semantics. The keyword
volatile would then be redundant.

Alternatively, an implementation might perform various optimizations within each translation unit, such that the actual
semantics would agree with the abstract semantics only when making function calls across translation unit boundaries. In

16)The IEC 60559 standard for binary floating-point arithmetic requires certain user-accessible status flags and control
modes. Floating-point operations implicitly set the status flags; modes affect result values of floating-point operations.
Implementations that support such floating-point state are required to regard changes to it as side effects — see Annex F for
details. The floating-point environment library <fenv.h> provides a programming facility for indicating when these side
effects matter, freeing the implementations in other cases.

17)The executions of unsequenced evaluations can interleave. Indeterminately sequenced evaluations cannot interleave, but
can be executed in any order.

modifications to ISO/IEC 9899:2018, § 5.1.2.3 page 14 Environment



11

12

13

14

15

N2522 cmin..core § 5.1.2.3, working draft — May 10, 2020 CORE 202005 (E)

such an implementation, at the time of each function entry and function return where the calling function and the called
function are in different translation units, the values of all externally linked objects and of all objects accessible via pointers
therein would agree with the abstract semantics. Furthermore, at the time of each such function entry the values of the
parameters of the called function and of all objects accessible via pointers therein would agree with the abstract semantics. In
this type of implementation, objects referred to by interrupt service routines activated by the signal function would require
explicit specification of volatile storage, as well as other implementation-defined restrictions.

EXAMPLE 2 In executing the fragment

char cl, c2;
/* ... x/
cl =cl + c2;

the “integer promotions” require that the abstract machine promote the value of each variable to int size and then add
the two ints and truncate the sum. Provided the addition of two chars can be done without overflow, or with overflow
wrapping silently to produce the correct result, the actual execution need only produce the same result, possibly omitting the
promotions.

EXAMPLE 3 Similarly, in the fragment

float f1l, f2;

double d;

/* .. %/
—F=F2 e
f1=1f2x4d;

~~

the multiplication can be executed using single-precision arithmetic if the implementation can ascertain that the result would
be the same as if it were executed using double-precision arithmetic (for example, if d were replaced by the constant 2.0,
which has type double).

EXAMPLE 4 Implementations employing wide hardware registers have to take care to honor appropriate semantics. Values
are independent of whether they are represented in a hardware register or in memory. For example, an implicit spilling of a
hardware register is not permitted to alter the value. Also, an explicit store and load is required to round to the precision of the
storage type. In particular, casts and assignments are required to perform their specified conversion. For the fragment

double d1, d2;

float f;

dl f = expression;

d2 (float) expression;

the values assigned to d1 and d2 are required to have been converted to float.

EXAMPLE 5 Rearrangement for floating-point expressions is often restricted because of limitations in precision as well as
range. The implementation cannot generally apply the mathematical associative rules for addition or multiplication, nor
the distributive rule, because of roundoff error, even in the absence of overflow and underflow. Likewise, implementations
cannot generally replace decimal constants in order to rearrange expressions. In the following fragment, rearrangements
suggested by mathematical rules for real numbers are often not valid (see F.9).

double x, y, z;

/* ... %/
—————X%=—{X——y——2—F/not equivalent to x—x=—y—+—2z;
NNMVVV;ﬁ;;J@ggﬁ»y X z; [/ _not equivalent to X X=y X z;

z=(x-vy) +y; // not equivalent to z = x;
44”442%=%x%+%*%*~y7%%44f¥~not equivalent to z—= 5 7
¥ /—5+65 /7—not equivalent to y—= 2
zZ = X+ XXY; [/l not equivalent to z = x X (1.0 + y)
=x/5.0; ___// not equivalent toy = x X 0.2;

A A~

EXAMPLE 6 To illustrate the grouping behavior of expressions, in the following fragment

int a, b;
/x ... %/
a=a+ 32760 + b + 5;

the expression statement behaves exactly the same as

\ a= (((a+ 32760) + b) + 5);

Environment modifications to ISO/IEC 9899:2018, § 5.1.2.3 page 15



16

CORE 202005 (E) § 5.1.2.4, working draft — May 10, 2020 cmin..core N2522

due to the associativity and precedence of these operators. Thus, the result of the sum (a + 32760) is next added to b, and
that result is then added to 5 which results in the value assigned to a. On a machine in which overflows produce an explicit
trap and in which the range of values representable by an int is [-32768, +-32767], the implementation cannot rewrite this
expression as

= ((a + b) + 32765);

since if the values for a and b were, respectively, —32754 and —15, the sum a + b would produce a trap while the original
expression would not; nor can the expression be rewritten either as

a ((a + 32765) + b);

or

[
! a

(a + (b + 32765));

since the values for a and b might have been, respectively, 4 and —8 or —17 and 12. However, on a machine in which
overflow silently generates some value and where positive and negative overflows cancel, the above expression statement
can be rewritten by the implementation in any of the above ways because the same result will occur.

EXAMPLE 7 The grouping of an expression does not completely determine its evaluation. In the following fragment

#include <stdio.h>

int sum;
char xp;
/* ... %/

n’

’

_.___sum = sum x 10 - 'O’ + (*p++ = getchar());

the expression statement is grouped as if it were written as

rn’ .
’

___sum = (((sum x_10) - '0’) + ((x(p++)) = (getchar())));

but the actual increment of p can occur at any time between the previous sequence point and the next sequence point (the ;),
and the call to getchar can occur at any point prior to the need of its returned value.

Forward references: expressions (6.5), type qualifiers (6.7.3), statements (6.8), floating-point envi-
ronment <fenv.h> (7.6), the signal function (7.14), files (7.21.3).

5.1.2.4 Multi-threaded executions and data races

Under a hosted implementation, a program can have more than one thread of execution (or thread)
running concurrently. The execution of each thread proceeds as defined by the remainder of this
document. The execution of the entire program consists of an execution of all of its threads.'®
Under a freestanding implementation, it is implementation-defined whether a program can have
more than one thread of execution.

The value of an object visible to a thread 7" at a particular point is the initial value of the object, a
value stored in the object by T', or a value stored in the object by another thread, according to the
rules below.

NOTE1 In some cases, there could instead be undefined behavior. Much of this section is motivated by the desire to support

atomic operations with explicit and detailed visibility constraints. However, it also implicitly supports a simpler view for
more restricted programs.

Two expression evaluations conflict if one of them modifies a memory location and the other one
reads or modifies the same memory location.

The library-defines There are a number of (7:17)-and-operations that are specially identified as
synchronization operations: _these are operators and generic functions (if the implementation
supports the atomics extension) that act on atomic objects (6.5 and 7.17); if the implementation
supports the thread extension these are calls to initialization functions (7.26.2), operations on mu-
texes (7:26-4)that-are specially-identified-assynchronization-operations—7.26.3 and 7.26.4), and calls

18)The execution can usually be viewed as an interleaving of all of the threads. However, some kinds of atomic operations,
for example, allow executions inconsistent with a simple interleaving as described below.

modifications to ISO/IEC 9899:2018, § 5.1.2.4 page 16 Environment



10

11

12

13

14

15

N2522 cmin..core § 5.1.2.4, working draft — May 10, 2020 CORE 202005 (E)

to thread functions (7.26.5). These operations play a special role in making assignments-side effects

in one thread visible to another. A synchronization operation on one or more memory locations is either
an acquire operation, a release operation, both an acquire and release operation, or a consume operation.
A synchronization operation without an associated memory location is a ferice and can be either an
acquire fence, a release fence, or both an acquire and release fence. In addition, there are relaxed
atomic operations, which are not synchronization operations but still are indivisible, and atomic

read-modify-write operations, which have-special-characteristies—are those operations defined in 6.5
and 7.17 that act on an atomic object by reading its value, by performing an optional operation with
that value and by storing back a value into that object.

NOTE 2 For example, a call that acquires a mutex will perform an acquire operation on the locations composing the mutex.
Correspondingly, a call that releases the same mutex will perform a release operation on those same locations. Informally,
performing a release operation on A forces prior side effects on other memory locations to become visible to other threads
that later perform an acquire or consume operation on A. Relaxed atomic operations are not included as synchronization
operations although, like synchronization operations, they cannot contribute to data races.

All modifications to a particular atomic object M occur in some particular total order, called the
modification order of M. If A and B are modifications of an atomic object M, and A happens before B,
then A shall precede B in the modification order of M, which is defined below.

NOTE 3 This states that the modification orders are expected to respect the “happens before” relation.

NOTE 4 There is a separate order for each atomic object. There is no requirement that these can be combined into a single
total order for all objects. In general this will be impossible since different threads can observe modifications to different
variables in inconsistent orders.

A release sequence headed by a release operation A on an atomic object M is a maximal contiguous
sub-sequence of side effects in the modification order of M, where the first operation is A and every
subsequent operation either is performed by the same thread that performed the release or is an
atomic read-modify-write operation.

Certain library-calls-operations synchronize with other library-ealls-operations performed by another

thread. In particular, an atomic operation A that performs a release operation on an object M
synchronizes with an atomic operation B that performs an acquire operation on M and reads a
value written by any side effect in the release sequence headed by A.

NOTE 5 Except in the specified cases, reading a later value does not necessarily ensure visibility as described below. Such a
requirement would sometimes interfere with efficient implementation.

NOTE 6 The specifications of the synchronization operations define when one reads the value written by another. For atomic
variables, the definition is clear. All operations on a given mutex occur in a single total order. Each mutex acquisition “reads
the value written” by the last mutex release.

An evaluation A carries a dependency'® to an evaluation B if:

— the value of A is used as an operand of B, unless:

e B is an invocation of the kill_dependency macro,

o Ais the left operand of a &&/\_or +{-operator;V operator,
e Ais the left operand of a ?: operator, or

e Ais the left operand of a , operator;
or

— A writes a scalar object or bit-field-core:: alias member M, B reads from M the value written
by A, and A is sequenced before B, or

— for some evaluation X, A carries a dependency to X and X carries a dependency to B.

An evaluation A is dependency-ordered before?® an evaluation B if:

19)The “carries a dependency” relation is a subset of the “sequenced before” relation, and is similarly strictly intra-thread.
20)The “dependency-ordered before” relation is analogous to the “synchronizes with” relation, but uses release/consume in
place of release/acquire.

Environment modifications to ISO/IEC 9899:2018, § 5.1.2.4 page 17



16

17

18

19
20

21

22

23

24

25

26
27

28
29

30

CORE 202005 (E) § 5.1.2.4, working draft — May 10, 2020 N2522

— A performs a release operation on an atomic object M, and, in another thread, B performs a
consume operation on M and reads a value written by any side effect in the release sequence
headed by A, or

— for some evaluation X, A is dependency-ordered before X and X carries a dependency to B.

An evaluation A inter-thread happens before an evaluation B if A synchronizes with B, A is
dependency-ordered before B, or, for some evaluation X:

— A synchronizes with X and X is sequenced before B,
— Ais sequenced before X and X inter-thread happens before B, or

— A inter-thread happens before X and X inter-thread happens before B.

i

NOTE 7 The “inter-thread happens before” relation describes arbitrary concatenations of “sequenced before”, “synchronizes
with”, and “dependency-ordered before” relationships, with two exceptions. The first exception is that a concatenation is
not permitted to end with “dependency-ordered before” followed by “sequenced before”. The reason for this limitation is
that a consume operation participating in a “dependency-ordered before” relationship provides ordering only with respect
to operations to which this consume operation actually carries a dependency. The reason that this limitation applies only
to the end of such a concatenation is that any subsequent release operation will provide the required ordering for a prior
consume operation. The second exception is that a concatenation is not permitted to consist entirely of “sequenced before”.
The reasons for this limitation are (1) to permit “inter-thread happens before” to be transitively closed and (2) the “happens
before” relation, defined below, provides for relationships consisting entirely of “sequenced before”.

An evaluation A happens before an evaluation B if A is sequenced before B or A inter-thread happens
before B. The implementation shall ensure that no program execution demonstrates a cycle in the
“happens before” relation.

NOTE 8 This cycle would otherwise be possible only through the use of consume operations.

A wvisible side effect A on an object M with respect to a value computation B of M satisfies the
conditions:

— A happens before B, and
— there is no other side effect X to M such that A happens before X and X happens before B.

The value of a non-atomic scalar object M, as determined by evaluation B, shall be the value stored
by the visible side effect A.

NOTE 9 If there is ambiguity about which side effect to a non-atomic object is visible, then there is a data race and the
behavior is undefined.

NOTE 10 This states that operations on ordinary variables are not visibly reordered. This is not actually detectable without
data races, but it is necessary to ensure that data races, as defined here, and with suitable restrictions on the use of atomics,
correspond to data races in a simple interleaved (sequentially consistent) execution.

The value of an atomic object M, as determined by evaluation B, shall be the value stored by some
side effect A that modifies M, where B does not happen before A.

NOTE 11 The set of side effects from which a given evaluation might take its value is also restricted by the rest of the rules
described here, and in particular, by the coherence requirements below.

If an operation A that modifies an atomic object M happens before an operation B that modifies M,
then A shall be earlier than B in the modification order of M.

NOTE 12 The requirement above is known as “write-write coherence”.

If a value computation A of an atomic object M happens before a value computation B of M, and A
takes its value from a side effect X on M, then the value computed by B shall either be the value

stored by X or the value stored by a side effect Y on M, where Y follows X in the modification
order of M.

NOTE 13 The requirement above is known as “read-read coherence”.

If a value computation A of an atomic object M happens before an operation B on M, then A shall
take its value from a side effect X on M, where X precedes B in the modification order of M.

NOTE 14 The requirement above is known as “read-write coherence”.

modifications to ISO/IEC 9899:2018, § 5.1.2.4 page 18 Environment



31

32
33

34

35

36

37

38

N2522 cmin..core § 5.2, working draft — May 10, 2020 CORE 202005 (E)

If a side effect X on an atomic object M happens before a value computation B of M, then the
evaluation B shall take its value from X or from a side effect Y that follows X in the modification
order of M.

NOTE 15 The requirement above is known as “write-read coherence”.

NOTE 16 This effectively disallows compiler reordering of atomic operations to a single object, even if both operations are

“relaxed” loads. By doing so, it effectively makes the “cache coherence” guarantee provided by most hardware available to C

atomic operations.

NOTE 17 The value observed by a load of an atomic object depends on the “happens before” relation, which in turn depends
on the values observed by loads of atomic objects. The intended reading is that there exists an association of atomic loads
with modifications they observe that, together with suitably chosen modification orders and the “happens before” relation
derived as described above, satisfy the resulting constraints as imposed here.

Two evaluations are concurrent if neither happens before the other. The execution of a program
contains a data race if it contains two concurrent conflicting actions in different threads, at least one

of which is not atomic ﬂﬁdrﬁeiﬂaeﬁhappeﬁ&befefeﬂﬂee%heﬁor if they access an atomic object that
has not been initialized. Any such data race results in undefined behavior.

NOTE 18 It can be shown that programs that correctly use simple mutexes and memory_order_seq_cst operations to
prevent all data races, and use no other synchronization operations, behave as though the operations executed by their
constituent threads were simply interleaved, with each value computation of an object being the last value stored in that
interleaving. This is normally referred to as “sequential consistency”. However, this applies only to data-race-free programs,
and data-race-free programs cannot observe most program transformations that do not change single-threaded program
semantics. In fact, most single-threaded program transformations continue to be allowed, since any program that behaves
differently as a result necessarily has undefined behavior even before such a transformation is applied.

NOTE 19 Compiler transformations that introduce assignments to a potentially shared memory location that would not
be modified by the abstract machine are generally precluded by this document, since such an assignment might overwrite
another assignment by a different thread in cases in which an abstract machine execution would not have encountered a
data race. This includes implementations of data member assignment that overwrite adjacent members in separate memory
locations. Reordering of atomic loads in cases in which the atomics in question might alias is also generally precluded, since
this could violate the coherence requirements.

NOTE 20 Transformations that introduce a speculative read of a potentially shared memory location might not preserve
the semantics of the program as defined in this document, since they potentially introduce a data race. However, they are
typically valid in the context of an optimizing compiler that targets a specific machine with well-defined semantics for data
races. They would be invalid for a hypothetical machine that is not tolerant of races or provides hardware race detection.

g ron entatl considerations

wC) sets aﬁgf &EREIRA their associated eollating sequenees-collating sequences shall be defined:
the set in which source files are written (the source character set), and the set interpreted in the
execution environment (the execution character set). Each set is further divided into a basic character
set, whose contents are given by this subclause, and a set of zero or more locale-specific members
(which are not members of the basic character set) called extended characters. The combined set is
also called the extended character set. The values of the members of the execution character set are
implementation-defined.

In a character constant or string literal, members of the execution character set shall be represented by
corresponding members of the source character set or by escape sequences consisting of the backslash
\ followed by one or more characters. A byte with all bits set to 0, called the null character, shall exist
in the basic execution character set; it is used to terminate a character string.

Both the basic source and basic execution character sets shall have the following members: the 26
uppercase letters of the Latin alphabet

A B CDEFGHTIIJKILM
N O P QRS TUV WX Y Z

the 26 lowercase letters of the Latin alphabet

m

b c¢c d e f g h 1
s t u y z

i j k
n op q r vV w X

Environment modifications to ISO/IEC 9899:2018, § 5.2.1 page 19



CORE 202005 (E) §5.2.1.1, working draft — May 10, 2020 cmin..core N2522

the 10 decimal digits

\ © 1 2 3 456 7 89

the following 29 graphic characters

b os & 7 () % o+, - L/
io<=>7 0 N1~ _ { ]} -~

the space character, and control characters representing horizontal tab, vertical tab, and form feed.
The representation of each member of the source and execution basic character sets shall fit in a
byte. In both the source and execution basic character sets, the value of each character after 0 in
the above list of decimal digits shall be one greater than the value of the previous. In source files,
there shall be some way of indicating the end of each line of text; this document treats such an
end-of-line indicator as if it were a single new-line character. In the basic execution character set,
there shall be control characters representing alert, backspace, carriage return, and new line. If any
other characters are encountered in a source file (except in an identifier, a character constant, a string
literal, a header name, a comment, or a preprocessing token that is never converted to a token), the
behavior is undefined.

A letter is an uppercase letter or a lowercase letter as defined above; in this document the term does
not include other characters that are letters in other alphabets.

The universal character name construct provides a way to name other characters.

Forward references: universal character names (6.4.3), character constants (6.4.4.4), preprocessing

5.2.1.1 Multibyte characters

The source character set may contain multibyte characters, used to represent members of the
extended character set. The execution character set may also contain multibyte characters, which
need not have the same encoding as for the source character set. For both character sets, the following
shall hold:

— The basic character set shall be present and each character shall be encoded as a single byte.
— The presence, meaning, and representation of any additional members is locale-specific.

— A multibyte character set may have a state-dependent encoding, wherein each sequence of
multibyte characters begins in an initial shift state and enters other locale-specific shift states
when specific multibyte characters are encountered in the sequence. While in the initial shift
state, all single-byte characters retain their usual interpretation and do not alter the shift state.
The interpretation for subsequent bytes in the sequence is a function of the current shift state.

modifications to ISO/IEC 9899:2018, § 5.2.1.1 page 20 Environment



N2522 cmin..core § 5.2.2, working draft — May 10, 2020 CORE 202005 (E)

— A byte with all bits zero shall be interpreted as a null character independent of shift state. Such
a byte shall not occur as part of any other multibyte character.

For source files, the following shall hold:

— An identifier, comment, string literal, character constant, or header name shall begin and end
in the initial shift state.

— An identifier, comment, string literal, character constant, or header name shall consist of a
sequence of valid multibyte characters.

NOTE Historically, C and C++ also had trigraph sequences , such that all occurences of the following triplets where replaced
with the corresponding single character during translation phase 1.

= # 7). ] 77!
oL S 7> 3
2?7/ \ ?77< { ?27-  ~

C++ has now completely removed them, and also some C compilers only support these with additional commandline
options. They are only marginally used nowadays and therefore removed from the C/C++ core.

5.2.2 Character display semantics

The active position is that location on a display device where the next character output by the
fputc function would appear. The intent of writing a printing character (as defined by the isprint
function) to a display device is to display a graphic representation of that character at the active
position and then advance the active position to the next position on the current line. The direction
of writing is locale-specific. If the active position is at the final position of a line (if there is one), the
behavior of the display device is unspecified.

Alphabetic escape sequences representing nongraphic characters in the execution character set are
intended to produce actions on display devices as follows:

\a (alert) Produces an audible or visible alert without changing the active position.

\b (backspace) Moves the active position to the previous position on the current line. If the active
position is at the initial position of a line, the behavior of the display device is unspecified.

\f (form feed) Moves the active position to the initial position at the start of the next logical page.
\n (new line) Moves the active position to the initial position of the next line.
\r (carriage return) Moves the active position to the initial position of the current line.

\t (horizontal tab) Moves the active position to the next horizontal tabulation position on the current
line. If the active position is at or past the last defined horizontal tabulation position, the behavior
of the display device is unspecified.

\V (vertical tab) Moves the active position to the initial position of the next vertical tabulation
position. If the active position is at or past the last defined vertical tabulation position, the
behavior of the display device is unspecified.

Each of these escape sequences shall produce a unique implementation-defined value which can be
stored in a single char object. The external representations in a text file need not be identical to the
internal representations, and are outside the scope of this document.

Forward references: the isprint function (7.4.1.8), the fputc function (7.21.7.3).

5.2.3 Signals and interrupts

Functions shall be implemented such that they may be interrupted at any time by a signal, or may be
called by a signal handler, or both, with no alteration to earlier, but still active, invocations’ control
flow (after the interruption), function return values, or objects with automatic storage duration.
All such objects shall be maintained outside the function image (the instructions that compose the
executable representation of a function) on a per-invocation basis.

Environment modifications to ISO/IEC 9899:2018, § 5.2.3 page 21



CORE 202005 (E) § 5.2.4, working draft — May 10, 2020 cmin..core N2522

5.2.4 Environmental limits

1 Both the translation and execution environments constrain the implementation of language trans-
lators and libraries. The following summarizes the language-related environmental limits on a
conforming implementation; the library-related limits are discussed in Clause 7.

5.2.4.1 Translation limits

1 The implementation shall be able to translate and execute at least one program that contains at least
one instance of every one of the following limits:?!)

— 127 nesting levels of blocks
— 63 nesting levels of conditional inclusion

— 12 pointer, array, and function declarators (in any combinations) modifying an arithmetic,
structure, union, or void type in a declaration

— 63 nesting levels of parenthesized declarators within a full declarator
— 63 nesting levels of parenthesized expressions within a full expression

— 63 significant initial characters in an internal identifier or a macro name(each universal charac-
ter name or extended source character is considered a single character)

— 31 significant initial characters in an external identifier (each universal character name specify-
ing a short identifier of 0000FFFF or less is considered 6 characters, each universal character
name specifying a short identifier of 00010000 or more is considered 10 characters, and each
extended source character is considered the same number of characters as the corresponding
universal character name, if any)??

— 4095 external identifiers in one translation unit
— 511 identifiers with block scope declared in one block
— 4095 macro identifiers simultaneously defined in one preprocessing translation unit
— 127 parameters in one function definition
— 127 arguments in one function call
— 127 parameters in one macro definition
— 127 arguments in one macro invocation
— 4095 characters in a logical source line
— 4095 characters in a string literal (after concatenation)
— 65535 bytes in an object (in a hosted environment only)
— 15 nesting levels for #included files
— 1023 case labels for a switch statement (excluding those for any nested switch statements)
— 1023 members in a single structure or union
— 1023 enumeration constants in a single enumeration
— 63 levels of nested structure or union definitions in a single member declaration list
2 The implementation shall be able to translate constant expressions that do not exceed the following

limits. Other implementation-defined limits may be specified that constrain the evaluation of
constant expressions and possible calls to constexpr functions in such a context.

2DImplementations are encouraged to avoid imposing fixed translation limits whenever possible.
2)See “future language directions” (6.11.3).

modifications to ISO/IEC 9899:2018, § 5.2.4.1 page 22 Environment



N2522 cmin..core § 5.2.4.2, working draft — May 10, 2020 CORE 202005 (E)

— 512 recursive constexpr function invocations
— 1048576 full-expressions evaluated within a constant expression

5.2.4.2 Numerical limits

An implementation is required to document all the limits specified in this subclause, which are
specified in the headers <limits.h>and <float.h>. Additional limits are specified in <stdint.h>.

Forward references: integer types <stdint.h> (7.20).

5.2.4.2.1 Characteristics of integer types <limits.h>

The values given below shall be replaced by constant expressions suitable for use in #if preprocess-
ing directives. Their implementation-defined values shall be equal or greater to those shown.

— width for an object of type _Bool

I
| BOOL_WIDTH 1
L

— number of bits for smallest object thatisnotabit-tield-(byte)

| CHAR_BIT 8

The macros CHAR_WIDTH, SCHAR_WIDTH, and UCHAR_WIDTH that represent the width of the
types char, signed char and unsigned char shall expand to the same value as CHAR_BIT.

— width for an object of type unsigned short int

[
| USHRT_WIDTH 16
L

The macro SHRT_WIDTH represents the width of the type short int and shall expand to the
same value as USHRT_WIDTH.

— width for an object of type unsigned int

[
| UINT_WIDTH 16
L

The macro INT_WIDTH represents the width of the type int and shall expand to the same value
as UINT_WIDTH.

— width for an object of type unsigned long int

| ULONG_WIDTH 32

The macro LONG_WIDTH represents the width of the type long int and shall expand to the
same value as ULONG_WIDTH.

— width for an object of type unsigned long long int

[
‘ ULLONG_WIDTH 64
L

The macro LLONG_WIDTH represents the width of the type long long int and shall expand to
the same value as ULLONG_WIDTH.

— the maximum width for a bit-set

[
INTBITFIELD MAX _____ UINT WIDTH
L

— maximum number of bytes in a multibyte character, for any supported locale

Environment modifications to ISO/IEC 9899:2018, § 5.2.4.2.1 page 23



CORE 202005 (E) §5.2.4.2.2, working draft — May 10, 2020 cmin..core N2522

[
| MB_LEN_MAX 1
L

For all unsigned integer types for which <limits.h> or <stdint.h> define a macro with suffix
_WIDTH holding its width NV, there is a macro with suffix _MAX holding the maximal value 2N 1
that is representable by the type, that is suitable for use in #1f preprocessing directives and that
has the same type as would an expression that is an object of the corresponding type converted
according to the integer promotions.

For all signed integer types for which <limits.h> or <stdint.h> define a macro with suffix _WIDTH
holding its width N, there are macros with suffix _MIN and _MAX holding the minimal and maximal
values —2"~1 and 2V¥~! — 1 that are representable by the type, that are suitable for use in #if
preprocessing directives and that have the same type as would an expression that is an object of the
corresponding type converted according to the integer promotions.

If an object of type char can hold negative values, the value of CHAR_MIN shall be the same as that of
SCHAR_MIN and the value of CHAR_MAX shall be the same as that of SCHAR_MAX. Otherwise, the value
of CHAR_MIN shall be 0 and the value of CHAR_MAX shall be the same as that of UCHAR_MAX.2>

Forward references: representations of types (6.2.6), conditional inclusion (6.10.1), integer types
<stdint.h> (7.20).

5.2.4.2.2 Characteristics of floating types <float.h>

The characteristics of floating types are defined in terms of a model that describes a representation
of floating-point numbers and values that provide information about an implementation’s floating-
point arithmetic.?) An implementation that defines __STDC_IEC_559__ shall implement floating
pomt types and arlthmetlc conformmg to IEC 60559 as specified in Annex F. Aﬂ&mp}emeﬁ%&ﬁeﬂ%ha%

The following parameters are used to define the model for each floating-point type:

s sign(£1)

b  base or radix of exponent representation (an integer > 1)

e exponent (an integer between a minimum e,;, and a maximum ep,ax)
p  precision (the number of base-b digits in the significand)

fr nonnegative integers less than b (the significand digits)
For each floating-point type the parameters b, p, €min, and emax, are fixed constants.

For each floating-point type, a floating-point number (x) is defined by the following model:
p
T = sb° Z fkbik/ emin < € < €max

Floating types shall be able to represent zero (all f7==90f) = 0) and all normalized floating-point
numbers (f; > 0 and all possible k digits and e exponents result in values representable in the type).
In addition, floating types may be able to contain other kinds of floating-point numbers,? such as
negative zero, subnormal floating-point numbers (x # 0, € = emin, f1 = 0) and unnormalized floating-point
numbers (x # 0, e > emin, f1 = 0), and values that are not floating-point numbers, such as infinities
and NaNs. A NaN is an encoding signifying Not-a-Number. A quiet NaN propagates through almost
every arithmetic operation without raising a floating-point exception; a signaling NaN generally
raises a floating-point exception when occurring as an arithmetic operand.?®)

An implementation may give zero and values that are not floating-point numbers (such as infinities
and NaNis) a sign or may leave them unsigned. Wherever such values are unsigned, any requirement

B)See 6.2.5.

29 The floating-point model is intended to clarify the description of each floating-point characteristic and does not require
the floating-point arithmetic of the implementation to be identical.

25)Some implementations have types that include finite numbers with extra range and/or precision that are not covered by
the model.

20TEC 60559:1989 specifies quiet and signaling NaNs. For implementations that do not support IEC 60559:1989, the terms
quiet NaN and signaling NaN are intended to apply to encodings with similar behavior.

modifications to ISO/IEC 9899:2018, § 5.2.4.2.2 page 24 Environment



10

11

N2522 § 5.2.4.2.2, working draft — May 10, 2020 CORE 202005 (E)

in this document to retrieve the sign shall produce an unspecified sign, and any requirement to set
the sign shall be ignored.

The minimum range of representable values for a floating type is the most negative finite floating-
point number representable in that type through the most positive finite floating-point number
representable in that type. In addition, if negative infinity is representable in a type, the range of
that type is extended to all negative real numbers; likewise, if positive infinity is representable in a
type, the range of that type is extended to all positive real numbers.

The accuracy of the floating-point operations (+,- , *, /) and of the library functions in <math.h>
and <complex.h> that return floating-point results is implementation-defined, as is the accuracy of
the conversion between floating-point internal representations and string representations performed
by the library functions in <stdio.h>, <stdlib.h>, and <wchar.h>. The implementation may state
that the accuracy is unknown.

All integer values in the <float.h> header, except FLT_ROUNDS, shall be constant expressions
suitable for use in #1f preprocessing directives; all floating values shall be constant expressions. All
except DECIMAL_DIG, FLT_EVAL_METHOD, FLT_RADIX, and FLT_ROUNDS have separate names for all
three floating-point types. The floating-point model representation is provided for all values except
FLT_EVAL_METHOD and FLT_ROUNDS.

The rounding mode for floating-point addition is characterized by the implementation-defined
value of FLT_ROUNDS. Evaluation of FLT_ROUNDS correctly reflects any execution-time change of
rounding mode through the function fesetround in <fenv.h>.

-1 indeterminable

0 toward zero

1 to nearest, ties to even

2 toward positive infinity

3 toward negative infinity

4 to nearest, ties away from zero

All other values for FLT_ROUNDS characterize implementation-defined rounding behavior.

The values of floating type yielded by operators subject to the usual arithmetic conversions, including
the values yielded by the implicit conversion of operands, and the values of floating constants are
evaluated to a format whose range and precision may be greater than required by the type. Such a
format is called an evaluation format. In all cases, assignment and cast operators yield values in the
format of the type. The extent to which evaluation formats are used is characterized by the value of
FLT_EVAL_METHOD:*")

—1  indeterminable;
0 evaluate all operations and constants just to the range and precision of the type;

1 evaluate operations and constants of type float and doub'le to the range and precision of
the double type, evaluate long double operations and constants to the range and precision
of the long double type;

2 evaluate all operations and constants to the range and precision of the long double type.
All other negative values for FLT_EVAL_METHOD characterize implementation-defined behavior. The
value of FLT_EVAL_METHOD does not characterize values returned by function calls (see 6.8.6.4, F.6).

The presence or absence of subnormal numbers is characterized by the implementation-defined
values of FLT_HAS_SUBNORM, DBL_HAS_SUBNORM, and LDBL_HAS_SUBNORM:

2)The evaluation method determines evaluation formats of expressions involving all floating types, not just real types.
For example, if FLT_EVAL_METHOD is 1, then the product of two complex_type(float) operands is represented in the
complex_type(double) format, and its parts are evaluated to double.

Environment modifications to ISO/IEC 9899:2018, § 5.2.4.2.2 page 25



CORE 202005 (E) §5.2.4.2.2, working draft — May 10, 2020 N2522

—1  indeterminable®®
0  absent (type does not support subnormal numbers)>

1 present (type does support subnormal numbers)

12 The values given in the following list shall be replaced by constant expressions with implementa-
tion-defined values that are greater or equal in magnitude (absolute value) to those shown, with the
same sign:

— radix of exponent representation, b

[
| FLT_RADIX 2
L

— number of base-FLT_RADIX digits in the floating-point significand, p

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

— number of decimal digits, n, such that any floating-point number with p radix b digits can be
rounded to a floating-point number with n decimal digits and back again without change to

the value,
plog;, b if b is a power of 10
[1+plogyyb] otherwise

[

| FLT_DECIMAL_DIG 6

| DBL_DECIMAL_DIG 10

| LDBL_DECIMAL_DIG 10

— number of decimal digits, n, such that any floating-point number in the widest supported
floating type with pax radix b digits can be rounded to a floating-point number with n decimal
digits and back again without change to the value,

DPmax 10810 b if bis a power of 10
[1 4 pmax loggb] otherwise

[
| DECIMAL_DIG 10
L

This is an obsolescent feature, see 7.32.6.

— number of decimal digits, g, such that any floating-point number with ¢ decimal digits can be
rounded into a floating-point number with p radix b digits and back again without change to
the ¢ decimal digits,

plogiob if bis a power of 10
[(p—1)log,,b| otherwise

|FLT_DIG 6

| DBL_DIG 10

| LDBL_DIG 10

28)Characterization as indeterminable is intended if floating-point operations do not consistently interpret subnormal
representations as zero, nor as nonzero.

2)Characterization as absent is intended if no floating-point operations produce subnormal results from non-subnormal
inputs, even if the type format includes representations of subnormal numbers.

modifications to ISO/IEC 9899:2018, § 5.2.4.2.2 page 26 Environment




N2522 §5.2.4.2.2, working draft — May 10, 2020 CORE 202005 (E)

— minimum negative integer such that FLT_RADIX raised to one less than that power is a normal-
ized floating-point number, e,

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

— minimum negative integer such that 10 raised to that power is in the range of normalized
floating-point numbers, [log;ob®» 1|

FLT_MIN_10_EXP -37
DBL_MIN_10_EXP -37
LDBL_MIN_10_EXP -37

— maximum integer such that FLT_RADIX raised to one less than that power is a representable
finite floating-point number, e;ax

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

— maximum integer such that 10 raised to that power is in the range of representable finite
floating-point numbers, [log1o((1 — b™P)bmex) |

FLT_MAX_10_EXP +37
DBL_MAX_10_EXP +37
LDBL_MAX_10_EXP +37

13 The values given in the following list shall be replaced by constant expressions with implementa-
tion-defined values that are greater than or equal to those shown:

— maximum representable finite floating-point number; if that number is normalized, its value is
(1 — b=P)hemax

FLT_MAX 1E+37
DBL_MAX 1E+37
LDBL_MAX 1E+37

— maximum normalized floating-point number, (1 — b™P)bcmex

FLT_NORM_MAX 1E+37
DBL_NORM_MAX 1E+37
LDBL_NORM_MAX 1E+37

14  The values given in the following list shall be replaced by constant expressions with implementa-
tion-defined (positive) values that are less than or equal to those shown:

— the difference between 1 and the least normalized value greater than 1 that is representable in
the given floating-point type, b*~?

FLT_EPSILON 1E-5
DBL_EPSILON 1E-9
LDBL_EPSILON 1E-9

— minimum normalized positive floating-point number, b¢min—1

Environment modifications to ISO/IEC 9899:2018, § 5.2.4.2.2 page 27



CORE 202005 (E) §5.2.4.2.2, working draft — May 10, 2020 N2522

FLT_MIN 1E-37
DBL_MIN 1E-37
LDBL_MIN 1E-37
— minimum positive floating-point number®”

[

‘FLT_TRUE_MIN 1E-37
‘DBL_TRUE_MIN 1E-37
‘LDBL_TRUE_MIN 1E-37

Recommended practice

15 Conversion between real floating type and decimal character sequence with at most T_DECIMAL_DIG
digits should be correctly rounded, where T is the macro prefix for the type. This assures conversion
from real floating type to decimal character sequence with T_DECIMAL_DIG digits and back, using
to-nearest rounding, is the identity function.

16 EXAMPLE1 The following describes an artificial floating-point representation that meets the minimum requirements of this
document, and the appropriate values in a <float. h>header for type float:

6
x =516 frl6™%, —31<e<+32
k=1

FLT_RADIX 16
FLT_MANT_DIG 6
FLT_EPSILON 9.53674316E-07F
FLT_DECIMAL_DIG 9
FLT_DIG 6
FLT_MIN_EXP -31
FLT_MIN 2.93873588E-39F
FLT_MIN_10_EXP -38
FLT_MAX_EXP +32
FLT_MAX 3.40282347E+38F
FLT_MAX_10_EXP +38

17 EXAMPLE 2 The following describes floating-point representations that also meet the requirements for single-precision and
double-precision numbers in IEC 60559,3) and the appropriate values in a <float . h> header for types float and double:

Ty = 52¢ % fe27k,  —125 <e < 4128
k=1
53
xg=52° Y fr27k, —1021 < e < 41024
k=1
FLT_RADIX 2
FLT_MANT_DIG 24
FLT_EPSILON 1.19209290E-07F // decimal constant
FLT_EPSILON OX1P-23F // hex constant
FLT_DECIMAL_DIG 9
FLT_DIG 6
FLT_MIN_EXP -125
FLT_MIN 1.17549435E-38F // decimal constant
FLT_MIN 0X1P-126F // hex constant
FLT_TRUE_MIN 1.40129846E-45F // decimal constant
FLT_TRUE_MIN OX1P-149F // hex constant
FLT_HAS_SUBNORM 1

30)If the presence or absence of subnormal numbers is indeterminable, then the value is intended to be a positive number
no greater than the minimum normalized positive number for the type.

3DThe floating-point model in that standard sums powers of b from zero, so the values of the exponent limits are one less
than shown here.

modifications to ISO/IEC 9899:2018, § 5.2.4.2.2 page 28 Environment




N2522 cmin..core

§5.2.4.2.2, working draft — May 10, 2020

CORE 202005 (E)

FLT_MAX
FLT_MAX

FLT_MIN_10_EXP
FLT_MAX_EXP

FLT_MAX_10_EXP
DBL_MANT_DIG
DBL_EPSILON
DBL_EPSILON

-37
+128

3.40282347E+38F // decimal constant

OX1.fffffeP127F // hex constant
+38
53

2.2204460492503131E-16 // decimal constant

0X1P-52 // hex constant

DBL_DECIMAL_DIG 17

DBL_DIG 15

DBL_MIN_EXP -1021

DBL_MIN 2.2250738585072014E-308 // decimal constant
DBL_MIN 0X1P-1022 // hex constant
DBL_TRUE_MIN 4.9406564584124654E-324 // decimal constant
DBL_TRUE_MIN 0X1P-1074 // hex constant
DBL_HAS_SUBNORM 1

DBL_MIN_10_EXP -307

DBL_MAX_EXP +1024

DBL_MAX 1.7976931348623157E+308 // decimal constant
DBL_MAX OX1.fffffffffffffP1023 // hex constant
DBL_MAX_10_EXP +308

Forward references: conditional inclusion (6.10.1), predefined macro names (6.10.8), complex
arithmetic <complex. h> (7.3), extended multibyte and wide character utilities <wchar.h> (7.29),
floating-point environment <fenv.h> (7.6), general utilities <stdlib.h> (7.22), input/output

<stdio.h> (7.21), mathematics <math.h> (7.12), IEC 60559 floating-point arithmetic (Annex F);

TEC-60559-compatible complex-arithmetie (22).

Environment modifications to ISO/IEC 9899:2018, § 5.2.4.2.2 page 29



CORE 202005 (E) § 6, working draft — May 10, 2020 cmin..core N2522

6. Language

6.1 Notation

In the syntax notation used in this clause, syntactic categories (nonterminals) are indicated by italic
type, and literal words and character set members (terminals) by bold type. A colon (:) following
a nonterminal introduces its definition. Alternative definitions are listed on separate lines, except
when prefaced by the words “one of”. An optional symbol is indicated by the subscript “opt”, so
that

{ expressiongp: }
indicates an optional expression enclosed in braces.

When syntactic categories are referred to in the main text, they are not italicized and words are
separated by spaces instead of hyphens.

A summary of the language syntax is given in Annex A.

6.2 Concepts
6.2.1 Scopes of identifiers

An identifier can denote an object; a function; a tag or a member of a structure, union, or enumeration;
a typedef name; a label name; a macro name; or a macro parameter. The same identifier can denote
different entities at different points in the program. A member of an enumeration is called an
enumeration constant. Macro names and macro parameters are not considered further here, because
prior to the semantic phase of program translation any occurrences of macro names in the source file
are replaced by the preprocessing token sequences that constitute their macro definitions.

For each different entity that an identifier designates, the identifier is visible (i.e., can be used) only
within a region of program text called its scope. Different entities designated by the same identifier
either have different scopes, or are in different name spaces. There are four kinds of scopes: function,
file, block, and function prototype. (A function prototype is a declaration of a function that declares
the types of its parameters.)

A label name is the only kind of identifier that has function scope. It can be used (in a goto statement)
anywhere in the funetion-innermost function body in which it appears, and-but not from within
another function body of a lambda expression that is evalutated within that function body.? A

label is declared implicitly by its syntactic appearance (followed by a : and a statement).

Every other identifier has scope determined by the placement of its declaration (in a declarator or
type specifier). If the declarator or type specifier that declares the identifier appears outside of any
blockerlist-of parameters, capture or parameter list, the identifier has file scope, which terminates
at the end of the translation unit. If the declarator or type specifier that declares the identifier
appears inside a block, or within the list-of parameter-declarations-in-parameter list of a function

definition ;or lambda expression, or if the identifier is a capture the identifier has block scope, which
terminates at the end of the associated block or function body. If the declarator or type specifier

that declares the identifier appears within the listof parameter-deelarations-in-parameter list of a
function prototype (not part of a function definition), the identifier has function prototype scope, which
terminates at the end of the function declarator. If an identifier designates two different entities in
the same name space, the scopes might overlap. If so, the scope of one entity (the inner scope) will
end strictly before the scope of the other entity (the outer scope). Within the inner scope, the identifier
designates the entity declared in the inner scope; the entity declared in the outer scope is hidden (and
not visible) within the inner scope.

Unless explicitly stated otherwise, where this document uses the term “identifier” to refer to some
entity (as opposed to the syntactic construct), it refers to the entity in the relevant name space whose
declaration is visible at the point the identifier occurs.

32)S0 labels can not be used to jump in our out of lambda expressions.

modifications to ISO/IEC 9899:2018, § 6.2.1 page 30 Language



N2522 cmin..core § 6.2.2, working draft — May 10, 2020 CORE 202005 (E)

Two identifiers have the same scope if and only if their scopes terminate at the same point.

Structure, union, and enumeration tags have scope that begins just after the appearance of the
tag in a type specifier that declares the tag. Each enumeration constant has scope that begins
just after the appearance of its defining enumerator in an enumerator list. An identifier that has

an underspecified declarator and that designates an object has a scope that starts at the end of its
initializer; if the same identifier declares another entity in an surrounding scope, that declaration
is hidden as soon as the inner declarator is met.*” An identifier that designates a function with an
underspecified return type has a scope that starts after its first return statement if there is one, or

at the end of the function body if there is none, and from that point extends to the whole translation
unit. Any other identifier has scope that begins just after the completion of its declarator.

As a special case, a type name (which is not a declaration of an identifier) is considered to have
a scope that begins just after the place within the type name where the omitted identifier would
appear were it not omitted.

Forward references: declarations (6.7), function calls (6.5.2.2), function definitions (6.9.1), identifiers
(6.4.2), macro replacement (6.10.3), name spaces of identifiers (6.2.3), source file inclusion (6.10.2),
statements and blocks (6.8).

6.2.2 Linkages of identifiers

An identifier declared in different scopes or in the same scope more than once can be made to refer to
the same object or function by a process called linkage.*¥ There are three kinds of linkage: external,
internal, and none.

In the set of translation units and libraries that constitutes an entire program, each declaration of a
particular identifier with external linkage denotes the same object or function. Within one translation
unit, each declaration of an identifier with internal linkage denotes the same object or function. Each
declaration of an identifier with no linkage denotes a unique entity.

If the declaration of a file scope identifier for an object or a function contains the storage-class
specifier static, the identifier has internal linkage.*

For an identifier declared with the storage-class specifier extern in a scope in which a prior dec-
laration of that identifier is visible,*® if the prior declaration specifies internal or external linkage,
the linkage of the identifier at the later declaration is the same as the linkage specified at the prior
declaration. If no prior declaration is visible, or if the prior declaration specifies no linkage, then the
identifier has external linkage.

If the declaration of an identifier for a function has no storage-class specifier, its linkage is determined
exactly as if it were declared with the storage-class specifier extern. If the declaration of an identifier
for an object has file scope and no storage-class specifier or only the specifier auto , its linkage is

external, unless it has a lambda value, in which case it has internal linkage.

The following identifiers have no linkage: an identifier declared to be anything other than an object
or a function; an identifier declared to be a function parameter; a block scope identifier for an object
declared without the storage-class specifier extern.

If, within a translation unit, the same identifier appears with both internal and external linkage, the
behavior is undefined.

Forward references: declarations (6.7), expressions (6.5), external definitions (6.9), statements (6.8).

6.2.3 Name spaces of identifiers

If more than one declaration of a particular identifier is visible at any point in a translation unit,
the syntactic context disambiguates uses that refer to different entities. Thus, in translation phase 7
there are separate name spaces for various categories of identifiers, as follows:

39 That means, that the outer declaration is not visible for the initializer.

39 There is no linkage between different identifiers.

%) A function declaration can contain the storage-class specifier static only if it is at file scope; see 6.7.1.
36) As specified in 6.2.1, the later declaration might hide the prior declaration.

Language modifications to ISO/IEC 9899:2018, § 6.2.3 page 31



CORE 202005 (E) § 6.2.4, working draft — May 10, 2020 cmin..core N2522

— label names (disambiguated by the syntax of the label declaration and use);

— the tags of structures, unions, and enumerations (disambiguated by following any®” of the
keywords struct, union, or enum);

— the members of structures or unions; each structure or union has a separate name space for its
members (disambiguated by the type of the expression used to access the member via the . or
->—— operator);

— standard attributes and attribute prefixes (disambiguated by the syntax of the attribute
specifier and the name of the attribute token) (6.7.15);

— the attribute suffixes of an attribute prefixed token; each attribute prefix has a separate name
space for the implementation-defined attributes that it introduces (disambiguated by the
attribute prefix and the :: token);

— all other identifiers, called ordinary identifiers (declared in ordinary declarators or as enumera-
tion constants).

Forward references: enumeration specifiers (6.7.2.2), labeled statements (6.8.1), structure and union
specifiers (6.7.2.1), structure and union members (6.5.2.3), tags (6.7.2.3), attributes (6.7.15), the goto
statement (6.8.6.1).

6.2.4 Storage durations and object lifetimes

The lifetime of an object is-the-pertion-of program-exeet W ag
has a start and an end, which both constitute side effects in the abstract state machine, and is the
set of all evaluations that happen after the start and before the end. An object exists, has a storage

instance that is guaranteed to be reserved for it—An-ebjeetexists, has a constant address,*® if any,
and retains its last-stored value throughout its lifetime.3? -

its-lifetime-determined by its storage duration . There are four storage durations: static, thread,
automatic, and allocated. Allocated storage and its duration are described in 6.7.15.3 and 7.22.4,

Object definitions (6.7) do not have allocated storage duration and give rise to a unique storage
instance that has the same lifetime as the object that is defined. Members of an object of aggregate
or union type share the storage instance with their defining object. Objects that do not originate
from definitions and that are not explicitly created within a storage instance by means of effective
type, such as compound literals, string literals, or temporary objects may share or reuse storage
instances in unspecified ways, provided that the lifetime of the object is included in the lifetime of

the storage instance.*?)

An-The storage instance of an object whose identifier is declared without the storage-class specifier
=Thread-tocal;-thread_local, and either with external or internal linkage or with the storage-
class specifier statie,-static, has static storage duration —Its-, as do storage instances for strin

literals, and some compound literals and lambda values. The lifetime is the entire execution of the
program and its stored value is initialized only once, prior to program startup.

An-The storage instance of an object whose identifier is declared with the storage-class specifier
=Thread=tocalt-thread_local has thread storage duration. Its lifetime is the entire execution of the
thread for which it is created, and its stored value is initialized when the thread is started. There

37)There is only one name space for tags even though three are possible.

38)The term “constant address” means that two pointers to the object constructed at possibly different times will compare
equal. The address can be different during two different executions of the same program.

3)In the case of a volatile object, the last store need not be explicit in the program.

40[n particular, such an object need not have a unique address, and, if suitable for their concrete value, string literals,

compound literals or certain objects with temporary lifetime may overlap.

modifications to ISO/IEC 9899:2018, § 6.2.4 page 32 Language



10

N2522 cmin..core § 6.2.5, working draft — May 10, 2020 CORE 202005 (E)

is a distinct ebjeetinstance of the object and associated storage per thread, and use of the declared
name in an expression refers to the object associated with the thread evaluating the expression. The

result of attempting to indirectly access an object with thread storage duration from a thread other
than the one with which the object is associated is implementation-defined.

An-The storage instance of an object whose identifier is declared with no linkage and without the
storage-class specifier static has automatic storage duration, as de-are storage instances of temporary
objects and some compound literals —or lambda values. The result of attempting to indirectly access
an object with automatic storage duration from a thread other than the one with which the object is
associated is implementation-defined.

For such an object that does not have a variable length array type, its lifetime extends from entry
into the block with which it is associated until execution of that block ends in any way. (Entering an
enclosed block or calling a function suspends, but does not end, execution of the current block.) If
the block is entered recursively, a new instance of the object and associated storage is created each
time. The initial value of the object is indeterminate. If an initialization is specified for the object, it
is performed each time the declaration or compound literal is reached in the execution of the block;
otherwise, the value becomes indeterminate each time the declaration is reached.

For such an object that does have a variable length array type, its lifetime extends from the declaration
of the object until execution of the program leaves the scope of the declaration.*) If the scope is
entered recursively, a new instance of the object and associated storage is created each time. The
initial value of the object is indeterminate.

A non-lvalue expression with structure or union type, where the structure or union contains a
member with array type (including, recursively, members of all contained structures and unions)
refers to an-ebjeeta temporary object with automatic storage duration and temporary lifetime.*? Tts
lifetime begins when the expression is evaluated and its initial value is the value of the expression.
Its lifetime ends when the evaluation of the containing full expression ends. Any attempt to modify
an object with temporary lifetime results-in-has undefined behavior. An object with temporary
lifetime behaves as if it were declared with the type of its value for the purposes of effective type.

Such-an-object need-nothave-aunique-address—

NOTE C and C++ diverge on their concepts for auxiliary objects. In particular in C++ there is no concept that would be
similar to compound literals in C, namely of a temporary unnamed object that has a lifetime of the surrounding scope. In
Croall temporary objects are more similar to objects of temporary storage duration as they are defined above, only that
references to them may be taken without restriction on the type.

If addresses of compound literals are taken and passed into functions, they may leak to places in the program that are
difficult to foresee. To be portable in the C/C++ core, application code should always ensure that addresses of compound
literals are not used in a wider range than within the expression in which they are defined.

Implementations are invited, as much as this is possible, to diagnose the usage of compound literals outside of their

Forward references: object definitions (6.7), aggregate or union type (6.2.5), array declarators
(6.7.8.2), compound literals (6.5.2.5), declarators (6.7.8), function calls (6.5.2.2), initialization (6.7.12),

statements (6.8), effective type (6.5).

6.2.5 Types

The meaning of a value stored in an object or returned by a function is determined by the type of the
expression used to access it. (An identifier declared to be an object is the simplest such expression;
the type is specified in the declaration of the identifier.) Types are partitioned into object types (types
that describe objects) and function types (types that describe functions). At various points within a
translation unit an object type may be incomplete (lacking sufficient information to determine the
size of objects of that type) or complete (having sufficient information).*> Additionally, there are

4D Leaving the innermost block containing the declaration, or jumping to a point in that block or an embedded block prior
to the declaration, leaves the scope of the declaration.

#2)The address of such an object is taken implicitly when an array member is accessed.

#3) A type can be incomplete or complete throughout an entire translation unit, or it can change states at different points
within a translation unit.

Language modifications to ISO/IEC 9899:2018, § 6.2.5 page 33



10

11

12

CORE 202005 (E) § 6.2.5, working draft — May 10, 2020 cmin..core N2522

opaque object types that are types that have internal state but no accessible value.*¥
An object declared as type =Beot-bool is large enough to store the values 6-and-tfalse and true.

An object declared as type char is large enough to store any member of the basic execution character
set. If a member of the basic execution character set is stored in a char object, its value is guaranteed
to be nonnegative. If any other character is stored in a char object, the resulting value is implemen-
tation-defined but shall be within the range of values that can be represented in that type.

There are five standard signed integer types, designated as signed char, short int, int, long int,
and long long int. (These and other types may be designated in several additional ways, as
described in 6.7.2.) There may also be implementation-defined extended signed integer types.*> The
standard and extended signed integer types are collectively called signed integer types.*

An object declared as type signed char occupies the same amount of storage as a “plain” char
object. A “plain” int object has the natural size suggested by the architecture of the execution
environment (large enough to contain any value in the range INT_MIN to INT_MAX as defined in the
header <limits.h>).

For each of the signed integer types, there is a corresponding (but different) unsigned integer type
(designated with the keyword unsigned) that uses the same amount of storage (including sign
information) and has the same alignment requirements. The type =Beot-bool and the unsigned
integer types that correspond to the standard signed integer types are the standard unsigned integer
types. The unsigned integer types that correspond to the extended signed integer types are the
extended unsigned integer types. The standard and extended unsigned integer types are collectively
called unsigned integer types.*”

The standard signed integer types and standard unsigned integer types are collectively called the
standard integer types; the extended signed integer types and extended unsigned integer types are
collectively called the extended integer types.

For any two integer types with the same signedness and different integer conversion rank (see
6.3.1.1), the range of values of the type with smaller integer conversion rank is a subrange of the
values of the other type.

The range of nonnegative values of a signed integer type is a subrange of the corresponding unsigned
integer type, and the representation of the same value in each type is the same.*® A computation
involving unsigned operands can never overflow, because a result that cannot be represented by the
resulting unsigned integer type is reduced modulo the number that is one greater than the largest
value that can be represented by the resulting type.

There are three real floating types, designated as float, double, and long double.* The set of
values of the type float is a subset of the set of values of the type double; the set of values of the
type double is a subset of the set of values of the type long double.

There are three complex types, designated as fteat—Compltex,—complex_type(float),

deub%e—eemplce#complex_t doub'Le and{engﬁleubke—eemp%e* complex_type(long double
ond 10-8:2— The real

ﬂoatmg and complex types are collectlvely called the ﬂoatzng types

For each floating type there is a corresponding real type, which is always a real floating type. For real

floating types, it is the same type. For complex types, it is the typegivenbydeleting-the keyword

“Opaque types defined by this specification are atomic_flag, cnd_t, fenv_t, fexcept_t, FILE, jmp_buf, mtx.t,
once_flag, va_list, and void, which are complete types_and aggregate or union types that are entirely composed of
such types. Opaque types can be complete, such that objects of such a type can be defined and initialized, and such that
the decltype, sizeof, alignof and address-of operators can be applied to them, but they are such that no other operation
such as evaluation or assignment is defined for them. In particular, opague types can neither be copied by assignment, nor,
unless specified otherwise, by memcpy or byte-wise copy.

45)Implementation-defined keywords have the form of an identifier reserved for any use as described in 7.1.3.

46)Therefore, any statement in this document about signed integer types also applies to the extended signed integer types.

47)Therefore, any statement in this document about unsigned integer types also applies to the extended unsigned integer
types.

48)The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,
return values from functions, and members of unions.

49)See “future language directions” (6.11.1).

modifications to ISO/IEC 9899:2018, § 6.2.5 page 34 Language



13

14

15

16

17

18

19

20

N2522 cmin..core § 6.2.5, working draft — May 10, 2020 CORE 202005 (E)

—Complex-from-the typenamefloating type from which it is derived when using the complex_type

macro as above.

Each complex type has the same representation and alignment requirements as an array type
containing exactly two elements of the corresponding real type; the first element is equal to the real
part, and the second element to the imaginary part, of the complex number.

The type char, the signed and unsigned integer types, and the floating types are collectively called
the basic types. The basic types are complete object types. Even if the implementation defines two or
more basic types to have the same representation, they are nevertheless different types.>")

The three types char, signed char, and unsigned char are collectively called the character types.
The implementation shall define char to have the same range, representation, and behavior as either
signed char or unsigned char.®?

An enumeration comprises a set of named integer constant values. Each distinct enumeration
constitutes a different enumerated type.

The type char, the signed and unsigned integer types, and the enumerated types are collectively
called integer types. The integer and real floating types are collectively called real types.

Integer and floating types are collectively called arithmetic types.’? Each arithmetic type belongs to
one type domain: the real type domain comprises the real types, the complex type domain comprises the
complex types.

The void type comprises an empty set of values; it is an-incomplete-object-type-thatcannot-be
completeda complete opaque object type with a size of 1.

Any number of derived types can be constructed from the object and function types, as follows:

— An array type describes a contiguously allocated nonempty set of objects with a particular
member object type, called the element type. The element type shall be complete whenever the
array type is specified. Array types are characterized by their element type and by the number
of elements in the array. An array type is said to be derived from its element type, and if its
element type is T, the array type is sometimes called “array of T”. The construction of an array
type from an element type is called “array type derivation”.

— A structure type describes a sequentially allocated nonempty set of member objects (and, in
certain circumstances, an incomplete array), each of which has an optionally specified name
and possibly distinct type.

— A union type describes an overlapping nonempty set of member objects, each of which has an
optionally specified name and possibly distinct type.

— A lambda type is a complete object type that describes the value of a lambda expression. A
lambda type is characterized but not determined by a return type that is inferred from the
function body of the lambda expression, and by the number, order, and type of parameters
that are expected for function calls.

— A function type describes a function with specified return type. A function type is characterized
by its return typeand-the number, the number, order and types of its parameters. A function
type is said to be derived from its return type, and if its return type is T, the function type is
sometimes called “function returning T”. The construction of a function type from a return
type is called “function type derivation”.

— A pointer type may be derived from a function type or an object type, called the referenced type. A
pointer type describes an object whose value provides a reference to an entity of the referenced

50) An implementation can define new keywords that provide alternative ways to designate a basic (or any other) type; this
does not violate the requirement that all basic types be different. Implementation-defined keywords have the form of an
identifier reserved for any use as described in 7.1.3.

51 CHAR_MIN, defined in <limits.h>, will have one of the values 0 or SCHAR_MIN, and this can be used to distinguish the
two options. Irrespective of the choice made, char is a separate type from the other two and is not compatible with either.

52) Annex H documents the extent to which the C language supports the ISO/IEC 10967-1 standard for language-
independent arithmetic (LIA-1).

Language modifications to ISO/IEC 9899:2018, § 6.2.5 page 35



21

22

23

24

25

26

27

CORE 202005 (E) § 6.2.5, working draft — May 10, 2020 cmin..core N2522

type. If the type is an object type, the pointer also carries a provenance, typically identifying
the storage instance holding the corresponding object, if any. A pointer value is valid if and
and the address is either within or one-past the addresses of that storage instance. It is null

to indicate that it does not refer to such a function or object,”® and indeterminate otherwise.
A pointer type derived from the referenced type T is sometimes called “pointer to T”. The

construction of a pointer type from a referenced type is called “pointer type derivation”. A

pointer type is a complete object type.” Under certain circumstances a pointer value can have
an address that is the end address of one storage instance and the start address of another. It
(and any pointer value derived from it by means of arithmetic operations) shall then only be
used with one and the same of these provenances as operand to subsequent operations that
require a provenance.

— An atomic type describes the type designated by the construct —Atemiec{type-naie)—(Atomic
types—are-a—conditional-feature-that-implementations—atomic_type(type-name). need—not
support-see-6:-10-8:2—)-The representation, size and set of admissible values of an atomic

type is the same as the type from which it is derived, but alienment requirements may be
more strict,

These methods of constructing derived types can be applied recursively.

Arithmetic types and pointer types are collectively called scalar types. Array and structure types are
collectively called aggregate types.>®

An array type of unknown size is an incomplete type. It is completed, for an identifier of that type,
by specifying the size in a later declaration (with internal or external linkage). A structure or union
type of unknown content (as described in 6.7.2.3) is an incomplete type. It is completed, for all
declarations of that type, by declaring the same structure or union tag with its defining content later

in the same scope. An aggregate or union type is opaque, if all of its members are opaque.
A type has known constant size if the type is not incomplete and is not a variable length array type.

Array, function, and pointer types are collectively called derived declarator types. A declarator type
derivation from a type T is the construction of a derived declarator type from T by the application of
an array-type, a function-type, or a pointer-type derivation to T.

A type is characterized by its type category, which is either the outermost derivation of a derived
type (as noted above in the construction of derived types), or the type itself if the type consists of no
derived types.

Any type so far mentioned is an unqualified type. Each unqualified type has several qualified versions
of its type,®® corresponding to the combinations of one ;twe,eralt-three-or two of the const -
volatile andrestriectand volatile qualifiers. The qualified or unquahfled versions of a type
are distinct types that belong to the same type category and have the same representation and
alignment requirements.””) A derived type is not qualified by the qualifiers (if any) of the type from
which it is derived.

5Y A pointer object can be null by implicit or explicit initialization or assignment with a null pointer constant or by another
null pointer value. A pointer value can be null if it is either a null pointer constant or the result of an lyalue conversion of a
null pointer object. A null pointer will not appear as the result of an arithmetic operation.

*The provenance of a pointer value and the property that such a pointer value is indeterminate are generally not
observable. In particular, in the course of the same program execution the same pointer representation (6.2.6) may refer
to objects with different provenance and may sometimes be valid and sometimes be indeterminate. Yet, this information is
part of the abstract state machine and may restrict the set of operations that can be performed on the pointer.

%5)Note that aggregate type does not include union type because an object with union type can only contain one member at
a time.

%6)See 6.7.3 regarding qualified array and function types.

57)The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,
return values from functions, and members of unions.

modifications to ISO/IEC 9899:2018, § 6.2.5 page 36 Language



28

29

30

N2522 cmin..core § 6.2.5.1, working draft — May 10, 2020 CORE 202005 (E)

A pointer to void shall have the same representation and alignment requirements as a pointer to a
character type.””) Similarly, pointers to qualified or unqualified versions of compatible types shall
have the same representation and alighment requirements. All pointers to structure types shall have
the same representation and alignment requirements as each other. All pointers to union types shall
have the same representation and alignment requirements as each other. Pointers-to-other-types

neednotlt is implementation-defined if other groups of pointer types have the same representation

or alignment requirements.>®

NOTE Neither C nor C++ currently have the explicit concept of opaque types. It is introduced here, such that this core
specification may better accommodate C with the implicit initialization properties that C++ provides for types that are not
copyable.

EXAMPLE 1 The type designated as “float *” has type “pointer to float”. Its type category is pointer, not a floating type.
The const-qualified version of this type is designated as “float * const” whereas the type designated as “const float *”
is not a qualified type — its type is “pointer to const-qualified float” and is a pointer to a qualified type.

EXAMPLE 2 The type designated as “struct tag (*[5]) (float)” has type “array of pointer to function returning
struct tag”. The array has length five and the function has a single parameter of type float. Its type category is array.

Forward references: compatible type and composite type (6.2.7), declarations (6.7), predefined
macros (6.10.8).

6.2.5.1 Predefined types
The following types shall be defined with the indicated names:

type. name integer category
decltype(nullptr) nullptr_t | none
decltype(((charx)0)-((charx)0) ptrdiff_t | signed
decltype(sizeof 1) size_t unsigned
decltype(+L""[0]) wchar_t | signed or unsigned
decltype(+u8""[0]) char8_t character
decltype(+u”"[0]) charl6_t | unsigned
decltype(+U""[0]) char32_t | unsigned

It is implementation-defined if any of these, other than nullptr_t, represent proper types or are
provided as an alias as if by typedef to one of the basic integer types as previously defined. If any
such type is a proper type, the value of the corresponding feature test macro in 6.10.8.1 expands to
true and the type is added to the type categories (and all categories that include any of these) as
specified. If the category is signed, there shall be a corresponding unsigned integer type that is also
a proper type; if the category is unsigned, there shall be a corresponding signed integer type that
is also a proper type. If such a type has a width less than or equal to int, it has a conversion rank
lower than int. Otherwise it has a conversion rank that is different from any other integer type,
and, if it has a width that is less than or equal to the width of an integer type 7' other than one of

those defined in this subclause as a proper type, its conversion rank is less than or equal to the rank
of 7.5

These types shall have the following properties:

— nullptr_t is the type of the nullptr constant. This is an unspecified type that has the same

— ptrdiff_t is a signed integer type that is the result of subtracting two pointers.

— size_t is the unsigned integer type that is the result of the sizeof operator, the alignof
operator and the offsetof macro.

58) An implementation might represent all pointers the same and with the same alignment requirements.

59)These rules are chosen, such that promotion and arithmetic conversion has not to take special considerations for these
types.

Language modifications to ISO/IEC 9899:2018, § 6.2.5.1 page 37



CORE 202005 (E) § 6.2.6, working draft — May 10, 2020 cmin..core N2522

— wchar_t is an integer e whose range of values can represent distinct codes for all members

of the largest extended character set specified among the supported locales; the null character
shall have the code value zero. Each member of the basic character set shall have a code value
equal to its value when used as the lone character in an integer character constant. It is imple-

mentation-defined if wchar_t is any of the basic integer types as defined above or if it is
distinct from these.

— char8_t is an integer type used to encode the bytes of UTF-8 multi-byte characters as defined
by ISO/IEC 10646.99 It has the same alienment and representation as a character type.

— charl6_t is an unsigned integer type used for UTF-16 encoded characters as defined b
ISO/IEC 10646. It has the same alignment and representation as uint_least16_t (described
in 7.20.1.1).

— char32_t is an unsigned integer type used for UTF-32 encoded characters as defined b
ISO/IEC 10646. It has the same alignment and representation as uint_least32_t (also
described in 7.20.1.1).

Additionally there is max_align_t, which is an object type whose alienment is the greatest
fundamental alienment,

NOTE For C, these identifiers are usually typedef, traditionally provided through C library headers. In particular char8_t
is one of the character es, and charl6_t and char32_t have the same type as uint_leastl6_t and uint_least32_t,

respectively. C++ has nullptr_t, wchar_t, char8_t, charl6_t and char32_t as proper types that are distinct from an
other basic type.

Recommended practice

The types used for size_t and ptrdiff_t should not have an integer conversion rank greater
than that of signed long int unless the implementation supports objects large enough to make
this necessary.

mandatory type and value macros .

6.2.6 Representations of types

6.2.6.1 General
The representations of all types are unspecified except as stated in 6.2.5 and in this subclause.

An object is represented (or held) by a storage instance (or part thereof) that is either created by
an allocation (for allocated storage duration), at program startup (for static storage duration), at
thread startup (for thread storage duration), or when the lifetime of the object starts (for automatic
storage duration).

Exeeptfor bit-fields, objects-An addressable storage instance®’of size m provides access to a byte
array of length m. All bytes of the array have an abstract address , which is a non-negative integer
value that is determined in an implementation-defined manner. The abstract addresses of the bytes
are increasing with the ordering within the array, and they shall be unique and constant during
the lifetime. The address of the first byte of the array is the start address of the storage instance,
the address one element beyond the array at index m is its end address . The abstract addresses of
the bytes of all storage instances of a program execution form its address space . A storage instance
Y _follows storage instance X if the start address of Y is greater or equal than the end address of
X, and it follows immediately if they are equal. During the common lifetime of any two distinct
addressable storage instances X and Y, either Y follows X or X follows Y in the address space.
This document imposes no other constraints about such relative position of addressable storage
instances whenever they are created.®”

*This effectively means that such characters that have a one-byte UTF-8 encoding are encoded using an ASCI encoding.

*DAIl storage instances that do not originate from an object definition with core : noalias attribute are addressable by
using the pointer value that was returned by their allocation (for allocated storage duration) or by applying the address-of
operator & (6.5.3.2) to the object that gave rise to their definition (for other storage durations).

62)This means that no relative ordering between storage instances and the objects they represent can be deduced from

modifications to ISO/IEC 9899:2018, § 6.2.6.1 page 38 Language



N2522 cmin..core § 6.2.6.1, working draft — May 10, 2020 CORE 202005 (E)

3 Unless stated otherwise, a storage instance is exposed if a pointer value p of effective type Tx with
.63)

this provenance is used in the following contexts:

64)

— Any byte of the object representation of p is used in an expression.
— Any byte of the object representation of p is passed to the fwrite library function.

— pis converted to an integer.

— PRlisused as an argument to a %p conversion specifier of the printf family of library functions.

— pis used as an argument to the totext type-generic macro or any of the related features such
that a textual conversion of the pointer value is stored or written ot an output stream.

Other provisions of this document not withstanding, if the object representation of p is read through
an lvalue of a pointer type S* that has the same representation and alignment requirements as T*,
that Ivalue has the same provenance as p and the provenance is not exposed.” Exposure of a
storage instance is irreversible and constitutes a side effect in the abstract state machine._

4  Unless stated otherwise, pointer value p is synthesized if it is constructed by one of the following:®

— Any byte of the object representation of p is changed

e by an explicit byte operation

e by type punning with a non-pointer object or with a pointer object that only partiall
overlaps,

e or by a call to memcpy or similar function that does not write the entire pointer
representation or where the source object does not have an effective pointer type.

— Any byte of the object representation of p is passed to the fread library function.
— p s converted from an integer value.
— p.is used as an argument to a %p conversion specifier of the scanf family of library functions.

Special provisions in the respective clauses clarify when such a synthesized pointer is a null, valid,

or indeterminate.

5  Objects are composed of contiguous sequences of one or more bytes, the number, order, and encoding
of which are either explicitly specified or implementation-defined.

6  ValuesstoredHinunsignedbit-fields-and-objeets-Objects of type unsigned char shall be represented

using a pure binary notation.®”)

7 Values stored in nen-bit-field-objects of any other object type consist of n x CHAR_BIT bits, where n is
the size of an object of that type, in bytes. Thevalue- may-becopied-into-an-objectof-type Converting

syntactic properties of the program (such as declaration order or order inside a parameter list) or sequencing properties of
the execution (such as one instantiation happening before another).

*Pointer values with exposed provenance may alias in ways that cannot be predicted by simple data flow analysis.

*"'The exposure of bytes of the object representation can happen through a conversion of the address of a pointer object
containing p to a character type and a subsequent access to the bytes, or by storing p in a union that allows access to all
or parts of the object representation by means of a type that is not a pointer type or by a pointer type that gives rise to a
different object representation.

*»This means that pointer members in a union can be used to reinterpret representations of different character and void
pointers, different struct pointers, different union pointers or pointers with differently qualified target types.

*"Pointer values with synthesized provenance may alias in ways that cannot be predicted by simple data flow analysis.

