
	 ISO/IEC	WD	24772-2(E)	
	

©	ISO/IEC	2021	–	All	rights	reserved	 	 	
	

Date:	2021-11-05	

ISO/IEC/JTC	1/SC	22/WG	23	N1121	

ISO/IEC	WD	24772-2	

Edition	1	

ISO/IEC	JTC	1/SC	22/WG	23	

Secretariat:	ANSI	

Programming	languages	—	Guidance	to	avoiding	vulnerabilities	in	programming	
languages	–	Part	2:	Vulnerability	descriptions	for	the	programming	language	Ada		

	

Langages	de	programmation	—	Conduite	pour	éviter	les	vulnérabilités	dans	les	langages	de	
programmation	—	Partie	2:	Description	des	vulnérabilités	pour	le	langage	de	programmation	Ada	

	

Warning	

This	document	is	not	an	ISO	International	Standard.	It	is	distributed	for	review	and	comment.	It	is	subject	to	change	
without	notice	and	may	not	be	referred	to	as	an	International	Standard.	

Recipients	of	this	draft	are	invited	to	submit,	with	their	comments,	notification	of	any	relevant	patent	rights	of	which	
they	are	aware	and	to	provide	supporting	documentation.	

	

	

	 	

Document	type:	International	standard	
Document	subtype:	if	applicable	
Document	stage:	(10)	development	stage	
Document	language:	E	

	

	

	 	 	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

ii	

	

Copyright	notice	

This	ISO	document	is	a	working	draft	or	committee	draft	and	is	copyright-protected	by	ISO.	
While	the	reproduction	of	working	drafts	or	committee	drafts	in	any	form	for	use	by	
participants	in	the	ISO	standards	development	process	is	permitted	without	prior	permission	
from	ISO,	neither	this	document	nor	any	extract	from	it	may	be	reproduced,	stored	or	
transmitted	in	any	form	for	any	other	purpose	without	prior	written	permission	from	ISO.	

Requests	for	permission	to	reproduce	this	document	for	the	purpose	of	selling	it	should	be	
addressed	as	shown	below	or	to	ISO’s	member	body	in	the	country	of	the	requester:	

ISO	copyright	office	
Case	postale	56,	CH-1211	Geneva	20	
Tel.	+	41	22	749	01	11	
Fax	+	41	22	749	09	47	
E-mail	copyright@iso.org	
Web	www.iso.org	

Reproduction	for	sales	purposes	may	be	subject	to	royalty	payments	or	a	licensing	agreement.	

Violators	may	be	prosecuted.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

©	ISO/IEC		

2022	–	All	rights	reserved	

	

	

iii	

	 	

	

	 	 	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

iv	

Contents	

Foreword	..	vii

Introduction	..	viii

1.	Scope	..	9

2.	Normative	references	..	9

3.	Terms	and	definitions,	symbols	and	conventions	...	9

4	Using	this	document	...	14

5	General	language	concepts	and	primary	avoidance	mechanisms	..	15
5.1	General	Ada	language	concepts	..	15

6	Specific	guidance	for	Ada	..	23
6.1	General	..	23
6.2	Type	system	[IHN]	...	23
6.3	Bit	representation	[STR]	...	24
6.4	Floating-point	arithmetic	[PLF]	..	24
6.5	Enumerator	issues	[CCB]	..	25
6.6	Conversion	errors	[FLC]	..	26
6.7	String	termination	[CJM]	...	27
6.8	Buffer	boundary	violation	(buffer	overflow)	[HCB]	..	27
6.9	Unchecked	array	indexing	[XYZ]	..	27
6.10	Unchecked	array	copying	[XYW]	...	28
6.11	Pointer	type	conversions	[HFC]	...	28
6.12	Pointer	arithmetic	[RVG]	..	28
6.13	Null	pointer	dereference	[XYH]	..	29
6.14	Dangling	reference	to	heap	[XYK]	...	29
6.15	Arithmetic	wrap-around	error	[FIF]	..	29
6.16	Using	shift	operations	for	multiplication	and	division	[PIK]	...	30
6.17	Choice	of	clear	names	[NAI]	...	30
6.18	Dead	store	[WXQ]	..	31
6.19	Unused	variable	[YZS]	...	31
6.20	Identifier	name	reuse	[YOW]	..	32
6.21	Namespace	issues	[BJL]	...	32
6.22	Missing	initialization	of	variables	[LAV]	...	32
6.23	Operator	precedence	and	associativity	[JCW]	...	34
6.24	Side-effects	and	order	of	evaluation	of	operands	[SAM]	...	34
6.25	Likely	incorrect	expression	[KOA]	..	35
6.26	Dead	and	deactivated	code	[XYQ]	..	36
6.27	Switch	statements	and	static	analysis	[CLL]	..	36
6.28	Non-demarcation	of	control	flow	[EOJ]	...	37

	

©	ISO/IEC		

2022	–	All	rights	reserved	

	

	

v	

6.29	Loop	control	variable	abuse	[TEX]	...	37
6.30	Off-by-one	error	[XZH]	...	38
6.31	Unstructured	programming	[EWD]	...	39
6.32	Passing	parameters	and	return	values	[CSJ]	..	39
6.33	Dangling	references	to	stack	frames	[DCM]	..	39
6.34	Subprogram	signature	mismatch	[OTR]	..	40
6.35	Recursion	[GDL]	...	41
6.36	Ignored	error	status	and	unhandled	exceptions	[OYB]	..	41
6.37	Type-breaking	reinterpretation	of	data	[AMV]	...	42
6.38	Deep	vs.	shallow	copying	[YAN]	..	43
6.39	Memory	leak	and	heap	fragmentation	[XYL]	..	43
6.40	Templates	and	generics	[SYM]	..	44
6.41	Inheritance	[RIP]	..	44
6.42	Violations	of	the	Liskov	substitution	principle	or	the	contract	model	[BLP]	44
6.43	Redispatching	[PPH]	...	45
6.44	Polymorphic	variables	[BKK]	..	46
6.45	Extra	intrinsics	[LRM]	..	46
6.46	Argument	passing	to	library	functions	[TRJ]	..	46
6.47	Inter-language	calling	[DJS]	..	47
6.48	Dynamically-linked	code	and	self-modifying	code	[NYY]	..	47
6.49	Library	signature	[NSQ]	...	48
6.50	Unanticipated	exceptions	from	library	routines	[HJW]	...	48
6.51	Pre-processor	directives	[NMP]	..	49
6.52	Suppression	of	language-defined	run-time	checking	[MXB]	...	49
6.53	Provision	of	inherently	unsafe	operations	[SKL]	..	49
6.54	Obscure	language	features	[BRS]	...	50
6.55	Unspecified	behaviour	[BQF]	...	50
6.56	Undefined	behaviour	[EWF]	...	51
6.57	Implementation-defined	behaviour	[FAB]	..	52
6.58	Deprecated	language	features	[MEM]	...	53
6.59	Concurrency	–	Activation	[CGA]	..	53
6.60	Concurrency	–	Directed	termination	[CGT]	..	54
6.61	Concurrent	data	access	[CGX]	..	54
6.62	Concurrency	–	Premature	termination	[CGS]	...	54
6.63	Lock	protocol	errors	[CGM]	..	55
6.64	Reliance	on	external	format	strings	[SHL]	..	56
6.65	Modifying	constants	[UJO]	..	56

7	Language	specific	vulnerabilities	for	Ada	..	57
8	Implications	for	standardization	..	57

	

	 	 	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

vi	

Bibliography	...	58

Index	 60
	

	

	 	

	

©	ISO/IEC		

2022	–	All	rights	reserved	

	

	

vii	

Foreword	

ISO	(the	International	Organization	for	Standardization)	and	IEC	(the	International	Electrotechnical	
Commission)	form	the	specialized	system	for	worldwide	standardization.	National	bodies	that	are	
members	of	ISO	or	IEC	participate	in	the	development	of	International	Standards	through	technical	
committees	established	by	the	respective	organization	to	deal	with	particular	fields	of	technical	
activity.	ISO	and	IEC	technical	committees	collaborate	in	fields	of	mutual	interest.	Other	
international	organizations,	governmental	and	non-governmental,	in	liaison	with	ISO	and	IEC,	also	
take	part	in	the	work.	In	the	field	of	information	technology,	ISO	and	IEC	have	established	a	joint	
technical	committee,	ISO/IEC	JTC	1.	

International	Standards	are	drafted	in	accordance	with	the	rules	given	in	the	ISO/IEC	Directives,	
Part	2.	

The	main	task	of	the	joint	technical	committee	is	to	prepare	International	Standards.	Draft	
International	Standards	adopted	by	the	joint	technical	committee	are	circulated	to	national	bodies	
for	voting.	Publication	as	an	International	Standard	requires	approval	by	at	least	75	%	of	the	
national	bodies	casting	a	vote.	

In	exceptional	circumstances,	when	the	joint	technical	committee	has	collected	data	of	a	different	
kind	from	that	which	is	normally	published	as	an	International	Standard	(“state	of	the	art”,	for	
example),	it	may	decide	to	publish	a	Technical	Report.	A	Technical	Report	is	entirely	informative	in	
nature	and	shall	be	subject	to	review	every	five	years	in	the	same	manner	as	an	International	
Standard.	

Attention	is	drawn	to	the	possibility	that	some	of	the	elements	of	this	document	may	be	the	subject	
of	patent	rights.	ISO	and	IEC	shall	not	be	held	responsible	for	identifying	any	or	all	such	patent	
rights.	

ISO/IEC	24772-2,	was	prepared	by	Joint	Technical	Committee	ISO/IEC	JTC	1,	Information	
technology,	Subcommittee	SC	22,	Programming	languages,	their	environments	and	system	software	
interfaces.	

This	document	replaces	ISO	IEC	TR	24772-2:2020.	The	main	changes	between	this	document	and	
the	previous	version	are	that	material	has	been	added	for	some	vulnerabilities	to	reflect	addition	
knowledge	gained	since	the	publication	of	TR	24772-2:2020.	

	 	

	

	 	 	 ©	ISO/IEC	2021	–	All	rights	reserved	
	

viii	

Introduction	

This	document	is	part	of	a	series	of	documents	that	describe	how	vulnerabilities	arise	in	
programming	languages.	ISO/IEC	24772-1	addresses	vulnerabilities	that	can	arise	in	any	
programming	language	and	hence	is	language	independent.	The	other	parts	of	the	series	are	
dedicated	to	individual	languages.	

This	document	provides	guidance	for	the	programming	language	Ada,	so	that	application	
developers	considering	Ada	or	using	Ada	will	be	better	able	to	avoid	the	programming	constructs	
that	can	lead	to	vulnerabilities	in	software	written	in	the	Ada	language	and	their	attendant	
consequences.	This	document	can	also	be	used	by	developers	to	select	source	code	evaluation	
tools	that	can	discover	and	eliminate	some	constructs	that	could	lead	to	vulnerabilities	in	their	
software.	This	Document	can	also	be	used	in	comparison	with	companion	Documents	and	with	
the	language-independent	report,	ISO/IEC	24772-1,	Information	Technology	–	Programming	
Languages—	Guidance	to	avoiding	vulnerabilities	in	programming	languages,	to	select	a	
programming	language	that	provides	the	appropriate	level	of	confidence	that	anticipated	
problems	can	be	avoided.	

It	should	be	noted	that	this	document	is	inherently	incomplete.	It	is	not	possible	to	provide	a	
complete	list	of	programming	language	vulnerabilities	because	new	weaknesses	are	discovered	
continually.	Any	such	document	can	only	describe	those	that	have	been	found,	characterized,	and	
determined	to	have	sufficient	probability	and	consequence.	

	

	 	

International	Standard	 ISO/IEC	24772-2:2019(E)	
	

©	ISO/IEC	2016	–	All	rights	reserved	 	 	 9	
	

Information	Technology	—	Programming	Languages	—	Guidance	to	
avoiding	vulnerabilities	in	programming	languages	–	Part	2:	
Vulnerability	descriptions	for	the	programming	language	Ada		

	

1.	Scope	

This	Document	specifies	software	programming	language	vulnerabilities	to	be	avoided	in	the	
development	of	systems	where	assured	behaviour	is	required	for	security,	safety,	mission-critical	
and	business-critical	software.	In	general,	this	guidance	is	applicable	to	the	software	developed,	
reviewed,	or	maintained	for	any	application.	

Vulnerabilities	described	in	this	Document	record	the	way	that	the	vulnerability	described	in	the	
language-independent	document	ISO/IEC	ISO/IEC	24772-1:2022	are	manifested	in	Ada.		

2.	Normative	references	

The	following	referenced	documents	are	indispensable	for	the	application	of	this	document.	For	
dated	references,	only	the	edition	cited	applies.	For	undated	references,	the	latest	edition	of	the	
referenced	document	(including	any	amendments)	applies.	

ISO	80000–2:2009,	Quantities	and	units	—	Part	2:	Mathematical	signs	and	symbols	to	be	use	in	the	
natural	sciences	and	technology	
ISO/IEC	2382–1:1993,	Information	technology	—	Vocabulary	—	Part	1:	Fundamental	terms	
	
ISO/IEC	24772-1:2022,	Programming	languages	-	Guidance	to	avoiding	vulnerabilities	in	
programming	languages	-	Part	1:	Language-independent	guidance	
	
ISO/IEC	8652:2022	Programming	languages	–	Programming	language	Ada	

3.	Terms	and	definitions,	symbols	and	conventions	

3.1	Terms	and	definitions	

For	the	purposes	of	this	document,	the	terms	and	definitions	given	in	ISO/IEC	2382–1,	in	TR	
24772-1,	and	the	following	apply.	Other	terms	are	defined	where	they	appear	in	italic	type.	

	

10	 ©	ISO/IEC	2022	–	All	rights	reserved	
	

3.1.1	abnormal	state	
state	of	an	object	whose	initialization	or	assignment	has	been	disrupted	by	an	abort	or	the	failure	of	
a	language-defined	check	

3.1.2	access-to-object	
pointer	to	an	object.	

3.1.3	access-to-subprogram	
pointer	to	a	subprogram	(function	or	procedure).		

3.1.4	access	type		
type	for	objects	that	designate	(point	to)	objects	or	subprograms	

Note:	This	is	often	called	a	pointer	type	in	other	languages.		

3.1.5	access	value	
value	of	an	access	type	that	is	either	null	or	designates	another	object	or	subprogram	

3.1.6	allocator	
construct	that	allocates	storage	from	the	heap	or	from	a	storage	pool	

3.1.7	aspect	specification	
mechanism	used	to	specify	assertions	about	the	behaviour	of	subprograms,	types	and	objects	as	
well	as	operational	and	representational	attributes	of	various	kinds	of	entities	

3.1.8	atomic	
characteristic	of	a	volatile	object	that	guarantees	that	every	access	to	the	object	is	an	indivisible	
access	to	the	entity	in	memory	

3.1.9	attribute		
characteristic	of	a	declared	entity	that	can	be	queried	by	special	syntax	to	return	a	value	
corresponding	to	the	requested	attribute	

3.1.10	bit	ordering	
implementation	defined	value	that	is	either	High_Order_First	or	Low_Order_First	that	permits	the	
specification	or	query	of	the	way	that	memory	bits	are	numbered	within	a	representation	clause	

3.1.11	bounded	error	
error	that	need	not	be	detected	either	prior	to	or	during	execution,	but	if	not	detected	falls	within	a	
bounded	range	of	possible	effects	

3.1.12	case	statement		
statement	that	provides	multiple	paths	of	execution	dependent	upon	the	value	of	the	selecting	
expression,	but	which	will	have	only	one	of	the	alternative	sequences	selected	

	

©	ISO/IEC	2022	–	All	rights	reserved	 11	
	

3.1.13	case	expression		
expression	that	provides	multiple	paths	of	execution	dependent	upon	the	value	of	the	selecting	
expression,	but	which	will	have	only	one	of	the	alternative	dependent	expressions	evaluated	

3.1.14	case	choices		
alternatives	defined	in	the	case	statement	or	case	expression	which	are	required	to	be	of	the	same	
type	as	the	type	of	the	selecting	expression	in	the	case	statement	or	case	expression,	and	by	which	
all	possible	values	of	the	selecting	expression	must	be	covered	

3.1.15	compilation	unit	
smallest	Ada	syntactic	construct	that	can	be	submitted	to	the	compiler,	and	that	is	usually	held	in	a	
single	compilation	file	

3.1.16	configuration	pragma	
directive	to	the	compiler	that	is	used	to	select	partition-wide	or	system-wide	options	and	that	
applies	to	all	compilation	units	appearing	in	the	compilation	or	all	future	compilation	units	
compiled	into	the	same	environment	

3.1.17	controlled	type	
type	descended	from	the	language-defined	type	controlled	or	limited_controlled	which	is	a	
specialized	type	in	Ada	where	the	declarer	can	tightly	control	the	initialization,	assignment,	and	
finalization	of	objects	of	the	type	

3.1.18	dead	store	
assignment	to	a	variable	that	is	not	used	in	subsequent	instructions	

3.1.19	default	expression	
expression	that	is	used	to	initialize	a	component,	formal	object,	or	formal	parameter	when	an	
explicit	expression,	actual	object,	or	actual	parameter	is	not	provided	

3.1.20	discrete	type	
integer	type	or	enumeration	type	

3.1.21	discriminant	
parameter	for	a	composite	type	that	is	used	at	elaboration	of	each	object	of	the	type	to	configure	the	
object	

3.1.22	endianness	
byte	ordering	

3.1.23	enumeration	representation	clause		
clause	used	to	specify	the	internal	codes	for	enumeration	literals	

3.1.24	enumeration	type		
discrete	type	defined	by	an	enumeration	of	its	values,	which	are	named	by	identifiers	or	character	
literals,	including	the	types	Character	and	Boolean	

	

12	 ©	ISO/IEC	2022	–	All	rights	reserved	
	

3.1.25	erroneous	execution	
unpredictable	result	of	an	execution	arising	from	an	error	that	is	not	bounded	by	the	language,	but	
that	need	not	be	detected	by	the	implementation	either	prior	to	or	during	run-time	

3.1.26	exception	
mechanism	to	detect	an	exceptional	situation	and	to	initiate	processing	dedicated	to	recover	from	
the	exceptional	situation		

Note:	Exceptions	are	raised	explicitly	by	user	code	or	implicitly	by	language-defined	checks.	

3.1.27	expanded	name		
name	that	is	disambiguated	from	other	identical	names	by	prepending	the	name	with	the	name	of	
the	enclosing	scope	

Note:	For	example,	the	name	of	an	entity	E	within	a	package	(or	any	other	named	enclosing	entity)	
P	is	expanded	or	disambiguated	by	using	the	alternate	name	P.E	instead	of	the	simple	name	E	

3.1.28	fixed-point	types	
real-valued	types	with	a	specified	error	bound	(called	the	'delta'	of	the	type)	that	provide	
arithmetic	operations	carried	out	with	fixed	precision	rather	than	the	relative	precision	of	floating-
point	types	

3.1.29	generic	formal	subprogram		
parameter	to	a	generic	package	used	to	specify	a	subprogram	or	operator	

3.1.30	hiding		
process	where	a	declaration	can	be	hidden,	either	from	direct	visibility,	or	from	all	visibility,	within	
certain	parts	of	its	scope	

3.1.31	homograph		
property	of	two	declarations	such	that	they	have	the	same	name,	and	do	not	overload	each	other	
according	to	the	rules	of	the	language	

3.1.32	identifier		
simplest	form	of	a	name.	

