
Baseline	Edition		 TR	24772–4	

©	ISO/IEC	2015	–	All	rights	reserved	 i	
	

Deleted: –	3

Deleted: 3

ISO/IEC	JTC	1/SC	22/WG23	N0749	
Date:	2017-10-16	

ISO/IEC	TR	24772–4	

Edition	1	

ISO/IEC	JTC	1/SC	22/WG	23	

Secretariat:	ANSI	

Information	Technology	—	Programming	languages	—	Guidance	to	avoiding	

vulnerabilities	in	programming	languages	–	Vulnerability	descriptions	for	the	

programming	language	Python	

	

Élément	introductif	—	Élément	principal	—	Partie	n:	Titre	de	la	partie	

	

Warning	

This	document	is	not	an	ISO	International	Standard.	It	is	distributed	for	review	and	comment.	It	is	subject	to	change	

without	notice	and	may	not	be	referred	to	as	an	International	Standard.	

Recipients	of	this	draft	are	invited	to	submit,	with	their	comments,	notification	of	any	relevant	patent	rights	of	which	they	

are	aware	and	to	provide	supporting	documentation.	

	 	

Document	type:	International	standard	

Document	subtype:	if	applicable	

Document	stage:	(10)	development	stage	

Document	language:	E	

	

Deleted: 41N	0000

Deleted: 5

Deleted: 2015-095-1826

Deleted: 2013-08-07

Deleted: 3

Deleted: 	through	language	selection	and	use

Deleted: Ada

WG	23/N	0541	

ii	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Deleted: x

Deleted: 461

Deleted: 3

	

Copyright	notice	

This	ISO	document	is	a	working	draft	or	committee	draft	and	is	copyright-protected	by	ISO.	While	the	

reproduction	of	working	drafts	or	committee	drafts	in	any	form	for	use	by	participants	in	the	ISO	

standards	development	process	is	permitted	without	prior	permission	from	ISO,	neither	this	document	

nor	any	extract	from	it	may	be	reproduced,	stored	or	transmitted	in	any	form	for	any	other	purpose	

without	prior	written	permission	from	ISO.	

Requests	for	permission	to	reproduce	this	document	for	the	purpose	of	selling	it	should	be	addressed	as	

shown	below	or	to	ISO’s	member	body	in	the	country	of	the	requester:	

ISO	copyright	office	

Case	postale	56,	CH-1211	Geneva	20	

Tel.	+	41	22	749	01	11	

Fax	+	41	22	749	09	47	

E-mail	copyright@iso.org	

Web	www.iso.org	

Reproduction	for	sales	purposes	may	be	subject	to	royalty	payments	or	a	licensing	agreement.	

Violators	may	be	prosecuted.	

Baseline	Edition		 TR	24772–4	

©	ISO/IEC	2015	–	All	rights	reserved	 iii	
	

Deleted: –	3

Deleted: 3

Contents	 Page	

Foreword	..	v	

Introduction	...	vi	

1.	Scope	...	1	

2.	Normative	references	..	1	

3.	Terms	and	definitions,	symbols	and	conventions	...	1	
3.1	Terms	and	definitions	..	1	
3.2	Key	Concepts	...	5	

5.	General	guidance	for	Python	...	6	

6.	Specific	Guidance	for	Python	...	7	
6.1	General	..	7	
6.2	Type	System	[IHN]	...	8	
6.3	Bit	Representations	[STR]	..	10	
6.45	Floating-point	Arithmetic	[PLF]	..	11	
6.5	Enumerator	Issues	[CCB]	..	11	
6.6	Numeric	Conversion	Errors	[FLC]	..	12	
6.7	String	Termination	[CJM]	...	12	
6.8	Buffer	Boundary	Violation	[HCB]	..	13	
6.9	Unchecked	Array	Indexing	[XYZ]	..	13	
6.10	Unchecked	Array	Copying	[XYW]	...	13	
6.11	Pointer	Casting	and	Pointer	Type	Changes	[HFC]	..	13	
6.12	Pointer	Arithmetic	[RVG]	...	13	
6.13	Null	Pointer	Dereference	[XYH]	..	13	
6.14	Dangling	Reference	to	Heap	[XYK]	...	13	
6.15	Arithmetic	Wrap-around	Error	[FIF]	...	13	
6.16	Using	Shift	Operations	for	Multiplication	and	Division	[PIK]	...	14	
6.17	Sign	Extension	Error	[XZI]	...	14	
6.18	Choice	of	Clear	Names	[NAI]	..	14	
6.19	Dead	Store	[WXQ]	...	16	
6.20	Unused	Variable	[YZS]	..	17	
6.21	Identifier	Name	Reuse	[YOW]	..	17	
6.22	Namespace	Issues	[BJL]	...	19	
6.23	Initialization	of	Variables	[LAV]	..	21	
6.24	Operator	Precedence/Order	of	Evaluation	[JCW]	...	22	
6.25	Side-effects	and	Order	of	Evaluation	[SAM]	...	23	
6.26	Likely	Incorrect	Expression	[KOA]	...	24	
6.27	Dead	and	Deactivated	Code	[XYQ]	...	25	
6.28	Switch	Statements	and	Static	Analysis	[CLL]	...	26	