67 A positional representation for integers that uses the binary digits 0 and 1, in which the values represented by successive
bits are additive, begin with 1, and are multiplied by successive integral powers of 2, except perhaps the bit with the highest
position. (Adapted from the American National Dictionary for Information Processing Systems.) A byte contains CHAR_BIT bits,
and the values of type unsigned char range from 0 to 2¢HAR-BIT _ 1,

Language modifications to ISO/IEC 9899:2018, § 6.2.6.1 page 39



10

11

12

CORE 202005 (E) § 6.2.6.2, working draft — May 10, 2020 cmin..core N2522

wmmm
ﬁ%&%&ﬁ%%&%&%&%ﬁ%&dﬁeeﬂsﬁ%%ﬁmm
the value of the object; the position of the first byte of these in the byte array is the size specified

for-the-bit-fieldbyte offset of the object in its storage instance, the converted address is called the byte
address of the object, and the set of b tes is called the ob]ect representatzon Qvfjbﬁv‘l@lll,@ The ob]ect

representation i

may be used to copy the Value of the ob ect 1nto another object (e.g., by memc Two Values (other

than NaNs) with the same object representation compare equal, but values that compare equal may

have different object representations. The object representations of pointers and how they relate to
the abstract addresses they represent are not further specified by this document.

Certam ob]ect representatlons need not represent a value of the ob]ect type If the stored-valueofan

type,«the—behaviefi&uﬂdeﬁﬂeektﬁsuch a representatlon is produced by a side effect that modlﬁes

all or any part of the object by an lvalue expression that does not have character type, the behavior
is undefined.®® Such a representation is called a trap representation.

When a value is stored in an object of structure or union type, including in a member object, the
bytes of the object representation that correspond to any padding bytes take unspecified values and
bytes that correspond to opaque members have an indeterminate state.””) The value of a structure
or union object is never a trap representation, even though the value of a member of the structure or
union object may be a trap representation.

When a value is stored in a member of an object of union type, the bytes of the object representation
that do not correspond to that member but do correspond to other members take unspecified values.

Where an operator is applied to a value that has more than one object representation, which object
representation is used shall not affect the value of the result.””” Where a value is stored in an object
using a type that has more than one object representation for that value, it is unspecified which
representation is used, but a trap representation shall not be generated.

Loads-and-stores—of-objeets—with-atomietypes-All operations on atomic objects are-dene-with—
memory—erder—seg=est-semanties—that do not specify otherwise have memory_order_seq_cst

memory consistency. If an operation with identical values on the non-atomic type is erroneous,”?

the atomic operation results in an unspecific object representation, that may or may not be an
invalid value for the type, such as an invalid address or a floating point NaN. Thereby such an

operation may by itself never raise a signal, a trap, or result otherwise in an interruption of the
control flow.”

Forward references: declarations (6.7), expressions (6.5), address and indirection operators
6.5.3.2), lvalues, arrays, and function designators (6.3.2.1), order and consistency (7.17.3),

input/output (7.21).

6.2.6.2 Integer types

For unsigned integer types the bits of the object representation shall be divided into two groups:
value bits and padding bits. If there are IV value bits, each bit shall represent a different power of
2 between 1 and 2V}, so that objects of that type shall be capable of representing values from 0
to 2V — 1 using a pure binary representation; this shall be known as the value representation. The
values of any padding bits are unspecified.The number of value bits NV is called the width of the

68)Thus, an automatic variable can be initialized to a trap representation without causing undefined behavior, but the value
of the variable cannot be used until a proper value is stored in it.

6)Thus, for example, structure assignment need not copy any padding bits or members that have an opaque type.

"t is possible for objects x and y with the same effective type T to have the same value when they are accessed as objects
of type T, but to have different values in other contexts. In particular, if = is defined for type T, then x = y does not imply.
that mememp (\&x, \&y, sizeof (T)) =0.Furthermore, X =y does not necessarily imply that X and y have the same
value; other operations on values of type T might distinguish between them.

"DSuch erroneous operations may for example incur arithmetic overflow, division by zero or negative shifts.

72Whether or not an atomic operation may be interrupted by a signal depends on the lock-free property of the underlyin
type.

modifications to ISO/IEC 9899:2018, § 6.2.6.2 page 40 Language



N2522 cmin..core § 6.2.7, working draft — May 10, 2020 CORE 202005 (E)

unsigned integer type. There need not be any padding bits; unsigned char shall not have any
padding bits.

For signed integer types, the bits of the object representation shall be divided into three groups:
value bits, padding bits, and the sign bit. If the corresponding unsigned type has width NN, the
signed type uses the same number of IV bits, its width, as value bits and sign bit. N — 1 are value
bits and the remaining bit is the sign bit. Each bit that is a value bit shall have the same value as the
same bit in the object representation of the corresponding unsigned type. If the sign bit is zero, it
shall not affect the resulting value. If the sign bit is one, it has value —(2¥~1). There need not be any
padding bits; signed char shall not have any padding bits.

The values of any padding bits are unspecified. A valid (non-trap) object representation of a signed
integer type where the sign bit is zero is a valid object representation of the corresponding unsigned
type, and shall represent the same value. For any integer type, the object representation where all
the bits are zero shall be a representation of the value zero in that type.

The precision of an integer type is the number of value bits.

NOTE 1 Some combinations of padding bits might generate trap representations, for example, if one padding bit is a parity
bit. Regardless, no arithmetic operation on valid values can generate a trap representation other than as part of an exceptional
condition such as an overflow, and this cannot occur with unsigned types. All other combinations of padding bits are
alternative object representations of the value specified by the value bits.

NOTE 2 The sign representation defined in this document is called two’s complement. Previous revisions of this document
additionally allowed other sign representations.

NOTE 3 For unsigned integer types the width and precision are the same, while for signed integer types the width is one
greater than the precision.

6.2.7 Compatible type and composite type

Two types have compatible type if their types are the same. Additional rules for determining whether
two types are compatible are described in 6.7.2 for type specifiers, in 6.7.3 for type qualifiers, and in
6.7.8 for declarators.”) Moreover, two structure, union, or enumerated types declared in separate
translation units are compatible if their tags and members satisfy the following requirements: If
one is declared with a tag, the other shall be declared with the same tag. If both are completed
anywhere within their respective translation units, then the following additional requirements
apply: there shall be a one-to-one correspondence between their members such that each pair of
corresponding members are declared with compatible types; if one member of the pair is declared
with an alignment specifier, the other is declared with an equivalent alignment specifier; and if
one member of the pair is declared with a name, the other is declared with the same name. For
two structures, corresponding members shall be declared in the same order —For-two-strueturesor
unions,corresponding bit-fields-shall-and have the same widthscore:: noalias and core::alias

attributes. For two enumerations, corresponding members shall have the same values.

All declarations that refer to the same object or function shall have compatible type; otherwise, the
behavior is undefined.

A composite type can be constructed from two types that are compatible; it is a type that is compatible
with both of the two types and satisfies the following conditions:

— If both types are array types, the following rules are applied:

o If one type is an array of known constant size, the composite type is an array of that size.

o Otherwise, if one type is a variable length array whose size is specified by an expression
that is not evaluated, the behavior is undefined.

e Otherwise, if one type is a variable length array whose size is specified, the composite
type is a variable length array of that size.

o Otherwise, if one type is a variable length array of unspecified size, the composite type is
a variable length array of unspecified size.

o Otherwise, both types are arrays of unknown size and the composite type is an array of
unknown size.

73 Two types need not be identical to be compatible.

Language modifications to ISO/IEC 9899:2018, § 6.2.7 page 41



CORE 202005 (E) § 6.2.8, working draft — May 10, 2020 cmin..core N2522

The element type of the composite type is the composite type of the two element types.

— If only one type is a function type with a parameter type list (a function prototype), the
composite type is a function prototype with the parameter type list.

— If both types are function types with parameter type lists, the type of each parameter in the
composite parameter type list is the composite type of the corresponding parameters.

These rules apply recursively to the types from which the two types are derived.

For an identifier with internal or external linkage declared in a scope in which a prior declaration of
that identifier is visible,” if the prior declaration specifies internal or external linkage, the type of
the identifier at the later declaration becomes the composite type.

Forward references: array declarators (6.7.8.2).

EXAMPLE Given the following two file scope declarations:

int f(int (x)(), double (x)[3]);
int f(int (x)(char ), double (x)[]);

The resulting composite type for the function is:

| int f(int () (char ), double (x)[31);

6.2.8 Alignment of objects

Complete object types have alignment requirements which place restrictions on the addresses at
which objects of that type may be allocated. An alignment is an implementation-defined integer
value representing the number of bytes between successive addresses at which a given object can be
allocated. An object type imposes an alignment requirement on every object of that type: stricter
alignment can be requested using the —Atignas-alignas keyword.

A fundamental alignment is a valid alignment less than or equal to -Atignef{max=atign=t)-
alignof (max_align_t) . Fundamental alignments shall be supported by the implementation
for objects of all storage durations. The alignment requirements of the following types shall be
fundamental alignments:

— all atomic, qualified, or unqualified basic types;

— all atomic, qualified, or unqualified enumerated types;

— all atomic, qualified, or unqualified pointer types;

— all array types whose element type has a fundamental alignment requirement;
— all types specified in Clause 7 as complete object types;

— all structure or union types all of whose elements have types with fundamental alignment
requirements and none of whose elements have an alignment specifier specifying an alignment
that is not a fundamental alignment.

An extended alignment is represented by an alignment greater than —Atignef{max=altign=t)-
alignof (max_align_t) . It is implementation-defined whether any extended alignments are

supported and the storage durations for which they are supported. A type having an extended
alignment requirement is an over-aligned type.”

Alignments are represented as values of the type size_t. Valid alignments include only fundamental
alignments, plus an additional implementation-defined set of values, which may be empty. Every
valid alignment value shall be a nonnegative integral power of two.

74 As specified in 6.2.1, the later declaration might hide the prior declaration.
75)Every over-aligned type is, or contains, a structure or union type with a member to which an extended alignment has
been applied.

modifications to ISO/IEC 9899:2018, § 6.2.8 page 42 Language



N2522 cmin..core § 6.2.9, working draft — May 10, 2020 CORE 202005 (E)

Alignments have an order from weaker to stronger or stricter alignments. Stricter alignments have
larger alignment values. An address that satisfies an alignment requirement also satisfies any weaker
valid alignment requirement.

The alignment requirement of a complete type can be queried using an —Atignef-alignof ex-
pression. The types char, signed char, and unsigned char shall have the weakest alignment
requirement.

Comparing alignments is meaningful and provides the obvious results:

— Two alignments are equal when their numeric values are equal.
— Two alignments are different when their numeric values are not equal.

— When an alignment is larger than another it represents a stricter alignment.

6.2.9 Mutual representability of types and objects

For the purpose of interoperability between functions and their callers, in the above clauses
and in some library clauses, several representations of types are required to be the same. Type
representability extends this concept to aggregate and union types. When restricted to types such
that no members or elements are pointers, flexible array members, atomics, or opaque types the
concept of representability models a situation that is similar to type punning through unions. The
type of union member A can be represented by the type of a wider union member B, if for any
valid representation for the type of B, union member A can be modified in any permitted way and
the result remains a valid representation for B.

NOTE This document requires that the following groups of types have the same representation:

— Qualified versions of the same type.
76)

— Integer types with same width that have no padding bits.’
— Complex types and two element vectors of the corresponding real type.
— Pointers to character types and void.

— Pointers to structure types.

— Dointers to union types.

— The atomic integer types (7.17.6) and their corresponding direct type.

Other types may form such groups or some of the above groups might fuse to larger groups with the same representation in
an implementation-defined way. For example many implementations with a flat address space represent all pointers (data

and function) the same. For types that contain no pointers, such implementation-defined properties of representations

should only have an impact for the following definitions by the sizes of integer es, and by the fact of whether or not
these have padding. On the other hand, definitions for types that contain pointer types to non-character types as elements
or members are strongly affected by implementation specific choices concerning representations of pointers.

A type is primitive if it is not an aggregate or union type. If 7" is an aggregate or union type, a direct
leaf is a pack or an element or member e, if it is primitive or a flexible array member; a leaf of T is a
direct leaf of T or recursively a leaf of one of its elements or members. The offset o(7’, ¢) of a leaf e

in T is is the byte offset of e in an object of type 7.77

An interval I of a type 7 is a construct to describe sequences of adjacent elements that have all the
same representation as 7 such that an array of type 7[k] can stand in for the whole sequence:

— For T’ an aggregate or union type, an interval I of an arithmetic type 7 is a sequence of k
leafs all having the same representation as 7 and such that they follow each other in the
representation of 7 without padding”® The interval array type A(I) is 7[k], the size of the
interval is sizeof (A(])) and the offset o(7. I) of the interval is the offset of its first element.

— A pack e may only occur as the single element of an interval / said to have the size s and offset
of the pack and the interval array type A(J) then are both void[s].

n particular, char, signed char and unsigned char have the same representation.

Note that a union type in general has several leaves at offset 0, and so types that recursively contain union types ma
have several leaves at a particular offset.
78 Thatis o(T, e;+1)is o(T,e;) + sizeof (t) for all 4.

76) I
77)

Language modifications to ISO/IEC 9899:2018, § 6.2.9 page 43



CORE 202005 (E) § 6.2.9, working draft — May 10, 2020 cmin..core N2522

— A flexible array member e of type s[ ] may only occur as the single element of an interval [

said to be of infinite size and the type of the interval and the interval array type A(I) then are

— Any other member e with type 7 of an aggregate or union type forms an interval I (e) of its
own, with A(I) being of type 7[1] and offset o(T, ¢).

— If T itself is a primitive type it is said to be its own leaf, it has exactly one interval, (T), with
interval array T[1] and offset 0.

An interval partition T of T is a partition of the set of leaves of T into intervals.””

We say that an interval partition Z of one type embeds in a partition J of another type if intervals
of 7 can be mapped on intervals of .7 by respecting offset and size, that is if 7 has the same
decomposition into “arrays” of storage units. More precisely, let T and S be two types and 7
and 7 be interval partitions for 7' and 3, respectively. A mapping f :Z — J is an embedding of T'

into S if forall I € Z, I and f(I) are intervals of the same offset and size,” and for all J € 7 with
0(S,J) < sizeof (T') thereis I € Z with J = f(I).

To extend embeddability to representations, we will use recursion on the structure of the types.
For the bottom of this recursion we first consider array types, ¢[N] and s[M], that have the same
size (sizeof (¢{[N]) = sizeof (s[)M])) and such that ¢ and s are primitive types. {[IV] is said to be
representable by s[AM] if s has no more qualifiers than ¢ and if one of the following holds:

— t and s are compatible types.
— t and s are basic types and have the same representation.

— t and s are pointers to character type or void, u* and vx, respectively, such that v has no more
ualifiers than u.

— One of t or s is a complex type and the other is the corresponding real type.
— Both ¢ and s are integer types without padding.

If both have the same qualifiers, the array types are said to be mutually representable.8V)

To extend this notion recursively to be arbitrary object types T and S, we assume that S does not
have more qualifiers than T, and, if both are complete types, sizeof (7') < sizeof(S). Then T is
representable by S if one of the following holds:

— T and S are array types of base t and s, respectively, S is incomplete and ¢[sizeof(s)] can
be represented by s[sizeof (¢)].

— T has no flexible array members, S is a structure or union type with flexible array members,
and there is an integer n such that T is representable by the type S’ where each flexible arra
member e of type s[] is replaced with an array ¢’ of type s[n] at the same offset.

— If T'and S are pointer types t* and s*, respectively, that have the same representation, such
that neither is a pointer to character type or void:

e ¢ and s are both structure or union types with a flexible array member such that ¢ is
representable by s.

e t[] and s[] are mutually representable.

7f the type T is a union type or contains a union type, byte ranges within the representation of different intervals ma
overlap.

80)This means in particular that intervals for flexible array members can only map or be mapped by intervals with the
same property.
8D For the first three cases, N and M must be equal, and for the complex and real case one must be twice the other.

modifications to ISO/IEC 9899:2018, § 6.2.9 page 44 Language



9

N2522 cmin..core § 6.2.9, working draft — May 10, 2020 CORE 202005 (E)

— There are 7 and J interval partitions for 7" and S, respectively, and an embeddin 71—

such thatforall I € 7, A(I) is representable by A(F'(I)), or additionally, if I is (¢e) for a flexible
array member e, A(F(I)) is an incomplete array of character type that is not more qualified
than e.

T and S are mutually representable if in addition they have the same qualifications and the same size.
Two union or structure packs e and f are said to be mutually representable, if the union or structure
types that have their respective sequences as members are mutually representable.

The effective size of an object represented by an Ivalue A of type T4 is the size that it occupies within
its provenance; if T4 is a complete type that has no flexible array members it is sizeof (T'4); if T
has flexible array members or is an incomplete array type it is the number of bytes from the first
byte of A to the end of the provenance. An Ivalue A of type T4 is representable by an object B of
type Tp if

— the alignment of B is a valid alienment for type T
— the effective size of A is less than or equal to the effective size of B, and

— either

e T4 is representable by Tz, and for each leaf ¢’ of pointer type sx in T with
o(T < sizeof (7T4) and the corresponding pointer leaf e of type t* in T4, such that
e’ in B has a valid non-null value p, the lvalue x(¢x)p is representable by *p, or

e B is a character array that is not more qualified than T4.

EXAMPLE 1 For the following types we assume that there is no padding between or after the elements of A, B, C, and D:

typedef struct double d; A;

typedef struct { A a; double e; int i; By

typedef struct size_t len; double const ddat[]; } dvec;
typedef struct size t len; complex_ type(double) cdat[]; cvec;
typedef struct size_t len; alignas(double) unsigned char bdat[]; bvec;

The following table shows examples where T is representable by S or not:

L e xepres.

signed unsigned yes.

unsigned signed yes.

double complex_type (double) yes, maps to the real part

complex_type (double) double[2] yes.

complex_type (double) [K] double[2+k] yes.

double[2xk] complex _type (double) [k] yes.

complex_type (double)[] double[] yes.

doublel] complex_type(double)[] yes,

dvec bvec, yes.

bvec dvec no base type of bdat does
not fit

dvec Lvec yes.

Lvec dvec 1o member ddat is const
qualified

complex_type (double) D yes.

complex_type (double) [3] bizl yes.

complex_type(double) [sizeof(D)] | Dlsizeof(complex type(double))] | yes

complex_type(double)[] bl yes.

b complex_type (double) 1o too small

biz]. complex_type(double)[3] yes.

Disizeof (complex_type(double))] | complex_type(double)[sizeof(D)] | yes

oL complex_type(double)[] yes,

Language modifications to ISO/IEC 9899:2018, § 6.2.9 page 45



CORE 202005 (E) § 6.3, working draft — May 10, 2020 N2522

double A yes. via member d

Al42] ALl yes.

ALL A[42] 1o incomplete array needs
another __incomplete
array.

double B yes. viamembera

complex_type (double) B yes, viamembersa.dande

A B yes. same

AlLL B yes. same

Al2] BI1]. yes. Via element [0]

A[3] B[2] no element [2] is not
representable

int [ no no int leaf at offset 0

B £ yes, via member b

A £ yes. recursively via member
b.a

double £ yes. recursively via member
b.a.d

6.3 Conversions

Several operators convert operand values from one type to another automatically. This subclause
specifies the result required from such an implicit conversion, as well as those that result from a cast
operation (an explicit conversion). The list in 6.3.1.8 summarizes the conversions performed by most
ordinary operators; it is supplemented as required by the discussion of each operator in 6.5.

Unless explicitly stated otherwise, conversion of an operand value to a compatible type causes no
change to the value or the representation.

Forward references: cast operators (6.5.4).

6.3.1 Arithmetic operands

6.3.1.1 Boolean, characters, and integers
Every integer type has an integer conversion rank defined as follows:

— No two signed integer types shall have the same rank, even if they have the same representa-
tion.

— The rank of a signed integer type shall be greater than the rank of any signed integer type with
less precision.

— The rank of long long int shall be greater than the rank of long int, which shall be greater
than the rank of int, which shall be greater than the rank of short int, which shall be greater
than the rank of signed char.

— The rank of any unsigned integer type shall equal the rank of the corresponding signed integer
type, if any.

— The rank of any standard integer type shall be greater than the rank of any extended integer
type with the same width.

— The rank of char shall equal the rank of signed char and unsigned char.
— The rank of bool shall be less than the rank of all other standard integer types.

— The rank of any enumerated type shall equal the rank of the compatible integer type (see
6.7.2.2).

— The rank of any extended signed integer type relative to another extended signed integer
type with the same precision is implementation-defined, but still subject to the other rules for
determining the integer conversion rank.

modifications to ISO/IEC 9899:2018, § 6.3.1.1 page 46 Language



N2522 cmin..core § 6.3.1.2, working draft — May 10, 2020 CORE 202005 (E)

— For all integer types T1, T2, and T3, if T1 has greater rank than T2 and T2 has greater rank than
T3, then T1 has greater rank than T3.

The following may be used in an expression wherever an int or unsigned int may be used:

— An object or expression with an integer type (other than int or unsigned int) whose integer
conversion rank is less than or equal to the rank of int and unsigned int. A-bit-field-oftype

- 7 7 7

If an int can represent all values of the original type(asrestricted-by-the-width, forabit-field), the

value is converted to an int; otherwise, it is converted to an unsigned int. These are called the
integer promotions.8?  All other types are unchanged by the integer promotions.

The integer promotions preserve value including sign. As discussed earlier, whether a “plain” char
can hold negative values is implementation-defined.

Forward references: enumeration specifiers (6.7.2.2), structure and union specifiers (6.7.2.1).

6.3.1.2 Boolean type

When any scalar value is converted to bool, the result is 6-false if the value comparesequal-to-is
0; otherwise, the result is 1true .59

6.3.1.3 Signed and unsigned integers

When a value with integer type is converted to another integer type other than —Beet-bool , if the
value can be represented by the new type, it is unchanged.

Otherwise, if the new type is unsigned, the value is converted by repeatedly adding or subtracting
one more than the maximum value that can be represented in the new type until the value is in the
range of the new type.89

Otherwise, the new type is signed and the value cannot be represented in it; either the result is
implementation-defined or an implementation-defined signal is raised.

6.3.1.4 Real floating and integer

When a finite value of real floating type is converted to an integer type other than —=Beet-hool , the
fractional part is discarded (i.e., the value is truncated toward zero). If the value of the integral part
cannot be represented by the integer type, the behavior is undefined.®

When a value of integer type is converted to a real floating type, if the value being converted can
be represented exactly in the new type, it is unchanged. If the value being converted is in the
range of values that can be represented but cannot be represented exactly, the result is either the
nearest higher or nearest lower representable value, chosen in an implementation-defined manner.
If the value being converted is outside the range of values that can be represented, the behavior is
undefined. Results of some implicit conversions may be represented in greater range and precision
than that required by the new type (see 6.3.1.8 and 6.8.6.4).

6.3.1.5 Real floating types

When a value of real floating type is converted to a real floating type, if the value being converted
can be represented exactly in the new type, it is unchanged. If the value being converted is in the
range of values that can be represented but cannot be represented exactly, the result is either the
nearest higher or nearest lower representable value, chosen in an implementation-defined manner.
If the value being converted is outside the range of values that can be represented, the behavior is

82)The integer promotions are applied only: as part of the usual arithmetic conversions, to certain argument expressions, to
the operands of the unary+,- , and ~ operators, and to both operands of the shift operators, as specified by their respective
subclauses.

83 NaNs do not compare equal to 0 and thus convert to true.

89 The rules describe arithmetic on the mathematical value, not the value of a given type of expression.

8)The remaindering operation performed when a value of integer type is converted to unsigned type need not be
performed when a value of real floating type is converted to unsigned type. Thus, the range of portable real floating values is
(=1, Utype_MAX + 1).

Language modifications to ISO/IEC 9899:2018, § 6.3.1.5 page 47



CORE 202005 (E) § 6.3.1.6, working draft — May 10, 2020 cmin..core N2522

undefined. Results of some implicit conversions may be represented in greater range and precision
than that required by the new type (see 6.3.1.8 and 6.8.6.4).

6.3.1.6 Complex types

When a value of complex type is converted to another complex type, both the real and imaginary
parts follow the conversion rules for the corresponding real types.

6.3.1.7 Real and complex

When a value of real type is converted to a complex type, the real part of the complex result value is
determined by the rules of conversion to the corresponding real type and the imaginary part of the
complex result value is a positive zero or an unsigned zero.

NOTE C and C++ differ much in their strategies for conversions of complex types, in particular for conversions from

complex types to real types. Therefore, this specification only defines a conversion from a complex type to a real type other

than—=Beel-%9 if that type is bool, see 6.3.1.2. C is more permissive, and allows more conversions to real types that just dro
the imaginary part of is-dis i . S

—a complex number. Applications that target the common C and C++ core should not
use that feature but use an explicit call to real_value instead.

6.3.1.8 Usual arithmetic conversions

Many operators that expect operands of arithmetic type cause conversions and yield result types in
a similar way. The purpose is to determine a common real type for the operands and result. For the
specified operands, each operand is converted, without change of type domain, to a type whose
corresponding real type is the common real type. Unless explicitly stated otherwise, the common
real type is also the corresponding real type of the result, whose type domain is the type domain of
the operands if they are the same, and complex otherwise. This pattern is called the usual arithmetic
conversions:

First, if the corresponding real type of either operand is long double, the other operand
is converted, without change of type domain, to a type whose corresponding real type is
long double.

Otherwise, if the corresponding real type of either operand is double, the other operand is
converted, without change of type domain, to a type whose corresponding real type is double.

Otherwise, if the corresponding real type of either operand is float, the other operand is
converted, without change of type domain, to a type whose corresponding real type is float.5®

Otherwise, the integer promotions are performed on both operands. Then the following rules
are applied to the promoted operands:

If both operands have the same type, then no further conversion is needed.

Otherwise, if both operands have signed integer types or both have unsigned integer
types, the operand with the type of lesser integer conversion rank is converted to the type
of the operand with greater rank.

Otherwise, if the operand that has unsigned integer type has rank greater or equal to
the rank of the type of the other operand, then the operand with signed integer type is
converted to the type of the operand with unsigned integer type.

Otherwise, if the type of the operand with signed integer type can represent all of the
values of the type of the operand with unsigned integer type, then the operand with
unsigned integer type is converted to the type of the operand with signed integer type.

Otherwise, both operands are converted to the unsigned integer type corresponding to
the type of the operand with signed integer type.

80)See 6.3.1.2-
86)For example, addition of a complex_type(double) and a float entails just the conversion of the float operand to
double (and yields a complex_type(double) result).

modifications to ISO/IEC 9899:2018, § 6.3.1.8 page 48 Language



N2522 cmin..core § 6.3.2, working draft — May 10, 2020 CORE 202005 (E)

The values of floating operands and of the results of floating expressions may be represented in
greater range and precision than that required by the type; the types are not changed thereby.
See 5.2.4.2.2 regarding evaluation formats.

NOTE C and C++ differ much in their strategies for arithmetic of complex types, in particular for operations that mix
complex types and real types, which are generally not defined for C++. Implementations that target the common C and C++
core must provide means to circumvent problems that may originate in that restriction of C++. For example, they may offer
overloaded wrappers for all four arithmetic operations that are defined for complex numbers, such that the other operand
can be any real type._

6.3.2 Other operands

Constraints

No evaluation shall be formed that has a result that is an object with

— an incomplete type;
— an opaque type, other than a as void expression, or as the operand of a cast to void.

No evaluation shall be formed that has an operand that is an object with

— an incomplete type that is not an array, other than for the unary & operator;

— an opaque type, other than for the the sizeof operator, the alignof operator, or the unary &
operator, or, if it is an opaque array type, for array to pointer conversion.

6.3.2.1 Lvalues, arrays, function designators and lambdas

An lvalue is an expression {with-an-object-type-other-than-veid)-that potentially designates an

object;*”) if an lvalue does not designate an object when it is evaluated, the behavior is undefined.
When an object is said to have a particular type, the type is specified by the Ivalue used to designate
the object. A modifiable lvalue is an lvalue that does not have array type, does not have an incomplete
type, does not have an opaque type, does not have a const-qualified type, and if it is a structure or
union, does not have any member (including, recursively, any member or element of all contained
aggregates or unions) with a const-qualified type.®®

For an Ivalue expression that has not an enumerated, array or function type the generic type is the
non-atomic type of the lvalue with all qualifiers dropped; for an expression that has an enumerated
type, it is the non-atomic compatible integer type with all qualifiers dropped; for an expression that
has type “array of type” it is "pointer to type”; for a function designator with type "function with
the type of the expression. Unless specified otherwise in the following, the evaluation of an Ivalue
expression yields a value with the generic type of the Ivalue.

Except when it is the operand of the decltype specifier, the sizeof operator, the alignof operator,
the unary & operator, the ++ operator, the- - operator, or the left operand of the . operator or an
assignment operator, an Ivalue that does not have array type is converted to the value stored in
the designated object (and is no longer an lvalue); this is called [value conversion. If the lvalue has
qualified type, the value has the unqualified version of the type of the lvalue; additionally;, if the
lvalue has atomic type, the value has the non-atomic versmn of the type of the lvalue; otherwise, the
value has the type of the Ivalue.
MWGWMIMM@QMMMM

— The lvalue does not designate an object when it is evaluated.

87)The name “Ivalue” comes originally from the assignment expression E1 = E2, in which the left operand E1 is required to
be a (modifiable) Ivalue. It is perhaps better considered as representing an object “locator value”. What is sometimes called
“rvalue” is in this document described as the “value of an expression”.

An obvious example of an lvalue is an identifier of an object. As a further example, if E is a unary expression that is a
pointer to an object, *E is an Ivalue that designates the object to which E points.

88)This means in particular that a structure or union type that contains some members that are opaque and some that are
not can still be the type of a modifiable lvalue.

Language modifications to ISO/IEC 9899:2018, § 6.3.2.1 page 49



CORE 202005 (E) § 6.3.2.2, working draft — May 10, 2020 cmin..core N2522

— The object representation is a trap representation for the type.®
— The lvalue designates an object of automatic storage duration that eould-have been-declared

{not-declared-was not defined with an initializerane-, no assignment to it has been performed
prior to use);the-, and the unary & operator and array-to-pointer conversion are never applied
to the object.””

4  Additionally, if the type is a pointer type Tx*, a pointer value and an associated provenance, if any,

is determined as follows:

— If the object representation represents a null pointer the result is a null pointer.

— If the last store to the representation array was with a pointer type Sx that has the
same representation and alignment requirements as Tx, the result is the same address and
rovenance as the stored value.

— Otherwise, the object representation of the lvalue shall represent an abstract address within
or one-past) an exposed storage instance, such that the exposure happened before this lvalue

conversion, and the result has that address and provenance.”?

The behavior is undefined if the lvalue conversion does not happen during the lifetime of
the associated provenance, the address is not a valid address (or one-past) for the associated
rovenance, or the address is not correctly aligned for the type.

5  Except when it is the operand of the decltype specifier, the unary sizeof operator, or the unary &
operator, or is a string literal used to initialize an array, an expression that has type “array of type” is
converted to an expression with type “pointer to type” that points to the initial element of the array
object and is not an Ivalue. j i ; tor i

6 A function designator is an expression that has function type. Except when it is the operand of the
decltype specifier, thesizeof operator,? or the unary & operator, a function designator with type
“function returning type” is converted to an expression that has type “pointer to function returning

type”.

7  Lambda types originating from lambda expressions with captures shall not be converted to an
other object type. A lambda value originating from a function literal with a type “lambda with
rototype type” can be converted implicitly or explicitly to an expression that has type “pointer to

function with prototype type”.>

Forward references: address and indirection operators (6.5.3.2), assignment operators (6.5.17),
commen-definitions{(719expression types (6.7.11), initialization (6.7.12), postfix increment and
decrement operators (6.5.2.4), prefix increment and decrement operators (6.5.3.1), the sizeof and
=Atignof-alignof operators (6.5.3.4), structure and union members (6.5.2.3).

6.3.2.2 void

1 The (nonexistent) value of a void expression (an expression that has type void) shall not be used in any
way, and implicit or explicit conversions (except to void) shall not be applied to such an expression.
If an expression of any other type is evaluated as a void expression, its value or designator is
discarded. (A void expression is evaluated for its side effects.)

#)Character types have no trap representation, thus reading representation bytes of an addressable live storage instance
is always defined.

*"The lvalue is necessarily the result of the evaluation of an identifier. This requirement is not a constraint, because
complicated control flows might make the detection of such an error difficult. It is recommended that implementations
diagnose such situations as good as they may. If detected, it does not suggest that the corresponding execution path is
unreachable, but that a programming error has occurred.

ID1f the address corresponds to more than one provenance, only one of these shall be used in the sequel, see 6.2.5.

92)Because this conversion does not occur, the operand of the sizeof operator remains a function designator and violates
the constraints in 6.5.3.4.

93)Since lambdas of different type cannot be assigned to each other, in the conversion of a function literal to a function
ointer, the prototype of the originating lambda expression can be assumed to be known and a diagnostic can be issued if
the prototypes do not aggree.

modifications to ISO/IEC 9899:2018, § 6.3.2.2 page 50 Language



N2522 cmin..core § 6.3.2.3, working draft — May 10, 2020 CORE 202005 (E)

6.3.2.3 Pointers

A pointer to void may be converted to or from a pointer to any object type. A pointer to any object
type may be converted to a pointer to void and back again; the result shall compare equal to the
original pointer.

For any qualifier g, a pointer to a non-g-qualified type may be converted to a pointer to the g-qualified
version of the type; the values stored in the original and converted pointers shall compare equal.

An integer constant expression with the value 0, er-such an expression cast to type void x, iscalled
or the constant nullptr are all a null pointer constant.? If a null pointer constant is converted to
a pointer type, the resulting pointer, called a null pointer, is guaranteed to compare unequal to a

pointer to any object or function. If the constant nullptr is converted to a type other than a pointer
type or bool, the behavior is undefined.

Conversion of a null pointer to anether-a pointer type yields a null pointer of that type. Any two
null pointers shall compare equal.

An integer may be converted to any pointer type. If the source type is signed, the operand is

first converted to the corresponding unsigned type. The result is then determined in the followin
order:

— The operand has a value that could have been the result of the conversion of a null pointer
value. The result is a null pointer.

— The operand is an abstract address within or one past a live and exposed storage instance,
such that the exposure happened before this integer-to-pointer conversion. The conversion
synthesizes a pointer value with that address, provenance and target type.””

— The pointer value is indeterminate.

Except as previously specified, the result is implementation-defined, might not be correctly aligned,
might not point to an entity of the referenced type, and might be a trap representation.

A pointer value may be converted to bool.”® The result is false if it is a null pointer and true if it

is valid. Otherwise the behavior is undefined.

Any-Otherwise, any pointer type may be converted to an integer type. Except-as—previously
speeifiedFor a null pointer, the result is chosen from a non-empty set of implementation-defined —f
the result cannotbe represented-in the integer-values.” If the pointer value is valid, its provenance
is henceforth exposed. Except as previously specified, the result is the bit representation of the
abstract address interpreted in the target type. If the abstract address has more significant bits than
the width of the target type, the behavior is undefined. The result need not be in the range of values
of any integer type. If the pointer is null or valid, the integer result converted back to the pointer
type shall compare equal to the original pointer.”® For two valid pointer values that compare equal,
conversion to the same integer type yields identical values.

A pointer to an object type may be converted to a pointer to a different object type with the same
provenance. If the resulting pointer is not correctly aligned® for the referenced type, the behavior
is undefined. Otherwise, when converted back again, the result shall compare equal to the original
pointer. When a pointer to an object is converted to a pointer to a character type or void , the result

PO O OwW a 0Oy O OD . t

of-the-objectyield pointers-to-the remaining bytes-is the byte address of the object.

94)

The obsolescent macro NULL is predefined as a null pointer constant, see 6.10.8.1, but new code should prefer the
keyword nullptr wherever a null pointer constant is specified.

*)If the address corresponds to more than one provenance, only one of these shall be used in the sequel, see 62.5.

*?Such a conversion happens implicitly when a pointer value is a controlling expression or when it is the operand of
logical operators.

Tt is recommended that 0 is a member of that set,

* Although such a round-trip conversion may be the identity for the pointer value, the side effect of exposing a storage

9)In general, the concept “correctly aligned” is transitive: if a pointer to type A is correctly aligned for a pointer to type B,
which in turn is correctly aligned for a pointer to type C, then a pointer to type A is correctly aligned for a pointer to type C.

Language modifications to ISO/IEC 9899:2018, § 6.3.2.3 page 51



10

CORE 202005 (E) § 6.3.2.4, working draft — May 10, 2020 cmin..core N2522

A pointer to a function of one type may be converted to a pointer to a function of another type and
back again; the result shall compare equal to the original pointer. If a converted pointer is used to
call a function whose type is not compatible with the referenced type, the behavior is undefined.

Forward references: the nullptr constant (6.4.4.5.2), cast operators (6.5.4), equality operators
(6.5.10), integer types capable of holding object pointers (7.20.1.4), simple assignment (6.5.17.1).

NOTE If the result p of an lvalue conversion or integer-to-pointer conversion is the end address of an exposed storage
instance A and the start address of another exposed storage instance B that happens to follow immediately in the address
space, a conforming program must only use one of these provenances in any expressions that is derived from p, see 6.2.5.

The following three cases determine if p is used with one of A or B and must hence not be used otherwise:

— Operations that constitute a use of p with either A or B and do not prohibit a use with the other:
e any relational operator or pointer subtraction where the other operand g may have both provenances, that is
where q is also the result of a similar conversion and where p == q;
e q == pand q != pregardless of the provenance of g;
* addition or subtraction of the value 0;
* conversion to integer,
For the latter, A and B must have been exposed before, and so a any choice of provenance, that would otherwise
have exposed one of the storage instances, is consistent with any other use.
— Operations that, if otherwise well defined, constitute a use of p with A and prohibit any use with B:

e Any relational operator or pointer subtraction where the other operand q has provenance A and cannot have
provenance B.

° + nand p[n], where n is an integer strictly less than 0.
° - n, where n is an integer strictly greater than 0.
— Operations that, if otherwise well defined, constitute a use of p with B and prohibit any use with A:

e Any relational operator or pointer subtraction where the other operand g has provenance B and cannot have
provenance 4,

e p + nand p[n], where n is an integer strictly greater than 0.
° - n, where n is an integer strictly less than 0.

e operations that access an object in B, that is indirection (xp or p[n] for n == 0) and member access (
p->member).

6.3.24 nullptr_t

Constraint

A value of nullptr_t type shall not be converted to a type other than bool or a pointer type.
Description

When converted to bool, a value of type nullptr_t vields false. When converted to a pointer
type, it vields a null pointer of that type.

modifications to ISO/IEC 9899:2018, § 6.3.2.4 page 52 Language



1

N2522 cmin..core § 6.4, working draft — May 10, 2020 CORE 202005 (E)

6.4 Lexical elements

Syntax
token:
keyword
identifier
constant
string-literal
punctuator

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
punctuator
each non-white-space character that cannot be one of the above

Constraints

Each preprocessing token that is converted to a token shall have the lexical form of a keyword, an
identifier, a constant, a string literal, or a punctuator.

Semantics

A token is the minimal lexical element of the language in translation phases 7 and 8. The categories of
tokens are: keywords, identifiers, constants, string literals, and punctuators. A preprocessing token
is the minimal lexical element of the language in translation phases 3 through 6. The categories of
preprocessing tokens are: header names, identifiers, preprocessing numbers, character constants,
string literals, punctuators, and single non-white-space characters that do not lexically match
the other preprocessing token categories.'®’ If a’ or a " character matches the last category,
the behavior is undefined. Preprocessing tokens can be separated by white space; this consists of
comments (described later), or white-space characters (space, horizontal tab, new-line, vertical tab, and
form-feed), or both. As described in 6.10, in certain circumstances during translation phase 4, white
space (or the absence thereof) serves as more than preprocessing token separation. White space
may appear within a preprocessing token only as part of a header name or between the quotation
characters in a character constant or string literal.

If the input stream has been parsed into preprocessing tokens up to a given character, the next
preprocessing token is the longest sequence of characters that could constitute a preprocessing
token. There is one exception to this rule: header name preprocessing tokens are recognized only
within #include preprocessing directives and in implementation-defined locations within #pragma
directives. In such contexts, a sequence of characters that could be either a header name or a string
literal is recognized as the former.

EXAMPLE 1 The program fragment 1Ex is parsed as a preprocessing number token (one that is not a valid floating or integer
constant token), even though a parse as the pair of preprocessing tokens 1 and Ex might produce a valid expression (for

example, if Ex were a macro defined as+1). Similarly, the program fragment 1E1 is parsed as a preprocessing number (one
that is a valid floating constant token), whether or not E is a macro name.

EXAMPLE 2 The program fragment x+++++y is parsed as x ++ ++ + y, which violates a constraint on increment operators,
even though the parse x ++ + ++ y might yield a correct expression.

Forward references: character constants (6.4.4.4), comments (6.4.9), expressions (6.5), floating
constants (6.4.4.2), header names (6.4.7), macro replacement (6.10.3), postfix increment and decrement
operators (6.5.2.4), prefix increment and decrement operators (6.5.3.1), preprocessing directives (6.10),
preprocessing numbers (6.4.8), string literals (6.4.5).

100 An additional category, placemarkers, is used internally in translation phase 4 (see 6.10.3.3); it cannot occur in source

files.

Language modifications to ISO/IEC 9899:2018, § 6.4 page 53



1

CORE 202005 (E) § 6.4.1, working draft — May 10, 2020 cmin..core N2522

6.4.1 Keywords

Syntax
keyword: one of

alignas default registernot union
alignof do restrictnot_eq unsigned
and_ double nullptr void
and_eq else or_ volatile
auto enum or_eq while
bitand extern return =Atignas-
bitor false short =Alignof-
bool float signed =Atomic-
break for sizeof =Bool-
case goto static —Compltex-
char generic_selectionstatic_assert  —Generiecxor
compl. S TUCTE =Imaginary-
const if switch xor_eq
constexpr inline thread_local ~ _Noreturn
continue int true _Static_assert
decltype long typedef —Thread—local-

Constraints

The keywords

alignas bitor ) . hullptr true

alignof bool generic_selection,. o xor_eq

and_eq compl or xor

and decltype not_eq static_assert

bitand false not thread_local

may optionally be predefined macro names (6.10.8.4). None of these shall be the subject of a
#define or a #undef preprocessing directive.

Semantics

The above tokens (case sensitive) are reserved (in translation phases 7 and 8) for use as keywords
except in an attribute token, and shall not be used otherwise. The-

The following table provides alternate spellings for certain keywords. These can be used wherever
the keyword can.'®V

keyword —Imaginary-isreserved-forspecifyingimaginarytypes- | alternative spelling
alignas ~Alignas
alignof ~Alignof

bool _Bool.
static_assert <Static_assert
thread_tlocal ~Thread_local

The spelling of keywords that are also predefined macros and that are subject to the # and ##
preprocessing operators is unspecified.""”

NOTE Calso has optional imaginary types that are introduced with the keyword _Imaginary. This is rarely implemented
in C and C+ has no equivalent for this, so this feature is not included in the C/C++ core. C also has the restrict and
~Atomic qualifiers, which for the purpose of the C/C++ common core can be replaced by the core :: noalias attribute and.
the atomic_type specifier, respectively, C's register keyword can also be replaced by using a core:: noalias attribute,
which can even be applied in a wider context, e.g; for file scope identifiers.

10)These alternative keywords are obsolescent features and should not be used for new code.
102)The intent of these specifications is to allow but not to force the implementation of the correspondig feature by means
of a predefined macro.

modifications to ISO/IEC 9899:2018, § 6.4.1 page 54 Language



N2522 cmin..core § 6.4.2, working draft — May 10, 2020 CORE 202005 (E)

6.4.2 Identifiers

6.4.2.1 General

Syntax

identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit

identifier-nondigit:
nondigit
universal-character-name
other implementation-defined characters

nondigit: one of

=Z2>5S 9
o Wwo T
WOHOT O
o U Q
am-= O
VM v -h
- O ~+Q
cTxTc =
< H < H-
=S U S .
X X X x
<rr< ~
N =N S

digit: one of
0123456789

Semantics

An identifier is a sequence of nondigit characters (including the underscore _, the lowercase and
uppercase Latin letters, and other characters) and digits, which designates one or more entities as
described in 6.2.1. Lowercase and uppercase letters are distinct. There is no specific limit on the
maximum length of an identifier.

The use of universal character names in identifiers is specified in Annex D: Each universal character
name in an identifier shall designate a character whose encoding in ISO/IEC 10646 falls into
one of the ranges specified in D.1.19  The initial character shall not be a universal character
name designating a character whose encoding falls into one of the ranges specified in D.2. An
implementation may allow multibyte characters that are not part of the basic source character set to
appear in identifiers; which characters and their correspondence to universal character names is
implementation-defined.

When preprocessing tokens are converted to tokens during translation phase 7, if a preprocessing
token could be converted to either a keyword or an identifier, it is converted to a keyword except in
an attribute token.

Implementation limits

As discussed in 5.2.4.1, an implementation may limit the number of significant initial characters
in an identifier; the limit for an external name (an identifier that has external linkage) may be more
restrictive than that for an internal name (a macro name or an identifier that does not have external
linkage). The number of significant characters in an identifier is implementation-defined.

Any identifiers that differ in a significant character are different identifiers. If two identifiers differ
only in nonsignificant characters, the behavior is undefined.

Forward references: universal character names (6.4.3), macro replacement (6.10.3).

6.4.2.2 Predefined identifiers

103)0n systems in which linkers cannot accept extended characters, an encoding of the universal character name can be used
in forming valid external identifiers. For example, some otherwise unused character or sequence of characters can be used to
encode the \u in a universal character name. Extended characters can produce a long external identifier.

Language modifications to ISO/IEC 9899:2018, § 6.4.2.2 page 55



CORE 202005 (E) § 6.4.2.2.1, working draft — May 10, 2020 cmin..core N2522

Several identifiers although they are not keywords are predefined and shall not be given a different
definition by the program, be it by object, function, e or macro definitions. There are such

identifiers of different categories, namely macros (6.10.8), constants (6.4.4.5), types (6.2.5.1) and

objects (6.4.2.2.1).

6.4.2.2.1 Predefined objects
Semantics

The identifier __func_ shall be implicitly declared by the translator as if, immediately following
the opening brace of each function definition, the declaration

\ static const char __func__[] = "function-name";

appeared, where function-name is the name of the lexically-enclosing function.!®

This name is encoded as if the implicit declaration had been written in the source character set and
then translated into the execution character set as indicated in translation phase 5.

Recommended practice

Because C and C++ have a different instantiation model for inline functions, block scope static
objects of such functions can be represented differently between the two languages. It is
recommended that the control flow of applications is not made dependent of the comparison of
the addresses of the __func__ object(s) of an inline function, and that implementations issue a
diagnostic whenever an attempt is made to expose the address of __func__ beyond the function
body of an inline function._

EXAMPLE Consider the code fragment:

#include <stdio.h>

void myfunc(void)

{
printf("%s\n", __func__);
/* ... %/

Each time the function is called, it will print to the standard output stream:

\ myfunc

Forward references: the inline specifier (6.7.5), function definitions (6.9.1).

6.4.3 Universal character names

Syntax
universal-character-name:

\u hex-quad
\U hex-quad hex-quad

hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

Constraints

A-No universal character name shall be formed that specifies a short identifier that is not an
ISO/IEC 10646 code point. Unless specified otherwise, no universal character name shall be formed

that specifies a short identifier that is in the range D800 through DFFF inclusive.'” Unless used

109Since the name —func_ is reserved for any use by the implementation (7.1.3), if any other identifier is explicitly declared
using the name __func__, the behavior is undefined.

105)The notable exception is that four-digit short identifiers may be used with in UTF-16 wide strings to encode surrogate
pairs.

modifications to ISO/IEC 9899:2018, § 6.4.3 page 56 Language



1

N2522 cmin..core § 6.4.4, working draft — May 10, 2020 CORE 202005 (E)

within a character constant (6.4.4.4) or a string literal (6.4.5), a universal character name shall not
specify a character whose short identifier is less than 00AO other than 0024($- ($), 0040{@- (@), or

0060(’), nor one in the range D800 through DFFF inclusive (°).1%)

Description

Universal character names may be used in identifiers, character constants, and string literals to
designate characters that are not in the basic character set.

Semantics

The universal character name \Unnnnnnnn designates the character whose eight-digit short identifier
(as specified by ISO/IEC 10646) is nnnnnnnn.l’”) Similarly, the universal character name \unnnn
designates the character whose four-digit short identifier is nnnn (and whose eight-digit short
identifier is 0000nnnn).

NOTE Cis a bit more restrictive than C+ + about short identifiers that are less than 00A0. It extends the above interdictions

for that range also to character constants and string literals. It seemed important to have one-to-one compatibility of such
basic tools between C and C++ and to privilige usability. So this specification removes that restriction.

6.4.4 Constants

Syntax

constant:
integer-constant
floating-constant
enumeration-constant
character-constant

redefined-constant

Constraints

Each constant shall have a type and the value of a constant shall be in the range of representable
values for its type.

Semantics
Each constant has a type, determined by its form and value, as detailed later.

6.4.4.1 Integer constants
Syntax

integer-constant:
decimal-constant integer-suffixXopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

hexadecimal-constant:
hexadecimal-prefix hexadecimal-digit
hexadecimal-constant hexadecimal-digit

109)The disallowed characters are the characters in the basic character set and the code positions reserved by ISO/IEC 10646
for control characters, the character DELETE, and the S-zone (reserved for use as UTF-16 surrogates).
107)Short identifiers for characters were first specified in ISO/IEC 10646-1:1993/ Amd 9:1997.

Language modifications to ISO/IEC 9899:2018, § 6.4.4.1 page 57



CORE 202005 (E) § 6.4.4.1, working draft — May 10, 2020 N2522

hexadecimal-prefix: one of
0x 0X

nonzero-digit: one of
123456789

octal-digit: one of
01234567

hexadecimal-digit: one of
012
abc
ABC
integer-suffix:
unsigned-suffix long-suffixopt
unsigned-suffix long-long-suffix
long-suffix unsigned-suffixopt
long-long-suffix unsigned-suffixopt

unsigned-suffix: one of
ulu

long-suffix: one of
1L

long-long-suffix: one of
1L

Padntesegconstant begins with a digit, but has no period or exponent part. It may have a prefix
that specifies its base and a suffix that specifies its type.

A decimal constant begins with a nonzero digit and consists of a sequence of decimal digits. An
octal constant consists of the prefix 0 optionally followed by a sequence of the digits 0 through 7
only. A hexadecimal constant consists of the prefix 0x or 0X followed by a sequence of the decimal
digits and the letters a (or A) through f (or F) with values 10 through 15 respectively.

§]@ﬁ1Xﬁl}l& of a decimal constant is computed base 10; that of an octal constant, base 8; that of a
hexadecimal constant, base 16. The lexically first digit is the most significant.

The type of an integer constant is the first of the corresponding list in which its value can be
represented.

modifications to ISO/IEC 9899:2018, § 6.4.4.1 page 58 Language



N2522 cmin..core § 6.4.4.2, working draft — May 10, 2020 CORE 202005 (E)
Octal or Hexadecimal
Suffix Decimal Constant Constant
none int int
long int unsigned int
long long int long int
unsigned long int
long long int
unsigned long long int
uor U unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int | unsigned long long int
lor L long int long int
long long int unsigned long int
long long int
unsigned long long int
Both uor U unsigned long int unsigned long int
and lor L unsigned long long int | unsigned long long int
1lor LL long long int long long int
unsigned long long int
Both uor U unsigned long long int | unsigned long long int
and 1lor LL

If an integer constant cannot be represented by any type in its list, it may have an extended integer
type, if the extended integer type can represent its value. If all of the types in the list for the constant
are signed, the extended integer type shall be signed. If all of the types in the list for the constant
are unsigned, the extended integer type shall be unsigned. If the list contains both signed and
unsigned types, the extended integer type may be signed or unsigned. If an integer constant cannot
be represented by any type in its list and has no extended integer type, then the integer constant has

no type.

6.4.4.2 Floating constants

Syntax

floating-constant:

decimal-floating-constant
hexadecimal-floating-constant

decimal-floating-constant:
fractional-constant exponent-partop; floating-suffixopt
digit-sequence exponent-part floating-suffix,pt

hexadecimal-floating-constant:
hexadecimal-prefix hexadecimal-fractional-constant

binary-exponent-part floating-suffixopt

hexadecimal-prefix hexadecimal-digit-sequence

fractional-constant:

digit-sequenceopt -

binary-exponent-part floating-suffixop:

digit-sequence

digit-sequence .

exponent-part:

e signep digit-sequence
E signop digit-sequence

sign: one of

Language

modifications to ISO/IEC 9899:2018, § 6.4.4.2 page 59



CORE 202005 (E) § 6.4.4.2, working draft — May 10, 2020 cmin..core N2522

digit-sequence:
digit
digit-sequence digit

hexadecimal-fractional-constant:
hexadecimal-digit-sequenceqpt
hexadecimal-digit-sequence
hexadecimal-digit-sequence .

binary-exponent-part:
P signop: digit-sequence
P signep: digit-sequence

hexadecimal-digit-sequence:
hexadecimal-digit
hexadecimal-digit-sequence hexadecimal-digit

floating-suffix:
recision-suffix complex-suffix
complex-suffix precision-suffix

precision-suffix: one of
flLFL

complex-suffix: one of

il

Description

A floating constant has a significand part that may be followed by an exponent part and a suffix that
specifies its type. The components of the significand part may include a digit sequence representing
the whole-number part, followed by a period ( .), followed by a digit sequence representing the
fraction part. The components of the exponent part are an e, E, p, or P followed by an exponent
consisting of an optionally signed digit sequence. Either the whole-number part or the fraction part
has to be present; for decimal floating constants, either the period or the exponent part has to be
present.

Semantics

The significand part is interpreted as a (decimal or hexadecimal) rational number; the digit sequence
in the exponent part is interpreted as a decimal integer. For decimal floating constants, the exponent
indicates the power of 10 by which the significand part is to be scaled. For hexadecimal floating
constants, the exponent indicates the power of 2 by which the significand part is to be scaled. For
decimal floating constants, and also for hexadecimal floating constants when FLT_RADIX is not a
power of 2, the result is either the nearest representable value, or the larger or smaller representable
value immediately adjacent to the nearest representable value, chosen in an implementation-defined
manner. For hexadecimal floating constants when FLT_RADIX is a power of 2, the result is correctly
rounded.

An unsuffixed floating constant has type double. If suffixed by the letter f or F, it has type float.
If suffixed by the letter 1 or L, it has type long double. If the suffix contains the letter i or I, the

types are the corresponding complex types, and the value is a complex value with real part 0 and
the value of the literal as imaginary part.

The values of floating constants may be represented in greater range and precision than that required
by the type (determined by the suffix); the types are not changed thereby. See 5.2.4.2.2 regarding

modifications to ISO/IEC 9899:2018, § 6.4.4.2 page 60 Language



N2522 cmin..core § 6.4.4.3, working draft — May 10, 2020 CORE 202005 (E)

evaluation formats.!%®) The representation of the imaginary part of a complex floating constant shall
be identical to the representation of the same real floating constant when i or I are omitted.

Floating constants are converted to internal format as if at translation-time. The conversion of a
floating constant shall not raise an exceptional condition or a floating-point exception at execution
time. All floating constants of the same source form'® shall convert to the same internal format
with the same value.

Recommended practice

The implementation should produce a diagnostic message if a hexadecimal constant cannot be
represented exactly in its evaluation format; the implementation should then proceed with the
translation of the program.

The translation-time conversion of real floating constants should match the execution-time conver-
sion of character strings by library functions, such as strtod, given matching inputs suitable for
both conversions, the same result format, and default execution-time rounding.''?

6.4.4.3 Enumeration constants
Syntax

enumeration-constant:
identifier

Semantics
An identifier declared as an enumeration constant has type int.

Forward references: enumeration specifiers (6.7.2.2).

6.4.4.4 Character constants
Syntax

character-constant:
encoding-prefixopt

’ ’

c-char-sequence

encoding-prefix:

us

u

u

L
c-char-sequence:

c-char

c-char-sequence c-char
c-char:
any member of the source character set except
the single-quote ', backslash \, or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
universal-character-name

108)Hexadecimal floating constants can be used to obtain exact values in the semantic type that are independent of the
evaluation format. Casts produce values in the semantic type, though depend on the rounding mode and may raise the
inexact floating-point exception.

109)1,23,1.230, 123e-2, 123e-02, and 1. 23L are all different source forms and thus need not convert to the same internal
format and value.

110)The specification for the library functions recommends more accurate conversion than required for floating constants
(see 7.22.1.3).

Language modifications to ISO/IEC 9899:2018, § 6.4.4.4 page 61



CORE 202005 (E) § 6.4.4.4, working draft — May 10, 2020 cmin..core N2522

simple-escape-sequence: one of
VA" AN
\a\b\f\n\r\t\v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\X hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

Description

An integer character constant is a sequence of one or more multibyte characters enclosed in single-
quotes, as in 'x’ . A UTF-8 character constant is the same, except prefixed by u8. A wide character
constant is the same, except prefixed by the letter L, u, or U—; if it is prefixed by u it is a UTF-16
character constant and if by U it is a UTF-32 character constant . With a few exceptions detailed
1ater the elements of the sequence are any members of the source character set; they are mapped

translation phase 1 to a universal character name.

The single-quote ’, the double-quote ", the question-mark ?, the backslash \, and arbitrary integer
values are representable according to the following table of escape sequences:

single quote ’ \’
double quote " \"
question mark ? \7?
backslash \ \\
octal character \octal digits

hexadecimal character \x hexadecimal digits

The double-quote " and question-mark ? are representable either by themselves or by the escape
sequences \" and \?, respectively, but the single-quote " and the backslash \ shall be represented,
respectively, by the escape sequences \ ' and \\.

The octal digits that follow the backslash in an octal escape sequence are taken to be part of the
construction of a single character for an integer character constant or of a single wide character for a
wide character constant. The numerical value of the octal integer so formed specifies the value of
the desired character or wide character.

The hexadecimal digits that follow the backslash and the letter x in a hexadecimal escape sequence
are taken to be part of the construction of a single character for an integer character constant or of a
single wide character for a wide character constant. The numerical value of the hexadecimal integer
so formed specifies the value of the desired character or wide character.

Each octal or hexadecimal escape sequence is the longest sequence of characters that can constitute
the escape sequence.

In addition, characters not in the basic character set are representable by universal character names
and certain nongraphic characters are representable by escape sequences consisting of the backslash \
followed by a lowercase letter: \a, \b, \f, \n, \r, \t, and \v.!1)

1) The semantics of these characters were discussed in 5.2.2. If any other character follows a backslash, the result is not a
token and a diagnostic is required. See “future language directions” (6.11.4).

modifications to ISO/IEC 9899:2018, § 6.4.4.4 page 62 Language



10

11

12

13

14
15

16

17

N2522 cmin..core § 6.4.4.4, working draft — May 10, 2020 CORE 202005 (E)

Constraints
The value of an octal or hexadecimal escape sequence shall be in the range of representable values
for the corresponding type:

Prefix | Corresponding Type
none | unsigned char

u8 unsigned char

L the unsigned type corresponding to wchar_t
u charl6_t

u char32_t

A UTF-8, UTF-16, or UTF-32 character constant shall not contain more than one character.!'? Fhe
valueshall-be Such a character constant shall have any value that is representable with a single code
unit of the corresponding encoding, in particular UTF-8-eode-unit——8 character constants shall be

in the range 0 to 0x7F, UTF-16 character constants shall be in the range 0 to OXFFFF, and UTE-32
character constants shall be in the ranges 0 to 0xXD7FF or 0xE000 to 0x10FFFE.!13)

Semantics

An integer character constant has type int. The value of an integer character constant containing
a single character that maps to a single-byte execution character is the numerical value of the
representation of the mapped character interpreted as an integer. The value of an integer character
constant containing more than one character (e.g.,’ab’ ), or containing a character or escape sequence
that does not map to a single-byte execution character, is implementation-defined. If an integer
character constant contains a single character or escape sequence, its value is the one that results
when an object with type char whose value is that of the single character or escape sequence is
converted to type int.

A UTF-8, UTF-16 or UTF-32 character constant has type unsigned—char—unsigned char,

charl6_t or char32_t, respectively. The value of a—UTF-8-such a character constant is equal
to its ISO/IEC 10646 code point Valuejarewded%m%ﬂaeeeée—peﬂ%%ueeeaﬁbeefteeded—as—a
single UTF-8-code-unit.

A w1de character constant preflxed by the letter L has type wchar_t ﬁﬂaﬁtegeﬁtypedetmedﬁthe

. The Value of QESLL a w1de character constant contammg a smgle
multibyte character that maps to a single member of the extended execution character set is the
wide character corresponding to that multibyte character, as defined by the mbtowc ;5-orfunction
as-appropriate-for-itstypefunction with an implementation-defined current locale. The value
of a wide character constant containing more than one multibyte character or a single multibyte
character that maps to multiple members of the extended execution character set, or containing a
multibyte character or escape sequence not represented in the extended execution character set, is
implementation-defined.

EXAMPLE 1 The construction "\0" is commonly used to represent the null character.

EXAMPLE 2 Consider implementations that use eight bits for objects that have type char. In an implementation in which
type char has the same range of values as signed char, the integer character constant '\xFF' has the value —1; if type
char has the same range of values as unsigned char, the character constant '\xFF’ has the value +255.

EXAMPLE 3 Even if eight bits are used for objects that have type char, the construction’\x123" specifies an integer character
constant containing only one character, since a hexadecimal escape sequence is terminated only by a non-hexadecimal
character. To specify an integer character constant containing the two characters whose values are '\x12’' and '3’, the
construction '\0223" can be used, since an octal escape sequence is terminated after three octal digits. (The value of this
two-character integer character constant is implementation-defined.)

EXAMPLE 4 Even if 12 or more bits are used for objects that have type wchar_t, the construction L'\1234" specifies the
implementation-defined value that results from the combination of the values 6123 and 4’ .

Forward references: ecommen-definitions{719},the mbtowc function (7.22.8.2), Unicode utilities
<uchar.h> (7.28).

112)For example u8’ab’ violates this constraint.

113 This means that characters for UTF-8 encodings that need more than one byte can not be represented in a UTF-8
character constant. Also UTF-16 character constants may be surrogates, but UTF-32 character constants may not.

Language modifications to ISO/IEC 9899:2018, § 6.4.4.4 page 63



CORE 202005 (E) § 6.4.4.5, working draft — May 10, 2020 cmin..core N2522

6.4.4.5 Predefined constants
Syntax

predefined-constant: one of
false nullptr true

Description

Some keywords represent constants of a specific value and type.
6.4.4.5.1 The false and true constants

Description

The keywords false and true represent constants of type bool that are suitable for use as are

integer literals. Their values are 0 for false and 1 for true.! When used in preprocessor
conditional expressions, the keywords false and true behave as if replaced with the pp-numbers

0 and 1, respectively.!'>

NOTE Historically, C had the constants false and true with type int. This lead to unexpected results when used as
arguments to type-generic interfaces and introduced an unfortunate incompatibility with C++. Users and implementations
are invited to diagnose such situations, in particular where Boolean values (be they bool or int) are used in arithmetic other
than array indexing.

6.4.4.5.2 The nullptr constant
Description

The keyword nullptr represents a null pointer constant of type nullptr_t. Unless specified
otherwise, it is a suitable primary expression wherever a constant operand of pointer type is
allowed for initialization, assignment, conversion, function argument, equality testing, the sizeof
operator, logical operators, and as a controlling expression. If nullptr is used in any other context,

the behavior is undefined."

NOTE Because its type is underspecified, using nullptr as a controlling expression in a generic selection can lead to
non-portable results.

Recommended practice

Implementations are encouraged to implement nullptr with a type that is not a scalar type, that
is incompatible to any other type. They should diagnose the use of nullptr

— in any context where its use is undefined;

— as the controlling expression of a generic selection, unless that generic selection is itself not
evaluated or the resulting type of the expression is independent of the effective choice;

— in a conversion to a type that is not a pointer type;

— as a second or third operand of a conditional operator if the other (second or third) operand
has arithmetic type.

6.4.5 String literals

Syntax
string-literal:

encoding-prefixopt "' s-char-sequenceop "
s-char-sequence:

s-char

114)
115)

When used in arithmetic expressions after translation phase 4 the values of the keywords are promoted to type int.
Therefore, arithmetic with false and true in translation phase 4 presents results that are generally consistent with later
translation phases.

!9 particular this prohibits the use of nullptr for any type of arithmetic operation, relational comparison, or in an

modifications to ISO/IEC 9899:2018, § 6.4.5 page 64 Language



N2522 cmin..core § 6.4.5, working draft — May 10, 2020 CORE 202005 (E)

s-char-sequence s-char

s-char:
any member of the source character set except
the double-quote ", backslash \, or new-line character
escape-sequernce

Constraints

A sequence of adjacent string literal tokens shall not include both a wide string literal and a UTF-8
string literal.

Description
A character string literal is a sequence of zero or more multibyte characters enclosed in double-quotes,
asin "xyz". A UTE-8 string literal is the same, except prefixed by u8. A wide string literal is the same,

except prefixed by the letter L, u, or U; if it is prefixed by u it is a UTF-16 string literal and if by U it is
a UTF-32 string literal .

The same considerations apply to each element of the sequence in a string literal as if it were in an
integer character constant (for a character or UTF-8 string literal) or a wide character constant (for a
wide string literal), except that the single-quote ' is representable either by itself or by the escape
sequence \’, but-the double-quote " shall be represented by the escape sequence \"—, and that a

universal-character-name in a UTF-16 string literal may vield a surrogate pair.

Semantics

In translation phase 6, the multibyte character sequences specified by any sequence of adjacent
character and identically-prefixed string literal tokens are concatenated into a single multibyte
character sequence. If any of the tokens has an encoding prefix, the resulting multibyte character
sequence is treated as having the same prefix; otherwise, it is treated as a character string literal.
Whether differently-prefixed wide string literal tokens can be concatenated and, if so, the treatment
of the resulting multibyte character sequence are implementation-defined.

In translation phase 7, a byte or code of value zero is appended to each multibyte character sequence
that results from a string literal or literals.!'”) The multibyte character sequence is then used to

initialize an array of static storage duration and length just sufficient to contain the sequence. For
character string literals, the array elements have type char, and are initialized with the individual
bytes of the multibyte character sequence. For UTF-8, UTF-16 and UTF-32 string literals, the

array elements have type ehakaﬂdﬂfeﬂmﬂhzedﬂﬁﬁkrﬂwehametef&e%thedﬁu}ﬁby%&ehaﬁetef

w&hﬁﬁﬁmp}emeﬁ%aﬁeﬂ—defmedreuﬂeﬁ’eleea}%encodm sequence of the corres ondm encodm
For wide string literals prefixed by the letter w-or-UL, the array elements have type orrespectively,-

wchar_t and are initialized with the sequence of wide characters correspondmg to the multlbyte
character sequence, as defined by

the mbstowcs function with an implementation-defined current locale. The value of a string 11tera1
containing a multibyte character or escape sequence not represented in the execution character set is
implementation-defined.

It is unspecified whether these arrays are distinct provided their elements have the appropriate
values.!!®) If the program attempts to modify such an array, the behavior is undefined.

EXAMPLE 1 This pair of adjacent character string literals

\ RIZT TFT

117) A string literal might not be a string (see 7.1.1), because a null character can be embedded in it by a \0 escape sequence.

118)This allows implementations to share storage instances for string literals and constant compound literals (6.5.2.5) with
the same or overlapping representations.

Language modifications to ISO/IEC 9899:2018, § 6.4.5 page 65



CORE 202005 (E) § 6.4.6, working draft — May 10, 2020 cmin..core N2522

produces a single character string literal containing the two characters whose values are '\x12’ and '3’ , because escape
sequences are converted into single members of the execution character set just prior to adjacent string literal concatenation.

EXAMPLE 2 Each of the sequences of adjacent string literal tokens

"a" "b" L"c"
"a" L"b" "c"
L"a" "b" L"c"
L"a" L"b" L"c"

is equivalent to the string literal

L"abc"

Likewise, each of the sequences

nan ||b|| u"c"
DgT uubu nen
u"a" ||b|| u'c"

u"a uubu u"c"

is equivalent to

i u"abc"

Forward references: common-definitions{719)-the mbstowcs function (7.22.9.1), Unicode utilities
<uchar.h> (7.28).

6.4.6 Punctuators

Syntax
punctuator: one of

c1 L. 13 ¢y {3 . —==

++ -- & * + - ~ -t

=—=—==—t=t & X [ % B ®
<= < > < > = n =~ U A V

?2 . .

Semantics

A punctuator is a symbol that has independent syntactic and semantic significance. Depending on
context, it may specify an operation to be performed (which in turn may yield a value or a function
designator, produce a side effect, or some combination thereof) in which case it is known as an
operator (other forms of operator also exist in some contexts). An operand is an entity on which an
operator acts.

In all aspects of the language, thesixtokens!!? i w@m%mm@kqﬁ
dlgmph and keyword, if any, behave the same except for their spelling. : %

%st-117) MM&W&MM
the code point in ISO 10646 that corresponds to the token. When placed in a character string either
directly or by applying the # operator (see 6.10.3.2) the resulting multi-byte sequence for the token
shall be exactly the same as when the corresponding code is used as short identifier in a universal
character name (see 6.4.3).

19 P hese tokens are sometimes-called-“digraphs”-

19Thus [ and <: behave differently when “stringized” , but can otherwise be freely interchanged.

modifications to ISO/IEC 9899:2018, § 6.4.6 page 66 Language



N2522 cmin..core § 6.4.7, working draft — May 10, 2020 CORE 202005 (E)
token | digraph | keyword | code token | digraph | keyword | code
1 = 0x005b = [ = 0x2261
Ny 2 0x005d Fo| A= not_eq | 0x2260
N 0x0028 n & bitand | 6x2229
0 0x0029 -~ xor | 0x005e
1 |= 0x007b UL bitor | 0x222a
3 | 0x007d A | s and. 0x2227
N 0x002e AT or. 0x2228
o | 0x2192 2 0x003F
a = 0x003a
- I T 0x2237
& 0x0026 N 0x003b
* 0x002b = 0x003d
- 0x002d x= | x=
= compl | 0x007e =
EENt not. 0x00ac 5=
x| = 0x00d7 4=
Vi 0x002f =
x| =< 0x232b = | 2=
= > 0x2326 nN= | & and_eq
<=2 ’= xor_eq
= 9x003¢ L= = or-eq
> 0x003e o 0x002¢
< | == 0x2264 R 0x0023
> == 0x2265 | e
behave;respectivelythe same-as-the sixtokens————1—{—}—#—##
except-for-their-spelling—Similarly, the token pairs [ [ and ] ] stand in for the tokens [[ (code
0x27e6) and ]] (code Ox27e7), respectively.

4 NOTE1 Currently, neither C nor Cx++ support all the four digit Unicode characters as punctuators. Nevertheless, using
the digraphs can lead to lexical ambiguities because the same digraph may represent different tokens or because adjancent
tokens may be merged, or not. C and C++ apply different strategies to resolve such ambiguities and so generally the use of
digraphs should be avoided when writing programs for the C/C++ core. Therefore implementations that wish to serve the
C/Ci+ core should offer support for these punctuators as extensions.

5 NOTE 2 In C, the keywords that are listed in this table are only available as macros via the library header <is0646.h> . In
contrast, in C++ they have been keywords since the beginning. Code that targets the C/C++ core must be able to deal with
legacy code that uses these keywords so they were added to this specification.