3.1.33	idempotent	behaviour		
behaviour	that	is	a	property	of	an	operation	that	has	the	same	effect	whether	applied	just	once	or	
multiple	times	

3.1.34	implementation	defined		
defined	by	a	set	of	possible	effects	of	a	construct	where	the	implementation	may	choose	to	
implement	any	effect	in	the	set	of	effects	

3.1.35	invalid	representation	
representation	of	an	object	that	does	not	represent	any	valid	value	of	the	object’s	subtype	

	

©	ISO/IEC	2022	–	All	rights	reserved	 13	
	

3.1.36	modular	type	
integer	type	with	values	in	the	range	0..	modulus	–	1	with	wrap-around	semantics	for	arithmetic	
operations,	bit-wise	"and"	and	"or"	operations,	and	when	defined	in	package	Interfaces,	arithmetic	
and	logical	shift	operations	

3.1.37	obsolescent	feature		
language	feature	that	has	been	declared	to	be	obsolescent	or	deprecated	and	which	is	documented	
in	Annex	J	of	ISO/IEC	8652	

3.1.38	operational	and	representation	attributes	
values	of	certain	implementation-dependent	characteristics	obtained	by	querying	the	applicable	
attributes	and	possibly	specified	by	the	user	

3.1.39	overriding	indicator	
indicator	that	specifies	the	intent	that	an	operation	does	or	does	not	override	ancestor	operations	
by	the	same	name,	and	used	by	the	compiler	to	verify	that	the	operation	does	(or	does	not)	override	
an	ancestor	operation	

3.1.40	partition		
part	of	a	program	that	consists	of	a	set	of	library	units	such	that	each	partition	may	execute	in	a	
separate	address	space,	possibly	on	a	separate	computer,	and	can	execute	concurrently	with	and	
communicate	with	other	partitions	

3.1.41	pointer	
access	object	or	access	value	

3.1.42	pragma	
a	directive	to	the	compiler	

3.1.43	range	check	
run-time	check	that	ensures	the	result	of	an	operation	is	contained	within	the	range	of	allowable	
values	for	a	given	type	or	subtype,	such	as	the	check	done	on	the	operand	of	a	type	conversion.	

3.1.44	record	representation	clause		
a	mechanism	to	specify	the	layout	of	components	within	records,	that	is,	their	order,	position,	and	
size	

3.1.45	scalar	type		
any	one	of	numeric,	Boolean,	enumeration,	character	and	access	types	

3.1.46	selecting	expression	
expression	that	is	part	of	a	case	statement	or	a	case	expression	and	that	determines	which	choice	is	
taken	in	executing	the	case	statement	or	evaluating	the	case	expression;	it	is	of	a	discrete	type	

3.1.47	static	expression	
expression	with	statically	known	operands	that	are	computed	with	exact	precision	by	the	compiler	

	

14	 ©	ISO/IEC	2022	–	All	rights	reserved	
	

3.1.48	storage	place	attribute		
integer	attributes	that	specify,	for	a	component	of	a	record,	the	component	position	and	size	within	
the	record	

Note:	The	storage	place	attributes	are:	Position,	First_Bit	and	Last_Bit.	

3.1.49	storage	pool	
named	location	in	an	Ada	program	where	all	objects	of	a	single	access	type	will	be	allocated		

3.1.50	storage	subpool		
separately	reclaimable	subdivision	of	a	storage	pool	that	is	identified	by	a	subpool	handle	

3.1.51	subtype	declaration		
construct	that	allows	programmers	to	declare	a	named	entity	that	defines	a	possibly	restricted	
subset	of	values	of	an	existing	type	or	subtype,	typically	by	imposing	a	constraint,	such	as	specifying	
a	smaller	range	of	values	

3.1.52	task	
separate	thread	of	control	that	proceeds	independently	and	concurrently	between	the	points	where	
it	interacts	with	other	tasks	from	the	same	program	

3.1.53	unused	variable	
variable	that	is	declared	but	neither	read	nor	written	to	in	the	program	

3.1.54	volatile		
characteristic	of	an	object	that	guarantees	that	updates	to	the	object	are	always	seen	in	the	same	
order	by	all	tasks,	and	all	reads	are	directly	from	memory	

Note:	all	atomic	objects	are	volatile.	

4	Using	this	document	

ISO/IEC	24772-1:2022	subclause	4.2	documents	the	process	of	creating	software	that	is	safe,	
secure	and	trusted	within	the	context	of	the	system	in	which	it	is	fielded.	The	Ada	programming	
language	was	explicitly	designed	for	safety,	security	and	the	early	elimination	of	errors	from	Ada	
programs.	Nevertheless,	as	this	document	shows,	vulnerabilities	exist	in	the	Ada	programming	
environment,	and	organizations	are	responsible	for	understanding	and	addressing	the	
programming	language	issues	that	arise	in	the	context	of	the	real-world	environment	in	which	the	
program	will	be	fielded.	

Organizations	following	this	document,	in	addition	to	meeting	the	requirements	of	subclause	4.2	of	
ISO/IEC	24772-1:	

1. Identify	and	analyze	weaknesses	in	the	product	or	system,	including	systems,	subsystems,	
modules,	and	individual	components;	

	

©	ISO/IEC	2022	–	All	rights	reserved	 15	
	

2. Identify	and	analyze	sources	of	programming	errors;		
3. Determine	acceptable	programming	paradigms	and	practices	to	avoid	vulnerabilities	using	

guidance	drawn	from	clauses	5.3	and	6	in	this	document;	
4. Determine	avoidance	and	mitigation	mechanisms	using	clause	6	of	this	document	as	well	as	

other	technical	documentation;	
5. Map	the	identified	acceptable	programming	practices	into	coding	standards;	
6. Select	and	deploy	tooling	and	processes	to	enforce	coding	rules	or	practices;	
7. Implement	controls	(in	keeping	with	the	requirements	of	the	safety,	security	and	general	

requirements	of	the	system)	that	enforce	these	practices	and	procedures	to	ensure	that	the	
vulnerabilities	do	not	affect	the	safety	and	security	of	the	system	under	development.	

Tool	vendors	follow	this	document	by	providing	tools	that	diagnose	the	vulnerabilities	described	in	
this	document.	Tool	vendors	also	document	to	their	users	those	vulnerabilities	that	cannot	be	
diagnosed	by	the	tool.	

Programmers	and	software	designers	follow	to	this	document	by	following	the	architectural	and	
coding	guidelines	of	their	organization,	and	by	choosing	appropriate	mitigation	techniques	when	a	
vulnerability	is	not	avoidable.	

5	General	language	concepts	and	primary	avoidance	mechanisms		

5.1	General	Ada	language	concepts	

5.1.1	Ada	language	design		

Ada	has	been	designed	with	emphasis	on	software	engineering	principles	that	support	the	
development	of	high-integrity	applications.	For	example,	Ada	is	strongly	typed	thereby	preventing	
vulnerabilities	associated	with	type	mismatch.	Similarly,	Ada	includes	boundary	checking	on	arrays	
as	part	of	the	standard	language	which	prevents	buffer	overflow	vulnerabilities.	Most	of	the	
language	can	be	used	to	develop	applications	without	known	vulnerabilities.	Other	views	of	
avoiding	programming	mistakes	and	design	flaws	are	addressed	by	[1],	[2],	[4],	[24],	[26]	and	[29].	
For	specific	guidance	regarding	programming	in	safety	and/or	security	environments	see	
[5][6][11][12][25][28].	

5.1.2	Enumeration	type	
The	defining	identifiers	and	defining	character	literals	of	an	enumeration	type	are	required	to	be	
distinct.	The	predefined	order	relations	between	values	of	the	enumeration	type	follow	the	order	of	
corresponding	position	numbers.	

5.1.3	Exception		
There	is	a	set	of	predefined	exceptions	in	Ada	in	package Standard:	Constraint_Error,	
Program_Error,	Storage_Error, and	Tasking_Error;	one	of	them	is	raised	when	certain	

	

16	 ©	ISO/IEC	2022	–	All	rights	reserved	
	

language-defined	checks	fail.	The	standard	libraries	also	define	several	exceptions	that	are	raised	
when	checks	in	the	libraries	fail.	User	code	can	define,	raise	and	handle	exceptions	explicitly.		

5.1.4	Hiding		
Where	hidden	from	all	visibility,	a	declaration	is	not	visible	at	all	(neither	using	a	direct_name	nor	a	
selector_name).	Where	hidden	from	direct	visibility,	only	direct	visibility	is	lost;	visibility	using	an	
expanded	name	is	still	possible.	

5.1.5	Implementation	defined	
Implementations	are	required	to	document	their	behaviour	in	implementation-defined	situations.		

5.1.6	Type	conversions	
Ada	uses	a	strong	type	system	based	on	name	equivalence	rules.	It	distinguishes	types,	which	
embody	statically	checkable	equivalence	rules,	and	subtypes,	which	associate	static	or	dynamic	
properties	with	types,	for	example,	index	ranges	for	array	subtypes	or	value	ranges	for	numeric	
subtypes.	Subtypes	are	not	types	and	their	values	are	implicitly	convertible	to	all	other	subtypes	of	
the	same	type.	All	subtype	and	type	conversions	ensure	by	static	or	dynamic	checks	that	the	
converted	value	is	within	the	value	range	of	the	target	type	or	subtype.	If	a	static	check	fails,	then	
the	program	is	rejected	by	the	compiler.	If	a	dynamic	check	fails,	then	an	exception	
Constraint_Error	is	raised.		

To	affect	a	transition	of	a	value	from	one	type	to	another,	three	kinds	of	conversions	can	be	applied	
in	Ada:	

a)	Implicit	conversions:	there	are	few	situations	in	Ada	that	allow	for	implicit	type	
conversions.	An	example	is	the	assignment	of	a	value	of	a	type	to	a	polymorphic	variable	of	
an	encompassing	class.	In	all	cases	where	implicit	type	conversions	are	permitted,	neither	
static	nor	dynamic	type	safety	or	application	type	semantics	(see	below)	are	endangered	by	
the	conversion.	

b)	Explicit	conversions:	various	explicit	conversions	between	related	types	are	allowed	in	
Ada.	All	such	conversions	ensure	by	static	or	dynamic	rules	that	the	converted	value	is	a	
valid	value	of	the	target	type.	Violations	of	subtype	properties	cause	an	exception	to	be	
raised	by	the	conversion.	

c)	Unchecked	conversions:	Conversions	that	are	obtained	by	instantiating	the	generic	
subprogram	Unchecked_Conversion	are	unsafe	and	enable	all	vulnerabilities	mentioned	in	
subclause	6.3	as	the	result	of	a	breach	in	a	strong	type	system.	Unchecked_Conversion	is	
occasionally	needed	to	interface	with	type-less	data	structures,	for	example,	hardware	
registers.	

A	guiding	principle	in	Ada	is	that,	with	the	exception	of	using	instances	of	Unchecked_Conversion,	
no	undefined	semantics	can	arise	from	conversions	and	the	converted	value	is	a	valid	value	of	the	
target	type.		

	

©	ISO/IEC	2022	–	All	rights	reserved	 17	
	

5.1.7	Operational	and	Representation	Attributes		
Some	attributes	can	be	specified	by	the	user;	for	example:	

• X'Alignment:	allows	the	alignment	of	objects	on	a	storage	unit	boundary	at	an	integral	
multiple	of	a	specified	value.	

• X'Size:	denotes	the	size	in	bits	of	the	representation	of	the	object.		
• X'Component_Size:	denotes	the	size	in	bits	of	components	of	the	array	type	X.		

5.1.8	User-defined	types	

Ada	allows	the	usual	user-defined	types	such	as	records,	classes	(called	tagged	records),	or	access	
types.	In	addition	Ada	allows	for	user-defined	scalar	types	which	permit	specification	of	value	
ranges,	value	constraints,	and	for	floating-point	and	fixed-point	types,	precision.	More	advanced	
typing	capabilities	allow	the	user	to	specify	types	for	communicating	concurrently	executing	
entities	(tasks)	and	for	synchronized	data	structures	(protected	objects).	

The	typing	rules	of	the	language	prevent	intermixing	of	objects	and	values	of	distinct	types.	

5.1.9	Compiler	directives		

Note:	Ada	supports	compiler	directives	in	the	form	of	aspect	specifications,	aspect	clauses,	and	
configuration	pragmas.	As	an	obsolescent	feature,	certain	aspects	can	be	specified	by	similarly	
named	pragmas	as	well.	We	summarize	below	the	aspects	and	configuration	pragmas	that	are	
relevant	to	this	document.		

5.1.9.1	Aspect Atomic

Specifies	that	all	reads	and	updates	of	an	object	are	indivisible.		

5.1.9.2 Aspect Atomic_Components	

Specifies	that	all	reads	and	updates	of	an	element	of	an	array	are	indivisible.	

5.1.9.3 Aspect Convention		

Specifies	that	an	Ada	entity	should	use	the	conventions	of	another	language.		

5.1.9.4 Pragma Detect_Blocking		

A	configuration	pragma	that	specifies	that	all	potentially	blocking	operations	within	a	protected	
operation	shall	be	detected,	resulting	in	the	Program_Error	exception	being	raised.	

5.1.9.5 Pragma Discard_Names	

Specifies	that	storage	used	at	run-time	for	the	names	of	certain	entities,	particularly	exceptions	and	
enumeration	literals,	may	be	reduced	by	removing	name	information	from	the	executable	image.	

5.1.9.6 Aspect Export		

	

18	 ©	ISO/IEC	2022	–	All	rights	reserved	
	

Specifies	an	Ada	entity	to	be	accessed	by	a	foreign	language,	thus	allowing	an	Ada	subprogram	to	be	
called	from	a	foreign	language,	or	an	Ada	object	to	be	accessed	from	a	foreign	language.	

5.1.9.7 Aspect Import		

Specifies	an	entity	defined	in	a	foreign	language	that	then	can	be	accessed	from	an	Ada	program,	
thus	allowing	a	foreign-language	subprogram	to	be	called	from	Ada,	or	a	foreign-language	variable	
to	be	accessed	from	Ada.	

5.1.9.8 Pragma Normalize_Scalars:		

A	configuration	pragma	that	specifies	that	an	otherwise	uninitialized	scalar	object	is	set	to	a	
predictable	value,	but	out	of	range	if	possible.	

5.1.9.9 Aspect Pack		

Specifies	that	storage	minimization	should	be	the	main	criterion	when	selecting	the	representation	
of	a	composite	type.	

5.1.9.10 Pragma Restrictions		

Specifies	that	certain	language	features	are	not	to	be	used	in	a	given	application.	For	example,	the	
pragma Restrictions (No_Obsolescent_Features)	prohibits	the	use	of	any	deprecated	features.	
This	pragma	is	a	configuration	pragma	which	means	that	all	program	units	compiled	into	the	library	
shall	obey	the	restriction.	

5.1.9.11 Pragma	Suppress	

Specifies	that	a	run-time	check	need	not	be	performed	because	the	programmer	asserts	it	will	
always	succeed.		

5.1.9.12 Aspect	Unchecked_Union	

Specifies	an	interface	correspondence	between	a	given	discriminated	type	and	some	C	union.	The	
aspect,	if	True,	specifies	that	the	associated	type	will	be	given	a	representation	that	leaves	no	space	
for	its	discriminant(s).	

5.1.9.13 Aspect	Volatile	

Applicable	to	a	type,	an	object,	or	a	component,	and	specifies	that	the	associated	objects	are	volatile.	

5.1.9.14 Aspect	Volatile_Components	

Applicable	to	an	array	type	or	an	array	object,	and	specifies	that	the	associated	components	are	
volatile.		

5.1.10	Separate	Compilation	

	

©	ISO/IEC	2022	–	All	rights	reserved	 19	
	

Ada	requires	that	calls	on	libraries	are	checked	for	invalid	situations	as	if	the	called	routine	were	
part	of	the	current	compilation.	

5.1.11	Storage	Pool	

A	storage	pool	can	be	sized	exactly	to	the	requirements	of	the	application	by	allocating	only	what	is	
needed	for	all	objects	of	a	single	type	without	using	the	centrally	managed	heap.	Exceptions	raised	
due	to	memory	failures	in	a	storage	pool	will	not	adversely	affect	storage	allocation	from	other	
storage	pools	or	from	the	heap.	Storage	pools	for	types	whose	values	are	of	equal	length	do	not	
suffer	from	fragmentation.	Storage	pools	can	be	divided	into	subpools,	to	allow	efficient	
reclamation	of	a	portion	of	a	storage	pool.	

The	following	Ada	restrictions	prevent	the	application	from	using	allocators	in	various	contexts:	

pragma Restrictions(No_Allocators):	prevents	the	use	of	all	allocators.	

pragma Restrictions(No_Standard_Allocators_After_Elaboration):	prevents	the	use	of	
allocators	after	the	main	program	has	commenced.	

pragma	Restrictions(No_Local_Allocators):	prevents	the	use	of	allocators	except	within	
expressions	that	are	evaluated	as	part	of	library-unit	elaboration.	

pragma	Restrictions(No_Implicit_Heap_Allocations):	prevents	the	implicit	use	of	heap	
allocation	by	the	Ada	implementation,	but	allows	explicit	allocators.		

pragma	Restrictions(No_Anonymous_Allocators):	prevents	the	use	of	allocators	having	an	
anonymous	type.	

pragma	Restrictions(No_Access_Parameter_Allocators):	prevents	the	use	of	allocators	as	
the	actual	parameter	for	an	access	parameter.	

pragma	Restrictions(No_Coextensions):	prevents	the	use	of	allocators	as	the	initial	value	
for	an	access	discriminant.	

pragma	Default_Storage_Pool(null):	specifies	that	no	allocators	are	permitted	for	access	
types	that	do	not	specify	their	own	Storage_Pool	or	Storage_Size.	

pragma	Restrictions(No_Unchecked_Deallocations):	prevents	allocated	storage	from	
being	deallocated	and	hence	effectively	enforces	storage	pool	memory	approaches	or	a	
completely	static	approach	to	access	types.	Storage	pools	are	not	affected	by	this	restriction	
as	explicit	routines	to	free	memory	for	a	storage	pool	can	be	created	

	

5.1.12	Unsafe	programming		

	

20	 ©	ISO/IEC	2022	–	All	rights	reserved	
	

In	recognition	of	the	occasional	need	to	step	outside	the	type	system	or	to	perform	“risky”	
operations,	Ada	provides	clearly	identified	language	features	to	do	so.	Examples	include	the	generic	
Unchecked_Conversion	for	unsafe	type	conversions,	Unchecked_Deallocation	for	the	deallocation	
of	heap	objects	regardless	of	the	existence	of	surviving	references	to	the	object,	and	
Address_To_Access_Conversions	for	converting	addresses	into	access	values.	If	unsafe	
programming	is	employed	in	a	unit,	then	the	unit	needs	to	specify	the	respective	generic	unit	in	its	
context	clause,	thus	identifying	potentially	unsafe	units.	Similarly,	there	are	ways	to	create	a	
potentially	unsafe	global	pointer	to	a	local	object,	using	the	Unchecked_Access	attribute.	A	
Restriction	pragma	can	be	used	to	disallow	uses	of	these	language-defined	generic	units,	as	well	as	
Unchecked_Access.	The	pragma Suppress allows	an	implementation	to	omit	certain	run-time	
checks.	

5.2	Primary	avoidance	mechanisms	

The	recommendations	of	this	subclause	are	restatements	of	recommendations	from	clause	6	that	
have	been	identified	as	the	most	frequent	or	noteworthy	recommendations	from	clause	6.	Table	5.1	
identifies	the	most	relevant	avoidance	mechanisms	to	be	used	to	prevent	vulnerabilities	in	Ada.		

In	addition	to	the	generic	programming	rules	from	ISO/IEC	24772-1:2022	subclause	5.4,	additional	
rules	from	this	subclause	apply	specifically	to	the	Ada	programming	language.	Clause	6	of	this	
document provides	guidance	to	mitigate	against	known	vulnerabilities	in	Ada.	

Number	 Avoidance	Mechanism	 Reference	

1	 Specify	pre-	and	postconditions	on	subprograms.	 6.32	Passing	parameters	and	
return	values	[CSJ],	6.34	
Subprogram	signature	
mismatch	[OTR],	
6.46	Argument	passing	to	
library	functions	[TRJ]	

2	 Avoid	the	use	of	the	abort	statement.	 6.56	Undefined	behaviour	
[EWF],	6.60	Concurrency	–	
Directed	termination	[CGT],		
6.62	Concurrency	–	Premature	
termination	[CGS]	

3	 Do	not	use	features	explicitly	identified	as	unsafe,	
such	as	Unchecked_Deallocation,	
Unchecked_Conversion,	or	Unchecked_Access,	unless	
absolutely	necessary	and	then	with	extreme	caution.	

