
Austin Group Comments on N1287
This is simply a collection of comments received on the Austin Group mail list in re-
sponse to a request for review and comment on N1287, threads API. It does not repre-
sent any official Austin Group position at this time.
From Ted Baker:
Here we go again, with more proliferation of similar-but-not-
identical standards... I skimmed through the document at the
cited URL. It is so close to POSIX threads that I wondered what
is the justification for introducing yet another set of names.
It seems that the semantics are more loosely specified than PO-
SIX threads, so if their objective is to be able to support a
single API as a layer over other thread implementations then
this might be of some value.

However, I anticipate that some users will not be satisfied with
such a feature-poor API, and will start demanding more, inevita-
bly recapitulating the history of POSIX threads. For example, I
guess it is inevitable that we will soon see a "real time" ver-
sion of this and the proposed C++ interfaces. --Ted

From David Butenhof:
I have to agree with Ted. Perhaps the weakest part of this
pseudo-generic wrapper package is that it lacks even an exten-
sion mechanism to change any semantic attributes of threads be-
fore starting them; something absolutely critical if any future
foray into realtime scheduling support might come to be in the
cards. Or, for that matter, any realistic use of the "portable"
C facility on real systems for real programs, where extensions
to access base thread implementation capabilities are going to
be needed (e.g., realtime, stack allocation control, etc.)

Some APIs like UI threads allow creating suspended threads, set-
ting attributes via additional APIs, and then starting it; oth-
ers, like pthreads, tried a more structured approach with at-
tributes objects on the create operation (which also has the ad-
vantage of being easily layered on a base implementation that
works the other way, while the converse is possible but much
messier). This has neither.

Of course the "xtime" thing and thrd_sleep() is just POSIX time-
spec and nanosleep(). Adding a C language facility equivalent to
'struct timespec' will, inevitably, end up with a similar but
semantically unrelated data type that needs to be converted and
interpreted in any real application, causing pain for innumer-

Document: WG 14 N1341
Date: 2008-08-12

able developers for many years to come. While I see the motiva-
tion that drives messes like this, I don't like it.

C can't grow to encompass all of the differences between various
operating systems to enable 100% portable programs, no matter
what. Frankly I'd much prefer that C focus on a good, strong,
portable memory model that would enable fully portable use and
creative/useful "abuse" (lock-free, wait-free) of the various
threading APIs already widely deployed and understood. Espe-
cially when the "standard" C thread interface is so bare-bones
and non-extensible that it essentially prevents most developers
from using it anyway.

The memory model is critical. Having a C runtime threading API
isn't, unless it's going to allow full portable use of at least
most common posix and win32 mechanisms and attributes; so that
you can actually write a useful portable (or at least "mostly
portable") threaded program. This API, as it stands now, doesn't
come close to fitting that bill.

From Hallvard B Furuseth:
(In response to Ted Baker):
While I don't know why they are doing it this way, I can see one
advantage: The C language and memory model will finally ac-
knowledge the existence of threads. It could do that without
providing an API, and maybe suggest these primitives as a theo-
retical way to implement threading. However I'd suspicious of
such a purely theoretical model. If it doesn't get some real-life
exposure in its own right, design bugs and other problems don't
get detected as easily.

OTOH - I found a strong criticism of Posix-like threading in:
"Why POSIX Threads Are Unsuitable for C++" by Nick Mclaren:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1940.pdf I didn't under-
stand all of it, and I don't know if the current proposal is
loose enough to accommodate his objections or if he lost the de-
bate. Statements like "almost all modern, scalable, parallel ap-
plications use MPI" (as in OpenMP rather than pthreads) looked a
bit damning...

(In response to Dave Butenhof):
Another extension mechanism I missed is that pthread functions
return errno values (which the implementation can invent), while
this one only returns a few predefined error values. If none of
the three defined error values are suitable, why not let the
functions return 'any other (positive?) value' instead of

Document: WG 14 N1341
Date: 2008-08-12

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1940.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1940.pdf

'thrd_error'? That'd also allow - but not require - an imple-
mentation to return errno values, and to define the thrd_* error
values to 0, ENOMEM, ETIMEDOUT and EBUSY. Incidentally, it
looks to me like these functions as written must not return
EINTR – they must instead loop.

I guess the functions could set errno when returning thrd_error,
but it seems messy to both return an error value beyond success/
failure and set errno. One should be enough.

[re xtime]
Couldn't xtime be defined so that POSIX can state that xtime
must be a typedef for struct timespec?

The current xtime spec is wrong for C: It says sec and nsec are
ints. But if int is 16-bit, it can hold neither nanoseconds nor
the current time in seconds. It's not necessarily a Dinkum bug
- maybe their implementation does not attempt to support 16-bit
int.

