
Topic Maps Reference Model,
13250-5
Patrick Durusau

patrick@durusau.net

Steve Newcomb
srn@coolheads.com

Robert Barta
rho@bigpond.net.au

November 19, 2007

13250-5 CD

ii

13250-5 CD

Contents Page

1 Scope . 1

2 Normative References . 1

3 Subjects . 1

4 Subject Proxies and Maps . 2

5 Ontological Commitments . 3

6 Navigation . 3

7 Constraints . 4

8 Merging . 5

9 Map Legends . 6

10 Conformance . 6

Annex A (normative) Path Language . 8

Annex B (normative) TMRM/TMDM Mapping . 12

Annex C (informative) TMRM Notation . 18

Figures

Figure 1 — Proxy Structure . 2

Tables

iii

13250-5 CD

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national
standards bodies (ISO member bodies). The work of preparing International Standards is nor-
mally carried out through ISO technical committees. Each member body interested in a subject
for which a technical committee has been established has the right to be represented on that
committee. International organizations, governmental and non-governmental, in liaison with
ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical
Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives,
Part 2.

The main task of technical committees is to prepare International Standards. Draft International
Standards adopted by the technical committees are circulated to the member bodies for voting.
Publication as an International Standard requires approval by at least 75% of the member bodies
casting a vote.

iv

13250-5 CD

Introduction

The Topic Maps family of standards is designed to facilitate the gathering of all the information
about a subject at a single location. The information about a subject includes its relationships
to other subjects; such relationships may also be treated as subjects (subject-centric).

ISO/IEC 13250-2 (TMDM, Topic Maps Data Model) provides a foundation for syntaxes and
notations, such as those defined in ISO/IEC 13250-3 Topic Maps XML Syntax and ISO/IEC
13250-4 Topic Maps Canonicalization. Of necessity, the TMDM makes ontological commit-
ments in terms of how particular subjects are identified (topics, associations, occurrences), what
properties are required, the tests to be used to determine whether two or more proxies represent
the same subject, and other matters.

This Standard defines TMRM (Topic Maps Reference Model), which is more abstract and has
fewer ontological commitments. Its purpose is to serve as a minimal, conceptual foundation for
subject-centric data models such as the TMDM, and to supply ontologically neutral terminology
for disclosing these. It defines what is required to enable the mapping of different subject-centric
data models together to meet the overall goal of the Topic Maps standards, that each subject
has a single location for all the information about it.

TMRM also provides a formal foundation for related Topic Maps standards such as ISO/IEC
18048 Topic Maps Query Language (TMQL) and ISO/IEC 19756 Topic Maps Constraint Lan-
guage (TMCL).

v

13250-5 CD

vi

13250-5 CD

Topic Maps —

Reference Model —

ISO 13250-5

1 Scope

The following are within the scope of this part of ISO 13250:

— a formal model for subject maps;

— minimal access functionality and information retrieval from subject maps;

— a constraint framework governing the interpretation of subject maps.

The following are outside the scope of this part of ISO 13250:

— a particular formalism to constrain subject maps.

2 Normative References

NOTE Each of the following documents has a unique identifier that is used to cite the document in the
text. The unique identifier consists of the part of the reference up to the first comma.

TMDM, ISO/IEC IS 13250-2:2006, Information Technology – Document Description and Pro-
cessing Languages – Topic Maps–Data Model, ISO, 2006.

CTM, ISO/IEC 13250-6, Information Technology – Document Description and Processing Lan-
guages – Topic Maps–Compact Syntax, ISO.

3 Subjects

A subject is defined in the Topic Maps family of standards as something which ’[...] can be
anything whatsoever, regardless of whether it exists or has any other specific characteristics,
about which anything whatsoever may be asserted by any means whatsoever’ (ISO/IEC 13250-
2 5.3.1). According to the TMRM, there is only one representative for subjects: subject proxies
(proxies).

1

13250-5 CD

4 Subject Proxies and Maps

Proxies consist of properties. These are key/value pairs which—in turn—may contain references
to other proxies. This recursive relationship is defined via two postulated sets. One is the finite
set of (proxy) labels, L. The second set postulated here is V, a finite set of values. It contains
values (such as numbers, strings, etc.), and all the labels in L.

A property is the pair 〈k, v〉 ∈ L × V. The first component of this pair is called the key, the
other the value of the property. The (consequently finite) set of all such properties is denoted
as P. Accordingly, keys in properties are always labels, the values in properties may be labels
or any other value from the value set V.