6.2	Type	system	[IHN],	6.3	Bit	
representation	[STR],		
6.11	Pointer	type	conversions	
[HFC],	6.14	Dangling	reference	
to	heap	[XYK],		
6.33	Dangling	references	to	
stack	frames	[DCM],	6.53	

	

©	ISO/IEC	2022	–	All	rights	reserved	 21	
	

Provision	of	inherently	unsafe	
operations	[SKL],			
6.56	Undefined	behaviour	
[EWF],	6.3	Bit	representation	
[STR]	

4	 Use user-defined types in preference to predefined
types, including range and precision as needed.	

6.2	Type	system	[IHN],	6.4	
Floating-point	arithmetic	
[PLF],	
6.6	Conversion	errors	[FLC],	
6.57	Implementation-defined	
behaviour	[FAB]	

5	 Protect	all	data	shared	between	tasks	within	a	
protected	object,	or	use	Atomic	operations	to	
synchronize	cooperating	tasks	

6.3	Bit	representation	[STR],	
6.56	Undefined	behaviour	
[EWF],		
6.61	Concurrent	data	access	
[CGX]	

6	 Exploit	the	type	and	subtype	system	of	Ada,	and	pre-	
and	postconditions,	to	express	constraints	on	the	
values	of	parameters.	

6.46	Argument	passing	to	
library	functions	[TRJ]	

7	 Whenever	possible,	the	'First, 'Last,	and	'Range	
attributes	should	be	used	for	loop	termination.	If	the	
'Length	attribute	has	to	be	used,	then	extra	care	
should	be	taken	to	ensure	that	the	length	expression	
considers	the	starting	index	value	for	the	array.	

6.14	Dangling	reference	to	
heap	[XYK],	6.30	Off-by-one	
error	[XZH]	

8	 Use	objects	of	controlled	types	to	ensure	that	
resources	are	properly	released	if	a	scope	is	exited	
prematurely.	

6.14	Dangling	reference	to	
heap	[XYK],	6.22	Missing	
initialization	of	variables	
[LAV],	
6.39	Memory	leak	and	heap	
fragmentation	[XYL],	6.60	
Concurrency	–	Directed	
termination	[CGT],									6.62	
Concurrency	–	Premature	
termination	[CGS]	

9	 Specify	type	invariants.	 6.44	Polymorphic	variables	
[BKK],	6.46	Argument	passing	
to	library	functions	[TRJ]	

	

22	 ©	ISO/IEC	2022	–	All	rights	reserved	
	

10	 Do	not	suppress	the	checks	provided	by	the	language	
unless	the	absence	of	the	errors	checked	against	has	
been	verified	by	static	analysis	tools.	

6.6	Conversion	errors	[FLC],	
6.9	Unchecked	array	indexing	
[XYZ]	
6.33	Dangling	references	to	
stack	frames	[DCM],	6.52	
Suppression	of	language-
defined	run-time	checking	
[MXB],	
6.56	Undefined	behaviour	
[EWF]	

11	 Use	static	analysis	tools	to	detect	erroneous	or	
undefined	behaviours	and	to	preclude	the	raising	of	
implicit	exceptions.	

6.6	Conversion	errors	[FLC],	
6.18	Dead	store	[WXQ],	
6.19	Unused	variable	[YZS],	
6.20	Identifier	name	reuse	
[YOW],	
6.24	Side-effects	and	order	of	
evaluation	of	operands	[SAM],	
6.25	Likely	incorrect	
expression	[KOA],	
6.52	Suppression	of	language-
defined	run-time	checking	
[MXB],	6.56	Undefined	
behaviour	[EWF]	

12	 Use	Ada's	support	for	whole-array	operations,	such	
as	for	assignment	and	comparison,	plus	aggregates	
for	whole-array	initialization,	to	reduce	the	use	of	
indexing.	

6.9	[XYZ],	6.10	Unchecked	
array	copying	[XYW],		
6.30	Off-by-one	error	[XZH]	

13	 Include	exception	handlers	for	every	task,	so	that	
their	unexpected	termination	can	be	handled	and	
possibly	communicated	to	the	execution	
environment.	

6.36	Ignored	error	status	and	
unhandled	exceptions	[OYB],	
6.60	Concurrency	–	Directed	
termination	[CGT],		
6.62	Concurrency	–	Premature	
termination	[CGS]	

14	 For	case	statements	and	aggregates,	do	not	use	the	
others	choice.	

6.5	Enumerator	issues	[CCB],	
6.27	Switch	statements	and	
static	analysis	[CLL]	

Table	5-1	Most	relevant	avoidance	mechanisms	to	be	used	to	prevent	vulnerabilities	

	

©	ISO/IEC	2022	–	All	rights	reserved	 23	
	

These	vulnerability	guidelines	can	be	categorized	into	several	functional	groups.	Items	3,	10	and	11	
are	applicable	to	Exceptional	and	Erroneous	Behaviours.	Mitigation	methods	associated	with	Types,	
Subtypes,	and	Contracts	include	Items	1,	4,	6,	and	9.	Those	techniques	appropriate	for	Statements	
and	Operations	consist	of	Items	7,	12,	and	14.	Finally,	Items	2,	5,	and	8	are	pertinent	to	Concurrency	
in	applications.		
	

6	Specific	guidance	for	Ada	

6.1	General		

This	subclause	contains	specific	advice	for	Ada	about	the	possible	presence	of	vulnerabilities	as	
described	in	ISO/IEC	24772-1:2022	[20]	and	provides	specific	guidance	on	how	to	avoid	them	in	
Ada	code.	This	subclause	mirrors	ISO/IEC	24772-1:2022	clause	6	in	that	the	vulnerability	“Type	
System	[IHN]”	is	found	in	subclause	6.2	of	[20],	and	Ada	specific	guidance	is	found	in	subclause	6.2	
in	this	document.		

6.2	Type	system	[IHN]	

6.2.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.2	applies	to	Ada.	

Implicit	conversions	cause	no	application	vulnerability,	as	long	as	the	resulting	exceptions	are	
properly	handled.	

Assignment	between	types	cannot	be	performed	except	by	using	an	explicit	conversion.	

Failure	to	apply	correct	unit	conversion	factors	when	explicitly	converting	among	types	for	
different	units	will	result	in	application	failures	due	to	incorrect	values.	

Failure	to	handle	the	exceptions	raised	by	failed	checks	of	dynamic	subtype	properties	causes	the	
execution	of	the	whole	system,	a	task,	or	an	inner	nested	scope	to	halt	abruptly.	

Unchecked	conversions	circumvent	the	type	system	and	therefore	can	cause	unspecified	behaviour	
(see	6.37	Type-breaking	reinterpretation	of	data	[AMV]).	

6.2.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.2.5	of	ISO/IEC	24772-1:2022.	

• Apply	the	predefined	'Valid	attribute	for	a	given	subtype	to	any	value	as	needed	to	
ascertain	if	the	value	is	a	valid	value	of	the	subtype.	This	is	especially	useful	when	interfacing	
with	type-less	systems	or	after	Unchecked_Conversion.	

	

24	 ©	ISO/IEC	2022	–	All	rights	reserved	
	

• Consider	restricting	explicit	conversions	to	the	bodies	of	user-provided	conversion	functions	
that	are	then	used	as	the	only	means	to	effect	the	transition	between	unit	systems.	Review	
these	bodies	critically	for	proper	conversion	factors.	

• Handle	exceptions	raised	by	type	and	subtype	conversions.		

• Consider	using	the	restriction	No_Dependence(Ada.Unchecked_Conversion) to	prevent	
circumventing	the	type	system.	

6.3	Bit	representation	[STR]	

6.3.1	Applicability	to	language	
With	the	exception	of	unsafe	programming	(see	5.1	Language	concepts),	the	vulnerabilities	
described	in	ISO/IEC	24772-1	subclause	6.3	are	mitigated	by	the	type	system	in	Ada.		

The	vulnerabilities	caused	by	the	inherent	conceptual	complexity	of	bit	level	programming	are	as	
described	in	subclause	6.3	of	ISO/IEC	24772-1.		

Ada	provides	mechanism	to	individually	access	individual	bits	without	having	to	individually	count	
or	mask	neighbouring	bits.	

For	the	traditional	approach	to	bit	level	programming,	Ada	provides	modular	types	and	literal	
representations	in	arbitrary	base	from	2	to	16	to	deal	with	numeric	entities	and	correct	handling	of	
the	sign	bit.	The	use	of	pragma Pack on arrays	of	Booleans	provides	a	type-safe	way	of	
manipulating	bit	strings	and	eliminates	the	use	of	error-prone	arithmetic	operations.	

6.3.2	Guidance	to	language	users		

In	order	to	mitigate	the	vulnerabilities	associated	with	the	complexity	of	bit	level	programming	

• Follow	the	mitigation	mechanisms	of	subclause	6.3.5	of	ISO/IEC	24772-1:2022.	
• Use	record	and	array	types	with	the	appropriate	representation	specifications	added	so	that	

the	objects	are	accessed	by	their	logical	structure	rather	than	their	physical	representation.	
These	representation	specifications	address	order,	position,	and	size	of	data	components	
and	fields.		

• Query	the	default	object	layout	chosen	by	the	compiler	to	determine	the	expected	behaviour	
of	the	final	representation.	

• Use	the	restriction	No_Dependence (Ada.Unchecked_Conversion)	to	prevent	circumventing	
the	type	system.	

6.4	Floating-point	arithmetic	[PLF]	

6.4.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1:2022	subclause	6.4	applies	to	Ada.	Accuracy	of	
data	representation	can	be	specified	independently	of	any	implementation	characteristics.	Ada	
provides	binary	and	decimal	fixed-point	arithmetic	as	an	alternative	to	floating	points.	Attributes	
are	provided	to	access	mantissa	and	exponents	of	values,	thus	reducing	the	need	for	bit	

	

©	ISO/IEC	2022	–	All	rights	reserved	 25	
	

manipulations.	An	implementation	that	conforms	to	the	(optional)	Annex	G	of	the	Ada	standard	
provides	guarantees	on	the	accuracy	of	arithmetic	operations	and	of	the	standard	mathematical	
functions.	

6.4.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.4.5	of	ISO/IEC	24772-1:2022.	
• Rather	than	using	predefined	types,	such	as	Float	and	Long_Float,	whose	precision	may	

vary	according	to	the	target	system,	declare	floating-point	types	that	specify	the	required	
precision	(for	example,	digits 10).	Additionally,	specifying	ranges	of	a	floating-point	type	
enables	constraint	checks	which	prevents	the	propagation	of	infinities	and	NaNs.	

• Avoid	comparing	floating-point	values	for	equality.	Instead,	use	comparisons	that	account	
for	the	approximate	results	of	computations.	Consult	a	numeric	analyst	when	appropriate.	

• Make	use	of	static	arithmetic	expressions	and	static	constant	declarations	when	possible,	
since	static	expressions	in	Ada	are	computed	at	compile	time	with	exact	precision.	

• Use	Ada's	standardized	numeric	libraries	(for	example,	Generic_Elementary_Functions)
for	common	mathematical	operations	(trigonometric	operations,	logarithms,	and	others).	

• Use	an	Ada	implementation	that	supports	the	Numerics	Annex	of	ISO/IEC	8652	and	employ	
the	"strict	mode"	of	that	Annex	in	cases	where	additional	accuracy	requirements	shall	be	
met	by	floating-point	arithmetic	and	the	operations	of	predefined	numerics	packages,	as	
defined	and	guaranteed	by	the	Annex.	

• Avoid	direct	manipulation	of	bit	fields	of	floating-point	values,	since	such	operations	are	
generally	target-specific	and	error-prone.	Instead,	make	use	of	Ada's	predefined	floating-
point	attributes	(such	as	'Exponent).		

• In	cases	where	absolute	precision	is	needed,	consider	replacement	of	floating-point	types	
and	operations	with	fixed-point	types	and	operations.	

6.5	Enumerator	issues	[CCB]	

6.5.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.5	applies	to	Ada.	

Enumeration	representation	specifications	are	used	to	specify	non-default	representations	of	an	
enumeration	type,	for	example	when	interfacing	with	external	systems,	or	to	confirm	the	default	
representation	of	a	type.	Ada	specifies	that	all	of	the	values	in	the	enumeration	type	shall	be	defined	
in	the	enumeration	representation	specification	and	that	the	numeric	values	of	the	representation	
shall	preserve	the	original	order.	For	example:	

type IO_Types is (Null_Op, Open, Close, Read, Write, Sync);
for IO_Types use (Null_Op => 0, Open => 1, Close => 2,
 Read => 4, Write => 8, Sync => 16);

An	array	can	be	indexed	by	such	a	type.	Ada	does	not	prescribe	the	implementation	model	for	
arrays	indexed	by	an	enumeration	type	with	non-contiguous	values.	Two	options	exist:	Either	the	
array	is	represented	“with	holes”	and	indexed	by	the	values	of	the	enumeration	type,	or	the	array	is	
represented	contiguously	and	indexed	by	the	position	of	the	enumeration	value	rather	than	the	
value	itself.	In	the	former	case,	the	vulnerability	described	in	subclause	6.5	of	ISO/IEC	24772-

	

26	 ©	ISO/IEC	2022	–	All	rights	reserved	
	

1:2022	exists	only	if	unsafe	programming	is	applied	to	access	the	array	or	its	components	outside	
of	(?)	the	protection	of	the	type	system.	Within	the	type	system,	the	semantics	are	well	defined	and	
safe.	The	vulnerability	of	unexpected	but	well-defined	program	behaviour	upon	extending	an	
enumeration	type	exists	in	Ada.	In	particular,	subranges	or	others	choices	in	aggregates	and	case	
statements	are	susceptible	to	unintentionally	capturing	newly	added	enumeration	values.		

6.5.2	Guidance	to	language	users		

• Follow	the	mitigation	mechanisms	of	subclause	6.5.5	of	ISO/IEC	24772-1:2022.	
• For	case	statements	and	aggregates,	do	not	use	the	others	choice.	
• For	case statements	and	aggregates,	mistrust	subranges	as	choices	after	enumeration	

literals	have	been	added	anywhere	but	the	beginning	or	the	end	of	the	enumeration	type	
definition.	

6.6	Conversion	errors	[FLC]		

6.6.1	Applicability	to	language	

With	the	exception	of	unsafe	programming	(see	5.1	Language	concepts),	the	vulnerability	as	
described	in	ISO/IEC	24772-1	subclause	6.6	is	mitigated	by	Ada.	

Ada	does	not	permit	implicit	conversions	between	different	numeric	types,	hence	cases	of	implicit	
loss	of	data	due	to	truncation	cannot	occur	as	they	can	in	languages	that	allow	type	coercion	
between	types	of	different	sizes.	

• Ada	permits	the	definition	of	subtypes	of	existing	types	that	can	impose	a	restricted	range	of	
values,	and	implicit	conversions	can	occur	for	values	of	different	subtypes	belonging	to	the	
same	type,	but	such	conversions	still	involve	range	checks	that	prevent	any	loss	of	data	or	
violation	of	the	bounds	of	the	target	subtype.	

In	the	case	of	explicit	conversions,	Ada	language	rules	prevent	numeric	conversion	errors	by	
applying		

• Range	bound	checks,	which	raise	an	exception	if	the	operand	of	the	conversion	exceeds	the	
bounds	of	the	target	type	or	subtype.	

Precision	is	lost	only	on	explicit	conversion	from	a	real	type	to	an	integer	type	or	a	real	type	of	less	
precision.		

As	Ada	permits	a	type	distinction	to	be	made	among	numeric	or	composite	values	in	different	unit	
systems,	e.g.,	meters	and	feet,	complex	numbers	or	intervals	of	real	numbers,	explicit	conversions	
between	such	types	may	not	be	consistent	with	application	semantics	for	the	types,	unless	
accompanied	with	conversion	factors.		

On	structured	data,	implicit	conversions	preserve	all	values.	Explicit	value	conversions	omit	
components	not	present	in	the	target	type	where	such	differences	are	allowed	in	conversions.	See	

	

©	ISO/IEC	2022	–	All	rights	reserved	 27	
	

in	particular	(implicit)	upcasts	and	(explicit)	downcasts	for	OOP	in	subclause	6.44	Polymorphic	
variables	[BKK].	

6.6.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.6.5	of	ISO/IEC	24772-1:2022.	
• Use	Ada's	capabilities	for	user-defined	scalar	types	and	subtypes	to	avoid	accidental	

mixing	of	logically	incompatible	value	sets.	
• Do	not	suppress	range	checks	on	conversions	involving	scalar	types	and	subtypes	to	

prevent	generation	of	invalid	data.	
• Use	static	analysis	tools	during	program	development	to	verify	that	conversions	cannot	

violate	the	range	of	their	target.	
	

6.7	String	termination	[CJM]		

With	the	exception	of	unsafe	programming	(see	5.1	Language	concepts),	the	vulnerability	as	
described	in	ISO/IEC	24772-1	subclause	6.7	does	not	apply	to	Ada.		

Strings	in	Ada	are	not	delimited	by	a	termination	character.	Ada	programs	that	interface	to	
languages	that	use	null-terminated	strings	and	manipulate	such	strings	directly	should	apply	the	
vulnerability	mitigations	recommended	for	that	language.	

6.8	Buffer	boundary	violation	(buffer	overflow)	[HCB]	

With	the	exception	of	unsafe	programming	(see	5.1	Language	concepts),	the	vulnerability	as	
described	in	ISO/IEC	24772-1	subclause	6.8	does	not	apply	to	Ada	(see	6.9	Unchecked	array	
indexing	[XYZ]	and	6.10	Unchecked	array	copying	[XYW]).		

6.9	Unchecked	array	indexing	[XYZ]	

6.9.1	Applicability	to	language	

With	the	exception	of	unsafe	programming	(see	5.1	Language	concepts),	the	vulnerability	as	
described	in	ISO/IEC	24772-1	subclause	6.9	does	not	apply	to	Ada.		

All	array	indexing	is	checked	automatically	in	Ada,	and	an	Ada	program	raises	an	exception	when	
indexes	are	out	of	bounds.	This	is	checked	in	all	cases	of	indexing,	including	when	arrays	are	passed	
to	subprograms.	

An	explicit	suppression	of	the	run-time	checks	can	be	requested	by	use	of	pragma Suppress,	in	
which	case	the	vulnerability	would	apply;	however,	such	suppression	is	easily	detected,	and	
generally	reserved	for	tight	time-critical	loops,	even	in	production	code.	

6.9.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.9.5	of	ISO/IEC	24772-1:2022.	

	

28	 ©	ISO/IEC	2022	–	All	rights	reserved	
	

• Use	Ada's	support	for	whole-array	operations,	such	as	for	assignment	and	comparison,	plus	
aggregates	for	whole-array	initialization,	to	reduce	the	use	of	indexing.	

• Write	explicit	bounds	tests	to	prevent	exceptions	for	indexing	out	of	bounds.	

6.10	Unchecked	array	copying	[XYW]		

With	the	exception	of	unsafe	programming	(see	5.1	Language	concepts),	the	vulnerability	as	
described	in	ISO/IEC	24772-1	subclause	6.10	does	not	apply	to	Ada.		

Ada	allows	arrays	to	be	copied	by	simple	assignment	(":=").	The	rules	of	the	language	ensure	that	
no	overflow	can	happen;	instead,	the	exception	Constraint_Error	is	raised	if	the	target	of	the	
assignment	is	not	able	to	contain	the	value	assigned	to	it.	The	rules	also	ensure	that	overlapping	
source	and	target	slices	are	handled	correctly,	i.e.,	the	target	slice	receives	the	original	value	of	the	
source	slice.	Since	array	copy	is	provided	by	the	language,	Ada	does	not	provide	unsafe	functions	to	
copy	structures	by	address	and	length.	

6.11	Pointer	type	conversions	[HFC]		

6.11.1	Applicability	to	language		

With	the	exception	of	unsafe	programming	(see	5.1	Language	concepts),	the	vulnerability	as	
described	in	ISO/IEC	24772-1	subclause	6.11	does	not	apply	to	Ada.	The	mechanisms	available	in	
Ada	to	alter	the	type	of	a	pointer	value	are	unchecked	type	conversions	and	type	conversions	
involving	pointer	types	derived	from	a	common	root	type.	In	addition,	uses	of	the	unchecked	
address	taking	capabilities	can	create	pointer	values	that	misrepresent	the	true	type	of	the	
designated	entity	(see	subclause	13.10	of	ISO/IEC	8652).	

Checked	type	conversions	that	affect	the	application	semantics	adversely	are	possible.	For	example,	
when	a	pointer	to	a	class-wide	type	is	changed	to	a	pointer	to	a	specific	type	in	the	class,	a	run-time	
check	is	required.