Other notes about n1287:

The type names 'once_flag' and 'xtime' lack a '_t' suffix. I
can well imagine at least the former could conflict with variable
names. For that matter, depending on how widely this API is ex-
pected to be used, I wonder if the functions and types should
all get a 'thrd_' prefix, to reduce namespace pollution in pro-
grams that do use them.

Why do thrd_abort() and thrd_sleep() have thrd_ prefixes? What
is thread-related about those functions?

There is no equivalent of PTHREAD_<COND/MUTEX>_INITIALIZER.
Maybe they could be made optional - so programs that want them
can do

 #ifdef MTX_INIT/CND_INIT?
Then implementations where cnd_init/mtx_init use resources, can
choose to not #define these flags - and thus ensure that the
first call to mtx_lock() on the mutex will not fail due to re-
source limits in the implicit "if (mutex == MTX_INIT) {
mtx_init() for real }".

> Memory Visibility
> "There are three times at which changes made to memory by one thread
> are guaranteed to be visible in another thread:

> [...thread creation and mutex use...]"

By itself this is misleading, since other parts of the document
goes on to say:

Document: WG 14 N1341
Date: 2008-08-12

> "The condition variable functions use a mutex internally; when a
> thread returns from a wait function any changes made to memory by
> threads that called a wait function or a notify function before the
> return will be visible to the caller."
> (...)
> "The function call_once uses a mutex internally; when it returns any
> changes made to memory by the once function will be visible to the
> caller."

I see no reason why the document should state how operations
works internally. It'd be cleaner to list the actual operations
that affect memory visibility up front.
> Once Functions

This section (as well as the POSIX spec) should specify that if
several threads call call_once/pthread_once in parallel with the
same once_flag, the ones not calling the once function will wait
- so that the once function call will have been completed when
the threads proceed.

> mtx_init
> (...)
> The function creates a mutex object with properties indicated by type,
> which must have one of the six values

This and the function specs would be more readable if described
in terms of a bitmask mtx_something (mtx_plain|mtx_timed|m-
tx_try) | mtx_recursive.

For that matter, if mtx_timed is defined as (mtx_try | some-
thing) != 0, then mtx_trylock would only need to mention that it
needs the mtx_try flag - it need not mention mtx_timed.

> * mtx_timed -- for a non-recursive mutex that supports time-
out

That should be "timeout as well as test-and-return", according
to the mtx_trylock() spec. Also fix the 'mtx_timed' header.

Incidentally, I suggest to spell test-and-return with hyphens.
That "and" can be a little confusing in the middle of a sen-
tence, if printed on a device which does not preserve underlin-
ing of "test and return".

> #define TSS_DTOR_ITERATIONS <integer constant expression>

Maybe this should be a allowed to expand to a non-constant ex-
pression, so the implementation is free to make it a user-
settable resource limit.

Document: WG 14 N1341
Date: 2008-08-12

From Hans Boehm:
I don't have any strong opinions on the pthreads vs. Dinkumware
issue. However, there are some details in this proposal, that I
think should be adjusted. In particular, the memory visibility
discussion needs to be consistent with whatever the final memory
model ends up being. It's important how this interacts with
atomics, which I hope will also be in the standard. There are
other issues, such as with call_once.

I think it's crucial that the standard clearly guarantee sequen-
tial consistency for data-race-free programs (low-level atomics
excepted), since I think that's the only programming rule that I
think we can actually explain to most programmers. And it's the
one the one that's now supported by both Java and the C++ WP.

This model (sequential-consistency for data-race-free programs)
effectively requires that mtx_trylock() and mutex_timedlock() be
allowed to spuriously fail to acquire the lock. Otherwise the
client can tell whether mtx_lock() includes a memory fence on
both sides, which makes it significantly more expensive to im-
plement on many architectures. I think the pthreads specifica-
tion should eventually be correspondingly relaxed. (This is not
intended to encourage implementation changes, and hence does not
have to break code, even that small amount of really obscure
code that relies on this. But it does cause many existing im-
plementations to actually meet the letter of their specifica-
tion.)

This proposal also raises the question of whether mutexes should
be statically initializable. Requiring this may pose some im-
plementation challenges on some platforms, but I believe stati-
cally initialized mutexes are very useful to the client. The
alternative is often an (easily forgotten and rather messy)
call_once call before acquiring a mutex.

Hans

From yodaiken@fsmlabs.com
How do you do:

thread A: while(1){wait for event; process data; sem_post;}
thread B1 ... BN: while(1) { sem_get; collect data; ... }

?

Gotta implement semaphores with conditions?

Document: WG 14 N1341
Date: 2008-08-12