WG	23/N	0541	

iv	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Deleted: x

Deleted: 461

Deleted: 3

6.29	Demarcation	of	Control	Flow	[EOJ]	..	26	
6.30	Loop	Control	Variables	[TEX]	..	27	
6.31	Off-by-one	Error	[XZH]	...	28	
6.32	Structured	Programming	[EWD]	...	28	
6.33	Passing	Parameters	and	Return	Values	[CSJ]	..	29	
6.34	Dangling	References	to	Stack	Frames	[DCM]	..	30	
6.35	Subprogram	Signature	Mismatch	[OTR]	...	31	
6.36	Recursion	[GDL]	...	31	
6.37	Ignored	Error	Status	and	Unhandled	Exceptions	[OYB]	...	31	
6.38	Termination	Strategy	[REU]	...	32	
6.39	Type-breaking	Reinterpretation	of	Data	[AMV]	..	32	
6.40	Memory	Leak	[XYL]	..	32	
6.41	Templates	and	Generics	[SYM]	..	33	
6.42	Inheritance	[RIP]	..	33	
6.43	Extra	Intrinsics	[LRM]	...	33	
6.44	Argument	Passing	to	Library	Functions	[TRJ]	..	35	
6.45	Inter-language	Calling	[DJS]	...	35	
6.46	Dynamically-linked	Code	and	Self-modifying	Code	[NYY]	...	35	
6.47	Library	Signature	[NSQ]	...	36	
6.48	Unanticipated	Exceptions	from	Library	Routines	[HJW]	...	36	
6.49	Pre-processor	Directives	[NMP]	...	37	
6.50	Suppression	of	Language-defined	Run-time	Checking	[MXB]	..	37	
6.51	Provision	of	Inherently	Unsafe	Operations	[SKL]	..	37	
6.52	Obscure	Language	Features	[BRS]	..	37	
6.53	Unspecified	Behaviour	[BQF]	...	40	
6.54	Undefined	Behaviour	[EWF]	...	40	
6.55	Implementation–defined	Behaviour	[FAB]	...	41	
6.56	Deprecated	Language	Features	[MEM]	..	42	

8	Implications	for	standardization	...	43	

Bibliography	..	48	

Index	 48	
	

	 	

Deleted: Foreword xvi ... [1]

Baseline	Edition		 TR	24772–4	

©	ISO/IEC	2015	–	All	rights	reserved	 v	
	

Deleted: –	3

Deleted: 3

Foreword	

ISO	(the	International	Organization	for	Standardization)	and	IEC	(the	International	Electrotechnical	

Commission)	form	the	specialized	system	for	worldwide	standardization.	National	bodies	that	are	members	of	

ISO	or	IEC	participate	in	the	development	of	International	Standards	through	technical	committees	established	

by	the	respective	organization	to	deal	with	particular	fields	of	technical	activity.	ISO	and	IEC	technical	

committees	collaborate	in	fields	of	mutual	interest.	Other	international	organizations,	governmental	and	non-

governmental,	in	liaison	with	ISO	and	IEC,	also	take	part	in	the	work.	In	the	field	of	information	technology,	ISO	

and	IEC	have	established	a	joint	technical	committee,	ISO/IEC	JTC	1.	

International	Standards	are	drafted	in	accordance	with	the	rules	given	in	the	ISO/IEC	Directives,	Part	2.	

The	main	task	of	the	joint	technical	committee	is	to	prepare	International	Standards.	Draft	International	

Standards	adopted	by	the	joint	technical	committee	are	circulated	to	national	bodies	for	voting.	Publication	as	

an	International	Standard	requires	approval	by	at	least	75	%	of	the	national	bodies	casting	a	vote.	