6.11.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.11.5	of	ISO/IEC	24772-1:2022.	
• Do	not	use	the	features	explicitly	identified	as	unsafe.		
• Use	‘Access	which	is	always	type	safe.	
• Consider	using	the	restriction	No_Dependence(Ada.Unchecked_Conversion),	

No_Use_Of_Attribute(Address), No_Specification_of_Aspect(Address), and
No_Unchecked_Access	to	prevent	circumventing	the	type	system.	

6.12	Pointer	arithmetic	[RVG]		

With	the	exception	of	unsafe	programming	(see	5.1	Language	concepts),	the	vulnerability	as	
described	in	ISO/IEC	24772-1	subclause	6.12	does	not	apply	to	Ada.	

	

©	ISO/IEC	2022	–	All	rights	reserved	 29	
	

6.13	Null	pointer	dereference	[XYH]	

6.13.1	Applicability	to	the	language	

With	the	exception	of	unsafe	programming	(see	5.1	Language	concepts),	the	vulnerability	as	
described	in	ISO/IEC	24772-1	subclause	6.13	is	mitigated	by	Ada.	The	vulnerability	is	mitigated	by	
compile-time	or	run-time	checks	that	ensure	that	no	null	value	can	be	dereferenced.	Any	attempt	to	
dereference	a	null	pointer	results	in	the	Constraint_Error	exception	being	implicitly	raised.	
Vulnerabilities	associated	with	unhandled	exceptions	are	addressed	in	subclause	6.36.	

6.13.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.13.5	of	ISO/IEC	24772-1:2022.	
• Use	non-null	access	types	where	possible.	
• Handle	exceptions	raised	by	attempts	to	dereference	null	values.		

6.14	Dangling	reference	to	heap	[XYK]	

6.14.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.14	applies	to	Ada.	Use	of	
Unchecked_Deallocation	can	cause	dangling	references	to	the	heap	when	this	feature	is	used,	since	
Unchecked_Deallocation	can	be	applied	even	though	there	are	outstanding	references	to	the	
deallocated	object.	

Ada	provides	a	model	in	which	whole	collections	of	heap-allocated	objects	can	be	deallocated	
safely,	automatically	and	collectively	when	the	scope	of	the	root	access	type	or	the	scope	of	any	
associated	storage	pool	object	ends.		

For	global	access	types,	unless	storage	pools	are	used,	allocated	objects	can	only	be	deallocated	
through	an	instantiation	of	the	generic	procedure	Unchecked_Deallocation.		

6.14.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.14.5	of	ISO/IEC	24772-1:2022.	
• Use	local	access	types	where	possible.	
• Consider	not	using	Unchecked_Deallocation	and	applying	the	restriction	

No_Unchecked_Deallocation	to	enforce	this.	
• Use	controlled	types	and	reference	counting.	
• Consider	the	use	of	storage	pools	and	subpools.	

6.15	Arithmetic	wrap-around	error	[FIF]	

With	the	exception	of	unsafe	programming	(see	5.1	Language	concepts),	the	vulnerability	as	
described	in	ISO/IEC	24772-1	subclause	6.16	does	not	apply	to	Ada	as	wrap-around	arithmetic	in	

	

30	 ©	ISO/IEC	2022	–	All	rights	reserved	
	

Ada	is	limited	to	modular	types.	Arithmetic	operations	on	such	types	use	modulo	arithmetic,	and	
thus	no	such	operation	can	create	an	invalid	value	of	the	type.	

For	non-modular	arithmetic,	Ada	raises	the	predefined	exception	Constraint_Error	whenever	a	
wrap-around	occurs	but	implementations	are	allowed	to	refrain	from	doing	so	when	a	correct	final	
value	is	obtained.	In	Ada	there	is	no	confusion	between	logical	and	arithmetic	shifts.	

6.16	Using	shift	operations	for	multiplication	and	division	[PIK]	

With	the	exception	of	unsafe	programming	(see	5.1	Language	concepts),	the	vulnerability	as	
described	in	ISO/IEC	24772-1	subclause	6.16	does	not	apply	to	Ada	as	shift	operations	in	Ada	are	
limited	to	the	modular	types	declared	in	the	standard	package	Interfaces,	which	are	not	signed	
entities.	

6.17	Choice	of	clear	names	[NAI]	

6.17.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.17	applies	to	Ada.	There	are	two	
possible	issues:	the	use	of	the	identical	name	for	different	purposes	(overloading)	and	the	use	of	
similar	names	for	different	purposes.	

This	vulnerability	does	not	address	overloading,	which	is	covered	in	6.20	Identifier	name	reuse	
[YOW].	

The	risk	of	confusion	by	the	use	of	similar	names	can	occur	through:	

• Mixed	casing.	Ada	treats	upper	case	and	lower-case	letters	in	names	as	identical.	Thus,	no	
confusion	can	arise	through	an	attempt	to	use	Item	and	ITEM	as	distinct	identifiers	with	
different	meanings.	

• Underscores	and	periods.	Ada	permits	single	underscores	in	identifiers	and	they	are	
significant.	Thus,	BigDog	and	Big_Dog	are	different	identifiers.	But	multiple	underscores	
(which	can	be	confused	with	a	single	underscore)	are	forbidden,	thus	Big__Dog	is	forbidden.	
Leading	and	trailing	underscores	are	also	forbidden.	Periods	are	not	permitted	in	identifiers	
at	all.	

• Singular/plural	forms.	Ada	does	permit	the	use	of	identifiers	which	differ	solely	in	this	
manner	such	as	Item	and	Items.	However,	Ada	lets	the	programmer	use	the	identifier	Item	
for	a	single	object	of	a	type T	and	the	identifier	Items	for	an	object	denoting	an	array	of	
items	that	is	of	a	type array (…) of T.	The	use	of	Item	where	Items	was	intended	or	vice	
versa	will	be	detected	by	the	compiler	because	of	the	type	violation	and	the	program	
rejected	so	no	vulnerability	would	arise.	

• International	character	sets.	Ada	compilers	strictly	conform	to	the	appropriate	International	
Standard	for	character	sets.	

• Identifier	length.	All	characters	in	an	identifier	in	Ada	are	significant.	Thus	
Long_IdentifierA	and	Long_IdentifierB	are	always	different.	An	identifier	cannot	be	split	
over	the	end	of	a	line.	The	only	restriction	on	the	length	of	an	identifier	is	that	enforced	by	
the	line	length	and	this	is	guaranteed	by	the	language	standard	to	be	no	less	than	200.	

	

©	ISO/IEC	2022	–	All	rights	reserved	 31	
	

Ada	permits	the	use	of	names	such	as	X,	XX,	and	XXX	(which	may	all	be	declared	as	integers)	and	a	
programmer	can	easily,	by	mistake,	write	XX	where	X	(or	XXX)	was	intended.	Ada	does	not	attempt	
to	catch	such	errors.	

The	use	of	the	wrong	name	will	typically	result	in	a	failure	to	compile	so	no	vulnerability	will	arise.	
But,	if	the	wrong	name	has	the	same	type	as	the	intended	name,	then	an	incorrect	executable	
program	will	be	generated.	

The	“incorrect	executable”	can	also	happen	when	the	two	confused	names	have	different	types,	but	
occur	in	a	context	where	the	type	does	not	matter,	for	example	X’Address or	X’Size,	or	in	a	
context	where	the	type	matters	but	only	leads	to	the	selection	of	a	different	overloaded	entity,	for	
example	Foo(X)	can	be	legal	for	both	Integer X	and	Boolean	X,	if	Foo	is	overloaded	for	both	types.	
	

6.17.2	Guidance	to	language	users		

• Follow	the	mitigation	mechanisms	of	subclause	6.17.5	of	ISO/IEC	24772-1:2022.	
• Avoid	the	use	of	similar	names	to	denote	different	objects	of	the	same	type.		
• Adopt	a	project	convention	for	dealing	with	similar	names	
• See	the	Ada	Quality	and	Style	Guide	[1].	

6.18	Dead	store	[WXQ]	

6.18.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.18	applies	to	Ada.	

Ada	compilers	do	exist	that	detect	and	generate	compiler	warnings	for	dead	stores.	

The	error	in	ISO/IEC	24772-1	subclause	6.18.3	that	the	planned	reader	misspells	the	name	of	the	
store	is	possible	but	highly	unlikely	in	Ada	since	the	language	specifies	that	all	objects	shall	be	
declared	and	typed,	and	the	existence	of	two	objects	with	almost	identical	names	and	compatible	
types	(for	assignment)	in	the	same	scope	would	be	readily	detectable.	

6.18.2	Guidance	to	Language	Users	

• Follow	the	mitigation	mechanisms	of	subclause	6.18.5	of	ISO/IEC	24772-1:2022.	
• Use	Ada	compilers	that	detect	and	generate	compiler	warnings	for	dead	stores.	
• Use	static	analysis	tools	to	detect	such	problems.	

6.19	Unused	variable	[YZS]	

6.19.1	Applicability	to	language	

The	vulnerability	as	described	in	subclause	6.19	of	ISO/IEC	24772-1	applies	to	Ada.	Ada	compilers	
exist	that	detect	and	generate	compiler	warnings	for	unused	variables.	

	

32	 ©	ISO/IEC	2022	–	All	rights	reserved	
	

6.19.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.19.5	of	ISO/IEC	24772-1:2022.	
• Do	not	declare	variables	of	the	same	type	with	similar	names.	Use	distinctive	identifiers	and	

the	strong	typing	of	Ada	(for	example	through	declaring	specific	types	as	in			
 type Pig_Counter is range 0 .. 1000;		
 Pig : Pig_Counter;	
rather	than	just		
 Pig: Integer;)		
to	reduce	the	number	of	variables	of	the	same	type.	

• Use	Ada	compilers	that	detect	and	generate	compiler	warnings	for	unused	variables.	

6.20	Identifier	name	reuse	[YOW]	

6.20.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.20	applies	to	Ada.	Ada	is	a	language	
that	permits	local	scope,	and	names	within	nested	scopes	can	hide	identical	names	declared	in	an	
outer	scope.	As	such	it	is	susceptible	to	the	vulnerability.	For	subprograms	and	other	overloaded	
entities	the	problem	is	reduced	by	the	fact	that	hiding	also	takes	the	signatures	of	the	entities	into	
account.	Entities	with	different	signatures,	therefore,	do	not	hide	each	other.	

Name	collisions	with	keywords	cannot	happen	in	Ada	because	keywords	are	reserved.	

The	mechanism	of	failure	identified	in	subclause	6.20.3	of	ISO/IEC	24772-1:2022	regarding	the	
declaration	of	non-unique	identifiers	in	the	same	scope	cannot	occur	in	Ada	because	all	characters	
in	an	identifier	are	significant.	

6.20.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.20.5	of	ISO/IEC	24772-1:2022.	
• Use	expanded	names	whenever	confusion	is	possible.		
• Use	Ada	compilers	or	static	analysis	tools	that	generate	warnings	for	declarations	in	inner	

scopes	that	hide	declarations	in	outer	scopes.	

6.21	Namespace	issues	[BJL]	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.21	does	not	apply	to	Ada,	since	Ada	
does	not	attempt	to	disambiguate	conflicting	names	imported	from	different	packages.	Instead,	use	
of	a	name	with	conflicting	imported	declarations	causes	a	compile-time	error.	The	programmer	can	
disambiguate	the	name	usage	by	using	an	expanded	name	that	identifies	the	exporting	package.	

6.22	Missing	initialization	of	variables	[LAV]	

6.22.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.22	applies	to	Ada.	As	in	many	
languages,	it	is	possible	in	Ada	to	make	the	mistake	of	using	the	value	of	an	uninitialized	variable.	

	

©	ISO/IEC	2022	–	All	rights	reserved	 33	
	

However,	as	described	below,	Ada	prevents	some	of	the	most	harmful	possible	effects	of	using	the	
value.	

The	vulnerability	does	not	exist	for	pointer	variables	(or	constants).	Pointer	variables	are	initialized	
to	null	by	default,	and	every	dereference	of	a	pointer	that	is	not	null-excluding	is	checked	for	a	
null value.		

The	checks	mandated	by	the	type-system	apply	to	the	use	of	uninitialized	variables	as	well.	When	
the	context	for	using	a	value	imposes	a	subtype	with	a	restricted	set	of	values,	then	values	of	the	
type	that	are	outside	of	the	subtype	will	fail	the	check	required	in	such	contexts.	
Use	of	an	out-of-bounds	value	in	most	contexts	raises	an	exception,	regardless	of	the	origin	of	the	
faulty	value.	(See	6.36	Ignored	error	status	and	unhandled	exceptions	[OYB]	regarding	exception	
handling.)	In	the	case	of	values	originating	from	an	uninitialized	variable	that	are	not	detected	by	
such	a	subtype	check	(such	as	when	the	context	does	not	impose	a	subtype	constraint,	the	value	is	
within	the	subtype’s	set	of	values,	or	the	value	does	not	belong	to	the	type	itself),	execution	may	
proceed	with	that	value,	but	use	of	such	values	will	not	lead	to	out-of-bounds	memory	
modifications.	In	particular,	use	of	uninitialized	values	will	not	result	in	writing	outside	of	the	
bounds	of	array	objects,	and	will	not	lead	to	wild	jumps	when	used	as	the	selecting	value	of	a	case
statement	or	case	expression.	

For	scalar	types,	the	Default_Value	aspect	can	be	specified	to	provide	a	default	initial	value	for	
otherwise	uninitialized	objects	of	the	type.	

For	record	types,	default	initializations	can	be	specified	as	part	of	the	type	definition.	For	record	
types,	aggregate	values	can	be	used	to	initialize	an	object	to	ensure	that	all	components	of	the	
object	have	been	initialized	with	a	value.	

For	controlled	types	(those	descended	from	the	language-defined	type	Controlled	or	
Limited_Controlled),	the	user	can	also	specify	an	Initialize	procedure	which	is	invoked	on	all	
default-initialized	objects	of	the	type.	

The	pragma Normalize_Scalars	can	be	used	to	ensure	that	scalar	variables	are	always	initialized	
by	the	compiler	in	a	repeatable	fashion.	This	pragma is	designed	to	initialize	variables	to	an	out-of-
range	value	if	there	is	one,	to	avoid	hiding	errors.	

Lastly,	the	user	can	query	the	validity	of	a	given	value.	The	expression	X’Valid	yields	true	if	the	
value	of	the	scalar	variable	X	conforms	to	the	subtype	of	X	and	false	otherwise.	Thus,	the	user	can	
protect	against	the	use	of	out-of-bounds	uninitialized	or	otherwise	corrupted	scalar	values.	

6.22.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.22.5	of	ISO/IEC	24772-1:2022.	
• If	the	compiler	has	a	mode	that	detects	use	before	initialization,	then	enable	this	mode	and	

treat	any	such	warnings	as	errors.	
• Where	appropriate,	specify	explicit	initializations	or	default	initializations.	

	

34	 ©	ISO/IEC	2022	–	All	rights	reserved	
	

• Use	the pragma Normalize_Scalars to	cause	out-of-range	default	initializations	for	scalar	
variables.	

• Use	the	‘Valid	attribute	to	identify	out-of-range	scalar	values	caused	by	the	use	of	
uninitialized	variables,	without	incurring	the	raising	of	an	exception.	Note	that	an	
implementation	is	permitted	to	raise	an	exception	for	an	Unchecked_Conversion	in	this	case.	

Common	advice	that	should	be	avoided	is	to	perform	a	“junk	initialization”	of	variables.	Initializing	
a	variable	with	an	inappropriate	default	value	such	as	zero	can	result	in	hiding	underlying	
problems,	because	the	compiler	or	other	static	analysis	tools	will	then	be	unable	to	detect	that	the	
variable	has	been	used	prior	to	receiving	a	correctly	computed	value.	

6.23	Operator	precedence	and	associativity	[JCW]	

6.23.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.23	applies	to	Ada.	Since	this	
vulnerability	is	about	"incorrect	beliefs"	of	programmers,	there	is	no	way	to	establish	a	limit	to	how	
far	incorrect	beliefs	can	go.	However,	Ada	is	less	susceptible	to	that	vulnerability	than	many	other	
languages,	since	

• Ada	only	has	six	levels	of	precedence	and	associativity	is	closer	to	common	expectations.	For	
example,	an	expression	like	A = B or	C = D	will	be	parsed	as	expected,	as	(A = B) or (C =
D).	

• Mixed	logical	operators	are	not	allowed	without	parentheses,	for	example,	"A or B or C"	is	
valid,	as	well	as	"A and B and C",	but	"A and B or C"	is	not;	the	user	must	write	"(A and
B) or C"	or	"A and (B or C)".	

• Assignment	is	not	an	operator	in	Ada.	

6.23.2	Guidance	to	language	users	

Follow	the	mitigation	mechanisms	of	subclause	6.23.5	of	ISO/IEC	24772-1:2022.	

6.24	Side-effects	and	order	of	evaluation	of	operands	[SAM]	

6.24.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.24	applies	to	Ada.	There	are	no	
operators	in	Ada	with	direct	side	effects	on	their	operands	using	the	language-defined	operations,	
especially	not	the	increment	and	decrement	operation.	Ada	does	not	permit	multiple	assignments	
in	a	single	expression	or	statement,	except	in	the	case	of	initialization	of	multiple	variables	by	a	
single	expression.	In	this	case,	the	declaration	is	equivalent	to	a	sequence	of	initializing	declarations	
placed	in	the	order	of	the	variables	in	the	list.	

There	is	the	possibility	though	to	have	side	effects	through	function	calls	in	expressions	where	the	
function	modifies	globally	visible	variables	or	“in out”	or	“out”	parameters.	Ada	disallows	multiple	
uses	of	the	same	variable	within	a	single	expression	if	one	or	more	of	the	uses	are	as	“in out”	or	
“out”	parameters.	Operators	in	Ada	are	functions	with	only	“in”	parameters,	so,	when	defined	by	

	

©	ISO/IEC	2022	–	All	rights	reserved	 35	
	

the	user,	although	they	cannot	modify	their	own	operands,	they	can	modify	global	state	and	
therefore	have	side	effects.	

Ada	allows	the	implementation	to	choose	the	order	of	evaluation	of	expressions	with	operands	of	
the	same	precedence	level,	the	order	of	association	is	left-to-right.	The	operands	of	a	binary	
operation	are	also	evaluated	in	an	arbitrary	order,	as	happens	for	the	parameters	of	any	function	
call.	In	the	case	of	user-defined	operators	with	side	effects	on	global	state,	this	implementation	
dependency	can	cause	unpredictability	of	the	side	effects.		

6.24.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.24.5	of	ISO/IEC	24772-1:2022.	
• Make	use	of	one	or	more	programming	guidelines	which	prohibit	functions	that	modify	

global	state,	and	can	be	enforced	by	static	analysis.		
• Minimize	use	of	“in out”	and	“out”	parameters	for	functions.	
• Always	use	brackets	to	indicate	order	of	evaluation	of	operators	of	the	same	precedence	

level.		

6.25	Likely	incorrect	expression	[KOA]	

6.25.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.25	applies	to	Ada.	An	instance	of	this	
vulnerability	consists	of	two	syntactically	similar	constructs	such	that	the	inadvertent	substitution	
of	one	for	the	other	can	result	in	a	program	which	is	accepted	by	the	compiler	but	does	not	reflect	
the	intent	of	the	author.	

The	examples	given	in	subclause	6.25	of	ISO/IEC	24772-1:2022	are	not	problems	in	Ada	because	of	
Ada's	strong	typing	and	because	an	assignment	is	not	an	expression	in	Ada.	

In	Ada,	a	type	conversion	and	a	qualified	expression	are	syntactically	similar,	differing	only	in	the	
presence	or	absence	of	a	single	character:	

Type_Name (Expression) -- a type conversion

vs	
Type_Name'(Expression) -- a qualified expression

Typically,	the	inadvertent	substitution	of	one	for	the	other	results	in	either	a	semantically	incorrect	
program	which	is	rejected	by	the	compiler	or	in	a	program	which	behaves	in	the	same	way	as	if	the	
intended	construct	had	been	written.	In	the	case	of	a	constrained	array	subtype,	the	two	constructs	
differ	in	their	treatment	of	sliding	(conversion	of	an	array	value	with	bounds	100 .. 103 to	a	
subtype	with	bounds	200 .. 203	will	succeed;	qualification	will	fail	a	run-time	check).	