Recommended practice

6 If they have to use digraphs, applications should avoid lexical ambiguities by adding white space
around these digraphs.

Forward references: expressions (6.5), declarations (6.7), preprocessing directives (6.10), statements
(6.8).

6.4.7 Header names

Syntax

1 header-name:
< h-char-sequence >
" g-char-sequence "

h-char-sequence:
h-char
h-char-sequence h-char

Language modifications to ISO/IEC 9899:2018, § 6.4.7 page 67



CORE 202005 (E) § 6.4.8, working draft — May 10, 2020 N2522

h-char:
any member of the source character set except
the new-line character and >

g-char-sequence:

g-char
qg-char-sequence g-char
g-char:
any member of the source character set except
the new-line character and *
Semantics

2 The sequences in both forms of header names are mapped in an implementation-defined manner to
headers or external source file names as specified in 6.10.2.

3 If the characters’,\, ", //, or /* occur in the sequence between the < and > delimiters, the behavior
is undefined. Similarly, if the characters ', \, //, or /* occur in the sequence between the "
delimiters, the behavior is undefined.!?® Header name preprocessing tokens are recognized only
within #include preprocessing directives and in implementation-defined locations within #pragma
directives.!?V

4 EXAMPLE The following sequence of characters:

0x3<1l/a.h>1le2
#include <1/a.h>
#define const.member@$

forms the following sequence of preprocessing tokens (with each individual preprocessing token delimited by a { on the left
and a / on the right).

{0x3H{<H1}{/Ha}{.H{h}{>}{1le2}
{#}{include} {<1/a.h>}
{#}{define} {const}{.}{member}{@}{$}

Forward references: source file inclusion (6.10.2).

6.4.8 Preprocessing numbers
Syntax

1 pp-number:
digit
. digit
pp-number digit
pp-number identifier-nondigit
pp-number e sign
pp-number E sign
pp-number p sign
pp-number P sign
pp-number .

Description

2 A preprocessing number begins with a digit optionally preceded by a period (.) and may be followed
by valid identifier characters and the character sequences e+, e-, E+, E-, p+, p-, P+, or P-.

120)Thus, sequences of characters that resemble escape sequences cause undefined behavior.
12DFor an example of a header name preprocessing token used in a #pragma directive, see 6.10.9.

modifications to ISO/IEC 9899:2018, § 6.4.8 page 68 Language



N2522 § 6.4.9, working draft — May 10, 2020 CORE 202005 (E)

Preprocessing number tokens lexically include all floating and integer constant tokens.

Semantics

A preprocessing number does not have type or a value; it acquires both after a successful conversion
(as part of translation phase 7) to a floating constant token or an integer constant token.

6.4.9 Comments

Except within a character constant, a string literal, or a comment, the characters /* introduce a
comment. The contents of such a comment are examined only to identify multibyte characters and

to find the characters */ that terminate i

£122)

Except within a character constant, a string literal, or a comment, the characters // introduce a
comment that includes all multibyte characters up to, but not including, the next new-line character.
The contents of such a comment are examined only to identify multibyte characters and to find the

terminating new-line character.
EXAMPLE

“a//b" //
#include "//e" //
// */ //
f = g/xx//h; //
//\
i(); //
/\
/7 30); //
#define glue(x,y) x##y
glue(/,/) k(); //
/*x//*%/ 1(); //
m = n//**/0

+ p; //

four-character string literal
undefined behavior

comment, not syntax error
equivalent to f =g / h;
part of a two-line comment

part of a two-line comment

syntax error, not comment
equivalent to 1();

equivalent tom = n + p;

122)Thus, /* ...*/ comments do not nest.

Language

modifications to ISO/IEC 9899:2018, § 6.4.9 page 69




CORE 202005 (E) § 6.5, working draft — May 10, 2020 cmin..core N2522

6.5 Expressions

An expression is a sequence of operators and operands that specifies computation of a value,'?® or
that designates an object or a function, or that generates side effects, or that performs a combination
thereof. The value computations of the operands of an operator are sequenced before the value
computation of the result of the operator.

If a side effect on a scalar object is unsequenced relative to either a different side effect on the
same scalar object or a value computation using the value of the same scalar object, the behavior
is undefined. If there are multiple allowable orderings of the subexpressions of an expression, the
behavior is undefined if such an unsequenced side effect occurs in any of the orderings.!?%

The grouping of operators and operands is indicated by the syntax.!?> Except as specified later,

side effects and value computations of subexpressions are unsequenced.!?)

Some operators (the unary operator ~, and the binary operators <<, >>, & *, and |, collectively
described as bitwise operators) are required to have operands that have integer type. These operators
yield values that depend on the internal representations of integers, and have implementation-
defined and undefined aspects for signed types.

If an exceptional condition occurs during the evaluation of an expression (that is, if the result is not
mathematically defined or not in the range of representable values for its type), the behavior is
undefined.

The effective type of an object for an access to its stored value and state is the declared type of the

object, i nless that type is compatible to void[] .2 Otherwise, the object has a declared type

that is compatible to void[]. If a value is stored into an-ebject-havingne-deelared-type-such an
object through an lvalue having a type that is not a character type, then the type of the lvalue

becomes the effective type of the object for that access and for subsequent accesses that do not
modify the stored value. If a value is copied into an-ebjecthavingno-declared-type-such an object
using memcpy or memmove, or is copied as an array of character type, then the effective type of the
modified object for that access and for subsequent accesses that do not modify the value is the
effective type of the object from which the value is copied, if it has one.'?® For all other accesses to

j i such an object, the effective type of the object is simply the type
of the Ivalue used for the access.

An object shall have its stored value accessed only by an lvalue expression that has one of the

123) Annex H documents the extent to which the C language supports the ISO/IEC 109671 standard for language-
independent arithmetic (LIA-1).
124)This paragraph renders undefined statement expressions such as

i=++1 +1;
ali++] = i;

while allowing

125 The syntax specifies the precedence of operators in the evaluation of an expression, which is the same as the order of the
major subclauses of this subclause, highest precedence first. Thus, for example, the expressions allowed as the operands
of the binary + operator (6.5.6) are those expressions defined in 6.5.1 through 6.5.6. The exceptions are cast expressions
(6.5.4) as operands of unary operators (6.5.3), and an operand contained between any of the following pairs of operators:
grouping parentheses () (6.5.1), subscripting brackets [] (6.5.2.1), function-call parentheses () (6.5.2.2), and the conditional
operator ?: (6.5.16).

Within each major subclause, the operators have the same precedence. Left- or right-associativity is indicated in each
subclause by the syntax for the expressions discussed therein.

126)In an expression that is evaluated more than once during the execution of a program, unsequenced and indeterminately

sequenced evaluations of its subexpressions need not be performed consistently in different evaluations.
127)g

For the purpose of the determination of the effective type of an object with allocated storage duration behaves as if
declared with a type compatible to void[]..

1?9 These provisions concerning the effective type not withstanding, the internal state of an opaque object or sub-object
cannot be copied, Therefore a byte copy operation may bless an object with an effective type whereas the state of that object

Is still indeterminate.

modifications to ISO/IEC 9899:2018, § 6.5 page 70 Language



N2522 cmin..core § 6.5.1, working draft — May 10, 2020 CORE 202005 (E)

following types:'??)

— a type compatible with the effective type of the object,
— a qualified version of a type compatible with the effective type of the object,
— atype that is the signed or unsigned type corresponding to the effective type of the object,

— a type that is the signed or unsigned type corresponding to a qualified version of the effective
type of the object,

— an aggregate or union type that includes one of the aforementioned types among its members
(including, recursively, a member of a subaggregate or contained union), or

— a character type.

A floating expression may be contracted, that is, evaluated as though it were a single opera-
tion, thereby omitting rounding errors implied by the source code and the expression evaluation
method.®® The FP_CONTRACT pragma in <math.h> provides a way to disallow contracted ex-
pressions. Otherwise, whether and how expressions are contracted is implementation-defined.!3"

NOTE C and C++ have very different strategies concerning the value category of expressions. Generally, for C++
expressions are Jualues whenever that is possible. In contrast to that, in C most operators undergo lvalue conversion
(see 6.3.2.1) before they enter an expression and the information about the object(s) that entered into an expression is
discarded. By that, a lot of expressions that are valid for C++ are not valid for C. E.¢ in C++ the prefix increment operator
*+ can be applied multiple times in the same expression (++ ++a) or the ternary operator can be used on the left side of an
assignment (isit 7 a : b)= 76;. Bothare invalid for C.

For C, lvalues only enter into expressions that are supposed to modify an object (such as assignment operators, increment
and decrement), that compute its address (address-of operator), that access members (.member operator), or that query type
roperties such as size or alignment. The result of an expression is only an lvalue for the dereference operator * and for

member access (. and —).

Programming for the C/C++ core implies not to use such constructs and we volutarily keep the possibility of returnin:
Ivalues out of this core specification.

Forward references: the FP_CONTRACT pragma (7.12.2), copying functions (7.24.2).

6.5.1 Primary expressions
Syntax
primary-expression:
identifier
constant
string-literal
( expression )
generic-selection

Semantics

An identifier is a primary expression, provided it has been declared as designating an object (in
which case it is an Ivalue) or a function (in which case it is a function designator).'3?

A constant is a primary expression. Its type depends on its form and value, as detailed in 6.4.4.

A string literal is a primary expression. It is an lvalue with type as detailed in 6.4.5.

129The intent of this list is to specify those circumstances in which an object can or cannot be aliased.

130)The intermediate operations in the contracted expression are evaluated as if to infinite range and precision, while the
final operation is rounded to the format determined by the expression evaluation method. A contracted expression might
also omit the raising of floating-point exceptions.

13D This license is specifically intended to allow implementations to exploit fast machine instructions that combine multiple
C operators. As contractions potentially undermine predictability, and can even decrease accuracy for containing expressions,
their use needs to be well-defined and clearly documented.

132)Thus, an undeclared identifier is a violation of the syntax.

Language modifications to ISO/IEC 9899:2018, § 6.5.1 page 71



CORE 202005 (E) § 6.5.1.1, working draft — May 10, 2020 cmin..core N2522

A parenthesized expression is a primary expression. Its type and value are identical to those of
the unparenthesized expression. It is an Ivalue, a function designator, or a void expression if the
unparenthesized expression is, respectively, an lvalue, a function designator, or a void expression.

A generic selection is a primary expression. Its type and value depend on the selected generic
association, as detailed in the following subclause.

Forward references: declarations (6.7).

6.5.1.1 Generic selection
Syntax
generic-selection:
generic-assoc-list )
generic-assoc-list:
generic-association
generic-assoc-list , generic-association
generic-association:
type-name : assignment-expression
default : assignment-expression

controlling-expression:
expression

Constraints

The controlling expression shall be an assignment expression.

A generic selection shall have no more than one default generic association. The type name in a
generic association shall specify a complete object type other than a variably modified type. No two
generic associations in the same generic selectlon shall spec1fy compatlble types The type of the
controlling expression is v v its
generic type.13 W%%W@W&WThat type shall be
compatible with at most one of the types named in the generic association list. If a generic selection
has no default generic association, its controlling expression shall have type compatible with
exactly one of the types named in its generic association list.

133)

Semantics

The controlling expression of a generic selection is not evaluated. If a generic selection has a generic
association with a type name that is compatible with the type of the controlling expression, then the
result expression of the generic selection is the expression in that generic association. Otherwise, the
result expression of the generic selection is the expression in the default generic association. None
of the expressions from any other generic association of the generic selection is evaluated.

The type and value of a generic selection are identical to those of its result expression. It is an
lvalue, a function designator, or a void expression if its result expression is, respectively, an lvalue,
a function designator, or a void expression. A generic selection that is the operand of a decltype
specification behaves as if the selected assignment expression had been the operand.!*

The-

EXAMPLE 1 Provided there are functions cbrt, cbrtf and chrtl, the cbrt type-generic macro could be implemented as
follows:

| #define—cbrt)—6GenerieH———\
#define cbrt .\

133)That means that it may not have a top level comma operator.

139 Andvalue conversion-drops-A generic type has no qualifiers.

135)Thus if the selected assignment expression is an identification id, the effect is as if the specifier had been given as
decltype(id).

modifications to ISO/IEC 9899:2018, § 6.5.1.1 page 72 Language



N2522 cmin..core § 6.5.2, working draft — May 10, 2020 CORE 202005 (E)

0~

o aute ) f
_.___return generic_selection(x, \

long double: chrtl, \

default: chrt, \
float—ebrtf ¥
VATAY.

float: cbrtf)(x); \

A A A A A

Here the generic selection ensures that the correct function is chosen according to the inferred type of the paramenter x of
the lambda. The englobing generic function literal has a return type that is the return type of the selected function. The
function literal ensures that this version of the cbrt macro is converted to a function pointer when used outside a function

call.

EXAMPLE 2 A combination of a generic selection with a lambda may also be used to avoid to write several functions to
implement a e generic functionality.

#define absconvert(X)_

\
_____genericselection((X), __________________\
o Chars______ (unsigned char)+(X), \
oeo_.___signed char: _ (unsigned char)+(X), \
o .sianed short: (unsigned short)+(X), \

S [ SS——— L Y
ENNPNNS %WWWW%E}%E%M
e e long long: (unsigned long long)+(X), \
MWMW%WWHX))
#define abs \
o Mlawtox) £\
oeew_.__auto y = absconvert(x); \
e ifx<O{ N
mmmmm Y S cBbsconvert(tx); \
e\

return y; \

A~ A A A A~~~

6.5.2 Postfix operators

Syntax
postfix-expression:
primary-expression
; o1 or]
—Pﬁs%ﬁ%-e%ﬁﬁsﬁﬂ%ﬁ%ﬁe%e%ﬁﬁsﬁ%ﬂﬁ—ﬁ%ﬁ
———————postfix-expression——identifier- array-subscript
pestfix-expression—>—identifier- function-call
-postfix-expressiot—++ member-access
“pestfix-expression—— postfix-addition
~Hype-name ) —initiatizer-list—} compound-literal
——type-namey——initializer-tists—} lambda-expression

6.5.2.1 Array subscripting

Syntax

——————————————assighent-expression- array-subscript:
-Argutent-expression-list——assighment-expression- postfix-expression [ expression ]

Language modifications to ISO/IEC 9899:2018, § 6.5.2.1 page 73



CORE 202005 (E) § 6.5.2.2, working draft — May 10, 2020 cmin..core N2522

Constraints

One of the expressions shall have type “pointer to complete object fype”, the other expression shall
have integer type, and the result has type “type”.

Semantics

A postfix expression followed by an expression in square brackets [] is a subscripted designation of
an element of an array object. The definition of the subscript operator [] is that E1[E2] is identical
to (*((EL)+(E2))). Because of the conversion rules that apply to the binary+ operator, if E1 is an
array object (equivalently, a pointer to the initial element of an array object) and E2 is an integer,
E1[E2] designates the E2 -th element of E1 (counting from zero).

Successive subscript operators designate an element of a multidimensional array object. If E is an
n-dimensional array (n > 2) with dimensions i x j x - -- X k, then E (used as other than an lvalue) is
converted to a pointer to an (n — 1)-dimensional array with dimensions j x --- x k. If the unary *
operator is applied to this pointer explicitly, or implicitly as a result of subscripting, the result is the
referenced (n — 1)-dimensional array, which itself is converted into a pointer if used as other than an
Ivalue. It follows from this that arrays are stored in row-major order (last subscript varies fastest).

EXAMPLE Consider the array object defined by the declaration

| int x[31(5];

Here x
isa 3 x 5 array of

int-ints; more precisely, x is an array of three element objects, each of which is an array of five #nt-ints. In the expression
x[1], which is equivalent to (*((x)+(1))), x is first converted to a pointer to the initial array of five int-ints. Then i is
adjusted according to the type of x, which conceptually entails multiplying i by the size of the object to which the pointer
points, namely an array of five int objects. The results are added and indirection is applied to yield an array of five int-ints.
When used in the expression x[1] [j], that array is in turn converted to a pointer to the first of the #at-ints, so x[1]1[j]
yields an int-int.

Forward references: additive operators (6.5.6), address and indirection operators (6.5.3.2), array
declarators (6.7.8.2).

6.5.2.2 Function calls

Syntax
unction-call:

ostfix-expression ( arqument-expression-listope )

argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

Constraints

The expression-that-denotes-the-ealled-funetionpostfix expression'®® shall have type-lambda type

or pointer to function type, returning void or returning a complete object type other than an array
or opaque type.

number of arguments shall agree with the number of parameters of the function or lambda type.
Each argument shall have a type such that its value may be assigned to an object with the unqualified
version of the type of its corresponding parameter.

136)Most often, this is the result of converting an identifier that is a function designator.

modifications to ISO/IEC 9899:2018, § 6.5.2.2 page 74 Language



10

11

12

13

14

N2522 cmin..core § 6.5.2.2, working draft — May 10, 2020 CORE 202005 (E)

Semantics

A postfix expression followed by parentheses () containing a possibly empty, comma-separated list
of expressions is a function call. The postfix expression denotes the called function or lambda. The
list of expressions specifies the arguments to the function or lambda.

An argument may be an expression of any complete object type. In preparing for the call to a
function, the arguments are evaluated, and each parameter is assigned the value of the corresponding
argument.'®”)

If the expression that denotes the called function has lambda type or type pointer to function
returning an object type, the function call expression has the same type as that object type, and has
the value determined as specified in 6.8.6.4. Otherwise, the function call has type void.

If the expression that denotes the called function has a type that does not include a prototype, the
integer promotions are performed on each argument, and arguments that have type float are
promoted to double. No such an argument shall be nullptr. These are called the default arqument
promotions. If the number of arguments does not equal the number of parameters, the behavior is
undefined. If the function is defined with a type that includes a prototype, and either the prototype
ends with an ellipsis (——,__...) or the types of the arguments after promotion are not compatible
with the types of the parameters, the behavior is undefined.

If the expression that denotes the called function is a lambda or is a function has a type that does
include a prototype, the arguments are implicitly converted, as if by assignment, to the types of
the corresponding parameters, taking the type of each parameter to be the unqualified version of
its declared type. The ellipsis notation in a function prototype declarator causes argument type
conversion to stop after the last declared parameter. The default argument promotions are performed
on trailing arguments.

No other conversions are performed implicitly; in particular, the number and types of arguments are
not compared with those of the parameters in a function definition that does not include a function
prototype declarator.

If the-funetion-is-a function is called that is defined with a type that is not compatible with the type
(of the expression) pointed to by the expression that denotes the called function, the behavior is
undefined.

If the expression that denotes the called function is a generic lambda, its prototype is completed
by inferring types of underspecified parameters from the generic types of the corresponding
arguments. This type inference for parameters takes place before any argument conversion or
promotion. If necessary, the return type of the lambda is inferred accordingly, once the parameter
types have been determined.

There is a sequence point after the evaluations of the function designator and the actual arguments
but before the actual call. Every evaluation in the calling function (including other function calls) that
is not otherwise specifically sequenced before or after the execution of the body of the called function
or lambda is indeterminately sequenced with respect to the execution of the called function.'3®

Recursive function calls shall be permitted, both directly and indirectly through any chain of other
functions or lambdas.

EXAMPLE In the function call

\ (xpf[f10)1) (f2(), f3() + f4())

the functions f1, f2, 3, and f4 can be called in any order. All side effects have to be completed before the function pointed
toby pf[f1()] is called.

Forward references: function declarators (6.7.8.3), function definitions (6.9.1), the return statement
(6.8.6.4), simple assignment (6.5.17.1).

137) A function or lambda can change the values of its parameters, but these changes cannot affect the values of the arguments.

On the other hand, it is possible to pass a pointer to an object, and the function or lambda can then change the value of the
object pointed to. A parameter declared to have array or function type is adjusted to have a pointer type as described in 6.9.1.
138)In other words, function executions do not “interleave” with each other.

Language modifications to ISO/IEC 9899:2018, § 6.5.2.2 page 75



CORE 202005 (E) § 6.5.2.3, working draft — May 10, 2020 cmin..core N2522

6.5.2.3 Structure and union members

Syntax

ostfix-expression . identifier
ostfix-expression — identifier

Constraints

The first operand of the . operator shall have an atomic, qualified, or unqualified structure or union
type, and the second operand shall name a member of that type.

The first operand of the->—— operator shall have type “pointer to atomic, qualified, or unqualified
structure” or “pointer to atomic, qualified, or unqualified union”, and the second operand shall
name a member of the type pointed to.

Semantics

A postfix expression followed by the . operator and an identifier designates a member of a structure
or union object. The value is that of the named member,'3) and is an lvalue if the first expression is
an lvalue. If the first expression has qualified type, the result has the so-qualified version of the type
of the designated member.

A postfix expression followed by the->—— operator and an identifier designates a member of a

structure or union object. The pointer value shall be valid, not be the end address of its provenance
and be correctly aligned for the structure or union type. The value is that of the named member of
the object to which the first expression points, and is an lvalue.!*? If the first expression is a pointer
to a qualified type, the result has the so-qualified version of the type of the designated member.

Accessing a member of an atomic structure or union object results in undefined behavior.!*!)

One special guarantee is made in order to simplify the use of unions: if a union contains several
structures that share a common initial sequence (see below), and if the union object currently contains
one of these structures, it is permitted to inspect the common initial part of any of them anywhere
that a declaration of the completed type of the union is visible. Two structures share a common initial

sequence if corresponding members have compatible types {and forbit-fields,the same-widths)for

a sequence of one or more initial members.

NOTE C++ has a third notation to access a member of a structure (class) or union, but without refering to an object. This
works with identifiers that are chained with a :: token. Translated into C an access as in the followin,

typedef struct A A;

typedef struct B B;
struct A { double a; };

struct B { A ba; };

NMN;iVZMeof B::ba::a)

would be equivalent to

sizeof (((B){ }).ba.a)

139)1f the member used to read the contents of a union object is not the same as the member last used to store a value in the
object, the appropriate part of the object representation of the value is reinterpreted as an object representation in the new
type as described in 6.2.6 (a process sometimes called “type punning”). This might be a trap representation.

140)If &E is a valid pointer expression (where & is the “address-of” operator, which generates a pointer to its operand), the
expression (&) — MOS is the same as E.MOS.

14D For example, a data race would occur if access to the entire structure or union in one thread conflicts with access to a
member from another thread, where at least one access is a modification. Members can be safely accessed using a non-atomic
object which is assigned to or from the atomic object.

modifications to ISO/IEC 9899:2018, § 6.5.2.3 page 76 Language



10

11

12

N2522 cmin..core § 6.5.2.3, working draft — May 10, 2020 CORE 202005 (E)

that is, to create a compound literal of the requested type (the first element in the identifier chain, B) and then iteratively
accessing the members of that compound literal (ba and a) with the . operator. C has no structure or union members that
would be allowed in evaluations without having a concrete instance of such a type, and the use of such a construct would
be restricted to contexts that are not evaluated, that is sizeof, alignof, and the controlling expression in a generic selection
(plus decltype with this specification). Therefore, this feature seemed to be of minor importance for the common C/C++

core and was not added,

The usage of that feature is not conforming to the syntax of C and is therefore a constraint violation. All implementations
that target the common C/C++ core should diagnose this use of the :: token.

EXAMPLE 1 If f is a function returning a structure or union, and x is a member of that structure or union, f() .x is a valid
postfix expression but is not an lvalue.

EXAMPLE 2 In:

struct s { int i; const int ci; };
struct s s;

const struct s cs;

volatile struct s vs;

the various members have the types:
s.i int
s.ci const int
cs.i const int
cs.ci const int
vs.i volatile int
vs.ci volatile const int

EXAMPLE 3 The following is a valid fragment:

union {
struct {
int alltypes;
}on;
struct {
int type;
int intnode;
} ni;
struct {
int type;
double doublenode;
} nf;
}ou;

u.nf.type = 1;

u.nf.doublenode = 3.14;

/% ... x/
——ifF{u-hatttypes—==1)
—3f {(sin{unf-doublenode)===0-0)
— if (u.n.alltypes = 1)

" "Tif (sin(u.nf.doublenode) = 0.0)
VA

The following is not a valid fragment (because the union type is not visible within function f):

struct t1 { int m; };
struct t2 { int m; };
int f(struct tl *xpl, struct t2 =p2)

{
Hf—{pltom——<—=0)
pZ—>f—=—->p2—>f-
————————return—pl-—>m;
o M (plom < 0)
o s s e DM P2,
ee___return pl—m;
}
int g()

Language modifications to ISO/IEC 9899:2018, § 6.5.2.3 page 77




CORE 202005 (E) § 6.5.2.4, working draft — May 10, 2020 cmin..core N2522

{
union {
struct tl1 sl;
struct t2 s2;
Tou;
/* ... %/
return f(&u.sl, &u.s2);
h

Forward references: address and indirection operators (6.5.3.2), structure and union specifiers
(6.7.2.1).

6.5.2.4 Postfix increment and decrement operators
Syntax

ostfix-addition:
ostfix-expression ++
ostfix-expression = -

Constraints

The operand of the postfix increment or decrement operator shall have atomic, qualified, or unquali-
fied real or pointer type, and shall be a modifiable lvalue.

Semantics

The result of the postfix ++ operator is the value of the operand. As a side effect, the value of the
operand object is incremented (that is, the value 1 of the appropriate type is added to it). See the
discussions of additive operators and compound assignment for information on constraints, types,
and conversions and the effects of operations on pointers. The value computation of the result is
sequenced before the side effect of updating the stored value of the operand. With respect to an

The postfix- - operator is analogous to the postfix++ operator, except that the value of the operand
is decremented (that is, the value 1 of the appropriate type is subtracted from it).

Forward references: additive operators (6.5.6), compound assignment (6.5.17.2).

6.5.2.5 Compound literals
Syntax

compound-literal:
type-name ) initializer-list
type-name ) initializer-list , }

142)Where a pointer to an atomic object can be formed and E has integer type or pointer type, E++ is equivalent to the
following code sequence where A is the type of E and C is the corresponding non-atomic, unqualified type:

A xaddr = &E;
C old = xaddr;
C new;

do {

new = old + 1;
} while (!atomic_compare_exchange_weak(addr, &old, new));

with old being the result of the operation.
Special care is necessary if E has floating type; see 6.5.17.2.

modifications to ISO/IEC 9899:2018, § 6.5.2.5 page 78 Language



10

11

12

13

N2522 cmin..core § 6.5.2.5, working draft — May 10, 2020 CORE 202005 (E)

Constraints

The type name shall specify a complete object type or an array of unknown size, but not a variable
length array type.

All the constraints for initializer lists in 6.7.12 also apply to compound literals.

Semantics

A postfix expression that consists of a parenthesized type name followed by a brace-enclosed list of
initializers is a compound literal. It provides an unnamed object whose value is given by the initializer
list.!43)

If the type name specifies an array of unknown size, the size is determined by the initializer list
as specified in 6.7.12, and the type of the compound literal is that of the completed array type.
Otherwise (when the type name specifies an object type), the type of the compound literal is that
specified by the type name. In either case, the result is an lvalue.

The value of the compound literal is that of an unnamed object initialized by the initializer list. If
the compound literal occurs outside the body of a function, the object has static storage duration;
otherwise, it has automatic storage duration associated with the enclosing block.

All the semantic rules for initializer lists in 6.7.12 also apply to compound literals.'*¥

String literals, and compound literals with const-qualified types, need not designate distinct ob-
‘octs, 145)
jects.

NOTE C and C++ have quite different concepts of the lifetime of the object that are created by compound literals.
Applications should constrain their usage to the full expression that contains them, see 6.2.4

EXAMPLE 1 The file scope definition

| int +p = (int [1){2, 4};

initializes p to point to the first element of an array of two ints, the first having the value two and the second, four. The
expressions in this compound literal are required to be constant. The unnamed object has static storage duration.

EXAMPLE 2 In contrast, in

void f(void)
{
int xp;
/*...%/
p = (int [2]){*p};
/*...x/
}

p is assigned the address of the first element of an array of two ints, the first having the value previously pointed to by p and
the second, zero. The expressions in this compound literal need not be constant. The unnamed object has automatic storage
duration.

EXAMPLE 3 Initializers with designations can be combined with compound literals. Structure objects created using
compound literals can be passed to functions without depending on member order:

drawline((struct point){.x=1, .y=1},
(struct point){.x=3, .y=4});

Or, if drawline instead expected pointers to struct point:

drawline(&(struct point){.x=1, .y=1},
&(struct point){.x=3, .y=4});

EXAMPLE 4 A read-only compound literal can be specified through constructions like:

143)Note that this differs from a cast expression. For example, a cast specifies a conversion to scalar types or void only, and
the result of a cast expression is not an Ivalue.

149 For example, subobjects without explicit initializers are initialized to zero.

M This allows implementations to share storage instances for string literals and constant compound literals with the same

Language modifications to ISO/IEC 9899:2018, § 6.5.2.5 page 79




14

15

16

17

18

CORE 202005 (E) § 6.5.2.6, working draft — May 10, 2020 cmin..core N2522

(const float []){1le0, lel, le2, le3, le4, le5, le6}

EXAMPLE 5 The following three expressions have different meanings:

"/tmp/ fileXXXXXX"
(char [1){"/tmp/fileXXXXXX"}
(const char [1){"/tmp/fileXXXXXX"}

The first always has static storage duration and has type array of char, but need not be modifiable; the last two have
automatic storage duration when they occur within the body of a function, and the first of these two is modifiable.

EXAMPLE 6 Like string literals, const-qualified compound literals can be placed into read-only memory and can even be
shared. For example,

—.___lconst char []){"abc"} = "abc"

might yield 1 if the literals’ storage instance is shared.

EXAMPLE 7 Since compound literals are unnamed, a single compound literal cannot specify a circularly linked object. For
example, there is no way to write a self-referential compound literal that could be used as the function argument in place of
the named object endless_zeros below:

struct int_list { int car; struct int_list xcdr; };
struct int_list endless_zeros = {0, &endless_zeros};
eval(endless_zeros);

EXAMPLE 8 Each compound literal creates only a single object in a given scope:

struct s { int i; };

int f (void)

{
struct s *p = 0, xq;
int j = 0;
again:
qg=p, p=_&((struct s){ j++ });
if (j < 2) goto again;
o EEUN D = g A i = 1
h

The function f () always returns the value 1.

Note that if an iteration statement were used instead of an explicit goto and a labeled statement, the lifetime of the unnamed
object would be the body of the loop only, and on entry next time around p would have an indeterminate value, which would
result in undefined behavior.

Forward references: type names (6.7.9), initialization (6.7.12).

6.5.2.6 Lambda expressions
Syntax

lambda-expression:
capture-clause parameter-clauseq: attribute-specifier-sequenceq; function-bod

L capture-listop 1

o identifier-capture

modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 80 Language



N2522 cmin..core § 6.5.2.6, working draft — May 10, 2020 CORE 202005 (E)

capture-list , identifier-capture
identifier-capture:

identifier
identifier = assignment-expression

arameter-type-list op; )

Constraints
146)

A lambda expression shall not be operand of the unary & operator.

The identifiers of identifier captures of the first form, if any, shall be names of complete objects with
automatic storage duration that do not have opaque or array type and that are visible at the point
of evaluation of the lambda expression. No identifier in an identifier capture shall appear in more
than one such capture.

In addition to the identifiers in an identifier capture, the parameters that are declared in the
parameter clause, if any, and identifiers that are declared in the function body, the function body
shall only use identifiers according to the usual scoping rules, with the restriction that identifiers
corresponding to_objects with automatic storage duration shall only be evaluated within the
assignment expression of an identifier capture, or if the capture clause starts with the token =)

A lambda expression for which at least one parameter declaration is underspecified has an opaque
type. It shall only occur in a void expression, as the postfix expression of a function call or, if the
capture clause is empty, in a conversion to a pointer to function with fully specified parameter
types. For a void expression, it has no side effects and shall be ignored..

For a function call, the type of the parameters of a lambda shall be determined as follows. First, for
each parameter, in order of declaration, a declared or inferred type is determined; if the parameter
is_underspecified that type is inferred from the call arguments analogous to 6.7.13, only that
the inferred type for an array argument is the array type and that of a function specifier is the
function type. Then, after the declared or inferred types of all parameters have been determined,
analogously to function declarators (6.7.8.3) any array or function parameters are adjusted to
possibly qualified pointer types. For a conversion of any arguments, the parameter types shall
be those of the function type.

After determinining the generic type of the identifiers in the capture clause and then the parameter
types, if any, the function body shall be such that a return type type of the function according to the
rules in 6.9.1 can be inferred. If the lambda occurs in a conversion to a function pointer, the inferred
return type shall be the same as the specified return type of the function pointer, if any.

Semantics

If the parameter clause is omitted, a clause of the form () is assumed. A lambda expression where
the capture list in the capture clause is omitted is called a function literal expression or function literal .
A lambda expression for which at least one parameter is underspecified is a generic lambda ._

For each lambda expression, the return type fype is inferred as indicated in the constraints. A
lambda expression A that is not generic defines an unspecified lambda type L that is the same for
every evaluation of A, If A appears in a context that is not a function call, a value of type L is
formed that identifies A and the specific set of values of the identifiers in the capture clause for the
evaluation, if any. This is called a lambda value . 1t is unspecified, whether two lambda expressions
A and r share the same lambda type even if they are lexically equal but appear at different points
of the program.

146) Objects with lambda type that can be operand of the unary & operator can be formed by type inference and initialization

with a lambda value.

147)[dentifiers of visible automatic obijects that are not captured, may still be used if they are not evaluated, for example in
decltype and sizeof (if they are not VM types) or as controlling expression of a generic primary expression.

Language modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 81



CORE 202005 (E) § 6.5.2.6, working draft — May 10, 2020 cmin..core N2522

10 An identifier id of an identifier capture is called a capture ; if the identifier capture is of the first
form, a second form as if given as

_id=id

is assumed. In particular, id must be the name of an object of automatic storage duration from a
surrounding scope of the lambda expression. If the capture list starts with the token = and id is an
identifier of a surrounding scope that corresponds to an object of automatic storage duration and
that is used within the scope of the lambda expression (including the parameter list), the effect is
as if 1d appeared as a capture.

11 The implicit or explicit assignment expression E in the identifier capture determines the type T
which is the generic type of E and the value Eq of the capture within the whole scope of the lambda
expressions (including the parameter list). The value Eq is determined immediately before the
evaluation of the parameter list and the function body of the lambda expression. For each capture
the effect is similar to as if as an additional parameter id of type const T is defined in front of
the parameter list and if for every function call to the lambda value or any of its copies the same
computed value Eg is provided as argument to id. If there is an object z in an outer scope to which
the body of the lambda has no direct or indirect write access the address of a capture id and the
address of z may be the same. If, within the function body, the address of the capture id or one
of its members is taken, either explicitly by applying a unary & operator or by an array to pointer
conversion,'*® and that address is used to modify the underlying object, the behavior is undefined.

12 For the value of a function literal that is not generic there is a function type F that corresponds to
its return type and parameter types. The value of a function literal expression can be converted

implicitly or explicitly (by a cast) to a pointer to F that identifies the value of the function literal.

The resulting function pointer is the same for the whole program execution whenever a conversion
+149)

of a lambda value corresponding to the same function literal expression is me

13 For a function literal expression that is generic and that is converted to a function type F, there
shall be es for all underspecified parameters and a return e as in the constraint such that the
adjusted function literal has type associated function e F as defined above.

14 If they are otherwise functionally equivalent, pointers to functions with internal linkage and
ointers to functions converted from different function literals need not to be distinct.'?"

15 Other than for the scope of visibility of the corresponding identifier, the definition of an object with
static storage duration within a lambda expression behaves as if the defined identifier is renamed
uniquely for the whole translation unit, type inference is used to adjust the definition if necessary,
and then the definition is moved before the (possibly nested) lambda expression.'*"

16 NOTE This specification opted to also apply and extend the C rules for parameter visibility from function declarationss

to lambda expressions, such that parameter or capture names can be used as soon as they are declared. That possibility is
important wherever there is a need to ensure consistency between types, array lengths or attributes.

17 EXAMPLE 1 The following uses a function literal as a comparison function argument for gsort.

#define SORTFUNC(TYPE) [](size_t nmemb, TYPE A[nmemb])

0

gsort(A, nmemb, sizeof(A[O]),

[
} SIS
|
|
|

TYPE X = *(TYPE constx)X;
TYPE Y = *(TYPE constx)y;
return (X <Y) ? -1 : ((X>Y) ? 1 : 0); /*x return of type int *x/ \

19The capture does not have array type, but if it has a union or structure type, one of its members may have such a type.
)Thus a function literal has properties that are similar to a function declared with static and inline. A possible
implementation of function literals is for them to have the type and value of the function pointer to which they convert.

1" contrast to that, for a lambda expression that has captures each evaluation should be considered to result in a different
lambda value, even if by coincidence the captured values are the same.

'*UThat means that with respect to definition and usage of local static objects, lambdas are more general than inline
functions. This s because lambdas always have a well specified scope in which they are evaluated, that can also serve as
scope of definition of such objects.

modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 82 Language



18

N2522 cmin..core § 6.5.2.6, working draft — May 10, 2020 CORE 202005 (E)

USSR 3 \
IS V3N \
return A; \
X

“long C[5] = {4,3,2,1,0,};
SORTFUNC(long)(5, C); . ___// lambda — (pointer —) function call

auto sortDouble = SORTFUNC(double); // lambda value — lambda object
doublex (*sF)(size_t nmemb, double[nmemb]) = sortDouble; // conversion

AL

doublex ap = sortDouble(4, (double {5, 8.9, 0.1, 99, });

double B[27] = /* some values ... *x/

AN

doublex (*sG)(size_t nmemb, double[nmemb]) = SORTFUNC(double); // conversion

This code evaluates the macro SORTFUNC twice, therefore in total four lambda expressions are formed.

The function literals of the “comparison lambdas” are not operands of a function call expression, and so by conversion a
pointer to function is formed and passed to the corresponding call of gsort. Since the respective captures are empty, the
effectis as if to define two comparison functions, that could equally well be implemented as static functions with auxiliary
names and these names could be used to pass the function pointers to gsort.

The outer lamhdas are again without capture, In the first case, for Long, the lambda value is subject to a function call, and
it is unspecified if the function call uses a specific lambda type or directly uses a function pointer. For the second, a copy.
of the lambda value is stored in the variable sortDouble and then converted to a function pointer sF. Other than for the
difference in the function arguments, the effect of calling the lambda value (for the compound literal) or the function pointer
(for array B) is the same.

For optimization purposes, an implementation may fold lambda values that are expanded at different points of the program
such that effectively only one function is generated. For example here the function pointers sF and sG may or may not be
equal.

EXAMPLE 2 Even more, it is possible to implement a type-generic macro for sorting:

#define SORT size_t nmemb, auto A[nmemb \
gsort(A, nmemb, sizeof (A[O]), N\
void constx x, void constx /*_comparison lambda +/ \

-~

auto X = x(decltype(A))Xx;

auto Y = x(decltype(A))y;
return (X <Y) ? -1 : ((X>Y) ? 1 : 0); /*x return of type int *x/ \

~

NSNS SIS §
NUUSUIY § SISO §

return A; \
s

“Tong C[5] = { 4, 3, 2, 1, 0, }:
SORT(5, C);

AN

double D[] = { 5, 8.9, 0.1, 99, };

doublex (*sF)(size_t, doublex) = SORT; //_conversion
““doublex ap = sF 4, D);

double B[27] = { /x some values ... x/

doublex (*sG)(size_t nmemb, double[nmemb]) = SORT; // conversion
_s6(27, B);.

A can be used in a decltype specifier, because it is not evaluated, there. The SORT macro can then be used without providin
further type specification to sort array C.

Assignment of the result of the SORT macro itself is not defined, because the two nested lambda values have insufficient
type information. So to provide an instantiation for double, lambda expression is assigned to a function pointer. By that we
obtain a fully specified parameter type list, and so the resulting function pointer can be kept in the sF variable.

Again, it is unspecified if the two function pointers sF and sG are identical or not.

Language modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 83




19

20

CORE 202005 (E) § 6.5.2.6, working draft — May 10, 2020 cmin..core N2522

EXAMPLE 3 Consider the following generic function literal that computes the maximum value of two parameters X and Y.

#define MAXIMUM(X, Y) \
lauto g, auto b L
e SERUIN (8.2 0) o N
\
\

After preprocessing, the definition of R, becomes

auto R = auto a, auto b){
return (a < 0)
? ((b<0) 2 ((a<hb)?b:a):b
i ((b>0) 7 a<bhb)?b:a):a

To determine type and value of R, first the type of the parameters in the function call are inferred to be signed int and
unsigned int, respectively. With this information, the type of the return expression becomes the common arithmetic type
of the two, which is unsigned_int. Thus the retumn type of the lambda is that type. The resulting lambda value is the first
operand to the function call operator (). So Rhas the type unsigned int and a value of UINT_MAX.

For S, a similar deduction shows that the value still is UINT_MAX but the type could be unsigned int (if int and long have
the same width) or long (if long is wider than int).

As long as they are integers, regardless of the specific type of the arguments, the type of the expression is always such that
the mathematical maximum of the values fits. So MAXIMUM implements a e generic maximum macro that is suitable for
any combination of integer types.

EXAMPLE 4

void matmult(size t k, size t 1, size t m
double const A[k][l], double const B[l][m], double const C[k][m

// dot product with stride of m for B

// ensure constant propagation of 1 and m
_auto A0 = [1,m](double const v[l], double const B[1l][m], size_t mO) {

for (size_t i =0; i < 1; ++i) {
ret += v[i]*B[i][mO];

Y §

return ret;
3
/L vector matrix product

// ensure constant propagation of 1 and m, and accessibility of Ad

auto Ay = 1, m, Ad] (double const v[1l double const B[l][m], double res[m])

for (size_t m0 = 0; mO < m; ++m@) {

res[m0@] = \o(v, B, mO);

)

for (size_t kO = 0; kO < k; ++k0) {
double const (*Ap)[l] = A[kO];
double (xCp)[m] = C[kO];

e

This function evaluates two lambda expressions with captures; AJ has a return type of double, Ap of void. Both lambda
values serve repeatedly as first operand to function evaluation but the evaluation of the captures is only done once for each
of the lambda expressions. For the purpose of optimization, an implementation could generate copies of the underlyin:

modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 84 Language



N2522 cmin..core § 6.5.3, working draft — May 10, 2020 CORE 202005 (E)

functions for each evaluation of such a lambda expression such that the values of the captures 1 and m are replaced on a

6.5.3 Unary operators
Syntax

unary-expression:
postfix-expression
++ Unary-expression
- - unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof ( type-name )
—Atignef- alignof ( type-name )

unary-operator: one of
& x + - ~ L~

A~~~

6.5.3.1 Prefix increment and decrement operators
Constraints

The operand of the prefix increment or decrement operator shall have atomic, qualified, or unquali-
fied real or pointer type, and shall be a modifiable lvalue.

Semantics

The value of the operand of the prefix++ operator is incremented. The result is the new value of the
operand after incrementation. The expression++E is equivalent to (E+=1). See the discussions of
additive operators and compound assignment for information on constraints, types, side effects,
and conversions and the effects of operations on pointers.

The prefix- - operator is analogous to the prefix++ operator, except that the value of the operand is
decremented.

Recommended practice

C and C++ differ by the result category for these operators. Whereas for C they are values (and in
this aspect equivalent to the corresponding postfix operator), in C++ they are lvalues and so they
can be chained. Applications that target the C/C++ core should avoid the usage of these operators
as operands to other expressions.

Forward references: additive operators (6.5.6), compound assignment (6.5.17.2).

6.5.3.2 Address and indirection operators
Constraints

The operand of the unary & operator shall be either a function designator, the result of a [] or unary
* operator, or an Ivalue that designates an objectthatisnot-a-bit-field-and-isnot-declared-with-the

register storage-class specifier. !

The operand of the unary * operator shall have pointer type.

Semantics

The unary & operator yields the address of its operand. If the operand has type “type”, the result has
type “pointer to type”. If the operand is the result of a unary * operator, neither that operator nor
the & operator is evaluated and the result is as if both were omitted, except that the constraints on
the operators still apply and the result is not an lvalue. Similarly, if the operand is the result of a []
operator, neither the & operator nor the unary * that is implied by the [] is evaluated and the result
is as if the & operator were removed and the [] operator were changed to a+ operator. Otherwise,
the result is a pointer to the object or function designated by its operand.

152)The core:: noalias attribute may be used to inhibit the application of the unary & operator to objects and functions.

Language modifications to ISO/IEC 9899:2018, § 6.5.3.2 page 85



CORE 202005 (E) § 6.5.3.3, working draft — May 10, 2020 cmin..core N2522

The unary * operator denotes indirection. If the operand points to a function, the result is a function
de51gnator if it points to an object, the result is an lvalue de51gnat1ng the object. If the operand
has type “pointer to type”, the result has type “type”.

pointer-the behavior-of the unary+operator-is-undefinedThe pointer value shall be valid, not be
o 153)

the end address of its provenance and be correctly aliened for “t .

Forward references: storage-class specifiers (6.7.1), structure and union specifiers (6.7.2.1).

6.5.3.3 Unary arithmetic operators
Constraints

The operand of the unary+ or- operator shall have arithmetic type; of the ~ operator, integer type;
of the +— operator, scalar type.

Semantics

The result of the unary + operator is the value of its (promoted) operand. The integer promotions
are performed on the operand, and the result has the promoted type.

The result of the unary- operator is the negative of its (promoted) operand. The integer promotions
are performed on the operand, and the result has the promoted type.

The result of the ~ operator is the bitwise complement of its (promoted) operand (that is, each bit in
the result is set if and only if the corresponding bit in the converted operand is not set). The integer
promotions are performed on the operand, and the result has the promoted type. If the promoted
type is an unsigned type, the expression ~E is equivalent to the maximum value representable in
that type minus E.

The fes&}%e%theloglcal negat1on operator 4+ ﬁ@ﬂfethe%a}ﬂeeht&epefaﬂekeemparewﬁeq—&aite

/

equﬁLa}eﬁHfH—GEEF 1rst Converts the operand to boo'l. If that conversion 1e1ds true the resul

is false; otherwise, the result is true.

NOTE In the current C specification the result of logical negation operator — is not bool but int. Therefore it should not
be used directly as argument to a type-generic macro or in another context that is sensible to the type of the expression.

6.5.3.4 The sizeof and alignof operators
Constraints
The sizeof operator shall not be applied to an expression that has function type or an incomplete

type, or to the parenthesized name of such a type;or-to-an-expression-that-designates-a-bit-field
member—The —Atignef-. The alignof operator shall not be applied to a function type or an

incomplete type.

Semantics

The sizeof operator yields the size (in bytes) of its operand, which may be an expression or the
parenthesized name of a type. The size is determined from the type of the operand. The result
is an integer. If the type of the operand is a variable length array type, the operand is evaluated;
otherwise, the operand is not evaluated and the result is an integer constant.

The =Atignef-alignof operator yields the alignment requirement of its operand type. The operand
is not evaluated and the result is an integer constant. When applied to an array type, the result is the
alignment requirement of the element type.

When sizeof is applied to an operand that has type char, unsigned char, or signed char, (or
a qualified version thereof) the result is 1. When applied to an operand that has array type, the
result is the total number of bytes in the array.’® When applied to an operand that has structure or

153)Thus, &+E is equivalent to E (even if E is a null pointer), and &(E1[E2]) to ((E1)+(E2)). Itis always true thatif Eis a
function designator or an Ivalue that is a valid operand of the unary & operator, *&E is a function designator or an lvalue
equal to E. If #P is an Ivalue and T is the name of an object pointer type, * (T)P is an lvalue that has a type compatible with
that to which T points.

Among the invalid values for dereferencing a pointer by the unary * operator are a null pointer, an address inappropriately
aligned for the type of object pointed to, the address of an object after the end of its lifetime, or any other indeterminate value.
15)When applied to a parameter declared to have array or function type, the sizeof operator yields the size of the adjusted

modifications to ISO/IEC 9899:2018, § 6.5.3.4 page 86 Language



N2522 cmin..core § 6.5.4, working draft — May 10, 2020 CORE 202005 (E)

union type, the result is the total number of bytes in such an object, including internal and trailing
padding.

The value of the result of both operators is implementation-defined, and its type (an unsigned
integer type) is size_t ;defined-in{and-other-headers).

EXAMPLE 1 A principal use of the sizeof operator is in communication with routines such as storage allocators and I/O

systems. A storage-allocation function might accept a size (in bytes) of an object to allocate and return a pointer to void. For
example:

extern void *alloc(size_t);
double xdp = alloc(sizeof *dp);

The implementation of the alloc function presumably ensures that its return value is aligned suitably for conversion to a
pointer to double.

EXAMPLE 2 Another use of the sizeof operator is to compute the number of elements in an array:

[
sizeof array / sizeof array[0]

EXAMPLE 3 In this example, the size of a variable length array is computed and returned from a function:

——#inetude—~<stddef.h>

size_t fsize3(int n)

{
char b[n+3]; // variable length array
return sizeof b; // execution time sizeof
}
int main()
{
size_t size;
size = fsize3(10); // fsize3 returns 13
return 0;
}

Forward references: common-definitions{(719),-declarations (6.7), structure and union specifiers
(6.7.2.1), type names (6.7.9), array declarators (6.7.8.2).

6.5.4 Cast operators

Syntax

cast-expression:
unary-expression
( type-name ') cast-expression

Constraints
Unless the type name specifies a void type, the type name shall specify atomic, qualified, or
unqualified scalar type, and the operand shall have scalar type.

Conversions that involve pointers, other than where permitted by the constraints of 6.5.17.1, shall be
specified by means of an explicit cast.

A pointer type shall not be converted to any floating type. A floating type shall not be converted to
any pointer type.

(pointer) type (see 6.9.1).

Language modifications to ISO/IEC 9899:2018, § 6.5.4 page 87



CORE 202005 (E) § 6.5.5, working draft — May 10, 2020 cmin..core N2522

Semantics

Preceding an expression by a parenthesized type name converts the value of the expression to the
unqualified version of the named type. This construction is called a cast.’® A cast that specifies no
conversion has no effect on the type or value of an expression.

If the value of the expression is represented with greater range or precision than required by the type
named by the cast (6.3.1.8), then the cast specifies a conversion even if the type of the expression is
the same as the named type and removes any extra range and precision.

Forward references: equality operators (6.5.10), function declarators (6.7.8.3), simple assignment
(6.5.17.1), type names (6.7.9).

6.5.5 Multiplicative operators
Syntax

multiplicative-expression:
cast-expression
multiplicative-expression - x_cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

Constraints

Each of the operands shall have arithmetic type. The operands of the % operator shall have integer
type.

Semantics

The usual arithmetic conversions are performed on the operands.

The result of the binary *-x operator is the product of the operands.

The result of the / operator is the quotient from the division of the first operand by the second; the
result of the % operator is the remainder. In both operations, if the value of the second operand is
zero, the behavior is undefined.

When integers are divided, the result of the / operator is the algebraic quotient with any fractional
part discarded.!>® If the quotient a/b is representable, the expression {a/b)+b——a%b-(a/b)xb + a
%b shall equal a; otherwise, the behavior of both a/b and a%b is undefined.

6.5.6 Additive operators

Syntax

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

Constraints

For addition, either both operands shall have arithmetic type, or one operand shall be a pointer to a
complete object type and the other shall have integer type. (Incrementing is equivalent to adding 1.)

For subtraction, one of the following shall hold:

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible complete object

159 A cast does not yield an Ivalue.
156)This is often called “truncation toward zero”.

modifications to ISO/IEC 9899:2018, § 6.5.6 page 88 Language



10

11

12

13

N2522 cmin..core § 6.5.6, working draft — May 10, 2020 CORE 202005 (E)

types; or

— the left operand is a pointer to a complete object type and the right operand has integer type.

(Decrementing is equivalent to subtracting 1.)

Semantics
If both operands have arithmetic type, the usual arithmetic conversions are performed on them.

The result of the binary + operator is the sum of the operands.

The result of the binary- operator is the difference resulting from the subtraction of the second
operand from the first.

For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

When an expression that has integer type is added to or subtracted from a pointer, the result has the
type of the pointer operand. If the pointer operand points to an element of an array object, and the
array is large enough, the result points to an element offset from the original element such that the
difference of the subscripts of the resulting and original array elements equals the integer expression.

expression—{@)—1-pointsto-the lastelement-of the-array-object—If both the pointer operand and the
result point to elements of the same array object, or one past the last element of the array object, the
evaluation shall not produce an overflow; otherwise, the behavior is undefined. If the result points
one past the last element of the array object, it shall not be used as the operand of a unary * operator

that is evaluated. The result pointer has the same provenance as the pointer operand.!®”)
When two pointers are subtracted, both shall be valid. If they compare equal the result is 0.

Otherwise they shall have the same provenance and point to elements of the same array object,
or one past the last element of the array object; the result is the difference of the subscripts of the

two array elements. The size of the result is implementation-defined, and its type (a signed integer
type) is ptrdiff_t defined-inthe-header. If the result is not representable in an object of that type,
the behavior is undefined. In-otherwords;if-the-

NOTE 1 If the expression P points to the i-th element of an array object, the expressions (P)+N (equivalently, N+(P)) and
(P) -N (where N has the value n) point to, respectively, the ¢ + n-th and ¢ — n-th elements of the array object, provided the
exist. Moreover, if the expression P points to the last element of an array object, the expression (P)+1 points one past the
last element of the array object, and if the expression Q points one past the last element of an array object, the expression
Q)-1 points to the last element of the array object.

NOTE 2 If the expressions P and Q point to, respectively, the i-th and j-th elements of an array object, the expression (P) - (Q)
has the value i — j provided the value fits in an object of type ptrdiff_t. Moreover, if the expression P points either to an
element of an array object or one past the last element of an array object, and the expression Q points to the last element of the
same array object, the expression ((Q)+1) - (P) has the same value as ((Q) - (P))+1 and as- ((P) - ((Q)+1)) , and has the
value zero if the expression P points one past the last element of the array object, even though the expression (Q)+1 does not
point to an element of the array object.

NOTE 3 Another way to approach pointer arithmetic is first to convert the pointer(s) to character or void pointer(s): In this
scheme the integer expression added to or subtracted from the converted pointer is first multiplied by the size of the object
originally pointed to, and the resulting pointer is converted back to the original type. For pointer subtraction, the result of
the difference between the character or void pointers is similarly divided by the size of the object originally pointed to.

When viewed in this way, an implementation need only provide one extra byte (which can overlap another object in the
rogram) just after the end of the object in order to satisfy the “one past the last element” requirements.

EXAMPLE Pointer arithmetic is well defined with pointers to variable length array types.

[
\ {
157)1f the pointer operand P had been the result of an integer-to-pointer or scanf conversion that could have two possible

rovenances, and the integer value added or subtracted is not 0, the provenance S for the additive operation (and henceforth
other operations with P) must be such that the result lies in .S (or one beyond).

Language modifications to ISO/IEC 9899:2018, § 6.5.6 page 89



CORE 202005 (E) § 6.5.7, working draft — May 10, 2020 cmin..core N2522

int n =4, m=3;
int a[n]l[m];

VA A N— |
77 1=

. int (sp)[n] = 8; // p = Galo]
el /lp=salll
T ee)I21 =99/ alli2] = 99
L n=p-a.____ln=1

}

14 If array a in the above example were declared to be an array of known constant size, and pointer p were declared to be a
pointer to an array of the same known constant size (pointing to a), the results would be the same.

Forward references: array declarators (6.7.8.2);common-definitions{719)—,_

6.5.7 Bitwise shift operators
Syntax
shift-expression:
additive-expression
shift-expression <<-<®_additive-expression
shift-expression >>- &> additive-expression

Constraints
Each of the operands shall have integer type.

Semantics

The integer promotions are performed on each of the operands. The type of the result is that of the
promoted left operand. If the value of the right operand is negative or is greater than or equal to the
width of the promoted left operand, the behavior is undefined.

The result of El-<<-E2-E1 <®E2 is E1 left-shifted E2 bit positions; vacated bits are filled with zeros.
If E1 has an unsigned type, the value of the result is E1 x 252, reduced modulo one more than the
maximum value representable in the result type. If E1 has a signed type and nonnegative value, and
E1 x 252 is representable in the result type, then that is the resulting value; otherwise, the behavior is
undefined.

The result of E}->>—E2E1 ®>E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned type
or if E1 has a signed type and a nonnegative value, the value of the result is the integral part
of the quotient of E1/252. If E1 has a signed type and a negative value, the resulting value is
implementation-defined.

6.5.8 Three-way comparison operator
Syntax

compare-expression:
shift-expression
compare-expression <=> shift-expression

Constraints_

The three-way comparison operator shall only be used after the <stdcompare.h> header has been
included. Additional constraints apply as specified in the correponding clause 7.31.

Description

The three-way comparison operator provides a tool to compare values of most object or function
type. For the details see the indicated clause.

modifications to ISO/IEC 9899:2018, § 6.5.8 page 90 Language



N2522 cmin..core § 6.5.9, working draft — May 10, 2020 CORE 202005 (E)

6.5.9 Relational operators
Syntax

1 relational-expression:

shift-expression- compare-expression

relational-expression < -shift-expression- compare-expression
relational-expression > -shift-expression- compare-expression
relational-expression <=—shift-expressior <_compare-expression
relational-expression >=—shift-expressior > _compare-expression_

Constraints
2 One of the following shall hold:

— both operands have real type; or

— both operands are pointers to qualified or unqualified versions of compatible object types.

Semantics

3 If both of the operands have arithmetic type, the usual arithmetic conversions are performed.

4  For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

behav&eieis—tmdeﬁﬂedthe shall both be Vahd and have the same rovenance. The result de ends
on the relative ordering of their abstract addresses.

6  Each of the operators < (less than), > (greater than), <=—< (less than or equal to), and >=-> (greater
than or equal to) shall yield +-true if the specified relation is-trte-and-0-if-itis-falseholds and false

otherwise.!® TFheresulthastype-int-

7 NOTE In the current C specification the result is not bool but int. Therefore it should not be used directly as argument to
a type-generic macro or in another context that is sensible to the type of the expression.

6.5.10 Equality operators

Syntax
1 equality-expression:
relational-expression
equality-expression === relational-expression
equality-expression = # relational-expression
Constraints

2 One of the following shall hold:

— both operands have arithmetic type;

159)The expression a<b<c is not interpreted as in ordinary mathematics. As the syntax indicates, it means (a<b)<c; in other
words, “if a is less than b, compare 1 to ¢; otherwise, compare 0 to c”.

Language modifications to ISO/IEC 9899:2018, § 6.5.10 page 91



CORE 202005 (E) § 6.5.11, working draft — May 10, 2020 cmin..core N2522

— both operands are pointers to qualified or unqualified versions of compatible types;

— one operand is a pointer to an object type and the other is a pointer to a qualified or unqualified
version of void; or

— one operand is a pointer and the other is a null pointer constant.

Semantics

The === (equal to) and =+ (not equal to) operators are analogous to the relational operators
except for their lower precedence.’® None of the operands shall be indeterminate. Each of the
operators yields +-true if the specified relation is-trte-and-0-if-it-is-false—The result-has-type-
m}&@m For any pair of operands, exactly one of the relations is-trueyields
true.

If both of the operands have arithmetic type, the usual arithmetic conversions are performed. Values
of complex types are equal if and only if both their real parts are equal and also their imaginary parts
are equal. Any two values of arithmetic types from different type domains are equal if and only
if the results of their conversions to the (complex) result type determined by the usual arithmetic
conversions are equal.

If both of the operands are null pointer constants, they compare equal.

Otherwise, at least one operand is a pointer. If one operand is a pointer and the other is a null
pointer constant, the null pointer constant is converted to the type of the pointer. If one operand is a
pointer to an object type and the other is a pointer to a qualified or unqualified version of void, the
former is converted to the type of the latter.

Two-pointersIf one operand is null they compare equal if and only if beth-are nullpeinters; both
the other o erand is null. Otherw1se 1f both 0 erand s are pomters to the same-object{includinga
bobj 6 oth-function type they compare

ual if and onl 1f the refer to the same functlon Otherw1se they are pomters to ene-past-the

ﬁfseafmydajeeﬁﬁtheﬂddfessspae%ob ects and compare e ual if and onl if the have the same
abstract address.

For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

NOTE In the current C specification the result is not bool but int. Therefore it should not be used directly as argument to
a type-generic macro or in another context that is sensible to the type of the expression.

6.5.11 Bitwise AND operator
Syntax

AND-expression:
equality-expression
AND-expression & N_equality-expression

Constraints
Each of the operands shall have integer type.

Semantics
The usual arithmetic conversions are performed on the operands.

The result of the binary &) operator is the bitwise AND of the operands (that is, each bit in the
result is set if and only if each of the corresponding bits in the converted operands is set).

159)Because of the precedences, a<b = c<d is 1 whenever a<b and c<d have the same truth-value.

modifications to ISO/IEC 9899:2018, § 6.5.11 page 92 Language



N2522 cmin..core § 6.5.12, working draft — May 10, 2020 CORE 202005 (E)

6.5.12 Bitwise exclusive OR operator

Syntax

exclusive-OR-expression:
AND-expression
exclusive-OR-expression ~ AND-expression

Constraints
Each of the operands shall have integer type.

Semantics
The usual arithmetic conversions are performed on the operands.

The result of the ~ operator is the bitwise exclusive OR of the operands (that is, each bit in the result
is set if and only if exactly one of the corresponding bits in the converted operands is set).

6.5.13 Bitwise inclusive OR operator

Syntax

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression U exclusive-OR-expression

Constraints
Each of the operands shall have integer type.

Semantics
The usual arithmetic conversions are performed on the operands.

The result of the -U operator is the bitwise inclusive OR of the operands (that is, each bit in the
result is set if and only if at least one of the corresponding bits in the converted operands is set).

6.5.14 Logical AND operator

Syntax
logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && A_inclusive-OR-expression

Constraints
Each of the operands shall have scalar type.

Semantics

The &&/\ operator shall yield 3-true if both of its operands eompare-unequal-to-Oyield true when
converted to bool ; otherwise, it yields O—false. The result has type int-bool .

Unlike the bitwise binary & operator, the &&/\ operator guarantees left-to-right evaluation; if the
second operand is evaluated, there is a sequence point between the evaluations of the first and
second operands. If the first operand eompares-equatto-fconverts to false , the second operand is
not evaluated.

NOTE In the current C specification the result is not bool but int. Therefore it should not be used directly as argument to
a type-generic macro or in another context that is sensible to the type of the expression.

6.5.15 Logical OR operator

Syntax
logical-OR-expression:
logical-AND-expression

Language modifications to ISO/IEC 9899:2018, § 6.5.15 page 93



CORE 202005 (E) § 6.5.16, working draft — May 10, 2020 cmin..core N2522

logical-OR-expression -V logical-AND-expression

Constraints
Each of the operands shall have scalar type.

Semantics

The +1-V operator shall yield +-true if either of its operands compare-unequal-to-Oyields true when
converted to bool ; otherwise, it yields 6-—false. The result has type int-bool .

Unlike the bitwise -U operator, the +{-V operator guarantees left-to-right evaluation; if the second
operand is evaluated, there is a sequence point between the evaluations of the first and second
operands. If the first operand eompares-tunequal-to-Oconverts to true, the second operand is not
evaluated.

NOTE In the current C specification the result is not bool but int. Therefore it should not be used directly as argument to
a type-generic macro or in another context that is sensible to the type of the expression.

6.5.16 Conditional operator
Syntax

conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

Constraints
The first operand shall have scalar type.

One of the following shall hold for the second and third operands:

— both operands have arithmetic type;
— both operands have the same structure or union type;
— both operands have void type;

— both operands are pointers to qualified or unqualified versions of compatible types;

— both operands are nullptr;

— one operand is a pointer and the other is a null pointer constant; or

— one operand is a pointer to an object type and the other is a pointer to a qualified or unqualified
version of void.

Semantics

The first operand is evaluated and the result is converted to bool ; there is a sequence point between
its evaluation and the evaluation of the second or third operand (whichever is evaluated). The
second operand is evaluated only if the first compares-unequal-te-Oconverts to true ; the third
operand is evaluated only if the first eompares-equal-to-fconverts to false ; the result is the value

of the second or third operand (whichever is evaluated), converted to the type described below.!*?

If both the second and third operands have arithmetic type, the result type that would be determined
by the usual arithmetic conversions, were they applied to those two operands, is the type of the
result. If both the operands have structure or union type, the result has that type. If both operands
have void type, the result has void type.

160) A conditional expression does not yield an lvalue.

modifications to ISO/IEC 9899:2018, § 6.5.16 page 94 Language



10

N2522 cmin..core § 6.5.17, working draft — May 10, 2020 CORE 202005 (E)

If both the second and third operands are nullptr the result has the same type and value as
nullptr. Otherwise, if either of the second or third operands is nullptr, and the other is an

integer constant expression of value 0 the behavior is undefined.'®V

If both the second and third operands are pointers or one is a null pointer constant and the other
is a pointer, the result type is a pointer to a type qualified with all the type qualifiers of the types
referenced by both operands. Furthermore, if both operands are pointers to compatible types or to
differently qualified versions of compatible types, the result type is a pointer to an appropriately
qualified version of the composite type; if one operand is a null pointer constant, the result has the
type of the other operand; otherwise, one operand is a pointer to void or a qualified version of void,
in which case the result type is a pointer to an appropriately qualified version of void.

Recommended practice

C and C++ differ by the result category for this operator. Whereas for C it is a value, in C++ it ma
be an Ivalue and so a conditional operator may for example form the left arcument of an assignment.
Applications that target the C/C++ core should avoid a usage of the conditional operator in places
where a modifiable lvalue is required.

EXAMPLE The common type that results when the second and third operands are pointers is determined in two independent

stages. The appropriate qualifiers, for example, do not depend on whether the two pointers have compatible types.

Given the declarations

const void xc_vp;
void *vp;

const int *c_ip;
volatile int xv_ip;
int xip;

const char xc_cp;

the third column in the following table is the common type that is the result of a conditional expression in which the first two
columns are the second and third operands (in either order):

c.vp c_ip const void *

v_ip © volatile int x

c_ip v_ip const volatile int x
vp c_cp const void x

ip c_ip const int x

vp ip void *

6.5.17 Assignment operators

Syntax

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= REmXE /E %= o4m e= <<= e e e s = = 0=

AAAAA

Constraints
An assignment operator shall have a modifiable lvalue as its left operand.

Semantics
An assignment operator stores a value in the object designated by the left operand. If a non-null

ointer is stored by an assignment operator, either directly or within a structure or union obiject,

the stored pointer object has the same provenance as the original. An assignment expression has
the value of the left operand after the assignment,'%? but is not an Ivalue. The type of an assignment

16D[f the other operand has arithmetic type but is not constant and 0, a constraint is violated.

162 The implementation is permitted to read the object to determine the value but is not required to, even when the object
has volatile-qualified type.

Language modifications to ISO/IEC 9899:2018, § 6.5.17 page 95



CORE 202005 (E) § 6.5.17.1, working draft — May 10, 2020 cmin..core N2522

expression is the type the left operand would have after Ivalue conversion. The side effect of
updating the stored value of the left operand is sequenced after the value computations of the left
and right operands. The evaluations of the operands are unsequenced.

Recommended practice

C and C++ differ by the result category for these operators. Whereas for C it is a value, in C++ it
may be an lvalue and so these operators may be chained from left to right such as in (a+=6)*=35.
which is a constraint violation in C. Applications that target the C/C++ core should avoid a usage
of assignment operators in places where a modifiable lvalue is required.

Implementations that conform to this specification should diagnose usages of these operators that
are erroneous in one of the two languages.

6.5.17.1 Simple assignment
Constraints
One of the following shall hold:1*?

— the left operand has atomic, qualified, or unqualified arithmetic type, and the right has
arithmetic type;

— the left operand has an atomic, qualified, or unqualified version of a structure or union type
compatible with the type of the right;

— the left operand has atomic, qualified, or unqualified pointer type, and (considering the type
the left operand would have after lvalue conversion) both operands are pointers to qualified
or unqualified versions of compatible types, and the type pointed to by the left has all the
qualifiers of the type pointed to by the right;

— the left operand has atomic, qualified, or unqualified pointer type, and (considering the type
the left operand would have after lvalue conversion) one operand is a pointer to an object type,
and the other is a pointer to a qualified or unqualified version of veid, and the type pointed to
by the left has all the qualifiers of the type pointed to by the right;

— the left operand is an atomic, qualified, or unqualified pointer, and the right is a null pointer
constant; or

— the left operand has type atomic, qualified, or unqualified =Beet-hool, and the right is a
pointer.

Semantics
In simple assignment (=), the value of the right operand is converted to the type of the assignment
expression and replaces the value stored in the object designated by the left operand.

If the value being stored in an object is read from another object that overlaps in any way the
storage of the first object, then the overlap shall be exact and the two objects shall have qualified or
unqualified versions of a compatible type; otherwise, the behavior is undefined.

EXAMPLE 1 In the program fragment

int f(void);

char c;

/* ... %/
—ifFHe=F))r==-1)
L if ((c=f()) = -1)

/* ... %/

the int value returned by the function could be truncated when stored in the char, and then converted back to int width
prior to the comparison. In an implementation in which “plain” char has the same range of values as unsigned char (and

163)The asymmetric appearance of these constraints with respect to type qualifiers is due to the conversion (specified in
6.3.2.1) that changes lvalues to “the value of the expression” and thus removes any type qualifiers that were applied to the
type category of the expression (for example, it removes const but not volatile from the type int volatile * const).

modifications to ISO/IEC 9899:2018, § 6.5.17.1 page 96 Language



N2522 cmin..core § 6.5.17.2, working draft — May 10, 2020 CORE 202005 (E)

char is narrower than int), the result of the conversion cannot be negative, so the operands of the comparison can never
compare equal. Therefore, for full portability, the variable c would be declared as int.

EXAMPLE 2 In the fragment:

char c;
int i;
long 1;

the value of i is converted to the type of the assignment expression ¢ = i, that is, char type. The value of the expression
enclosed in parentheses is then converted to the type of the outer assignment expression, that is, Long int type.

EXAMPLE 3 Consider the fragment:

const char xxcpp;

char *p;

const char c = 'A’;

cpp = &p; // constraint violation
xcpp = &c; // valid

xp = 0; // valid

The first assignment is unsafe because it would allow the following valid code to attempt to change the value of the const
object c.

6.5.17.2 Compound assignment
Constraints

For the operators+= and-= only, either the left operand shall be an atomic, qualified, or unqualified
pointer to a complete object type, and the right shall have integer type; or the left operand shall have
atomic, qualified, or unqualified arithmetic type, and the right shall have arithmetic type.

For the other operators, the left operand shall have atomic, qualified, or unqualified arithmetic type,
and (considering the type the left operand would have after Ivalue conversion) each operand shall
have arithmetic type consistent with those allowed by the corresponding binary operator.

Semantics

A compound assignment of the form E1 op= E2 is equivalent to the simple assignment expression

El = E1l op (E2), except that the lvalue E1 is evaluated only once, and with respect to an inde-
termmately—sequenced funct1on call, the operatlon of a compound ass1gnment is a smgle eval—
uation.

NOTE Where a pointer to an atomic object can be formed and E1 and E2 have integer or pointer type, this is equivatent
similar to the following code sequence where F#is—+the-Al is the type of E1, CI is the corresponding non-atomic and

gr}ﬂ/qgll\fiegmtype of E1 ane-, and T2C2 is the non-atomic and unqualifid type of E2:

T1—+adtr—=&EL-
T2—~vat—=—E2}+
Tl1—-eltd—=—raddrs
T1—+ew;

___A1 xaddr = §E1;
€2 val = (E2);
___C1 old = addr;
o CL nevw;

do {

new = old op val;

while (!atomic_compare_exchange_weak(addr, &old, new));

~~

with new being the result of the operation. The difference is that if the combination of the values of old and val is invalid

for the operation, there will no signal raised or trap performed. In particular:

Language modifications to ISO/IEC 9899:2018, § 6.5.17.2 page 97



CORE 202005 (E) § 6.5.18, working draft — May 10, 2020 cmin..core N2522

— If “old op val” has a signed type and produces an overflow, new is the corresponding modulo of the mathematical
result of the operation.