EXAMPLE 1 Given the label shoesize and the integer 43, then 〈shoesize, 43〉 is a property.

A proxy is a finite set of properties, {p1, . . . , pn}, with pi ∈ P (see Fig. 1). The multiset of all
keys of a proxy x is retrievable via the function keys(x) (Keys can occur more than once in a
proxy with different values). The multiset of all values is values(x) (Also particular values may
appear more than once in one proxy).

Figure 1 – Proxy Structure

EXAMPLE 2 A particular person may be represented by the following proxy: {〈shoesize, 43〉,
〈beardcolor, white〉, 〈beardlength, verylong〉}

The set of all proxies X is the set of all subsets of P, X = 2P .

The connection between proxies and their labels is modeled with a partial, injective function
˜: X 7→ V. It returns the label for a given proxy x whereby two different proxies never share the
same label. The function is extended to values in that ṽ = v.

NOTE 1 Subject proxies are composed of properties, each (isolated or in combination with other prop-
erties) being a statement about the proxy’s subject. A proxy is defined by the totality of its properties.
Properties can provide a basis for mapping multiple representatives of the same subject to each other.

NOTE 2 One proxy may contain several properties which all share the same key but have different
values; or share the same value, but have differing keys.

A subject map (map) is a finite set of proxies. The set of all such maps is denoted as M. As
maps are simply sets of proxies, generic merging of maps is achieved via set union, m ∪m′.

NOTE 3 The model of subject maps described herein assumes no particular implementation technology
or strategy.

2

13250-5 CD

5 Ontological Commitments

This Standard deliberately leaves undefined the methods whereby subject proxies are derived
or created. No specific mechanism of subject identification is inherent in or mandated by this
Standard, nor does it predefine any subject proxies.

NOTE 1 Any subject proxy design choices would be specific to a particular application domain and
would exclude equally valid alternatives that might be appropriate or necessary in the contexts of various
requirements.

Two types of relationships, ako (subclass of) and isa (instance of), are defined. These predicates
are always interpreted relative to a given map m:

a) Two proxies c, c′ can be in a subclass-superclass relationship, akom ⊆ m × m. In such a
case, the same relationship can be stated either c is a subclass of c′ or c′ is a superclass of
c.

akom is supposed to be reflexive and transitive. Reflexive implies that any proxy is a subclass
of itself, regardless whether the proxy is used as a class in the map or not: x akom x for all
x ∈ m.

Transitive implies that if a proxy c is a subclass of another, c′, and that subclasses c′′, then
c is also a subclass of c′′, i.e. if c akom c′ and c′ akom c′′ then also c akom c′′ must be true.

NOTE 2 Circular subclass relationships may exist in a map.

b) Two proxies a, c can be in an isa relationship, isam ⊆ m × m. In such a case, the same
relationship can be stated either a is an instance of c or c is the type of a.

The isa relationship is supposed to be non-reflexive, i.e. x isam x for no x ∈ m, so that
no proxy can be an instance of itself. Additionally, whenever a proxy a is an instance of
another c, then a is an instance of any superclass of c: if x isam c and c akom c′, then
x isam c′ is true.

NOTE 3 This Standard does not mandate any particular way of representing such relationships inside
a map. One option is to model such a relationship simply with a property using a certain key (say type).
An alternative way is to provide a proxy for each such relationship. Such relationship proxies could, for
example, have properties whose keys are instance and class, or respectively subclass and superclass.

6 Navigation

Given a map m and particular proxies x, y ∈ m in it, the following primitive navigation operators
are defined:

a) A postfix operator ↓ to return the multiset of all local keys of a given proxy:

x↓ = keys(x) (1)

b) A postfix operator ↑m to retrieve the multiset of remote keys of a proxy inside m. These
are those where the given proxy (more precisely its label) is the value in another proxy:

x↑m = [k ∈ keys(y) | ∃y ∈ m : 〈k, x̃〉 ∈ y] (2)

3

13250-5 CD

This is easily generalized to an operator for all values:

v↑m = [k ∈ keys(y) | ∃y ∈ m : 〈k, ṽ〉 ∈ y] (3)

c) A postfix operator → k to retrieve the multiset of local values for a particular key k ∈ L:

x→ k = [v ∈ values(x) | ∃〈k, v〉 ∈ x] (4)

Using the predicate akom, the operator can be generalized to honor subclasses of the key k:

x→mk∗ = [v ∈ values(x) | ∃〈k′, v〉 ∈ x : k′ akom k] (5)

If all values (regardless of the key) should be retrieved, the notation x→ ∗ can be used.

d) A postfix operator ←mk which navigates to all proxies in the given map which use a given
value v together with a certain key k ∈ L:

v←mk = [x ∈ m | ∃〈k, ṽ〉 ∈ x] (6)

Using the predicate akom, the operator can be generalized to honor subclasses of the key k:

v←mk∗ = [x ∈ m | ∃〈k′, ṽ〉 ∈ x : k′ akom k] (7)

If all proxies should be retrieved where v is the value, the notation v ←m ∗ can be used.