Similarly,	a	timed	entry	call	and	a	conditional	entry	call	with	an	else-part	that	happens	to	begin	with	
a	delay	statement	differ	only	in	the	use	of	"else"	vs	"or"	(or	even	"then abort"	in	the	case	of	an	
asynchronous_select	statement).		

	

36	 ©	ISO/IEC	2022	–	All	rights	reserved	
	

Probably	the	most	common	correctness	problem	resulting	from	the	use	of	one	kind	of	expression	
where	a	syntactically	similar	expression	should	have	been	used	has	to	do	with	the	use	of	short-
circuit	vs.	non-short-circuit	Boolean-valued	operations	(for	example,	"and then"	and	"or else"	vs	
"and"	and	"or"),	as	in	

if (P /= null) and (P.all.Count > 0) then ... end if;
-- should have used "and then" to avoid dereferencing null

6.25.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.25.5	of	ISO/IEC	24772-1:2022.	
• Consider	using	short-circuit	forms	by	default	(errors	resulting	from	the	incorrect	use	of	

short-circuit	forms	are	much	less	common),	though	this	can	make	it	more	difficult	to	express	
the	distinction	between	the	cases	where	short-circuited	evaluation	is	known	to	be	needed	
(either	for	correctness	or	for	performance)	and	those	where	it	is	not.	

6.26	Dead	and	deactivated	code	[XYQ]	

6.26.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.26	applies	to	Ada.	Ada	allows	the	
usual	sources	of	dead	code	as	described	in	subclause	6.26	of	ISO/IEC	24772-1	and	[22]	that	are	
common	to	most	conventional	programming	languages.	

6.26.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.26.5	of	ISO/IEC	24772-1:2022.	
• Use	implementation-specific	mechanisms,	if	provided,	to	support	the	elimination	of	dead	

code.	In	some	cases,	use	pragmas	such	as	Restrictions,	Suppress,	or	Discard_Names	to	
inform	the	compiler	that	some	code	whose	generation	would	normally	be	required	for	
certain	constructs	would	be	dead	because	of	properties	of	the	overall	system,	and	that	
therefore	the	code	need	not	be	generated.	For	example:	

package Pkg is
 type Enum is (Aaa, Bbb, Ccc);
 pragma Discard_Names(Enum);
end Pkg;

If	Pkg.Enum'Image	and	related	attributes	(e.g.,	Value,	Wide_Image)	of	the	type	Enum are	
never	used,	and	if	the	implementation	normally	builds	a	table	of	the	enumeration	literals,	
then	the	pragma	allows	the	elimination	of	the	table.	

6.27	Switch	statements	and	static	analysis	[CLL]	

6.27.1	Applicability	to	language	

	

©	ISO/IEC	2022	–	All	rights	reserved	 37	
	

With	the	exception	of	unsafe	programming	(see	5.1	Language	concepts)	and	the	use	of	default	
cases,	the	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.27	does	not	apply	to	Ada.		

Ada	ensures	that	a	case	statement	or	a	case	expression	provide	exactly	one	alternative	for	each	
value	of	the	selecting	expression's	subtype.	This	restriction	is	enforced	at	compile	time.	An	others	
choice	can	be	used	in	the	last	alternative	of	a	case	statement	or	case	expression	to	capture	any	
remaining	values	of	the	selecting_expression	subtype	that	are	not	covered	by	the	preceding	case	
choices.	If	the	value	of	the	expression	is	outside	of	the	range	of	this	subtype	(e.g.,	due	to	an	
uninitialized	variable),	then	the	resulting	behaviour	is	well-defined	(if	an	others	choice	is	present,	
that	alternative	may	be	selected,	otherwise	Constraint_Error	is	raised).	Control	does	not	flow	
from	one	alternative	to	the	next.	Upon	reaching	the	end	of	an	alternative,	control	is	transferred	to	
the	end	of	the	case	statement.		

The	remaining	vulnerability	is	that	unexpected	values	are	captured	by	the	others	clause	or	a	
subrange	as	case	choice.	For	example,	when	the	range	of	the	type	Character	was	extended	from	
128	characters	to	the	256	characters	in	the	Latin-1	character	type,	an	others	clause	for	a	case	
statement	with	a	Character	type	case	expression	originally	written	to	capture	cases	associated	with	
the	128	characters	type	now	also	captures	the	128	additional	cases	introduced	by	the	extension	of	
the	type	Character.	Some	of	the	new	characters	needed	to	be	covered	by	the	existing	case	choices	
or	new	case	choices.		

6.27.2	Guidance	to	language	users	

• For	case	statements,	case	expressions	and	aggregates,	avoid	the	use	of	the	others	choice.	
• For	case	statements,	case	expressions	and	aggregates,	mistrust	subranges	as	choices	after	

enumeration	literals	have	been	added	anywhere	but	the	beginning	or	the	end	of	the	
enumeration	type	definition.15F1	

6.28	Non-demarcation	of	control	flow	[EOJ]	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.28	does	not	apply	to	Ada.	The	Ada	
syntax	describes	several	types	of	compound	statements	that	are	associated	with	control	flow	
including	if	statements,	loop	statements,	case	statements,	select	statements,	and	extended	
return	statements.	Each	of	these	forms	of	compound	statements	require	unique	syntax	that	marks	
the	end	of	the	compound	statement.	

6.29	Loop	control	variable	abuse	[TEX]	

With	the	exception	of	unsafe	programming	(see	5.1	Language	concepts),	the	vulnerability	as	
described	in	ISO/IEC	24772-1	subclause	6.29	does	not	apply	to	Ada.	Ada	defines	a	for loop	where	
the	number	of	iterations	is	controlled	by	a	loop	control	variable	(called	a	loop	parameter).	This	

	

1	This	case	is	somewhat	specialized	but	is	important,	since	enumerations	are	the	one	case	where	subranges	turn	bad	on	the	user.	

	

38	 ©	ISO/IEC	2022	–	All	rights	reserved	
	

value	has	a	constant	view	and	cannot	be	updated	within	the	sequence	of	statements	of	the	body	of	
the	loop.	

6.30	Off-by-one	error	[XZH]	

6.30.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.30	is	mitigated	by	Ada.	

Confusion between the need for < and <= or > and >= in a test.
A	for … loop	in	Ada	does	not	require	the	programmer	to	specify	a	conditional	test	for	loop	
termination.	Instead,	the	starting	and	ending	value	of	the	loop	are	specified	which	
eliminates	this	source	of	off-by-one	errors.	There	are	also	special	for … loop	structures	
that	iterate	through	an	entire	array	or	container.	These	avoid	the	need	to	specify	any	
bounds	for	the	iteration.	A while … loop	however,	lets	the	programmer	specify	the	loop	
termination	expression,	which	can	be	susceptible	to	an	off-by-one	error.	

Confusion as to the index range of an algorithm.
Although	there	are	language	defined	attributes	to	symbolically	reference	the	start	and	end	
values	for	a	loop	iteration,	the	language	does	allow	the	use	of	explicit	values	and	loop	
termination	tests.	Off-by-one	errors	can	result	in	these	circumstances.	

Care	should	be	taken	when	using	the	'Length	attribute	in	the	loop	termination	expression.	
The	expression	should	generally	be	relative	to	the	'First	value.	

The	strong	typing	of	Ada	eliminates	the	potential	for	buffer	overflow	associated	with	this	
vulnerability.	If	the	error	is	not	statically	caught	at	compile	time,	then	a	run-time	check	
generates	an	exception	if	an	attempt	is	made	to	access	an	element	outside	the	bounds	of	an	
array.	

Failing to allow for storage of a sentinel value.
Ada	does	not	use	language-defined	sentinel	values	to	terminate	arrays.	There	is	no	need	to	
account	for	the	storage	of	a	sentinel	value,	therefore	this	particular	vulnerability	concern	
does	not	apply	to	Ada.	

6.30.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.30.5	of	ISO/IEC	24772-1:2022.	
• Whenever	possible,	use	a	for … loop	instead	of	a	while … loop.	
• Whenever	possible,	use	Ada	constructs	that	eliminate	the	need	for	loop	statements,	such	as	

array	aggregates,	qualified	expressions,	and	reduction	expressions.	
• Whenever	possible,	use	the	form	of	iteration	that	takes	the	name	of	the	array	or	container	

and	nothing	more.		
• When	indices	are	necessary,	use	the	'First,	'Last,	and	'Range	attributes	for	loop	

termination,	e.g.	for I in MyArray'Range loop….		

	

©	ISO/IEC	2022	–	All	rights	reserved	 39	
	

• If	the	'Length	attribute	is	required	to	be	used,	take	extra	care	to	ensure	that	the	index	
computation	considers	the	starting	index	value	for	the	array.	

6.31	Unstructured	programming	[EWD]	

6.31.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.31	applies	to	Ada.	Ada	programs	can	
exhibit	many	of	the	vulnerabilities	documented,	such	as	leaving	a	loop	at	an	arbitrary	point,	local	
jumps	(goto),	and	multiple	exit	points	from	subprograms.	

Ada	however	does	not	suffer	from	non-local	jumps	and	multiple	entries	to	subprograms.	

6.31.2	Guidance	to	language	users	

Follow	the	mitigation	mechanisms	of	subclause	6.31.5	of	ISO/IEC	24772-1:2022.	

6.32	Passing	parameters	and	return	values	[CSJ]	

6.32.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.32	does	not	apply	to	Ada,	except	
when	parameter	passing	by	reference	is	used.	Ada	employs	the	mechanisms	(for	example,	modes	
in,	out	and	in out)	that	are	recommended	in	subclause	6.32	of	ISO/IEC	24772-1:2022.	These	mode	
definitions	are	not	optional,	mode	in	being	the	default.			

6.32.2	Guidance	to	language	users	

Follow	mitigation	mechanisms	of	subclause	6.32.5	of	ISO/IEC	24772-1:2022.	

6.33	Dangling	references	to	stack	frames	[DCM]	

6.33.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.35	does	not	apply	to	Ada,	except	
when	the	‘Address	or	‘Unchecked_Access	attributes	are	used.		

In	Ada,	the	attribute	'Address	yields	a	value	of	some	system-specific	type	that	is	not	equivalent	to	a	
pointer.	The	attribute	'Access	provides	an	access	value	(what	other	languages	call	a	pointer).	
Addresses	and	access	values	are	not	automatically	convertible,	although	a	predefined	set	of	generic	
functions	can	be	used	to	convert	one	into	the	other.	Access	values	are	typed,	that	is	to	say,	they	can	
only	designate	objects	of	a	particular	type	or	class	of	types.		

As	in	other	languages,	it	is	possible	to	apply	the	'Address	attribute	to	a	local	variable,	and	to	make	
use	of	the	resulting	value	outside	of	the	lifetime	of	the	variable.	However,	'Address	is	very	rarely	
used	in	this	fashion	in	Ada.	Most	commonly,	programs	use	'Access	to	designate	objects	and	
subprograms,	and	the	language	enforces	accessibility	checks	whenever	code	attempts	to	use	this	

	

40	 ©	ISO/IEC	2022	–	All	rights	reserved	
	

attribute	to	provide	access	to	a	local	object	outside	of	its	scope.	These	accessibility	checks	eliminate	
the	possibility	of	dangling	references.	

As	for	all	other	language-defined	checks,	accessibility	checks	can	be	disabled	over	any	portion	of	a	
program	by	using	pragma Suppress.	The	attribute	Unchecked_Access	produces	values	that	are	
exempt	from	accessibility	checks.	

6.33.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.33.5	of	ISO/IEC	24772-1:2022.	
• Only	use	the	'Address	attribute	on	static	objects	(for	example,	a	register	address).		
• Do	not	use	'Address	to	provide	indirect	untyped	access	to	an	object.		
• Do	not	convert	between	'Address	and	access	types.		
• Use	access	types	in	all	circumstances	when	indirect	access	is	needed.		
• Do	not	suppress	accessibility	checks.		
• Avoid	use	of	the	attribute	'Unchecked_Access.	
• Use	'Access	attribute	in	preference	to	'Address.	
• Consider	applying	the	restriction	No_Use_Of_Attribute(Address)	to	prohibit	use	of	

'Address.	
• Consider	applying	the	restriction	No_Unchecked_Access	to	enforce	that	'Unchecked_Access	

is	not	used.	

6.34	Subprogram	signature	mismatch	[OTR]	

6.34.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.34	applies	to	Ada.		

There	are	two	concerns	identified	with	this	vulnerability.	The	first	is	the	corruption	of	the	
execution	stack	due	to	the	incorrect	number	or	type	of	actual	parameters.	The	second	is	the	
corruption	of	the	execution	stack	due	to	calls	to	externally	compiled	modules.	Ada	does	not	support	
variadic	subprograms,	which	eliminates	a	common	source	for	this	vulnerability.	The	case	of	calls	to	
libraries	written	in	other	languages	is	covered	in	6.47.	

In	Ada,	at	compilation	time,	the	parameter	association	is	checked	to	ensure	that	the	type	of	each	
actual	parameter	matches	the	type	of	the	corresponding	formal	parameter.	In	addition,	the	formal	
parameter	specification	can	include	default	expressions	for	a	parameter.	Hence,	the	procedure	can	
be	called	with	some	actual	parameters	missing.	In	this	case,	if	there	is	a	default	expression	for	the	
missing	parameter,	then	the	call	will	be	compiled	without	any	errors.	If	default	expressions	are	not	
specified,	then	the	procedure	call	with	insufficient	actual	parameters	will	be	flagged	as	an	error	at	
compilation	time.		

Caution	is	advised	when	specifying	default	expressions	for	formal	parameters,	as	their	use	can	
result	in	successful	compilation	of	subprogram	calls	with	an	unintended	signature.	The	execution	
stack	will	not	be	corrupted	in	this	event,	but	the	program	can	be	executing	with	unexpected	values.	
The	most	appropriate	use	of	default	expressions	is	when,	without	them,	there	would	end	up	being	

	

©	ISO/IEC	2022	–	All	rights	reserved	 41	
	

an	overloading	of	the	same	name	with	fewer	parameters	that	performed	essentially	the	same	
operation.	When	calling	externally	compiled	modules	that	are	Ada	program	units,	the	type	
matching	and	subprogram	interface	signatures	are	monitored	and	checked	as	part	of	the	
compilation	and	linking	of	the	full	application.	When	calling	externally	compiled	modules	in	other	
programming	languages,	additional	steps	are	needed	to	ensure	that	the	number	and	types	of	the	
parameters	for	these	external	modules	are	correct.		

6.34.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.34.5	of	ISO/IEC	24772-1:2022.	
• Minimize	the	use	of	default	expressions	for	formal	parameters.	

6.35	Recursion	[GDL]	

6.35.1	Applicability	to	language	

With	the	exception	of	unsafe	programming	(see	5.1	Language	concepts),	the	vulnerability	as	
described	in	ISO/IEC	24772-1	subclause	6.35	is	mitigated	by	Ada	as	the	exception	Storage_Error	is	
raised	when	the	recursive	execution	results	in	insufficient	storage.	It	is	also	possible	to	use	a	
recursion-depth	counter	to	control	recursive	behavior.	

6.35.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.35.5	of	ISO/IEC	24772-1:2022.	
• If	recursion	is	used,	then	use	a	Storage_Error	exception	handler	to	handle	insufficient	

storage	due	to	recursive	execution.		
• Use	a	recursion-depth	counter	to	put	a	limit	on	recursion	depth	(for	example	raising	an	

exception	if	the	check	fails).		
• Consider	using	the	asynchronous	control	construct	to	time	the	execution	of	a	recursive	call	

and	to	terminate	the	call	if	the	time	limit	is	exceeded.	

6.36	Ignored	error	status	and	unhandled	exceptions	[OYB]	

6.36.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.36	applies	to	Ada.	Ada	offers	a	set	of	
predefined	exceptions	for	error	conditions	that	are	detected	by	checks	that	are	compiled	into	a	
program.	In	addition,	the	programmer	can	define	exceptions	that	are	appropriate	for	their	
application.		

Exceptions	are	handled	using	an	exception	handler.	Exceptions	can	be	handled	in	the	scope	where	
the	exception	occurs,	or	they	are	propagated	to	an	enclosing	scope	or	the	caller.	However,	
exceptions	that	are	not	handled	by	a	task	body	result	in	silent	task	termination.		Similarly,	
exceptions	that	occur	during	the	elaboration	of	a	library-level	package	result	in	program	
termination.	

6.36.2	Guidance	to	language	users	

	

42	 ©	ISO/IEC	2022	–	All	rights	reserved	
	

• Follow	the	mitigation	mechanisms	of	subclause	6.36.5	of	ISO/IEC	24772-1:2022.	
• Use	the	result	of	the	'Valid	attribute	to	check	for	the	validity	of	values	delivered	to	an	Ada	

program	from	an	external	device	prior	to	use.		
• Consider	using	the	call		

			Ada.Task_Termination.Set_Dependents_Fallback_Handler		
to	install	a	handler	that	will	be	invoked	whenever	a	task	terminates,	including	due	to	
exception	propagation.	

• Consider	including	an	exception	handler	in	the	outermost	block	of	the	main	subprogram	and	
each	task	body	to	use	as	a	last-chance	exception	handler.	

• Document	any	exceptions	that	are	expected	to	be	propagated	out	of	a	given	subprogram	or	
the	elaboration	of	a	library-level	package.	

6.37	Type-breaking	reinterpretation	of	data	[AMV]	

6.37.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.37	applies	to	Ada	but	only	if	the	
mechanisms	of	Unsafe	Programming	(5.1	Language	concepts)	are	used.		
Unchecked_Conversion	can	be	used	to	bypass	the	type-checking	rules,	and	its	use	is	thus	unsafe,	as	
is	its	equivalent	in	any	other	language.	The	same	applies	to	the	use	of	Unchecked_Union,	even	
though	the	language	specifies	various	inference	rules	that	the	compiler	shall	use	to	catch	statically	
detectable	constraint	violations.	The	fact	that	Unchecked_Conversion	is	a	generic	function	that	
must	be	instantiated	explicitly	(and	given	a	meaningful	name)	hinders	its	undisciplined	use	and	
places	a	loud	marker	in	the	code	wherever	it	is	used.	Well-written	Ada	code	will	have	a	small	set	of	
instantiations	of	Unchecked_Conversion.	Most	implementations	require	the	source	and	target	types	
to	have	the	same	size	in	bits,	to	prevent	accidental	truncation	or	missing	sign	extensions.		

Type	reinterpretation	is	a	universal	programming	need,	and	no	usable	programming	language	can	
exist	without	some	mechanism	that	bypasses	the	type	model.	Ada	provides	these	mechanisms	with	
some	additional	safeguards,	and	makes	their	use	purposely	verbose,	to	alert	the	writer	and	the	
reader	of	a	program	to	the	presence	of	an	unchecked	operation.	

6.37.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.37.5	of	ISO/IEC	24772-1:2022.	
• Use	Unchecked_Union	only	in	multi-language	programs	that	need	to	communicate	data	

between	Ada	and	C	or	C++.	Otherwise	the	use	of	discriminated	types	prevents	"punning"	
between	values	of	two	distinct	types	that	happen	to	share	storage.	

• Avoid	using	the	Address	aspect	or	address	clauses	to	obtain	overlays,	including	avoiding	
Address_to_Access_Conversions.	If	the	types	of	the	objects	are	the	same,	then	a	renaming	
declaration	is	preferable.	Otherwise,	use	the	pragma Import	to	inhibit	the	initialization	of	
one	of	the	entities	so	that	it	does	not	interfere	with	the	initialization	of	the	other	one.		

• Consider	applying	
 pragma Restrictions (No_Specification_Of_Aspect => Unchecked_Union),
 pragma Restrictions (No_Use_Of_Attribute => Address), and
 pragma Restrictions (No_Dependence => System.Address_to_Access_Conversions)
	to	ensure	this	vulnerability	cannot	arise.	