— If the value of val is invalid for op, the value of new is unspecified.
— If C2 is a pointer e and the value of old is null or is indeterminate, the value of new is unspecified.
— If C2 is a pointer e and the value of “old op val” would be indeterminate, the value of new is unspecified.

If E1 or E2 has floating type, then exceptional conditions or floating-point exceptions encountered during discarded
evaluations of new would also be discarded in order to satisfy the equivalence of E1 op= E2 and E1 = E1 op (E2). For
example, if Annex F is in effect, the floating types involved have IEC 60559 formats, and FLT_EVAL_METHOD is O, the
equivalent code would be:

#include <fenv.h>
#pragma STDC FENV_ACCESS ON
/x ... X/
fenv_t fenv;
Tl—adtr—==&E1+
T2—at—FE2+
Tl old = xaddr;
T1—+new;
___AL xaddr = §E1;
€2 val = E2;
___CI1 old = xaddr;
o C1 new;
feholdexcept (&fenv) ;
for (;;) {
new = old op val;
if (atomic_compare_exchange_strong(addr, &old, new))
break;
feclearexcept (FE_ALL_EXCEPT) ;

A A A

A A A

A~ A~

A A A

}

feupdateenv (&fenv) ;

If FLT_EVAL_METHOD is not 0, then 72C2 is expected to be a type with the range and precision to which E2 is evaluated in
order to satisfy the equivalence.

6.5.18 Comma operator

Syntax
expression:

assignment-expression

expression , assignment-expression
Semantics

The left operand of a comma operator is evaluated as a void expression; there is a sequence point
between its evaluation and that of the right operand. Then the right operand is evaluated; the result
has its type and value.

Recommended practice

C and C++ differ by the result category for this operator. Whereas for C it is a value, in C++ it may
be an lvalue and so this operator may be chained from left to right such as in (f() ,2)=0 which is a
constraint violation in C. Generally, the use of the comma operator is often problematic because it
can easily be mixed up with other usages of the comma punctuator, such as in function arguments,

Applications that target the C/C++ core should avoid a usage of the comma operator in places
where a modifiable lvalue is required. Implementations that conform to this specification should
diagnose usages of the comma operator that are erroneous in one of the two languages.

EXAMPLE As indicated by the syntax, the comma operator (as described in this subclause) cannot appear in contexts where
a comma is used to separate items in a list (such as arguments to functions or lists of initializers). On the other hand, it can be
used within a parenthesized expression or within the second expression of a conditional operator in such contexts. In the
function call

modifications to ISO/IEC 9899:2018, § 6.5.18 page 98 Language



N2522 § 6.5.18, working draft — May 10, 2020 CORE 202005 (E)

| f(a, (t=3, t+2), c)

the function has three arguments, the second of which has the value 5.

Forward references: initialization (6.7.12).

Language modifications to ISO/IEC 9899:2018, § 6.5.18 page 99



CORE 202005 (E) § 6.6, working draft — May 10, 2020 cmin..core N2522

6.6 Constant expressions

Syntax

constant-expression:
conditional-expression

Description

A constant expression can be evaluated during translation rather than runtime, and accordingly
may be used in any place that a constant may be.

Constraints

Constant expressions shall not contain assignment, increment, decrement, function-call, or comma
operators, except when they are contained within a subexpression that is not evaluated-,'*” or

if they are a constexpr function call that fulfills the corresponding constraints or are contained in

such a call.

Each constant expression shall evaluate to a constant that is in the range of representable values for
its type.

No constexpr object or function call (see below) shall be formed that has a pointer type, unless it
has a null pointer value or the value is the result of a cast of an integer constant expression to the
pointer type.

Semantics

An expression that evaluates to a constant is required in several contexts. If a floating expression
is evaluated in the translation environment, the arithmetic range and precision shall be at least as
great as if the expression were being evaluated in the execution environment.'®%

A _constexpr object is a such declared object, or one of the elements or members of such an
object, even recursively, such that any element or member designator only uses integer constant
expressions, if any. A constexpr function call is a call that uses a function designator or lambda
value that has the constexpr specifier and that fulfills the constraints of such a call in the context
of a constant expression.

An integer constant expression°® shall have integer type and shall only have operands that are integer
constants, enumeration constants, character constants, constexpr objects or function calls of integer
type, sizeof expressions whose results are integer constants, zAtignef-alignof expressions, and
floating constants that are the immediate operands of casts. Cast operators in an integer constant
expression shall only convert arithmetic types to integer types, except as part of an operand to the

sizeof or -Atignof-alignof operator.

More latitude is permitted for constant expressions in initializers. Such a constant expression shall
be, or evaluate to, one of the following;:

166)

— a constexpr object or function call,

— an arithmetic constant expression,
— anull pointer constant,
— an address constant, or

— an address constant for a complete object type plus or minus an integer constant expression.

169 The operand of a decltype, sizeof or alignof operator is usually not evaluated (6.5.3.4).

165The use of evaluation formats as characterized by FLT_EVAL_METHOD also applies to evaluation in the translation
environment.

166) An integer constant expression is required in a number of contexts such as the size-of a-bit-field-member-of a-strueture;
the-value of an enumeration constant, and the size of a non-variable length array. Further constraints that apply to the integer
constant expressions used in conditional-inclusion preprocessing directives are discussed in 6.10.1.

modifications to ISO/IEC 9899:2018, § 6.6 page 100 Language



10

11

12
13

14

15

16

N2522 cmin..core § 6.6, working draft — May 10, 2020 CORE 202005 (E)

An arithmetic constant expression shall have arithmetic type and shall only have operands that are
integer constants, floating constants, enumeration constants, character constants, constexpr objects
or function calls of arithmetic type, sizeof expressions whose results are integer constants, and

—Atignef-alignof expressions. Cast operators in an arithmetic constant expression shall only
convert arithmetic types to arithmetic types, except as part of an operand to a sizeof or —Atignef

alignof operator.

An address constant is a null pointer, a pointer to an lvalue designating an object of static storage
duration, or a pointer to a function designator; it shall be created explicitly using the unary &
operator or an integer constant cast to pointer type, or implicitly by the use of an expression of array
or function type. The array-subscript [] and member-access . and->—— operators, the address
& and indirection * unary operators, and pointer casts may be used in the creation of an address
constant, but the value of an object shall not be accessed by use of these operators.

An implementation may accept other forms of constant expressions.

The semantic rules for the evaluation of a constant expression are the same as for nonconstant
expressions.

EXAMPLE 1 In the followin

static unsigned int i = UINT MAX V. 1 / 0; // valid
tatic unsigned int j = UINT MAXU 1 / 0; // invalid

the initializer expression for i is a valid integer constant expression with value one, since only the first operand of the V
operator is evaluated. For j it is invalid because both operands are needed for a successful evaluation of the bitwise U
operator, even though any valid value for the second operand would lead to the same result.

EXAMPLE 2 constexpr objects may have aggregate or union type:

struct string32 size_t len; char str[32]; };

constexpr struct string32 capital = {
e .len = sizeof ("ABCDEFGHIJKLMNOPQRSTUVWXYZ")-1,

o 2880 = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

i

constexpr. . char encodingA = capital.strl0l; _ _________ // internal linkage
inline constexpr char encodingC = capital.str[2]; // same

static const charxconst emptyness = &capital.str[capital.len]; // valid

constexpr  charx weirdness = &capital.str[capital.len]; // constraint violation

inline const charxconst uglyness = &capital.str[capital.len]; // constraint violation

Here, the initializers of encodingA, encodingB and encodingC only use member access operators with integer constant
expressions, so they are valid. As a result, they hold the representation value for the capital letters A B and C, respectively, in
the execution character set. They are themselves constexpr objects and evaluate to integer constant expressions. Therefore
they may be used in any context where such a constant is allowed.

The evaluation of capital. len leads to an integer constant expression, taking the address in the initializer of emptyness
is then valid and evaluates to the address of the terminating null character of the string. Thus the definition is valid. In
that definition, static could not be replaced by inline or constexpr because the unary & operator is not valid for the
initialization of a constexpr object with pointer value. Therefore the initialization of weirdness and uglyness are invalid
and must be diagnosed.

Forward references: array declarators (6.7.8.2), the constexpr specifier (6.7.4), initialization
(6.7.12).

Language modifications to ISO/IEC 9899:2018, § 6.6 page 101



1

6

CORE 202005 (E) § 6.7, working draft — May 10, 2020 cmin..core N2522

6.7 Declarations

Syntax

declaration:
declaration-specifiers init-declarator-listop; ;
attribute-specifier-sequence declaration-specifiers init-declarator-list ;
static_assert-declaration
attribute-declaration
declaration-specifiers:
declaration-specifier attribute-specifier-sequenceopt
declaration-specifier declaration-specifiers
declaration-specifier:
storage-class-specifier
type-specifier-qualifier
inline
—Noreturn
init-declarator-list:
init-declarator
init-declarator-list , init-declarator
init-declarator:
declarator
declarator = initializer
attribute-declaration:
attribute-specifier-sequence ;

Constraints

A declaration other than a static_assert or attribute declaration shall declare at least a declarator
(other than the parameters of a function or the members of a structure or union), a tag, or the
members of an enumeration.

If an identifier has no linkage, there shall be no more than one declaration of the identifier (in a
declarator or type specifier) with the same scope and in the same name space, except that:

— a typedef name may be redefined to denote the same type as it currently does, provided that
type is not a variably modified type;

— tags may be redeclared as specified in 6.7.2.3.

All declarations in the same scope that refer to the same object or function shall specify compatible
types.

Semantics

A declaration specifies the interpretation and properties of a set of identifiers. A definition of an
identifier is a declaration for that identifier that:

— for an object, causes storage-a unique storage instance to be reserved for that object;
— for a function, includes the function body;'¢”
— for an enumeration constant, is the (only) declaration of the identifier;

— for a typedef name, is the first (or only) declaration of the identifier.

The declaration specifiers consist of a sequence of specifiers, followed by an optional attribute
specifier sequence, that indicate the linkage, storage duration, and part of the type of the entities that

167) Function definitions have a different syntax, described in 6.9.1.

modifications to ISO/IEC 9899:2018, § 6.7 page 102 Language



10

11

12

N2522 cmin..core § 6.7, working draft — May 10, 2020 CORE 202005 (E)

the declarators denote. The init declarator list is a comma-separated sequence of declarators, each of
which may have additional type information, or an initializer, or both. The declarators contain the
identifiers (if any) being declared. The optional attribute specifier sequence appertains to each of the
entities declared by the declarators of the init declarator list.

If an identifier for an object is declared with no linkage, the type for the object shall be complete
by the end of its declarator, or by the end of its init-declarator if it has an initializer; in the case of
function parameters, it is the adjusted type (see 6.7.8.3) that is required to be complete.

The optional attribute specifier sequence terminating a sequence of declaration specifiers appertains
to the type determined by the preceding sequence of declaration specifiers. The attribute specifier
sequence affects the type only for the declaration it appears in, not other declarations involving the
same type.

Except where specified otherwise, the meaning of an attribute declaration is implementation-defined.

In some situations a stricter correspondence of types, qualifiers, attributes and array bounds of
declarations is needed than is provided by the concept of compatible types. Two declarations are
token equivalent if for the two token sequences corresponding to the declarations, after phase 4, there
is a sequence of rewrite operations, such that both declarations including array specifications,'*®
qualifications and attributes shall consist of the same token sequence, and such that all identifiers
that appear are used in the declarations shall be the same and, within their proper context, refer to
the same objects, functions, attributes or types.'® The possible rewrite operations are:

— replacement of digraphs by the token they represent
— replacement of each multiset of type specifiers by the first equivalent form listed in 6.7.2,
— renaming and eventually adding of parameter names for all parameters that occur in the

declaration to the tokens Param@,_Paraml, ..., in order,

— addition or removal of white space tokens.

EXAMPLE 1 In the declaration for an entity, attributes appertaining to that entity may appear at the start of the declaration
and after the identifier for that declaration.

0 Hvoid—fif H e “

deprecated]] void f [[deprecated (void); // valid

~~

EXAMPLE 2 Consider the following compatible declarations of a function sortIt:

/*0x/ void sortIt(size_t nmemb, size_t size, void arr[len][size],

o .__.___voidx context, int comp(void const[size], void const[size]));

/*x1x/ void sortIt(size_t nmemb, size_t size, void arr[len][size],

o .__.___voidx context, int comp(void const a[size], void const b[size ;

/*x2x/ void sortIt(size_t _Param0®, size_t _Paraml, void _Param2[_ParamO][Paraml
~—______voidx _Param3,

eeee___int _Param4(void const _Param5[ _Paraml], void const _Param6[ Paraml]));

/*3%/ void sortIt(size_t nmemb, size_t size, void arr[len][size],

e _.___Vvoidx context, int comp(void const|], void const[]));

/*x4x/ void sortIt(size_t _Param0®, size_t _Paraml, void _Param2[_ParamO][Paraml
o VOID®__Param3,

_.___int (x_Param4) (void const _Param5[_Paraml], void const _Param6[_Paraml]));

Here, the declarations 0 and 1 are token equivalent, because 1 only adds parameter names to the parameters of the callback
function comp; 2 is also equivalent to these two, since it renames the parameters to a standardized form and otherwise onl
has some differences in white space.

168)Thus for token equivalence the rewriting of array parameters to pointers is not applied.
169)Note that this rewriting is performed on a token level, and that therefore the spelling of types for example through
different typedef matters.

Language modifications to ISO/IEC 9899:2018, § 6.7 page 103



CORE 202005 (E) § 6.7.1, working draft — May 10, 2020 cmin..core N2522

13 In contrast to that, 3 is not token equivalent to any of the previous, because it misses the sizes of the array parameters of the
call back. Also, 4 is not equivalent to any of the others because its callback parameter is rewritten to a function pointer.

Forward references: declarators (6.7.8), enumeration specifiers (6.7.2.2), initialization (6.7.12), type
names (6.7.9), type qualifiers (6.7.3).

6.7.1 Storage-class specifiers

Syntax
storage-class-specifier:
typedef
extern
static
—Thread=tocal-thread_local
auto
register-
Constraints
At-most,one
Only the following multisets of storage-class specifier-specifiers may be given in the declaration
specifiers in a-cleclaration; exceptthat=Thread-tocalt-mayappearwith-staticorexternthe same

declaration. Here each line represents a multiset for which the specifiers may appear in any order.

— no storage-class specifier

— auto

— auto extern_

— auto extern thread_local
— auto static_

— auto static thread_local
— auto thread_local

— extern,

— extern thread_local
— static

— static thread_local

— thread_local
— typedef .

In the declaration of an object with block scope, if the declaration specifiers include =Thread=toecal-
thread_local , they shall also include either static or extern. If _Thread=tocat-thread_local
appears in any declaration of an object, it shall be present in every declaration of that object.

=Thread=teecal-thread_local shall not appear in the declaration specifiers of a function decla-

ration. auto shall only appear in the declaration specifiers of a function declaration if it is the
declaration part of a function definition or if the corresponding function has already been defined.

170)See “future language directions” (6.11.5).

modifications to ISO/IEC 9899:2018, § 6.7.1 page 104 Language



[y

N2522 cmin..core § 6.7.2, working draft — May 10, 2020 CORE 202005 (E)

Semantics

The typedef specifier is called a “storage-class specifier” for syntactic convenience only; it is
discussed in 6.7.10. The meanings of the various linkages and storage durations were discussed in
6.2.2 and 22~

The declaration of an identifier for a function that has block scope shall have no explicit storage-class
specifier other than extern.

If an aggregate or union object is declared with a storage-class specifier other than typedef, the
properties resulting from the storage-class specifier, except with respect to linkage, also apply to the
members of the object, and so on recursively for any aggregate or union member objects.

If auto appears with extern, static or thread_local, or if it appears in a declaration at file scope

it is ignored for the purpose of determining a storage class or linkage. It then only indicates that the

declared type may be inferred from an initializer (for objects see 6.7.13), or from return statements
for functions see 6.9.1).

NOTE C++ has abandonned the register storage class, so programs targetting the C/C++ core should not use this feature

and it has been removed from this specification. To obtain similar effects (namely that taking the address of an object is a
constraint violation) they should use the core:: noalias attribute, instead.

Forward references: type definitions (6.7.10), type inference (6.7.13), function definitions (6.9.1).

6.7.2 Type specifiers
Syntax
type-specifier:
void
char
short
int
long
float
double
signed
unsigned
—=Beol-
—Compltex- bool
atomic-type-specifier
struct-or-union-specifier
enum-specifier
typedef-name
o Aecltype-specifier

Constraints

At-Unless stated otherwise, at least one type specifier shall be given in the declaration specifiers in
each declaration, and in the specifier-qualifier list in each member declaration and type name. Each
list of type specifiers shall be one of the following multisets (delimited by commas, when there is
more than one multiset per item); the type specifiers may occur in any order, possibly intermixed
with the other declaration specifiers.

— void
— char

— signed char

Language modifications to ISO/IEC 9899:2018, § 6.7.2 page 105



CORE 202005 (E) § 6.7.2.1, working draft — May 10, 2020 cmin..core N2522

— unsigned char

— short, signed short, short int, or signed short int
— unsigned short, or unsigned short int

— int, signed, or signed int

— unsigned, or unsigned int

— long, signed long, long int, or signed long int

— unsigned long, or unsigned long int

— long long, signed long long, long long int, or signed long long int
— unsigned long long, or unsigned long long int

— float

— double

— Llong double

— atomic type specifier

— struet-orunion-struct or union specifier

— enum-enum specifier

— typedefname typedef name

— decltype specifier

— complex_type, real_type and generic_type specifier macros.

Semantics
Specifiers for structures, unions, enumerations, and atomic types are discussed in 6.7.2.1 through
6.7.2.4. Declarations of typedef names are discussed in 6.7.10. The characteristics of the other types

are discussed in 6.2.5. Declarations for which the type specifiers are inferred from initializers are
discussed in 6.7.13.

e/ e}feepk k‘}lﬁt fef blt fle}dsr 1t 15
FHme-ttvoe-a aned " A o

A declaration that contains no type specifier is said to be underspecified. Identifiers that are such

declared have incomplete type. Their type can be completed by type inference from an intialization
for objects), from a function call (for lambda parameters) or from return statements in a function

body (for return types of functions).

NOTE Note that complex types can be specified as a decltype specification or via the complex_type macro.
Forward references: atomic type specifiers (6.7.2.4), enumeration specifiers (6.7.2.2), structure and

union specifiers (6.7.2.1), tags (6.7.2.3), type definitions (6.7.10)-, type inference (6.7.13), predefined
macros (6.10.8).

6.7.2.1 Structure and union specifiers
Syntax

struct-or-union-specifier:
struct-or-union attribute-specifier-sequenceqp identifierop { member-declaration-list }
struct-or-union attribute-specifier-sequenceop identifier

struct-or-union:
struct

modifications to ISO/IEC 9899:2018, § 6.7.2.1 page 106 Language



N2522 cmin..core §6.7.2.1, working draft — May 10, 2020 CORE 202005 (E)

union

member-declaration-list:
member-declaration
member-declaration-list member-declaration

member-declaration:
attribute-specifier-sequenceqp specifier-qualifier-list member-declarator-listop: ;
static_assert-declaration

specifier-qualifier-list:
type-specifier-qualifier attribute-specifier-sequenceopt
type-specifier-qualifier specifier-qualifier-list

type-specifier-qualifier:
type-specifier
type-qualifier
alignment-specifier

member-declarator-list:
member-declarator
member-declarator-list , member-declarator

member-declarator:

declarator

bit-field
bit-field:

declaratorypy : constant-expression
Constraints

A member declaration that does not declare an anonymous structure or anonymous union shall
contain a member declarator list.

A structure or union shall not contain a member with incomplete or function type (hence, a structure
shall not contain an instance of itself, but may contain a pointer to an instance of itself), except that
the last member of a structure with more than one named member may have incomplete array type;
such a structure (and any union containing, possibly recursively, a member that is such a structure)
shall not be a member of a structure or an element of an array.

The-expression-thatspecifies-the-width-of-a-A member declarator that is a bit-field shall not appear
in a member declarator list, unless the type specifier is bool, signed or unsigned, and there shall
be no alignment s ec1f1er the constant ex ression, the width of the b1t ﬁeld shall be an 1nteger

M that is not negative, and be
less than ore ual to INT_ BITFIELD_MAX 5. 2 4 2.1). If the t e is bool, M shall be 0 or 1.

Language modifications to ISO/IEC 9899:2018, § 6.7.2.1 page 107



CORE 202005 (E) § 6.7.2.1, working draft — May 10, 2020 cmin..core N2522

value-iszero, the-declarationshall-have ne-deelarater-If M is 0, there shall be no declarator and

no bit of the representation shall be reserved for the bit-field.””? Otherwise, a bit-field declarator
name:M with qualifier list CV, type attributes TA, declaration attributes DA, and type specifier T
one of bool, signed or unsigned shall be as if the member name had been declared as

. corezatias ]| [0AJ]CV._Sy [[TA]| name;_
L

where S, is _the type specifier bool, intwidth(M) or

v

-uintwidth (M) (7.20.1.2),

respectively, and the constraints corresponding to members with a core:: alias attribute apply.1”?

5  An attribute specifier sequence shall not appear in a struct-or-union specifier without a member
declaration list, except in a declaration of the form:

struct-or-union attribute-specifier-sequence identifier ;

The attributes in the attribute specifier sequence, if any, are thereafter considered attributes of the
struct or union whenever it is named.

Semantics

6  Asdiscussed in 6.2.5, a structure is a type consisting of a sequence of members, whose storage is
allocated in an ordered sequence, and a union is a type consisting of a sequence of members whose
storage overlap.

7 Structure and union specifiers have the same form. The keywords struct and union indicate that
the type being specified is, respectively, a structure type or a union type.

8  The optional attribute specifier sequence in a struct-or-union specifier appertains to the structure
or union type being declared. The optional attribute specifier sequence in a member declaration
appertains to each of the members declared by the member declarator list; it shall not appear if the
optional member declarator list is omitted. The optional attribute specifier sequence in a specifier
qualifier list appertains to the type denoted by the preceding type specifier qualifiers. The attribute
specifier sequence affects the type only for the member declaration or type name it appears in, not
other types or declarations involving the same type.

9  The presence of a member declaration list in a struct-or-union specifier declares a new type, within
a translation unit. The member declaration list is a sequence of declarations for the members of
the structure or union. If the member declaration list does not contain any named members, either
directly or via an anonymous structure or anonymous union, the behavior is undefined. The type is
incomplete until immediately after the } that terminates the list, and complete thereafter.

10

17DThe only effect of such a member is that it separates a sequence of bit-fields into different packs, see 6.7.15.3.2 for

definitions and examples.

"72Both C and C++ have bit-fields that are “objects” on a scale below a storage unit or that may cross boundaries of storage
units. Unfortunately both disagree on their interpretation in terms of types and possible bounds to the number of bits: for
example in C an int bit field may be unsigned, orin C++ M is unrestricted but may contain padding. The specification

here is a possible intersection between the two languages.
173) FPhe-unary—&—a an appli

modifications to ISO/IEC 9899:2018, § 6.7.2.1 page 108 Language



11

12

13

14

15
16

17

18

N2522 cmin..core §6.7.2.1, working draft — May 10, 2020 CORE 202005 (E)

An unnamed member whose type specifier is a structure specifier with no tag is called an anonymous
structure; an unnamed member whose type specifier is a union specifier with no tag is called an
anonymous union. The members of an anonymous structure or union are considered to be members
of the containing structure or union, keeping their structure or union layout. This applies recursively
if the containing structure or union is also anonymous.

Each non-bit-field member of a structure or union object is aligned in an implementation-defined
manner appropriate to its type.

Within a structure object, the non-bit-field members and the-unitsin-which-bit-fieldsreside-packs
have addresses that increase in the order in which they are declared. A pointer to a structure object,
suitably converted, points to its initial member (or-if-thatmember-is-a-bit-field;thento-the-unitin
whieh-itresides)or pack , and vice versa. There may be unnamed padding within a structure object,
but not at its beginning.

The size of a union is sufficient to contain the largest of its members. The value of at most one of the
members can be stored in a union object at any time. A pointer to a union object, suitably converted,

points to each of its members (or-if-a-member-is-a-bit-fieldthento-the unitin-whieh-itresides)or

packs, and vice versa.
There may be unnamed padding at the end of a structure or union.

As a special case, the last member of a structure with more than one named member may have an
incomplete array type; this is called a flexible array member. In most situations, the flexible array
member is ignored. In particular, the size of the structure is as if the flexible array member were
omitted except that it may have more trailing padding than the omission would imply. However,
when a . (or->——) operator has a left operand that is (a pointer to) a structure with a flexible array
member and the right operand names that member, it behaves as if that member were replaced with
the longest array (with the same element type) that would not make the structure larger than the
objeet-storage instance being accessed; the offset of the array shall remain that of the flexible array
member, even if this would differ from that of the replacement array. If this array would have no
elements, it behaves as if it had one element but the behavior is undefined if any attempt is made to
access that element or to generate a pointer one past it.

Forward references: the core::alias attribute (6.7.15.3.2), exact-width integer types (7.20.1.2).

EXAMPLE 1 The following declarations illustrate the behavior when an attribute is written on a tag declaration:

_.___struct [[deprecated]| S; // valid deprecated || appertains to struct S
__._void f(struct S xs); // valid, the struct S type has the [[deprecated
// attribute
- Lid s : f H .
struct S // valid, struct S inherits the [ deprecated]|] attribute
int a; // from the previous declaration

A~

b8
. 0 H ; . H
____Vvoid struct deprecated S s); // invalid

EXAMPLE 2 The following illustrates anonymous structures and unions:

struct v {
union { // anonymous union
struct { int i, j; }; // anonymous structure
struct { long k, 1; } w;
b
int m;
} vl

feldunion cannot

ontam a member w1th a Varlabl modlfled t e because member names are not ordmar 1dent1f1ers as defined in 6.2.3. As
o o AP M em g - A a ha Lo o o 1 ha

Language modifications to ISO/IEC 9899:2018, § 6.7.2.1 page 109




19

20

21

22

23

CORE 202005 (E) § 6.7.2.1, working draft — May 10, 2020 cmin..core N2522

\ vli.i =2; // valid

\ vl.k = 3; // invalid: 1inner structure is not anonymous
\ vl.w.k = 5; // valid

L

EXAMPLE 3 After the declaration:

\ struct s { int n; double d[]; };

the structure struct s has a flexible array member d. A typical way to use this is:

int m = /*x some value x*/;
struct s *p = malloc(sizeof (struct s) + sizeof (double [m]));

and assuming that the call to malloc succeeds, the object pointed to by p behaves, for most purposes, as if p had been
declared as:

| struct { int n; double d[m]; } #*p;

(there are circumstances in which this equivalence is broken; in particular, the offsets of member d might not be the same).

Following the above declaration:

struct s t1 = { 0 }; // valid

struct s t2 = { 1, { 4.2 }}; // invalid

tl.n = 4; // valid

t1.d[0] = 4.2; // might be undefined behavior

The initialization of t2 is invalid (and violates a constraint) because struct s is treated as if it did not contain member d.
The assignment to t1.d[0] is probably undefined behavior, but it is possible that

——sizeof{struet—s)>=—offsetof{structs;—dr—+—sizeof {(doubte)
. sizeof (struct s) > offsetof(struct s, d) + sizeof (double)

in which case the assignment would be legitimate. Nevertheless, it cannot appear in strictly conforming code.

After the further declaration:

struct ss { int n; };

the expressions:

: 3 Y :
——sizeofA{struet—s)>=—offsetof{struct—s—d)
. sizeof (struct s) > sizeof (struct ss

... sizeof (struct s) > offsetof(struct s, d)

are always equal to 1.

If sizeof (double) is 8, then after the following code is executed:

struct s xsl;
struct s *s2;
sl = malloc(sizeof (struct s) + 64);
s2 malloc(sizeof (struct s) + 46);

and assuming that the calls to malloc succeed, the objects pointed to by s1 and s2 behave, for most purposes, as if the
identifiers had been declared as:

struct { int n; double d[8]; } xs1;
struct { int n; double d[5]; } *s2;

Following the further successful assignments:

\ sl = malloc(sizeof (struct s) + 10);

modifications to ISO/IEC 9899:2018, § 6.7.2.1 page 110 Language



24

25

N2522 cmin..core § 6.7.2.2, working draft — May 10, 2020 CORE 202005 (E)

\ s2 = malloc(sizeof (struct s) + 6);

they then behave as if the declarations were:

i struct { int n; double d[1]; } *sl1, *s2;

and:

double xdp;
——ap—="6st—>eH0)—F++valid

__.d & sl—+d 01); // valid
*dp // valid

—dﬁ—&(—%ﬁ{@ivl—%/»valld

___dp = & sZ—)d 01); // valid
*dp // undefined behavior

The assignment:

[
*S1 = *52;
L

only copies the member n; if any of the array elements are within the first sizeof (struct s) bytes of the structure, they
might be copied or simply overwritten with indeterminate values.

EXAMPLE 4 Because members of anonymous structures and unions are considered to be members of the containing
structure or union, struct s in the following example has more than one named member and thus the use of a flexible array
member is valid:

struct s {
struct { int i; };
int a[];

i

Forward references: declarators (6.7.8), tags (6.7.2.3).

6.7.2.2 Enumeration specifiers

Syntax

enum-specifier:
enum attribute-specifier-sequenceop: identifierop: { enumerator-list }
enum attribute-specifier-sequenceop; identifierope { enumerator-list , }
enum identifier

enumerator-list:

enumerator

enumerator-list , enumerator
enumerator:

enumeration-constant attribute-specifier-sequencept

enumeration-constant attribute-specifier-sequenceopy = constant-expression
Constraints

The expression that defines the value of an enumeration constant shall be an integer constant
expression that has a value representable as an int.

Semantics

The optional attribute specifier sequence in the enum specifier appertains to the enumeration; the
attributes in that attribute specifier sequence are thereafter considered attributes of the enumeration
whenever it is named. The optional attribute specifier sequence in the enumerator appertains to that
enumerator.

The identifiers in an enumerator list are declared as constants that have type int and may appear
wherever such are permitted.”¥ An enumerator with = defines its enumeration constant as the

178 Thus, the identifiers of enumeration constants declared in the same scope are all required to be distinct from each other

Language modifications to ISO/IEC 9899:2018, § 6.7.2.2 page 111



CORE 202005 (E) § 6.7.2.3, working draft — May 10, 2020 cmin..core N2522

value of the constant expression. If the first enumerator has no =, the value of its enumeration
constant is 0. Each subsequent enumerator with no = defines its enumeration constant as the value
of the constant expression obtained by adding 1 to the value of the previous enumeration constant.
(The use of enumerators with = may produce enumeration constants with values that duplicate
other values in the same enumeration.) The enumerators of an enumeration are also known as its
members.

Each enumerated type shall be compatible with char, a signed integer type, or an unsigned integer
type. The choice of type is implementation-defined,'” but shall be capable of representing the
values of all the members of the enumeration. The enumerated type is incomplete until immediately
after the } that terminates the list of enumerator declarations, and complete thereafter.

EXAMPLE The following fragment:

enum hue { chartreuse, burgundy, claret=20, winedark };
enum hue col, xcp;
col = claret;
cp = &col;
—ifF{xep—t=—burgundy)
o Af (xcp # burgundy)
/* ... %/

makes hue the tag of an enumeration, and then declares col as an object that has that type and cp as a pointer to an object
that has that type. The enumerated values are in the set {0, 1,20, 21}.

Forward references: tags (6.7.2.3).

6.7.2.3 Tags
Constraints
A specific type shall have its content defined at most once.

Where two declarations that use the same tag declare the same type, they shall both use the same
choice of struct, union, or enum.

A type specifier of the form

enum identifier
without an enumerator list shall only appear after the type it specifies is complete.
A type specifier of the form

struct-or-union attribute-specifier-sequencep: identifier

shall not contain an attribute specifier sequence.!”®

Semantics

All declarations of structure, union, or enumerated types that have the same scope and use the same
tag declare the same type. Irrespective of whether there is a tag or what other declarations of the
type are in the same translation unit, the type is incomplete!’”) until immediately after the closing
brace of the list defining the content, and complete thereafter.

Two declarations of structure, union, or enumerated types which are in different scopes or use
different tags declare distinct types. Each declaration of a structure, union, or enumerated type
which does not include a tag declares a distinct type.

A type specifier of the form

struct-or-union attribute-specifier-sequenceop identifierops { member-declaration-list }

and from other identifiers declared in ordinary declarators.

175 An implementation can delay the choice of which integer type until all enumeration constants have been seen.

176) As specified in 6.7.2.1 above, the type specifier may be followed by a ; or a member declaration list.

177) An incomplete type can only be used when the size of an object of that type is not needed. It is not needed, for example,
when a typedef name is declared to be a specifier for a structure or union, or when a pointer to or a function returning a
structure or union is being declared. (See incomplete types in 6.2.5.) The specification has to be complete before such a
function is called or defined.

modifications to ISO/IEC 9899:2018, § 6.7.2.3 page 112 Language



10

11

12

13

N2522 cmin..core § 6.7.2.3, working draft — May 10, 2020 CORE 202005 (E)

or
enum attribute-specifier-sequenceop: identifierops { enumerator-list }
or
enum attribute-specifier-sequenceop: identifierope { enumerator-list , }

declares a structure, union, or enumerated type. The list defines the structure content, union content,
or enumeration content. If an identifier is provided,'”® the type specifier also declares the identifier to
be the tag of that type. The optional attribute specifier sequence appertains to the structure, union,
or enumeration type being declared; the attributes in that attribute specifier sequence are thereafter
considered attributes of the structure, union, or enumeration type whenever it is named.

A declaration of the form
struct-or-union attribute-specifier-sequenceop identifier ;

specifies a structure or union type and declares the identifier as a tag of that type.l’”” The optional
attribute specifier sequence appertains to the structure or union type being declared; the attributes
in that attribute specifier sequence are thereafter considered attributes of the structure or union type
whenever it is named.

If a type specifier of the form
struct-or-union attribute-specifier-sequencep, identifier

occurs other than as part of one of the above forms, and no other declaration of the identifier as a
tag is visible, then it declares an incomplete structure or union type, and declares the identifier as
the tag of that type.”?

If a type specifier of the form

struct-or-union attribute-specifier-sequencep, identifier
or

enum identifier

occurs other than as part of one of the above forms, and a declaration of the identifier as a tag is
visible, then it specifies the same type as that other declaration, and does not redeclare the tag.

Recommended practice

The fact that tag names are in a different name space than identifiers can lead to portability issues
between C and C++, see 6.7.9 below. To avoid incompatibilities, it is recommended to place
appropriate typedef before (for struct or union) or after (for enum) a tag declaration or definition:

typedef struct S S;
_struct S {

___double data;_
5% next;

3

Such a practice ensures that a tag name cannot be reused later as an identifier for a different purpose
and that the semantics when seen by a C or C++ translator agree.

It is recommended that applications otherwise restrain from using tag names as identifiers
whenever possible.
NOTE C and C++ differ in the ways a tag name may later be used. In particular, a tag name that is not otherwise declared

as an identifier can be used as if a typedef for that name had been declared. Unfortunately this rule could not be extended
to C, because there is a major example in POSIX that would conflict with such a mechanism.

178)1f there is no identifier, the type can, within the translation unit, only be referred to by the declaration of which it is a part.

Of course, when the declaration is of a typedef name, subsequent declarations can make use of that typedef name to declare
objects having the specified structure, union, or enumerated type.
179) A similar construction with enum does not exist.

Language modifications to ISO/IEC 9899:2018, § 6.7.2.3 page 113



CORE 202005 (E) § 6.7.2.4, working draft — May 10, 2020 cmin..core N2522

EXAMPLE 1 This mechanism allows declaration of a self-referential structure.

struct tnode {

int count;

struct tnode xleft, *right;
}i

specifies a structure that contains an integer and two pointers to objects of the same type. Once this declaration has been
given, the declaration

\ struct tnode s, *sp;

declares s to be an object of the given type and sp to be a pointer to an object of the given type. With these declarations,
the expression sp—>teft-sp — left refers to the left struct tnode pointer of the object to which sp points; the expression
s—right-—>eount-s.right — count designates the count member of the right struct tnode pointed to from s.

The following alternative formulation uses the typedef mechanism:

typedef struct tnode TNODE;
struct tnode {

int count;

TNODE *left, *right;
+
TNODE s, *sp;

EXAMPLE 2 To illustrate the use of prior declaration of a tag to specify a pair of mutually referential structures, the
declarations

struct sl { struct s2 xs2p; /* ... x/ }; // D1
struct s2 { struct sl xslp; /* ... x/ }; // D2

specify a pair of structures that contain pointers to each other. Note, however, that if s2 were already declared as a tag in an
enclosing scope, the declaration D1 would refer to if, not to the tag s2 declared in D2. To eliminate this context sensitivity, the
declaration

struct s2;

can be inserted ahead of D1. This declares a new tag s2 in the inner scope; the declaration D2 then completes the specification
of the new type.

Forward references: declarators (6.7.8), type definitions (6.7.10).
6.7.2.4 Atomic type specifiers
Syntax
atomic-type-specifier:
—Atemic-atomic_type ( type-name )

Constraints

The type name in an atomic type specifier shall not refer to an array type, a function type, an atomic

type, an opaque type or a qualified type.

Semantics

The atomic type specifier construct is implemented as a mandatory macro (see 6.10.8.1).

The propertles assoc1ated w1th atomlc types are rnearungful only for expressmns that are lvalues.

NOTE C and C++ have no reconcilable syntax for specifying an atomic derivation: C has a keyword _Atomic that is
applied as a specifier (similar to here) and as a qualifier, C++ has a class template atomic<type-name>. Since the C syntax
even has ambiguities sticking to the C syntax was not an option. The specification as given here has straight forward
implementations in the old syntax for both languages.

modifications to ISO/IEC 9899:2018, § 6.7.2.4 page 114 Language



N2522 cmin..core § 6.7.3, working draft — May 10, 2020 CORE 202005 (E)

6.7.3 Type qualifiers

Syntax
type-qualifier:
const
restriect
————volatile-

—————Atomic-volatile

Semantics

The properties associated with qualified types are meaningful only for expressions that are Ivalues.'3")

If the same qualifier appears more than once in the same specifier-qualifier list or as declaration
specifiers, either directly or via one or more typedefs, the behavior is the same as if it appeared
only once. i o . » e o
lified . .

If an attempt is made to modify an object defined with a const-qualified type through use of an
lvalue with non-const-qualified type, the behavior is undefined. If an attempt is made to refer to an
object defined with a volatile-qualified type through use of an lvalue with non-volatile-qualified
type, the behavior is undefined.!8!)

An object that has volatile-qualified type may be modified in ways unknown to the implementation
or have other unknown side effects. Therefore any expression referring to such an object shall be
evaluated strictly according to the rules of the abstract machine, as described in 5.1.2.3. Furthermore,
at every sequence point the value last stored in the object shall agree with that prescribed by the
abstract machine, except as modified by the unknown factors mentioned previously.'®? What
constitutes an access to an object that has volatile-qualified type is implementation-defined.

For two qualified types to be compatible, both shall have the identically qualified version of a
compatible type; the order of type qualifiers within a list of specifiers or qualifiers does not affect the
specified type.

NOTE C also has the restrict and _Atomic qualifiers. These have never been integrated to C++, so they should not be

180)The implementation can place a const object that is not volatile in a read-only storage instance. Moreover, a storage
instance for such an object need not be addressable if its address is never used.

18)This applies to those objects that behave as if they were defined with qualified types, even if they are never actually
defined as objects in the program (such as an object at a memory-mapped input/output address).

182) A volatile declaration can be used to describe an object corresponding to a memory-mapped input/output port or an
object accessed by an asynchronously interrupting function. Actions on objects so declared are not allowed to be “optimized
out” by an implementation or reordered except as permitted by the rules for evaluating expressions.

Language modifications to ISO/IEC 9899:2018, § 6.7.3 page 115



CORE 202005 (E) § 6.7.4, working draft — May 10, 2020 cmin..core N2522

used by applications that target the C/C++ core. For the first, this specification proposes the use of the core:: noalias
attribute in the form when it is applied to pointer declarators. To avoid certain ambiguities, the possible syntax is a bit more
restricted than the use as a qualifier. Instead of an _Atomic qualification, an atomic_type specification may be used.

EXAMPLE 1 An object declared

\ extern const volatile int real_time_clock;

might be modifiable by hardware, but cannot be assigned to, incremented, or decremented.

EXAMPLE 2 The following declarations and expressions illustrate the behavior when type qualifiers modify an aggregate
type:

const struct s { int mem; } cs = { 1 };

struct s ncs; // the object ncs is modifiable

typedef int A[2][3];

const A a = {{4, 5, 6}, {7, 8, 9}}; // array of array of const int
int xpi;

const int x*pci;

ncs = cs; // valid

CS = Nncs; // violates modifiable lvalue constraint for =
pi = &ncs.mem; // valid

pi = &cs.mem; // violates type constraints for =

pci = &cs.mem; // valid
pi = a[0]; // invalid: al[0] has type “const int x”

6.7.4 The constexpr specifier

Constraints_

LetDbelf the constexpr specifier appears in a declaration, it shall appear in all declarations of the
same object or function; it shall only appear in a declaration in file or block scope, and it shall not
appear together with a storage class specifier other than auto. If the identifier has linkage and if
the inline specifier is applied as well, the linkage is external; otherwise it is internal.

If the constexpr specifier appears in a declaration of an erdinary-identifierthat-provides-a-means
of-designating-an-objeet-P-as—a restrict-qualified-pointer-to-—type-T-—object, the object has static
storage duration, it shall not be volatile qualified, a const qualification shall be implied and
the declaration serves as a definition. All lvalue conversions of such an object shall result in the
initializer value as determined during translation. If the object has external linkage the definition is
an inline definition and if in the whole program no other access than an lvalue conversion is made
to the object, no external definition is needed. The constraints for the initialization of objects with
static storage duration apply, with the additional constraints that none of the following constructs

shall occur:

— an implicit or explicit pointer-to-pointer or array-to-pointer conversion,
— an implicit initialization of a pointer object or member other than by a null pointer,

— an explicit initialization of a pointer object or member other than by a null pointer constant
or by the result of an integer-to-pointer cast.!3%

&ppe&r&m%hehst—e%p&mmete%dee}&f&t@ﬂslf the constex rs ec1f1er appears in a declarat1on

of a functiondefi n, - wise,

183)Thus, if the object has pointer type or is an agregate or union e with a pointer element or member, an explicit
initializer for it (or the element or member) shall only be a null pointer constant or a pointer value that is formed by a cast
from an integer constant expression, and no indirect initialization through another member shall result in a value that is

different from null.

modifications to ISO/IEC 9899:2018, § 6.7.4 page 116 Language



N2522 cmin..core § 6.7.4, working draft — May 10, 2020 CORE 202005 (E)

mmmmm
declarations and lambda expressions that have the constexpr specifier and that have a pointer
return type with no core:: alias attribute that links it to one of its parameters, the core:: noalias
attribute is implied and the corresponding constraints apply.'*¥ For a lambda expresssion, the
constexpr specifier is implied if it has the core:: concurrent attribute and the above requirements

on a possible pointer return value apply.

designator or lambda value with a constexpr s ec1f1er can be usemw
constant expression if the following contraints are fulfilled.

— If it is a function, the function definition shall be visible or the function shall belong to an
implementation-defined set of functions that are usable for this purpose. This set of functions
shall contain at least those C library functions that are specified with constexpr.

— All areuments to the call shall be constant expressions that are not address constants.

— If the return type is a pointer type, the return value shall be a null pointer or the result of an
integer-to-pointer cast of an integer constant expression.

— Inaddition to the parameters, captures, and locally defined or allocated objects, the execution
shall only access objects that are declared with constexpr, that are otherwise permitted
in a constant expression or those identifiers in the core:: evaluates or core::modifies
attributes that have thread local storage duration.

— Pointer values shall only refer to objects that do not have static storage duration, Nete-that

beeeﬁsrdefed—alsﬁe—meédfy—P—fefwwhggAtbgmmthe purposes-of-this-subelatse—
P-is-assigned-the-unary * operator, the provenance of the referred object shall be visible and
the effect shall be as if the object definition (if it has any) had directly been used for the Ivalue
expression; if such an object has no definition, a definition with its effective type is assumed.

— No lvalue conversion shall be formed for an object with an indeterminate value.

— The execution of the function or lambda with the specified parameters shall only exhibit
constructs that have defined behavior for the specified values.

— No operation shall be formed for which the result is unspecified.
— No implementation-defined limits as specified in 5.2.4 shall be exceeded.

— The the errno and fenv channels shall not be modified.

— For any function call the areuments and captured objects that are not pointer values are
considered as if they were constant expressions. The present constraints for such function
calls are then recursively applied were possible. Additionally:

e Pointer values as above may be arguments or captured variables of such constexpr

function calls.

189)The two aliasing attributes are not exclusive; if both are given this indicates that a function or lambda conditionall
returns the pointer to a newly allocated storage instance or one of its parameter values.

Language modifications to ISO/IEC 9899:2018, § 6.7.4 page 117



CORE 202005 (E) § 6.7.4, working draft — May 10, 2020 cmin..core N2522

* The storage management functions from <stdlib.h> (7.22.4) may be called, provided
that all allocations are deallocated before the end of the call. An implementation-defi-
ned limit may be imposed on the maximum size and number of allocations that can be
effected during such a call.

e If a pointer value that is not a null pointer or converted integer constant expression is
the return value of such a call it shall be the return value of an allocation function or

th/qvalueof pomter-expire Vin i pasea—ohanotnc - CaPOoInteroOoDic ,

not-met-—then-the behaviorisundefined—one of the arecuments to the particular call. In

the first case, the called function shall have a core :: noalias attribute; in the second it

shall have a core:: alias attribute with the corresponding parameter name.

function call of a function designator or lambda value with a constexpr specifier fulfills the ab(;\A/g
constraints it shall be considered a constant expression; if does not and the function call is valid in
the context where it appears, the function call is effected in that context whenever it is met durin

execution and a different set of constraints may apply in consequence.'®)
Semantics

alone—without-analyzing-the function-bedy-The constexpr specifier indicates that the identifier
or lambda value may be used in a context where a constant expression is required. If a function
designator or lambda is used in such a context the contraints ensure that a call that would be

erroneous during program execution can be identified during translation and that a diagnostic is
issued.

g If such
a call would be successful during program execution, it is executed during translation as-if by
a separate thread of execution. During such an execution all full expressions are evaluated in
sequence as the control flow implies and the result of each such an evaluation is considered a
constant expression. The determined return value is used as a constant of the corresponding type

in the calling context.'8)

Recommended practice

If a function designator or lambda value is used in a context that requires a constant expression and
the contraints are violated it is recommended that the translator does not produce an executable
program image.

NOTE1 The constexpr specifier heavily relies on the properties of the core:: concurrent attribute and the other attributes
that it implies, namely the core:: stateless, core::noleak, core:: state_invariant, and core:: state_conservin
attributes. In all, these imply that no pointer value is leaked, exposed or synthesized by a function call, that the only
state dependencies come from well identified input channels, and that a complete data flow and aliasing analysis can be
performed at compile time. The requirements for the use within constant expressions then further narrow the field to
dependencies from other values that are already known to be constant expressions, and whose properties do not depend on.
linkage but on translation only. Fhe-costis-thatthe programmerh hose-e ensure-that-none give
A N e

18550 in particular a call that serves to determine an array length is considered, if possible, to be a constant expression and

the array then is not a VLA. On the other hand, if it does not fulfill the constraints but still is valid, the array is a VLA and
the corresponding constraints, for example concerning initialization, apply.
186)This means in particular that during such an execution no variably modified type (VM) will be formed.

modifications to ISO/IEC 9899:2018, § 6.7.4 page 118 Language



10

11

12

N2522 cmin..core § 6.7.4, working draft — May 10, 2020 CORE 202005 (E)

NOTE 2 The result of a call to a constexpr function or lambda in the context of 2 constant expression is fully independent
of general or specific properties of the address space. In particular, no pointer-to-integer casts and no pointer comparisons,
even equality, between pointers with different provenance may be performed. The feature allows the dependency of the
computation from some tread local state, but since it is executed as-if taking place in a separate thread, changing this state
has no impact on other calls within the evaluation of constant expressions. Thus, such changes to thread local state are not
observable by any execution and the only effect of such a call is its return value, which then can be recorded at translation

time.

NOTE 3 The constraints for calls within constant expressions enforce that all possible undefined or unspecified behavior
can be detected at compile time. This includes out-of-bound access of arrays, lvalue conversion of uninitialized variables,
arithmetic overflow, domain errors, null pointer dereference, comparison of unrelated pointer values, leaks and the second

: : iorbeeause each-of di}through i ugh-both-pand-¢—unsequenced

d-F49 ceessed n—a13
a ane

modification of objects.
EXAMPLE As examples for constexpr objects and functions that are evaluated during translation consider the following:

—void—gtvoid);
4
—extera—int—d{1001};
—H50—d—+56—d)—++valid
—f50—d—+—3L,—d);—++-undefined behavior
struct pair double val[2]; };
_.struct pair_ret = {
cval =

0] = B.val[0] - A.val[0],
S I3
At
_return ret;

}

type double, and that, although double is a basic type, such a constant cannot otherwise be formed
other than by the equivalent inline static const specifiers and qualification, see below. The
objects @, b, o and j all are constants of type struct pair; the initializers are valid because sin
and asin are C library functions with constexpr and the argument values are within the valid
ranges. In contrast to that, the argument for the initializer of ¥ is outside the valid range of asin,

and therefore an error must be diagnosed.

] o ol imwhich
¢ and v use the constexpr functions inter and, moreprecisely;

v A ca
W a

he initializers for the objects

Language modifications to ISO/IEC 9899:2018, § 6.7.4 page 119




14

CORE 202005 (E) § 6.7.5, working draft — May 10, 2020 cmin..core N2522

M%ﬁ%ﬁ@m&%ﬁ%ﬁﬂﬁﬁﬁ&&meﬁf&pfﬁemwwg&g@gi
because the arguments are valid and no arithmetic exception occurs. The initializer of y is invalid
because the val[0] element for both parameters are the same, and thus their difference is zero. The
computation for slope then has a division by zero error, and therefore the whole value computation
is invalid and must be diagnosed.

Similar reason as above show that the initialization of 7 is a valid constant expression of type
long double. The call strien(r, 16) isthen a valid integer constant expression that provides the
length of the textual representation of 7 in hexadecimal, and thus this expression can be used for
the declaration of the type strType. Now the lambda expression only uses the totext type-generic
macro, which for the given arguments has the constexpr specifier, and behaves therefore as if it
were itself specified with constexpr. As a consequence the lambda can be used to initialize 7Str,
and the address of the string member can be used to initialize a static variable.

Forward references:

——=Noereturn-
the inline specifier (6.7.5), the core:: concurrent attribute (6.7.15.4.13), environmental limits

5.2.4), errors <errno.h> (7.5), floating-point environment <fenv.h> (7.6), mathematics <math.h>
7.12), the totext type-generic macro (7.22.2.1), the strlen type-generic macro (7.24.6.4).

6.7.5 The inline specifier

Constraints

Funetion-specifiersshall-be-used-only-inthe-An inline specifier shall only appear in a declaration
at file scope. If the inline specifier appears in any declaration of an identifier for-afunetionwith
external linkage, it shall also appear in the file scope declaration that is met first.

An inline definition of a function with external linkage shall not contain a definition of a modifiable

object with static or thread storage duration, and shall not contain a reference to an identifier with
internal linkage.

In a hosted environment, no funetion-specifier{s)-inline specifier shall appear in a declaration of
main.

If the declaration declares an object that is const but not volatile qualified, a constexpr specifier
is implied and all constraints apply.

Semantics

A-funetion-An inline specifier may appear more than once; the behavior is the same as if it appeared
only once. If in any translation unit an identifier with external linkage is declared inline, it shall be
declared inline in any of them.

A function declared with an inline function-specifier is an inline function. Making a function an

inline function suggests that calls to the function be as fast as possible.!”) The extent to which such
suggestions are effective is implementation-defined.!5%)

187)By using, for example, an alternative to the usual function call mechanism, such as “inline substitution”. Inline
substitution is not textual substitution, nor does it create a new function. Therefore, for example, the expansion of a macro
used within the body of the function uses the definition it had at the point the function body appears, and not where the
function is called; and identifiers refer to the declarations in scope where the body occurs. Likewise, the function has a single
address, regardless of the number of inline definitions that occur in addition to the external definition.

189)For example, an implementation might never perform inline substitution, or might only perform inline substitutions to
calls in the scope of an inline declaration.

modifications to ISO/IEC 9899:2018, § 6.7.5 page 120 Language



10

11

12

13

14

N2522 cmin..core § 6.7.5, working draft — May 10, 2020 CORE 202005 (E)

Any function with internal linkage can be an inline function. For a function with external linkage,
the following restrictions apply: If a function is declared with an inline function specifier, then it
shall also be defined in the same translation unit. If all of the file scope declarations for a function in
a translation unit include the inline function specifier without extern, then the definition in that
translation unit is an inline definition. An inline definition does not provide an external definition
for the function, and does not forbid an external definition in another translation unit. An inline
definition provides an alternative to an external definition, which a translator may use to implement
any call to the function in the same translation unit. It is unspecified whether a call to the function
uses the inline definition or the external definition.!®

~All inline and

c on-declared-withaN c . fiershall 1
the external definition of a function, if any, shall behave the same such that an observation of the
return value and of side effects would not be able to distineuish between them.'*? It is unspecified
if an object definition of a const-qualified type and of static storage duration within the body of

an inline function refers to a single object or to distinct objects for each of the definitions of the
function.

An object declared with an inline specifier is an inline object; any object with internal linkage can
be an inline object. For an object with external linkage the following restrictions apply: If a file

scope declaration for such an object in a translation unit includes the inline specifier without
extern, then this declaration shall be a definition with an initializer; if no other declaration occurs

in file scope, this is an inline definition. An inline definition does not provide an external definition
for the object, and does not forbid an external definition in another translation unit.

All initializers of an inline object shall not evaluate the object and shall evaluate to the same
constant value. All evaluations that refer to an inline object other than by an lvalue conversion

shall refer to the external definition."?

Recommended practice

inline definitions in separate translation units constitute different definitions, and because the
one possible external definition may add yet another definition, the static declaration of a
const-qualified object within an inline function, may effectively refer to several objects with the
same content. This is for example the case for the __func__ predefined identifier, that, for the

is guaranteed that such objects are only represented once.

It is recommended that applications that target the common C/C-t+ core do not make assumptions
about the representation of these objects and that they are made robust for the possibility that such
an object has one or several representations. Applications that need to ensure that a unique address
is used should move the definition of the object to file scope and make it inline.

When possible, it is recommended that implementations diagnose the usage of the address of such
an object that could result in a difference in behavior between implementations that represent one

or several objects. In particular, it is recommended to diagnose the escape of such an address from

NOTE1 Cand C++ differ slightly in their handling of inline functions. Whereas C enforces the use of an external definition
in certain situations, in particular if the address of an inline function is used other than in a function call, C++ always
uarantees that an external definition (called an instantiation) is emitted if there is need for it. This choice for C is deliberate,
because traditionally C is often used in contexts that have severe constraints on the memory size for the program image. 30
a systematic generation of unused function definitions in all translation units is avoided.

189)Gince an inline definition is distinct from the corresponding external definition and from any other corresponding inline
definitions in other translation units, all corresponding objects with static storage duration are also distinct in each of the
definitions.

" That means, no observable difference in side effects such as for the change of the value of an objects of static or
thread-local storage shall occur, regardless if an inline or extern definition is choosen for a particular execution and function
call. Nevertheless, differences in access to outside resources such as a clock, an input/outpuf device, or scheduling resources
of the underlying operation system may occur if the execution times of different definitions differ.

"UThis includes the case that an inline object, const-qualified or not, appears as operand of the unary & operator.

Language modifications to ISO/IEC 9899:2018, § 6.7.5 page 121



15

16

17

18

CORE 202005 (E) § 6.7.5, working draft — May 10, 2020 cmin..core N2522

NOTE 2 This specification follows C++ (and extends C) by requiring that the effective semantics of inline and external
definitions have to agree. It follows C (and extends C++) by requiring that no non-const qualified objects with internal
linkage may be accessed by inline functions.

NOTE 3 C currently has no inline objects, so this specification imposes an extension of the C language. The definitions
resented here not only serve the purpose of programming invariantly in C and C++, but also to provide a tool to specif
compile time constants of any object type.

NOTE 4 For both, functions and objects, the choice has been made to follow mostly the C model for instantiation, that is,
to require that an external definition must be presented explicitly for functions or objects that use the address or that form a
modifiable Ivalue. So this part of the specification extends the C++ language by imposing more constraints on well-formed
programs. The special case for inline constants, see 6.6, allows to avoid the need for instantiations, if the address of the
object is never used, |

EXAMPLE 1 The declaration of an inline function with external linkage can result in either an external definition, or a
definition available for use only within the translation unit. A file scope declaration with extern creates an external definition.
The following example shows an entire translation unit.

inline double fahr(double t)
{

o TETUID (9.0 X 1) / 5.0 + 32.0;
}

inline double cels(double t)
{
— et {5 0——F—32-0))—+9-6+
e.___Teturn (5.0 X (t - 32.0 / 9.0;
)

—extern—doubte—fahr{doubte);—+/—creates an external definition

__.___extern double fahr(double); // forces the definition to be external

double convert(int is_fahr, double temp)

{

/* A translator may perform inline substitutions x/
return is_fahr ? cels(temp): fahr(temp);

19 Note that the definition of fahr is an external definition because fahr is also declared with extern, but the definition of cels

20

is an inline definition. Because cels has external linkage and is referenced, an external definition has to appear in another
translation unit (see 6.9); the inline definition and the external definition are distinct and either can be used for the call.

EXAMPLE 2 The declaration of an inline object with external linkage may or may not result in an external definition. A file
scope declaration with extern creates an external definition. The following example shows an entire translation unit.

— NereturaA—void—F—F
—— abert{)+—//0k

. inline const voidxconst self = &self; __ // invalid

~~1nline const size_t aware = sizeof aware; // valid, not evaluated
___inline const double 7 = 3.14159265358979323846;_

. inline const double 7* = 7 X 7;
______extern const double 7®; // forces the definition to be external

... static const double 77;

ower[3] = { [0 &r°, &r, [2] = &2,

__.___const doublexconst

___const doublex g(void) {

return_&r;

A A A A

modifications to ISO/IEC 9899:2018, § 6.7.5 page 122 Language




21

22

23

24

N2522 cmin..core § 6.7.6, working draft — May 10, 2020 CORE 202005 (E)

\—N&Fe%u%ﬁ—veid—g—ﬁﬁ{—lﬁ—%// causes undefined behavior if—i—<=-+0
it >—8)abertthy
| __.___double f(void) {

The inline definition of self is invalid because the identifier self is evaluated and because the initializer expression is
neither a null pointer constant nor a converted integer constant expression. If the inline specifier were omitted, the
definition would be valid, but usually the concrete address to which the object would be initialized only manifests when
several translation units are linked to form the final program image. Thus that address can not be used without knowing

the external definition.

For aware such restrictions do not apply because the type information is present at the point of initialization in an

Note that the definition of 7 is an external definition because it is also declared with extern, but that the definition of 7 is.

an inline definition. So in the definition of power, 7° and 72 refer to objects in the same translation unit, but 7 has to refer
to an external definition of another one (see 6.9).

Within the body of function f, the evaluation of 7 uses the constant value of the initializer. The evaluation of g () returns the
address of the external definition of 7, so *g() forms an lvalue conversion of an external definition in another translation
unit. Whether or not this results in a memory load operation of that external definition or a usage of the constant, is
unspecified.

Forward references: function definitions (6.9.1).

6.7.6 Alignment specifier
Syntax
alignment-specifier:

—Atignas- alignas ( type-name )
—Atignas- alignas ( constant-expression )

Constraints

An alignment specifier shall appear only in the declaration specifiers of a declaration, or in the
specifier-qualifier list of a member declaration, or in the type name of a compound literal. An
alignment specifier shall not be used in conjunction with either-of-the storage-class specifiers

typedef orregister, nor in a declaration of a function or bit-fieldif a core:: noalias attribute is

applied, including bit-fields.
The constant expression shall be an integer constant expression. It shall evaluate to a valid funda-

mental alignment, or to a valid extended alignment supported by the implementation for an object
of the storage duration (if any) being declared, or to zero.

An object shall not be declared with an over-aligned type with an extended alignment requirement
not supported by the implementation for an object of that storage duration.

The combined effect of all alignment specifiers in a declaration shall not specify an alignment that is
less strict than the alignment that would otherwise be required for the type of the object or member
being declared.

Semantics
The first form is equivalent to —Atignas{=Atignof{-alignas (alignof (type-name)).
The alignment requirement of the declared object or member is taken to be the specified alignment.

An alignment specification of zero has no effect.'”? When multiple alignment specifiers occur in a
declaration, the effective alignment requirement is the strictest specified alignment.

If the definition of an object has an alignment specifier, any other declaration of that object shall
either specify equivalent alignment or have no alignment specifier. If the definition of an object does
not have an alignment specifier, any other declaration of that object shall also have no alignment

192) An alignment specification of zero also does not affect other alignment specifications in the same declaration.

Language modifications to ISO/IEC 9899:2018, § 6.7.6 page 123



CORE 202005 (E) § 6.7.7, working draft — May 10, 2020 cmin..core N2522

specifier. If declarations of an object in different translation units have different alignment specifiers,
the behavior is undefined.
6.7.7 The _Noreturn specifier

Constraints_

The _Noreturn specifier shall be used only in the declaration of an identifier for a function.
In a hosted environment, no _Noreturn specifier shall appear in a declaration of main .
Semantics

The _Noreturn specifier may appear more than once; the behavior is the same as if it appeared
only once.

A function declared with a _Noreturn specifier shall not return to its caller.
Recommended practice

The implementation should produce a diagnostic message for a function declared with a
_Noreturn specifier that appears to be capable of returning to its caller.
EXAMPLE

. .=Noreturn void f () {

eeee_.___abort(); // ok

A~ A~

—____-Noreturn void (int i) { // causes undefined behavior if i < 0
if (i > 0) abort();

A A A A

A~ A~

Forward references: function definitions (6.9.1).
6.7.8 Declarators

Syntax

declarator:
pointerqp direct-declarator

direct-declarator:
identifier attribute-specifier-sequenceopt
( declarator )
array-declarator attribute-specifier-sequenceqpt
function-declarator attribute-specifier-sequenceqpt

modifications to ISO/IEC 9899:2018, § 6.7.8 page 124 Language



N2522 cmin..core § 6.7.8.1, working draft — May 10, 2020 CORE 202005 (E)

op ' i op

Semantics

Each declarator declares one identifier, and asserts that when an operand of the same form as
the declarator appears in an expression, it designates a function or object with the scope, storage
duration, and type indicated by the declaration specifiers.

A full declarator is a declarator that is not part of another declarator. If, in the nested sequence of
declarators in a full declarator, there is a declarator specifying a variable length array type, the type
specified by the full declarator is said to be variably modified. Furthermore, any type derived by
declarator type derivation from a variably modified type is itself variably modified.

In the following subclauses, consider a declaration
TD1

where T contains the declaration specifiers that specify a type T (such as int) and D1 is a declarator
that contains an identifier ident. The type specified for the identifier ident in the various forms of
declarator is described inductively using this notation.

If, in the declaration “T D1”, D1 has the form
identifier attribute-specifier-sequenceopt
then the type specified for ident is T and the optional attribute specifier sequence appertains to
Dl-the entity as it is declared.
If, in the declaration “T D1”, D1 has the form
(D)

then ident has the type specified by the declaration “T D”. Thus, a declarator in parentheses is
identical to the unparenthesized declarator, but the binding of complicated declarators may be
altered by parentheses.

There is no syntax derivation to form declarators of lambda types. Values of lambda type can be
formed by lambda expressions and their type can be inferred.

Implementation limits

As discussed in 5.2.4.1, an implementation may limit the number of pointer, array, and function
declarators that modify an arithmetic, structure, union, or void type, either directly or via one or
more typedef s.

Forward references: array declarators (6.7.8.2), type definitions (6.7.10)-, type inference (6.7.13).

6.7.8.1 Pointer declarators

Syntax

*_attribute-specifier-sequenceqy; type-qualifier-list .

* _attribute-specifier-sequenceqy; type-qualifier-list ointer
Semantics

If, in the declaration “T D1”, D1 has the form
*attribute-specifier-sequenceop type-qualifier-listop: D

and the type specified for ident in the declaration “T D” is “derived-declarator-type-list T”, then the
type specified for ident is “derived-declarator-type-list type-qualifier-list pointer to T”. For each type
qualifier in the list, ident is a so-qualified pointer. The optional attribute specifier sequence appertains
to the pointer and not the object pointed to.

For two pointer types to be compatible, both shall be identically qualified and both shall be pointers
to compatible types.

Language modifications to ISO/IEC 9899:2018, § 6.7.8.1 page 125



CORE 202005 (E) § 6.7.8.2, working draft — May 10, 2020 cmin..core N2522

EXAMPLE The following pair of declarations demonstrates the difference between a “variable pointer to a constant value”
and a “constant pointer to a variable value”.

const int *ptr_to_constant;
int xconst constant_ptr;

The contents of any object pointed to by ptr_to_constant cannot be modified through that pointer, but ptr_to_constant
itself can be changed to point to another object. Similarly, the contents of the int pointed to by constant_ptr can be
modified, but constant_ptr itself always points to the same location.

The declaration of the constant pointer constant_ptr can be clarified by including a definition for the type “pointer to int”.

typedef int *xint_ptr;
const int_ptr constant_ptr;

declares constant_ptr as an object that has type “const-qualified pointer to int”.

6.7.8.2 Array declarators
Syntax

array-declarator:
direct-declarator [ type-qualifier-list,.: assignment-expression,

direct-declarator static type-qualifier-list s assignment-expression

direct-declarator tyve-qualifier-list static assignment-expression

Constraints

In addition to optional type qualifiers and the keyword static, the [ and ] may delimit an

expression-or-assignment expression. If they delimit an expression{which-specifies-the size-of

an-array),-the-expression-assighment expression, it shall have an integer type. If the assignment
expression is a constant expression, it shall have a value greater than zero. The element type shall not

be an incomplete or function type. The optional type qualifiers and the keyword static shall appear
only in a declaration of a function parameter with an array type, and then only in the outermost
array type derivation.

If an identifier is declared as having a variably modified type, it shall be an ordinary identifier (as
defined in 6.2.3), have no linkage, and have either block scope or function prototype scope—; if the
implementation defines the macro __CORE_NO_VLA__ a definition that has a variable length array
type shall have function prototype scope.'*® If an identifier is declared to be an object with static or
thread storage duration, it shall not have a variable length array type.

If two declarations of the same array type are visible, both shall have compatible element types,

and if both assignment expressions are present, and are integer constant expressions, then both
shall have the same constant value.

Semantics
If, in the declaration “T D1”, D1 has one of the forms:

D [ type-qualifier-listopy assignment-expressionop: 1 attribute-specifier-sequenceopt

D [ static type-qualifier-list,y, assignment-expression 1 attribute-specifier-sequenceopt

D [ type-qualifier-list static assignment-expression 1 attribute-specifier-sequenceqpt

ifi : op ' ifi op

and the type specified for ident in the declaration “T D” is “derived-declarator-type-list T”, then the
type specified for ident is “derived-declarator-type-list array of T”.1%Y The optional attribute specifier

sequence appertains to the array. (See 6.7.8.3 for the meaning of the optional type qualifiers and the
keyword static.)

H-the-size-is—not-present—the-arraytypeis—an-incomplete-type—The value of the assignment
expression is the size of the array. If the size is x—instead-of being-an-expressionnot present, the

193)

A parameter definition as a VLA, is, as all array parameters, rewritten to a pointer type.

199 When several “array of” specifications are adjacent, a multidimensional array is declared.

modifications to ISO/IEC 9899:2018, § 6.7.8.2 page 126 Language



10

11

12

13

N2522 cmin..core § 6.7.8.2, working draft — May 10, 2020 CORE 202005 (E)

, ' ypesan incomplete type. If the size
is an integer constant expression and the element type has a known constant size, the array type is
not a variable length array type, otherw1se, the array type is a variable length army type %ﬂa{a}e

If the size is an expression that is not an integer constant expression: if it occurs in a declaration at
funetion-prototypeseopethat is not a definition, it is treated-asifitwerereplaced-by+not evaluated;
otherwise, each time it is evaluated it shall have a value greater than zero. The size of each instance
of a variable length array type does not change during its lifetime. Where a size expression is part of
the operand of a sizeof operator and changing the value of the size expression would not affect the
result of the operator, it is unspecified whether or not the size expression is evaluated. Where a size
expression is part of the operand of an =Atignef-alignof operator, that expression is not evaluated.

For two array types to be compatible, both shall have compatible element types, and if both size
specifiers are present, and are integer constant expressions, then both size-specifiers shall have
the same constant Value If the two array types are used in a context which requires them to be
compatible, i V10 peeifi —the two
specifiers shall evaluate to the same size.

NOTE Traditionally, C and C++ differ in some of the aspects of array declarations. C has VM types since €99, but
made them optional with a feature macro __STDC_NOVLA__ in C11. This possibility not withstanding, there is no known
implementation that would conform to C17 that defines that feature macro. C++ has no VM types. VM types, with the
possibility to forbid definitions of VLA in block scope are nevertheless proposed for this core specification, because they
provide a convenient tool to enforce propagation of array sizes. In particular such an enforcement is possible from the
caller of a function with array parameters into the function body, without changing function ABIs and without jeopardizing
performance or safety.

EXAMPLE 1

\ float fa[ll], xafp[17];

declares an array of float numbers and an array of pointers to float numbers.

EXAMPLE 2 Note the distinction between the declarations

extern int xx;
extern int y[];

The first declares x to be a pointer to int; the second declares y to be an array of int of unspecified size (an incomplete type),
the storage instance for which is defined elsewhere.

EXAMPLE 3 The following declarations demonstrate the compatibility rules for variably modified types.

extern int n;
extern int m;
void fcompat(void)
{
int a[n][6][m];
int (*p)[4]1[n+1];
int c[n][nl[6][m];
int (xr)[nl[n][n+1];
p—=1a; // invalid: not compatible because 4—=-+6
e p=a; ____// invalid: not compatible because 4 # 6
r=c; // compatible, but defined behavior only if
// A—==—6 and m—=="n+1
mmmmmmm .. // n=6and m = n+l
}

EXAMPLE 4 All declarations of variably modified (VM) types have to be at either block scope or function prototype scope.
Array objects declared with the —Thread=tecal-thread_local, static, or extern storage-class specifier cannot have a
variable length array (VLA) type. However, an object declared with the static storage-class specifier can have a VM type

(that is, a pointer to a VLA type), unless the implementation define__CORE_NO_VLA__ . Finally, all identifiers declared with
a VM type have to be ordinary identifiers and cannot, therefore, be members of structures or unions.