It is straightforward to generalize all these navigation operators from individual proxies (and
values) to multisets of them. As a consequence the result of one postfix can be used as startpoint
for another postfix, enabling the building of postfix chains. This primitive path language is
denoted as PM.

NOTE 1 PM only serves as a minimal baseline for functionality to be provided by conforming imple-
mentations. It can be also used as the basis for a formal semantics for higher-level query and constraint
languages. Annex A describes one.

7 Constraints

Subject maps are structures which are used to encode assertional knowledge. To interpret a
map, be it for modelling, retrieval or modification, some background information about the map
may be necessary. That information is provided in form of constraints, so that a given map
m either satisfies a constraint, or not. A constraint language is a formalism which allows the
expression of such constraints.

NOTE 1 Constraints may conditionally or unconditionally require the existence of certain proxies in
maps, the existence of properties in proxies, and/or values in properties. Constraints may also prohibit
the existence of any of the foregoing.

EXAMPLE 1 A constraint language may allow the expression of constraints such as all instances of
the concept person must have at least one shoesize property or any shoesize property must have an
integer value between 10 and 50.

4

13250-5 CD

NOTE 2 The precise ways in which constraints may be expressed are not constrained by this Standard.
Different constraint languages will differ in expressitivity and, consequently, in computational complexity.

This Standard imposes two requirements on any constraint language C:

a) C must define the application of a constraint to a map in the form of a binary operator
⊗ : M × C 7→ M. A particular map m is said to satisfy a constraint, m |= c, if the
application of the constraint results in a non-empty map:

m |= c ⇐⇒ m⊗ c 6= ∅ (8)

The operator ⊗ is used to define the satisfaction relation |=⊆ M× C between a map and
a constraint.

b) C must define a merging operator ⊕ :M×M 7→M as binary operator between two maps.
It must be commutative, associative and idempotent.

NOTE 3 The provision of ⊕ and ⊗ may be done in any manner that is sufficiently expressive. Annex
A demonstrates one way of defining ⊗.

8 Merging

Generic merging of maps only combines two (or more) proxy sets. Application-specific merging
includes a second aspect. A mechanism has to be found to state whether—in a given map—two
proxies are regarded to be about the same subject. Then all such equivalent proxies have to be
actually merged.

NOTE 1 How subject sameness is determined and how the actual proxy merging is effectively done is
not constrained by this Standard. Such a process may be defined as having inputs that consist only of
the proxies to be merged. Alternatively, the inputs may also include other information that may appear
either inside the map or elsewhere in the merging process’s environment.

NOTE 2 Given the appropriate expressitivity of the used constraint language, such equivalence and the
consequent merging process can be described with a constraint.

Merging is modeled with a partial function ./: X × X × E 7→ X . It takes two proxies and
an—otherwise unconstrained—environment E as parameters and produces a new proxy. In
the special case that the environment has no influence in this process, ./ is an infix operator
X × X 7→ X between proxies.

NOTE 3 The reason for including E as a term in the definition of merging is to account for the fact
that merging criteria may be defined as being dependent on conditions external to the maps. When
environmental differences affect the results of merging, a single interchangeable subject map may be real-
ized as different subject maps in different environments. Such differences may interfere with information
interchange and create confusion, or aid such interchange and mitigate confusion, or both.

The fact that ./ is partial means that it may be applicable only to some pairs of proxies but not
to others. Those where the result is defined are supposed to be merged.

5

13250-5 CD

The operator ./ must be commutative and associative:

x ./ x′ = x′ ./ x

(x ./ x′) ./ x′′ = x ./ (x′ ./ x′′)

Additionally, ./ must be idempotent, as proxies merged with themselves should not result in a
different one:

x ./ x = x

The operator ./ factors a given proxy set into equivalence classes: two proxies x, y from a given
map m ∈ M are then in the same class if x ./ y is defined. The set of equivalence classes
is written m/ ./. Every such class can be merged into a single proxy by combining all its
members by applying ./. Given a set of proxies c = {x1, . . . , xn}, the merging of members of an
equivalence class is defined as: ./ c = x1 ./ x2 .// xn.