	

©	ISO/IEC	2022	–	All	rights	reserved	 43	
	

6.38	Deep	vs.	shallow	copying	[YAN]	

6.38.1	Applicability	to	language	

The	vulnerability	described	in	subclause	6.38	of	ISO/IEC	24772-1	applies	to	Ada.	It	can	be	mitigated	
somewhat	by	language	constructs	that	allow	the	creation	of	abstractions	and	the	addition	of	user-
defined	copying	operations,	such	that	inadvertent	aliasing	problems	can	be	contained	within	the	
abstraction.	The	default	semantics	of	assignment	create	a	shallow	copy,	when	applied	to	the	root	of	
a	graph	structure.	

6.38.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.38.5	of	ISO/IEC	24772-1:2022.	
• Use	controlled	types	and	appropriate	redefinitions	of	the	Initialize,	Adjust,	and	Finalize	

operation	to	create	deep	copies	when	needed.	
• Use	a	pre-existing	Container	type	for	trees.	

6.39	Memory	leak	and	heap	fragmentation	[XYL]	

6.39.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.39	applies	to	Ada.	For	objects	that	
are	allocated	from	the	heap	without	the	use	of	reference	counting,	the	memory	leak	vulnerability	is	
possible	in	Ada.	For	objects	that	allocate	from	a	storage	pool,	the	vulnerability	is	present	but	is	
restricted	to	this	single	pool,	which	makes	it	easier	to	detect	memory	leaks	by	verification.	Subpools	
can	be	used	to	further	reduce	the	possibility	for	memory	leaks.	For	objects	of	a	controlled	type	that	
uses	referencing	counting	and	that	are	not	part	of	a	cyclic	reference	structure,	the	vulnerability	
does	not	exist.	

Ada	ensures	that	objects	designated	by	an	access	type	declared	in	a	nested	scope	are	finalized	when	
execution	leaves	the	nested	scope,	however,	it	is	implementation	defined	whether	storage	is	
reclaimed	for	this	case.	Associating	an	access	type	with	a	storage	pool	can	ensure	that	the	storage	
reclamation	takes	place.	

Ada	does	not	mandate	the	use	of	a	garbage	collector,	but	Ada	implementations	are	free	to	provide	
such	memory	reclamation.	For	applications	that	use	and	return	memory	on	an	implementation	that	
provides	garbage	collection,	the	issues	associated	with	garbage	collection	exist	in	Ada.	

6.39.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.39.5	of	ISO/IEC	24772-1:2022.	
• Use	controlled	types	and	reference	counting	to	implement	explicit	storage	management	

systems	that	cannot	have	storage	leaks.		
• Declare	access	types	in	a	nested	scope	where	possible.	
• Consider	the	use	of	predefined	container	libraries	where	possible.	
• Consider	the	use	of	user-defined	storage	pools	and	subpools.	

	

44	 ©	ISO/IEC	2022	–	All	rights	reserved	
	

• Use	a	completely	static	model	where	all	storage	is	allocated	from	global	memory	and	
explicitly	managed	under	program	control.	

6.40	Templates	and	generics	[SYM]	

With	the	exception	of	unsafe	programming	(see	5.1	Language	concepts),	the	vulnerability	as	
described	in	ISO/IEC	24772-1	subclause	6.40	does	not	apply	to	Ada	as	the	Ada	generics	model	is	
based	on	imposing	a	contract	on	the	structure	and	operations	of	the	types	that	can	be	used	for	
instantiation.	Also,	explicit	instantiation	of	the	generic	is	required	for	each	particular	type.		

Therefore,	the	compiler	is	able	to	check	the	generic	body	for	programming	errors,	independently	of	
actual	instantiations.	At	each	actual	instantiation,	the	compiler	will	also	check	that	the	instantiated	
type	meets	all	the	requirements	of	the	generic	contract.	

Ada	also	does	not	allow	for	‘special	case’	generics	for	a	particular	type,	therefore	behaviour	is	
consistent	for	all	instantiations.	

6.41	Inheritance	[RIP]	

6.41.1	Applicability	to	language		

The	vulnerability	documented	in	ISO/IEC	24772-1	subclause	6.41	applies	to	Ada.		

Ada	allows	only	a	restricted	form	of	multiple	inheritance,	where	only	one	of	the	multiple	ancestors	
(the	parent)	is	permitted	to	implement	operations.	All	other	ancestors	(interfaces)	can	only	specify	
the	operations’	signature,	and	whether	the	operation	is	required	to	be	overridden,	or	can	simply	do	
nothing	if	never	explicitly	defined.	Therefore,	Ada	does	not	suffer	from	multiple	inheritance	related	
vulnerabilities.	

Ada	has	no	preference	rules	to	resolve	ambiguities	of	calls	on	primitive	operations	of	tagged	types.	
Hence	the	related	vulnerability	documented	in	ISO/IEC	24772-1:2022	subclause	6.41	does	not	
apply	to	Ada.		

6.41.2	Guidance	to	language	users		

• Follow	the	mitigation	mechanisms	of	subclause	6.41.5	of	ISO/IEC	24772-1:2022.	
• Use	the	overriding	indicators	on	potentially	inherited	subprograms	to	ensure	that	the	

intended	set	of	operations	are	overridden,	thus	preventing	the	accidental	redefinition	or	
failure	to	redefine	an	operation	of	the	parent.		

• Specify	aspect Pre’Class	and	aspect Post’Class	aspects	when	a	primitive	operation	is	
initially	defined,	to	indicate	the	properties	of	inputs	that	any	overridings	shall	accept,	and	
the	properties	of	outputs	that	any	overridings	shall	produce.	
	

6.42	Violations	of	the	Liskov	substitution	principle	or	the	contract	model	[BLP]	

6.42.1	Applicability	to	language	

	

©	ISO/IEC	2022	–	All	rights	reserved	 45	
	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.42	applies	to	Ada.	The	
vulnerabilities	may	be	mitigated	by	the	use	of	language	concepts	of	specified/enforced	pre-	and	
postconditions	of	methods.	

When	defining	one	type	as	a	descendant	of	another	and	overriding	existing	primitive	operations	of	
the	ancestor	type,	the	Liskov	Substitution	Principle	(LSP)	argues	for	ensuring	that	the	important	
properties	of	the	operations	are	preserved	in	the	descendant	types,	according	to	the	rules	of	
behavioural	subtyping.	In	Ada,	this	can	be	enforced	by	specifying	these	properties	using	the	
Pre’Class	and	Post’Class aspects	when	the	operation	is	first	defined,	to	define	the	relevant	pre-	
and	postconditions	(respectively)	which	are	to	apply	to	the	operations	and	any	overridings.	Run-
time	checks	will	be	provided	by	the	Ada	implementation	on	all	calls	of	these	operations	and	their	
overridings,	to	verify	that	the	inputs	provided	by	the	caller	satisfy	the	required	preconditions,	and	
that	the	outputs	produced	by	the	operation	satisfy	the	required	postconditions.	Ada	allows	these	
aspects	to	be	refined	in	overridings,	but	only	in	ways	that	are	consistent	with	LSP,	meaning	that	the	
effective	class-wide	preconditions	can	only	be	relaxed	in	overridings,	never	made	more	stringent,	
and	the	effective	class-wide	postconditions	can	only	be	tightened,	never	made	looser.	This	ensures	
that	if	a	caller	is	reaching	an	operation	of	a	descendant	type	while	being	only	aware	of	the	
Pre’Class	and	Post’Class	aspects	of	an	ancestor	operation,	any	input	that	satisfies	the	ancestor	
Pre’Class	will	still	satisfy	the	descendant	effective	Pre’Class,	and	any	output	that	satisfies	the	
descendant	effective	Post’Class	will	also	satisfy	the	ancestor’s	Post’Class.		

6.42.2	Guidance	to	Language	Users		

• Follow	the	mitigation	mechanisms	of	subclause	6.42.5	of	ISO/IEC	24772-1:2022.	
• Specify	Pre’Class	and	Post’Class	for	all	primitive	operations	of	tagged	types.	

6.43	Redispatching	[PPH]	

6.43.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.43	applies	to	Ada.	The	default	
behaviour	of	the	relevant	calls	is	non-dispatching	in	Ada,	which	is	not	subject	to	this	vulnerability,	
but	upon	explicitly	coding	a	redispatching	call,	this	vulnerability	may	occur.	

Ada	distinguishes	between	a	specific	type T	and	a	class-wide	type T’Class.	If	dispatching	is	being	
performed	within	a	routine	on	a	particular	formal	parameter,	it	is	preferable	that	the	parameter	be	
declared	as	class-wide	to	document	this	internal	use	of	dispatching.	Ada	permits	an	explicit	
conversion	from	a	specific	type	to	a	class-wide	type	to	perform	re-dispatching,	but	this	should	be	
avoided	when	possible,	and	documented	explicitly	when	necessary.	

6.43.2	Guidance	to	Language	Users		

• Follow	the	mitigation	mechanisms	of	subclause	6.43.5	of	ISO/IEC	24772-1:2022.	
• If	redispatching	is	necessary,	document	the	behaviour	explicitly.	

	

46	 ©	ISO/IEC	2022	–	All	rights	reserved	
	

6.44	Polymorphic	variables	[BKK]	

6.44.1	Applicability	to	language	

With	the	exception	of	unsafe	programming	(see	5.1	Language	concepts),	the	vulnerability	described	
in	ISO/IEC	24772-1	subclause	6.44	is	mitigated	by	Ada	as	run-times	checks	identify	faulty	uses.	

Ada	checks	all	conversions	to	descendant	tagged	types	(downward	conversions)	to	be	sure	the	run-
time	tag	of	the	object	being	converted	matches	that	of	the	target	type,	or	one	of	its	descendants.	To	
avoid	the	failure	of	such	a	tag	check,	the	programmer	should	use	a	class-wide	membership	test	
(“Obj	in	Target’Class”)	or	rely	on	a	dispatching	call	to	perform	the	appropriate	downward	
conversion	implicitly.	

Although	conversions	up	to	ancestors	are	always	structurally	safe	(upward	conversions),	in	that	the	
ancestor	has	a	subset	of	the	data	components	of	any	descendant,	a	conversion	to	a	specific	(as	
opposed	to	class-wide)	ancestor	type	may	violate	semantic	requirements	of	the	descendant	type,	
particularly	if	the	descendant	type	is	a	private	extension	of	the	ancestor	and	has	certain	desired	
relationships	between	components	of	the	extension	and	those	inherited	from	the	ancestor.	By	
specifying	a	Type_Invariant	aspect	on	a	private	extension,	the	programmer	can	ensure	that	the	
semantic	requirements	of	the	private	extension,	as	captured	by	the	type	invariant,	are	preserved	
across	such	conversions	to	an	ancestor	specific	type,	in	that	they	are	re-checked	after	the	construct	
manipulating	the	upward	conversion	is	complete.	

6.44.2	Guidance	to	Language	Users		

Follow	the	mitigation	mechanisms	of	subclause	6.44.5	of	ISO/IEC	24772-1:2022.	

6.45	Extra	intrinsics	[LRM]	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.45	does	not	apply	to	Ada.	In	Ada,	all	
subprograms,	whether	intrinsic	or	not,	belong	to	the	same	name	space.	Ada	specifies	that	all	
subprograms	shall	be	explicitly	declared,	and	the	same	name	resolution	rules	apply	to	all	of	them,	
whether	they	are	predefined	or	user	defined.	If	two	subprograms	with	the	same	name	and	
signature	are	visible	(that	is	to	say	nameable)	at	the	same	place	in	a	program,	then	a	call	using	that	
name	will	be	rejected	as	ambiguous	by	the	compiler,	and	the	programmer	will	have	to	specify	(for	
example,	by	means	of	an	expanded	name)	which	subprogram	is	meant.	

6.46	Argument	passing	to	library	functions	[TRJ]	

6.46.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	applies	to	Ada.	Ada	parameters	may	have	values	
precluded	by	preconditions	of	the	called	routine.	

	

©	ISO/IEC	2022	–	All	rights	reserved	 47	
	

To	the	extent	that	the	preclusion	of	values	can	be	expressed	as	part	of	the	type	system	of	Ada,	
however,	the	preconditions	are	checked	by	the	compiler	statically	or	dynamically	and	thus	are	no	
longer	vulnerabilities.	For	example,	any	range	constraint	on	values	of	a	parameter	can	be	expressed	
in	Ada	by	means	of	type	or	subtype	declarations.	Type	violations	are	detected	at	compile	time,	
subtype	violations	cause	run-time	exceptions.	In	addition,	preconditions,	postconditions,	type	
invariants,	and	subtype	predicates	can	be	specified	explicitly	to	express	more	complex	restrictions	
to	be	observed	by	callers.	These	are	checked	at	run-time	depending	on	the	Assertion_Policy	in	
effect,	and	can	be	recognized	by	other	static	analysis	tools	as	part	of	program	verification.	

6.46.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.46.5	of	ISO/IEC	24772-1:2022.	
• Exploit	the	type	and	subtype	system	of	Ada	to	express	restrictions	on	the	values	of	

parameters	and	results.	
• Specify	explicit	preconditions	and	postconditions	for	subprograms	wherever	practical.		
• Specify	subtype	predicates	and	type	invariants	for	subtypes	and	private	types	when	

appropriate.	
• Specify	the	exception	raised	or	other	response	to	values	that	do	not	satisfy	the	precondition.	

6.47	Inter-language	calling	[DJS]	

6.47.1	Applicability	to	Language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.47	is	mitigated	by	Ada	as	Ada	
provides	mechanisms	to	interface	with	common	languages,	such	as	C,	C++,	Fortran	and	COBOL,	so	
that	vulnerabilities	associated	with	interfacing	with	these	languages	can	be	avoided.	

6.47.2	Guidance	to	Language	Users	

• Follow	the	mitigation	mechanisms	of	subclause	6.47.5	of	ISO/IEC	24772-1:2022.	
• Use	the	inter-language	methods	and	syntax	specified	by	ISO/IEC	8652	when	the	routines	to	

be	called	are	written	in	languages	that	ISO/IEC	8652	specifies	an	interface	with,	including	
aspects	Import,	Export,	and	Convention.	

• Use	interfaces	to	the	C	programming	language	where	the	other	language	system(s)	are	not	
covered	by	ISO/IEC	8652,	but	the	other	language	systems	have	interfacing	to	C.	

• Make	explicit	checks	on	all	return	values	from	foreign	system	code	artifacts,	for	example	by	
using	the	'Valid	attribute	or	by	performing	explicit	tests	to	ensure	that	values	returned	by	
inter-language	calls	conform	to	the	expected	representation	and	semantics	of	the	Ada	
application.	

• Consider	handling	any	exceptions	that	may	be	raised	in	Ada	code	before	returning	to	a	
routine	from	a	foreign	language,	to	prevent	possible	stack	corruption	if	the	foreign	language	
cannot	handle	exceptions	raised	in	Ada	code.	

6.48	Dynamically-linked	code	and	self-modifying	code	[NYY]	

With	the	exception	of	unsafe	programming	(see	5.1	Language	concepts),	the	vulnerability	described	
in	ISO/IEC	24772-1	subclause	6.48	does	not	apply	to	Ada	as	Ada	does	not	support	either	dynamic	

	

48	 ©	ISO/IEC	2022	–	All	rights	reserved	
	

linking	or	self-modifying	code.	The	latter	is	possible	only	by	exploiting	other	vulnerabilities	of	the	
language	in	the	most	malicious	ways	and	even	then	it	is	still	very	difficult	to	achieve.	

6.49	Library	signature	[NSQ]	

6.49.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.49	applies	to	Ada.	Ada	provides	
mechanisms	to	explicitly	interface	to	modules	written	in	other	languages.	Aspects	Import,	Export,	
and	Convention	permit	the	name	of	the	external	unit	and	the	interfacing	convention	to	be	specified.		

Even	with	the	use	of	aspects	Import,	Export,	and	Convention,	the	vulnerabilities	stated	in	
subclause	6.49	of	ISO/IEC	24772-1:2022	are	possible.	Names	and	number	of	parameters	change	
under	maintenance;	calling	conventions	change	as	compilers	are	updated	or	replaced,	or	languages	
are	used	for	which	Ada	does	not	specify	a	calling	convention.	

6.49.2	Guidance	to	language	users	

Follow	the	mitigation	mechanisms	of	subclause	6.49.5	of	ISO/IEC	24772-1:2022.	

6.50	Unanticipated	exceptions	from	library	routines	[HJW]	

6.50.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.50	applies	to	Ada.	Ada	programs	are	
capable	of	handling	exceptions	at	any	level	in	the	program,	as	long	as	any	exception	naming	and	
delivery	mechanisms	are	compatible	between	the	Ada	program	and	the	library	components.	In	such	
cases	the	normal	Ada	exception	handling	processes	will	apply,	and	either	the	calling	unit	or	some	
subprogram	or	task	in	its	call	chain	will	catch	the	exception	and	take	appropriate	programmed	
action.	If	no	action	is	taken	to	handle	the	exception,	the	task	or	program	where	the	exception	
occurred	will	terminate.	

If	the	library	convention	is	to	report	errors	by	means	of	error	codes	and	not	by	exceptions,	then	if	
the	library	components	themselves	are	written	in	Ada,	then	Ada's	exception	handling	mechanisms	
let	all	called	units	trap	any	exceptions	that	are	generated	and	return	error	codes	instead.		

If	the	interface	between	the	Ada	units	and	the	library	routine	being	called	does	not	adequately	
address	the	issue	of	naming,	generation	and	delivery	of	exceptions	across	the	interface,	then	the	
vulnerabilities	as	expressed	in	subclause	6.50	of	ISO/IEC	24772-1:2022	apply.		

6.50.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.50.5	of	ISO/IEC	24772-1:2022.	
• Ensure	that	the	interfaces	with	libraries	written	in	other	languages	are	compatible	in	the	

naming	and	generation	of	exceptions.	

	

©	ISO/IEC	2022	–	All	rights	reserved	 49	
	

• Put	appropriate	exception	handlers	in	all	routines	that	call	library	routines,	including	the	
catch-all	exception	handler	when others	=>.	

• Put	appropriate	exception	handlers	in	all	routines	that	are	called	by	library	routines,	
including	the	catch-all	exception	handler	when others	=>.	

• Document	any	exceptions	that	may	be	raised	by	any	Ada	units	being	used	as	library	routines.		

6.51	Pre-processor	directives	[NMP]	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.51	does	not	apply	to	Ada	as	Ada	
does	not	have	a	pre-processor.	

6.52	Suppression	of	language-defined	run-time	checking	[MXB]	

6.52.1	Applicability	to	Language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.52	applies	to	Ada.	The	Ada	pragma
Suppress()	permits	explicit	suppression	of	language-defined	checks	on	a	unit-by-unit	basis	or	on	
partitions	or	programs	as	a	whole.	(The	language-defined	default,	however,	is	to	perform	the	run-
time	checks	that	prevent	run-time	vulnerabilities.)	Pragma Suppress	can	suppress	all	language-
defined	checks	or	individual	categories	of	checks	(see	subclause	11.5	of	ISO/IEC	8652).	

6.52.2	Guidance	to	Language	Users	

Follow	the	mitigation	mechanisms	of	subclause	6.52.5	of	ISO/IEC	24772-1:2022.	

6.53	Provision	of	inherently	unsafe	operations	[SKL]	

6.53.1	Applicability	to	Language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.53	applies	to	Ada.	In	recognition	of	
the	occasional	need	to	step	outside	the	type-system	or	to	perform	“risky”	operations,	Ada	provides	
clearly	identified	language	features	to	do	so.	Examples	include	the	generic	Unchecked_Conversion	
for	unsafe	type	conversions	or	Unchecked_Deallocation for	the	deallocation	of	heap	objects	
regardless	of	the	existence	of	surviving	references	to	the	object.	If	unsafe	programming	is	employed	
in	a	unit,	then	the	unit	needs	to	specify	the	respective	generic	unit	in	its	context	clause,	thus	
identifying	potentially	unsafe	units.	Similarly,	there	are	ways	to	create	a	potentially	unsafe	global	
pointer	to	a	local	object,	using	the	Unchecked_Access	attribute.	

6.53.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.53.5	of	ISO/IEC	24772-1:2022.	
• Avoid	the	use	of	unsafe	programming	practices,	use	the	pragma Restrictions()	to	prevent	

the	inadvertent	use	of	unsafe	language	constructs.	
• Carefully	scrutinize	any	code	that	refers	to	a	program	unit	explicitly	designated	to	provide	

unchecked	operations.	