Language modifications to ISO/IEC 9899:2018, § 6.7.8.2 page 127




CORE 202005 (E) § 6.7.8.3, working draft — May 10, 2020 cmin..core N2522

extern int n;

int A[n]; // invalid: file scope VLA
extern int (*p2)[n]; // invalid: file scope VM
int B[100]; // valid: file scope but not VM
void fvla(int m, int C[m][m]); // valid: VLA with prototype scope
void fvla(int m, int C[m][m]) // valid: adjusted to auto pointer to VLA
{
typedef int VLA[m][m]; // valid: block scope typedef VLA
struct tag {
int (xy)[n]; // invalid: 'y not ordinary identifier
int z[n]; // invalid: z not ordinary identifier
}i
. #ifndef __CORE_NO_VLA__
int D[m]; // valid: auto VLA
it G[m] = {}; . // invalid: attempt to initialize VLA
_____#endif
static int E[m]; // invalid: static block scope VLA
extern int F[m]; // invalid: F has linkage and is VLA
int (xs)[m]; // valid: auto pointer to VLA
extern int (xr)[m]; // invalid: r has linkage and points to VLA
static int (xq)[m] = &B; // valid: q is a static block pointer to VLA

Forward references: function declarators (6.7.8.3), function definitions (6.9.1), initialization (6.7.12).

6.7.8.3 Function declarators
Syntax

unction-declarator:
direct-declarator arameter-type-list )

o ATAMEt O liSE
o aTAIICLET-deClaration
e AttribUEe-SPeCifier-sequenceop,_declaration-specifiers_declarator
e AbtTIDUEC-SPeCTfier-Sequenceoy: declaration-specifiers_abstract-declaratoropy

Constraints
A function declarator shall not specify a return type that is a function type or an array type.

The only storage-class specifier that shall occur in a parameter declaration is register-auto.

A parameter declaration without type specifier shall not be formed, unless it includes a storage
class specifier and unless it appears in the parameter list of a lambda expression.

After adjustment, the parameters in a parameter type list in a function declarator that is part of a
definition of that function shall not have incomplete type.

Semantics
If, in the declaration “T D1”, D1 has the form

modifications to ISO/IEC 9899:2018, § 6.7.8.3 page 128 Language



10

11

12

13

14

15

16

17

N2522 cmin..core § 6.7.8.3, working draft — May 10, 2020 CORE 202005 (E)

D ( parameter-type-listop: ) attribute-specifier-sequenceop:
and the type specified for ident in the declaration “T D” is “derived-declarator-type-list T”, then the
type specified for ident is “derived-declarator-type-list function returning the unqualified version of T”.
The optional attribute specifier sequence appertains to the function type.

A parameter type list specifies the types of, and may declare identifiers for, the parameters of the
function.

A-After the declared types of all parameters have been determined in order of declaration, an
declaration of a parameter as “array of type” shall be adjusted to “qualified or unqualified pointer

to type”, where the type qualifiers (if any) are those specified within the [ and ] of the array type
derivation. If the keyword static also appears within the [ and ] of the array type derivation, then
for each call to the function, the value of the corresponding actual argument shall provide access to
the first element of an array with at least as many elements as specified by the size expression.

A declaration of a parameter as “function returning type” shall be adjusted to “pointer to function
returning type”, as in 6.3.2.1.

If the list terminates with an ellipsis (=, ... ), no information about the number or types of the
parameters after the comma is supplied.!®®

The special case of an unnamed parameter of type void as the only item in the list specifies that the
function has no parameters.

If, in a parameter declaration, an identifier can be treated either as a typedef name or as a parameter
name, it shall be taken as a typedef name.

If the function declarator is not part of a definition of that function, parameters may have incomplete

= = I o N ) L7 2N

The storage class specifier in the declaration specifiers for a parameter declaration, if present, is
ignored unless the declared parameter is one of the members of the parameter type list for a function
definition. The optional attribute specifier sequence in a parameter declaration appertains to the
parameter.

For a function declarator without a parameter type list: if it is part of a definition of that function
the function has no parameters and the effect is as if it were declared with a parameter type list
consisting of the keyword void; otherwise it specifies that no information about the number or types
of the parameters is supplied.'”® A function declarator provides a prototype for the function if it
includes a parameter type list.'” Otherwise, a function declaration is said to have no prototype.

For two function types to be compatible, both shall specify compatible return types. Moreover,
the parameter type lists, if both are present, shall agree in the number of parameters and in use
of the ellipsis terminator; corresponding parameters shall have compatible types. If one type has
a parameter type list and the other type has none and is not part of a function definition, the
parameter list shall not have an ellipsis terminator. In the determination of type compatibility and
of a composite type, each parameter declared with function or array type is taken as having the
adjusted type and each parameter declared with qualified type is taken as having the unqualified
version of its declared type.

NOTE C and C++ have different rules for the visibilty of function parameters: for C a parameter is visible starting at the
end of its declaration, whereas for C++ it is only visible starting in the function body, if the declaration also happens to be
a definition. This specification opted for the C variant, because this rule implies that one parameter can be used for the
declaration of the type of another. That possibility is important wherever there is a need to ensure consistency between
types or array lengths.

EXAMPLE 1 The declaration

| int f(void), *fip(), (*pfi)();

19)The macros defined in the <stdarg. h> header (7.16) can be used to access arguments that correspond to the ellipsis.

19)See “future language directions” (6.11.6).

197)This implies that a function definition without a parameter list provides a prototype, and that subsequent calls to that
function in the same translation unit are constrained not to provide any argument to the function call. Thus a definition of a
function without parameter list and one that has such a list consisting of the keyword void are fully equivalent.

Language modifications to ISO/IEC 9899:2018, § 6.7.8.3 page 129



18

19

20

21

22

CORE 202005 (E) § 6.7.8.3, working draft — May 10, 2020 cmin..core N2522

declares a function f with no parameters returning an int, a function fip with no parameter specification returning a pointer
to an int, and a pointer pfi to a function with no parameter specification returning an int. It is especially useful to compare
the last two. The binding of *fip() is*(fip()), so that the declaration suggests, and the same construction in an expression
requires, the calling of a function fip, and then using indirection through the pointer result to yield an int. In the declarator
(xpfi) (), the extra parentheses are necessary to indicate that indirection through a pointer to a function yields a function
designator, which is then used to call the function; it returns an int.

If the declaration occurs outside of any function, the identifiers have file scope and external linkage. If the declaration
occurs inside a function, the identifiers of the functions f and fip have block scope and either internal or external linkage
(depending on what file scope declarations for these identifiers are visible), and the identifier of the pointer pfi has block
scope and no linkage.

EXAMPLE 2 The declaration

| int (*apfi[3])(int *x, int *y); |

declares an array apfi of three pointers to functions returning int. Each of these functions has two parameters that are
pointers to int. The identifiers x and y are declared for descriptive purposes only and go out of scope at the end of the
declaration of apfi.

EXAMPLE 3 The declaration

i A Eofild 1 4 fht ). i
| int («fpfi(int (x)(long), int))(int, ...); \

declares a function fpfi that returns a pointer to a function returning an int. The function fpfi has two parameters: a
pointer to a function returning an int (with one parameter of type long int), and an int. The pointer returned by fpfi
points to a function that has one int parameter and accepts zero or more additional arguments of any type.

EXAMPLE 4 The following prototype has a variably modified parameter.

void addscalar(int n, int m,
double a[n][n*m+300], double x);

int main()

{
double b[4][308];
addscalar(4, 2, b, 2.17);
return 0;

h

void addscalar(int n, int m,
double a[n][n*m+300], double x)

{
for (int 1 = 0; i < n; i++)
for (int j = 0, k = nxm+300; j < Kk; j++)
// a 1s a pointer to a VLA with nxm+300 elements
alillj]l += x;
)

EXAMPLE 5 The following are att-compatible function prototype declarators.

double maximum(int n, int m, double a[n][m]);

double maximum(int n, int m, double a[ ][m]);

_____void f(double (x a)[51);

__.___void f(double a[][5]);
_____void f(double a[3]1[5]);

__.___void f(double a[static 3][5]);

modifications to ISO/IEC 9899:2018, § 6.7.8.3 page 130 Language



N2522 cmin..core § 6.7.9, working draft — May 10, 2020 CORE 202005 (E)

(Note that the last declaration also specifies that the argument corresponding to a in any call to f can be expected to be a
non-null pointer to the first of at least three arrays of 5 doubles, which the others do not.)

Forward references: function definitions (6.9.1), type names (6.7.9).

6.7.9 Type names
Syntax

type-name:
specifier-qualifier-list abstract-declaratorop;
abstract-declarator:
pointer
pointerqp direct-abstract-declarator
direct-abstract-declarator:
( abstract-declarator )
array-abstract-declarator attribute-specifier-sequenceqpt
function-abstract-declarator attribute-specifier-sequencept
array-abstract-declarator:
direct-abstract-declaratorope [ type-qualifier-listop: assignment-expressionept 1
direct-abstract-declaratorop: [ static type-qualifier-listop assignment-expression ]
direct-abstract-declaratorop, [ type-qualifier-list static assignment-expression ]
direct—abstmct—declamtoropt [ *1

function-abstract-declarator:
direct-abstract-declaratoropy ( parameter-type-listopt )

Semantics

In several contexts, it is necessary to specify a type. This is accomplished using a type name, which is
syntactically a declaration for a function or an object of that type that omits the identifier.'”® The
optional attribute specifier sequence in a direct abstract declarator appertains to the preceding array
or function type. The attribute specifier sequence affects the type only for the declaration it appears
in, not other declarations involving the same type.

EXAMPLE The constructions

(a) int

(b) int *

(c) int x[3]
(d) int (*)[3]
(e) —t—et
()

(9)

(h)

(h)

int *()
int (%) (void)
e int (xconst [])(unsigned int, ...)

name respectively the types (a) int, (b) pointer to int, (c) array of three pointers to int, (d) pointer to an array of three
int s, (e)pointer-to-a-variable length-array-of an-unspecifiednumber-of-int-sf) function with no parameter specification
returning a pointer to int, (g) pointer to function with no parameters returning an int, and (h) array of an unspecified
number of constant pointers to functions, each with one parameter that has type unsigned int and an unspecified number
of other parameters, returning an int.

6.7.10 Type definitions
Syntax

typedef-name:
identifier

198) As indicated by the syntax, empty parentheses in a type name are interpreted as “function with no parameter specifica-
tion”, rather than redundant parentheses around the omitted identifier.

Language modifications to ISO/IEC 9899:2018, § 6.7.10 page 131



CORE 202005 (E) § 6.7.10, working draft — May 10, 2020 cmin..core N2522

Constraints

If a typedef name specifies a variably modified type then it shall have block scope. A typedef name

shall not be identical to a tag name that has a visible declaration, unless it refers to the type with
that same tag.

Semantics

In a declaration whose storage-class specifier is typedef, each declarator defines an identifier to
be a typedef name that denotes the type specified for the identifier in the way described in 6.7.8.
Any array size expressions associated with variable length array declarators are evaluated each time
the declaration of the typedef name is reached in the order of execution. A typedef declaration
does not introduce a new type, only a synonym for the type so specified. That is, in the following
declarations:

typedef T type_ident;
type_ident D;

type_ident is defined as a typedef name with the type specified by the declaration specifiers in T
(known as T), and the identifier in D has the type “derived-declarator-type-list T” where the derived-
declarator-type-list is specified by the declarators of D. A typedef name shares the same name space
as other identifiers declared in ordinary declarators.

NOTE C and C++ have subtle differences for the rules which identifiers are allowed as e names. The constraint that
forbids the reuse of a tag name for another type originates from C++ and we repeat it here, since otherwise programs would
not be portable in the common C/C++ core.

EXAMPLE 1 After

typedef int MILES, KLICKSP();
typedef struct { double hi, lo; } range;

the constructions

MILES distance;

extern KLICKSP xmetricp;
range Xx;

range z, *zp;

are all valid declarations. The type of distance is int, that of metricp is “pointer to function with no parameter specification
returning int”, and that of x and z is the specified structure; zp is a pointer to such a structure. The object distance has a
type compatible with any other int object.

EXAMPLE 2 After the declarations

typedef struct sl { int x; } t1, *tpl;
typedef struct s2 { int x; } t2, xtp2;

type t1 and the type pointed to by tpl are compatible. Type t1 is also compatible with type struct s1, but not compatible
with the types struct s2, t2, the type pointed to by tp2, or int.

EXAMPLE 3 The following obscure constructions

typedef signed int t;

typedef int plain;

struct tag {
——————————unSighed—t4;
—€erst—&:5y
———ptain—+i5+
o unsigned t;

A A A A

modifications to ISO/IEC 9899:2018, § 6.7.10 page 132 Language




N2522 cmin..core § 6.7.11, working draft — May 10, 2020 CORE 202005 (E)

declare a typedef name t with type signed int, a typedef name plain with type int, and a structure with three bit-fiele
members, one named t thateontains-valtesin-the range{0; 15}, an-unnamed-, an const-qualified bit-field-whieh-(ifiteould
bﬁmﬁe&ﬂwmmﬂﬁmeﬁﬂ%%eﬁﬂge—%%%%% and one named r that-contains

8 - The first
two b}t—ﬁe}d—declaratlons dlffer in that un51gned isa type spec1f1er (which forces t to be the name of a structure member),
while const is a type qualifier (which modifies t which is still visible as a typedef name). If these declarations are followed
in an inner scope by

t f(t (1)),
long t;

then a function f is declared with type “function returning signed int with one unnamed parameter with type pointer
to function returning signed int with one unnamed parameter with type signed int”, and an identifier t with type
long int.

EXAMPLE 4 On the other hand, typedef names can be used to improve code readability. All three of the following
declarations of the signal function specify exactly the same type, the first without making use of any typedef names.

typedef void fv(int), (xpfv)(int);

void (xsignal(int, void (x)(int))) (int);
fv *xsignal(int, fv x*);
pfv signal(int, pfv);

EXAMPLE 5 If a typedef name denotes a variable length array type, the length of the array is fixed at the time the typedef
name is defined, not each time it is used:

void copyt(int n)

{
typedef int B[n]; // B is n ints, n evaluated now
n+=1;
B a; // a is n ints, n without += 1
int b[n]; // a and b are different sizes
for (int i = 1; i < n; i++)

ali-1] = b[i];
}

6.7.11 Expression types

Syntax

decltype-specifier:
decltype ( identification
decltype ( wvalue-expression

member-access

value-expression:
expression

Constraints_

A value expression shall not be an lvalue.!*”

The identification or value expression shall be valid and have function or object type. No new type
declaration shall be formed by the value expression itself.20)

1JAs a consequence, decltype can not be applied to results of array subscript, unary x operator, or of any () or _
generic_selection primary expression that has an Ivalue as result. Note also that the property of being an Ivalue or
not may differ between C and C++, in particular for prefix increment and decrement operators, assignment operators, the
tenary operator and the comma operator.

2%0This could for example happen if the expression contained the forward declaration of a tag type, such as in

Language modifications to ISO/IEC 9899:2018, § 6.7.11 page 133



1

CORE 202005 (E) § 6.7.12, working draft — May 10, 2020 cmin..core N2522

Semantics

A decltype specifier can be used in places where other type specifiers are used to declare or define

objects, members or functions. It stands in for the unmodified type of the identification or value
expression, even where the expression cannot be used for type inference of its type (opaque types,

function types, arra es), where a type-qualification should not be dropped, where no other type

specifier for the type can be formed (lambda types), or where an identifier may only be accessed
for its type without evaluating it (within lambda expressions).

If it does not have a variably modified (VM) type, the identification or value expression is not
evaluated. For VM types, the same rules for evaluation as for sizeof expressions apply. Analogous
to typedef, a decltype specifier does not introduce a new type, it only acts as a placeholder for
the type so specified.

NOTE C++ allows other lvalue expressions as expressions, and the deduced type then is a reference type. Since C does
not have references, such a construct should not be used by code that targets the C/C++ core.

EXAMPLE

b

void ell(double A[5], decltype(A)*x B); // ell has type '‘void (doublex, doublexx)’’

decltype(D) C = {0.7, 99, }; ________// C has type double[2]
decltype(D) D = { 5, 8.9, 0.1, 99, }; // D is completed to double[4]
decltype(D) E; //_E has_type double[4]

For the definition of g, the expression £ (5) has type void, and so this becomes the retumn type. For h, the decl type specifier
uses the identification syntax. Here the function type of g stands in for a function type specifier and the result type for h is
a pointer to function. For k, again the expression derivation is used. Here the type is the type of a ternary operator, thus the
type of g after function to function pointer conversion. As the result, the type of k is again a function pointer.

For ell the parameter type adjustment takes place before decltype specifier is met. Therefore decltype(A) refers to the
type double* and not to double[5].

As for D, the type of the expression to which a decltype specifier refers has not necessarily to be complete. Here, C first
inherits that incomplete type but is then completed by the initializer to have type double[2]. The specification decltype (D)
can then even be used in the definition of D itself to complete its type to double[ 4].

6.7.12 Initialization

Syntax

initializer:
assignment-expression
{ initializer-listop }
{ initializer-list , }

initializer-list:
designationep; initializer
initializer-list , designationqp initializer

designation:
designator-list =

designator-list:
designator

(struct newStructx)0 where struct newStruct has not yet been declared, or if it uses a compound literal that declares
a new structure or union type in its type-name component.

modifications to ISO/IEC 9899:2018, § 6.7.12 page 134 Language




10

11

12
13

N2522 cmin..core § 6.7.12, working draft — May 10, 2020 CORE 202005 (E)

designator-list designator
designator:

[ constant-expression 1]

. identifier

Constraints
No initializer shall attempt to provide a value for an object not contained within the entity being

initialized. If the type of the object that is initialized is opaque, the initializer shall be omitted or of
the form{} .

The type of the entity to be initialized shall be an array of unknown size or a complete object type
that is not a variable length array type.

All the expressions in an initializer for an object that has static or thread storage duration shall be
constant expressions or string literals.

If the declaration of an identifier has block scope, and the identifier has external or internal linkage,
the declaration shall have no initializer for the identifier.

If a designator has the form
[ constant-expression 1]

then the current object (defined below) shall have array type and the expression shall be an integer
constant expression. If the array is of unknown size, any nonnegative value is valid.

If a designator has the form
. identifier

then the current object (defined below) shall have structure or union type and the identifier shall be
the name of a member of that type.

Semantics
An-For non-opaque object types, an initializer specifies the initial value stored in an object. Unless

specified otherwise, for opaque object types an initializer guarantees a valid initial state by settin
all bits of the representation to zero.

Except where explicitly stated otherwise, for the purposes of this subclause unnamed members
of objects of structure and union type do not participate in initialization. Unnamed members of
structure objects have indeterminate value even after initialization.

If an object that has automatic storage duration is not initialized explicitly, its value is indeterminate.
If an object that has static or thread storage duration is not initialized explicitly, then:

— if it has pointer type, it is initialized to a null pointer;
— if it has arithmetic type, it is initialized to (positive or unsigned) zero;

— ifitis an aggregate, every member is initialized (recursively) according to these rules, and any
padding is initialized to zero bits;

— if it is a union, the first named member is initialized (recursively) according to these rules, and
any padding is initialized to zero bits;

The initializer for a scalar shall be a single expression, optionally enclosed in braces. The initial value
of the object is that of the expression (after conversion); the same type constraints and conversions
as for simple assignment apply, taking the type of the scalar to be the unqualified version of its
declared type.

The rest of this subclause deals with initializers for objects that have aggregate or union type.

The initializer for a structure or union object that has automatic storage duration shall be either
an initializer list as described below, or a single expression that has compatible structure or union

Language modifications to ISO/IEC 9899:2018, § 6.7.12 page 135



14

15

16

17

18

19

20

21

22

23

CORE 202005 (E) § 6.7.12, working draft — May 10, 2020 cmin..core N2522

type. In the latter case, the initial value of the object, including unnamed members, is that of the
expression.

An array of character type may be initialized by a character string literal or-UTF-8string-literal;
optionally enclosed in braces. Similarly, an array of char8_t may be initialized by an UTF-8 string.
literal.2®) Successive bytes of the string literal (including the terminating null character if there is
room or if the array is of unknown size) initialize the elements of the array.

An array with element type compatible with a qualified or unqualified version of wchar_t, char16_t,
or char32_t may be initialized by a wide string literal with the corresponding encoding prefix (L,
u, or U, respectively), optionally enclosed in braces. Successive wide characters of the wide string
literal (including the terminating null wide character if there is room or if the array is of unknown
size) initialize the elements of the array.

Otherwise, the initializer for an object that has aggregate or union type shall be a brace-enclosed list
of initializers for the elements or named members, which may be empty.

Each brace-enclosed initializer list has an associated current object. When no designations are present,
subobjects of the current object are initialized in order according to the type of the current object:
array elements in increasing subscript order, structure members in declaration order, and the first
named member of a union.?” In contrast, a designation causes the following initializer to begin
initialization of the subobject described by the designator. Initialization then continues forward in
order, beginning with the next subobject after that described by the designator.2*®

Each designator list begins its description with the current object associated with the closest sur-
rounding brace pair. Each item in the designator list (in order) specifies a particular member of its
current object and changes the current object for the next designator (if any) to be that member.2%4
The current object that results at the end of the designator list is the subobject to be initialized by the
following initializer.

The initialization shall occur in initializer list order, each initializer provided for a particular subobject
overriding any previously listed initializer for the same subobject;”® all subobjects that are not
initialized explicitly shall be initialized implicitly the same as objects that have static storage duration.

If the aggregate or union contains elements or members that are aggregates or unions, these rules
apply recursively to the subaggregates or contained unions. If the initializer of a subaggregate or
contained union begins with a left brace, the initializers enclosed by that brace and its matching right
brace initialize the elements or members of the subaggregate or the contained union. Otherwise, only
enough initializers from the list are taken to account for the elements or members of the subaggregate
or the first member of the contained union; any remaining initializers are left to initialize the next
element or member of the aggregate of which the current subaggregate or contained union is a part.

If there are fewer initializers in a brace-enclosed list than there are elements or members of an
aggregate, or fewer characters in a string literal used to initialize an array of known size than there
are elements in the array, the remainder of the aggregate shall be initialized implicitly the same as
objects that have static storage duration.?%®

If an array of unknown size is initialized, its size is determined by the largest indexed element with
an explicit initializer. The array type is completed at the end of its initializer list.

The evaluations of the initialization list expressions are indeterminately sequenced with respect to

2%For C char8_t is a character type and so there may be no difference in the initialization between the two types of string
literals, But the distinction is important for the compatibility to C++.

202)1f the initializer list for a subaggregate or contained union does not begin with a left brace, its subobjects are initialized as
usual, but the subaggregate or contained union does not become the current object: current objects are associated only with
brace-enclosed initializer lists.

203) After a union member is initialized, the next object is not the next member of the union; instead, it is the next subobject of
an object containing the union.

204)Thus, a designator can only specify a strict subobject of the aggregate or union that is associated with the surrounding
brace pair. Note, too, that each separate designator list is independent.

205 Any initializer for the subobject which is overridden and so not used to initialize that subobject might not be evaluated at
all.

206)[n, particular, if the initializer list is empty all members are initialized implicitly.

modifications to ISO/IEC 9899:2018, § 6.7.12 page 136 Language



24

25

26

27

28

29

30

N2522 cmin..core § 6.7.12, working draft — May 10, 2020 CORE 202005 (E)

one another and thus the order in which any side effects occur is unspecified.?"”)

NOTE The C language currently does not allow the initializer list to be empty. To ease portability in the C/C++ core,
implementations are encouraged to accept such initializers as an extension.

EXAMPLE 1 Provided that <complex.h> has been #included, the declarations

int i = 3.5;
—deublte—comptex—€=5—+3—1;

.. double complex ¢ =5+ 3 x I;

define and initialize i with the value 3 and ¢ with the value 5.0 + 3.0.

EXAMPLE 2 The declaration

‘ int x[1={1, 3,5}

defines and initializes x as a one-dimensional array object that has three elements, as no size was specified and there are three
initializers.

EXAMPLE 3 The declaration

is a definition with a fully bracketed initialization: 1, 3, and 5 initialize the first row of y (the array object y[0]), namely
y[01[0],y[0][1],and y[0][2]. Likewise the next two lines initialize y[1] and y[2]. The initializer ends early, so y[3] is
initialized with zeros. Precisely the same effect could have been achieved by

int y[4][3] = {
1, 3, 5,2, 4,6, 3,5, 7
I8

The initializer for y[0] does not begin with a left brace, so three items from the list are used. Likewise the next three are
taken successively for y[1] and y[2].

EXAMPLE 4 The declaration

int z[4][3] = {
{1} {2} {33} {4}
Y

initializes the first column of z as specified and initializes the rest with zeros.

EXAMPLE 5 The declaration

| struct { int a[3], b; }wll ={ {1}, 2};

is a definition with an inconsistently bracketed initialization. It defines an array with two element structures: w[0] .a[0] is 1
and w[1].a[0] is 2; all the other elements are zero.

EXAMPLE 6 The declaration

contains an incompletely but consistently bracketed initialization. It defines a three-dimensional array object: q[0] [0] [0]
is1,q[11[0]1[0] is2, q[1]1[0]1[1] is 3, and 4, 5, and 6 initialize q[2]1[0][0], q[2]1[0]1[1], and q[2][1][0], respectively;
all the rest are zero. The initializer for q[0] [0] does not begin with a left brace, so up to six items from the current list
could be used. There is only one, so the values for the remaining five elements are initialized with zero. Likewise, the
initializers for q[1]1[0] and q[2][0] do not begin with a left brace, so each uses up to six items, initializing their respective

207)In particular, the evaluation order need not be the same as the order of subobject initialization.

Language modifications to ISO/IEC 9899:2018, § 6.7.12 page 137



CORE 202005 (E) § 6.7.12, working draft — May 10, 2020 N2522

two-dimensional subaggregates. If there had been more than six items in any of the lists, a diagnostic message would have
been issued. The same initialization result could have been achieved by:

short q[4]1[3]1[2] = {
1, o, 0, 0, 0, 0O,
2, 3, 0, 0, 0, 0,
4, 5, 6
+
or by:
short q[4]1[3]1[2] = {
{
{1},
T
{
{2, 31},
+
{
{4, 51},
{61},
}

};

in a fully bracketed form.
31 Note that the fully bracketed and minimally bracketed forms of initialization are, in general, less likely to cause confusion.

32 EXAMPLE 7 One form of initialization that completes array types involves typedef names. Given the declaration

\ typedef int A[]; // OK - declared with block scope

the declaration

| Aa={1,2} b={3, 4,5}

is identical to

| intall={1, 2}, b[l={3, 45}

due to the rules for incomplete types.

33 EXAMPLE 8 The declaration

char s[] = "abc", t[3] = "abc";

defines “plain” char array objects s and t whose elements are initialized with character string literals. This declaration is
identical to

char s[] = { ’a’, 'b’, 'c’, '\0" },
t[l ={'a’, 'b", "¢’ };

The contents of the arrays are modifiable. On the other hand, the declaration

[
char xp = "abc";
L

defines p with type “pointer to char” and initializes it to point to an object with type “array of char” with length 4 whose
elements are initialized with a character string literal. If an attempt is made to use p to modify the contents of the array, the
behavior is undefined.

34 EXAMPLEY Arrays can be initialized to correspond to the elements of an enumeration by using designators:

i enum { member_one, member_two };

\ const char *nm[] = {

\ [member_two] = "member two",
\ [member_one] = "member one",

modifications to ISO/IEC 9899:2018, § 6.7.12 page 138 Language



35

36

37

38

39

40

N2522 cmin..core § 6.7.13, working draft — May 10, 2020 CORE 202005 (E)

| b |

EXAMPLE 10 Structure members can be initialized to nonzero values without depending on their order:

[ |
div_t answer = {.quot = 2, .rem = -1 };

EXAMPLE 11 Designators can be used to provide explicit initialization when unadorned initializer lists might be misunder-
stood:

struct { int a[3], b; } w[] =
{ [0].a = {1}, [1].a[0] =2 };

EXAMPLE 12
struct T {
int k;
int 1;
Y
struct S {
int i;
struct T t;
I

struct T x = {.1 = 43, .k = 42, };

void f(void)

{
struct S 1L ={1, .t=x, .t.1 =41, };

}

The value of 1.t.k is 42, because implicit initialization does not override explicit initialization.

EXAMPLE 13 Space can be “allocated” from both ends of an array by using a single designator:

int a[MAX] = {
1, 3, 5, 7, 9, [MAX-5] =8, 6, 4, 2, 0
Y

In the above, if MAX is greater than ten, there will be some zero-valued elements in the middle; if it is less than ten, some of
the values provided by the first five initializers will be overridden by the second five.

EXAMPLE 14 Any member of a union can be initialized:

i union { /x ... %/ } u = {.any_member = 42 };

6.7.13 Type inference

Constraints

An underspecified declaration shall contain at least one storage class specifier.

For an underspecified declaration of a function that is also a definition, the return type shall be
completed as of 6.9.1. For an underspecified declaration of a function that is not a definition and

not the declaration of a parameter of a lambda expression, a prior definition of the declared function
shall be visible.

For an underspecified declaration of an object that is not the declaration of a parameter of a lambda
expression, each of its init declarators shall be of one of the forms

declarator = assignment-expression
declarator = { assignment-expression
declarator = { assignment-expression

Language modifications to ISO/IEC 9899:2018, § 6.7.13 page 139



CORE 202005 (E) § 6.7.13, working draft — May 10, 2020 cmin..core N2522

such that the declarator does not declare an array.

For an underspecified declaration there shall be a type specifier type that can be inserted in the
declaration immediately after the last storage class specifier that makes the adjusted declaration
a valid declaration. All declared objects of that adjusted declaration shall have a type that is the
generic type of their assignment expression or a qualified or atomic version thereof. All declared
functions shall have a type that is compatible with the type of the corresponding definition.

Description

Provided the constraints above are respected, in an underspecified declaration the type of the
declared identifiers is the type after the declaration has been adjusted by type. The type of each
identifier that declares an object is incomplete until the end of the assignment expression that
initializes it.

NOTE The scope of the identifier for which the type is inferred only starts after the end of the initializer (6.2.1), so the
assignment expression cannot use the identifier to refer to the object or function that is declared, for example to take its
address. Any use of the identifier in the initializer is invalid, even if an entity with the same name exists in an outer scope.

double a
double b

73
95

double b = b x b; __// error, RHS uses uninitialized variable

rintf("sg\n", a); _// valid, uses "a" from outer scope, prints 7

_______autoa =axa; /[ error, "a" from outer scope is already shadowed

il

auto b =axa; // valid, uses "a" from outer scope

::::::::Eﬁiﬁ:é:::fwgiv // valid, shadows "a" from outer scope

T printf("sg\n", a); A/ valid, uses "a" from inner scope, prints 49

]

EXAMPLE Consider the following definitions:

___.static auto a = 3.5;

BUt0 % p = 8a;

They are interpreted as if they had been written as:

___.static auto double a = 3.5;
____.auto double * p = &a;

which again is equivalent to

...static double a = 3.5;
~..double * p = &a;

So effectively a is a double and p is a doublex.

double A[3] = {};
...2auto const x pA = A;

auto const (xgA)[3] = &A;

Here pA is valid because the generic type of A is a pointer type, and gA is valid because it does not declare an array but a

modifications to ISO/IEC 9899:2018, § 6.7.13 page 140 Language




N2522 cmin..core § 6.7.14, working draft — May 10, 2020 CORE 202005 (E)

pointer to an array.
6.7.14 Static assertions

Syntax

static_assert-declaration:
—Static-assert static_assert ( constant-expression , string-literal ) ;
—Statie—assert static_assert ( constant-expression) ;

Constraints
The constant expression shall compare unequal to 0.

Semantics

The constant expression shall be an integer constant expression. If the value of the constant expres-
sion compares unequal to 0, the declaration has no effect. Otherwise, the constraint is violated and
the implementation shall produce a diagnostic message that includes the text of the string literal, if
present, except that characters not in the basic source character set are not required to appear in the
message.

Forward references: diagnostics (7.2).

6.7.15 Attributes

Attributes specify additional information for various source constructs such as types, variables,
identifiers, or blocks. They are identified by an attribute token, which can either be a attribute prefixed
token (for implementation-specific attributes) or a standard attribute specified by an identifier (for
attributes specified in this document).

Support for any of the standard attributes specified in this document is implementation-defined
and optional. For an attribute token (including an attribute prefixed token) not specified in this
document, the behavior is implementation-defined. Any attribute token that is not supported by the
implementation is ignored.

Attributes are said to appertain to some source construct, identified by the syntactic context where
they appear, and for each individual attribute, the corresponding clause constrains the syntactic
context in which this appertainance is valid. The attribute specifier sequence appertaining to some
source construct shall contain only attributes that are allowed to apply to that source construct.

In all aspects of the language, a standard attribute specified by this document as an identifier attr
and an identifier of the form __attr__ shall behave the same when used as an attribute token,
except for the spelling.?%®)

Recommended practice
It is recommended that implementations support all standard attributes as defined in this document.

6.7.15.1 General
Syntax

attribute-specifier-sequence:
attribute-specifier-sequenceop: attribute-specifier
attribute-specifier:
attribute-list:
attributeopy
attribute-list , attributeqp
attribute:
attribute-token attribute-argument-clauseopt

29)Thus, the attributes Hfrediseard-[nodiscard] and {f—nediseard—}}[_nodiscard__] can be freely interchanged.

Implementations are encouraged to behave similarly for attribute tokens (including attribute prefixed tokens) they provide.

Language modifications to ISO/IEC 9899:2018, § 6.7.15.1 page 141



CORE 202005 (E) § 6.7.15.1, working draft — May 10, 2020 cmin..core N2522

attribute-token:
standard-attribute
attribute-prefixed-token
standard-attribute:
identifier

attribute-prefixed-token:

attribute-prefix ———identifier- :: _attribute-suffix

identifier

attribute-prefix:

attribute-suffix:

core-attribute:

core : identifier

attribute-arqument-clause:
( balanced-token—sequenceopt )
balanced-token-sequence:
balanced-token
balanced-token-sequence balanced-token
balanced-token:
( balanced—token—sequenceopt )
[ balanced-token-sequencept 1
{ balanced-token-sequenceop }
any token other than a parenthesis, a bracket, or a brace

Constraints
The identifier in a standard attribute shall be one of:

deprecated fallthrough maybe_unused nodiscard

The identifier in a core attribute shall be one of:

address_independent free realloc state_transparent
~ e 1dempotent reentrant stateless
evaluates noleak state_invariant_

Semantics

An attribute specifier that contains no attributes has no effect. The order in which attribute tokens
appear in an attribute list is not significant. If a keyword (6.4.1) that satisfies the syntactic require-
ments of an identifier (6.4.2) is contained in an attribute token, it is considered an identifier. A strictly
conforming program using a standard attribute remains strictly conforming in the absence of that
attribute.2%”)

Additionally, this specification defines attributes for the C/C++ core that have the form of an
attribute prefixed token, where the attribute prefix are core or __core__, and where the identifier
is one of the above or the same with prefix and postfix of . Those forms are equivalent besides
their spelling. They are specified in 6.7.15.4 and following.

NOTE For each standard or core attribute, the form of the balanced token sequence, if any, will be specified.

209 Standard attributes specified by this document can be parsed but ignored by an implementation without changing the
semantics of a correct program; the same is not true for attributes not specified by this document.

modifications to ISO/IEC 9899:2018, § 6.7.15.1 page 142 Language



N2522 cmin..core § 6.7.15.2, working draft — May 10, 2020 CORE 202005 (E)

Recommended Practice

Each implementation should choose a distinctive name for the attribute prefix in an attribute
prefixed token. Implementations should not define attributes without an attribute prefix unless it is
a standard attribute as specified in this document.

EXAMPLE 1 Suppose that an implementation chooses the attribute prefix hal and provides specific attributes named daisy
and rosie.

Hdepreeated—hatrdaisyHdeublteninel008{doublte)

tHdeprecatedH{thatdaisy—double ninel0060{double):
deprecated, hal::daisy]] double ninel000(double);
deprecated hal::dais double ninel000(double);
deprecated double ninel000 hal::dais double);

Then all the following declarations should be equivalent aside from the spelling:

These use the alternate spelling that is required for all standard attributes and recommended for prefixed attributes. These
may be better-suited for use in header files, where the use of the alternate spelling avoids naming conflicts with user-provided
macros.

EXAMPLE 2 For the same implementation, the following two declarations are equivalent, because the ordering inside
attribute lists is not important.

\ hal::dais hal::rosie double nine999(double);
L

hal::rosie, hal::daisy]| double nine999(double);

On the other hand the following two declarations are not equivalent, because the ordering of different attribute specifiers
may affect the semantics.

hal::dais hal::rosie double nine999(double);

hal::rosie hal::dais double nine999(double); // may have different semantics

6.7.15.2 Standard attributes

6.7.15.2.1 The nodiscard attribute

Constraint

The nodiscard attribute shall be applied to the identifier in a function deelarater-declaration or

to the definition of a structure, union, or enumeration type. It shall appear at most once in each
attribute list and no attribute argument clause shall be present.

Semantics

A name or entity declared without the nodiscard attribute can later be redeclared with the attribute
and vice versa. An entity is considered marked after the first declaration that marks it.

Recommended Practice

A nodiscard call is a function call expression that calls a function previously declared with attribute
nodiscard, or whose return type is a structure, union, or enumeration type marked with attribute
nodiscard. Evaluation of a nodiscard call as a void expression (6.8.3) is discouraged unless explicitly
cast to void. Implementations are encouraged to issue a diagnostic in such cases. This is typically
because immediately discarding the return value of a nodiscard call has surprising consequences.

Language modifications to ISO/IEC 9899:2018, § 6.7.15.2.1 page 143



4

CORE 202005 (E) § 6.7.15.2.2, working draft — May 10, 2020 cmin..core N2522

EXAMPLE 1

——struet—ffnoedisecardHH—errer—info{—F——/—F+
struct error_info enable_missile_safety_mode(void);
void launch_missiles(void);
void test_missiles(void) {

enable_missile_safety_mode();
launch_missiles();

A diagnostic for the call to enable_missile_safety_mode is encouraged.

EXAMPLE 2

—HrodisecardH—int—important=Functvoid);
nodiscard int important_func(void);
void call(void) {
int i = important_func();

}

No diagnostic for the call to important_func is encouraged despite the value of i not being used.

6.7.15.2.2 The maybe_unused attribute
Constraint

The maybe_unused attribute shall be applied to the declaration of a structure, a union, a typedef
name, a variable, a structure or union member, a function, an enumeration, or an enumerator. It
shall appear at most once in each attribute list and no attribute argument clause shall be present.

Semantics

The maybe_unused attribute indicates that a name or entity is possibly intentionally unused. A name
or entity declared without the maybe_unused attribute can later be redeclared with the attribute and
vice versa. An entity is considered marked with the attribute after the first declaration that marks it.

Recommended Practice

For an entity marked maybe_unused, implementations are encouraged not to emit a diagnostic that
the entity is unused, or that the entity is used despite the presence of the attribute.

EXAMPLE

T _ Hvoid—f (L _ H—tnt i)

maybe_unused void f( [[ maybe_unused int i) {
maybe_unused]] int j =i + 100;

assert(j);

~~

A A A A

}

Implementations are encouraged not to diagnose that j is unused, whether or not NDEBUG is defined.

6.7.15.2.3 The deprecated attribute
Constraint

The deprecated attribute shall be applied to the declaration of a structure, a union, a typedef name,
a variable, a structure or union member, a function, an enumeration, or an enumerator. It shall
appear at most once in each attribute list.

If an attribute argument clause is present, it shall have the form:

( string-literal )

modifications to ISO/IEC 9899:2018, § 6.7.15.2.3 page 144 Language



N2522 cmin..core § 6.7.15.2.3, working draft — May 10, 2020 CORE 202005 (E)

Semantics

The deprecated attribute can be used to mark names and entities whose use is still allowed, but is
discouraged for some reason.?!?)

A name or entity declared without the deprecated attribute can later be redeclared with the attribute
and vice versa. An entity is considered marked with the attribute after the first declaration that
marks it.

Recommended Practice

Implementations should use the deprecated attribute to produce a diagnostic message in case the
program refers to a name or entity other than to declare it, after a declaration that specifies the
attribute, when the reference to the name or entity is not within the context of a related deprecated
entity. The diagnostic message may include text provided by the string literal within the attribute
argument clause of any deprecated attribute applied to the name or entity.

EXAMPLE

——struct{{deprecated S+
___Struct [/ deprecated]| S {

int a;

i
—enum—{{deprecatedH—EI—

___enum || deprecated]| E1l {
one

Ia

enum E2 {

" ’ roa n
’

oo __two [[deprecated("use 'three’ instead") ||,

three

——.___\ldeprecated]] typedef int Foo;

void fl(struct S s) { // Diagnose use of S
int i = one; // Diagnose use of El
int j = two; // Diagnose use of two:
int k = three;

Foo f; // Diagnose use of Foo

use 'three’ instead"

}
—HHdeprecatedHH—void—Ff2{struct-S—s)r

deprecated void f2(struct S s)
int i = one;

int j = two;
int k = three;
Foo f;

}
——struct{{deprecated T+
. ..struct [[deprecated]] T {

Foo f;
struct S s;
i

Implementations are encouraged to diagnose the use of deprecated entities within a context which is not itself deprecated, as
indicated for function f1, but not to diagnose within function f2 and struct T, as they are themselves deprecated.

21001 particular, deprecated is appropriate for names and entities that are obsolescent, insecure, unsafe, or otherwise unfit

for purpose.

Language modifications to ISO/IEC 9899:2018, § 6.7.15.2.3 page 145



CORE 202005 (E) § 6.7.15.2.4, working draft — May 10, 2020 cmin..core N2522

6.7.15.2.4 The fallthrough attribute

Constraint

The attribute token fallthrough shall only appear in an attribute declaration (6.7); such a declara-
tion is a fallthrough declaration. The attribute token fallthrough shall appear at most once in each
attribute list and no attribute argument clause shall be present. A fallthrough declaration may only
appear within an enclosing switch statement (6.8.4.2). The next statement-that-would-be-executed
block item (6.8.2) after a fallthrough declaration shall be a labeled statement whose label is a case
label or default label for the same switch statement.

Recommended Practice

The use of a fallthrough declaration is intended to suppress a diagnostic that an implementation
might otherwise issue for a case or default label that is reachable from another case or default
label along some path of execution. Implementations are encouraged to issue a diagnostic if a
fallthrough declaration is not dynamically reachable.

EXAMPLE

void f(int n) {
void g(void), h(void), i(void);
switch (n) {
case 1: /x diagnostic on fallthrough discouraged x*/
case 2:
g();
——————————f{{fattthroughts
Y fallthrough]] ;
case 3: /x diagnostic on fallthrough discouraged x*/
h();
case 4: /x fallthrough diagnostic encouraged x/
i();
FEfatt H- ;  olati
e fallthrough|] ; /* constraint violation x/

6.7.15.3 Core storage attributes
Syntax

core-storage-attribute:
core :: identifier attribute-arqument-clause,n;

Constraints_

The identifier in a core storage attribute shall be one of

alias noalias writethrough
free realloc

Unless specified otherwise, the core storage attributes shall only be applied to an object or function
declaration, to a member declaration, to an identifier in a direct declarator, to a function declarator,

to a lambda expression, to a pointer declarator, or, in a type specifier qualifier list.

If they are applied in a type specifier qualifier list, they shall follow a typedef name or a decltype
specifier that stands in for a pointer type. If they are applied to a function declarator or a lambda
expression, the return type, which is possibly inferred, shall be a pointer type.

If they are applied to a object or function declaration, the effect shall be as if they are applied to the
corresponding identifier. If they are applied to an identifier, that identifier shall be a function or
object. If they are applied to a union or structure member or to an identifier that has an object type,
the type shall not be opaque or atomic nor an array with such a base type.

modifications to ISO/IEC 9899:2018, § 6.7.15.3 page 146 Language



N2522 cmin..core § 6.7.15.3.1, working draft — May 10, 2020 CORE 202005 (E)

Description

The intended use of the core storage attributes is to promote optimization, and deleting all instances
of the attributes from all preprocessing translation units composing a conforming program does not
change its meaning (i.e., observable behavior),*'" with the notable exception for the case that the
core::noalias attribute is used for an identifier with external linkage.

In the following a function or lambda is said to be an allocator function if has has a pointer return
value that has an implicit or explicit core:: noalias attribute; it is said to be a deallocator if it has

a core: free or a core::realloc parameter. A function or lambda is said to allocate a _storage
instance if it calls an allocator, and said to deallocate a storage instance if it calls a deallocator.

6.7.15.3.1 The core:: noalias attribute
Constraints_

Additional constraints to the above apply. The attribute argument list shall be omitted or of the

form

expression )

where the expression has integer type. For the evaluation of the expression, the same rules as for
the evaluation of array sizes apply.

If the core:: noalias attribute is applied to an identifier additional constraints apply. If it is applied

to an identifier in a declaration, it shall be applied to all declarations (including a definition) in the

If it is a function, the unary & operator shall not be applied and an implicit function to pointer
conversion shall only be formed if it is used as the left operand of a function call operator.

If it is an object, the unary & operator shall not be applied to the object or any of its elements or
members, even recursively, and an implicit array to pointer conversion shall only be formed if
it is implied by an array subscript operator for which the size expression is an integer constant
expression.

If the core::noalias attribute is applied to the declaration of a union or structure member name of
union or structure S, the rules for objects apply to all member access designations that use an lvalue
e S (s.name) or a pointer ps to S (ps — name), and then recursively to all their elements or

members.

Description

If an attribute argument list is provided, the expression (called the size of the attribute) shall be
strictly positive. In cases where the attribute is applied to an identifier or to the declaration of a

union or structure member, the size shall be omitted.

In the case the core::noalias attribute is applied to the declarator of a pointer type T*, a size n
indicates that the pointer will be used to access an array of type T| n]. If it is omitted the attribute
is said to have unknown size and the pointer gives access to an incomplete array of type T[]._

If the core:: noalias attribute is applied to an identifier or declaration, it specifies that the address
of the object or function will never be taken. Additionally, for any definition of an identifier to
which the core:: noalias attribute is applied the following properties hold:

— If it is an object definition, that object will never alias with any other object.

— If it is an object with automatic storage duration, it will never escape its defining scope.

— If it is an object or function with internal linkage, it will never escape the translation unit in
which it is defined.

If it is an inline constant or function, no external definition shall be required.

211)

Two translation units where one has been translated by ignoring the attribute and the other by taking it into account
can be linked into one executable. In particular, applying these attributes to declarations of structure members may change
the layout.

Language modifications to ISO/IEC 9899:2018, § 6.7.15.3.1 page 147



10

11

12

13

14

15

16

17

18

CORE 202005 (E) § 6.7.15.3.1, working draft — May 10, 2020 cmin..core N2522

If the core::noalias attribute is applied to a declaration of a member of a union or structure,
it specifies that for any object with that union or structure type, the address of the member will
never be taken. The alignment restrictions for such a member may be looser than the alignment
restrictions for other objects of the same type as the member, but they shall be the same for all such
members of the same type that have the core:: noalias attribute . Such a member will never alias
with any other object of the same type as the member, unless both are members of objects of the
same union or structure type, and these containing objects alias. The start address of the member,
however obtained, shall not be converted to a pointer to the type of the member.*'?

If a core:: noalias attribute is applied to an identifier or declaration of a function parameter that
is specified in array notation with an array size expression [, the attribute is applied twice, to the
identifier of the parameter, if any, with no attribute argument list and to the pointer type that results
from the array parameter rewrite, propagating the size expression £ to the attribute. In that case £
shall evaluate to a value that is greater than 0.

If it is applied to a function declarator or a lambda expression, the effect is as if the pointer return
type has the core:: noalias attribute with the same size.”'? If it is applied to the pointer return
type of a function or lambda it indicates that a non-null pointer value that is returned by any call
to that function refers to the first element of an array object (of type T[7] or T[]) as above, that has

not been encountered before and that will thus not alias with any known object?!4

If the core:: noalias attribute is applied to a declarator of pointer type, it reflects a specific property.
of a pointer value that is accessible through the declaration. An object that is accessed through a
noalias pointer has a special association with that pointer. This association, defined below, requires
that all accesses to that object use, directly or indirectly, the value of that particular pointer.*'”

Let D be a declaration of an ordinary identifier that provides a means of designating an object P as
a pointer to type T having the core:: noalias attribute with unknown size.

If D appears inside a block and does not have storage class extern, let B denote the block. If D
appears in the list of parameter declarations of a function definition, let B denote the associated
block. Otherwise, let B denote the block of main (or the block of whatever function is called at
program startup in a freestanding environment).

In what follows, a pointer expression E is said to be based on object P if (at some sequence point in
the execution of B prior to the evaluation of E) modifying P to point to a copy of the array object

into which it formerly pointed would change the value of E.2!® Note that “based” is defined onl
for expressions with pointer types.

During each execution of B, let L be any lvalue that has &L based on P. If L is used to access the
value of the object X that it designates, and X is also modified (by any means), then the following
requirements apply: T shall not be const-qualified. Every other lvalue used to access the value of
X shall also have its address based on P. Every access that modifies X shall be considered also to
modify P, for the purposes of this subclause. If P is assigned the value of a pointer expression E that
is based on another noalias pointer object P2, associated with block B2, then either the execution of
B2 shall begin before the execution of B, or the execution of B2 shall end prior to the assignment. If
these requirements are not met, then the behavior is undefined.

Here an execution of B means that portion of the execution of the program that would correspond
to the lifetime of an object with scalar type and automatic storage duration associated with B.

If P is as above, but the attribute provides a size n, additional restrictions apply. Any expression
E that is based on P shall only access bytes in the array of type T[n] that is associated to P. If Q is

212)
213)

These relaxed alignment properties allow implementations to pack such members with less padding:

This allows to effectively associate a core::: noalias attribute to a pointer return value by using a size expression that
uses the names of parameters.

2'9This typically indicates that the function behaves similar to the library function malloc.

#9For example, a statement that assigns a value returned by malloc to a single pointer establishes this association between
the allocated object and the pointer.

216)[n other words, E depends on the value of P itself rather than on the value of an obiject referenced indirectly through P.
For example, if identifier p has type (int *x[[ core::noalias]] ), then the pointer expressions p and p+1 are based on the

noalias pointer object designated by p, but the pointer expressions *p and p[1] are not.

modifications to ISO/IEC 9899:2018, § 6.7.15.3.1 page 148 Language



19

20

21

22

23

24

25

N2522 cmin..core § 6.7.15.3.1, working draft — May 10, 2020 CORE 202005 (E)

another pointer of type S with a core:: noalias attribute of size m, and that is associated with the
same block B, then the two arrays to which P and an Q refer (of type T[n] or S[m], respectively)
shall share no representation byte.

Recommended Practice

It is recommended that applications that use the core:: noalias attribute for a pointer return value
also assert the core:: noleak attribute, see below.

EXAMPLE 1 Suppose that double has an alignment requirement of 8 and consider the following structures:

struct S {

char indicator;
N 73
oostruct T {0

char indicateur;

core::noalias double champs;
. 3

Then S would necessarily have offsetof (S, field) as 8 or more, and sizeof(S) as 16 or more. For T the implementation
could chose differently, for example an alignment of 4. Then, offsetof (T, champs) can be 4, and sizeof(T) can be 12.

Such an alienment then cannot lead to pointer misalignment, because the unary & cannot be applied to the member champs.
On the other hand, there may be a tradeoff for the gain in size because load or store operations to the champs member ma
be more expensive.

EXAMPLE 2 The following shows a declaration with parameters in array notation and its equivalent rewrite.

__.__void add( [[core:noalias || double a[3][4
oo _llcorexznoalias ]| double (xb)[4]);

_.___void add(double (x* [[core::noalias(3 a|[ core::noalias || ) [4],

double (* b || core::noalias 4

A A A

EXAMPLE 3 The example function date_alloc from above returns a pointer to a string that has been freshly allocated. So
a core::noalias attribute can be added indicating that the returned array will not alias and also to provide information
about the array size.

o~ Hinclude <time.h>
. #include <stdlib.h>
___Char constx date_alloc(void corex:noalias(26) || {

::AAANVVAAA(char* core::noalias(26) ret = malloc(26);
e ___if (ret) ctime_r(time(nullptr ret);

. return_ret;

A~ A~ A

e b

EXAMPLE 4 The file scope declarations

intx* [[ core::noalias a;
intx [[ core::noalias b;

extern int c[];

assert that if an object is accessed using one of a, b, or ¢, and that object is modified anywhere in the program, then it is
never accessed using either of the other two. Because no sizes are indicated, the extent of the access through the pointers
cannot be verified by the translator, and the programmer has to ensure the necessary assertions by other means.

EXAMPLE 5 The function parameter declarations in the following example

core::noalias core::noalias

void f(int n, intx

{

~

_____vhile (n--_> 0)
e e R = SORERD
¥

Language modifications to ISO/IEC 9899:2018, § 6.7.15.3.1 page 149




CORE 202005 (E) § 6.7.15.3.1, working draft — May 10, 2020 cmin..core N2522

assert that, during each execution of the function, if an object is accessed through one of the pointer parameters, then it is
not also accessed through the other. The translator can make this no-aliasing inference based on the parameter declarations
alone, without analyzing the function body.

26 It cannot, though, assert that the function body conforms to these guarantees. This can be achieved by providing more

information directly or indirectly to the attributes. There are two possibilities, to provide the size information. The first is to
simply add the size to the attribute:

intx

void fO(int n, core::noalias(n

void fl(int n, core::noalias
1
o Mhile (noc > 0)
o s RIS AL
i3

This is a short form of overall four attributes when the parameter declarations are rewritten to

void fl(int n, intx[[ core::noalias(n core::noalias

—_.___lintx [[ core:noalias(n) core::noalias || );

27 The benefit of the core:: noalias attributes is that they enable a translator to make an effective dependence analysis of

function f without examining any of the calls of f in the program. The cost is that the programmer has to examine all of
those calls to ensure that they have defined behavior. For example, the second call of f in g has undefined behavior because
each of d[1] through d[49] is accessed through both p and g.

{

~

__.___extern int d[100];
f(50, d + 50, d); // valid

A~~~ AAARAA NSNS L

. __f(50, d+ 1, d); // undefined behavior
+

28 Providing sizes to the attributes improves on that situation, by making many of such invalid calls diagnosable. For example,

29

the second call of f0 in g0 has the same undefined behavior as the second call of f above, but the translator may perform
data flow analysis and detect that arrays provided by the second and third argument overlap.

void g0(void)
1
. _..extern int _d[100];

... f0o(50, d + 50, d); // valid
. fo(50, d + 1, d); // undefined behavior, diagnosed

b

EXAMPLE 6 The function parameter declarations

void h(int n, intx || core::noalias core::noalias core::noalias

ANt i

A A A~ AAAAAANTIATAL ~o

illustrate how an unmodified object can be aliased through two noalias pointers. In particular, if a and b are disjoint arrays,
a call of the form h(100, a, b, b) has defined behavior, because array b is not modified within function h.

30 Nevertheless, a declaration (and definition

[
\void h(int n, core::noalias int p[n int const const n], int const r[const n])
kS

\ for (i = 0; 1 < n; i++)

A A A AAAAAAAANTIAIAL o

modifications to ISO/IEC 9899:2018, § 6.7.15.3.1 page 150 Language



31

32

33

34

35

N2522 cmin..core § 6.7.15.3.1, working draft — May 10, 2020 CORE 202005 (E)

|1

would be better suited to reflect the requirements to the function and also for its callers. For the calling side and the
translation of the function body itself, it can be concluded that p cannot alias neither g nor r, and that g and r may refer to
arrays that totally or partially overlap with each other.

EXAMPLE 7 The rule limiting assignments between noalias pointers does not distinguish between a function call and an
equivalent nested block. With one exception, only “outer-to-inner” assienments between noalias pointers declared in nested

blocks have defined behavior,

{
0 .___Phl =4ql; // undefined behavior

e L

o Antx [[ coresnoalias || p2 = pl; // valid
e dntx [[coresnoalias || g2 = q1; // valid
oo P =@2; . _// undefined behavior
P2 = d2; ______________ /[l undefined behavior

A A A A

o b
t

The one exception allows the value of a noalias pointer to be carried out of the block in which it (or, more precisely,

the ordinary identifier used to designate it) is declared when that block finishes execution. For example, this permits
new_vector to return a vector.

typedef struct int n; floatx [[ core::noalias v; } vector;

vector new_vector(int n)
{

~

o Yector t = o

.n =n,
oo _sv = malloc(sizeof(float[n
. return ;.

33

EXAMPLE 8 Suppose that a programmer knows that references of the form p[i] and q[j ] are never aliases in the body of

‘void f(int n, int xp, int xq) { /* ... *x/ }

but_that not more information about the array sizes that are accessed is available. There are several ways that
this_information could be conveyed to a translator using the core::noalias attribute without using a_size.
Example 67.1531 ex. 5 shows the most effective way in that situation, attributing all pointer parameters, and can
be used provided that neither p nor q becomes based on the other in the function body. A potentially effective alternative

st

[
\void f(int n, intx [[ core::noalias int * const q) [*X .. *[ )

Again it is possible for a translator to make the no-aliasing inference based on the parameter declarations alone, though now
it must use subtler reasoning: that the const-qualification of g precludes it becoming based on p. There is also a requirement
that g is not modified, so this alternative cannot be used for the function in Example 6.7.15.3.1 ex. 5, as written.

EXAMPLE 9 Another potentially effective alternative is:

|
\void f(int n, int *p, int constx* [[ core::noalias ) [X ... %/}

Again it is possible for a translator to make the no-aliasing inference based on the parameter declarations alone, though
now it must use even subtler reasoning: that this combination of the core:: noalias attribute and const means that objects
referenced using g cannot be modified, and so no modified object can be referenced using both p and q.

EXAMPLE 10 The least effective alternative is: |

[
'void f(int n, intx[[core:noalias int * /¥ ... ¥/}
L

Language modifications to ISO/IEC 9899:2018, § 6.7.15.3.1 page 151



CORE 202005 (E) § 6.7.15.3.2, working draft — May 10, 2020 cmin..core N2522

Here the translator can make the no-aliasing inference only by analyzing the body of the function and proving that g cannot
become based on p. Some translator designs may choose to exclude this analysis, given availability of the more effective
alternatives above, Such a translator is required to assume that aliases are present because assuming that aliases are not
present may result in an incorrect translation. Also, a translator that attempts the analysis may not succeed in all cases and.
thus need to conservatively assume that aliases are present.

6.7.15.3.2 The core::alias attribute
Constraints_

Additional constraints to the above apply. The attribute argument list shall be omitted or of the

form

o\ identifier )
where the identifier is called the aliased symbol . It shall only be omitted, if it is applied to the pointer

return value of a function or lambda, or to a member declaration.

If the core::alias attribute is applied to the name of an object or function, it shall have external
linkage, the aliased symbol shall be visible at the declaration, and shall have internal linkage. If
it is_an_object, the aliased symbol shall also have object type, be representable by the type of
the identifier, and shall not be the aliased symbol of a different identifier. If it is a function, the
aliased symbol shall also have function type and the two types shall be compatible. The translation
unit shall not provide an explicit external definition for the identifier, and neither shall any other
translation unit, if the feature macro __CORE.ALIAS_OVERWRITES__ (6.10.8.1) evaluates to true.

If the core::alias attribute is applied to a the member declaration of a union or structure, the
core:: noalias attribute with all its constraints is implied.

If the core:: alias attribute is applied to a declarator,”'”) the identifier shall have pointer to object

type, and the generic e of the aliased symbol, if any, shall be a pointer type.

The core::alias attribute serves to identify exceptions of the aliasing rules in particular to
establish that a pointer value is based on another pointer, where the translator may not be able
to deduce such a based-on relation automatically, or to indicate that a member of a structure or
union potentially shares a storage unit with other members.

If the core:: alias attribute is applied to an identifier with linkage, the declaration stands in for an

external definition of the identifier. If an explicit external definition of the same identifier in another
translation unit is permitted (__CORE_ALIAS_OVERWRITES__ is false), such an explicit definition

is the external definition that is visible to all other translation units.

If the identifier is a function, the function and the aliased symbol stand in for each other and implicit
and explicit conversion to a function pointer of the identifier or of the aliased symbol results in the
same address. If the identifier is an object, the object and the aliased symbol share the same storage
instance, and any change of value or state of one affects the other.

If the core::alias attribute is applied to the declaration of members of a union or structure, the
constraints on the layout of the union or structure are even further relaxed than implied by the
implicit core:: noalias attribute. A union pack or structure pack is a maximal set of consecutive

members my, ..., m; of the same union or structure declaration, respectively, that all have been
declared with the core::alias attribute . The effect is as if the whole pack is represented by a byte

array o that uses an implementation-defined internal representation for the members my, ..., ms,
and that the attributes of all the declarations of these members were rewritten to core::alias(a),
if such an attribute could be formed*"® For a union pack, the size of a and representation of the
members in it shall only depend on the representations of the types of the members; for a structure
pack the representation additional depends on the declaration order of the members. *'

217)
218)
219)

By the above the declarator has pointer type.

Changing any byte in o may change the value of any of the members.

The size of a can be much smaller that the sum of the sizes of the underlying types. Nevertheless, packs of
different structure types that contain a sequence of equivalently represented members in the same order have equivalent
representations.

modifications to ISO/IEC 9899:2018, § 6.7.15.3.2 page 152 Language



10

11

N2522 cmin..core § 6.7.15.3.2, working draft — May 10, 2020 CORE 202005 (E)

If the core::alias attribute is applied to a declarator and the generic type of the aliased symbol is
pointer to object type, the so annotated pointer value is based-on the aliased symbol. If the generic
type of the aliased symbol has function pointer type, the so annotated pointer value is based on a
not further specified internal state of the aliased function.

If the core::alias attribute is applied to the pointer return value of a function and the attribute
argument list is omitted, the effect is as if it had been given the name of the function as aliased
symbol. If the core::alias attribute is applied to the pointer return value of a lambda expression
and the attribute argument list is omitted, the meaning is similar, but the returned pointer is based
on an internal state of the lambda expression.”*”

EXAMPLE 1 A structure that contains several Boolean flags and some color values could look as follows:

_struct U {

size_t size;
core::alias bool even, sign;
core::alias unsigned char red reen, blue;
core::alias bool done, simple;

SIS

The six members form a structure pack and are be grouped together in one anonymous byte array for their presentation.
This array only represents 4 + 3x CHAR_BIT bits of information, so generally it only needs 4 bytes, but the details are left to
the implementation.

12 An equivalent definition of struct U with bit-field notation would be:

___struct U {

!

13 To ensure that the different groups are placed into separate storage units, they may be placed into separate anonymous

structures. Because packs end with the first structure declaration that contains them, this forces the formation of three
different structure packs:

oo struct Vo {

size_t size;

__struct {
core::alias bool even, sign;
X /x_anonymous structure fo_x/
_____struct {
core::alias unsigned char red reen, blue;
o X /x anonymous structure i x/
____struct {

core::alias bool done, simple;

i /* anonymous _structure B2 */

-

Here, 89 and 82 would need at least one byte each and 31 three, and so the three anonymous structures would need at least
Sbytes.

14 An equivalent definition of struct V with bit-field notation would be:

___struct V {
o shze t size;
ool 0 ]/ separates packs

20)So the state is identified with the lambda expression, and not the lambda value. All possible copies of the lambda value

refer to the same internal state.

Language modifications to ISO/IEC 9899:2018, § 6.7.15.3.2 page 153



15

16

17

18

19

CORE 202005 (E) § 6.7.15.3.3, working draft — May 10, 2020 cmin..core N2522

| _....unsigned red:CHAR BIT, green:CHAR BIT, blue:CHAR BIT; |
o bool 0y i/ separates packs |
| _....bool done:1, simple:l; |
| |
| |
L |

-

EXAMPLE 2 To illustrate the impact of these attributes on pointers that are returned from functions, consider the
declarations of the following library functions.

core::alias asctime( [[ core::noalias const struct tm timeptr[1]

char *xasctime_r core::noalias || const struct tm timeptr[1],
core::noalias || char buf[26]) core::alias (buf) [] ;

A A A A A

core::alias tmpnam(char xs) core::alias(s), core:modifies(fopen

size_t size

void * realloc(void xptr, core::noalias(size), core::modifies(malloc)

Here, for asctime_r, tmpnam and realloc the possibility of placing the attributes after the parameter list is important,
because when the return e is specified, information that is needed for the attribute is not yet available, namely the
arameters buf, s and size, respectively.

For the aliasing properties, the attributes instruct the translator that asctime returns a value that is based on some hidden
static state in the function. Thus if there are several visible calls to that same function (or to ctime that uses the same state
the translator knows that their return values may alias.

For asctime_r, the translator knows that the return value aliasses with one of the arguments, and that it thus has to be
careful when modifying this buffer. Nevertheless, it may not infer size information from the core:: alias attribute . The
only information that is provided is that the return value aliasses with buf in some way, not that the pointer value is
necessarily the same. This is for example the case for the strtok library function that may return a pointer to some byte in.
the argument s1.

For tmpnam, the situation is even more complicated, as there are two core:: alias attributes. This is so, because the function
may either return the argument, or, a pointer to a static buffer. Regardless which occurs, the translator is warned that
aliasing with some other object might happen.

For realloc the effect is the opposite. The translator knows that the return value has to be considered to refer to a new
storage instance, that has not been met before, and it disposes even of the size of that storage instance. In particular, it
knows, if the return is not a null pointer, that ptr is the address of another storage unit than the argument.

6.7.15.3.3 The core:: free attribute
Constraints

The core:: free attribute shall be applied to a function parameter of pointer type or to a pointer
type declarator of such a function parameter.

Description

The core:: free attribute indicates that a function or lambda is a deallocator, that is, with respect
to the parameter, the function behaves like the free library function. Such a parameter p shall
previously have been allocated, that is be a core::noalias return value, and the associated
provenance I to which p refers shall not be accessed after that call. All pointer values referring
to I are henceforth indeterminate, and any other valid pointer g refers to a storage instance | that is
unaffected by modifications that have been applied to I.

Recommended Practice

It is recommended that implementations diagnose any of the following situations if they may:

— Use of a pointer argument to such a parameter that has not been obtained as a core:: noalias

return,

— Use of a pointer to the same storage instance I after the return from the function, in particular
the use of the same argument for a second call to a deallocator.

It is recommended that applications that use the core:: free attribute for a pointer parameter also
assert the core:: noleak attribute, see below..

modifications to ISO/IEC 9899:2018, § 6.7.15.3.3 page 154 Language



N2522 cmin..core § 6.7.15.3.4, working draft — May 10, 2020 CORE 202005 (E)

6.7.15.3.4 The core:: realloc attribute
Constraints

The core:: realloc attribute shall be applied to a function parameter of pointer type or to a pointer
type declarator of such a function parameter. It shall be applied to at most one parameter of the

same function,

A function with such a parameter shall return a pointer e, and an implicit core:: noalias

attribute is assumed for that return value.

Description

The core:: realloc attribute indicates that the function or lambda is simultaneously a deallocator
and an allocator and, in particular, that with respect to the parameter and the return value, the
function behaves like the realloc library function. Such a parameter p shall previously have
been allocated as a core::noalias return value. The reallocation operation is considered to be
core:: free attribute apply; it is considered to have failed if the function returns null, and in that
case the pointer value p and the storage instance I remain available after the call.

Recommended Practice

It is recommended that implementations diagnose any of the following situations if they may:
— Use of a pointer argument to such a parameter that has not been obtained as a core:: noalias

return.

— Use of a pointer to the same storage instance I after the return from the function, in particular

the use of the same argument for a second call to a deallocator, unless the call is known to
have failed,

It is recommended that applications that use the core:: realloc attribute for a pointer parameter
also assert the core:: noleak attribute, see below.

NOTE The conventions for the core:: realloc attribute are not suited for functions that deallocate the storage instance
without allocating a new one. The core:: free attribute is better suited for such situations.

Forward references: storage management functions (7.22.4).

6.7.15.3.5 The core::writethrough attribute
Constraints

The core::writethrough attribute shall be applied to a declaration of an object or function, to
a pointer declarator, to a function declarator, or to a lambda expression. If it is applied to the
declaration of a function, to a function declarator or to a lambda expression, the return type shall
be a pointer type._

Description

A writethrough operation is a store operation on an lvalue that does not convert the lvalue and
that discards any previous value of the underlying object, if any. Initialization, simple assignment
(6.517.1)*" bytewise_copy, and_several library operations™ perform such_ writethrough
operations. If the core::writethrough attribute is applied to the declaration of an object, it defines
a requirement for the corresponding initial lvalue; similarly, if it is applied to a pointer declarator
of a pointer object it defines a requirement for the lvalue to which the initial pointer value refers,
whenever the definition of the pointer object is met.”* The requirement is that such an lvalue or
any of its subobjects or representation bytes shall not be converted to a value before a value has
been stored by one or several writethrough operations into the object, subobject or representation

22D 1njtialization and simple assignment are the only writethrough operations that can be performed on addressless objects.
222)The library operations that constitute writethrough operations are for example most copying functions (7.24.2) includin

Va_co| specific initialization functions (atomic_init, cnd_init, memset, mtx_init, thrd_create, tss_create), some
“oet” or formatting functions (fegetexceptflag, snprintf, totext, timespec_get), and uncoditional atomic store

operations (atomic_store, atomic_store_explicit, atomic_flag_clear, atomic_flag_clear_explicit).

223)Thus, if the pointer obiject is a function parameter, the requirement applies each time the function is called.

Language modifications to ISO/IEC 9899:2018, § 6.7.15.3.5 page 155



8

CORE 202005 (E) § 6.7.15.4, working draft — May 10, 2020 cmin..core N2522

byte that is evaluated. If the core::writethrough attribute is applied to the declaration of an arra

arameter, the effect is the same as if the adjusted pointer declarator had the core::writethrough
attribute .

Additionally, if the attribute is applied to a function parameter of array type or to the pointer
declarator of a function parameter, every call to the function or lambda shall perform one or several
store operations, such that the whole lvalue that is designated by the array or pointer parameter is

completely rewritten after the call.??¥

If the core::writethrough attribute is applied to the pointer declarator of a function return type,
to a function declaration, to a function declarator or to a lambda expression, it indicates that the

so-returned pointer refers to an lvalue that is indeterminate. Such an lvalue shall not be converted
before it is otherwise initialized.

Recommended Practice

Whenever a data flow dependency permits, it is recommended that implementations diagnose
a possible conversion of the refered-to lvalue of a pointer parameter or return value with the
core::writethrough attribute that violates the above requirements.

In contrast to that, if the core::writethrough attribute is applied to an object the implementation
may assume that each lvalue conversion of that object is valid and should not diagnose

EXAMPLE The following declarations show different usages of the core:: writethrough attribute ,

corexwritethrough]jdouble e; ~~~  __ // we promis to initialize ¢

double f( [[core:writethrough]|] double x, int i); // the value of x will be ignored by f

double g(doublex [[ core:writethrough : // (*xy) will be initalized
double h( [| core:writethrough || double z[45]);  // 45 elements will be initalized

// size indeterminate elements will be allocated
doublex k(size_t size) [[ core::writethrough, core::noalias(sizeof(double[size

doublex 1(size_t size, core::writethrough || double A[size]) [[ core::alias (A

double g(doublex [[ core:writethrough

switch (theMoonShines) {

Y

return xy; // diagnose: might be uninitialized

// diagnose: *y should be initialized

i3
_Noreturn r(doublex [[ core:writethrough

exit(10); // diagnose: xy should be initialized
i3
_Noreturn s(doublex [[ core::writethrough

abort(); // do not diagnose
i3

Here, in g the return expression violates the requirements twofold: first it might use an indeterminate value for an lvalue
conversion, second the return statement represents a possible control flow that does not initialize xy .