Given a map m and a particular function ./, the merged view of the map m|./ is defined:

m|./ = {./ c | c ∈ m/ ./} (9)

NOTE 4 In a merged view the label references to the original, unmerged proxies all remain. This is to
truthfully reflect the original information. Applications which require that all these reference link to the
merged versions of proxy sets have to relabel any references in there.

One such merging step may result in proxies being created which again may be mergeable. The
process can be repeated until a fully merged map is computed, so that m|./ = m. Fully merged
maps are symbolized as m|./

∗. Since the sizes of newly merged maps are weakly monotonously
decreasing, the process to produce a fully merged map takes always a finite number of steps.

9 Map Legends

A map legend (legend) G = {c1, . . . , cn} is a finite set of constraints, all from a given constraint
language C. A legend G is said to govern a map m if m |= ci for all ci ∈ G.

NOTE 1 The legend of a subject map plays a role similar to the legend on more familiar city or road
maps. The legend associated to a subject map is one key to its interpretation. Just as the legends of
geographic maps describe and define the symbols that appear in them, their scaling rules, etc., subject
map legends explain the symbols that appear in them (such as property keys) and other interpretation
rules.

NOTE 2 There is no explicit connection between maps and legends, other than whether the map is
governed by a legend or not. Any subject map can be simultaneously viewed with multiple legends written
for different purposes or users. Such views may be quite different from each other. Maps themselves exist
without any legend describing the rules how they may be used.

10 Conformance

An implementation conforms to this Standard if:

a) Its information structures are homomorphous to the subject map structure in Clause 4;

b) It implements merging by providing an operator ⊕ according to Clause 7;

6

13250-5 CD

c) It implements access methods equivalent to those in Clause 6;

d) Those methods must honor the predicates from Clause 5;

e) It implements a constraint language by providing an operator ⊗ according to Clause 7;

f) It implements legends according to Clause 9.

7

13250-5 CD

Annex A
(normative)

Path Language

The primitive path language PM (clause 6) can be used to define a more expressive language TM
which provides not only navigation, but also filtering, sorting and general function application.

In the following, tuple sequences are first defined as the results of applying a TM path expression
to a map (or any multiset of proxies and values). Then, the path expression language itself is
compiled, defining the semantics for the application operator ⊗.

A.1 Tuples

Path expressions describe patterns to be identified in a map. In order to provide a model for
both queries and constraints, the results of path expressions are modeled as tuples of values and
organized into tuple sequences.

A single tuple with values from a value set V is denoted as 〈v1, v2, . . . , vn〉. Tuples can be concate-
nated simply by collating their values: 〈u1, . . . , um〉 · 〈v1, v2, . . . , vn〉 = 〈u1, . . . , um, v1, . . . , vn〉.
This enables the representation of tuples as the products of singleton tuples:

t =
n∏

i=1

〈vi〉 = 〈v1〉 · 〈v2〉 · ... · 〈vn〉 (10)

The concatenation symbol · will be omitted from now on. For a tuple slices we use t(j..k) =∏k
i=j〈vi〉 and t(i) = t(i..i).

Tuples and proxies are closely related. All the values can be taken out of a proxy and arranged
into a value tuple. If order is important, an order can be postulated on the keys and the values
are sorted according to it. Conversely, a value tuple can be converted into a proxy, provided
that the tuple of keys is available (zipping):

〈v1, . . . , vn〉U〈k1, . . . , kn〉 = {〈k1, v1〉, . . . , 〈kn, vn〉} (11)

Tuples are identical if all their values in corresponding positions are identical. Tuples can also
be compared so that t ≤ t′ is derived from some ordering over the tuple values v ≤ v′. To
allow to control ascending and descending tuple ordering an ordering tuple o =

∏k
1〈di〉 with the

direction d ∈ {↑, ↓,−} is introduced. Given that and tuples t and t′, the ordering on tuples ≤o

is defined via t ≤o t′ ⇔ t(1..m) ≤o t′(1..m) with m the length of the shorter tuple. For tuple
slices we define ≤o to be:

t(i..j) ≤o t′(i..j)⇔


t(i) ≤ t′(i) if di =↑
t′(i) ≤ t(i) if di =↓
t(i + 1..j) ≤o t′(i + 1..j) if di = − or t(i) = t′(i)

A.2 Tuple Sequences

When tuples are organized into sequences, a single sequence is written:

s =
m∑

i=1

ti = [t1, . . . , tm] (12)

8

13250-5 CD

Sets of values can be interpreted in such that every value builds exactly one tuple. For a given
set of values {v1, . . . , vn} the tuple sequence

∑n
i=1〈vi〉 can be built. This conversion is denoted

as [{v1, . . . , vn}]. Under this interpretation a map m = {x1, . . . , xn} can be represented as the
tuple sequence [m]. Conversely, a tuple sequence can be interpreted as a map when the tuples
it contains are singleton proxies.