	

50	 ©	ISO/IEC	2022	–	All	rights	reserved	
	

6.54	Obscure	language	features	[BRS]	

6.54.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.54	applies	to	Ada.	Ada	is	a	rich	
language	and	provides	facilities	for	a	wide	range	of	application	areas.	Because	some	areas	are	
specialized,	it	is	likely	that	a	programmer	not	versed	in	a	special	area	can	misuse	features	for	that	
area.	For	example,	the	use	of	tasking	features	for	concurrent	programming	requires	knowledge	of	
this	domain.	Similarly,	the	use	of	exceptions	and	exception	propagation	and	handling	requires	a	
deeper	understanding	of	control	flow	issues	than	some	programmers	possess.	

6.54.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.54.5	of	ISO/IEC	24772-1:2022.	
• Use	the	pragma Restriction()	to	prevent	the	use	of	obscure	features	of	the	language.		
• Similarly,	avoid	features	in	a	Specialized	Needs	Annex	of	ISO/IEC	8652	unless	the	

application	area	concerned	is	well-understood.	
• The	restriction	No_Dependence	prevents	the	use	of	specified	pre-defined	or	user-defined	

libraries.	

6.55	Unspecified	behaviour	[BQF]	

6.55.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.55	applies	to	Ada.	In	Ada,	there	are	
two	main	categories	of	unspecified	behaviour,	one	having	to	do	with	unspecified	aspects	of	normal	
run-time	behaviour,	and	one	having	to	do	with	bounded	errors,	errors	that	need	not	be	detected	at	
run-time	but	for	which	there	is	a	limited	number	of	possible	run-time	effects	(though	always	
including	the	possibility	of	raising	Program_Error	exception).	

For	the	normal	behaviour	category,	there	are	several	distinct	aspects	of	run-time	behaviour	that	
may	be	unspecified,	including:	

• Order	in	which	certain	actions	are	performed	at	run-time;	
• Number	of	times	a	given	element	operation	is	performed	within	an	operation	invoked	on	a	

composite	or	container	object;	
• Results	of	certain	operations	within	a	language-defined	generic	package	if	the	actual	

associated	with	a	particular	formal	subprogram	does	not	meet	stated	expectations	(such	as	
“<”	providing	a	strict	weak	ordering	relationship);	

• Whether	distinct	instantiations	of	a	generic	or	distinct	invocations	of	an	operation	produce	
distinct	values	for	tags	or	access-to-subprogram	values.	

The	index	entry	in	the	ISO/IEC	8652	for	unspecified	provides	the	full	list.	Similarly,	the	index	entry	
for	bounded	error	provides	the	full	list	of	references	to	places	in	ISO/IEC	8652	where	a	bounded	
error	is	described.	

	

©	ISO/IEC	2022	–	All	rights	reserved	 51	
	

Failure	can	occur	due	to	unspecified	behaviour	when	the	programmer	did	not	fully	account	for	the	
possible	outcomes,	and	the	program	is	executed	in	a	context	where	the	actual	outcome	was	not	one	
of	those	handled,	resulting	in	the	program	producing	an	unintended	result.	

6.55.2	Guidance	to	language	users		

• Follow	the	mitigation	mechanisms	of	subclause	6.55.5	of	ISO/IEC	24772-1:2022.	
• For	situations	involving	generic	formal	subprograms,	ensure	that	the	actual	subprogram	

satisfies	all	of	the	stated	expectations.	
• For	situations	involving	unspecified	values,	avoid	depending	on	equality	between	potentially	

distinct	values.	
• For	situations	involving	bounded	errors,	avoid	the	problem	completely,	by	ensuring	in	other	

ways	that	all	requirements	for	correct	operation	are	satisfied	before	invoking	an	operation	
that	can	result	in	a	bounded	error.	See	subclause	6.22	Initialization	of	variables	[LAV]	for	a	
discussion	of	uninitialized	variables	in	Ada,	a	common	cause	of	a	bounded	error.	

6.56	Undefined	behaviour	[EWF]	

6.56.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.56	applies	to	Ada.	In	Ada,	undefined	
behaviour	is	called	erroneous	execution,	and	can	arise	from	certain	errors	that	are	not	required	to	
be	detected	by	the	implementation,	and	whose	effects	are	not	in	general	predictable.	

There	are	various	kinds	of	errors	that	can	lead	to	erroneous	execution,	including:	

• Changing	a	discriminant	of	a	record	(by	assigning	to	the	record	as	a	whole)	while	there	
remain	active	references	to	subcomponents	of	the	record	that	depend	on	the	discriminant;	

• Referring	via	an	access	value,	task	id,	or	tag,	to	an	object,	task,	or	type	that	no	longer	exists	
at	the	time	of	the	reference;	

• Referring	to	an	object	whose	assignment	was	disrupted	by	an	abort	statement,	prior	to	
invoking	a	new	assignment	to	the	object;	

• Sharing	an	object	between	multiple	tasks	without	adequate	synchronization;	
• Suppressing	a	language-defined	check	that	is	in	fact	violated	at	run-time;	
• Specifying	the	address	or	alignment	of	an	object	in	an	inappropriate	way;	
• Using	Unchecked_Conversion,	Address_To_Access_Conversions,	or	calling	an	imported	

subprogram	to	create	a	value,	or	reference	to	a	value,	that	has	an	invalid	representation.	
The	full	list	is	given	in	the	index	of	ISO/IEC	8652	under	erroneous	execution.	

Any	occurrence	of	erroneous	execution	represents	a	failure	situation,	as	the	results	are	
unpredictable,	and	may	involve	overwriting	of	memory,	jumping	to	unintended	locations	within	
memory,	and	other	uncontrolled	events.	

6.56.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.56.5	of	ISO/IEC	24772-1:2022.	

	

52	 ©	ISO/IEC	2022	–	All	rights	reserved	
	

• Ensure	that	all	data	shared	between	tasks	are	either	private	within	a	protected	object	or	
marked	atomic;	

• Upon	any	use	of Unchecked_Deallocation,	carefully	check	to	be	sure	that	there	are	no	
remaining	references	to	the	object;	

• Use	pragma Suppress	sparingly,	and	only	after	the	code	has	undergone	extensive	
verification.	The	other	errors	that	can	lead	to	erroneous	execution	are	less	common,	but	
clearly	in	any	given	Ada	application,	care	is	required	when	using	features	such	as:	

• abort;		
• Unchecked_Conversion;		
• Address_To_Access_Conversions;		
• The	results	of	imported	subprograms;		
• Discriminant-changing	assignments	to	global	variables.	

6.57	Implementation-defined	behaviour	[FAB]	

6.57.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.57	applies	to	Ada.	There	are	a	
number	of	situations	in	Ada	where	the	language	semantics	are	implementation	defined,	to	allow	the	
implementation	to	choose	an	efficient	mechanism,	or	to	match	the	capabilities	of	the	target	
environment.	Each	of	these	situations	is	identified	in	Annex	M	of	ISO/IEC	8652,	and	
implementations	are	required	to	provide	documentation	associated	with	each	item	in	Annex	M	to	
provide	the	programmer	with	guidance	on	the	implementation	choices.	

A	failure	can	occur	in	an	Ada	application	due	to	implementation-defined	behaviour	if	the	
programmer	presumed	the	implementation	made	one	choice,	when	in	fact	it	made	a	different	
choice	that	affected	the	results	of	the	execution.	In	many	cases,	a	compile	time	message	or	a	run-
time	exception	will	indicate	the	presence	of	such	a	problem.	For	example,	the	range	of	integers	
supported	by	a	given	compiler	is	implementation	defined.	However,	if	the	programmer	specifies	a	
range	for	an	integer	type	that	exceeds	that	supported	by	the	implementation,	then	a	compile	time	
error	will	be	indicated,	and	if	at	run-time	a	computation	exceeds	the	base	range	of	an	integer	type,	
then	Constraint_Error	is	raised.	

As	indicated	above,	many	such	failures	are	indicated	by	compile	time	error	messages	or	run-time	
exceptions.	However,	there	are	cases	where	the	implementation-defined	behaviour	may	be	silently	
misconstrued,	such	as	if	the	implementation	presumes	Ada.Exceptions.Exception_Information	
returns	a	string	with	a	particular	format,	when	in	fact	the	implementation	does	not	use	the	
expected	format.	If	a	program	is	attempting	to	extract	information	from	
Ada.Exceptions.Exception_Information	for	the	purposes	of	logging	propagated	exceptions,	then	
the	log	may	end	up	with	misleading	or	useless	information	if	there	is	a	mismatch	between	the	
programmer’s	expectation	and	the	actual	implementation-defined	format.	

Many	implementation-defined	limits	have	associated	constants	declared	in	language-defined	
packages,	generally	package System.	In	particular,	the	maximum	range	of	integers	is	given	by	
System.Min_Int .. System.Max_Int,	and	other	limits	are	indicated	by	constants	such	as	

	

©	ISO/IEC	2022	–	All	rights	reserved	 53	
	

System.Max_Binary_Modulus,	System.Memory_Size,	System.Max_Mantissa,	and	similar.	Other	
implementation-defined	limits	are	implicit	in	normal	‘First	and	‘Last	attributes	of	language-
defined	(sub)	types,	such	as	System.Priority'First	and	System.Priority'Last.	Furthermore,	the	
implementation-defined	representation	aspects	of	types	and	subtypes	can	be	queried	by	language-
defined	attributes.	Thus,	code	can	be	parameterized	to	adjust	to	implementation-defined	properties	
without	modifying	the	code.	

6.57.2	Guidance	to	language	users		

• Follow	the	mitigation	mechanisms	of	subclause	6.57.5	of	ISO/IEC	24772-1:2022.	
• Be	aware	of	the	contents	of	Annex	M	of	ISO/IEC	8652	and	avoid	implementation-defined	

behaviour	whenever	possible.		
• Make	use	of	the	constants	and	subtype	attributes	provided	in	package System	and	

elsewhere	to	avoid	exceeding	implementation-defined	limits.		
• Minimize	use	of	any	predefined	numeric	types,	as	the	ranges	and	precisions	of	these	are	all	

implementation	defined.	Instead,	declare	your	own	numeric	types	to	match	your	particular	
application	needs.	

• When	there	are	implementation-defined	formats	for	strings,	such	as	
Exception_Information,	localize	any	necessary	processing	in	packages	with	
implementation-specific	variants.		

6.58	Deprecated	language	features	[MEM]	

6.58.1	Applicability	to	language		

The	vulnerability	as	described	in	ISO/IEC	24772-1	clause	6.58	applies	to	Ada.	Ada	has	obsolescent	
features	that	can	be	used	but	provides	a	strong	mitigation,	in	the	form	of	the	compilation	pragma	
Restrictions (No_Obsolescent_Features)	which	prevents	the	use	of	any	of	these	features.	

6.58.2	Guidance	to	language	users		

• Follow	the	mitigation	mechanisms	of	subclause	6.58.5	of	ISO/IEC	24772-1:2022.	
• Use	pragma Restrictions (No_Obsolescent_Features)	to	prevent	the	use	of	any	

obsolescent	features.	
• Refer	to	Annex	J	of	the	ISO/IEC	8652	to	determine	whether	a	feature	is	obsolescent.	

6.59	Concurrency	–	Activation	[CGA]	

6.59.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.59	applies	to	Ada.	Ada	is	open	to	this	
vulnerability	but	provides	features	for	its	mitigation.	A	task	failing	during	activation	will	always	
raise	an	exception	in	the	activating	task	(i.e.,	Tasking_Error).	The	activating	task	does	not	continue	
executing	until	all	its	dependent	tasks	have	completed	activation.	A	task	can	always	check	that	
another	task	has	successfully	activated.	

6.59.2	Guidance	to	language	users	

	

54	 ©	ISO/IEC	2022	–	All	rights	reserved	
	

• Follow	the	mitigation	mechanisms	of	subclause	6.59.5	of	ISO/IEC	24772-1:2022.	
• Provide	a	handler	to	catch	activation	failures	of	local	tasks.	
• If	possible,	declare	all	tasks	statically	at	the	library	level	and	use	language-provided	means	

to	verify	successful	activation.	

6.60	Concurrency	–	Directed	termination	[CGT]	

6.60.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.60	applies	to	Ada.	Ada	defines	abort-
deferred	regions	in	which	task	termination	will	not	occur.	On	a	single	processor,	abort	is	defined	to	
be	immediate	if	the	task	is	not	in	such	a	region.	On	multiprocessors,	abort	may	not	be	immediate	
but	will	be	before	any	synchronization	(dispatching)	point.	

6.60.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.60.5	of	ISO/IEC	24772-1:2022.	
• Use	the	'Terminated	and	'Callable	attributes	to	check	that	a	task	has	terminated.	
• Minimize	the	size	of	any	abort-deferred	region.	
• Remove	any	possibility	of	unbounded	loops	in	abort-deferred	regions.	
• Where	possible,	apply	pragma Restrictions (No_Abort_Statements)	to	eliminate	the	use	

of	this	construct.	

6.61	Concurrent	data	access	[CGX]	

6.61.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.61	applies	to	Ada.	Ada	does	allow	
tasks	to	access	unprotected	shared	variables.	However,	the	standard	means	of	programming	data	
that	is	shared	between	tasks	is	to	use	a	protected	object	that	enforces	serial	access.	Atomic	accesses	
on	some	simple	types	are	supported	(if	supported	by	the	hardware).	

6.61.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.61.5	of	ISO/IEC	24772-1:2022.	
• Prefer	protected	objects	for	shared	data	in	preference	to	atomic,	volatile	or	unmarked	data.	
• Statically	determine	that	no	unprotected	data	is	used	directly	by	more	than	one	task.	
• When	shared	variables	are	used,	employ	model	checking	or	equivalent	methodologies	to	

prove	the	absence	of	race	conditions.	
• Use	pragma Atomic	and	pragma Atomic_Components	to	ensure	that	all	accesses	to	objects	

and	components	happen	atomically.	
• Use	pragma Volatile	and	pragma Volatile_Components to	ensure	that	all	tasks	see	writes	

to	the	associated	objects	or	array	components	in	the	same	order.	

6.62	Concurrency	–	Premature	termination	[CGS]	

6.62.1	Applicability	to	language	

	

©	ISO/IEC	2022	–	All	rights	reserved	 55	
	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.62	applies	to	Ada.	An	Ada	task	can	
terminate	silently,	however	in	general	the	tasking	model	is	robust	and	a	number	of	features	are	
available	to	mitigate	against	this	vulnerability	–	see	guidance	below.	

6.62.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.62.5	of	ISO/IEC	24772-1:2022.	
• If	possible,	apply	pragma Restrictions (No_Abort_Statements)	to	eliminate	the	use	of	this	

construct.	
• All	tasks	should	contain	an	exception	handler	at	the	outer	level	to	prevent	silent	termination	

due	to	unhandled	exceptions.	
• Make	use	of	package Ada.Task_Termination	to	force	a	handler	to	be	executed	when	a	task	

terminates.	
• Use	attributes	'Terminated	and	'Callable	to	confirm	that	a	task	has	not	terminated	

(although	care	is	needed	here	as	a	task	can	terminate	immediately	after	this	call	is	made).	
• Ensure	that	all	accesses	and	updates	to	data	that	is	vulnerable	to	premature	task	

termination	are	executed	in	abort-deferred	regions	(e.g.,	protected	operations).		
• Make	use	of	timed	task	communication	that	will	time-out	if	the	called	task	does	not	respond.	

6.63	Lock	protocol	errors	[CGM]	

6.63.1	Applicability	to	language	

With	the	exception	of	unsafe	programming	(see	5.1	Language	concepts),	the	vulnerability	as	
described	in	ISO/IEC	24772-1	subclause	6.63	is	mitigated	by	Ada.		Locks	are	implicit	in	Ada	
protected	objects,	and	explicit	locks	(like	semaphores	or	mutexes)	can	be	implemented	by	coding	
protected	objects	or	tasks	with	explicit	“lock”	and	“unlock”	operations.	For	explicitly	coded	locks,	
any	of	the	well-known	lock	protocol	errors	can	occur.	For	the	locks	implicit	in	protected	objects,	
protocol	errors	can	occur	in	the	following	ways:	

• By	an	“external”	call,	or	“external”	requeue,	to	a	protected	object	that	is	already	locked	by	
the	caller.	A	call	or	requeue	to	a	protected	object	is	“external”	when	the	callee	object	is	not	
statically	known	to	be	the	“current	object”,	which	means	that	the	call	or	requeue	tries	to	
acquire	the	implicit	lock	of	the	callee	object.	

• By	directly	or	indirectly	invoking	any	other	potentially	blocking	operation,	such	as	a	delay	
statement,	during	a	protected	action	(that	is,	from	code	executed	in	a	protected	object).	

• By	a	call	from	a	task	that	has	a	priority	higher	than	the	ceiling	priority	of	the	callee	protected	
object,	when	locking	is	implemented	by	ceiling	priorities	(the	Ceiling_Locking	policy).	

The	first	two	cases,	invoking	potentially	blocking	operations,	are	by	default	bounded	errors	that	are	
not	required	to	be	detected,	neither	at	compile	time	nor	at	run-time.	If	not	detected,	the	result	can	
be	deadlock	or	violation	of	mutual	exclusion.	Different	implementations	of	Ada	may	behave	
differently	and	unpredictably.	However,	using	the	pragma Detect_Blocking	forces	a	run-time	
check,	which	raises	the	Program_Error	exception	in	case	of	failure.	For	the	last	case,	ceiling	priority	
violation,	such	a	run-time	check	is	always	performed.	

	

56	 ©	ISO/IEC	2022	–	All	rights	reserved	
	

In	general,	whether	an	Ada	program	risks	any	of	these	errors	can	be	determined	only	by	a	global	
analysis	of	the	program,	including	the	full	caller-callee	relationship.	Such	an	analysis	becomes	much	
harder,	and	often	impossible,	if	callees	are	defined	dynamically	by	access	values	or	if	task	priorities	
or	ceiling	priorities	are	modified	dynamically.	

6.63.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.63.5	of	ISO/IEC	24772-1:2022.	
• Make	use	of	loosely	coupled	communication	using	protected	objects.	
• Where	possible	stay	within	the	constraints	defined	by	the	Ravenscar	tasking	profile	

[19][24].	
• Use	pragma Detect_Blocking	to	ensure	blocking	errors	are	detected.	
• If	synchronous	communication	(rendezvous)	is	employed,	use	model	checking	or	equivalent	

to	prove	that	the	program	is	free	from	deadlocks	etc.	
• Always	handle	exceptions	that	can	arrive	from	rendezvous	or	protected	objects	(unless	they	

can	be	proved	to	not	be	raised).	
• Guard	against	protocol	failures	by	using	timed	communication,	watchdog	timers	

(programmed	using	Ada’s	timed	events)	and	time-stamped	data	(using	Ada’s	clock	facilities).	
Do	not	use	unprotected	shared	data	for	synchronization	between	tasks.	

6.64	Reliance	on	external	format	strings	[SHL]	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.63	does	not	apply	to	Ada,	because	
Ada	does	not	provide	format	strings.		

6.65	Modifying	constants	[UJO]	

6.65.1	Applicability	to	language	

The	vulnerability	described	in	ISO/IEC	24772-1	applies	to	Ada.	Certain	kinds	of	types	in	Ada	permit	
the	creation	of	a	self-reference	during	object	initialization,	even	for	a	constant.	For	such	types	
(immutably	limited	and	controlled	types),	the	potential	for	the	errors	identified	in	this	vulnerability	
exists,	but	there	are	various	ways	to	mitigate	this	potential	–	see	guidance	below.	With	the	
exception	of	unsafe	programming	(see	5.1	Language	concepts),	this	vulnerability	is	prevented	in	
other	cases	by	rules	that	prevent	obtaining	a	reference	with	update	access	given	a	constant	view	of	
an	object.		

6.65.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.65.5	of	ISO/IEC	24772-1:2022.	
• Do	not	use	the	Access	attribute	to	create	a	self-reference	with	update	access	when	

initializing	an	immutably	limited	type.	
• Do	not	use	the	Unchecked_Access	attribute	when	it	could	create	a	self-reference	with	update	

access	during	an	initialization	routine,	or	the	Adjust	procedure	of	a	controlled	type.		
• If	a	self-reference	with	update	access	is	important	to	the	functionality	of	a	given	(private)	

type,	ensure	that	all	primitive	operations	of	the	type	use	“in	out”	mode	for	parameters	of	the	

	

©	ISO/IEC	2022	–	All	rights	reserved	 57	
	

type,	if	they	make	any	use	of	this	self-reference	to	potentially	update	the	parameter.	This	
will	ensure	that	constants	are	not	inadvertently	altered	by	such	a	primitive	operation.	