The difference between r and s is the possible future use of xy. For the first there may still be application code, namel

exit handlers, that are executed after the call to exit. So the translator cannot know if *y will be refered to. For s this

consideration does not apply because abort will terminate the execution without calling any application code.
6.7.15.4 Core function attributes

Syntax

224)

Here, the array bounds, if any, before the adjustment to a pointer type indicate the number of elements that are assumed
to be initialized by the call.

modifications to ISO/IEC 9899:2018, § 6.7.15.4 page 156 Language



N2522 cmin..core § 6.7.15.4, working draft — May 10, 2020 CORE 202005 (E)

core-function-attribute:
core :: identifier attribute-arqument-clause,n;

Constraints

The identifier in a core function attribute shall be one of

address_independent eyaluates noleak state_invariant_
~ e 1dempotent reentrant state_transparent
concurrent noalias_ state_conserving  unsequenced

Unless specified otherwise, the attribute tokens of core function attributes shall only appear in the
attribute specifier sequence that appartains to a function declarator or a lambda expression.”*” If
they appear in a function declarator, the function declarator shall be used to declare a function, and
the corresponding attribute is a property of the function itself and not of its type. If they appear
in a lambda expression, the attribute becomes a property of the resulting lambda value and is
propagated to any copy of the lambda value. The attribute tokens shall appear at most once in each
attribute list, Unless stated otherwise, the attribute argument clause shall be omitted.

For a given attribute token and a declaration of a function with that attribute the followin
constraints hold.

— If the translation unit forms the definition of the function, that definition shall have the

attribute and the attribute argument clause, if any, shall be identical.

— Otherwise, if the function has external linkage and refers to a definition in another translation

unit that does not have the attribute or with a different attribute areument clause, the
behavior is undefined.

Unless stated otherwise, if the attribute is applied to the definition of a function or to a lambda
expression, any lambda expression, lambda value, or function specifier that is evaluated within the
function body, shall have the same attribute.

Description

The attributes described are not part of the prototype of a such annotated function, and the
knowledge about the attribute might get lost when forming a function pointer, and, in particular,
when passing such a function pointer between different translation units. Lambda values provide
more insurance that the attribute information is always attached; they have no declaration syntax,
and so0 a complete chain of type inference will always lead back to the evaluation of the lambda
expression. Thus, the sought properties by the annotation with such attributes are only effectively
diagnosable if the designator in a function call is either the name of a function or a lambda value.

Unless stated otherwise, if a function attribute is applied to the definition of a function or to
a lambda expression, any lambda or function specifier that is called in the function body via a
function pointer shall have the same attribute.

The attributes defined in this clause provide optimization opportunities for functions and lambdas.
Their main goal is to provide the translator with information about the access of functions and
objects coming from surrounding scopes and such that it may deduce certified properties. This
certification is ensured by forcing the attributes to be consistently present for a function definition
if any declaration has them, and to force the same type of attributes on other functions or lambdas
that are called in the function body.

A first pair of attributes, core:: noleak and core:: address_independent, makes assertions about
the behavior of functions with respect to the address space. The first guarantees that the function
will not leak any allocation, that is, that every newly allocated storage instance will either be

225)That is, they appear right after the parameter list, if any, and before the function body or semicolon.

Language modifications to ISO/IEC 9899:2018, § 6.7.15.4 page 157



10

11

CORE 202005 (E) § 6.7.15.4, working draft — May 10, 2020 cmin..core N2522

deallocated within the same function call, or a pointer to it will be returned as a core:: noalias
pointer. The second, forbids any exposure of storage instances or synthesis of pointers, and thus
guarantees that the execution of the function is independent of any properties of the address space
or of any particular address choices of any specific execution.

One set of attributes, core:: evaluates and core::modifies, works with visible identifiers and

establishes a strict framework of data flow from static or thread-local objects in and out of the
function body. In addition, the core:: stateless attribute guarantees that a function or lambda

can not hold hidden state in form of a local static or thread-local variable. The second set,
core::state_invariant, core:: state_conserving and core::state_transparent go beyond

this by controlling not only which identifiers are accessed directly, but also which objects are
accessed through pointer indirections. Then, there are core:: idempotent, core:: independent
and core:: unsequenced, that are the most interesting attributes for optimization, but which can
themselves not easily asserted through syntax and strong typing.

The attributes core:: evaluates and core::modifies allow to specify exactly the identifiers that
may be used by a function or lambda to receive and provide information. These channels of the
function or lambda are the parameters, the captures (lambdas only), and the accessed identifiers
with internal or external linkage, that is identifiers that have static or thread-local storage duration
that are accessed. Additionally, some execution state that is defined in library clauses are specially
named. Together with a possibly empty set of implementation-defined identifiers, they form
the C library channels. C library channels shall only be used in one of these attributes if the
corresponding headers have been included:

— errnoas of <errno.h> (7.5) is interpreted as if it were implemented as a thread-local variable
of type int.

— math_errhandling as of <math.h> (7.12) is interpreted as if it were implemented as an object
with extern linkage and with type const int.

— stdin, stdout, or stderr as of <stdio.h>(7.21) are interpreted as if they were implemented
as objects with extern linkage of type FILEx.

— fopen is a placeholder for the global file acces state used by fopen and similar functions
<stdio.h> (7.21) or other implementation-specific functions that handle files.

— fenv is a placeholder for the thread-local floating-point environment as used by the functions
in headers <fenv.h> (7.6), <math.h> (7.12), and <complex.h> (7.3).

— time is a placeholder for the overall shared time environment for the the time manipulation
functions as of <time.h> (7.27.2) or other implementation-specific functions that access time.
The time channel behaves as if it is a volatile qualified object, that is as if the state and
a functions that use it will never return the same value. There is no standard interface that

could change that state, but implementations may provide extensions that do so.

— environ is a placeholder for the overall shared environment list as accessed by the function
getenv as of <stdlib.h> (7.22.5.6) or other implementation-specific functions that access
the environment list. There is no standard interface that could change that state, but
implementations may provide extensions that do so._

— malloc is a placeholder for the thread-local state of the storage management functions in
<stdlib.h> (7.22.4) or other implementation-specific functions that allocate or deallocate
storage.

— atexit and at_quick_exit are placeholders for the global state of the atexit and
at_quick_exit handlers as in <stdlib.h> (7.22.4), respectively.

— Llocale is a placeholder for the overall shared locale as accessed by the function setlocale
and localeconv from <locale.h>(7.11) and other locale-dependent functions.

— The following identifiers are used as placeholders for the static state that is used by the librar

modifications to ISO/IEC 9899:2018, § 6.7.15.4 page 158 Language



12

13

14

15

N2522 cmin..core §6.7.15.4.1, working draft — May 10, 2020 CORE 202005 (E)

clértomb ~ mbrtocl6 ~ mbsrtowcs  wcsrtombs
c32rtomb  mbrtoc32  mbtowc ~ wctomb
mbrlen ~ mbrtowc ~ wcrtomb

Additionally, function names may such as tmpnam of functions (library or application specific) may
be used. The meaning is that under some circumstances the function may return a pointer to a_
static state, and thus that other functions may internally use that same state or use the same
object for their return.

The core:: reentrant attribute is the most restricted and describes those functions and lambda
expressions that can be use as or by signal handlers.

The core:: concurrent attribute describes a quite restricted set of functions or lambdas, too.
Such functions and lambdas that may be robustly executed within different threads of execution
without race conditions. Often they can even be performed once and for all at compile time if the
arguments are constant expressions, and therefore this attribute also forms a main ingreedient for
the formulation of the properties of the constexpr specifier for function definitions and lambda
expressions.

The core:: reinterpret attribute enforces compile time checks at the function call boundary,
such that one hand, more properties such as qualifications of parameters, or array bounds can be
propagated into the called function, and that on the other hand the function has relaxed constraints
concerning type based aliasing.

The core::alias and core::noalias attributes have a wider application than as core function
attributes. They have been described in 6.7.15.3.

6.7.15.4.1 The FUNCTION_ATTRIBUTE pragma
Syntax

# pragma CORE FUNCTION_ATTRIBUTE attribute
# pragma CORE FUNCTION_ATTRIBUTE attribute-token on-off-switch

Constraints_

The attribute and attribute-token shall refer to a core function attribute.

Description

In the first form the attribute, including a possible attribute areument clause as described in the
following clauses, is applied to function declarations and lambda expressions until one of the
following conditions is encountered.

If the FUNCTION_ATTRIBUTE pragma is applied in file scope, it applies at most until the end of the
current source file. If it is applied in block scope, it applies at most until the end of the current

block, where the behavior for the attribute switches back to what it was before entering the block.
If intermittent, another FUNCTION_ATTRIBUTE pragma is met that uses the same attribute token,

and if the new FUNCTION_ATTRIBUTE pragma is of the first form, the attribute is further applied but

with the newly specified attribute argument clause; if it is of the second form, the attribute is not
further applied.

The FUNCTION_ATTRIBUTE pragma is_only applied to to function declarations or lambda
expressions that are found in the same source file, not to those that are included via an #include

directive.

If used in the second form, ON enables the attribute as if it given in the form attribute-token; OFF

disables the attribute and DEFAULT switches the usage of the attribute to the default. If not stated
otherwise, the default for an attribute is to be disabled.

EXAMPLE The following two pragmas could be adequate to annotate header and source files with numerical functions.

#pragma CORE FUNCTION_ATTRIBUTE core::unsequenced
#pragma CORE FUNCTION_ATTRIBUTE core::modifies(errno, fenv)

Language modifications to ISO/IEC 9899:2018, § 6.7.15.4.1 page 159



8

9

CORE 202005 (E) § 6.7.15.4.2, working draft — May 10, 2020 cmin..core N2522

All function declarations and lambda expressions that are found in such a file are as if they were directly declared with
attributes unsequenced and modifies(errno, fenv). If the specified functions then have no pointer parameters and
return type, the translator would be able to deduce that calls to these functions and lambdas can be moved as early as their
arguments are available, It could also conclude that the only possible state change can be found are the return value, errno.
or the floating-point state, and that changes to that state only depend on the concrete arguments that have been passed
into the call. So effectively, such calls could also be moved as late as their return value, potentially modified errno or
floating-point status are used.

The effect of the pragmas ends at the end of the source file or when pragmas similar to the following are met:

#pragma CORE FUNCTION_ATTRIBUTE core::unsequenced OFF
#pragma CORE FUNCTION_ATTRIBUTE core::modifies OFF

6.7.15.4.2 The core:: noleak attribute
Constraints_

For a function definition or lambda expression that only calls other functions or lambdas that have
the core:: noleak attribute and that calls no allocator, the core:: noleak attribute is implied.

Description

A storage leak is an allocated storage instance for which the application has not stored a pointer
value to which it has access. The core::noleak attribute asserts that the annotated function or

lambda does not leak any storage instances.

Any storage instance that is allocated during any call to a function or lambda annotated with the
core:: noleak attribute shall be deallocated before the end of the call, with the exception of an

allocated return value, if the function or lambda is itself an allocator.
Recommended Practice

It is recommended that for functions or lambdas with a core:: noleak attribute implementations
diagnose any of the following situations if they may:

— Store of a pointer to a newly allocated storage instance such that the value could be accessible
after the function call ended.

— Use of a pointer to a newly allocated storage instance as the argument to a function call that
is not known not to store the value in henceforth accessible storage.

— Use of pointer to a newly allocated storage instance as the return value of the function when
the return type of the function does not itself have the core:: noalias attribute.

— Not using a pointer to a newly allocated storage instance as argument to a core:: free or
core:: realloc parameter of a nested function call, unless it is the return value of the function.

— There is a possible control flow of the function execution such that the count of
core::noalias return values is higher than the count of core:: free arguments (plus
the possible function return if it is itself an allocator).

6.7.15.4.3 The core::address_independent attribute
Constraints

If applied to a function definition or lambda expression, the function body shall not form an implicit
or explicit conversion from or to a pointer type other than

— to add a qualification to the pointed-to type,
— to form a null pointer from a null pointer constant

— to convert a voidx pointer that it allocates to point to the effective type with which the
allocated storage instance will be used

— to convert an argcument of a core:: free or core:: realloc parameter to voidsx,

modifications to ISO/IEC 9899:2018, § 6.7.15.4.3 page 160 Language



N2522 cmin..core § 6.7.15.4.4, working draft — May 10, 2020 CORE 202005 (E)

— to be used as a pointer parameter of calls to memcpy or memmove, provided that source and
target pointer types of these calls (before conversion) have compatible base types, and that the
of the size of the base type,

— to be used as a pointer parameter of a call to memset where the other arcuments are integer
constant expressions such that the arcument to the parameter ¢ has value 0 and the arcument
to n is the multiple of the size of the base type.

2 Additionally the function body shall not use any function or lambda that has not the
core::address_independent attribute and it shall not

— access lvalues of union es or members thereof that have a member of pointer e

— use the fread or fwrite functions,

— use any function of the printf and scanf families of functions with a format that is not a
string literal, or with a string literal format that contains a %p conversion specifier,

— use the totext type generic macro, or any of the derived features (strdup, strndup, fputs
or puts) to store the textual representation of a pointer value.

3 For a function definition that fulfills the above constraints and that does not access Ivalues of
character type the core:: address_independent attribute is implied even if not formed explicitly.

Description
4 The core:address_independent attribute asserts that under all circumstances the function or

lambda executes without specific knowledge of the use and properties of the address space of
the execution. In particular, it will not use specific numerical or textual representations of an
address, and thus its outcome will be independent of specific choices of the execution platform this
concerning.

5 A function with the core:: address_independent attribute shall not expose any storage instance
or synthesize a pointer value.

6 NOTE 1 In the case that a function fulfills the constraints but manipulates bytes through lvalues of character type, the
core:: address_independent attribute is not easily deduced automatically for a function definition or lambda expressions.
In such a situation the fact that the function does not expose or synthesizes pointer values has to be asserted by other means.

7 NOTE 2 The core:: address_independent attribute also asserts that a call to such function will not jeopardize the aliasin
analysis of the caller, because concrete information about addresses will not leak between different parts of the program

state.
6.7.15.4.4 The core::modifies attribute

1 The attribute argument clause shall be omitted, be empty or consist of an identifier list. Each
identifier in the list shall appear at most once. Let {Oy,...,0,} be the (possibly empty) set of

identifiers in the list. Oy, ..., O, shall have internal or external linkage and shall be visible in the
scope of declaration (for functions) or evaluation (for lambdas), or shall be C library channels.

2 If in the same translation unit there are several declarations of the same function with the

core::modifies attribute , they shall specify the same set {O1,..., Oy} of identifiers, and these

identifiers shall refer to the same object or channel. For any evaluation of the same lambda value,
the identifiers {O as in the lambda expression from which it originated shall be visible,

and these identifiers shall refer to the same object or channel.
3 If the attribute is applied to the definition of a function or to a lambda expression, additional

constraints apply. Let {Lq,...,L;} be the complete set of identifiers of objects that are defined
with static or thread-local storage duration in the function body.

— Within the function body, the type of identifiers of objects (including C library channels) that

have internal or external linkage shall gain const-qualification, unless they appear in the set
O1,....0,,L1,.... L

Language modifications to ISO/IEC 9899:2018, § 6.7.15.4.4 page 161



CORE 202005 (E) § 6.7.15.4.5, working draft — May 10, 2020 cmin..core N2522

— Any lambda expression, lambda value, or function specifier that is evaluated within the

function body, shall also have the modifies attribute. For such a function the set of identifiers
in their attribute shall be a subset of {O1,...,0,}. For such a lambda expression or value the
226)

such that the above constraints are verified,

and where the set {O;,.... 0, } is minimal w1th that roperty, the attribute modifies (Qj,..., O,)
is implied.
Description
The core::modifies attribute indicates that only those identifiers of objects with internal or

external linkage that are listed may be used directly or indirectly to modify their objects and,
equally, that the C library channels used to modify the execution state must be listed as well.

If several translation units are linked into the program and have declarations of the same identifier

as a function with external linkage and with the core::modifies attribute , they shall specif
the same set {Oq,...,.0,} of identifiers, and these identifiers shall have external linkage or shall

correspond to C library channels.
EXAMPLE Consider the following function that returns a freshly allocated string with the current date.

m: char constx date_alloc(void) {

o rn Charx_ret = malloc(26) ;

i ___if (ret) ctime_r(time(nullptr ret);

return_ret;

N R )

This function doesn’t use any global symbols other than the library function it invokes. Therefore it implicitly has a
core:: modifies attribute that just accumulates all the channels that are modified by these. There is only such function,
namely malloc that modifies global state namely the state of the storage allocation library. Thus an improved declaration
that reflects that knowledge would look as follows.

| ______char constx date_alloc(void) [[core:modifies(malloc)

6.7.15.4.5 The core::evaluates attribute
Constraints_

The attribute argument clause shall be omitted, be empty or consist of an identifier list. Each
identifier in the list shall appear at most once. Let {[;,.... [, } be the (possibly empty) set of
identifiers in the list. I, .../ shall have internal or external linkage, shall not have an atomic
type or be volatile qualified,”” and shall be visible in the scope of declaration (for functions) or
evaluation (for lambdas), or shall be C library channels,

If in the same translation unit there are several declarations of the same function with the

core:: evaluates attribute , they shall specify the same set {I;,..., I, } of identifiers, and these

identifiers shall refer to the same object or channel. For any evaluation of the same lambda value,
the identifiers {/ as in the lambda expression from which it originated shall be visible

and these identifiers shall refer to the same object or channel.

If the attribute is applied to the definition of a function or to a lambda expression, additional
constraints apply. Let {Lq, ..., L;} be the complete set of identifiers of objects that are defined with

static or thread-local storage duration in the function body, and let {O;,....O,,} be the identifiers
that are listed in a modifies attribute, if any.

226)

Because any function or lambda that are to be called must be evaluated first, this means that effectively direct calls can
only be issued from the function body that have the same or more restricted modifies constraints for the evaluation of static
or thread-local identifiers.

#7 Atomic or volatile read accesses may change the visible state, at least temporarily. Programs that want to use such
variables in this framework have to specify them in the list of a modifies attribute.

modifications to ISO/IEC 9899:2018, § 6.7.15.4.5 page 162 Language



N2522 cmin..core § 6.7.15.4.6, working draft — May 10, 2020 CORE 202005 (E)

— The function body shall not evaluate identifiers of objects of internal or external
linkage (and amoung those C library channels) other than those identified b

— Within the function body, the type of identifiers of objects (including C library channels) in
theset {Iy,..., 1, O1,...,0,} shall gain const-qualification.

— If an identifier with function or lambda type is evaluated other than as the designator in a
function call, it shall appear in {I;,..., I}, or, for lambdas, shall have been formed in the
function body. Additionally, any lambda expression, lambda value, or function specifier that
is evaluated within the function body, shall also have the evaluates attribute. For such a
function the set of identifiers in their attribute shall be a subset of {I oA, O (@)

For such a lambda expression or lambda value the set of identifiers in their attribute shall be

a subset of {1

If the core::evaluates attribute is not explicitly applied to the definition of a function or to a
lambda expression but there are {/Iy,...,/ O1,...,0,) and {Ly,.... Ly} such that the above

constraints are verified, and where the set {I;,..., I, } is minimal with that property, the attribute
evaluates(],,....1,) isimplied.

Description

The core:: evaluates attribute indicates that only those identifiers corresponding to functions or
objects with internal or external linkage that are listed and those that are additionally found in a
modifies attribute may be evaluated in the function body. Equally, it indicates that only the listed
C library channels may be used to inspect other state of the execution that is defined by any of the
library clauses. Additionally it enforces that those identifiers are not used to modify the underlying
objects or channels, unless they are also listed in the modifies attribute.

If several translation units are linked into the program and have declarations of the same identifier
as a function with external linkage and with the core:: evaluates attribute , they shall specify
the same set {11, ..., /n } of identifiers, and these identifiers shall have external linkage or shall be
Clibrary channels.

EXAMPLE For the example function date_alloc above, time and ctime_r evaluate global channels of the C library,
namely both access the time channel, and ctime_r additionally the locale channel.

_____char constx date_alloc(void)
core::modifies(malloc)

core::evaluates(locale, time)

A A A A

6.7.15.4.6 The core:: stateless attribute
Constraints_

If the attribute is applied to the definition of a function or to a lambda expression, any objects of

static or thread-local storage duration that are defined in the function body shall be const-qualified
and not volatile-qualified.

For any function definition or lambda expression that fulfills the above constraints the
core: stateless attribute is implied.

Description
A function that could be declared with the core:: stateless attribute is called stateless.

EXAMPLE The example function date_alloc above declares no static variables, it also implicitly has the
core:: stateless attribute . _

___Char constx date_alloc(void

e A cOrexzmodifies(malloc),

ool core::stateless || ;

core::evaluates(locale, time)

228)Because any function or lambda that are to be called must be evaluated first, this means that effectively direct calls can

only be issued from the function body that have the same or more restricted evaluates constraints for the evaluation of

static or thread-local identifiers.

Language modifications to ISO/IEC 9899:2018, § 6.7.15.4.6 page 163



CORE 202005 (E) §6.7.15.4.7, working draft — May 10, 2020 cmin..core N2522

6.7.15.4.7 The core::state_invariant attribute
Constraints_

If not given explicitly, core:: stateless and core:: address_independent attributes are implied
and the corresponding constraints apply. If no core:: evaluates attribute is given explicitly, it is
implied with an empty argument list and the corresponding constraints apply.

If the attribute is applied to the definition of a function or to a lambda expression, additional
constraints apply. For any pointer or lambda value that is indirectly reachable from within the
function body through the return value of a function call or through identifiers in evaluates or
modifies attributes, in the parameter list or in captures, if any:

— If it has lambda type or pointer to function type it shall not be evaluated.

— If it has pointer to object type, it shall not be used with a unary * operator or as left operand
of a — operator such that the resulting lvalue is evaluated.?*)

For a_function definition or lambda expression that fulfills the above constraints, that
is_stateless, that fulfills the constraints of the core::address_independent and the
core::evaluates attributes as specified, and that does not access Ivalues of character type,
the core::state_invariant attribute is implied even if not formed explicitly.

Description

The core:: state_invariant attribute constrains the use of state of the execution to those objects
that are explicitly identified in the control flow, that is that are the return values of function calls,
pointer type, that are accessible by directly dereferencing such pointers. In partcular, if it has no_
modifies and evaluates lists and none of the called functions or of the parameters or captures
have lambda or pointer type, no state other than values of function calls, parameters and captures
can be used by the function or lambda,

6.7.15.4.8 The core:: state_conserving attribute

Constraints_

If not given explicitly, core::stateless, core::noleak and core::address_independent

attributes are implied and the corresponding constraints apply. If no core::modifies attribute is
iven explicitly, it is implied with an empty argument list and the corresponding constraints apply.

If the attribute is applied to the definition of a function or to a lambda expression, additional
constraints apply. For any pointer or lambda value that is indirectly reachable from within the
function body through the return value of a function call or through identifiers in evaluates or
modifies attributes, in the parameter list or in captures, if any:

— If it has lambda type or pointer to function type it shall not be used as a function designator

— If it has pointer to object e, the pointed-to e shall gain a const qualification.

For a function definition or lambda expression that fulfills the above constraints, that is stateless,
that fulfills the constraints of the core:: address_independent and the core::modifies attributes
as specified, and that does not access lvalues of character type, the core:: state_conserving at-
tribute is implied even if not formed explicitly.

Description
The core:: state_conserving attribute constrains the modification of state of the execution to

those objects that are explicitly identified in the control flow, that is that are the return values of
function calls, that are parameters or captures, that appear in evaluates or modifies lists, or, if an

229)This means that pointer to VM types are even prohibited to appear in sizeof expressions.

modifications to ISO/IEC 9899:2018, § 6.7.15.4.8 page 164 Language



N2522 cmin..core § 6.7.15.4.9, working draft — May 10, 2020 CORE 202005 (E)

of those has pointer type, that are accessible by directly dereferencing such pointers. In partcular,
if it has no modifies list and none of the function calls, parameters or captures have lambda or

ointer type, no state change can be effected by the function or lambda other than through its
return type.

6.7.15.4.9 The core::state_transparent attribute
Constraints

If not given explicitly, state_invariant and state_conserving attributes are implied and the
corresponding constraints apply.

Description

The core:: state_transparent attribute restricts all access to state of the execution to those objects
modifies lists, or, if any of those has pointer type, that are accessible by directly dereferencing
such pointers. In partcular, if it has no evaluates and modifies lists and none of the function
calls, parameters or captures have lambda or pointer type, the effects of a call to the lambda or
function are the value that is returned, if any, and the value is deterministically determined by the
values of the arguments and captures.

6.7.15.4.10 The core:: idempotent attribute
Constraints_

The core:: stateless and core:: noleak attributes are implied and the corresponding constraints
apply..
Description

An evaluation £ is idempotent if it can be replaced by the evaluation (£, £) without changing the
observable state of any execution. A function designator or lambda value identified by an identifier
f is idempotent , if the evaluation r = f(ay....,a,) is idempotent, where the list ay....,a, are
const qualified variables that may range over the whole admissible set of function arguments

which may be empty), and where r is a variable with the non-void return type of the function or

lambda. Analogously, f with a return type of void is idempotent if f(a,....,a,) isidempotent with
Qoo Un @ above,

A function definition that has the idempotent attribute shall be such that the function designator is
idempotent. A lambda expression that has the idempotent attribute shall be such that the lambda
value, when assigned to a variable of lambda type, is idempotent.

If a function or lambda has the state_conserving attribute, and the identifier list of the modifies
attribute is empty the core:: idempotent attribute is implied.

6.7.15.4.11 The core:: independent attribute
Constraints

The core:: stateless and core:: noleak attributes are implied and the corresponding constraints
apply.

Description

A function or lambda call is independent | if all lvalue conversions that are effected during the call,
inclusive calls into other functions or lambdas, refer to objects that are

— function parameters or captures of the called function or lambda expression

— objects with static or thread-local storage duration that are const but not volatile qualified,

— objects for which the definition is met during the call, or

— obijects that are allocated during the call.

Language modifications to ISO/IEC 9899:2018, § 6.7.15.4.11 page 165



CORE 202005 (E) § 6.7.15.4.12, working draft — May 10, 2020 cmin..core N2522

A function definition is independent , if all function calls with the function designator and valid
arameters are independent. A lambda expression is independent , if all function calls with

— alambda value that is deduced from the expression, or
— with a function pointer that is converted from such a deduced lambda value

and valid parameters are independent.
A function definition that has the core::independent attribute shall be such that the function

designator is independent. A lambda expression that has the core:: independent attribute shall
be such that the lambda value, when assigned to a variable of lambda type, is independent.

If a function or lambda has the core:: state_invariant attribute, and the identifier list of the

evaluates attribute is empty or has only identifiers of objects that are const but not volatile
ualified, either because it was implied or given explicitly, the core:: independent attribute is
6.7.15.4.12 The core::unsequenced attribute

Constraints_

The core:: independent and core:: idempotent attributes are implied and the correspondin
constraints apply.

For any function declaration or lambda expression that has the core::independent and
core:: idempotent attributes the core:: unsequenced attribute is implied.

For a function definition or for a lambda expression the core::unsequenced attribute is implied
even if not formed explicitly, if the following conditions hold:

— It has the core:: stateless, core:: noleak, core:: address_independent attributes.

— It has the core:: evaluates attribute with an identifier list that is em or that contains onl
names of objects that are const qualified and not volatile qualified.

— It has the core:: modifies attribute with an identifier list that is empty.

— It only calls functions directly, that is where the function designator is converted to the
function pointer within the calling expression.

— It only calls functions or lambdas that have the core:: unsequenced attribute . _
— It does not access lvalues of character type.

— No pointer or lambda value that is indirectly reachable from within the function bod
through the return value of a function call or through identifiers in core:: evaluates or
core::modifies attributes, in the parameter list or in captures, is evaluated.

Description
The core::unsequenced attribute indicates that a call to a function or lambda can be effected as

soon as the values of its parameters, captures or core:: evaluates and core:: modifies channels
and objects to which they point) have been determined, and that it can be effected as late as

any of its return value, modified pointed-to parameters, captures or core:: modifies channels are
accessed.

NOTE The core:: unsequenced attribute asserts strong properties for the annotated function or lambda, in particular it
accumulates the attributes core: : stateless, core::noleak, core::state_invariant, and core:: state_conservin

Thereby, calls to such functions or lambdas are natural candidates for optimization techniques such as common
subexpression elimination, local memoization or lazy evaluation.

6.7.15.4.13 The core:: concurrent attribute
Constraints_

For a function definition or for a lambda expression annotated with the core:: concurrent attribute
the following contraints shall hold:

modifications to ISO/IEC 9899:2018, § 6.7.15.4.13 page 166 Language



2

N2522 cmin..core § 6.7.15.4.14, working draft — May 10, 2020 CORE 202005 (E)

— If it does not have it, the core:: state_transparent attribute shall be implied and the
corresponding constraints shall apply.

— If it does not have it, a core:: evaluates attribute with empty identifier list shall be implied.
Otherwise, the identifier list shall be empty or it shall only contain names of objects that are
const qualified and not volatile qualified, or that have thread local storage duration.

— Ifitdoes not haveit, a core:: modifies attribute with an empty identifier list shall be implied.
Otherwise, the identifier list shall be empty or it shall only contain names of objects that have
thread local storage duration.

— It shall only call functions directly, that is where the function designator is converted to the
function pointer within the calling expression.

— It shall only call functions or lambdas that have the core:: concurrent attribute .

— No pointer or lambda value that is indirectly reachable from within the function bod
through the return value of a function call or through identifiers in core:: evaluates or
core::modifies attributes, in the parameter list or in captures, shall be evaluated.

For a function definition or for a lambda expression that fulfills the above constraints, the
core:: concurrent attribute is implied.

Description

The core:: concurrent attribute indicates that calls to the function or lambda can be effected

concurrently, as soon as the values of its parameters, captures or core::evaluates and
core::modifies channels (and objects to which they point) have been determined, and that it

can be effected as late as any of its return value, modified pointed-to parameters, captures or
core::modifies channels are accessed. Such a concurrent execution between calls is race-free, as

long as all pointer parameters or captures of the calls refer to mutually disjoint sets of objects.

NOTE The core::concurrent attribute asserts strong properties for the annotated function or lambda, in particular
it accumulates the attributes core: : stateless, core:: noleak, core:: state_invariant, and core:: state_conservin

The required properties are weaker than for the core:: unsequenced attribute, in particular such a function may be nelther
idempotent nor independent, as long as the state changes that violate these properties are thread local. In particular:

— Aslong as it has no leak, it may allocate objects and thus change the malloc channel.
— It may access the errno, math_errhandling and fenv channels.

6.7.15.4.14 The core:: reentrant attribute
Constraints

Let f be a function definition or lambda expression that fulfills all the following properties:

— Ithas the state_transparent attribute.

— The channels of the modifies and evaluates attributes have a lock-free atomic type
atomic_flag or sig_atomic_t.

— If a parameter or capture and has a pointer type it is a pointer to a lock-free atomic type,
atomic_flag or sig_atomic_t.

— If a channel or a pointed-to parameter or capture has the type sig_atomic_t it shall not be
const-qualified and only be used as the left operand of an assignment.

— The return type is not a pointer type.

— None of its parameters, captures and return type have a lambda type.

Language modifications to ISO/IEC 9899:2018, § 6.7.15.4.14 page 167



CORE 202005 (E) § 6.7.15.4.15, working draft — May 10, 2020 cmin..core N2522

— In addition to other core function constraints for called functions, all functions and lambdas
230

that are called by f have the reentrant attribute®? or they are a type-generic operation on a
lock-free atomic type (7.17) other than atomic_init.

Then the core:: reentrant attribute shall be implied for f.

A function or lambda is reentrant , if two or more calls to the function can be active in the same

thread of execution without being sequenced. Reentrant functions can be called by signal handlers,
or, if not used in the context of a signal handler, they can be traversed by a call to Llongjmp without
jeopardizing the execution.

A function declaration (including a definition) that has the reentrant attribute shall designate a
reentrant function. A lambda expression that has the reentrant attribute shall be reentrant.

As an exception to the general constraints for core function attributes, a function definition or
lambda expression that has the core:: reentrant attribute

— may call other functions or lambdas without the core:: reentrant attribute , _

231)

— may have declarations that have not the core:: reentrant attribute .-

NOTE To prove reentrancy, all possible interleaved executions of two or more calls of the same function have to be
considered, Therefore, this property is generally difficult to assert automatically by the translator. The implied application of
the core:: reentrant attribute as given int the constraints only proves reentrancy for a subset of the functions and lambdas
that are effectively reentrant. If needed, applications would have to prove that property by other means and to annotate
functions definitions or lambda expressions explicitly with the core :: reentrant attribute .

EXAMPLE Consider the following example code that uses converted lambda values as a signal handlers:

#include <signal.h>
extern sig_atomic_t bad;

extern atomic_type(size t) counter;

signal (SIGSEGV,
bad = 1;

|

signal (SIGINT,
_____Jlnt sig) { // diagnosis if size_t is not lock-free

++counter;

|

The only identifiers that are accessed by the lambda expressions are bad and counter, respectively, so core:: evaluates()
and core::modifies (bad) (or core::modifies(counter)) attributes are implied. Additionally, the lambdas define no.
object of static or thread-local storage duration, so core :: stateless is implied for both, and since no other operations
than the assignment (or increment) are formed the core:: state_transparent attribute follows, too. To assess the
core:: reentrant attribute, the variables have to be checked if they fulfill the type constraints. The first lambda
unconditionally fulfills the constraints, whereas the second only fulfills them if and only if size_t is lock-free. If not,
as a consequence the implementation may issue a diagnosis to warn that the second lambda is not reentrant.

Forward references: signal handling (7.14), atomics (7.17).

6.7.15.4.15 The core:: reinterpret attribute

2*0This is needed to ensure that the called functions or lambdas do not have non-atomic pointer parameters, either. Because
the function has no channels that have function pointer type, a possible conversion of a function or a lambda to a function
pointer must be visible within the function body. So the core :: reentrant attribute (and thus implicitly the property being
reentrant) can be verified at translation time, if ll these properties are assembled.

2D Any dedlaration that is not a definition of a function with a core:: reentrant attribute , even implied, still forces the

definition of the function to have the core:: reentrant attribute as well.

modifications to ISO/IEC 9899:2018, § 6.7.15.4.15 page 168 Language



4

9

N2522 cmin..core § 6.7.15.4.15, working draft — May 10, 2020 CORE 202005 (E)

Constraints

The core:reinterpret attribute shall not be applied to a function declarator or lambda
expression with variable argument list. If a function definition has the core:: reinterpret
attribute , all declarations in the same translation unit shall be token equivalent.

If a declaration of object A of type T is visible and if A is pointed-to by an argument passed to a
ointer parameter of type Sx* of a function that has the core:: reinterpret attribute , A shall be
suitably aligned for S and T shall be representable by S.

If object A acquired the effective type T prior to the call within in the calling function or by being.
the pointed-to argument of the calling function itself, and if A is pointed-to by an argument passed
to a pointer parameter of type 5x of a function that has the core:: reinterpret attribute , 7' shall be
representable by 522 If A s itself a parameter of a function with the core:: reinterpret attribute
and if T"is specified with array notation, the type for this constraint is the type before it is rewritten
to a pointer type.

Description

The core:reinterpret attribute loosens type constrains for functions and lambdas that
have parameters of pointer to_object type, by ensuring compatible qualifications, sizes and
representations between arguments and parameters all the same. For the whole duration of the
call to such a function, the objects that are pointed-to by such parameters shall have the effective
type indicated by the prototype, and this regardless on how the object was originally declared, if it
was declared, or how it possibly received an effective type prior to the call. If prior to the call such
an object had an effective type in the context of the caller, it retains that effective type; if it had no

If object A has effective type T and is pointed-to by an argument passed to a pointer parameter of
type Sx of a function that has the core:: reinterpret attribute , A shall be suitably aligned for S
and 7 shall be representable by S.

If several translation units are linked into the program and have declarations of the same identifier
as a function with external linkage such that the function definition has the core:: reinterpret
attribute , then all declarations shall have the core:: reinterpret attribute . If the function is
called from a different translation unit than its definition, the value expressions that are present in
array bounds for parameters, shall evaluate to the same values in the context of the caller as in the
context of the definition; all qualifications of corresponding function parameters shall be the same.

The default value for the CORE FUNCTION_ATTRIBUTE pragma as of 6.7.15.4.1 for the
core:: reinterpret attribute is implementation-defined.

EXAMPLE 1 Consider the following function that initializes a uintl6_t vector. Here it is assumed that alignment

void init(size_t len, uintl6_t a[len core::reinterpret {
_.___Tor (size_t i = 0; i < len; ++i i 0;

A A R

o Slzetn = ...

~~

_____uint32 t vec32[nl;

. init(m, (uintl6_t(x)[m])&vec32);
___alignas(uintl6_t) void bufl6[sizeof(uintl6_t[n])];

___Tloat (xvecl6)[n] = buffer;
n, xvecl6);

_____init(n, xvecls);

The first call to init would be valid by itself, because the passed pointer has the correct type, namely uintl6_tx*.

232)

Note that here no constraint can be enforced for the alignment of A. Nevertheless alienment requirements are implied
below and may lead to undefined behavior if not respected.

Language modifications to ISO/IEC 9899:2018, § 6.7.15.4.15 page 169



CORE 202005 (E) § 6.7.15.4.15, working draft — May 10, 2020 cmin..core N2522

Nevertheless, if the function would not have the core:: reinterpret attribute the effective type rule would be violated
by the access to the elements, and thus the behavior of the call would then be undefined.

10 With the core:: reinterpret attribute that aspect of the function call is avoided. During the call of the function the vector
can be accessed as if it were defined as having type uint16_t. In the context of the caller, the effective type still remains
uint32_t[len]. Additionally, a check for the correctness of the call can be performed at translation time: an array of type
uint16_t can be represented by an array of type uint32_t (because these types have no padding) and the argument passed
to the len parameter is correct.

11 The initialization of vec16 by buffer does not change the effective type of the pointed-to object, because up to that point

nothing has been written into it. The call to init then changes this; not only is the effective type within the function call
uint16_t[len] but it remains so after the return from the function.

12 EXAMPLE 2 Consider the following function for vector addition that is used inside several functions that add matrices

void addup(size_t len, float a[len], decltype(a) b) core::reinterpret {

_.___for (size_t i = 0; i < len; ++i) af[i] += b[i];

b

// valid, renames len
void addup(size_t n, float a[n], float b[n core::reinterpret || ;

void addup(size_t k, float a[k], decltype(a) b);

void addup(size_t, float a[], float b core:reinterpret || ;

void mataddO(size_t n, size_t m, complex_type(float) A[n][m], decltype(A) B

. ..addup(2snsm, A, B); .. .//invalid, constraint violation
b3

void mataddl(size_t n, size_t m, complex_type(float) A[n][m], decltype(A) B

_.___addup(2*xn*m, (voidx)&A[0][0], (voidx)&B[0][0]); // valid
+

void matadd2(size_t n, size_t m, int A[n][m decltype(A) B) core::reinterpret

_.___addup (nxm, (voidx)&A[0][0], (voidx)&B[0][0]); // invalid, constraint violation
i3

void matadd3(size_t n, size_t m, float A[n-1][m], decltype(A) B) core::reinterpret

—_.___addup(n*m, (void*)&A[O][O], (voidx)&B[0][0]); _ // invalid, constraint violation
2

Here, matadd0 has a constraint violation because the types of the arguments A and B are not compatible with the parameters
a and b, respectively.

13 For mataddl the problem of the compatible types is resolved (a bit rudely), but now the call to the function with the
core:: reinterpret attribute is presented with a pointer to an object (a complex float matrix) that is able to represent the
arameter e, a float vector. Thus the call is valid, and the translator is even able to detect this.

14 For matadd2 the problem of the compatible types is resolved the same, but now the call to the function with the
core:: reinterpret attribute is presented with a pointer to an object (an int matrix) that cannot represent the parameter
type, a float vector, even though for many platforms int and float may have the same size and alignment. Thus the call is
invalid, Because matadd2 also has the core: reinterpret attribute , the translator is able to deduce that the effective type

of the pointed-to objects here in all cases is to be assumed to be int[n] [m] so it has to detect this and to issue a diagnostic.

15 matadd3 shows another constraint violation that might arise. The size of the pointed-to object A is deduced
before the parameter is rewritten, so_the translator may assume an_object of size sizeof(float[n-1]1[m]) that is
(n-1)*m+sizeof (float). On the other hand, addup is known to expect an argument of size sizeof (float[len]) that
is nemxsizeof(float). Thus the parameter size is larger than the argument size and thus the parameter can not be

represented by the argument. Effectively, the execution of addup would lead to an out-of-bounds access, which, by the hel
of the core:: reinterpret attribute,, is detected at translation time.

16 EXAMPLE 3 Consider a similar example, but this time with generic lambdas.

[ ]
\#define Ag [](size_t len, auto a[len], decltype(a) b) [[core:reinterpret \ \
| for (size_t i = 0; i < len; ++i) a[i] += b[i]; \ \
! w
\#define A [)(size_t n, size_t m, auto A[n][m], decltype(A) B) core::reinterpret \ \

modifications to ISO/IEC 9899:2018, § 6.7.15.4.15 page 170 Language



N2522 cmin..core § 6.7.15.4.15, working draft — May 10, 2020 CORE 202005 (E)

2/

Ao (nxsizeof (A[0])/sizeof(real_type(A[0][0]))
(real_type (+A[0][0])*)&A[0][0 A

(real_type(+B[0][0])*)&B[0O][0O]); /* valid x/

2/

&~

L
First, it is easy to see that \( is valid for any arithmetic type. A1 too is valid for any arithmetic type: if the type is a real type,
the casts in the argument expression for the call to \g are a no-ops. If the e is a complex type, the cast is a cast to the real
type, which has the same representation. The core:: reinterpret attribute for \; enforces an interpretation of the pointed

to parameters as having the effective type as it is inferred for the specific call or conversion of the lambda value \q.

Language modifications to ISO/IEC 9899:2018, § 6.7.15.4.15 page 171



1

CORE 202005 (E) § 6.8, working draft — May 10, 2020 cmin..core N2522

6.8 Statements and blocks

Syntax
statement:

labeled-statement
expression-statement
attribute-specifier-sequenceqp, compound-statement
attribute-specifier-sequenceqp selection-statement
attribute-specifier-sequenceqp, iteration-statement
attribute-specifier-sequenceqp jump-statement

Semantics

A statement specifies an action to be performed. Except as indicated, statements are executed in
sequence. The optional attribute specifier sequence appertains to the respective statement.

A block allows a set of declarations and statements to be grouped into one syntactic unit. The
initializers of objects that have automatic storage duration, and the variable length array declarators
of ordinary identifiers with block scope, are evaluated and the values are stored in the objects
(including storing an indeterminate value in objects without an initializer) each time the declaration
is reached in the order of execution, as if it were a statement, and within each declaration in the
order that declarators appear.

A full expression is an expression that is not part of another expression, nor part of a declarator
or abstract declarator. There is also an implicit full expression in which the non-constant size
expressions for a variably modified type are evaluated; within that full expression, the evaluation of
different size expressions are unsequenced with respect to one another. There is a sequence point
between the evaluation of a full expression and the evaluation of the next full expression to be
evaluated.

NOTE Each of the following is a full expression:

— a full declarator for a variably modified type,

— an initializer that is not part of a compound literal,

— the expression in an expression statement,

— the controlling expression of a selection statement (if or switch),
— the controlling expression of a while or do statement,

— each of the (optional) expressions of a for statement,

— the (optional) expression in a return statement.

While a constant expression satisfies the definition of a full expression, evaluating it does not depend on nor produce any
side effects, so the sequencing implications of being a full expression are not relevant to a constant expression.

Forward references: expression and null statements (6.8.3), selection statements (6.8.4), iteration
statements (6.8.5), the return statement (6.8.6.4).

6.8.1 Labeled statements

Syntax

labeled-statement:
attribute-specifier-sequenceqp identifier : statement
attribute-specifier-sequenceqp; case constant-expression : statement
attribute-specifier-sequence,p; default : statement

Constraints
A case or default label shall appear only in a switch statement —that is associated with the same

function body as the statement to which the label is attached.?*® Further constraints on such labels
are discussed under the switch statement.

23)Thus, a label that appears within a lambda expression may only be associated to a switch statement within the body of
the lambda.

modifications to ISO/IEC 9899:2018, § 6.8.1 page 172 Language



N2522 cmin..core § 6.8.2, working draft — May 10, 2020 CORE 202005 (E)

Label names shall be unique within a function.

Semantics

Any statement may be preceded by a prefix that declares an identifier as a label name. The optional
attribute specifier sequence appertains to the label. Labels in themselves do not alter the flow of
control, which continues unimpeded across them.

Forward references: the goto statement (6.8.6.1), the switch statement (6.8.4.2).

6.8.2 Compound statement

Syntax
compound-statement:
{ block-item-list,p; }
block-item-list:

block-item

block-item-list block-item
block-item:

declaration

statement
Semantics

A compound statement is a block.

6.8.3 Expression and null statements

Syntax
expression-statement:
expressionopt ;
attribute-specifier-sequence expression ;
Semantics
The attribute specifier sequence appertains to the expression. The expression in an expression
statement is evaluated as a void expression for its side effects.>%
A null statement (consisting of just a semicolon) performs no operations.

EXAMPLE 1 If a function call is evaluated as an expression statement for its side effects only, the discarding of its value can
be made explicit by converting the expression to a void expression by means of a cast:

int p(int);
/x ... %/
(void)p(0);

EXAMPLE 2 In the program fragment

char x*s;
/* ... %/
13‘ E ( S L= Ilel)
. vhile (xs++# '\0")

a null statement is used to supply an empty loop body to the iteration statement.

EXAMPLE 3 A null statement can also be used to carry a label just before the closing } of a compound statement.

while (loopl) {

/* ... %/
while (loop2) {

if (want_out)

[
|
|
|
\ /* .. %/
|
\ goto end_loopl;

29Such as assignments, and function calls which have side effects.

Language modifications to ISO/IEC 9899:2018, § 6.8.3 page 173



CORE 202005 (E) § 6.8.4, working draft — May 10, 2020 cmin..core N2522

}

\ /% ... %/ \
| } |
\ /% ... %/ \
} end_loopl:; }

Forward references: iteration statements (6.8.5).

6.8.4 Selection statements

Syntax
selection-statement:

if  (—expression—)——statement— init-statement, controlling-expression

if (expression)-staterent-etse staterment init-statementop, controlling-expression
) _consequent-body_else alternative-body

switch (-expression)—staterment
controlling-expression ) switch-body

consequent-body_

expression-statement

declaration
consequent-body:
statement
statement
statement
Constraints_
The declaration part of an init statement shall only declare identifiers for objects having storage

class auto.”*

Semantics
A selection statement selects among a set of statements depending on the value of a controlling
expression.

A selection statement is a block whose scope is a strict subset of the scope of its enclosing block.
Each associated stibstatement-body is also a block whose scope is a strict subset of the scope of the
selection statement.

NOTE The possibility of an init statement for the if statement is a construct that is currently only presentin C++, notin C.
We add it here, because is a comfortable tool to catch error retum codes from C library functions and to continue execution
conditionally on the return value. Implementations that want to target the common C/C+ core have to add this feature to

6.8.4.1 The if statement
Constraints
The controlling expression of an if statement shall have scalar type.

If the consequent body or the alternative body are a compound statement, they shall not themselves
236)

contain declarations of the same identifiers as the declaration part of the init statement, if any.

Semantics
In both forms, the first-substatement-consequent body is executed if the expression compares
uneqtal-to-0—yields true when converted to bool. In the else form, the second-substatement

235)
236)

Thus, any such declaration names an object of automatic storage duration and is also a definition.
This provision only holds for the compound statement itself. Other blocks that are nested within that first compound
statement may redeclare any identifier according to the scoping rules.

modifications to ISO/IEC 9899:2018, § 6.8.4.1 page 174 Language



N2522 cmin..core § 6.8.4.2, working draft — May 10, 2020 CORE 202005 (E)

alternative body is executed if the expression eompares-equaltto-0-—If-the firstsubstatement-yields
false. If the consequent body is reached via a label, the second-substatement-alternative body is

not executed.

An else is associated with the lexically nearest preceding if that is allowed by the syntax.

If the init statement is a declaration, the scope of any identifiers it declares is the remainder of
the declaration and the entire if statement, including the controlling expression; it is reached in
the order of execution before the evaluation of the controlling expression. If the init statement
is_an expression, it is evaluated as a void expression before the evaluation of the controlling
237)

expression.

6.8.4.2 The switch statement
Constraints
The controlling expression of a switch statement shall have integer type.

If a switch statement has an associated case or default label within the scope of an identifier with
a variably modified type, the entire switch statement shall be within the scope of that identifier.?*®

The expression of each case label shall be an integer constant expression and no two of the case
constant expressions in the same switch statement shall have the same value after conversion.
There may be at most one default label in a switch statement. (Any enclosed switch statement
may have a default label or case constant expressions with values that duplicate case constant
expressions in the enclosing switch statement.)

Semantics

A switch statement causes control to jump to, into, or past the statement-thatis-the-switch body,
depending on the value of a controlling expression, and on the presence of a default label and the
values of any case labels on or in the switch body. A case or default label is accessible only within
the closest enclosing switch statement.

The integer promotions are performed on the controlling expression. The constant expression in
each case label is converted to the promoted type of the controlling expression. If a converted value
matches that of the promoted controlling expression, control jumps to the statement following the
matched case label. Otherwise, if there is a default label, control jumps to the labeled statement. If
no converted case constant expression matches and there is no default label, no part of the switch
body is executed.

Implementation limits

As discussed in 5.2.4.1, the implementation may limit the number of case values in a switch
statement.

EXAMPLE In the artificial program fragment

switch (expr)
{
int i = 4;
f(i);
case 0:
i=17;
/* falls through into default code */
default:
printf("%sd\n", i);

the object whose identifier is i exists with automatic storage duration (within the block) but is never initialized, and thus if
the controlling expression has a nonzero value, the call to the printf function will access an indeterminate value. Similarly,

27)Thus, the init statement specifies an initialization for the if statement, possibly defining one or more variables; the
controlling expression specifies an evaluation that determines which (or if any) of the bodies is executed and that may use
or just be) a variable that had been defined in the init statement.

28)That is, the declaration either precedes the switch statement, or it follows the last case or default label associated with
the switch that is in the block containing the declaration.

Language modifications to ISO/IEC 9899:2018, § 6.8.4.2 page 175



CORE 202005 (E) § 6.8.5, working draft — May 10, 2020 cmin..core N2522

the call to the function f cannot be reached.

6.8.5 Iteration statements

Syntax
iteration-statement:

while (-expression-)—staterent controlling-expression ) loop-body
do staterment-white—texpression loop-body while ( controlling-expression ) ;
for (Wﬁ%fwfe%ﬂw—%%pfeﬁwﬁ—ﬂ—s%ﬂ%ﬁﬁ%
—————————For—{declaration—expressionopr——expressiotopr—)—staterent
nit-statement controlling-expressionep ; iteration-expression ) loop-body

statement

iteration-expression:
exXPression ont

Constraints
The controlling expression of an iteration statement shall have scalar type.

au%eer—Fegis%eFIf the loo bod is a com ound statement it shall not 1tself Contam a declaratlon
of the same identifiers as the declaration part of the init statement, if any.2>)

Semantics
An iteration statement causes a-statement-ealled-the-the loop body to be executed repeatedly until

the controlling expression eemparesequal-to-d-yields false when converted to bool. The repetition
occurs regardless of whether the loop body is entered from the iteration statement or by a jump.?”

An iteration statement is a block whose scope is a strict subset of the scope of its enclosing block.
The loop body is also a block whose scope is a strict subset of the scope of the iteration statement.

An iteration statement may be assumed by the implementation to terminate if its controlling
expression is not a constant expression,?*!) and none of the following operations are performed in its
body, controlling expression or (in the case of a for statement) its expression-3iteration expression:*?

— input/output operations
— accessing a volatile object

— synchronization or atomic operations.

NOTE 1 C and C++ differ in the scoping of variables that are declared in a declaration part of an init statement. C has
less constraints and allows that shadowing identifiers are declared in the top level compound statement of the loop body.
Applications that target the common C/C++ core should not rely on this feature and implementations conforming to this
specification have to diagnose such declarations as being not portable.

NOTE 2 C++ has additional possibilities to declare (and define) loop variables, namely the controlling expression of for
and while loops may declare and initialize variables, such that the value of the controlling expression is the value of the
variable. For C it is quite uncommon to consider that a declaration could be an expression, "have a value”. Therefore we
did not chose to add this feature to C. A while with such a feature can easily be emulated by a usual for loop:

while (int myControl = (complicated-expression)) // only C++
// use " “myControl’’ somehow

é

for (int myControl; (myControl = (complicated-expression)); ) { // same, C and C++

// use " “myControl’’ somehow

239)

This provision only holds for the compound statement itself. Other blocks that are nested within that first compound
statement may redeclare any identifier according to the scoping rules.

240)Code jumped over is not executed. In particular, the controlling expression of a for or while statement is not evaluated
before entering the loop body, nor is the init statement of a for statement.

241) An omitted controlling expression is replaced by a nonzero constant, which is a constant expression.

242)This is intended to allow compiler transformations such as removal of empty loops even when termination cannot be
proven.

modifications to ISO/IEC 9899:2018, § 6.8.5 page 176 Language



N2522 cmin..core § 6.8.5.1, working draft — May 10, 2020 CORE 202005 (E)

} ok

Implementations that want to target the common C/C++ should diagnose the occurence of such “controlling expression
variables” as to be non-portable.

6.8.5.1 The while statement
The evaluation of the controlling expression takes place before each execution of the loop body.

6.8.5.2 The do statement
The evaluation of the controlling expression takes place after each execution of the loop body.

6.8.5.3 The for statement

The statement-behaves-as-follows:—The-expression-expression-2 is-the-controlling-expression-that
controlling expression is evaluated before each execution of the loop body. The expression
expression-3 iteration expression is evaluated as a void expression after each execution of the loop
body. If elase-T the init statement is a declaration, the scope of any identifiers it declares is the
remainder of the declaration and the entire loop, including the other two expressions; it is reached
in the order of execution before the first evaluation of the controlling expression. If elatse-T the init
statement is an expression, it is evaluated as a void expression before the first evaluation of the
controlling expression.??

Both-elause-T and-expression-3 can-be-omitted—An—omitted-expression-2 An omitted controllin

expression is replaced by a-nenzero-constant-true. !

6.8.6 Jump statements
Syntax

jump-statement:
goto identifier ;
continue ;
break ;
return expressionp: ;

No jump statement other than return shall have a target that is found in another function body.2*>

Semantics
A jump statement causes an unconditional jump to another place.

6.8.6.1 The goto statement
Constraints

The identifier in a goto statement shall name a label located somewhere in the enclosing function
body. A goto statement shall not jump from outside the scope of an identifier having a variably
modified type to inside the scope of that identifier, or into or out of the scope of a lambda expression.

Semantics

A goto statement causes an unconditional jump to the statement prefixed by the named label in the
enclosing function.

EXAMPLE 1 It is sometimes convenient to jump into the middle of a complicated set of statements. The following outline

23)Thus, the init statement specifies initialization for the loop, possibly declaring one or more variables for use in the loop;

the controlling expression specifies an evaluation made before each iteration, such that execution of the loop continues until

the expression yields false; and the iteration expression specifies an operation (such as incrementing) that is performed

244) As the syntax implies, both, the init statement and the iteration expression can also essentially be empty. Effectively, a
for statement of the form “for (; ;) loop-body” performs an non-terminating loop.

245 Thus jump statements other than return may not jump between different functions or cross the boundaries of a lambda
expression, that is, they may not jump into or out of the function body of a lambda. Other features such as signals (7.14) and
long jumps (7.13) may delegate control to points of the program that do not fall under these constraints.

Language modifications to ISO/IEC 9899:2018, § 6.8.6.1 page 177



4

CORE 202005 (E) § 6.8.6.2, working draft — May 10, 2020 cmin..core N2522

presents one possible approach to a problem based on these three assumptions:

1. The general initialization code accesses objects only visible to the current function.
2. The general initialization code is too large to warrant duplication.

3. The code to determine the next operation is at the head of the loop. (To allow it to be reached by continue statements,
for example.)

VA T

goto first_ time;

for (;;) {
// determine next operation
/* .. %/

if (need to reinitialize) {
// reinitialize-only code
/* ... %/
first_time:
// general initialization code

/* ... %/

continue;
}
// handle other operations
/* ... x/

EXAMPLE 2 A goto statement is not allowed to jump past any declarations of objects with variably modified types. A jump
within the scope, however, is permitted.

goto lab3; // invalid: going INTO scope of VLA.
{
double a[n];
aljl = 4.4;
lab3:
aljl = 3.3;
goto lab4; // valid: going WITHIN scope of VLA.
alj]l = 5.5;
lab4:
alj]l = 6.6;
}
goto lab4; // invalid: going INTO scope of VLA.

6.8.6.2 The continue statement

Constraints

A continue statement shall appear only in or as a loop body —that is associated to the same function
body 240

Semantics

A continue statement causes a jump to the loop-continuation portion of the smallest enclosing
iteration statement; that is, to the end of the loop body. More precisely, in each of the statements

while (/* ... x/) { do { for (/x ... x/) {
/* ... %/ /* ... %/ /* ... */
continue; continue; continue;
/* ... *x/ /*x ... x/ /*x ... */

contin:; contin:; contin:;

} } while (/* ... */); }

246)

Thus a continue statement by itself may not be used to terminate the execution of the body of a lambda expresssion.

modifications to ISO/IEC 9899:2018, § 6.8.6.2 page 178

Language



N2522 cmin..core § 6.8.6.3, working draft — May 10, 2020 CORE 202005 (E)

unless the continue statement shown is in an enclosed iteration statement (in which case it is
interpreted within that statement), it is equivalent to goto contin;.?*)

6.8.6.3 The break statement

Constraints

A break statement shall appear only in or as a switch body or loop body —that is associated to the
same function body.**”

Semantics
A break statement terminates execution of the smallest enclosing switch or iteration statement.

6.8.6.4 The return statement
Constraints

expression, if any, shall not have an opaque type other than void. If the return e of the function

is not void the type of the expression shall be such that it can be converted to the function return
type as if by assignment. A return statement without an expression shall only appear in a function

whose return type is void.

For a lambda expression or function that has an underspecified return type, all return statements
shall provide expressions with a consistent type. That s, if any return statement has an expression

Semantics
A return statement terminates-exeeution-of-the-eurrentfunetions associated to the innermost

function body in which appears. It evaluates the expression, if any, terminates the execution of that
function body and returns control to its caller—A—funetion—; if it has an expression other than a

void expression, the value of the expression is returned to the caller as the value of the function
call expression. A function body may have any number of return statements.

function that has a specified return type, if the function return type is void, the expression, if any,
is evaluated as a void expression and control returns to the calleras-the-value-of the funetion-eall

expression—1f-. Otherwise, if the expression has a type different from the return type of the function
in which it appears, the value is converted as if by assignment to an object having the return type of
the function.?*?

For a lambda expression or function that has an underspecified return type, the return type is
determined as soon as a return statement is met and is specified as the generic type of that
expression, if any, or as void if there is no expression or if no return statement is found.

EXAMPLE In:

struct s { double i; } f(void);
union {
struct {
int f1;
struct s f2;
} ul;
struct {
struct s f3;
int f4;
} u2;
} g

247)Following the contin: label is a null statement.

2*9Thus a break statement by itself may not be used terminate the execution of the body of a lambda expresssion.

29)The return statement is not an assignment. The overlap restriction of 6.5.17.1 does not apply to the case of function
return. The representation of floating-point values can have wider range or precision than implied by the type; a cast can be
used to remove this extra range and precision.

Language modifications to ISO/IEC 9899:2018, § 6.8.6.4 page 179




CORE 202005 (E) § 6.8.6.4, working draft — May 10, 2020 N2522

struct s f(void)

{
return g.ul.f2;

}

/* ... %/
g.u2.f3 = f();

there is no undefined behavior, although there would be if the assignment were done directly (without using a function call
to fetch the value).

modifications to ISO/IEC 9899:2018, § 6.8.6.4 page 180 Language




1

N2522 cmin..core § 6.9, working draft — May 10, 2020 CORE 202005 (E)

6.9 External definitions

Syntax
translation-unit:
external-declaration
translation-unit external-declaration

external-declaration:
function-definition
declaration

Constraints

There shall be no more than one external definition for each identifier declared with internal linkage
in a translation unit. Moreover, if an identifier declared with internal linkage is used in an expression

eonstant),that is evaluated,®” there shall be exactly one external definition for the identifier in the

translation unit.

Semantics

As discussed in 5.1.1.1, the unit of program text after preprocessing is a translation unit, which
consists of a sequence of external declarations. These are described as “external” because they
appear outside any function (and hence have file scope). As discussed in 6.7, a declaration that

also causes storage-a storage instance to be reserved for an object or provides the body of a function
named by the identifier is a definition.

An external definition is an external declaration that is also a definition of a function {or an object

other than an inline definition)-er-an-object—If-. Unless specified otherwise, if an identifier declared
with external linkage is used in an expression {other-than-as-part-of-the-operand-of-a-sizeof-or
—Atignef-operator-whose result-is-an-integerconstantjthat is evaluated, somewhere in the entire
program there shall be exactly one external definition for the identifier;®Y otherwise, there shall be
no more than one.??

Recommended practice

Ca+ has looser rules than this for certain special cases. Even if the identifiers are evaluated, inline
functions and objects are not required to provide an external definition. If needed, a program-wide
unique address that stands for an external definition is provided. Also, const-qualification of
objects may imply internal linkage in some cases, such that linker conflicts are avoided.

Applications that target the common C / C++ core should avoid such situations, In particular,
they should provide an external definition for all functions and objects with external linkage, and
they should augment the definitions of const qualified objects to be inline objects if possible. In
many cases this has the advantage of promoting compile-time constant expressions of integer type

to “integer constant expressions”, and, by that, of transforming definitions of VLA (with a compile
time known size) to ordinary arrays that can be initialized.

It is recommended that implementations diagnose these situations whenever they may, in
articular when they encounter const-qualified objects that would qualify to be transformed into

0Several expressions that are only inspected for their type are not evaluated. This may or may not apply to dependent
expressions in generic_selection primary expressions, the decltype specifier, the sizeof operator, and the alignof
operator.

ZUExempted from having an external definition are inline constants if they are only used in Ivalue conversions.

#PThus, if an identifier declared with external linkage is not used in an expression, there need be no external definition for

it.

Language modifications to ISO/IEC 9899:2018, § 6.9 page 181



10

11

12
13

CORE 202005 (E) § 6.9.1, working draft — May 10, 2020 cmin..core N2522

inline constants and point to situations where this would avoid the definition of a VLA.
6.9.1 Function definitions
Syntax

function-definition:
attribute-specifier-sequenceqp declaration-specifiers declarator function-body

function-body:
compound-statement

Constraints

The identifier declared in a function definition (which is the name of the function) shall have a
function type, as specified by the declarator portion of the function definition.

The return type of a function shall be void or a complete object type other than array-typean array
type or an opaque type.

The storage-class specifier, if any, in the declaration specifiers shall be either extern or static,

ossibly combined with auto .

parameter-list-consisting-If the parameter type list consists of a single parameter of type void,
in-which-ease-there shallnetbe-the parameter declarator shall not include an identifier.
An underspecified function definition shall contain at least one storage class specifier. The return

type for such a function is determined as described for the return statement, 6.8.6.4.25%

Semantics
The optional attribute specifier sequence in a function definition appertains to the function. If auto

appears as a storage-class specifier it is ignored for the purpose of determining a storage class or
linkage of the function. It then only indicates that the return type of the function may be inferred
from return statements, if any, see below.

The declarator in a function definition specifies the name of the function being defined and the

identifiers-and-typestypes (and optionally the names) of all the parameters; the declarator (possibly
adjusted by an inferred type specifier) also serves as a function prototype for later calls to the same

function in the same translation unit. The type of each parameter is adjusted as described in 6.7.8.3;
the resulting type shall be a complete object type.

If a function that accepts a variable number of arguments is defined without a parameter type list
that ends with the ellipsis notation, the behavior is undefined.

Each parameter has automatic storage duration; its identifier, if any,”>¥ is an lvalue. Fhe fayoutof
the storage for parameters is unspecified. =

On entry to the function, the size expressions of each variably modified parameter are evaluated
and the value of each argument expression is converted to the type of the corresponding parameter
as if by assignment. (Array expressions and function designators as arguments were converted to
pointers before the call.)

After all parameters have been assigned, the compound statement of the function body is executed.

Unless otherwise specified, if the} that terminates the function body is reached, and the value of the
function call is used by the caller, the behavior is undefined.

#*For such a function, the scope of the function name only starts with the end of the first return statement, see 6.2.1. This
means that such a function cannot be used for direct recursion before or within the first return statement.

2>) A parameter that has no declared name is inaccessible within the function body.

A parameter identifier cannot be redeclared in the function body except in an enclosed block. As any object with
automatic storage duration, each parameter gives rise to a unique storage instance representing it Thus the relative layout
of parameters in the address space is unspecified.

modifications to ISO/IEC 9899:2018, § 6.9.1 page 182 Language



14

15

16

17

18

N2522 cmin..core

§ 6.9.1, working draft — May 10, 2020

Provided the constraints above are respected, the return type of an underspecified function
definition is adjusted as if type had been inserted in the definition. The e of the defined function

is incomplete within the function body until a return statement is met.

NOTE In a function definition, the type of the function and its prototype cannot be inherited from a typedef:

typedef int F(void); //

//
F f, g; //
F—F—{—* */—+ //

ANt a0 { [ xl Y

//
//

int (xfp)(void);
F *Fp;

type F is “function with no parameters
returning int”

f and g both have type compatible with F
WRONG: syntax/constraint error

WRONG: declares that g returns a function
RIGHT: ¥ has type compatible with ¥
RIGHT: g has type compatible with F

e returns a pointer to a function

same: parentheses irrelevant

// WRONG: syntax/constraint error

oo ____// WRONG: declares that g returns a function
—_.___int f(void) { /* ... */ } _____// RIGHT: f has type compatible with F

o _____J/ RIGHT: g has type compatible with F

. F xe(void) { /*x ... x/ } _____// e returns a pointer to a function
_Fx((e))(void) { /¥ . X/} ___// same:

parentheses irrelevant
fp points to a function that has
Fp points to a function that has

type F
type F

EXAMPLE 1 In the following:

extern int max(int a, int b)
{

return a > b ? a: b;

}

extern is the storage-class specifier and int is the type specifier; max(int a, int b) is the function declarator; and

‘ { returna > b ?a: b; }

is the function body.

EXAMPLE 2 To pass one function to another, one might say

int f(void);
/* ... %/
g(f);

Then the definition of g might read

void g(int (*funcp)(void))

{
/% ... %/
(xfuncp) (); /* or funcp(); ...*/
}
or, equivalently,
void g(int func(void))
{
/* ... %/
func(); /* or (xfunc)(); ...*/
}

EXAMPLE 3 Consider the following function that computes the maximum value of two parameters that have integer types

Tands.

_.return_(a < 0)

[
| .Anline auto max(T a, S b){

Language

modifications to ISO/IEC 9899:2018, § 6.9.1 page 183

CORE 202005 (E)




19

CORE 202005 (E) § 6.9.2, working draft — May 10, 2020 cmin..core N2522

? ((b<0) ? ((a<b)?2b:a):b)
i ((b>0) ? ((@a<b) ?2b :a): a);
N §

extern auto max(T, S); // External declaration forces symbol emission
auto max(T, S); [/ same

_automax(); /[ same

The return expression performs default arithmetic conversion to determine a type that can hold the maximum value and
is at least as wide as int. The function definition is adjusted to that return type. This property holds regardless if types T
and S have the same or different signedness.

The extern declaration and the equivalent ones are valid, because they follow the definition and thus the inferred return
type is known.

EXAMPLE 4 The following function computes the sum over an array of integers of type T and returns the value as the
romoted type of T.

auto sum(size_t n, T A[n]){

_switeh(n)_{
case 0:

return +((TO); AL return the promoted type
o Case 1:

o TetU HALOY .../ return the promoted type
default:

T Treturn sum(n/2, A) + sum(n - n/2, &A[n/2]); // valid recursion
ek
N ¢

If instead sum would have bee defined with a prototype as follows

for a narrow type T such as unsigned char, the return type and result would be different from the previous. In particular,
the result of the addition would have been converted back from the promoted type to T before each return, possibly leadin:
to a surprising overall results.

6.9.2 External object definitions

Semantics

If the declaration of an identifier for an object has file scope and an initializer, the declaration is an
external definition for the identifier.

A declaration of an identifier for an object that has file scope without an initializer, and without a
storage-class specifier or with the storage-class specifier static, constitutes a tentative definition. If a
translation unit contains one or more tentative definitions for an identifier, and the translation unit
contains no external definition for that identifier, then the behavior is exactly as if the translation
unit contains a file scope declaration of that identifier, with the composite type as of the end of the
translation unit, with an initializer equal to {03 } .

If the declaration of an identifier for an object is a tentative definition and has internal linkage, the
declared type shall not be an incomplete type.

modifications to ISO/IEC 9899:2018, § 6.9.2 page 184 Language



N2522 § 6.9.2, working draft — May 10, 2020 CORE 202005 (E)

4 EXAMPLE 1

int i1 = 1; // definition, external linkage

static int i2 = 2; // definition, internal linkage

extern int i3 = 3; // definition, external linkage

int i4; // tentative definition, external linkage

static int i5; // tentative definition, internal linkage

int il1; // valid tentative definition, refers to previous
int i2; // 6.2.2 renders undefined, linkage disagreement

int i3; // valid tentative definition, refers to previous
int i4; // valid tentative definition, refers to previous
int i5; // 6.2.2 renders undefined, linkage disagreement

extern int il; // refers to previous, whose linkage is external

extern int i2; // refers to previous, whose linkage is internal

extern int i3; // refers to previous, whose linkage is external

extern int i4; // refers to previous, whose linkage is external

extern int i5; // refers to previous, whose linkage is internal

5 EXAMPLE 2 If at the end of the translation unit containing

| int i[];

the array i still has incomplete type, the implicit initializer causes it to have one element, which is set to zero on program
startup.

Language modifications to ISO/IEC 9899:2018, § 6.9.2 page 185



CORE 202005 (E) § 6.10, working draft — May 10, 2020 cmin..core N2522

6.10 Preprocessing directives

Syntax
preprocessing-file:
SroUPopt
group:
group-part
group group-part
group-part:
if-section
control-line
text-line
# non-directive
if-section:
if-group elif-groupsop else-groupop: endif-line
if-group:
# 1if -eonstant-expression controlling-expression new-line groupopt
# ifdef identifier new-line grouppt
# ifndef identifier new-line groupgpt
elif-groups:
elif-group
elif-groups elif-group
elif-group:
# elif constant-expression controlling-expression new-line groupopt
else-group:
# else new-line groupgpt
endif-line:

# endif new-line
control-line:
include pp-tokens new-line
define identifier replacement-list new-line
# define identifier Iparen identifier-listop; )

#*

replacement-list new-line
define identifier Iparen ——... ) replacement-list new-line
define identifier Iparen identifier-list , ———... )

replacement-list new-line

H*

H*

undef identifier new-line
line pp-tokens new-line
error pp-tokens,p; new-line
pragma pp-tokens.p; new-line
new-line

H W R R

text-line:

pp-tokensqpy new-line
non-directive:

pp-tokens new-line
Iparen:

a ( character not immediately preceded by white space
replacement-list:

pp-tokensqpt
pp-tokens:

preprocessing-token

pp-tokens preprocessing-token
new-line:

the new-line character
identifier-list:

identifier

identifier-list , identifier

modifications to ISO/IEC 9899:2018, § 6.10 page 186 Language



N2522 cmin..core § 6.10.1, working draft — May 10, 2020 CORE 202005 (E)

Description

A preprocessing directive consists of a sequence of preprocessing tokens that satisfies the following
constraints: The first token in the sequence is a # preprocessing token that (at the start of translation
phase 4) is either the first character in the source file (optionally after white space containing no
new-line characters) or that follows white space containing at least one new-line character. The last
token in the sequence is the first new-line character that follows the first token in the sequence.?®
A new-line character ends the preprocessing directive even if it occurs within what would otherwise
be an invocation of a function-like macro.