Given an order tuple o, a sequence s can be ordered such that ti ≤ tj iff i ≤ j. This is written
as ~so.

Sequences behave like multisets, i.e. operations such as union ∪, intersection ∩ and subtraction \
are those of multisets. Any ordering of tuples within the operand sequences is lost in the result.
Ordering is maintained in any of the operand sequences when tuple sequences are concatenated:

m∑
i=1

si +
n∑

j=1

tj = [s1, . . . , sm, t1, . . . , tn] (13)

This is achieved by interleaving the tuples of the second operand with those of the first. The
indices may be omitted if the range is obvious.

Tuple sequences can also be combined by multiplying (joining) them. The product of two tuple
sequences is defined recursively:

(s)

 m∑
j=1

〈v1j, v2j, . . . , vlj〉

 =

s

m∑
j=1

〈v1j〉

 m∑
j=1

〈v2j, . . . , vlj〉 (14)

n∑
i=1

ti

m∑
j=1

〈vj〉 =
nm∑

i,j=1

(ti〈vj〉) (15)

NOTE 1 Every tuple of the left hand operand sequence is concatenated with every other one of the
right-hand operand. The first value of each tuple of the second operand is removed and combined with
every tuple of the first operand. This is repeated until the second operand does not have tuples with any
values.

The zipping function (section A.1) can be generalized to tuple sequences by repeating the process
for every tuple of the sequence. Consequently, every tuple sequence can be interpreted as a
sequence of proxies once a set of keys has been chosen. This sequence of proxies can then be
interpreted as a subject map.

A.3 Path Expressions

A particular path expression can be interpreted as an expression of interest, i.e. as a pattern
to be identified in a map. Given a tuple sequence s, a path expression p can be applied to it,
with the expectation of another tuple sequence in return. This application can be symbolized
as s⊗mp. This operation is to be understood in the context of a map m. If that is implicit, the
index can be dropped.

The set of path expressions TM is characterized as the smallest set satisfying the following
conditions:

a) Every value from V (and consequently every proxy label) is in TM. If such a value is applied
to a sequence, then the sequence itself is discarded. Instead a new sequence with a singleton
tuple is created in which the value is used.

9

13250-5 CD

b) The projection postfix πi is in TM for any positive integer i. It can be used to extract a
certain column from a given tuple sequence:

n∑
i=1

〈v1i, v2i, . . . , vli〉 ⊗ πj =
n∑

i=1

〈vji〉 (16)

Projection here plays a similar role like in query languages like SQL, except that an index
is used for selection instead of names.

To organize values freely into a new tuple sequence, the tuple projection 〈p1, . . . , pn〉 is used
with pi being path expressions. For a single tuple it evaluates all the path expressions and
builds the product of all partial result sequences:

t⊗ 〈p1, . . . , pn〉 =
n∏

i=1

t⊗ pi (17)

When applied to a tuple sequence, all applications to its tuples are concatenated. As a
special case, the empty projection 0 = 〈〉 always returns an empty tuple sequence and the
identity projection 1 =

∏
〈πi〉 always returns the incoming tuple sequence.

c) The navigation operators ↑, ↓, ← k and → k are in TM. When applied to a tuple sequence
these operators are applied to every tuple:

(
n∑

i=1

〈v1i, v2i, . . . , vli〉

)
⊗ ← k =

n∑
i=1

l∏
j=1

〈vji←mk∗〉 (18)

(
n∑

i=1

〈v1i, v2i, . . . , vli〉

)
⊗ → k =

n∑
i=1

l∏
j=1

〈vji→mk∗〉 (19)

These operators simply iterate over each tuple and compute an intermediate result for each
tuple. This intermediate result is achieved by applying the navigation to each value in the
current tuple. As one such application results in a multiset of values, that is converted into
a singelton tuple sequence. All these singleton tuple sequences are multiplied and all these
intermediate results are then concatenated into the overall result.