7	Language	specific	vulnerabilities	for	Ada	

This	clause	is	intentionally	left	blank.	

	

8	Implications	for	standardization	

Future	standardization	efforts	should	consider	the	following	items	to	address	vulnerability	issues	
identified	earlier	in	this	Annex:	

• Pragma Restrictions	may	be	extended	to	statically	constrain	dubious	uses	of	control	
structures	(see	6.31	Unstructured	programming	[EWD]).	

• When	appropriate,	language-defined	checks	should	be	added	to	reduce	the	possibility	of	
multiple	outcomes	from	a	single	construct,	such	as	by	disallowing	side-effects	in	cases	where	
the	order	of	evaluation	may	affect	the	result,	similar	to	those	specified	for	use	of	“in out”	or	
“out”	parameters	of	functions	(see	6.24	Side-effects	and	order	of	evaluation	[SAM]	and	6.55	
Unspecified	behaviour	[BQF]).	

• When	appropriate,	language-defined	checks	should	be	added	to	reduce	the	possibility	of	
erroneous	execution,	such	as	by	disallowing	unsynchronized	access	to	shared	variables	(see	
6.56	Undefined	behaviour	[EWF]).	

• Language	standards	should	specify	relatively	tight	boundaries	on	implementation-defined	
behaviour	whenever	possible,	and	the	standard	should	highlight	what	levels	represent	a	
portable	minimum	capability	on	which	programmers	can	rely.	For	languages	like	Ada	that	
allow	user	declaration	of	numeric	types,	the	number	of	predefined	numeric	types	should	be	
minimized	(for	example,	strongly	discourage	or	disallow	declarations	of	Byte_Integer,	
Very_Long_Integer,	and	similar,	in	package Standard)	(see	6.57	Implementation-defined	
behaviour	[FAB]).	

• Ada	can	define	a pragma Restrictions	identifier	No_Hiding	that	forbids	the	use	of	a	
declaration	that	result	in	a	local	homograph	(see	6.20	Identifier	name	reuse	[YOW]).	

• Ada	can	add	the	ability	to	declare	in	the	specification	of	a	function	that	it	is	pure,	that	is,	it	
has	no	side	effects	(see	6.24	Side-effects	and	order	of	evaluation	of	operands	[SAM]).	

• Pragma Restrictions can	be	extended	to	restrict	the	use	of	'Address	attribute	to	library	
level	static	objects	(see	6.33	Dangling	references	to	stack	frames	[DCM]).	

• Future	standardization	of	Ada	should	consider	implementing	a	language-provided	reference	
counting	storage	management	mechanism	for	dynamic	objects	(see	6.38	Deep	vs.	shallow	
copying	[YAN]).	
	

	 	

	

58	 ©	ISO/IEC	2022	–	All	rights	reserved	
	

	

Bibliography	

[1]	 AQSG,	Ada	Quality	and	Style	Guide,	Guidelines	for	Professional	Programmers.	Available	from:	
https://en.wikibooks.org/wiki/Ada_Style_Guide.	

[2]	 Barnes,	John,	High	Integrity	Software	-	the	SPARK	Approach	to	Safety	and	Security.	Addison-
Wesley.	2002.	

[3]		 Barnes,	John,	Lecture	Notes	on	Computer	Science	8338,	Ada	2012	Rationale:	The	Language—
The	Standard	Libraries,	Springer,	2013.		

[4]	 Bhansali,	P.V.,	A	systematic	approach	to	identifying	a	safe	subset	for	safety-critical	software,	
ACM	SIGSOFT	Software	Engineering	Notes,	v.28	n.4,	July	2003	

[5]	 Christy,	Steve,	Vulnerability	Type	Distributions	in	CVE,	V1.0,	2006/10/04	

[6]	 CWE.	The	Common	Weakness	Enumeration	(CWE)	Initiative,	MITRE	Corporation,	
(http://cwe.mitre.org/)	

[7]	 Einarsson,	Bo	ed.	Accuracy	and	Reliability	in	Scientific	Computing,	SIAM,	July	2005	
http://www.nsc.liu.se/wg25/book	

[8]	 GAO	Report,	Patriot	Missile	Defense:	Software	Problem	Led	to	System	Failure	at	Dhahran,	
Saudi	Arabia,	B-247094,	Feb.	4,	1992,	http://archive.gao.gov/t2pbat6/145960.pdf	

[9]	 Ghassan,	A.,	&	Alkadi,	I.	(2003).	Application	of	a	Revised	DIT	Metric	to	Redesign	an	OO	
Design.	Journal	of	Object	Technology	,	127-134.	

[10]	 Goldberg,	David,	What	Every	Computer	Scientist	Should	Know	About	Floating-Point	Arithmetic,	
ACM	Computing	Surveys,	vol	23,	issue	1	(March	1991),	ISSN	0360-0300,	pp	5-48.	

[11]	 Holzmann,	Garard	J.,	Computer,	vol.	39,	no.	6,	pp	95-97,	Jun.,	2006,	The	Power	of	10:	Rules	for	
Developing	Safety-Critical	Code	

[12]	 IEC	61508	Parts	1-7,	Functional	safety:	safety-related	systems.	1998.	(Part	3	is	concerned	with	
software).	

[13]	 ISO	10241	(all	parts),	International	terminology	standards	

[14]	 ISO/IEC	Directives,	Part	2,	Rules	for	the	structure	and	drafting	of	International	Standards,	
2017	

[15]	 ISO/IEC	8652:1995,	Information	technology	—	Programming	languages	—	Ada	

[16]	 ISO/IEC	TR	10000-1,	Information	technology	—	Framework	and	taxonomy	of	International	
Standardized	Profiles	—	Part	1:	General	principles	and	documentation	framework	

	

©	ISO/IEC	2022	–	All	rights	reserved	 59	
	

[17]	 ISO/IEC	15291:1999,	Information	technology	—	Programming	languages	—	Ada	Semantic	
Interface	Specification	(ASIS)	

[18]	 ISO/IEC	TR	15942:2000,	Information	technology	—	Programming	languages	—	Guide	for	the	
use	of	the		 Ada	programming	language	in	high	integrity	systems	

[19]	 ISO/IEC	TR	24718:2005,	Information	technology	—	Programming	languages	—	Guide	for	the	
use	of	the	Ada	Ravenscar	Profile	in	high	integrity	systems	

[20]		 ISO/IEC	24772-1,–	Programming	Languages—	Guidance	to	avoiding	vulnerabilities	in	
programming	languages	–	Part	1:	Language	independent	guidelines	

[21]	 IEC/IEEE	60559:2011,	Information	technology	–	Microprocessor	Systems	–	Floating-Point	
arithmetic	(3	parts)	

[22]	 ISO/IEC	15408:	1999	Information	technology.	Security	techniques.	Evaluation	criteria	for	IT	
security.	

[23]	 Lions,	J.	L.	ARIANE	5	Flight	501	Failure	Report.	Paris,	France:	European	Space	Agency	(ESA)	&	
National	Center	for	Space	Study	(CNES)	Inquiry	Board,	July	1996.	

[24]	 Lundqvist,	K	and	Asplund,	L.,	“A	Formal	Model	of	a	Run-Time	Kernel	for	Ravenscar”,	The	6th	
International	Conference	on	Real-Time	Computing	Systems	and	Applications	–	RTCSA	1999	

[25]	 RTCA	SC167	DO178-C/EUROCAE	ED-12C,	Software	Considerations	in	Airborne	Systems	and	
Equipment	Certification.	Issued	in	the	USA	by	the	Requirements	and	Technical	Concepts	for	
Aviation)	and	in	Europe	by	the	European	Organization	for	Civil	Aviation	Electronics.	
December	1992.	

[26]	 Sebesta,	Robert	W.,	Concepts	of	Programming	Languages,	8th	edition,	ISBN-13:	978-0-321-
49362-0,		
ISBN-10:	0-321-49362-1,	Pearson	Education,	Boston,	MA,	2008		

[27]	 Skeel,	Robert,	Roundoff	Error	Cripples	Patriot	Missile,	SIAM	News,	Volume	25,	Number	4,	July	
1992,	page	11,	http://www.siam.org/siamnews/general/patriot.htm	

[28]	 Seacord,	R.,	The	CERT	C	Secure	Coding	Standard.	Boston,MA:	Addison-Westley,	2008.	

[29]	 Subramanian,	S.,	Tsai,	W.-T.,	&	Rayadurgam,	S.	(1998).	Design	Constraint	Violation	Detection	
in	Safety-Critical	Systems.	The	3rd	IEEE	International	Symposium	on	High-Assurance	
Systems	Engineering,	109	-	116.	

	 	

	

60	 ©	ISO/IEC	2022	–	All	rights	reserved	
	

Index	

	

	
abort,	35,	51,	53,	54	
access	type,	18	
Access	type,	11	
Access	value,	11	
Access-to-object,	11	
Access-to-subprogram,	11	
Allocator,	11	
AMV	–	Type-breaking	Reinterpretation	of	
Data,	42	

Aspect	specification,	11	
Atomic,	11,	15,	51,	54	
attribute	
'Valid,	41	

Attribute,	11	
'Access,	39	
'Address,	39,	40,	57	
'Alignment,	18	
'Component_Size,	18	
'Exponent,	25	
'First,	38,	52	
'Image,	36	
'Last,	38,	52	
'Length,	38	
'Range,	38	
'Size,	18	
'Unchecked_Access,	21,	39,	40,	49	
'Valid,	47	
‘Access,	28,	40	
‘Callable,	54,	55	
‘Terminated,	54,	55	
‘Valid,	23	
’Valid,	33	

	
Bit	ordering,	11,	12	
BJL	–	Namespace	Issues,	32	
Bounded	Error,	11	
BQF	–	Unspecified	Behaviour,	50	
BRS	–	Obscure	Language	Features,	49	
	
Case	choices,	12	
Case	expression,	12	

Case	statement,	11,	25,	26,	37	
CCB	–	Enumerator	Issues,	25	
CGA	–	Concurrency	–	Activation,	53	
CGM	–	Protocol	Lock	Errors,	55	
CGS	–	Concurrency	–	Premature	Termination,	
54	

CGT	–	Concurrency	–	Directed	termination,	53	
CGX	–	Concurrent	Data	Access,	54	
CJM	–	String	Termination,	27	
CLL	–	Switch	Statements	and	Static	Analysis,	
36	

Compilation	unit,	12	
Configuration	pragma,	12,	19	
Controlled	type,	12	
CSJ	–	Passing	Parameters	and	Return	Values,	
39	

	
DCM	–	Dangling	References	to	Stack	Frames,	
39	

Dead	store,	12	
Default	expression,	12	
Discrete	type,	12	
Discriminant,	12,	51	
DJS	–	Inter-language	Calling,	47	
	
Endianness,	12	
Enumeration	Representation	Clause,	12	
Enumeration	type,	12,	16	
EOJ	–	Demarcation	of	Control	Flow,	37	
Erroneous	execution,	13	
EWD	–	Structured	Programming,	38	
EWF	–	Undefined	Behaviour,	51	
Exception,	13,	16,	17,	18,	20,	23,	26,	27,	33,	
38,	41,	46,	47,	48,	49,	52,	53,	55,	56	
Constraint_Error,	16,	17,	28,	29,	36,	52	
Program_Error,	16,	18,	50	
Storage_Error,	16,	41	
Tasking_Error,	16,	53	

Exception	Information,	52	
Expanded	name,	13	
Explicit	conversions,	17,	23	

	

©	ISO/IEC	2022	–	All	rights	reserved	 61	
	

	
FAB	–	Implementation-Defined	Behaviour,	52	
FIF	–	Arithmetic	Wrap-around	Error,	29	
Fixed-point	types,	13	
FLC	–	Numeric	Conversion	Errors,	26	
	
GDL	–	Recursion,	41	
Generic	formal	subprogram,	13	
	
HCB	–	Buffer	Boundary	Violation	(Buffer	
Overflow),	27	

HFC	–	Pointer	Type	Conversions,	28	
Hiding,	13,	17,	57	
hidden	from	all	visibility,	17	
hidden	from	direct	visibility,	17	

HJW	–	Unanticipated	Exceptions	from	Library	
Routines,	48	

Homograph,	13	
	
Idempotent	behaviour,	13	
Identifier,	13	
Identifier	length,	30	
IHN–Type	System,	23	
Implementation	defined,	13,	17	
Implicit	conversions,	17,	23	
International	character	sets,	30	
invalid	representation,	51	
Invalid	representation,	13	
	
JCW	–	Operator	Precedence/Order	of	
Evaluation,	34	

Junk	initialization,	33	
	
KOA	–	Likely	Incorrect	Expression,	35	
	
Language	concepts,	24,	26,	27,	28,	29,	36,	37,	
41,	42,	43,	45,	47,	55,	56	

Language	Vulnerabilities	
Argument	Passing	to	Library	Functions	[TRJ],	44,	45,	
46	

Arithmetic	Wrap-around	Error	[FIF],	29	
Bit	Representation	[STR],	24	
Buffer	Boundary	Violation	(Buffer	Overflow)	[HCB],	
27	

Choice	of	Clear	Names	[NAI],	30	
Concurrency	–	Activation	[CGA],	53	
Concurrency	–	Directed	termination	[CGT],	53	
Concurrency	–	Premature	Termination	[CGS],	54	
Concurrent	Data	Access	[CGX],	54	

Dangling	Reference	to	Heap	[XYK],	29	
Dangling	References	to	Stack	Frames	[DCM],	39	
Dead	and	Deactivated	Code	[XYQ],	36	
Dead	store	[WXQ],	22,	31	
Demarcation	of	Control	Flow	[EOJ],	37	
Deprecated	Language	Features	[MEM],	53	
Dynamically-linked	Code	and	Self-modifying	Code	
[NYY],	47	

Enumerator	Issues	[CCB],	25	
Extra	Intrinsics	[LRM],	46	
Floating-point	Arithmetic	[PLF],	24	
Identifier	Name	Reuse	[YOW],	32	
Ignored	Error	Status	and	Unhandled	Exceptions	
[OYB],	41	

Implementation-Defined	Behaviour	[FAB],	52	
Inheritance	[RIP],	44	
Initialization	of	Variables	[LAV],	32	
Inter-language	Calling	[DJS],	47	
Library	Signature	[NSQ],	47	
Likely	Incorrect	Expression	[KOA],	35	
Loop	Control	Variables	[TEX],	37	
Memory	Leak	[XYL],	43	
Namespace	Issues	[BJL],	32	
Numeric	Conversion	Errors	[FLC],	26	
Obscure	Language	Features	[BRS],	49	
Off-by-one	Error	[XZH],	37	
Operator	Precedence/Order	of	Evaluation	[JCW],	34	
Passing	Parameters	and	Return	Values	[CSJ],	39	
Pointer	Arithmetic	[RVG],	28	
Pointer	Type	Conversions	[HFC],	28	
Protocol	Lock	Errors	[CGM],	55	
Provision	of	Inherently	Unsafe	Operations	[SKL],	49	
Recursion	[GDL],	41	
Reliance	on	external	format	strings	[SHL],	56	
Side-effects	and	Order	of	Evaluation	[SAM],	34	
String	Termination	[CJM],	27	
Structured	Programming	[EWD],	38	
Subprogram	Signature	Mismatch	[OTR],	40	
Suppression	of	Language-defined	Run-time	Checking	
[MXB],	49	

Switch	Statements	and	Static	Analysis	[CLL],	36	
Templates	and	Generics	[SYM],	43	
Type	System	[IHN],	23	
Type-breaking	Reinterpretation	of	Data	[AMV],	42	
Unanticipated	Exceptions	from	Library	Routines	
[HJW],	48	

Unchecked	Array	Indexing	[XYZ],	27	
Undefined	Behaviour	[EWF],	51	
Unspecified	Behaviour	[BQF],	50	
Unused	Variable	[YZS],	31	

	

62	 ©	ISO/IEC	2022	–	All	rights	reserved	
	

Using	Shift	Operations	for	Multiplication	and	
Division	[PIK],	29	

Language	Vulnerability	
Unchecked	Array	Copying	[XYW],	27	

LAV	–	Initialization	of	Variables,	32	
LRM	–	Extra	Intrinsics,	46	
	
MEM	–	Deprecated	Language	Features,	53	
Mixed	casing,	30	
Modular	type,	14	
MXB	–	Suppression	of	Language-defined	Run-
time	Checking,	49	

	
NAI	–	Choice	of	Clear	Names,	30	
NSQ	–	Library	Signature,	47	
NYY	–	Dynamically-linked	Code	and	Self-
modifying	Code,	47	

	
Obsolescent	feature,	14	
Operational	and	Representation	Attributes,	
14,	18	

OTR	–	Subprogram	Signature	Mismatch,	40	
Overriding	indicators,	14	
OYB	–	Ignored	Error	Status	and	Unhandled	
Exceptions,	41	

	
Partition,	14	
PIK	–	Using	Shift	Operations	for	Multiplication	
and	Division,	29	

PLF	–	Floating-point	Arithmetic,	24	
Pointer,	14,	32	
Polymorphic	Variable,	17	
Postconditions,	46,	47	
Pragma,	14,	49	
Configuration	pragma,	12	
pragma Atomic,	18,	54	
pragma	Atomic_Components,	18,	54	
pragma	Convention,	18,	47,	48	
pragma Default_Storage_Pool,	20	
pragma	Detect_Blocking,	18	
pragma	Discard_Names,	18	
pragma	Export,	18,	47,	48	
pragma	Import,	19,	42,	47,	48	
pragma	Normalize_Scalars,	19,	33	
pragma Pack,	19	
pragma	Restrictions,	19,	20,	49,	50,	53,	57	
pragma	Suppress,	19,	21,	27,	49,	51	
pragma Unchecked Union,	19	
pragma	Volatile,	19,	54	

pragma Volatile_Components,	19,	54	
Preconditions,	46,	47	
Program	verification,	46	
	
Range	check,	14	
Record	representation	clause,	14	
RIP	–	Inheritance,	44	
RVG	–	Pointer	Arithmetic,	28	
	
SAM	–	Side-effects	and	Order	of	Evaluation,	34	
Scalar	type,	14	
selecting	expression,	14	
Separate	Compilation,	19	
SHL	–	Reliance	on	external	format	strings,	56	
Singular/plural	forms,	30	
SKL	–	Provision	of	Inherently	Unsafe	
Operations,	49	

static	expression,	14	
Storage	Place	Attribute,	15	
Storage	pool,	11,	15,	20,	43	
Storage	subpool,	15,	20,	43	
STR	–	Bit	Representation,	24	
Subtype	declaration,	15	
SYM	–	Templates	and	Generics,	43	
Symbols	and	conventions,	10	
	
Task,	15,	55	
Terms	and	definitions,	10	
TEX	–	Loop	Control	Variables,	37	
TRJ	–	Argument	Passing	to	Library	Functions,	
44,	45,	46	

Type	conversion,	14,	17	
Type	invariants,	46,	47	
	
Unchecked	conversions,	17,	23	
Unchecked_Conversion,	17,	21,	23,	42,	
49,	51	

Underscores	and	periods,	30	
Unsafe	Programming,	20,	24,	25,	26,	27,	28,	
29,	36,	37,	41,	43,	45,	47,	49,	55	

Unused	variable,	15	
	
Volatile,	15,	54	
	
WXQ	–	Dead	store,	22,	31	
	
XYK	–	Dangling	Reference	to	Heap,	29	
XYL	–	Memory	Leak,	43	

	

©	ISO/IEC	2022	–	All	rights	reserved	 63	
	

XYQ	–	Dead	and	Deactivated	Code,	36	
XYW	–	Unchecked	Array	Copying,	27	
XYZ	–	Unchecked	Array	Indexing,	27	
XZH	–	Off-by-one	Error,	37	

	
YOW	–	Identifier	Name	Reuse,	32	
YZS		–	Unused	Variable,	31	

	