A text line shall not begin with a # preprocessing token. A non-directive shall not begin with any of
the directive names appearing in the syntax.

When in a group that is skipped (6.10.1), the directive syntax is relaxed to allow any sequence of
preprocessing tokens to occur between the directive name and the following new-line character.

Constraints

The only white-space characters that shall appear between preprocessing tokens within a prepro-
cessing directive (from just after the introducing # preprocessing token through just before the
terminating new-line character) are space and horizontal-tab (including spaces that have replaced
comments or possibly other white-space characters in translation phase 3).

Semantics

The implementation can process and skip sections of source files conditionally, include other source
files, and replace macros. These capabilities are called preprocessing, because conceptually they occur
before translation of the resulting translation unit.

The preprocessing tokens within a preprocessing directive are not subject to macro expansion unless
otherwise stated.

EXAMPLE In:

#define EMPTY
EMPTY # include <file.h>

the sequence of preprocessing tokens on the second line is not a preprocessing directive, because it does not begin with a # at
the start of translation phase 4, even though it will do so after the macro EMPTY has been replaced.

The execution of a non-directive preprocessing directive results in undefined behavior.

6.10.1 Conditional inclusion
Constraints

The expression-that-controls-controlling expression of a conditional inclusion shall be an integer
constant expression except that: identifiers (including those lexically identical to keywords) are

interpreted as described below;*” and it may contain unary operator expressions of the form
defined identifier

or
defined ( identifier )

which evaluate to +-true if the identifier is currently defined as a macro name (that is, if it is
predefined or if it has been the subject of a #define preprocessing directive without an intervening
#undef directive with the same subject identifier), 8-false if it is not.

Each preprocessing token that remains (in the list of preprocessing tokens that will become the
controlling expression) after all macro replacements have occurred shall be in the lexical form of a

256)Thus, preprocessing directives are commonly called “lines”. These “lines” have no other syntactic significance, as all
white space is equivalent except in certain situations during preprocessing (see the # character string literal creation operator
in 6.10.3.2, for example).

27)Because the controlling constant expression is evaluated during translation phase 4, all identifiers either are or are not
macro names — there simply are no keywords, enumeration constants, etc.

Language modifications to ISO/IEC 9899:2018, § 6.10.1 page 187



CORE 202005 (E) § 6.10.1, working draft — May 10, 2020 cmin..core N2522

token (6.4).

Semantics
Preprocessing directives of the forms

# if —eonstant-expression controlling-expression new-line groupopt
# elif constant-expression controlling-expression new-line groupopt

check whether the controlling constant expression evaluates to nonzero.

Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the control-
ling constant expression are replaced (except for those macro names modified by the defined unary
operator), just as in normal text. If the token defined is generated as a result of this replacement
process or use of the defined unary operator does not match one of the two specified forms prior
to macro replacement, the behavior is undefined. After all replacements due to macro expansion
and the defined unary operator have been performed, all remaining identifiers other than false
and true (including those lexically identical to keywords) are replaced with the pp-number 0,
and then each preprocessing token is converted into a token. The resulting tokens compose the
controlling constant expression which is evaluated according to the rules of 6.6. For the purposes of
this token conversion and evaluation, all signed integer types and all unsigned integer types act as
if they have the same representation as, respectively, the types intmax_t and uintmax_t defined
in the header <stdint.h>.2® This includes interpreting character constants, which may involve
converting escape sequences into execution character set members. Whether the numeric value for
these character constants matches the value obtained when an identical character constant occurs
in an expression (other than within a #if or #elif directive) is implementation—defined.259) Also,
whether a single-character character constant may have a negative value is implementation-defined.

Preprocessing directives of the forms

# ifdef identifier new-line groupop:
# ifndef identifier new-line group,p:

check whether the identifier is or is not currently defined as a macro name. Their conditions are
equivalent to #if defined identifier and #if—tdefined#if ~defined identifier respectively.

Each directive’s condition is checked in order. If it evaluates to false{zero)false , the group that it
controls is skipped: directives are processed only through the name that determines the directive
in order to keep track of the level of nested conditionals; the rest of the directives’ preprocessing
tokens are ignored, as are the other preprocessing tokens in the group. Only the first group whose
control condition evaluates to true{nonzero)-true is processed; any following groups are skipped
and their controlling directives are processed as if they were in a group that is skipped. If none of
the conditions evaluates to trtetrue , and there is a #else directive, the group controlled by the
#else is processed; lacking a #else directive, all the groups until the #endif are skipped.?”

Forward references: macro replacement (6.10.3), source file inclusion (6.10.2), largest integer types
(7.20.1.5).

28)Thus, on an implementation where INT_MAX is 0x7FFF and UINT_MAX is OxFFFF, the constant 6x8000 is signed and
positive within a #if expression even though it would be unsigned in translation phase 7.

29 Thus, the controlling expression in the following #if directive and if statement is not guaranteed to evaluate to the
same value in these two contexts.

#if 'z’ - 'a’ 25
if ('z’ - ’'a’ 25)

260) As indicated by the syntax, no preprocessing tokens are allowed to follow a #else or #endif directive before the
terminating new-line character. However, comments can appear anywhere in a source file, including within a preprocessing
directive.

modifications to ISO/IEC 9899:2018, § 6.10.1 page 188 Language



N2522 cmin..core § 6.10.2, working draft — May 10, 2020 CORE 202005 (E)

6.10.2 Source file inclusion
Constraints

A #include directive shall identify a header or source file that can be processed by the implementa-
tion.

Semantics
A preprocessing directive of the form

# include < h-char-sequence > new-line

searches a sequence of implementation-defined places for a header identified uniquely by the
specified sequence between the < and > delimiters, and causes the replacement of that directive
by the entire contents of the header. How the places are specified or the header identified is
implementation-defined.

A preprocessing directive of the form

# include " g-char-sequence " new-line

causes the replacement of that directive by the entire contents of the source file identified by the
specified sequence between the " delimiters. The named source file is searched for in an implementa-
tion-defined manner. If this search is not supported, or if the search fails, the directive is reprocessed
as if it read

# include < h-char-sequence > new-line
with the identical contained sequence (including > characters, if any) from the original directive.
A preprocessing directive of the form

# include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after
include in the directive are processed just as in normal text. (Each identifier currently defined as a
macro name is replaced by its replacement list of preprocessing tokens.) The directive resulting after
all replacements shall match one of the two previous forms.?) The method by which a sequence
of preprocessing tokens between a < and a > preprocessing token pair or a pair of " characters is
combined into a single header name preprocessing token is implementation-defined.

The implementation shall provide unique mappings for sequences consisting of one or more nondig-
its or digits (6.4.2.1) followed by a period (.) and a single nondigit. The first character shall not be a
digit. The implementation may ignore distinctions of alphabetical case and restrict the mapping to
eight significant characters before the period.

A #include preprocessing directive may appear in a source file that has been read because of a
#include directive in another file, up to an implementation-defined nesting limit (see 5.2.4.1).

EXAMPLE 1 The most common uses of #include preprocessing directives are as in the following:

#include <stdio.h>
#include "myprog.h"

EXAMPLE 2 This illustrates macro-replaced #include directives:

- #if VERSION == 1
_____#if VERSION = 1
#define INCFILE "versl.h"
—#elif VERSION—==—2
. #elif VERSION = 2
#define INCFILE "vers2.h" // and so on

26D Note that adjacent string literals are not concatenated into a single string literal (see the translation phases in 5.1.1.2);

thus, an expansion that results in two string literals is an invalid directive.

Language modifications to ISO/IEC 9899:2018, § 6.10.2 page 189




10

CORE 202005 (E) § 6.10.3, working draft — May 10, 2020 cmin..core N2522

#else
#define INCFILE “"versN.h"

|
|
\ #endif
\ #include INCFILE
L

Forward references: macro replacement (6.10.3).

6.10.3 Macro replacement

Constraints

Two replacement lists are identical if and only if the preprocessing tokens in both have the same
number, ordering, spelling, and white-space separation, where all white-space separations are
considered identical.

An identifier currently defined as an object-like macro shall not be redefined by another #define
preprocessing directive unless the second definition is an object-like macro definition and the two
replacement lists are identical. Likewise, an identifier currently defined as a function-like macro
shall not be redefined by another #define preprocessing directive unless the second definition is a
function-like macro definition that has the same number and spelling of parameters, and the two
replacement lists are identical.

There shall be white space between the identifier and the replacement list in the definition of an
object-like macro.

If the identifier-list in the macro definition does not end with an ellipsis, the number of arguments
(including those arguments consisting of no preprocessing tokens) in an invocation of a function-like
macro shall equal the number of parameters in the macro definition. Otherwise, there shall be
more arguments in the invocation than there are parameters in the macro definition (excluding the
++...). There shall exist a ) preprocessing token that terminates the invocation.

The identifier __VA_ARGS__ shall occur only in the replacement-list of a function-like macro that
uses the ellipsis notation in the parameters.

A parameter identifier in a function-like macro shall be uniquely declared within its scope.

Semantics

The identifier immediately following the define is called the macro name. There is one name
space for macro names. Any white-space characters preceding or following the replacement list of
preprocessing tokens are not considered part of the replacement list for either form of macro.

If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a prepro-
cessing directive could begin, the identifier is not subject to macro replacement.

A preprocessing directive of the form
# define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name?® to be replaced
by the replacement list of preprocessing tokens that constitute the remainder of the directive. The
replacement list is then rescanned for more macro names as specified below.

A preprocessing directive of the form

# define identifier Iparen identifier-listops ) replacement-list new-line
# define identifier Iparen ——... ) replacement-list new-line
# define identifier Ilparen identifier-list , ———... ) replacement-list new-line

defines a function-like macro with parameters, whose use is similar syntactically to a function call. The
parameters are specified by the optional list of identifiers, whose scope extends from their declaration
in the identifier list until the new-line character that terminates the #define preprocessing directive.
Each subsequent instance of the function-like macro name followed by a ( as the next preprocessing

262)Since, by macro-replacement time, all character constants and string literals are preprocessing tokens, not sequences
possibly containing identifier-like subsequences (see 5.1.1.2, translation phases), they are never scanned for macro names or
parameters.

modifications to ISO/IEC 9899:2018, § 6.10.3 page 190 Language



11

12

N2522 cmin..core § 6.10.3.1, working draft — May 10, 2020 CORE 202005 (E)

token introduces the sequence of preprocessing tokens that is replaced by the replacement list
in the definition (an invocation of the macro). The replaced sequence of preprocessing tokens is
terminated by the matching ) preprocessing token, skipping intervening matched pairs of left and
right parenthesis preprocessing tokens. Within the sequence of preprocessing tokens making up an
invocation of a function-like macro, new-line is considered a normal white-space character.

The sequence of preprocessing tokens bounded by the outside-most matching parentheses forms
the list of arguments for the function-like macro. The individual arguments within the list are
separated by comma preprocessing tokens, but comma preprocessing tokens between matching
inner parentheses do not separate arguments. If there are sequences of preprocessing tokens within
the list of arguments that would otherwise act as preprocessing directives,?®® the behavior is
undefined.

If there is a ~——. . ._in the identifier-list in the macro definition, then the trailing arguments, including
any separating comma preprocessing tokens, are merged to form a single item: the variable arguments.
The number of arguments so combined is such that, following merger, the number of arguments is
one more than the number of parameters in the macro definition (excluding the ——...).

6.10.3.1 Argument substitution

After the arguments for the invocation of a function-like macro have been identified, argument
substitution takes place. A parameter in the replacement list, unless preceded by a # or ## prepro-
cessing token or followed by a ## preprocessing token (see below), is replaced by the corresponding
argument after all macros contained therein have been expanded. Before being substituted, each
argument’s preprocessing tokens are completely macro replaced as if they formed the rest of the
preprocessing file; no other preprocessing tokens are available.

Anidentifier __VA_ARGS__ that occurs in the replacement list shall be treated as if it were a parameter,
and the variable arguments shall form the preprocessing tokens used to replace it.

6.10.3.2 The # operator
Constraints

Each # preprocessing token in the replacement list for a function-like macro shall be followed by a
parameter as the next preprocessing token in the replacement list.

Semantics

If, in the replacement list, a parameter is immediately preceded by a # preprocessing token, both
are replaced by a single character string literal preprocessing token that contains the spelling of
the preprocessing token sequence for the corresponding argument. Each occurrence of white space
between the argument’s preprocessing tokens becomes a single space character in the character
string literal. White space before the first preprocessing token and after the last preprocessing token
composing the argument is deleted. Otherwise, the original spelling of each preprocessing token in
the argument is retained in the character string literal, except for special handling for producing
the spelling of string literals and character constants: a \ character is inserted before each " and \
character of a character constant or string literal (including the delimiting " characters), except that
it is implementation-defined whether a \ character is inserted before the \ character beginning a
universal character name. If the replacement that results is not a valid character string literal, the
behavior is undefined. The character string literal corresponding to an empty argument is "". The
order of evaluation of # and ## operators is unspecified.

6.10.3.3 The ## operator
Constraints

A ## preprocessing token shall not occur at the beginning or at the end of a replacement list for
either form of macro definition.

Semantics

If, in the replacement list of a function-like macro, a parameter is immediately preceded or followed
by a ## preprocessing token, the parameter is replaced by the corresponding argument’s preprocess-

263)Despite the name, a non-directive is a preprocessing directive.

Language modifications to ISO/IEC 9899:2018, § 6.10.3.3 page 191



CORE 202005 (E) § 6.10.3.4, working draft — May 10, 2020 N2522

ing token sequence; however, if an argument consists of no preprocessing tokens, the parameter is
replaced by a placemarker preprocessing token instead.?*%

For both object-like and function-like macro invocations, before the replacement list is reexamined
for more macro names to replace, each instance of a ## preprocessing token in the replacement list
(not from an argument) is deleted and the preceding preprocessing token is concatenated with the
following preprocessing token. Placemarker preprocessing tokens are handled specially: concatena-
tion of two placemarkers results in a single placemarker preprocessing token, and concatenation
of a placemarker with a non-placemarker preprocessing token results in the non-placemarker pre-
processing token. If the result is not a valid preprocessing token, the behavior is undefined. The
resulting token is available for further macro replacement. The order of evaluation of ## operators is
unspecified.

EXAMPLE In the following fragment:

#define hash_hash # ## #

#define mkstr(a) # a

#define in_between(a) mkstr(a)

#define join(c, d) in_between(c hash_hash d)

char p[] = join(x, y); // equivalent to
// char pl[] = "x ## y";

The expansion produces, at various stages:

join(x, y)
in_between(x hash_hash vy)
in_between(x ## y)

mkstr(x ## y)

"X ## "

In other words, expanding hash_hash produces a new token, consisting of two adjacent sharp signs, but this new token is
not the ## operator.

6.10.3.4 Rescanning and further replacement

After all parameters in the replacement list have been substituted and # and ## processing has
taken place, all placemarker preprocessing tokens are removed. The resulting preprocessing token
sequence is then rescanned, along with all subsequent preprocessing tokens of the source file, for
more macro names to replace.

If the name of the macro being replaced is found during this scan of the replacement list (not
including the rest of the source file’s preprocessing tokens), it is not replaced. Furthermore, if any
nested replacements encounter the name of the macro being replaced, it is not replaced. These
nonreplaced macro name preprocessing tokens are no longer available for further replacement even
if they are later (re)examined in contexts in which that macro name preprocessing token would
otherwise have been replaced.

The resulting completely macro-replaced preprocessing token sequence is not processed as a prepro-
cessing directive even if it resembles one, but all pragma unary operator expressions within it are
then processed as specified in 6.10.9 below.

EXAMPLE There are cases where it is not clear whether a replacement is nested or not. For example, given the following
macro definitions:

#define f(a) axg
#define g(a) f(a)

264)Placemarker preprocessing tokens do not appear in the syntax because they are temporary entities that exist only within
translation phase 4.

modifications to ISO/IEC 9899:2018, § 6.10.3.4 page 192 Language



N2522 cmin..core § 6.10.3.5, working draft — May 10, 2020 CORE 202005 (E)

the invocation

f(2) (9)

could expand to either

2xf(9)

or

‘ 2*x9%Q

Strictly conforming programs are not permitted to depend on such unspecified behavior.

6.10.3.5 Scope of macro definitions

A macro definition lasts (independent of block structure) until a corresponding #undef directive is
encountered or (if none is encountered) until the end of the preprocessing translation unit. Macro
definitions have no significance after translation phase 4.

A preprocessing directive of the form
# undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. It is ignored if the specified
identifier is not currently defined as a macro name.

EXAMPLE 1 The simplest use of this facility is to define a “manifest constant”, as in

#define TABSIZE 100

int table[TABSIZE];

EXAMPLE 2 The following defines a function-like macro whose value is the maximum of its arguments. It has the advantages
of working for any compatible types of the arguments and of generating in-line code without the overhead of function calling.
It has the disadvantages of evaluating one or the other of its arguments a second time (including side effects) and generating
more code than a function if invoked several times. It also cannot have its address taken, as it has none.

‘ #define max(a, b) ((a) > (b) ? (a): (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.

EXAMPLE 3 To illustrate the rules for redefinition and reexamination, the sequence

#define x 3
——#defineFar—F—a
_____#define f(a) _f(x x (a))

#undef x

#define x 2

#define g f

#define z z[0]

#define h g(\~{ }

#define m(a) a(w)

#define w 0,1

#define t(a) a

#define p() int

#define q(x) x

#define r(x,y) x ## y

#define str(x) # x

f(y+l) + f(f(z)) % t(t(g)(0) + t)(1);

g(x+(3,4)-w) | h5) &m

(f)~m(m);

p() ilq()]1 = { a(1), r(2,3), r(4,), r(,5), r(,) };

char c[2][6] = { str(hello), str() };

Language modifications to ISO/IEC 9899:2018, § 6.10.3.5 page 193



CORE 202005 (E) § 6.10.3.5, working draft — May 10, 2020 N2522
results in
o X e 2 12 X (112 x (2lO) ) % £2 X (002 2L);
f(2 x (2+(3,4)-0,1 |f2x(\{
" int 1[] {1, 23, 4 5, };
char c[2][6] = { "hello", "" };
modifications to ISO/IEC 9899:2018, § 6.10.3.5 page 194 Language




6

N2522 cmin..core § 6.10.3.5, working draft — May 10, 2020 CORE 202005 (E)

EXAMPLE 4 To illustrate the rules for creating character string literals and concatenating tokens, the sequence

#define str(s) # s

#define xstr(s) str(s)

#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \
X ## s, x ## t)

#define INCFILE(n) vers ## n

#define glue(a, b) a ## b

#define xglue(a, b) glue(a, b)

#define HIGHLOW "hello"
#define LOW Low ", world"
debug(1, 2);
fputs(str(strncmp("abc\0d", "abc", ’'\4’) // this goes away
= 0) str(: @\n), s);
#include xstr(INCFILE(2).h)
glue (HIGH, LOW);
xglue(HIGH, LOW)
results in
printf(llxll II1II II= O/od, XII II2II II= O/OS”, X]., X2);
fputs(

__"strncmp(\

s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello" ", world"

or, after concatenation of the character string literals,

printf("x1= %d, x2= %s", x1, x2);
fputs(

__"strncmp(\

s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello, world"

Space around the # and ## tokens in the macro definition is optional.

EXAMPLE 5 To illustrate the rules for placemarker preprocessing tokens, the sequence

#define t(x,y,z) x ## y ## z
int j[] = { t(1,2,3), t(,4,5), t(6,,7), t(8,9,),
t(10,,), t(,11,), t(,,12), t(,,) }

results in

int j[] = { 123, 45, 67, 89,
10, 11, 12, };

EXAMPLE 6 To demonstrate the redefinition rules, the following sequence is valid.

#define OBJ_LIKE (1-1)
#define OBJ_LIKE /* white space x/ (1-1) /* other x/
#define FUNC_LIKE(a) (a)
#define FUNC_LIKE(a) ( /* note the white space */ \
a /* other stuff on this line
*/)

Language modifications to ISO/IEC 9899:2018, § 6.10.3.5 page 195



CORE 202005 (E) § 6.10.4, working draft — May 10, 2020 cmin..core N2522

But the following redefinitions are invalid:

#define OBJ_LIKE (0) // different token sequence
#define OBJ_LIKE (1 - 1) // different white space
#define FUNC_LIKE(b) (a) // different parameter usage
#define FUNC_LIKE(b) (b) // different parameter spelling

EXAMPLE 7 Finally, to show the variable argument list macro facilities:

_.___#define debug(...) fprintf(stderr, __VA_ARGS__)
_____#define showlist(...) __ puts(#_VA ARGS )

_.___#define report(test, ...) ((test)?puts(#test):\
printf(_VA_ARGS__))

debug("Flag");

debug ("X = %d\n", x);

showlist(The first, second, and third items.);
report(x>y, "x is %d but y is %d", x, y);

results in

fprintf(stderr, "Flag");
fprintf(stderr, "X = %d\n", x);
puts("The first, second, and third items.");
((x>y)?puts("x>y"):
printf("x is %d but y is %d", x, y));

6.10.4 Line control

Constraints

The string literal of a #line directive, if present, shall be a character string literal.

Semantics

The line number of the current source line is one greater than the number of new-line characters read
or introduced in translation phase 1 (5.1.1.2) while processing the source file to the current token.

If a preprocessing token (in particular __LINE__) spans two or more physical lines, it is unspecified
which of those line numbers is associated with that token. If a preprocessing directive spans two or
more physical lines, it is unspecified which of those line numbers is associated with the preprocessing
directive. If a macro invocation spans multiple physical or logical lines, it is unspecified which of
those line numbers is associated with that invocation. The line number of a preprocessing token is
independent of the context (in particular, as a macro argument or in a preprocessing directive). The
line number of a__LINE__ in a macro body is the line number of the macro invocation.

A preprocessing directive of the form
# line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a source
line that has a line number as specified by the digit sequence (interpreted as a decimal integer). The
digit sequence shall not specify zero, nor a number greater than 2147483647.

A preprocessing directive of the form

# line digit-sequence " s-char-sequenceqpt " new-line

sets the presumed line number similarly and changes the presumed name of the source file to be the
contents of the character string literal.

A preprocessing directive of the form

# line pp-tokens new-line

modifications to ISO/IEC 9899:2018, § 6.10.4 page 196 Language



N2522 cmin..core § 6.10.5, working draft — May 10, 2020 CORE 202005 (E)

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after
line on the directive are processed just as in normal text (each identifier currently defined as a
macro name is replaced by its replacement list of preprocessing tokens). The directive resulting after
all replacements shall match one of the two previous forms and is then processed as appropriate.?%)

Recommended practice

The line number associated with a pp-token should be the line number of the first character of the
pp-token. The line number associated with a preprocessing directive should be the line number of
the line with the first # token. The line number associated with a macro invocation should be the
line number of the first character of the macro name in the invocation.

6.10.5 Error directive

Semantics
A preprocessing directive of the form

# error pp-tokens,p, new-line

causes the implementation to produce a diagnostic message that includes the specified sequence of
preprocessing tokens.

6.10.6 Pragma directive
Semantics
A preprocessing directive of the form

# pragma pp-tokensop new-line

where the preprocessing token STDC does not immediately follow pragma in the directive (prior to
any macro replacement)?® causes the implementation to behave in an implementation-defined man-
ner. The behavior might cause translation to fail or cause the translator or the resulting program to
behave in a non-conforming manner. Any such pragma that is not recognized by the implementation
is ignored.

If the preprocessing token STDC does immediately follow pragma in the directive (prior to any macro
replacement), then no macro replacement is performed on the directive, and the directive shall have
one of the following forms?””) whose meanings are described elsewhere:

# pragma STDC FP_CONTRACT on-off-switch
# pragma STDC FENV_ACCESS on-off-switch
# pragma STDC CX_LIMITED_RANGE on-off-switch

# pragma CORE FUNCTION_ATTRIBUTE attribute
# pragma CORE FUNCTION_ATTRIBUTE identifier OFF

on-off-switch: one of
ON OFF DEFAULT

Forward references: the FP_CONTRACT pragma (7.12.2), the FENV_ACCESS pragma (7.6.1), the
CX_LIMITED_RANGE pragma (7.3.4).

6.10.7 Null directive

Semantics
A preprocessing directive of the form

265 Because a new-line is explicitly included as part of the #line directive, the number of new-line characters read while

processing to the first pp-token can be different depending on whether or not the implementation uses a one-pass preprocessor.
Therefore, there are two possible values for the line number following a directive of the form #line __LINE__ new-line.
266) An implementation is not required to perform macro replacement in pragmas, but it is permitted except for in standard
pragmas (where STDC immediately follows pragma). If the result of macro replacement in a non-standard pragma has the
same form as a standard pragma, the behavior is still implementation-defined; an implementation is permitted to behave as
if it were the standard pragma, but is not required to.
267)See “future language directions” (6.11.7).

Language modifications to ISO/IEC 9899:2018, § 6.10.7 page 197



CORE 202005 (E) § 6.10.8, working draft — May 10, 2020 cmin..core N2522

# new-line

has no effect.

6.10.8 Predefined macro names

The values of the predefined feature macros listed in the following subclauses®® (except for
—FILE__ and __LINE__) remain constant throughout the translation unit.

None of these-the macro names, nor the identifier defined, shall be the subject of a #define or
a #undef preprocessing directive. Any other predefined macro names shall begin with a leading
underscore followed by an uppercase letter or a second underscore.

The implementation shall not predefine the macro__cplusplus, nor shall it define it in any standard
header.

Forward references: standard headers (7.1.2).

6.10.8.1 Mandatory feature macros
The following macro names shall be defined by the implementation:

—DATE__ The date of translation of the preprocessing translation unit: a character string literal of
the form "Mmm dd yyyy", where the names of the months are the same as those generated
by the asctime function, and the first character of dd is a space character if the value is
less than 10. If the date of translation is not available, an implementation-defined valid
date shall be supplied.

__FILE__ The presumed name of the current source file (a character string literal).2®)

—LINE__ The presumed line number (within the current source file) of the current source line (an
integer constant).”)

—CORE__ The integer constant 1, intended to indicate a conforming implementation of the core.

—STDC_HOSTED__ The integer constant 1 if the implementation is a hosted implementation or the
integer constant 0 if it is not.

—STDC-VERSION_— __CORE_ALIAS_OVERWRE®ESif using the core:alias attribute on an identifier with

external linkage inhibits an external definition in any other translation units, false

otherwise.
—CORE_VERSION__ The integer constant 202005L.%7%

—TIME__ The time of translation of the preprocessing translation unit: a character string literal of
the form "hh:mm:ss" as in the time generated by the asctime functions. If the time of
translation is not available, an implementation-defined valid time shall be supplied. the

—STDC_IS0_10646__ An integer constant of the form yyyymmL (for example, 199712L). H-this
symbolis-defined;then-everyEvery character in the Unicode required set, when stored

in an object of type wchar_t, has the same value as the short identifier of that character.
The Unicode required set consists of all the characters that are defined by ISO/IEC 10646,
along with all amendments and technical corrigenda, as of the specified year and month.

268)See “future language directions” (6.11.8).

269 The presumed source file name and line number can be changed by the #line directive.

270)See Annex M for the values of analogous macro —STDC_VERSION__ in previous revisions of the C standard. The intention
is that this will remain an integer constant of type long int that is increased with each revision of this document.

modifications to ISO/IEC 9899:2018, § 6.10.8.1 page 198 Language



N2522 cmin..core § 6.10.8.2, working draft — May 10, 2020 CORE 202005 (E)

—STDC_UTF_16_ The integer constant 1, 1ntended to indicate that values of type cha r16 t are
UTEF-16 encoded a

—STDC_UTF_32__ The integer constant 1, mtended to indicate that values of type cha r32_t are
UTEF-32 encoded

2 Additionally there shall be macros —_CORE_X_IS_TYPE__ for each of the integer types defined
in 6.2.5.1, where X is replaced by the all caps name of the type without the _t suffix, such that
the macro expands to true if the type is a proper type, and false otherwise. For example, there is
a macro __CORE_CHAR8_IS_TYPE__ if the type char8_t is provided as a type that is different from
char, signed char, or unsigned char.

3 NOTE Inthe C/C++ core the macros _STDCUTF_16__ and __STDCUTF_32__ are useless features since here it is assumed
that the corresponding types are UTF encoded, anyhow. C also has an optional macro __STDC_MB_MIGHT_NEQ_WC__ that
would be set if the encodings of wchar_t and code would not agree on the basic character set.

Forward references: common-definitions{719the asctime functions (7.27.3.1), unicode utilities
(7.28).

6.10.8.2 Conditional feature macros
1 The following macro names are conditionally defined by the implementation:

—STDC_ANALYZABLE__ The integer constant 1, intended to indicate conformance to the specifica-
tions in Annex L (Analyzability).

—STDC_IEC_559__ The integer constant 1, intended to indicate conformance to the specifications
in Annex F (IEC 60559 floating-point arithmetic).

—STDC-NO-ATOMICS— __CORE_NOTAE®GMI€Ser constant 1, intended to indicate that the implementation does

not support atemie types-(including the —Atemic-type qualifier)-and-the <stdatomic. h>
header.

—STDC=NO=COMPLEX— _CORE_NOTG@MBLEYer constant 1, intended to indicate that the implementation does
not support eomplex-types-orthe <complex.h> header.

—_STDC_NO_THREADS__ The integer constant 1, intended to indicate that the implementation does
not support the <threads.h> header.

—STDC=NO=VLA— __CORE_NOIWkAnteger constant 1, intended to indicate that the implementation does not

support variable length-arrays-or-variably modified-types—definitions of variable length
array type in block scope.

—CORE_WEAK_THREEWAY_COMPARISON__ An integer constant expression that indicates that some
of the implementation-defined choices concerning three-way comparison of pointers,
integers and structure types, leads to weak three-way comparison types. The possible

values are described in 7.31.1.

2 NOTE For C, the absence of complex types is condionned by the feature test macro __STDC_NO_COMPLEX__, for C++ the
are conditioned to the inclusion of a specific header. For this core specification we opted for simplicity of usage, so all
operational language features for complex types are supposed to be available by default.

Language modifications to ISO/IEC 9899:2018, § 6.10.8.2 page 199



CORE 202005 (E) § 6.10.8.3, working draft — May 10, 2020 cmin..core N2522

6.10.8.3 Mandatory type and value macros

The followin acro names provide access to principal language features and shall be defined b
the implementation.

NULL expands to an implementation-defined null pointer constant.
tonullptr(expr) where the expression expr shall have a scalar type. If expr is a null pointer

271)

constant, the result is nullptr. Otherwise, the result is expr.

of fsetof (type, member-designator) expands to_an integer constant expression that has type
size_t, the value of which is the offset in bytes, to the subobject (designated by
member-designator), from the beginning of any object of type type. The type and member
designator shall be such that given

... static type t;

then the expression &(t. member-designator) evaluates to an address constant. If the
specified type defines a new type, the behavior is undefined.

atomic_type (fype-name) specifies the atomic type that is derived from the type name, see 6.7.2.4.

complex_type (fype-or-expression) specifies for any arithmetic type or expression the complex type
of least precision to which it is converted in usual arithmetic. It is equivalent to the type

___decltype(((type-or-expression)+0) + 0.0if

generic_type (expression) specifies the generic type of expression. It is equivalent to the type

decltype([](auto x){ return x; }(expression))

eneric_value (expression) computes the value of a scalar expression, an array or a function
designator. It is equivalent to

((generic_type(expression)) (expression))

and is a constant expression, whenever expression is.
issame (expr0, exprl) Returns true if the generic types of expr0 and exprl are compatible, false

otherwise,

floating_value (expression) converts an arithmetic expression to the floating point type with
least precision as by usual arithmetic conversion. It is equivalent to

___ \(expression)+0.0f)

and is a constant expression, whenever expression is.

complex_value (expression) computes the complex value of an arithmetic expression. It is
equivalent to

The intent of this macro is to normalize values that might be passed to interfaces that expect pointers. All null pointer
constants are converted to nullptr such that they can be captured by a nullptr_t case of a generic_selection.

271)

modifications to ISO/IEC 9899:2018, § 6.10.8.3 page 200 Language



N2522 cmin..core § 6.10.8.4, working draft — May 10, 2020 CORE 202005 (E)

(e
\

]
xpression)+0.0if) \
|

and is a constant expression, whenever expression is.
real_type (type-or-expression) specifies the real type of an arithmetic expression or type name.

real_value (expression) computes the real value of an arithmetic expression. It has floating point
type and is equivalent to

((real_type(complex_value(expression)))expression)

and is a constant expression, whenever expression is.

imaginary_value (expression) computes the imaginary value of an arithmetic expression. It has
floating point type and is equivalent to

((real_type(complex_value(expression)))(-1.0if x (expression)))

and is a constant expression, whenever expression is.

6.10.8.4 Optional keyword macros
The keywords

alignas bool not true
alignof compl nullptr xor_eq
and_eq decltype or_eq xor
and false or

bitand generic_selection static_assert

bitor not_eq thread_local

optionally are also predefined macro names that expand to unspecified tokens.
6.10.9 Pragma operator

Semantics

A unary operator expression of the form:
—Pragma ( string-literal )

is processed as follows: The string literal is destringized by deleting any encoding prefix, deleting
the leading and trailing double-quotes, replacing each escape sequence \" by a double-quote, and
replacing each escape sequence \\ by a single backslash. The resulting sequence of characters
is processed through translation phase 3 to produce preprocessing tokens that are executed as if
they were the pp-tokens in a pragma directive. The original four preprocessing tokens in the unary
operator expression are removed.
EXAMPLE A directive of the form:

[ ]

\ #pragma listing on "..\listing.dir"
L |

can also be expressed as:

| —Pragma ("listing on \"..\\listing.dir\"") |

The latter form is processed in the same way whether it appears literally as shown, or results from macro replacement, as in:

Language modifications to ISO/IEC 9899:2018, § 6.10.9 page 201



CORE 202005 (E) § 6.10.9, working draft — May 10, 2020 N2522

#define LISTING(x) PRAGMA(listing on #Xx)
#define PRAGMA(x) _Pragma (#x)

LISTING (..\listing.dir)

modifications to ISO/IEC 9899:2018, § 6.10.9 page 202 Language



N2522 § 6.11, working draft — May 10, 2020 CORE 202005 (E)

6.11 Future language directions
6.11.1 Floating types

Future standardization may include additional floating-point types, including those with greater
range, precision, or both than long double.

6.11.2 Linkages of identifiers

Declaring an identifier with internal linkage at file scope without the static storage-class specifier
is an obsolescent feature.

6.11.3 External names

Restriction of the significance of an external name to fewer than 255 characters (considering each
universal character name or extended source character as a single character) is an obsolescent feature
that is a concession to existing implementations.

6.11.4 Character escape sequences

Lowercase letters as escape sequences are reserved for future standardization. Other characters may
be used in extensions.

6.11.5 Storage-class specifiers

The placement of a storage-class specifier other than at the beginning of the declaration specifiers in
a declaration is an obsolescent feature.

6.11.6 Function declarators
The use of function declarators without prototypes is an obsolescent feature.

6.11.7 Pragma directives
Pragmas whose first preprocessing token is STDC are reserved for future standardization.

6.11.8 Predefined macro names
Macro names beginning with __STDC_ and __CORE_ are reserved for future standardization.

Language modifications to ISO/IEC 9899:2018, § 6.11.8 page 203



CORE 202005 (E) § 7, working draft — May 10, 2020 cmin..core N2522

7. Library

7.1 Introduction

7.1.1 Definitions of terms

A string is a contiguous sequence of characters terminated by and including the first null character.
The term multibyte string is sometimes used instead to emphasize special processing given to
multibyte characters contained in the string or to avoid confusion with a wide string. A pointer to a
string is a pointer to its initial (lowest addressed) character. The length of a string is the number of
bytes-characters preceding the null character and the value of a string is the sequence of the values of
the contained characters, in order.

The decimal-point character is the character used by functions that convert floating-point numbers
to or from character sequences to denote the beginning of the fractional part of such character
sequences.”’? It is represented in the text and examples by a period, but may be changed by the
setlocale function.

A null wide character is a wide character with code value zero.

A wide string is a contiguous sequence of wide characters terminated by and including the first null
wide character. A pointer to a wide string is a pointer to its initial (lowest addressed) wide character.
The length of a wide string is the number of wide characters preceding the null wide character and the
value of a wide string is the sequence of code values of the contained wide characters, in order.

A shift sequence is a contiguous sequence of bytes within a multibyte string that (potentially) causes
a change in shift state (see 5.2.1.1). A shift sequence shall not have a corresponding wide character;
it is instead taken to be an adjunct to an adjacent multibyte character.”’? In this clause, references to
“white-space character” refer to (execution) white-space character as defined by isspace. References to
“white-space wide character” refer to (execution) white-space wide character as defined by iswspace.

Forward references: character handling (7.4), the setlocale function (7.11.1.1).

7.1.2 Standard headers

Each library function is declared, with a type that includes a prototype, in a header,”” whose contents
are made available by the #include preprocessing directive. The header declares a set of related
functions, plus any necessary types and additional macros needed to facilitate their use. In-addition

274

The standard headers are?”

<assert.h> <limits.h> <stdint.h>
<complex.h> <locale.h> <stdio.h>
<ctype.h> <math.h> <stdlib.h>
<errno.h> <setjmp.h> <stdnoreturn.h>
<fenv.h> <signal.h> <string.h>
<float.h> <stdarg.h> <threads.h>
<inttypes.h> <stdatomic.h> <time.h>

272)The functions that make use of the decimal-point character are the numeric conversion functions (7.22.1) and the
formatted input/output functions (7.21.6, 7.29.2).

273)For state-dependent encodings, the values for MB_CUR_MAX and MB_LEN_MAX are thus required to be large enough to
count all the bytes in any complete multibyte character plus at least one adjacent shift sequence of maximum length. Whether
these counts provide for more than one shift sequence is the implementation’s choice.

274) A header is not necessarily a source file, nor are the < and > delimited sequences in header names necessarily valid source
file names.

275 The headers <complex.h>, <stdatomic.h>, and <threads.h> are conditional features that implementations need not
support; see 6.10.8.2.

modifications to ISO/IEC 9899:2018, § 7.1.2 page 204 Library



N2522 cmin..core § 7.1.3, working draft — May 10, 2020 CORE 202005 (E)

<uchar.h> <wchar.h> <wctype.h>

Additionally, the empty headers <iso0646.h>, <stdalign.h>, <stdbool.h> , <stddef.h>,6 and
<tgmath.h>

shall be present for backwards compatibility reasons only.

If a file with the same name as one of the above < and > delimited sequences, not provided as part of
the implementation, is placed in any of the standard places that are searched for included source
files, the behavior is undefined.

Standard headers may be included in any order; each may be included more than once in a given
scope, with no effect different from being included only once, except that the effect of including

<assert.h>depends on the definition of NDEBUG (see 7.2). If used, a header shall be included outside
of any external declaration or definition, and it shall first be included before the first reference to
any of the functions or objects it declares, or to any of the types or macros it defines. However, if
an identifier is declared or defined in more than one header, the second and subsequent associated
headers may be included after the initial reference to the identifier. The program shall not have any
macros with names lexically identical to keywords currently defined prior to the inclusion of the
header or when any macro defined in the header is expanded.

Some standard headers define or declare identifiers that had not been present in previous versions
of this document. To allow implementations and users to adapt to that situation, they also define a
version macro for feature test of the form __STDC_VERSION_XXXX_H__ which expands to 202005L,
where XXXX is the all-caps spelling of the corresponding header <xxxx.h>.

Any definition of an object-like macro described in this clause er??-shall expand to code that is fully
protected by parentheses where necessary, so that it groups in an arbitrary expression as if it were a
single identifier.

Any declaration of a library function shall have external linkage.
A summary of the contents of the standard headers is given in Annex B.

Forward references: diagnostics (7.2).

7.1.3 Reserved identifiers

Each header declares or defines all identifiers listed in its associated subclause, and optionally
declares or defines identifiers listed in its associated future library directions subclause and identifiers
which are always reserved either for any use or for use as file scope identifiers.

— All identifiers that begin with an underscore and either an uppercase letter or another under-
score are always reserved for any use, except those identifiers which are lexically identical to
keywords.?®)

— All identifiers that begin with an underscore are always reserved for use as identifiers with file
scope in both the ordinary and tag name spaces.

— Each macro name in any of the following subclauses (including the future library directions)
is reserved for use as specified if any of its associated headers is included; unless explicitly
stated otherwise (see 7.1.4).

— Allidentifiers with external linkage in any of the following subclauses (including the future
library directions) and errno are always reserved for use as identifiers with external linkage.?””)

— Each identifier with file scope listed in any of the following subclauses (including the future
library directions) is reserved for use as a macro name and as an identifier with file scope in
the same name space if any of its associated headers is included.

276) Allows identifiers spelled with a leading underscore followed by an uppercase letter that match the spelling of a keyword
to be used as macro names by the program.
27)The list of reserved identifiers with external linkage includes math_errhandling, setjmp, va_copy, and va_end.

Library modifications to ISO/IEC 9899:2018, § 7.1.3 page 205



CORE 202005 (E) § 7.1.4, working draft — May 10, 2020 cmin..core N2522

No other identifiers are reserved. If the program declares or defines an identifier in a context in
which it is reserved (other than as allowed by 7.1.4), or defines a reserved identifier or attribute
token described in 6.7.15 as a macro name, the behavior is undefined.

If the program removes (with #undef) any macro definition of an identifier in the first group listed
above or attribute token described in 6.7.15, the behavior is undefined.

7.1.4 Use of library functions

Each of the following statements applies unless explicitly stated otherwise in the detailed descrip-
tions that follow:

— If an argument to a function has an invalid value (such as a value outside the domain of the
function, or a pointer outside the address space of the program, or a null pointer, or a pointer to
a non-modifiable storage instance when the corresponding parameter is not const-qualified) or
a type (after default argument promotion) not expected by a function with a variable number
of arguments, the behavior is undefined.

— If a function argument is described as being an array, the pointer actually passed to the function
shall have a value such that all address computations and accesses to objects (that would be
valid if the pointer did point to the first element of such an array) are in fact valid.

— Any function declared in a header may be additionally implemented as a function-like macro
defined in the header, so if a library function is declared explicitly when its header is included,
one of the techniques shown below can be used to ensure the declaration is not affected by
such a macro. Any macro definition of a function can be suppressed locally by enclosing
the name of the function in parentheses, because the name is then not followed by the left
parenthesis that indicates expansion of a macro function name. For the same syntactic reason,
it is permitted to take the address of a library function even if it is also defined as a macro.?’®)
The use of #undef to remove any macro definition will also ensure that an actual function is
referred to.

— Any invocation of a library function that is implemented as a macro shall expand to code that
evaluates each of its arguments exactly once, fully protected by parentheses where necessary,
so it is generally safe to use arbitrary expressions as arguments.?””)

— Likewise, those function-like macros described in the following subclauses may be invoked in
an expression anywhere a function with a compatible return type could be called.?8?

— All object-like macros listed as expanding to integer constant expressions shall additionally be
suitable for use in #if preprocessing directives.

Provided that a library function can be declared without reference to any type defined in a header, it
is also permissible to declare the function and use it without including its associated header.

There is a sequence point immediately before a library function returns.

278)This means that an implementation is required to provide an actual function for each library function, even if it also
provides a macro for that function.

279Such macros might not contain the sequence points that the corresponding function calls do.

280)Because external identifiers and some macro names beginning with an underscore are reserved, implementations can
provide special semantics for such names. For example, the identifier _BUILTIN_abs could be used to indicate generation of
in-line code for the abs function. Thus, the appropriate header could specify

#define abs(x) _BUILTIN_abs(x)

for a compiler whose code generator will accept it.
In this manner, a user desiring to guarantee that a given library function such as abs will be a genuine function can write

#undef abs

whether the implementation’s header provides a macro implementation of abs or a built-in implementation. The prototype
for the function, which precedes and is hidden by any macro definition, is thereby revealed also.

modifications to ISO/IEC 9899:2018, § 7.1.4 page 206 Library



N2522 cmin..core § 7.1.4, working draft — May 10, 2020 CORE 202005 (E)

The functions in the standard library are not guaranteed to be reentrant and may modify objects
with static or thread storage duration.??

Unless explicitly stated otherwise in the detailed descriptions that follow, library functions shall
prevent data races as follows: A library function shall not directly or indirectly access objects
accessible by threads other than the current thread unless the objects are accessed directly or
indirectly via the function’s arguments. A library function shall not directly or indirectly modify
objects accessible by threads other than the current thread unless the objects are accessed directly
or indirectly via the function’s non-const arguments.”®” Implementations may share their own
internal objects between threads if the objects are not visible to users and are protected against data
races.

Unless otherwise specified, library functions shall perform all operations solely within the current
thread if those operations have effects that are visible to users.?®%

Unless otherwise specified, library functions by themselves do not expose storage instances,

but library functions that execute application specific callbacks?®” may expose storage instances

through calls into these callbacks.

EXAMPLE The function atoi can be used in any of several ways:

— Dby use of its associated header (possibly generating a macro expansion)

#include <stdlib.h>
const char xstr;

/*x ... %/

i = atoi(str);

— by use of its associated header (assuredly generating a true function reference)

#include <stdlib.h>
#undef atoi

const char xstr;

/*x ... %/

i = atoi(str);

#include <stdlib.h>
const char xstr;

/*x ... x/

i = (atoi)(str);

— by explicit declaration

extern int atoi(const char x);
const char xstr;

VE S V4

i = atoi(str);

28D)Thus, a signal handler cannot, in general, call standard library functions.

282)This means, for example, that an implementation is not permitted to use a static object for internal purposes without
synchronization because it could cause a data race even in programs that do not explicitly share objects between threads.
Similarly, an implementation of memcpy is not permitted to copy bytes beyond the specified length of the destination object
and then restore the original values because it could cause a data race if the program shared those bytes between threads.

283)This allows implementations to parallelize operations if there are no visible side effects.

289 The following library functions call application specific functions that they or related functions receive as arguments:
bsearch, call_once, exit (for atexit handlers), gsort, quick_exit (for at_quick_exit handlers), and thrd_exit (for

thread specific storage).

Library modifications to ISO/IEC 9899:2018, § 7.1.4 page 207



CORE 202005 (E) § 7.2, working draft — May 10, 2020 cmin..core N2522

7.2 Diagnostics <assert.h>

The header <assert. h> defines the assert and-statie—assertmaerosmacro and refers to another
macro,

\ NDEBUG

which is not defined by <assert.h>. If NDEBUG is defined as a macro name at the point in the source
file where <assert.h>is included, the assert macro is defined simply as

\ #define assert(ignore) ((void)0)

The assert macro is redefined according to the current state of NDEBUG each time that <assert.h>
is included.

The assert macro shall be implemented as a macro, not as an actual function. If the macro definition
is suppressed in order to access an actual function, the behavior is undefined.

The maero-expandsto=Static—assert-
7.2.1 Program diagnostics

7.2.1.1 The assert macro
Synopsis

#include <assert.h>
—void—assert{scalar—expression)+
__.___void assert(scalar_expression) core::evaluates(stderr) |] ;

Description

The assert macro puts diagnostic tests into programs; it expands to a void expression. When it
is executed, if expression (which shall have a scalar type) is false (that is, compares equal to 0),
the assert macro writes information about the particular call that failed (including the text of the
argument, the name of the source file, the source line number, and the name of the enclosing function
— the latter are respectively the values of the preprocessing macros —FILE__ and __LINE__ and of
the identifier __func_) on the standard error stream in an implementation-defined format.?8® Tt
then calls the abort function.

Returns
The assert macro returns no value.

Forward references: the abort function (7.22.5.1).

285 The message written might be of the form:

[
Assertion failed: expression, function abc, file xyz, line nnn.
L

modifications to ISO/IEC 9899:2018, § 7.2.1.1 page 208 Library



N2522 cmin..core § 7.3, working draft — May 10, 2020 CORE 202005 (E)

7.3 Complex arithmetic <complex.h>

7.3.1 Introduction

The header <complex. h> defines macros and declares-funections-thatamends type-generic macros
that are otherwise defined in the <math.h> to support complex arithmetic. The <math.h> is

implicitly included. If both headers are included, the order in which they are included shall not
impact on the syntax or sematics of the interfaces that are provided.

Implementations that define the macro —STPE=NO-COMPLEX——__CORE_NO_COMPLEX__ need not
provide this header nor support any of its facilities.

Each-synopsis;-other-thanfor-the-CMPLX-macros, specifies—a—family-of funetions-The subclauses
below _add functionality for complex arguments to_type-generic macros were the principal
definition is described in 7.12. The functionality is added analogously as for real floating arguments
and conversions to functions with real floating arguments, there, with some specificities for the
complex value case as stated. Obsolecent function names are also reserved, consisting of a principal
function with-one or more doubte—comptex-(of the name prefixed with the character "c”) and with
complex_type(double) parameters and a deubtecomptex-or-doubte-complex_type(double)

return value; and other functions with the same name but with f and 1 suffixes which are
corresponding functions with float and long double parameters and return values. The
identifiers that are such reserved are

cabsf casinf catanh cexpf csinf ctanf
cabsl casinhf catanl cexpl csinhf ctanhf
cabs casinhl catan cexp csinhl ctanhl
cacosf casinh ccosf clogf csinh ctanh
cacoshf casinl ccoshf clogl csinl ctanl
cacoshl casin ccoshl clog csin ctan
cacosh catanf ccosh cpowf csqrtf

cacosl catanhf ccosl cpowl csqrtl

cacos catanhl ccos cpow csqrt

Fhe-maero-The feature test macro __CORE_VERSION_COMPLEX_H__ expands to the token 202005L.
Additionall reserved are also the obsolecent macros _expands—to—either —Imaginary=—I—or—

- — — — 7

complex —Complex_I I CMPLX CMPLXF CMPLXL

aﬂthmeﬂeév—%Core funct10r1 attrlbutes are im 11ed analo ousl to the revisions in 7 12

7.3.2 Conventions

Values are interpreted as radians, not degrees. An implementation may set errno but is not required
to.

7.3.3 Branch cuts

Some of the functions below have branch cuts, across which the function is discontinuous. For
implementations with a signed zero (including all IEC 60559 implementations) that follow the
specifications ef?2-the sign of zero distinguishes one side of a cut from another so the function is
continuous (except for format limitations) as the cut is approached from either side. For example, for
the square root function, which has a branch cut along the negative real axis, the top of the cut, with
imaginary part+0, maps to the positive imaginary axis, and the bottom of the cut, with imaginary
part-0 , maps to the negative imaginary axis.

Implementations that do not support a signed zero (see Annex F) cannot distinguish the sides of
branch cuts. These implementations shall map a cut so the function is continuous as the cut is

Library modifications to ISO/IEC 9899:2018, § 7.3.3 page 209



CORE 202005 (E) §7.3.4, working draft — May 10, 2020 cmin..core N2522

approached coming around the finite endpoint of the cut in a counter clockwise direction. (Branch
cuts for the functions specified here have just one finite endpoint.) For example, for the square root
function, coming counter clockwise around the finite endpoint of the cut along the negative real axis
approaches the cut from above, so the cut maps to the positive imaginary axis.

7.3.4 The CX_LIMITED_RANGE pragma
Synopsis

#include <complex.h>
#pragma STDC CX_LIMITED_RANGE on-off-switch

Description

The usual mathematical formulas for complex multiply, divide, and absolute value are problem-
atic because of their treatment of infinities and because of undue overflow and underflow. The
CX_LIMITED_RANGE pragma can be used to inform the implementation that (where the state is “on”)
the usual mathematical formulas are acceptable.?®” The pragma can occur either outside external
declarations or preceding all explicit declarations and statements inside a compound statement.
When outside external declarations, the pragma takes effect from its occurrence until another
CX_LIMITED_RANGE pragma is encountered, or until the end of the translation unit. When inside a
compound statement, the pragma takes effect from its occurrence until another CX_LIMITED_RANGE
pragma is encountered (including within a nested compound statement), or until the end of the
compound statement; at the end of a compound statement the state for the pragma is restored to
its condition just before the compound statement. If this pragma is used in any other context, the
behavior is undefined. The default state for the pragma is “off”.

7.3.5 Trigonometric functions

Synopsisreplace

#include <complex.h>

double complex cacos(double complex z);

float complex cacosf(float complex z);

long double complex cacosl(long double complex z);

The cos, sin, and tan type-generic macros (7.12.4) are extended to complex arguments b

implementing the appropiate definitions for the complex domain. For other functions, specific
recautions apply according to the following clauses.

7.3.5.1 The acos type-generic macro

Description

The For complex arguments, the acos type-generic macro eomptitecomputes the complex arc cosine
of z, with branch cuts outside the interval [—1, +1] along the real axis.
Returns

The-For complex arguments, the acos type-generic macro return-returns the complex arc cosine
value, in the range of a strip mathematically unbounded along the imaginary axis and in the interval
[0, 7] along the real axis.

7.3.5.2 The asin type-generic macro

Synepsisreplace

[
\ #include <complex.h>

286)The purpose of the pragma is to allow the implementation to use the formulas:

(z+iy) X (u+iv) = (zu—yv)+i(yu+ zv)
(x+iy) [ (utiv) = [(zu+yv)+ilyu —zv)]/(u? +0?)

otil = VEZEy

where the programmer can determine they are safe.

modifications to ISO/IEC 9899:2018, § 7.3.5.2 page 210 Library



N2522 cmin..core §7.3.5.3, working draft — May 10, 2020 CORE 202005 (E)

\ double complex casin(double complex z);

\ float complex casinf(float complex z);

\ long double complex casinl(long double complex z);
L

Description

The-For complex arguments, the asin type-generic macro eomptite-computes the complex arc sine
of z, with branch cuts outside the interval [—1, +1] along the real axis.
Returns

FheFor complex arguments, the asin type-generic macro returnreturns the complex arc sine value,
in the range of a strip mathematically unbounded along the imaginary axis and in the interval
[—%,+75] along the real axis.

7.3.5.3 The atan type-generic macro

Synepsisreplace

#include <complex.h>

double complex catan(double complex z);

float complex catanf(float complex z);

long double complex catanl(long double complex z);

Description

Fhe-For complex arguments, the atan type-generic macro eoempute-computes the complex arc
tangent of z, with branch cuts outside the interval [—i, +¢] along the imaginary axis.

Returns

The-For complex arguments, the atan type-generic macro returnreturns the complex arc tangent
value, in the range of a strip mathematically unbounded along the imaginary axis and in the interval

[—Z,+%] along the real axis.

Synopsisreplace

#include <complex.h>

double complex ccos(double complex z);

float complex ccosf(float complex z);

long double complex ccosl(long double complex z);

Deseripti
Thecompute-the complex-ecosine-of z—
Returns

The return-the-complex-cosine-value—
Syrepsisreplace

#include <complex.h>

double complex csin(double complex z);

float complex csinf(float complex z);

long double complex csinl(long double complex z);

Deserioti
The-compute the complexsine-ofz—

Synepsisreplace

\ #include <complex.h>
\ double complex ctan(double complex z);

Library modifications to ISO/IEC 9899:2018, § 7.3.5.3 page 211



CORE 202005 (E) §7.3.6, working draft — May 10, 2020 cmin..core N2522

\ float complex ctanf(float complex z);
\ long double complex ctanl(long double complex z);

Descripi

Returns
Thereturn-the complex-tangent-value—

7.3.6 Hyperbolic functions

The cosh, sinh, and tanh type-generic macros (7.12.5) are extended to complex arguments b
implementing the appropiate definitions for the complex domain. For other functions, specific
recautions apply according to the following clauses.

7.3.6.1 The acosh type-generic macro

Synepsisreplace

#include <complex.h>

double complex cacosh(double complex z);

float complex cacoshf(float complex z);

long double complex cacoshl(long double complex z);

Description
The-For complex arguments, the acosh type-generic macro eempute-computes the complex arc

hyperbolic cosine of z, with a branch cut at values less than 1 along the real axis.
Returns

Fhe-For complex arguments, the acosh type-generic macro return-returns the complex arc hyper-
bolic cosine value, in the range of a half-strip of nonnegative values along the real axis and in the
interval [—im, +in] along the imaginary axis.

7.3.6.2 The asinh type-generic macro

Synopsisreplace

#include <complex.h>

double complex casinh(double complex z);

float complex casinhf(float complex z);

long double complex casinhl(long double complex z);

Description

The-For complex arguments, the asinh type-generic macro comptite-computes the complex arc
hyperbolic sine of z, with branch cuts outside the interval [—i, +i] along the imaginary axis.

Returns

The-For complex arguments, the asinh type-generic macro return-returns the complex arc hyper-
bolic sine value, in the range of a strip mathematically unbounded along the real axis and in the
interval [, +%] along the imaginary axis.
7.3.6.3 The atanh type-generic macro

Synepsisreplace

#include <complex.h>

double complex catanh(double complex z);

float complex catanhf(float complex z);

long double complex catanhl(long double complex z);

modifications to ISO/IEC 9899:2018, § 7.3.6.3 page 212 Library




N2522 cmin..core § 7.3.7, working draft — May 10, 2020 CORE 202005 (E)

Description

The-For complex arguments, the atanh type-generic macro eemptite-computes the complex arc
hyperbolic tangent of z, with branch cuts outside the interval [—1, +1] along the real axis.

Returns

The-For complex arguments, the atanh type-generic macro return-returns the complex arc hyper-
bolic tangent value, in the range of a strip mathematically unbounded along the real axis and in the

interval [— X, + 2] along the imaginary axis.

Synepsisreplace

#include <complex.h>

double complex ccosh(double complex z);

float complex ccoshf(float complex z);

long double complex ccoshl(long double complex z);

Deserio:
o , ose] boliccosineofs.
Returns

- ] o e e
Synopsisreplace

#include <complex.h>

double complex csinh(double complex z);

float complex csinhf(float complex z);

long double complex csinhl(long double complex z);

Deserio:
- ] . bolicsineof.s
Returns

- ] o bolicsi e
Synopsisreplace

#include <complex.h>

double complex ctanh(double complex z);

float complex ctanhf(float complex z);

long double complex ctanhl(long double complex z);

Deseription
The-compute-thecomplex-hyperbolietangentof 2z
Returns

The return-the-complex-hyperbolic tangent-value—
7.3.7 Exponential and logarithmic functions

Synoepsisreplace

#include <complex.h>

double complex cexp(double complex z);

float complex cexpf(float complex z);

long double complex cexpl(long double complex z);

Deserioti
Returns

Library modifications to ISO/IEC 9899:2018, § 7.3.7 page 213



CORE 202005 (E) §7.3.7.1, working draft — May 10, 2020 cmin..core N2522

Thereturn-the complex-base-c-expenential-value-—The exp type-generic macro (7.12.6.1) is extended
to complex arguments by implementing the appropiate definition for the complex domain. For the
log function specific precautions apply according to the following clause.

7.3.7.1 The log type-generic macro

Synepsisreplace

#include <complex.h>

double complex clog(double complex z);

float complex clogf(float complex z);

long double complex clogl(long double complex z);

Description

The-For complex arguments, the log type-generic macro eomptite-computes the complex natural
(base-e) logarithm of z, with a branch cut along the negative real axis.
Returns

The-For complex arguments, the log type-generic macro returnreturns the complex natural loga-
rithm value, in the range of a strip mathematically unbounded along the real axis and in the interval
[—im, +im] along the imaginary axis.

7.3.8 Power and absolute-value functions

Synepsisreplace

#include <complex.h>

double cabs(double complex z);

float cabsf(float complex z);

long double cabsl(long double complex z);

7.3.8.1 The pow type-generic macro

Synepsisreplace

#include <complex.h>

double complex cpow(double complex x, double complex y);

float complex cpowf(float complex x, float complex y);

long double complex cpowl(long double complex x, long double complex y);

Description

Fhe-For complex arguments, the pow type-generic macro eempute-computes the complex power

function x¥, with a branch cut for the first parameter along the negative real axis.

Returns

FheFor complex arguments, the pow type-generic macro returnreturns the complex power function
value.

7.3.8.2 The sqrt type-generic macro
Synepsisreplace

#include <complex.h>

double complex csqrt(double complex z);

float complex csqrtf(float complex z);
long double complex csqrtl(long double complex z);

modifications to ISO/IEC 9899:2018, § 7.3.8.2 page 214 Library




N2522 cmin..core §7.3.8.2, working draft — May 10, 2020 CORE 202005 (E)

Description

The-For complex arguments, the sqrt type-generic macro eemputte-computes the complex square
root of z, with a branch cut along the negative real axis.

Returns

The-For complex arguments, the sqrt type-generic macro returnreturns the complex square root
value, in the range of the right half-plane (including the imaginary axis)-

Synepsisreplace

#include <complex.h>

double carg(double complex z);

float cargf(float complex z);

long double cargl(long double complex z);

#include <complex.h>

double cimag(double complex z);

float cimagf(float complex z);

long double cimagl(long double complex z);

Bescrinti
- b i
Prebras

- b ima | N
Synepsisreplace

#include <complex.h>

double complex CMPLX(double x, double y);

float complex CMPLXF(float x, float y);

long double complex CMPLXL(long double x, long double y);

#include <complex.h>

double complex conj(double complex z);

float complex conjf(float complex z);

long double complex conjl(long double complex z);

Library modifications to ISO/IEC 9899:2018, § 7.3.8.2 page 215




CORE 202005 (E) §7.3.8.2, working draft — May 10, 2020 cmin..core N2522

Returns

Thereturn-the complex-conjugate value—
Synepsisreplace

#include <complex.h>

double complex cproj(double complex z);

float complex cprojf(float complex z);
long double complex cprojl(long double complex z);

#include <complex.h>

double creal(double complex z);

float crealf(float complex z);

long double creall(long double complex z);

B . L
The-compute-the real-partofz-

modifications to ISO/IEC 9899:2018, § 7.3.8.2 page 216 Library




N2522 cmin..core § 7.4, working draft — May 10, 2020 CORE 202005 (E)

7.4 Character handling <ctype.h>

The header <ctype. h> declares several functions useful for classifying and mapping characters.?s”)

In all cases the argument is an int, the value of which shall be representable as an unsigned char
or shall equal the value of the macro EOF. If the argument has any other value, the behavior is
undefined.

The behavior of most of these functions is affected by the current locale. Those functions that have
locale-specific aspects only when not in the "C" locale are noted below.

The term printing character refers to a member of a locale-specific set of characters, each of which
occupies one printing position on a display device; the term control character refers to a member of a
locale-specific set of characters that are not printing characters.®® All letters and digits are printing
characters.

Attributes corresponding to the pragma

|
\# ragma CORE FUNCTION_ATTRIBUTE core::unsequenced
L

is implied for the whole header. Additionally the pragma

\# ragma CORE FUNCTION_ATTRIBUTE core::evaluates(locale)

is implied for all functions other than isdigit and isxdigit. For the latter two, if the arcument
has any other value than forseen above and if is a constant expression, the call is erroneous and a
diagnostic shall be issued; if it has another value and is not a constant expression, the behavior is

undefined.

Forward references: EOF (7.21.1), localization (7.11).

7.4.1 Character classification functions

The functions in this subclause return nonzero (true) if and only if the value of the argument ¢
conforms to that in the description of the function.

7.4.1.1 The isalnum function
Synopsis

#include <ctype.h>
int isalnum(int c);

Description
The isalnum function tests for any character for which isalpha or isdigit is true.

7.4.1.2 The isalpha function
Synopsis

#include <ctype.h>
int isalpha(int c);

Description

The isalpha function tests for any character for which isupper or islower is true, or any character
that is one of a locale-specific set of alphabetic characters for which none of iscntrl, isdigit,
ispunct, or isspace is true.”®”) Inthe "C" locale, isalpha returns true only for the characters for
which isupper or islower is true.

287)See “future library directions” (7.32.1).

288)In an implementation that uses the seven-bit US ASCII character set, the printing characters are those whose values lie
from 0x20 (space) through 0x7E (tilde); the control characters are those whose values lie from 0 (NUL) through 0x1F (US),
and the character 0x7F (DEL).

29 The functions islower and isupper test true or false separately for each of these additional characters; all four combina-
tions are possible.

Library modifications to ISO/IEC 9899:2018, § 7.4.1.2 page 217



CORE 202005 (E) §7.4.1.3, working draft — May 10, 2020 cmin..core N2522

7.4.1.3 The isblank function
Synopsis

#include <ctype.h>
int isblank(int c);

Description

The isblank function tests for any character that is a standard blank character or is one of a locale-
specific set of characters for which isspace is true and that is used to separate words within a line
of text. The standard blank characters are the following: space (' '), and horizontal tab ("\t" ). In
the "C" locale, isblank returns true only for the standard blank characters.

7.4.1.4 The iscntrl function
Synopsis

#include <ctype.h>
int iscntrl(int c);

Description
The iscntrl function tests for any control character.

7.4.1.5 The isdigit function
Synopsis

#include <ctype.h>
. i ;
___constexpr int isdigit(int c);

Description
The isdigit function tests for any decimal-digit character (as defined in 5.2.1).

7.4.1.6 The isgraph function
Synopsis

#include <ctype.h>
int isgraph(int c);

Description
The isgraph function tests for any printing character except space (" ).

7.4.1.7 The islower function
Synopsis

#include <ctype.h>
int islower(int c);

Description

The islower function tests for any character that is a lowercase letter or is one of a locale-specific set
of characters for which none of iscntrl, isdigit, ispunct, or isspace is true. In the "C" locale,
islower returns true only for the lowercase letters (as defined in 5.2.1).

7.4.1.8 The isprint function
Synopsis

#include <ctype.h>
int isprint(int c);

modifications to ISO/IEC 9899:2018, § 7.4.1.8 page 218 Library



N2522 cmin..core §7.4.1.9, working draft — May 10, 2020 CORE 202005 (E)

Description
The isprint function tests for any printing character including space (" ).

7.4.1.9 The ispunct function
Synopsis

#include <ctype.h>
int ispunct(int c);

Description

The ispunct function tests for any printing character that is one of a locale-specific set of punctuation
characters for which neither isspace nor isalnum is true. In the "C" locale, ispunct returns true
for every printing character for which neither isspace nor isalnum is true.

7.4.1.10 The isspace function
Synopsis

#include <ctype.h>
int isspace(int c);

Description

The isspace function tests for any character that is a standard white-space character or is one of
a locale-specific set of characters for which isalnum is false. The standard white-space characters
are the following: space (" '), form feed ('\f’ ), new-line ("\n"), carriage return ("\r’ ), horizontal
tab ("\t’), and vertical tab ("\v’). In the "C" locale, isspace returns true only for the standard
white-space characters.

7.4.1.11 The isupper function
Synopsis

#include <ctype.h>
int isupper(int c);

Description

The isupper function tests for any character that is an uppercase letter or is one of a locale-specific
set of characters for which none of iscntrl, isdigit, ispunct, or isspace is true. In the "C" locale,
isupper returns true only for the uppercase letters (as defined in 5.2.1).

7.4.1.12 The isxdigit function

Synopsis

#include <ctype.h>
: T ;
__.___constexpr int isxdigit(int c);

Description
The isxdigit function tests for any hexadecimal-digit character (as defined in 6.4.4.1).

7.4.2 Character case mapping functions
7.4.21 The tolower function
Synopsis

#include <ctype.h>
int tolower(int c);

Description
The tolower function converts an uppercase letter to a corresponding lowercase letter.

Library modifications to ISO/IEC 9899:2018, § 7.4.2.1 page 219



CORE 202005 (E) §7.4.2.2, working draft — May 10, 2020 N2522

Returns

If the argument is a character for which isupper is true and there are one or more corresponding
characters, as specified by the current locale, for which islower is true, the tolower function returns
one of the corresponding characters (always the same one for any given locale); otherwise, the
argument is returned unchanged.

7.4.2.2 The toupper function
Synopsis

#include <ctype.h>
int toupper(int c);

Description

The toupper function converts a lowercase letter to a corresponding uppercase letter.

Returns

If the argument is a character for which islower is true and there are one or more corresponding
characters, as specified by the current locale, for which isupper is true, the toupper function returns
one of the corresponding characters (always the same one for any given locale); otherwise, the
argument is returned unchanged.

modifications to ISO/IEC 9899:2018, § 7.4.2.2 page 220 Library



N2522 § 7.5, working draft — May 10, 2020 CORE 202005 (E)

7.5 Errors <errno.h>
The header <errno. h> defines several macros, all relating to the reporting of error conditions.

The macros are

EDOM
EILSEQ
ERANGE

which expand to integer constant expressions with type int, distinct positive values, and which are
suitable for use in #if preprocessing directives; and

\ errno

which expands to a modifiable lvalue*” that has type int and thread local storage duration, the

value of which is set to a positive error number by several library functions. If a macro definition is
suppressed in order to access an actual object, or a program defines an identifier with the name
errno, the behavior is undefined.

The value of errno in the initial thread is zero at program startup (the initial value of errno in other
threads is an indeterminate value), but is never set to zero by any library function.?’” The value of
errno may be set to nonzero by a library function call whether or not there is an error, provided the
use of errno is not documented in the description of the function in this document.

Additional macro definitions, beginning with E and a digit or E and an uppercase letter,”? may also
be specified by the implementation.

20)The macro errno need not be the identifier of an object. It might expand to a modifiable lvalue resulting from a function

call (for example, xerrno()).

2DThus, a program that uses errno for error checking would set it to zero before a library function call, then inspect it
before a subsequent library function call. Of course, a library function can save the value of errno on entry and then set it to
zero, as long as the original value is restored if errno’s value is still zero just before the return.

292)See “future library directions” (7.32.2).

Library modifications to ISO/IEC 9899:2018, § 7.5 page 221



CORE 202005 (E) § 7.6, working draft — May 10, 2020 cmin..core N2522

7.6 Floating-point environment <fenv.h>

The header <fenv. h> defines several macros, and declares types and functions that provide access to
the floating-point environment. The floating-point environment refers collectively to any floating-point
status flags and control modes supported by the implementation.”® A floating-point status flag is a
system variable whose value is set (but never cleared) when a floating-point exception is raised, which
occurs as a side effect of exceptional floating-point arithmetic to provide auxiliary information.?%%
A floating-point control mode is a system variable whose value may be set by the user to affect the
subsequent behavior of floating-point arithmetic.

The floating-point environment has thread storage duration. The initial state for a thread’s floating-
point environment is the current state of the floating-point environment of the thread that creates it
at the time of creation. The floating-point environment is represented by the placeholder identifier
fenv for core function attributes; function synposis are annotated accordingly. Additionally all the
functions of this clause are idempotent and a corresponding pragma_

#pragma CORE FUNCTION_ATTRIBUTE core::idempotent
#pragma CORE FUNCTION_ATTRIBUTE core::evaluates(fenv)

is implied for the whole header.

Certain programming conventions support the intended model of use for the floating-point environ-
ment:?%)

— a function call does not alter its caller’s floating-point control modes, clear its caller’s floating-
point status flags, nor depend on the state of its caller’s floating-point status flags unless the
function is so documented;

— a function call is assumed to require default floating-point control modes, unless its documen-
tation promises otherwise;

— a function call is assumed to have the potential for raising floating-point exceptions, unless its
documentation promises otherwise.