The operators can be naturally extended to sets of keys:

s⊗ ← {k1, k2, ..., kn} =
n∑

i=1

(s⊗ ← ki) (20)

s⊗ → {k1, k2, ..., kn} =
n∑

i=1

(s⊗ → ki) (21)

An analogous approach is used for finding keys:

10

13250-5 CD

(
n∑

i=1

〈v1i, v2i, . . . , vli〉

)
⊗ ↓ =

n∑
i=1

l∏
j=1

〈vji ↓〉 (22)

(
n∑

i=1

〈v1i, v2i, . . . , vli〉

)
⊗ ↑ =

n∑
i=1

l∏
j=1

〈vji↑m〉 (23)

d) Given path expressions p1, . . . , pn and a function f : Vn 7→ V then also f(p1, . . . , pn) is in
TM. When an n-ary function f : Vn 7→ V is applied to a tuple sequence, it is interpreted
as one which takes a value tuple of length n and renders one value from V. To apply it to
a tuple sequence, it is applied to every individual tuple and the results are organized back
into a sequence:

f(
∑

ti) =
∑
〈f(ti)〉 (24)

e) The conditional p?q:r is in TM for path expressions p, q and r. When it is applied to a
tuple sequence, every tuple is tested whether it produces a result when p is applied to it.
If that is the case, the then branch is used, i.e. the tuple will be subjected to q and these
results will be added to the overall result. Otherwise, the tuple will get r applied:(

n∑
i=1

ti

)
⊗ (p?q:r) =

n∑
i=1

([ti ⊗ q | ti ⊗ p 6= ∅] ∪ [ti ⊗ r | ti ⊗ p = ∅]) (25)

f) For two path expressions p and q the alternation p + q, the reduction p − q, and the
comparison p = q are in TM:

s⊗ (p + q) = (s⊗ p) ∪ (s⊗ q) (26)
s⊗ (p− q) = (s⊗ p) \ (s⊗ q) (27)
s⊗ (p = q) = (s⊗ p) ∩ (s⊗ q) (28)

g) The slicer [i..j], the sorter sorto with an ordering tuple o and the duplicate remover uniq
are in TM:

n∑
k=1

tk ⊗ [i..j] =
j−1∑
k=i

tk (29)

s⊗ sorto = ~so (30)

s⊗ uniq =
∑

k

tk with tk ∈ s and ti 6= tj for i 6= j (31)

h) For two path expressions p and q the concatenation p ◦ q is in TM:

s⊗ (p ◦ q) = (s⊗ p)⊗ q (32)

If—from the context—it is clear that two path expressions are to be concatenated, the infix
is omitted.

11

13250-5 CD

Annex B
(normative)

TMRM/TMDM Mapping

Given a TMDM instance M , the mapping {{M}} generates an equivalent TMRM subject map.
This implies that information in the TMDM instance is represented as subject proxies, be that
explicitly coded as topic map items or be that only implicitly defined by the TMDM model, or
its underlying meta model (infoset). The latter are all those ontological commitments, such as
the TMDM terminology and the predefined association types.

This mapping {{}} is in principle invertable; any subject map holding the necessary proxy
structures can be interpreted as TMDM instance. That inverse mapping is denoted as {{}}−1.

B.1 Data Types

Data types are identified by IRIs, which are elements in the set of all IRIs IRI ⊆ V. Each such
~i ∈ IRI corresponds to a TMRM data type D~i ⊆ V.

For each data type a function t~i : L~i 7→ D~i maps a string from the lexical space L~i into the
values themselves. For the inverse process we write t−1

~i
. The equation t~i(t

−1
~i

(v)) = v for any
v ∈ D~i shall hold. A total ordering <~i on D~i shall also exist.

B.2 TMDM Ontology

The TMDM ontology is used to represent TMDM instances mapped to the TMRM. The follow-
ing proxies are used for bootstrapping purposes:

⊥ = {〈⊥,⊥〉}
subject-identifier = {〈⊥, "subject-identifier"〉}

item-identifier = {〈⊥, "item-identifier"〉}
subject-locator = {〈⊥, "subject-locator"〉}

member = {〈⊥, "member"〉}
type = {〈⊥, "type"〉}

subject = {〈⊥, "subject"〉}
scope = {〈⊥, "scope"〉}

reified = {〈⊥, "reified"〉}
reifier = {〈⊥, "reifier"〉}

The set of all these proxies is referred to as base.

The following topic map (specified in CTM syntax [CTM]) contains the meta-ontology of
TMDM.

%prefix http://psi.topicmaps.org/iso13250/model/

(. TOPIC PROXIES .)

12

13250-5 CD

subject .
topic ako subject .
statement ako subject .
association ako statement .
characteristic ako statement .
name ako characteristic .
occurrence ako characteristic .
variant ako statement .
topicmap ako subject .

type-instance . instance . type .
supertype-subtype . subtype . supertype .

This CTM fragment is deserialized into a TMDM instance as specified by CTM [CTM], and
the resulting TMDM instance is then converted into the TMDM meta-ontology using the {{}}′
mapping specified below. The proxies representing the topics defined in the CTM fragment are
referred to using the identifiers in the CTM fragment.

{{m : tmdm instance}}′ = base

∪ {{t}} | t← m.topics

∪ {{a}} | a← m.associations

The resulting subject map we denote as {{TMDM-Ontology}}.

B.3 The mapping

B.3.1 Notation

This clause defines the mapping {{}} top-down, starting from topic-map. The function {{}}
always returns a set of proxies. When {{x}} is used where a label or a value is expected, the
label for x is returned and not the proxy itself.

The following list comprehension syntax (cf. Haskell) is used to process lists:

e | s← S (33)

The interpretation of this syntax is as follows: All topic items in the set S are assigned iteratively
to a variable s and for each of these bindings the expression e, which uses s, on the left of | is
evaluated. The set of values produced by e is then returned at the end. If S is a single value
this is treated as though it were a set containing that single item, and if S is the TMDM null
value this is treated as though it were the empty set.

In each equation below we introduce a topic map item, bind it locally to a variable on the left-
hand side, and then use that variable to stand for a particular item. We use a selector notation,
such as m.topics to refer to the component of the topic map item.

B.3.2 Definition

The mapping itself is defined as follows:

13

13250-5 CD

{{m : topic-map}} = {〈type, topicmap〉}
∪ {{t}} | t← m.topics
∪ {{a}} | a← m.associations

{{t : topic}} = {〈item-identifier, i〉 | i← t.item-identifiers ∪
〈subject-identifier, i〉 | i← t.subject-identifiers ∪
〈subject-locator, l〉 | l← t.subject-locators}

∪ {{n}} | n← t.topic-names
∪ {{o}} | o← t.occurrences
∪ 〈reifier, {{t}}, reified, {{s}}〉 | s← t.reified

{{n : topic-name}} = {〈scope, {{n.scope}}〉,
〈subject, {{n.parent}}〉,
〈value, n.value〉,
〈type, {{n.type}} 〉} }

∪ {{v}} | v ← n.variants
∪ {{t}} | t← n.scope

{{v : variant}} = { {〈scope, {{v.scope}}〉,
〈subject, {{v.parent}}〉,
〈value, tv.datatype(v.value)〉,
〈type, variant〉}}

∪ {{t}} | t← v.scope

{{o : occurrence}} = { {〈scope, {{o.scope}}〉
〈subject, {{o.parent}}〉
〈value, to.datatype(o.value)〉,
〈type, {{o.type}} 〉}}

∪ {{t}} | t← o.scope

{{a : association}} = { {〈scope, {{a.scope}}〉,
〈type, {{a.type}} 〉} ∪
〈{{r.type}}, {{r.player}}〉 | r ← a.roles }

∪ {{t}} | t← a.scope

{{s : set}} = 〈member, t〉 | t← s

B.4 Inference

The mapping in B.3 maps the topic map exactly as given, and does not map information which
could be inferred from the topic map. That is left for the mapping function [[]], which is defined
as follows:

14

13250-5 CD

[[m : topic-map]] = {{TMDM-Ontology}}
∪ [[t]] | t← m.topics
∪ [[a]] | a← m.associations

[[t : topic]] = {{t}} isa topic
∪ [[n]] | n← t.topic-names
∪ [[o]] | o← t.occurrences

[[n : topic-name]] = {{n.type}} ako topic-name
[[o : occurrence]] = {{o.type}} ako occurrence
[[a : association]] = {{a.type}} ako association

The shorthand function x isa y produces a proxy representing a type-instance association be-
tween x and y as follows:

x isa y = {〈type, type-instance〉, 〈scope, {}〉, 〈type, y〉, 〈instance, x〉} (34)

Similarly, the x ako y function produces a proxy representing a supertype-subtype association
between x and y:

x ako y = {〈type, supertype-subtype〉, 〈scope, {}〉, 〈supertype, y〉, 〈subtype, x〉} (35)

B.5 Merging

@@@ FIXME @@@: Define merging operator.