The feature test macro __STDC_VERSION_FENV_H__ expands to the token 202005L.
The complete opaque object type

i fenv_t |

represents the entire floating-point environment.

The complete opaque object type

i fexcept_t i

represents the floating-point status flags collectively, including any status the implementation
associates with the flags.

Each of the macros

FE_DIVBYZERO
FE_INEXACT
FE_INVALID
FE_OVERFLOW
FE_UNDERFLOW

2939)This header is designed to support the floating-point exception status flags and directed-rounding control modes required
by IEC 60559, and other similar floating-point state information. It is also designed to facilitate code portability among all
systems.

24 A floating-point status flag is not an object and can be set more than once within an expression.

2%)With these conventions, a programmer can safely assume default floating-point control modes (or be unaware of them).
The responsibilities associated with accessing the floating-point environment fall on the programmer or program that does so
explicitly.

modifications to ISO/IEC 9899:2018, § 7.6 page 222 Library



10

11

N2522 §7.6.1, working draft — May 10, 2020 CORE 202005 (E)

is defined if and only if the implementation supports the floating-point exception by means of
the functions in 7.6.2.2%  Additional implementation-defined floating-point exceptions, with
macro definitions beginning with FE_ and an uppercase letter,?’”) may also be specified by the
implementation. The defined macros expand to integer constant expressions with values such that
bitwise ORs of all combinations of the macros result in distinct values, and furthermore, bitwise
ANDs of all combinations of the macros result in zero.?®

The macro

\ FE_ALL_EXCEPT

is simply the bitwise OR of all floating-point exception macros defined by the implementation. If no
such macros are defined, FE_ALL_EXCEPT shall be defined as 0.

Each of the macros

FE_DOWNWARD
FE_TONEAREST
FE_TONEARESTFROMZERO
FE_TOWARDZERO
FE_UPWARD

is defined if and only if the implementation supports getting and setting the represented rounding
direction by means of the fegetround and fesetround functions. Additional implementation-
defined rounding directions, with macro definitions beginning with FE_ and an uppercase letter,?*?)
may also be specified by the implementation. The defined macros expand to integer constant
expressions whose values are distinct nonnegative values.>

The macro

\ FE_DFL_ENV

represents the default floating-point environment — the one installed at program startup — and has
type “pointer to const-qualified fenv_t”. It can be used as an argument to <fenv. h> functions that
manage the floating-point environment.

Additional implementation-defined environments, with macro definitions beginning with FE_ and
an uppercase letter,>*) and having type “pointer to const-qualified fenv_t”, may also be specified
by the implementation.

7.6.1 The FENV_ACCESS pragma
Synopsis

#include <fenv.h>
#pragma STDC FENV_ACCESS on-off-switch

Description

The FENV_ACCESS pragma provides a means to inform the implementation when a program might
access the floating-point environment to test floating-point status flags or run under non-default
floating-point control modes.’®? The pragma shall occur either outside external declarations or

2%)The implementation supports a floating-point exception if there are circumstances where a call to at least one of the
functions in 7.6.2, using the macro as the appropriate argument, will succeed. It is not necessary for all the functions to
succeed all the time.

27)See “future library directions” (7.32.3).

2%)The macros are typically distinct powers of two.

29)See “future library directions” (7.32.3).

300)Even though the rounding direction macros might expand to constants corresponding to the values of FLT_ROUNDS, they
are not required to do so.

30DGee “future library directions” (7.32.3).

302)The purpose of the FENV_ACCESS pragma is to allow certain optimizations that could subvert flag tests and mode changes
(e.g., global common subexpression elimination, code motion, and constant folding). In general, if the state of FENV_ACCESS

Library modifications to ISO/IEC 9899:2018, § 7.6.1 page 223



CORE 202005 (E) §7.6.2, working draft — May 10, 2020 cmin..core N2522

preceding all explicit declarations and statements inside a compound statement. When outside
external declarations, the pragma takes effect from its occurrence until another FENV_ACCESS pragma
is encountered, or until the end of the translation unit. When inside a compound statement, the
pragma takes effect from its occurrence until another FENV_ACCESS pragma is encountered (including
within a nested compound statement), or until the end of the compound statement; at the end of a
compound statement the state for the pragma is restored to its condition just before the compound
statement. If this pragma is used in any other context, the behavior is undefined. If part of a
program tests floating-point status flags, sets floating-point control modes, or runs under non-
default mode settings, but was translated with the state for the FENV_ACCESS pragma “off”, the
behavior is undefined. The default state (“on” or “off”) for the pragma is implementation-defined.
(When execution passes from a part of the program translated with FENV_ACCESS “off” to a part
translated with FENV_ACCESS “on”, the state of the floating-point status flags is unspecified and the
floating-point control modes have their default settings.)

EXAMPLE

#include <fenv.h>

void f(double x)

{
#pragma STDC FENV_ACCESS ON
void g(double);
void h(double);
/* ... %/
g(x + 1);
h(x + 1);
/* ... %/

}

If the function g might depend on status flags set as a side effect of the first x + 1, or if the second x + 1 might depend on
control modes set as a side effect of the call to function g, then the program has to contain an appropriately placed invocation
of #pragma STDC FENV_ACCESS ON as shown.3%®

7.6.2 Floating-point exceptions

The following functions provide access to the floating-point status flags.’*™® The int input argument
for the functions represents a subset of floating-point exceptions, and can be zero or the bitwise
OR of one or more floating-point exception macros, for example FE_OVERFLOW | FE_INEXACT. For
other argument values, the behavior of these functions is undefined.

7.6.2.1 The feclearexcept function
Synopsis

#include <fenv.h>
—int—fectearexcepttintexceptsr;
__.___int feclearexcept(int excepts

core:modifies(fenv) |] ;

Description

The feclearexcept function attempts to clear the supported floating-point exceptions represented
by its argument.

Returns

The feclearexcept function returns zero if the excepts argument is zero or if all the specified
exceptions were successfully cleared. Otherwise, it returns a nonzero value.

is “off”, the translator can assume that default modes are in effect and the flags are not tested.
303)The side effects impose a temporal ordering that requires two evaluations of x + 1. On the other hand, without the
#pragma STDC FENV_ACCESS ON pragma, and assuming the default state is “off”, just one evaluation of x + 1 would suffice.
309)The functions fetestexcept, feraiseexcept, and feclearexcept support the basic abstraction of flags that are either
set or clear. An implementation can endow floating-point status flags with more information — for example, the address of
the code which first raised the floating-point exception; the functions fegetexceptflag and fesetexceptflag deal with
the full content of flags.

modifications to ISO/IEC 9899:2018, § 7.6.2.1 page 224 Library




N2522 cmin..core §7.6.2.2, working draft — May 10, 2020 CORE 202005 (E)

7.6.2.2 The fegetexceptflag function
Synopsis

#include <fenv.h>
—int—fegetexceptflagtfexcept—t—flagp;—int—excepts)r;
__.___int fegetexceptflag(fexcept t x || core:writethrough || flagp, int excepts);

Description

The fegetexceptflag function attempts to store an implementation-defined representation of the
states of the floating-point status flags indicated by the argument excepts in the object pointed to
by the argument flagp.

Returns

The fegetexceptflag function returns zero if the representation was successfully stored. Otherwise,
it returns a nonzero value.

7.6.2.3 The feraiseexcept function
Synopsis

#include <fenv.h>
. forai . ;
__.___int feraiseexcept(int excepts) |[[core:modifies(fenv) ]| ;

Description

The feraiseexcept function attempts to raise the supported floating-point exceptions represented
by its argument.?®® The order in which these floating-point exceptions are raised is unspecified,
except as stated in F.8.6. Whether the feraiseexcept function additionally raises the “inexact”
floating-point exception whenever it raises the “overflow” or “underflow” floating-point exception
is implementation-defined.

Returns

The feraiseexcept function returns zero if the excepts argument is zero or if all the specified
exceptions were successfully raised. Otherwise, it returns a nonzero value.

7.6.2.4 The fesetexceptflag function
Synopsis

#include <fenv.h>
—int—fesetexceptflag{const—TFexcept—t—flagp,
___int fesetexceptflag(const fexcept t *flagp, int excepts)

core::modifies(fenv) || ;

Description

The fesetexceptflag function attempts to set the floating-point status flags indicated by the
argument excepts to the states stored in the object pointed to by flagp. The value of *flagp shall
have been set by a previous call to fegetexceptflag whose second argument represented at least
those floating-point exceptions represented by the argument excepts. This function does not raise
floating-point exceptions, but only sets the state of the flags.

Returns

The fesetexceptflag function returns zero if the excepts argument is zero or if all the specified
flags were successfully set to the appropriate state. Otherwise, it returns a nonzero value.

7.6.2.5 The fetestexcept function

305 The effect is intended to be similar to that of floating-point exceptions raised by arithmetic operations. Hence, enabled

traps for floating-point exceptions raised by this function are taken. The specification in E.8.6 is in the same spirit.

Library modifications to ISO/IEC 9899:2018, § 7.6.2.5 page 225



CORE 202005 (E) § 7.6.3, working draft — May 10, 2020 N2522

Synopsis

#include <fenv.h>
int fetestexcept(int excepts);

Description

The fetestexcept function determines which of a specified subset of the floating-point excep-
tion flags are currently set. The excepts argument specifies the floating-point status flags to be
queried.3%®)

Returns

The fetestexcept function returns the value of the bitwise OR of the floating-point exception
macros corresponding to the currently set floating-point exceptions included in excepts.

EXAMPLE Call f if “invalid” is set, then g if “overflow” is set:

#include <fenv.h>
VA T
{
#pragma STDC FENV_ACCESS ON
int set_excepts;
feclearexcept (FE_INVALID | FE_OVERFLOW);
// maybe raise exceptions
set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW);
if (set_excepts & FE_INVALID) f();
if (set_excepts & FE_OVERFLOW) g();
/* .. %/

7.6.3 Rounding

The fegetround and fesetround functions provide control of rounding direction modes.

7.6.3.1 The fegetround function
Synopsis

#include <fenv.h>
int fegetround(void);

Description
The fegetround function gets the current rounding direction.

Returns

The fegetround function returns the value of the rounding direction macro representing the current
rounding direction or a negative value if there is no such rounding direction macro or the current
rounding direction is not determinable.

7.6.3.2 The fesetround function

Synopsis

#include <fenv.h>
int fesetround(int round)
[ core::modifies(fenv) || ;

Description

The fesetround function establishes the rounding direction represented by its argument round. If
the argument is not equal to the value of a rounding direction macro, the rounding direction is not
changed.

306)This mechanism allows testing several floating-point exceptions with just one function call.

modifications to ISO/IEC 9899:2018, § 7.6.3.2 page 226 Library



N2522 cmin..core § 7.6.4, working draft — May 10, 2020 CORE 202005 (E)

Returns

The fesetround function returns zero if and only if the requested rounding direction was estab-
lished.

EXAMPLE Save, set, and restore the rounding direction. Report an error and abort if setting the rounding direction fails.

#include <fenv.h>
#include <assert.h>

void f(int round_dir)
{
#pragma STDC FENV_ACCESS ON
int save_round;
int setround_ok;
save_round = fegetround();
setround_ok = fesetround(round_dir);

— ’

. assert(setround ok = 0);

A A A

/*x ... %/
fesetround(save_round);
/% ... %/

7.6.4 Environment

The functions in this section manage the floating-point environment — status flags and control
modes — as one entity.

7.6.4.1 The fegetenv function

Synopsis

#include <fenv.h>
—int—fegetenv{fenv—t—envp)r+
__.___int fegetenv(fenv_t x|l corexwritethrough || envp);

Description

The fegetenv function attempts to store the current floating-point environment in the object pointed
to by envp.

Returns

The fegetenv function returns zero if the environment was successfully stored. Otherwise, it returns
a nonzero value.

7.6.4.2 The feholdexcept function

Synopsis

#include <fenv.h>
__.___int feholdexcept(fenv_t *env

core::modifies(fenv) || ;

Description

The feholdexcept function saves the current floating-point environment in the object pointed to by
envp, clears the floating-point status flags, and then installs a non-stop (continue on floating-point
exceptions) mode, if available, for all floating-point exceptions.3"”)

307)TEC 60559 systems have a default non-stop mode, and typically at least one other mode for trap handling or aborting; if
the system provides only the non-stop mode then installing it is trivial. For such systems, the feholdexcept function can be
used in conjunction with the feupdateenv function to write routines that hide spurious floating-point exceptions from their
callers.

Library modifications to ISO/IEC 9899:2018, § 7.6.4.2 page 227



CORE 202005 (E) §7.6.4.3, working draft — May 10, 2020 cmin..core N2522

Returns

The feholdexcept function returns zero if and only if non-stop floating-point exception handling
was successfully installed.

7.6.4.3 The fesetenv function

Synopsis

#include <fenv.h>
—int—Ffesetenv{const—Fenv=t—envp);
—_.___lint fesetenv(const fenv_t xenv

core:modifies(fenv) |] ;

A~ A~ A

Description

The fesetenv function attempts to establish the floating-point environment represented by the
object pointed to by envp. The argument envp shall point to an object set by a call to fegetenv or
feholdexcept, or equal a floating-point environment macro. Note that fesetenv merely installs
the state of the floating-point status flags represented through its argument, and does not raise these
floating-point exceptions.

Returns

The fesetenv function returns zero if the environment was successfully established. Otherwise, it
returns a nonzero value.

7.6.44 The feupdateenv function
Synopsis

#include <fenv.h>
int feupdateenv(const fenv_t xenvp);
core:modifies(fenv) |] ;

A A A

Description

The feupdateenv function attempts to save the currently raised floating-point exceptions in its
automatic storage, install the floating-point environment represented by the object pointed to by
envp, and then raise the saved floating-point exceptions. The argument envp shall point to an object
set by a call to feholdexcept or fegetenv, or equal a floating-point environment macro.

Returns

The feupdateenv function returns zero if all the actions were successfully carried out. Otherwise, it
returns a nonzero value.

EXAMPLE Hide spurious underflow floating-point exceptions:

#include <fenv.h>
double f(double x)
{
#pragma STDC FENV_ACCESS ON
double result;
fenv_t save_env;
if (feholdexcept(&save_env))
return /x indication of an environmental problem x/;
// compute result
if (/* test spurious underflow x/)
if (feclearexcept(FE_UNDERFLOW))
return /x indication of an environmental problem x/;
if (feupdateenv(&save_env))
return /x indication of an environmental problem x/;
return result;

modifications to ISO/IEC 9899:2018, § 7.6.4.4 page 228 Library



N2522 § 7.7, working draft — May 10, 2020 CORE 202005 (E)

7.7 Characteristics of floating types <float.h>

The header <float. h> defines several macros that expand to various limits and parameters of the
standard floating-point types.

The macros, their meanings, and the constraints (or restrictions) on their values are listed in 5.2.4.2.2.
A summary is given in Annex E.

Library modifications to ISO/IEC 9899:2018, § 7.7 page 229



CORE 202005 (E) § 7.8, working draft — May 10, 2020 cmin..core N2522

7.8 Format conversion of integer types <inttypes.h>

The header <inttypes.h> includes the header <stdint . h> and extends it with additional facilities
provided by hosted implementations.

It declares some functions for manipulating greatest-width integers and converting numeric char-

acter strings to greatest—w1dth integers, and it deelares-the-type-which-is-a-structure type thatisthe
type-of the-value returned by-the funetion-reserves the obsolescent identifier imaxdiv for external

linkage. For each type declared in <stdint.h>, it defines corresponding macros for conversion
specifiers for use with the formatted input/output functions.>*®

The feature test macro __CORE_VERSION_INTTYPES_H__ expands to the token 202005L.

Forward references: integer types <stdint.h> (7.20), formatted input/output functions (7.21.6),
formatted wide character input/output functions (7.29.2).

7.8.1 Macros for format specifiers

Each of the following object-like macros expands to a character string literal containing a conversion
specifier, possibly modified by a length modifier, suitable for use within the format argument of a
formatted input/output function when converting the corresponding integer type. These macro
names have the general form of PRI (character string literals for the fprintf and fwprintf family)
or SCN (character string literals for the fscanf and fwscanf family),3* followed by the conversion
specifier, followed by a name corresponding to a similar type name in 7.20.1. In these names, N
represents the width of the type as described in 7.20.1. For example, PRIdFAST32 can be used in a
format string to print the value of an integer of type int_fast32_t.

The fprintf macros for signed integers are:

PRIAN PRIALEASTN PRIAFASTN PRIdMAX PRIdPTR
PRIIN PRIiLEASTN PRIiFASTN PRIiMAX PRIiPTR

The fprintf macros for unsigned integers are:

PRION PRIOLEASTN PRIoFASTN PRIoMAX PRIoPTR
PRIuN PRIuLEASTN PRIuFASTN PRIuMAX PRIuPTR
PRIXN PRIXLEASTN PRIXFASTN PRIxMAX PRIxPTR
PRIXN PRIXLEASTN PRIXFASTN PRIXMAX PRIXPTR

The fscanf macros for signed integers are:

SCNdN SCNALEASTN SCNdFASTN SCNdMAX SCNdPTR
SCNiN SCNiLEASTN SCNiFASTN SCNiMAX SCNiPTR

The fscanf macros for unsigned integers are:

SCNoN SCNoLEASTN SCNoFASTN SCNoMAX SCNoPTR
SCNuN SCNuLEASTN SCNuFASTN SCNuMAX SCNuPTR
SCNxN SCNXLEASTN SCNxFASTN SCNxMAX SCNxPTR

For each type that the implementation provides in <stdint.h>, the corresponding fprintf macros
shall be defined and the corresponding fscanf macros shall be defined unless the implementation
does not have a suitable fscanf length modifier for the type.

EXAMPLE

#include <inttypes.h>
#include <wchar.h>
int main(void)
{
uintmax_t i = UINTMAX_MAX; // this type always exists
wprintf(L"The largest integer value is %020"
PRIXMAX "\n", 1i);
return 0O;

308)See “future library directions” (7.32.4).

309)Separate macros are given for use with fprintf and fscanf functions because, in the general case, different format
specifiers might be required for fprintf and fscanf, even when the type is the same.

modifications to ISO/IEC 9899:2018, § 7.8.1 page 230 Library




N2522 cmin..core § 7.8.2, working draft — May 10, 2020 CORE 202005 (E)

| } |

7.8.2 Functions for greatest-width integer types

Returnstypes:

Library modifications to ISO/IEC 9899:2018, § 7.8.2 page 231



CORE 202005 (E) § 7.9, working draft — May 10, 2020 N2522

(no diff marks, here)

7.9 Alternative spellings <is0646.h>
1 The obsolete header <is0646 . h> contains no definitions.

modifications to ISO/IEC 9899:2018, § 7.9 page 232 Library



N2522 § 7.10, working draft — May 10, 2020 CORE 202005 (E)

7.10 Characteristics of integer types <limits.h>

The header <limits.h> defines several macros that expand to various limits and parameters of the
standard integer types.

The macros, their meanings, and the constraints (or restrictions) on their values are listed in 5.2.4.2.1.
A summary is given in Annex E.

Library modifications to ISO/IEC 9899:2018, § 7.10 page 233



CORE 202005 (E) § 7.11, working draft — May 10, 2020 cmin..core N2522

7.11 Localization <locale.h>
The header <locale. h> declares two functions, one type, and defines several macros.

The type is

\ struct lconv
L

which contains members related to the formatting of numeric values. The structure shall contain
at least the following members, in any order. The semantics of the members and their normal
ranges are explained in 7.11.2.1. In the "C" locale, the members shall have the values specified in the
comments.

char xdecimal_point; // "
char xthousands_sep; // """
char xgrouping; /7"
char *mon_decimal_point; // """
char xmon_thousands_sep; // "
char xmon_grouping; // """
char *positive_sign; // "
char xnegative_sign; // "
char xcurrency_symbol; // """
char frac_digits; // CHAR_MAX
char p_cs_precedes; // CHAR_MAX
char n_cs_precedes; // CHAR_MAX
char p_sep_by_space; // CHAR_MAX
char n_sep_by_space; // CHAR_MAX
char p_sign_posn; // CHAR_MAX
char n_sign_posn; // CHAR_MAX
char xint_curr_symbol; // """
char int_frac_digits; // CHAR_MAX
char int_p_cs_precedes; // CHAR_MAX
char int_n_cs_precedes; // CHAR_MAX
char int_p_sep_by_space; // CHAR_MAX
char int_n_sep_by_space; // CHAR_MAX
char int_p_sign_posn; // CHAR_MAX
char int_n_sign_posn; // CHAR_MAX

The macros defined are

LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME

which expand to integer constant expressions with distinct values, suitable for use as the first argu-
ment to the setlocale function.’'” Additional macro definitions, beginning with the characters
LC_ and an uppercase letter,’')) may also be specified by the implementation.

The locale functions access a hidden state locale as do many other library functions that rely on
specific locale information.

Recommended practice
It is recommended that all implementation specific function declarations that depend on locale

S10ISO/IEC 9945-2 specifies locale and charmap formats that can be used to specify locales for C.
31)See “future library directions” (7.32.5).

modifications to ISO/IEC 9899:2018, § 7.11 page 234 Library



N2522 cmin..core §7.11.1, working draft — May 10, 2020 CORE 202005 (E)

information are annotated with the appropriate core function attributes.
7.11.1 Locale control

7.11.1.1 The setlocale function
Synopsis

#include <locale.h>
—char—+setlocateint—category,—const—char—+tocate);
—_.___Char *xsetlocale(int categor const char xlocale)
..l core:unsequenced, core:modifies(locale) ]| ;

Description

The setlocale function selects the appropriate portion of the program’s locale as specified by
the category and locale arguments. The setlocale function may be used to change or query
the program’s entire current locale or portions thereof. The value LC_ALL for category names
the program’s entire locale; the other values for category name only a portion of the program’s
locale. LC_COLLATE affects the behavior of the strcoll and strxfrm functions. LC_CTYPE affects
the behavior of the character handling functions®'? and the multibyte and wide character functions.
LC_MONETARY affects the monetary formatting information returned by the localeconv function.
LC_NUMERIC affects the decimal-point character for the formatted input/output functions and the
string conversion functions, as well as the nonmonetary formatting information returned by the
localeconv function. LC_TIME affects the behavior of the strftime and wesftime functions.

A value of "C" for locale specifies the minimal environment for C translation; a value of "" for
locale specifies the locale-specific native environment. Other implementation-defined strings may
be passed as the second argument to setlocale.

At program startup, the equivalent of

\ setlocale(LC_ALL, "C"):

is executed.

A call to the setlocale function may introduce a data race with other calls to the setlocale
function or with calls to functions that are affected by the current locale. The implementation shall
behave as if no library function calls the setlocale function.

Returns

If a pointer to a string is given for locale and the selection can be honored, the setlocale function
returns a pointer to the string associated with the specified category for the new locale. If the
selection cannot be honored, the setlocale function returns a null pointer and the program’s locale
is not changed.

A null pointer for Locale causes the setlocale function to return a pointer to the string associated
with the category for the program’s current locale; the program’s locale is not changed.'?

The pointer to string returned by the setlocale function is such that a subsequent call with that
string value and its associated category will restore that part of the program’s locale. The string
pointed to shall not be modified by the program, but may be overwritten by a subsequent call to the
setlocale function.

Forward references: formatted input/output functions (7.21.6), multibyte/wide character conver-
sion functions (7.22.8), multibyte/wide string conversion functions (7.22.9), numeric conversion
functions (7.22.1), the strcoll funetion{??type-generic macro (7.24.4.3), the strftime function
(7.27.3.5), the strxfrm funetion{(22)-type-generic macro (7.24.4.5).

312)The only functions in 7.4 whose behavior is not affected by the current locale are isdigit and isxdigit.
313 The implementation is thus required to arrange to encode in a string the various categories due to a heterogeneous locale
when category has the value LC_ALL.

Library modifications to ISO/IEC 9899:2018, § 7.11.1.1 page 235



CORE 202005 (E) §7.11.2, working draft — May 10, 2020 cmin..core N2522

7.11.2 Numeric formatting convention inquiry
7.11.2.1 The localeconv function
Synopsis

#include <locale.h>
——structteonv—tocateconviveit
__.___struct lconv xlocaleconv(void unsequenced, core:evaluates(locale) || ;

Description

The localeconv function sets the components of an object with type struct lconv with values
appropriate for the formatting of numeric quantities (monetary and otherwise) according to the
rules of the current locale.

The members of the structure with type char * are pointers to strings, any of which (except

decimal_point) can point to "", to indicate that the value is not available in the current locale or is
of zero length. Apart from grouping and mon_grouping, the strings shall start and end in the initial
shift state. The members with type char are nonnegative numbers, any of which can be CHAR_MAX
to indicate that the value is not available in the current locale. The members include the following:

char xdecimal_point
The decimal-point character used to format nonmonetary quantities.

char xthousands_sep

The character used to separate groups of digits before the decimal-point character in
formatted nonmonetary quantities.

char *xgrouping
A string whose elements indicate the size of each group of digits in formatted nonmon-
etary quantities.

char xmon_decimal_point
The decimal-point used to format monetary quantities.

char *mon_thousands_sep

The separator for groups of digits before the decimal-point in formatted monetary
quantities.

char xmon_grouping

A string whose elements indicate the size of each group of digits in formatted monetary
quantities.

char xpositive_sign
The string used to indicate a nonnegative-valued formatted monetary quantity.

char *negative_sign
The string used to indicate a negative-valued formatted monetary quantity.

char xcurrency_symbol
The local currency symbol applicable to the current locale.

char frac_digits

The number of fractional digits (those after the decimal-point) to be displayed in a
locally formatted monetary quantity.

char p_cs_precedes

Set to 1 or 0 if the currency_symbol respectively precedes or succeeds the value for a
nonnegative locally formatted monetary quantity.

modifications to ISO/IEC 9899:2018, § 7.11.2.1 page 236 Library



N2522 §7.11.2.1, working draft — May 10, 2020 CORE 202005 (E)

char

char

char

char

char

char

char

char

char

char

char

char

char

n_cs_precedes

Set to 1 or 0 if the currency_symbol respectively precedes or succeeds the value for a
negative locally formatted monetary quantity.

p—sep_by_space
Set to a value indicating the separation of the currency_symbol, the sign string, and
the value for a nonnegative locally formatted monetary quantity.

n_sep_by_space

Set to a value indicating the separation of the currency_symbol, the sign string, and
the value for a negative locally formatted monetary quantity.

p—sign_posn
Set to a value indicating the positioning of the positive_sign for a nonnegative locally
formatted monetary quantity.

n_sign_posn

Set to a value indicating the positioning of the negative_sign for a negative locally
formatted monetary quantity.

xint_curr_symbol

The international currency symbol applicable to the current locale. The first three
characters contain the alphabetic international currency symbol in accordance with
those specified in ISO 4217. The fourth character (immediately preceding the null
character) is the character used to separate the international currency symbol from the
monetary quantity.

int_frac_digits

The number of fractional digits (those after the decimal-point) to be displayed in an
internationally formatted monetary quantity.

int_p_cs_precedes

Set to 1 or O if the int_curr_symbol respectively precedes or succeeds the value for a
nonnegative internationally formatted monetary quantity.

int_n_cs_precedes

Set to 1 or 0 if the int_curr_symbol respectively precedes or succeeds the value for a
negative internationally formatted monetary quantity.

int_p_sep_by_space
Set to a value indicating the separation of the int_curr_symbol, the sign string, and
the value for a nonnegative internationally formatted monetary quantity.

int_n_sep_by_space

Set to a value indicating the separation of the int_curr_symbol, the sign string, and
the value for a negative internationally formatted monetary quantity.

int_p_sign_posn
Set to a value indicating the positioning of the positive_sign for a nonnegative
internationally formatted monetary quantity.

int_n_sign_posn

Set to a value indicating the positioning of the negative_sign for a negative interna-
tionally formatted monetary quantity.

The elements of grouping and mon_grouping are interpreted according to the following;:

CHAR_MAX No further grouping is to be performed.

Library modifications to ISO/IEC 9899:2018, § 7.11.2.1 page 237



CORE 202005 (E) §7.11.2.1, working draft — May 10, 2020 N2522

0 The previous element is to be repeatedly used for the remainder of the digits.

other The integer value is the number of digits that compose the current group. The next
element is examined to determine the size of the next group of digits before the current
group.

The values of p_sep_by_space, n_sep_by_space, int_p_sep_by_space, and
int_n_sep_by_space are interpreted according to the following:

0 No space separates the currency symbol and value.

1 If the currency symbol and sign string are adjacent, a space separates them from the value;
otherwise, a space separates the currency symbol from the value.

2 If the currency symbol and sign string are adjacent, a space separates them; otherwise, a space
separates the sign string from the value.

For int_p_sep_by_space and int_n_sep_by_space, the fourth character of int_curr_symbol is
used instead of a space.

The values of p_sign_posn, n_sign_posn, int_p_sign_posn, and int_n_sign_posn are inter-
preted according to the following;:

0 Parentheses surround the quantity and currency symbol.

1 The sign string precedes the quantity and currency symbol.

2 The sign string succeeds the quantity and currency symbol.

3 The sign string immediately precedes the currency symbol.

4  The sign string immediately succeeds the currency symbol.

The implementation shall behave as if no library function calls the localeconv function.

Returns

The localeconv function returns a pointer to the filled-in object. The structure pointed to by the
return value shall not be modified by the program, but may be overwritten by a subsequent call
to the localeconv function. In addition, calls to the setlocale function with categories LC_ALL,
LC_MONETARY, or LC_NUMERIC may overwrite the contents of the structure.

EXAMPLE 1 The following table illustrates rules which might well be used by four countries to format monetary quantities.

Local format International format
Country Positive | Negative Positive | Negative
Countryl || 1.234,56 mk T1.234,56 mk FIM 1.234,56 | FIM -1.234,56
Country2 L.1.234 -L.1.234 ITL 1.234 -ITL 1.234
Country3 f£1.234,56 f-1.234,56 NLG 1.234,56 | NLG -1.234,56
Country4 SFrs.1,234.56 | SFrs.1,234.56C | CHF 1,234.56 | CHF 1,234.56C

10 For these four countries, the respective values for the monetary members of the structure returned by localeconv could be:

modifications to ISO/IEC 9899:2018, § 7.11.2.1 page 238 Library



N2522 §7.11.2.1, working draft — May 10, 2020 CORE 202005 (E)

|| Countryl | Country2 | Country3 | Country4

mon_decimal_point " e A
mon_thousands_sep " o o "
mon_grouping "\3" "\3" "\3" "\3"
positive_sign " " " "
negative_sign "o L v "c"
currency_symbol "mk" LM "\u0192" "SFrs."
frac_digits 2 0 2 2
p—cs_precedes 0 1 1 1
n_cs_precedes 0 1 1 1
p—sep_by_space 1 0 1 0
n_sep_by_space 1 0 2 0
p—sign_posn 1 1 1 1
n_sign_posn 1 1 4 2
int_curr_symbol "FIM " “ITL " "NLG " "CHF "
int_frac_digits 2 0 2 2
int_p_cs_precedes 1 1 1 1
int_n_cs_precedes 1 1 1 1
int_p_sep_by_space 1 1 1 1
int_n_sep_by_space 2 1 2 1
int_p_sign_posn 1 1 1 1
int_n_sign_posn 4 1 4 2

Library modifications to ISO/IEC 9899:2018, § 7.11.2.1 page 239



CORE 202005 (E)

§7.11.2.1, working draft — May 10, 2020

N2522

11  EXAMPLE 2 The following table illustrates how the cs_precedes, sep_by_space, and sign_posn members affect the

formatted value.

p—sep_by_space

p—cs_precedes | p_sign_posn 0 [ 1 [ 2
0 0 (1.25%) (1.25 %) (1.25%)
1 +1.25% +1.25 $ + 1.25%
2 1.25%+ 1.25 $+ 1.25% +
3 || 1.25+% 1.25 +% 1.25+ §
4 1.25%+ 1.25 $+ 1.25% +
1 0 ($1.25) ($ 1.25) ($1.25)
1 +$1.25 +$ 1.25 + $1.25
2 $1.25+ $ 1.25+ $1.25 +
3 +$1.25 +$ 1.25 + $1.25
4 $+1.25 $+ 1.25 $ +1.25

modifications to ISO/IEC 9899:2018, § 7.11.2.1 page 240

Library



N2522 cmin..core § 7.12, working draft — May 10, 2020 CORE 202005 (E)

7.12 Mathematics <math.h>

The header <math.h> declares two typesand-many mathematical-funetions-and-defines-several
macros—Most synopses specify-a-family of funetions-,_and many type-generic macros and some
functions to provide interfaces for mathematical functions. Additionally, many obsolecent function
names are also reserved, consisting of a principal function (of the same name as the type-generic

macro) with one or more double parameters, a double return value, or both; and other functions
with the same name but with f and 1 suffixes, which are corresponding functions with float and
long double parameters, return values, or both.3¥ The identifiers that are such reserved are:

acosf cosl fmin logbf rintl
acoshf cos fmodf logbl rint
acoshl erfcf fmodl logb roundf
acosh erfcl fmod logf roundl
acosl erfc frexpf logl round
acos erff frexpl log scalblnf
asinf erfl frexp lrintf scalblnl
asinhf erf hypotf lrintl scalbln
asinhl exp2f hypotl lrint scalbnf
asinh exp2l hypot lroundf scalbnl
asinl exp2 iloghf lroundl scalbn
asin expf ilogbl lround sinf
atan2f expl ilogb nearbyintf sinhf
atan2l expmlf ldexpf nearbyintl sinhl
atan2 expmll ldexpl nearbyint sinh
atanf expml ldexp nextafterf sinl
atanhf exp lgammaf nextafterl sin
atanhl fabsf lgammal nextafter sqrtf
atanh fabsl lgamma nexttowardf sqrtl
atanl fabs 1lrintf nexttowardl sqrt
atan fdimf 1lrintl nexttoward tanf
cbrtf fdiml 1lrint modff tanhf
chrtl fdim 1lroundf modf1l tanhl
cbrt floorf 1lroundl mod f tanh
ceilf floorl 1lround powf tanl
ceill floor loglof powl tan
ceil fmaf logl0l pow tgammaf
copysignf fmal logl0 remainderf tgammal
copysignl fmaxf loglpf remainderl tgamma
copysign fmaxl loglpl remainder truncf
cosf fmax loglp remquof truncl
coshf fma log2f remquol trunc
coshl fminf log21l remquo

cosh fminl log2 rintf

For the synopsis of the type-generic macros, R, S and T denote real types that are used to describe
the underspecified parameter types. If F denotes the inferred return type, it is a floating type: if
the underspecified argument types to the call are all integer type, F is double. Otherwise, F is
the common type of the underspecified argument types as inferred by usual arithmetic conversion.
The effect is then as if a function where R, 5 and T are F is called and the arguments are converted
accordingly. If the inferred return type is specified with another letter than F, the description of the
corresponding clause gives the details.

The provisions of this clause not withstanding, unless the macro __CORE_NO_COMPLEX__ is defined,
several of the type-generic macros can be amended by the inclusion of the <complex.h> for

3149 Particularly on systems with wide expression evaluation, a <math . h> function might pass areuments and return values
in wider format than the synopsis prototype indicates.

Library modifications to ISO/IEC 9899:2018, § 7.12 page 241



CORE 202005 (E) § 7.12, working draft — May 10, 2020 cmin..core N2522

complex types.

Such a type-generic macro can be used outside of an actual function call for a conversion to a
function pointer of type where the underspecified parameter types R, S and T are all fixed to the
same type as either float, double or long double and where the return type is as described in the
synopsis.*'”

Integer arithmetic functions and conversion functions are discussed later.

Attributes corresponding to the pragmas

#pragma CORE FUNCTION ATTRIBUTE core::unsequenced
#pragma CORE FUNCTION_ATTRIBUTE core::modifies(errno, fenv)

are be implied for the whole header, only that an implementation may strengthen the
core::modifies attribute to one or zero of the identifiers if it can guarantee that the correspondin

316)

C library channel is not affected by the function.

The feature test macro —=STBE=VERSTON-MATH-H-——_CORE_VERSION_MATH_H__ expands to the
token 202005L.

The types

float_t
double_t

are floating types at least as wide as float and double, respectively, and such that double_t is
at least as wide as float_t. If FLT_EVAL_METHOD equals 0, float_t and double_t are float and
double, respectively; if FLT_EVAL_METHOD equals 1, they are both double; if FLT_EVAL_METHOD
equals 2, they are both long double; and for other values of FLT_EVAL_METHOD, they are otherwise
implementation-defined.*”)

The macro

\ HUGE_VAL

expands to a positive double constant expression, not necessarily representable as a float. The
macros

HUGE_VALF
HUGE_VALL

are respectively float and long double analogs of HUGE_VAL.3'®

The macro

\ INFINITY

expands to a constant expression of type float representing positive or unsigned infinity, if available;
else to a positive constant of type float that overflows at translation time.*")

The macro

*19For example the frexp macro can be converted to function pointer types R(x) (R, intx) for any floating point type R.
One possibility to ensure such a conversion is to implement the type-generic macro as a generic lambda expression.

%19 That means that translators may move all calls to the type-generic macros as early as their arguments are available, that
the changes to the state other than the return value are idempotent, restricted to errno and the floating-point state, and that
these changes only depend on the arguments to the call.

317)The types float_t and double_t are intended to be the implementation’s most efficient types at least as wide as
float and double, respectively. For FLT_EVAL_METHOD equal 0, 1, or 2, the type float_t is the narrowest type used by the
implementation to evaluate floating expressions.

318)HUGE_VAL, HUGE_VALF, and HUGE_VALL can be positive infinities in an implementation that supports infinities.

3191n this case, using INFINITY will violate the constraint in 6.4.4 and thus require a diagnostic.

modifications to ISO/IEC 9899:2018, § 7.12 page 242 Library



N2522 §7.12, working draft — May 10, 2020 CORE 202005 (E)

\ NAN

is defined if and only if the implementation supports quiet NaNs for the float type. It expands to a
constant expression of type float representing a quiet NaN.

The number classification macros

FP_INFINITE
FP_NAN
FP_NORMAL
FP_SUBNORMAL
FP_ZERO

represent the mutually exclusive kinds of floating-point values. They expand to integer constant
expressions with distinct values. Additional implementation-defined floating-point classifications,
with macro definitions beginning with FP_ and an uppercase letter, may also be specified by the
implementation.

The macro

\ FP_FAST_FMA

is optionally defined. If defined, it indicates that the fma function generally executes about as fast as,
or faster than, a multiply and an add of double operands.>” The macros

FP_FAST_FMAF
FP_FAST_FMAL

are, respectively, float and long double analogs of FP_FAST_FMA. If defined, these macros expand
to the integer constant 1.

The macros

FP_ILOGBO
FP_ILOGBNAN

expand to integer constant expressions whose values are returned by ilogb(x) if x is zero or
NaN, respectively. The value of FP_ILOGBO shall be either INT_MIN or-INT_MAX. The value of
FP_ILOGBNAN shall be either INT_MAX or INT_MIN.

The macros

MATH_ERRNO
MATH_ERREXCEPT

expand to the integer constants 1 and 2, respectively; the macro

\ math_errhandling
L

expands to an expression that has type int and the value MATH_ERRNO, MATH_ERREXCEPT, or the
bitwise OR of both. The value of math_errhandling is constant for the duration of the program. It is
unspecified whether math_errhandling is a macro or an identifier with external linkage. If a macro
definition is suppressed or a program defines an identifier with the name math_errhandling, the
behavior is undefined. If the expression math_errhandling & MATH_ERREXCEPT can be nonzero,
the implementation shall define the macros FE_DIVBYZERO, FE_INVALID, and FE_OVERFLOW in
<fenv.h>.

320)Typically, the FP_FAST_FMA macro is defined if and only if the fma function is implemented directly with a hardware

multiply-add instruction. Software implementations are expected to be substantially slower.

Library modifications to ISO/IEC 9899:2018, § 7.12 page 243



CORE 202005 (E) §7.12.1, working draft — May 10, 2020 cmin..core N2522

7.12.1 Treatment of error conditions

The behavior of each of the functions in <math.h> is specified for all representable values of its
input arguments, except where explicitly stated otherwise. Each function shall execute as if it were a
single operation without raising SIGFPE and without generating any of the floating-point exceptions
“invalid”, “divide-by-zero”, or “overflow” except to reflect the result of the function.

For all functions, a domain error occurs if and only if an input argument is outside the do-
main over which the mathematical function is defined. The description of each function lists
any required domain errors; an implementation may define additional domain errors, provided
that such errors are consistent with the mathematical definition of the function.**)  On a do-
main error, the function returns an implementation-defined value; if the integer expression
math_errhandling & MATH_ERRNO is nonzero, the integer expression errno acquires the value
EDOM; if the integer expression

math_errhandling & MATH_ERREXCEPT is nonzero, the “invalid” floating-point exception is raised.

Similarly, a pole error (also known as a singularity or infinitary) occurs if and only if the mathematical
function has an exact infinite result as the finite input argument(s) are approached in the limit (for ex-
ample, Log (0.0)). The description of each function lists any required pole errors; an implementation
may define additional pole errors, provided that such errors are consistent with the mathematical
definition of the function. On a pole error, the function returns an implementation-defined value;
if the integer expression math_errhandling & MATH_ERRNO is nonzero, the integer expression
errno acquires the value ERANGE; if the integer expression math_errhandling & MATH_ERREXCEPT
is nonzero, the “divide-by-zero” floating-point exception is raised.

Likewise, a range error occurs if and only if the mathematical result of the function cannot be
represented in an object of the specified type, due to extreme magnitude. The description of each
function lists any required range errors; an implementation may define additional range errors,
provided that such errors are consistent with the mathematical definition of the function and are the
result of either overflow or underflow.

A floating result overflows if the magnitude of the mathematical result is finite but so large that
the mathematical result cannot be represented without extraordinary roundoff error in an object
of the specified type. If a floating result overflows and default rounding is in effect, then the
function returns the value of the macro HUGE_VAL, HUGE_VALF, or HUGE_VALL according to the
return type, with the same sign as the correct value of the function; if the integer expression
math_errhandling & MATH_ERRNO is nonzero, the integer expression errno acquires the value
ERANGE; if the integer expression math_errhandling & MATH_ERREXCEPT is nonzero, the “overflow”
floating-point exception is raised.

The result underflows if the magnitude of the mathematical result is so small that the mathematical re-
sult cannot be represented, without extraordinary roundoff error, in an object of the specified type.3??
If the result underflows, the function returns an implementation-defined value whose magnitude
is no greater than the smallest normalized positive number in the specified type; if the integer ex-
pression math_errhandling & MATH_ERRNO is nonzero, whether errno acquires the value ERANGE
is implementation-defined; if the integer expression math_errhandling & MATH_ERREXCEPT is
nonzero, whether the “underflow” floating-point exception is raised is implementation-defined.

If a domain, pole, or range error occurs and the integer expression math_errhandling & MATH_ERRNO
is zero,%?) then errno shall either be set to the value corresponding to the error or left unmodified. If
no such error occurs, errno shall be left unmodified regardless of the setting of math_errhandling.

For the functions and macros below that have a constexpr specifier, such error conditions that
occur during the evaluation of a constant expression shall be diagnosed and shall be considered as
a failure condition for the evaluation of the constant expression.3?¥

32DIn an implementation that supports infinities, this allows an infinity as an argument to be a domain error if the
mathematical domain of the function does not include the infinity.

322)The term underflow here is intended to encompass both “gradual underflow” as in IEC 60559 and also “flush-to-zero”
underflow.

323)Math errors are being indicated by the floating-point exception flags rather than by errno.

324) A C library implementation may communicate such error conditions by raising the appropriate floating point conditions

modifications to ISO/IEC 9899:2018, § 7.12.1 page 244 Library



N2522 cmin..core §7.12.2, working draft — May 10, 2020 CORE 202005 (E)

7.12.2 The FP_CONTRACT pragma
Synopsis

#include <math.h>
#pragma STDC FP_CONTRACT on-off-switch

Description

The FP_CONTRACT pragma can be used to allow (if the state is “on”) or disallow (if the state is
“off”) the implementation to contract expressions (6.5). Each pragma can occur either outside
external declarations or preceding all explicit declarations and statements inside a compound
statement. When outside external declarations, the pragma takes effect from its occurrence until
another FP_CONTRACT pragma is encountered, or until the end of the translation unit. When inside
a compound statement, the pragma takes effect from its occurrence until another FP_CONTRACT
pragma is encountered (including within a nested compound statement), or until the end of the
compound statement; at the end of a compound statement the state for the pragma is restored to
its condition just before the compound statement. If this pragma is used in any other context, the
behavior is undefined. The default state (“on” or “off”) for the pragma is implementation-defined.

7.12.3 Classification macros

Constraints

In the synopses in-of this subclause, indicates-that-the-argument-shall-be-an-expression-of real
floating-R shall be a real floating point argument type.

Description

Outside a function call, these macros can be converted to function pointer types int(*) (R) or
bool(*) (R), respectively, where R is a floating point type.

7.12.3.1 The fpclassify macro
Synopsis

#include <math.h>
—int—fpetassifytreal - floating—x);
—_.___constexpr int fpclassify(R x);

Description

The fpclassify macro classifies its argument value as NaN, infinite, normal, subnormal, zero, or
into another implementation-defined category. First, an argument represented in a format wider
than its semantic type is converted to its semantic type. Then classification is based on the type of
the argument.?

Returns

The fpclassify macro returns the value of the number classification macro appropriate to the value
of its argument.

7.12.3.2 The isfinite macro
Synopsis

#include <math.h>

—int—isfiniteftreal-floating—x)+
. constexpr_bool isfinite(R x)

(R0

or by setting errno, or it may use any other specific way to conway that information such that the error condition is
diagnosed during compilation.

329)Since an expression can be evaluated with more range and precision than its type has, it is important to know the type
that classification is based on. For example, a normal long double value might become subnormal when converted to
double, and zero when converted to float.

Library modifications to ISO/IEC 9899:2018, § 7.12.3.2 page 245



CORE 202005 (E) § 7.12.3.3, working draft — May 10, 2020 cmin..core N2522

Description

The isfinite macro determines whether its argument has a finite value (zero, subnormal, or
normal, and not infinite or NaN). First, an argument represented in a format wider than its semantic
type is converted to its semantic type. Then determination is based on the type of the argument.

Returns
The isfinite macro returns anonzero-value-true if and only if its argument has a finite value.

7.12.3.3 The isinf macro
Synopsis

#include <math.h>

—int—dsinftreal - floating—x)+
. constexpr_bool isinf(R x)

L808

Description

The isinf macro determines whether its argument value is an infinity (positive or negative). First,
an argument represented in a format wider than its semantic type is converted to its semantic type.
Then determination is based on the type of the argument.

Returns
The isinf macro returns anenzere-value-true if and only if its argument has an infinite value.

7.12.3.4 The isnan macro
Synopsis

#include <math.h>

—int—disnantreal - floating—x)+
. COnstexpr_bool isnan(R x);

Description

The isnan macro determines whether its argument value is a NaN. First, an argument represented
in a format wider than its semantic type is converted to its semantic type. Then determination is
based on the type of the argument.>®)

Returns
The isnan macro returns anonzere-value-true if and only if its argument has a NaN value.

7.12.3.5 The isnormal macro
Synopsis

#include <math.h>

—int—isnermat{real - floating—x}+
. Constexpr_bool isnormal(R x);

Description

The isnormal macro determines whether its argument value is normal (neither zero, subnormal,
infinite, nor NaN). First, an argument represented in a format wider than its semantic type is
converted to its semantic type. Then determination is based on the type of the argument.

Returns
The isnormal macro returns a-nonzero-value-true if and only if its argument has a normal value.

7.12.3.6 The signbit macro

326)1i@.\;\/tb\e/¢1'.snan macro , the type for determination does not matter unless the implementation supports NaNs in the
evaluation e but not in the semantic €.

modifications to ISO/IEC 9899:2018, § 7.12.3.6 page 246 Library



N2522 cmin..core §7.12.4, working draft — May 10, 2020 CORE 202005 (E)

Synopsis

#include <math.h>
—int—signbit{real - floating—x)+
_.___constexpr bool signbit(R Xx);

Description

The signbit macro determines whether the sign of its argument value is negative.3?”)

Returns
The signbit macro returns anonzero-valte-true if and only if the sign of its argument value is

negative.
7.12.4 Trigonometric functions

7.12.4.1 The acos type-generic macro

Synopsisreplace

#include <math.h>

double acos(double x);

float acosf(float x);

long double acosl(long double x);

Synopsis

#include <math.h>
constexpr F acos(R X);

Description

The acos type-generic macro eompute-computes the principal value of the arc cosine of x. A domain
error occurs for arguments not in the interval [—1, +1].

Returns

The acos type-generic macro returnreturns arccosx in the interval [0, 7] radians.

7.12.4.2 The asin type-generic macro

Synepsisreplace

#include <math.h>

double asin(double x);

float asinf(float x);

long double asinl(long double x);

Synopsis

#include <math.h>
constexpr F asin(R x);

Description

The asin type-generic macro eomptite-computes the principal value of the arc sine of x. A domain
error occurs for arguments not in the interval [—1, +1].

Returns

The asin type-generic macro returnreturns arcsin x in the interval [-7, +7] radians.
7.12.4.3 The atan type-generic macro

Synepsisreplace

327

)The signbit macro reports the sign of all values, including infinities, zeros, and NaNs. If zero is unsigned, it is treated
as positive.

Library modifications to ISO/IEC 9899:2018, § 7.12.4.3 page 247



CORE 202005 (E) § 7.12.4.4, working draft — May 10, 2020 cmin..core N2522

#include <math.h>

double atan(double x);

float atanf(float x);

long double atanl(long double x);

Synopsis

#include <math.h>
constexpr F atan(R x);

Description
The atan type-generic macro eomputecomputes the principal value of the arc tangent of x.

Returns

The atan type-generic macro returnrreturns arctan x in the interval [~ 7, +7] radians.

7.12.4.4 The atan2 type-generic macro

Synopsisreplace

#include <math.h>

double atan2(double y, double x);

float atan2f(float y, float x);

long double atan2l(long double y, long double x);

Synopsis

#include <math.h>
constexpr F atan2(R x, S y);

Description

The atan2 type-generic macro eompute-computes the value of the arc tangent of y/x, using the
signs of both arguments to determine the quadrant of the return value. A domain error may occur if
both arguments are zero.

Returns

The atan2 type-generic macro returnreturns arctan y/x in the interval [—m, 4| radians.

7.12.4.5 The cos type-generic macro

Synepsisreplace

#include <math.h>

double cos(double x);

float cosf(float x);

long double cosl(long double x);

Synopsis

#include <math.h>
constexpr F cos(R Xx);

Description
The cos type-generic macro eempute-computes the cosine of x (measured in radians).

Returns
The cos type-generic macro returnreturns cos x.

7.12.4.6 The sin type-generic macro

Synopsisreplace

modifications to ISO/IEC 9899:2018, § 7.12.4.6 page 248 Library



N2522 cmin..core §7.12.4.7, working draft — May 10, 2020 CORE 202005 (E)

#include <math.h>

double sin(double x);

float sinf(float x);

long double sinl(long double x);

Synopsis

#include <math.h>
constexpr F sin(R x);

Description
The sin type-generic macro eomptite-computes the sine of x (measured in radians).

Returns
The sin type-generic macro returrrreturns sin x.

7.12.4.7 The tan type-generic macro

Synepsisreplace

#include <math.h>

double tan(double x);

float tanf(float x);

long double tanl(long double x);

Synopsis

#include <math.h>
constexpr F tan(R Xx);

Description

The tan type-generic macro returnreturns the tangent of x (measured in radians).
Returns

The tan type-generic macro returnreturns tan x.

7.12.5 Hyperbolic functions
7.12.5.1 The acosh type-generic macro

Synopsisreplace

#include <math.h>

double acosh(double x);

float acoshf(float x);

long double acoshl(long double x);

Synopsis

#include <math.h>
constexpr F acosh(R Xx);

Description

The acosh type-generic macro eemptite-computes the (nonnegative) arc hyperbolic cosine of x. A
domain error occurs for arguments less than 1.

Returns

The acosh type-generic macro returnreturns arcosh x in the interval [0, +o0].

7.12.5.2 The asinh type-generic macro

Synepsisreplace

Library modifications to ISO/IEC 9899:2018, § 7.12.5.2 page 249



CORE 202005 (E) §7.12.5.3, working draft — May 10, 2020 cmin..core N2522

#include <math.h>

double asinh(double x);

float asinhf(float x);

long double asinhl(long double x);

Synopsis

#include <math.h>
constexpr F asinh(R Xx);

Description
The asinh type-generic macro eempute-computes the arc hyperbolic sine of x.

Returns
The asinh type-generic macro return-returns arsinh x.

7.12.5.3 The atanh type-generic macro

Synepsisreplace

#include <math.h>

double atanh(double Xx);

float atanhf(float x);

long double atanhl(long double x);

Synopsis

#include <math.h>
constexpr F atanh(R Xx);

Description

The atanh type-generic macro eompute-computes the arc hyperbolic tangent of x. A domain error
occurs for arguments not in the interval [-1, +1]. A pole error may occur if the argument equals-1-
or+i_Lor +1.

Returns

The atanh type-generic macro return-returns artanh x.

7.12.5.4 The cosh type-generic macro

Synepsisreplace

#include <math.h>

double cosh(double x);

float coshf(float x);

long double coshl(long double x);

Synopsis

#include <math.h>
constexpr F cosh(R x);

Description

The cosh type-generic macro eemputecomputes the hyperbolic cosine of x. A range error occurs if
the magnitude of x is too large.

Returns
The cosh type-generic macro return-returns cosh x.

modifications to ISO/IEC 9899:2018, § 7.12.5.4 page 250 Library



N2522 cmin..core §7.12.5.5, working draft — May 10, 2020 CORE 202005 (E)

7.12.5.5 The sinh type-generic macro

Synepsisreplace

#include <math.h>

double sinh(double x);

float sinhf(float x);

long double sinhl(long double x);

Synopsis

#include <math.h>
constexpr F sinh(R x);

Description

The sinh type-generic macro eompute-computes the hyperbolic sine of x. A range error occurs if
the magnitude of x is too large.

Returns

The sinh type-generic macro return-returns sinh x.

7.12.5.6 The tanh type-generic macro
Synopsisreplace

#include <math.h>

double tanh(double x);

float tanhf(float x);

long double tanhl(long double Xx);

Synopsis

#include <math.h>
constexpr F tanh(R x);

Description

The tanh type-generic macro eempute-computes the hyperbolic tangent of x.
Returns

The tanh type-generic macro returnreturns tanh x.

7.12.6 Exponential and logarithmic functions
7.12.6.1 The exp type-generic macro

Synepsisreplace

#include <math.h>

double exp(double x);

float expf(float x);

long double expl(long double x);

Synopsis

#include <math.h>
constexpr F exp(R X);

Description

The exp type-generic macro eempute-computes the base-e exponential of x. A range error occurs if
the magnitude of x is too large.

Returns

The exp type-generic macro returnrreturns e*.

Library modifications to ISO/IEC 9899:2018, § 7.12.6.1 page 251



CORE 202005 (E) §7.12.6.2, working draft — May 10, 2020 cmin..core N2522

7.12.6.2 The exp2 type-generic macro
Synepsisreplace

#include <math.h>

double exp2(double x);

float exp2f(float x);

long double exp2l(long double x);

Synopsis

#include <math.h>
constexpr F exp2(R Xx);

Description
The exp2 type-generic macro eompute-computes the base-2 exponential of x. A range error occurs
if the magnitude of x is too large.

Returns
The exp2 type-generic macro return-returns 2*.

7.12.6.3 The expml type-generic macro
Synepsisreplace

#include <math.h>

double expml(double Xx);

float expmlf(float x);

long double expmll(long double x);

Synopsis

#include <math.h>
constexpr F expml(R X);

Description
The expml type-generic macro compute-computes the base-e exponential of the argument, minus 1=
1. A range error occurs if positive x is too large.3?®

Returns
The expml type-generic macro returareturns e — 1.

7.12.6.4 The frexp type-generic macro

Synepsisreplace

#include <math.h>

double frexp(double value, int xexp);

float frexpf(float value, int xexp);

long double frexpl(long double value, int *exp);

Synopsis

#include <math.h>
F frexp(R x, int x [[ core:writethrough ]| exp);

Description

The frexp type-generic macro break-breaks a floating-point number into a normalized fraction and
an integral power of 2. Theystore-lt stores the integer in the int object pointed to by exp.

328)For small magnitude x, expml(x) is expected to be more accurate than exp (x) - 1.

modifications to ISO/IEC 9899:2018, § 7.12.6.4 page 252 Library



N2522 cmin..core §7.12.6.5, working draft — May 10, 2020 CORE 202005 (E)

Returns

If value is not a floating-point number or if the integral power of 2 is outside the range of int, the
results are unspecified. Otherwise, the frexp type-generic macro returnreturns the value x, such
that x has a magnitude in the interval [1, 1) or zero, and value equals x x 2***_ If value is zero,
both parts of the result are zero.

NOTE Because it returns one of its results through a pointer paramter, the frexp type-generic macro is not suited for an
evaluation in a constant expression or constexpr function or lambda. Applications that need the two results in a constexpr
should use combinations of 1og2, ilogh and ldexp or similar functions to achieve the same results.

7.12.6.5 The ilogb type-generic macro

Synepsisreplace

#include <math.h>

int ilogb(double x);

int ilogbf(float x);

int ilogbl(long double x);

Synopsis

#include <math.h>
constexpr int ilogb(R x);

Description
The ilogb type-generic macro extract-extracts the exponent of x as a signed int value. If x is zero

they-eompute-it computes the value FP_ILOGBO; if x is infinite they-compute-it computes the value
INT_MAX; if x is a NaN they-eompute-it computes the value FP_ILOGBNAN; otherwise, they-are-it is
equivalent to calling the eorresponding-tegh-function-and-easting-logh macro and converting the

returned value to type int. A domain error or range error may occur if x is zero, infinite, or NaN.
If the correct value is outside the range of the return type, the numeric result is unspecified and a
domain error or range error may occur.

Returns

The ilogb type-generic macro rettrnreturns the exponent of x as a signed int value.

Forward references: the logb funetions{??macro (7.12.6.11).
7.12.6.6 The ldexp type-generic macro

Synepsisreplace

#include <math.h>

double ldexp(double x, int exp);

float ldexpf(float x, int exp);

long double ldexpl(long double x, int exp);

Synopsis

#include <math.h>
constexpr F ldexp(R x, int k);

Description
The ldexp type-generic macro multipty-multiplies a floating-point number by an integral power of
2-2. A range error may occur.

Returns
The ldexp type-generic macro returax—<2%Preturns x x 2.

7.12.6.7 The log type-generic macro

Synepsisreplace

Library modifications to ISO/IEC 9899:2018, § 7.12.6.7 page 253



CORE 202005 (E) § 7.12.6.8, working draft — May 10, 2020 cmin..core N2522

#include <math.h>

double log(double x);

float logf(float x);

long double logl(long double x);

Synopsis

#include <math.h>
constexpr F log(R X);

Description
The log type-generic macro eempute-computes the base-e (natural) logarithm of x. A domain error
occurs if the argument is negative. A pole error may occur if the argument is zero.

Returns
The log type-generic macro returnrreturns log, x.

7.12.6.8 The 1ogl0 type-generic macro

Synepsisreplace

#include <math.h>

double logl0(double x);

float loglof(float x);

long double logl01(long double x);

Synopsis

#include <math.h>
constexpr F logl0(R Xx);

Description

The 10910 type-generic macro eemptite-computes the base-10 (common) logarithm of x. A domain
error occurs if the argument is negative. A pole error may occur if the argument is zero.

Returns

The 10910 type-generic macro returnreturns log;q x.

7.12.6.9 The loglp type-generic macro
Synopsisteplace

#include <math.h>

double loglp(double Xx);

float loglpf(float x);

long double loglpl(long double x);

Synopsis

#include <math.h>
constexpr F loglp(R X);

Description

The loglp type-generic macro eompute-computes the base-e (natural) logarithm of +1 plus the
argument.’”” A domain error occurs if the argument is less than —1. A pole error may occur if the
argument equals —1.

Returns
The loglp type-generic macro retarareturns log, (1 + x).

329)For small magnitude x, Loglp(x) is expected to be more accurate than log (1 + x).

modifications to ISO/IEC 9899:2018, § 7.12.6.9 page 254 Library



N2522 cmin..core §7.12.6.10, working draft — May 10, 2020 CORE 202005 (E)

7.12.6.10 The log2 type-generic macro
Synopsistreplace

#include <math.h>

double log2(double x);

float log2f(float x);

long double log21l(long double x);

Synopsis

#include <math.h>
constexpr F log2(R Xx);

Description

The log2 type-generic macro eompute-the-base-2-computes the base-2 logarithm of x. A domain
error occurs if the argument is less than zero. A pole error may occur if the argument is zero.

Returns
The log2 type-generic macro returareturns log, X.

7.12.6.11 The logb type-generic macro
Synepsistreplace

#include <math.h>

double logb(double x);

float loghf(float x);

long double logbl(long double Xx);

Synopsis

#include <math.h>
constexpr F logb(R x);

Description

The logb type-generic macro extractextracts the exponent of x, as a signed integer value in floating-
point format. If x is subnormal it is treated as though it were normalized; thus, for positive finite
X,

1 < x x FLT_RADIX°9%(¥)  FLT_RADIX

A domain error or pole error may occur if the argument is zero.

Returns
The logb type-generic macro returnreturns the signed exponent of x.

7.12.6.12 The modf type-generic macro
Synepsistreplace

#include <math.h>

double modf (double value, double *xiptr);

float modff(float value, float xiptr);

long double modfl(long double value, long double xiptr);

Synopsis

#include <math.h>
R modf(Q value, R x [[ core:writethrough ]| iptr);

Constraints

R shall be a non-qualified real floating type.

Library modifications to ISO/IEC 9899:2018, § 7.12.6.12 page 255



CORE 202005 (E) §7.12.6.13, working draft — May 10, 2020 cmin..core N2522

Description

The modf type-generic macro break-the-argumentvatue-converts the real argument value to R and

breaks the result into integral and fractional parts, each of which has the same-type-and-sign-astype
R Qggv’@g/svlgg/gjjhe argument. They-store-It stores the integral part (in floating-point format) in

the object pointed to by iptr.

Outside of a function call, the modf type-generic macro can be converted to a function pointer of
e R(*) (R, Rx) where Ris a real floating point t

Returns
The modf type-generic macro return-returns the signed fractional part of the converted value.

Synopsisreplace

#include <math.h>

double scalbn(double x, int n);

float scalbnf(float x, int n);

long double scalbnl(long double x, int n);
double scalbln(double x, long int n);

float scalblnf(float x, long int n);

long double scalblnl(long double x, long int n);

NOTE Because it returns one of its results through a pointer paramter, the modf type-generic macro is not suited for an
evaluation in a constant expression or constexpr function or lambda. Applications that need the two results in a constexpr

should use combinations of trunc or similar functions and arithmetic to achieve the same results.

7.12.6.13 The scalbn type-generic macro
Synopsis

#include <math.h>
constexpr F scalbn(R x, Z n);

Constraints_
R shall be a real floating type and Z shall be an integer type.

Description

The sealbn-and-scalbltnfunctionseompute-scalbn type-generic macro computes x x FLT_RADIX"
efficiently, not normally by computing FLT_RADIX" explicitly. The value of n shall be in the value

range of long int. A range error may occur.

Outside of a function call, the scalbn type-generic macro can be converted to a function pointer of
e R(*) (R, Z) where R is a real floating point type and Z is int or long int.

Returns
The sealbnand-scaltblnfunctions-scalbn type-generic macro return x x FLT_RADIX".

7.12.7 Power and absolute-value functions

7.12.7.1 The cbrt type-generic macro
Synopsisreplace

#include <math.h>

double chrt(double x);

float cbrtf(float x);
long double chrtl(long double x);

Synopsis

#include <math.h>
constexpr F cbrt(R x);

modifications to ISO/IEC 9899:2018, § 7.12.7.1 page 256 Library




N2522 cmin..core §7.12.7.2, working draft — May 10, 2020 CORE 202005 (E)

Description
The cbrt type-generic macro eempute-computes the real cube root of x.

Returns

The cbrt type-generic macro returnreturns x 3.

7.12.7.2 The fabs type-generic macro

Synepsisreplace

#include <math.h>

double fabs(double x);

float fabsf(float x);

long double fabsl(long double Xx);

Synopsis

#include <math.h>
constexpr R fabs(R x);

Description
The fabs type-generic macro eomptte-computes the absolute value of a floating-point number x.
This type-generic macro is not suitable for integer arguments.

Returns
The fabs type-generic macro returnreturns |x|.

7.12.7.3 The hypot type-generic macro
Synopsisteplace

#include <math.h>

double hypot(double x, double y);

float hypotf(float x, float y);

long double hypotl(long double x, long double y);

Synopsis

#include <math.h>
constexpr F hypot(R x, S vy);

Description

The hypot type-generic macro eempute-computes the square root of the sum of the squares of x and
y, without undue overflow or underflow. A range error may occur.

Returns

The hypot type-generic macro returnreturns /x2? + y2.

7.12.7.4 The pow type-generic macro

Synepsisreplace

#include <math.h>

double pow(double x, double y);

float powf(float x, float y);

long double powl(long double x, long double y);

Synopsis

#include <math.h>
constexpr F pow(R X, S y);

Library modifications to ISO/IEC 9899:2018, § 7.12.7.4 page 257



CORE 202005 (E) §7.12.7.5, working draft — May 10, 2020 cmin..core N2522

Description

The pow type-generic macro cempute-computes x raised to the power y. A domain error occurs if x
is finite and negative and y is finite and not an integer value. A range error may occur. A domain
error may occur if x is zero and y is zero. A domain error or pole error may occur if x is zero and y is
less than zero.

Returns
The pow type-generic macro returnreturns x”.

7.12.7.5 The sqrt type-generic macro

Synepsisreplace

#include <math.h>

double sqrt(double x);

float sqrtf(float x);

long double sqrtl(long double x);

Synopsis

#include <math.h>
constexpr F sqrt(R Xx);

Description

The sqrt type-generic macro eempuite-computes the nonnegative square root of x. A domain error
occurs if the argument is less than zero.

Returns
The sqrt type-generic macro retarareturns /.

7.12.7.6 The abs type-generic macro
Synopsis

#include <math.h>
constexpr U abs(R Xx);

Constraints_

R shall be an arithmetic type.
Description

The abs type-generic macro computes the absolute value of x. The inferred return type U is a
real type. If R is a narrow integer type, U is unsigned. Otherwise if R is a real floating point
type or an unsigned integer type, Uis R. If R is a complex type, U is the corresponding real type.
Otherwise, R is a wide signed integer type and U is the corresponding unsigned type. If R is a real
type, the mathematical value is always representable exactly in U; no error occurs. If R is a complex

evaluated at most once.

The abs type-generic macro can be converted to a function pointer type R(*) (R) where R is a real
floating point type or wide unsigned integer type, to U(*) (R) where R is a complex type and U
is the corresponding real type, or to U(*) (R) where R is a wide signed integer type and U is the
corresponding unsigned type..

Returns

The abs type-generic macro returns |x|.

NOTE Historically, C has abs functions for signed types (in <stdlib.h> ). They return a signed value such that the
absolute value of the minimal value of the type is not representable and thus a call with such a value is undefined.
Applications should prefer the e-generic macro here over these legacy interfaces, because here the mathematical result

modifications to ISO/IEC 9899:2018, § 7.12.7.6 page 258 Library



N2522 cmin..core §7.12.7.7, working draft — May 10, 2020 CORE 202005 (E)

is always representable in the target type.
7.12.7.7 The abs’type-generic macro
Synopsis

#include <math.h>
constexpr U abs?(R x);

Constraints_

R shall be a floating type.
Description

The abs’ type-generic macro computes the square of the absolute value of x. The inferred return
corresponding real type; abs’(x) is equivalent to the expression real_value(x)xreal_value(x)
+ imaginary_value(x)ximaginary_value(x), only that X is evaluated at most once.

The abs® type-generic macro can be converted to a function pointer type R(*) (R) where R is a real

floating point type, or to U(*) (R) where R is a complex type and U is the corresponding real type.

Returns

The abs’ type-generic macro returns |x|?.

NOTE If the absolute value of complex numbers is only computed to compare the magnitude, abs> may be more efficient
than to compute abs because the computation of the square root is avoided.

7.12.8 Error and gamma functions
7.12.8.1 The erf type-generic macro

Synepsisreplace

#include <math.h>

double erf(double x);

float erff(float x);

long double erfl(long double x);

Synopsis

#include <math.h>
constexpr F erf(R x);

Description
The erf type-generic macro eomptite-computes the error function of x.
Returns

X

The erf type-generic macro return-returns erf x = % J e~ dt.

7.12.8.2 The erfc type-generic macro

Synepsisreplace

#include <math.h>

double erfc(double x);

float erfcf(float x);

long double erfcl(long double Xx);

Synopsis

#include <math.h>
constexpr F erfc(R x);

Library modifications to ISO/IEC 9899:2018, § 7.12.8.2 page 259



CORE 202005 (E) § 7.12.8.3, working draft — May 10, 2020 cmin..core N2522

Description

The erfc type-generic macro eempute-computes the complementary error function of x. A range
error occurs if positive x is too large.

Returns

oo
The erfc type-generic macro returnreturns erfcx =1 —erfx = % ! et dt.

7.12.8.3 The lgamma type-generic macro
Synepsisreplace

#include <math.h>

double lgamma(double x);

float lgammaf (float x);

long double lgammal(long double x);

Synopsis

#include <math.h>
constexpr F lgamma(R x);

Description

The lgamma type-generic macro eomptite-computes the natural logarithm of the absolute value of
gamma of x. A range error occurs if positive x is too large. A pole error may occur if x is a negative
integer or zero.

Returns

The 1gamma type-generic macro returrreturns log, [I'(x)|.

7.12.8.4 The tgamma type-generic macro

Synopsisreplace

#include <math.h>

double tgamma(double Xx);

float tgammaf (float x);

long double tgammal(long double x);

Synopsis

#include <math.h>
constexpr F tgamma(R x);

Description

The tgamma type-generic macro eempute-computes the gamma function of x. A domain error or
pole error may occur if x is a negative integer or zero. A range error occurs if the magnitude of x is
too large and may occur if the magnitude of x is too small.

Returns

The tgamma type-generic macro returrreturns I'(x).

7.12.9 Nearest integer functions
7.12.9.1 The ceil type-generic macro

Synepsisreplace

#include <math.h>

double ceil(double Xx);

float ceilf(float x);

long double ceill(long double x);

modifications to ISO/IEC 9899:2018, § 7.12.9.1 page 260 Library



N2522 cmin..core §7.12.9.2, working draft — May 10, 2020 CORE 202005 (E)

Synopsis

#include <math.h>
constexpr F ceil(R x);

Description

The ceil type-generic macro compute-computes the smallest integer value not less than x that is
representable in F.

Returns

The ceil type-generic macro returnreturns [x], expressed as a floating-point number.

7.12.9.2 The floor type-generic macro
Synopsisteplace

#include <math.h>

double floor(double x);

float floorf(float x);

long double floorl(long double Xx);

Synopsis

#include <math.h>
constexpr F floor(R x);

Description

The floor type-generic macro eempute-computes the largest integer value not greater than x that is
representable in F.

Returns

The floor type-generic macro return |x |, expressed as a floating-point number.

7.12.9.3 The nearbyint t