B.6 Representation of isam and akom

@@@ FIXME @@@: Is this really necessary? The answer depends on the solution to the infer-
encing issue.

B.7 Axes

The following relations are used by TMQL as axes.

@@@ FIXME @@@: This must be updated to the new mapping, and the presentation must be
freshened up somewhat. Also an open question whether this doesn’t actually belong in TMQL.
It’s certainly closely tied to TMQL.

i typesm t ⇔ i isam t
t supertypesm t′ ⇔ t subm t′

a playersm t {(a, t)|∃r, p : (r, t) ∈ p ∧ p ∈ m ∧ r 6∈ {type, scope}}
a rolesm t {(a, t)|∃t′, p : (t, t′) ∈ p ∧ p ∈ m ∧ t 6∈ {type, scope}}
t characteristics c ⇔ c→ subject’ = {t} ∧ (c→ type)submtm:characteristic
s scope t {(s, t)|∃p : (scope, p) ∈ s ∧ (theme, t) ∈ p}
t locators u {(t, u)|(subjloc, u) ∈ t}
t indicators u {(t, u)|(subjid, u) ∈ t}
reifier ???

15

13250-5 CD

B.8 Constraints

This clause defines the constraints that subject maps must satisfy in order to be valid represen-
tations of TMDM instances according to this mapping.

Some minimal notation is used in this clause:

— The function P (S) returns the powerset of the set S, that is the set of all subsets of S.

— Diri is the set of all IRIs.

— Dstring is the set of all strings.

The set of all proxies representing topic map items is:

M = {{〈type, topicmap〉}} (36)

The set of all proxies representing topic items is:

T = P (〈item-identifier, i〉 | i← Diri

∪ 〈subject-identifier, i〉 | i← Diri

∪ 〈subject-locator, i〉 | i← Diri)

The set of all proxies representing topic name items is:

N = {〈type, t〉, 〈scope, s〉, 〈subject, t′〉, 〈value, v〉}
| t, s, t′, v ← T × S × T ×Dstring

The set of all proxies representing variant items is:

V = {〈type, variant〉, 〈scope, s〉, 〈subject, n〉, 〈value, v〉}
| s, n, v ← S × T × V

The set of all proxies representing occurrence items is:

O = {〈type, t〉, 〈scope, s〉, 〈subject, t〉, 〈value, v〉}
| t, s, t′, v ← T × S × T × V

The set of all proxies representing association items is:

A = {〈type, t〉, 〈scope, s〉} ∪ r

| t, s, r ← T × S × P (〈rt, p〉|rt, p← T × T)

The set of all proxies representing scope sets is:

S = P (〈member, t〉 | t← T) (37)

The set of all proxies representing reification relationships is:

R = {〈reified, t〉, 〈reifier, s〉} | t, s← T × (S ∪N ∪O ∪ V ∪A) (38)

16

13250-5 CD

For a TMRM map m to be a valid representation of a TMDM topic map, a number of constraints
must be met.

The map must only contain certain kinds of proxies, as follows:

m ⊂ (T ∪N ∪ V ∪O ∪A ∪M ∪ S ∪R ∪ base) (39)

The base ontology must be present (base ⊂ m), as must the topic map proxy ({〈type, topicmap〉}).

It is not allowed for two different topic proxies to have the same identifiers. That is, the following
shall not hold:

∃t, t′ ∈ m | t ∈ T ∧ t′ ∈ T ∧ t ∩ t′ 6= ∅ (40)

The scope of each variant must be a superset of the scope of its topic name. That is, the
following shall hold:

∀v ∈ m ∩ V | x→ scope ⊂ (x→ parent)→ scope (41)

In general, any proxy used as a key in a property in a map m must itself be a member of the
map: ∀〈k, v〉 ∈ p ∈ m | k ∈ m

Similarly, any proxy used as a value in a property in a map m must itself be a member of the
map: ∀〈k, v〉 ∈ p ∈ m | v ∈ X =⇒ v ∈ m

17

13250-5 CD

Annex C
(informative)

TMRM Notation

Symbol Used For Email Equivalent

k∗ All subclasses (key or value) k*
m|./ Set of equivalence classes m||><|
m|./

∗ Fully merged subject map m||><|∗
↓ All keys in a proxy \
↑ Proxy as a key /
→ All values for a key −>
← Proxies with given value for a key <−
7→ Results in |−>
|= Satisfaction relationship |=
./ Merging function |><|
⊗ Constraint operator (x)
⊕ Merging operator (+)

18