In	exceptional	circumstances,	when	the	joint	technical	committee	has	collected	data	of	a	different	kind	from	

that	which	is	normally	published	as	an	International	Standard	(“state	of	the	art”,	for	example),	it	may	decide	to	

publish	a	Technical	Report.			A	Technical	Report	is	entirely	informative	in	nature	and	shall	be	subject	to	review	

every	five	years	in	the	same	manner	as	an	International	Standard.	

Attention	is	drawn	to	the	possibility	that	some	of	the	elements	of	this	document	may	be	the	subject	of	patent	

rights.	ISO	and	IEC	shall	not	be	held	responsible	for	identifying	any	or	all	such	patent	rights.	

ISO/IEC	TR	24772,	was	prepared	by	Joint	Technical	Committee	ISO/IEC	JTC	1,	Information	technology,	

Subcommittee	SC	22,	Programming	languages,	their	environments	and	system	software	interfaces.	

	 	

WG	23/N	0541	

vi	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Deleted: x

Deleted: 461

Deleted: 3

Introduction	

This	Technical	Report	provides	guidance	for	the	programming	language	Python,	so	that	application	

developers	considering	Python	or	using	Python	will	be	better	able	to	avoid	the	programming	constructs	that	

lead	to	vulnerabilities	in	software	written	in	the	Python	language	and	their	attendant	consequences.		This	

guidance	can	also	be	used	by	developers	to	select	source	code	evaluation	tools	that	can	discover	and	

eliminate	some	constructs	that	could	lead	to	vulnerabilities	in	their	software.	This	report	can	also	be	used	in	

comparison	with	companion	Technical	Reports	and	with	the	language-independent	report,	TR	24772–1,	to	

select	a	programming	language	that	provides	the	appropriate	level	of	confidence	that	anticipated	problems	

can	be	avoided.		

This	technical	report	part	is	intended	to	be	used	with	TR	24772–1,	which	discusses	programming	language	

vulnerabilities	in	a	language	independent	fashion.	

It	should	be	noted	that	this	Technical	Report	is	inherently	incomplete.		It	is	not	possible	to	provide	a	

complete	list	of	programming	language	vulnerabilities	because	new	weaknesses	are	discovered	continually.		

Any	such	report	can	only	describe	those	that	have	been	found,	characterized,	and	determined	to	have	

sufficient	probability	and	consequence.	

Deleted: All	programming	languages	contain	constructs	that	are	

incompletely	specified,	exhibit	undefined	behaviour,	are	

implementation-dependent,	or	are	difficult	to	use	correctly.		The	

use	of	those	constructs	may	therefore	give	rise	to	vulnerabilities,	as	

a	result	of	which,	software	programs	can	execute	differently	than	

intended	by	the	writer.		In	some	cases,	these	vulnerabilities	can	

compromise	the	safety	of	a	system	or	be	exploited	by	attackers	to	

compromise	the	security	or	privacy	of	a	system.

Deleted:

Deleted: Furthermore,	to	focus	its	limited	resources,	the	working	

group	developing	this	report	decided	to	defer	comprehensive	

treatment	of	several	subject	areas	until	future	editions	of	the	

report.		These	subject	areas	include: ... [2]
Formatted: Space After: 10 pt, Line spacing: multiple 1.15
li, No bullets or numbering

Technical	Report	 ISO/IEC	TR	24772:2015(E)	

	

©	ISO/IEC	2015	–	All	rights	reserved	 	 	 1	
	

Deleted: 3

Deleted: 3

Information	Technology	—	Programming	Languages	—	Guidance	to	avoiding	
vulnerabilities	in	programming	languages	—	Vulnerability	descriptions	for	
the	programming	language	Python	

1.	Scope	

This	Technical	Report	specifies	software	programming	language	vulnerabilities	to	be	avoided	in	the	development	

of	systems	where	assured	behaviour	is	required	for	security,	safety,	mission-critical	and	business-critical	software.		

In	general,	this	guidance	is	applicable	to	the	software	developed,	reviewed,	or	maintained	for	any	application.	

Vulnerabilities	are	described	in	this	Technical	Report	document	the	way	that	the	vulnerability	described	in	the	

language-independent	TR	24772–1	are	manifested	in	Python.	

2.	Normative	references	

The	following	referenced	documents	are	indispensable	for	the	application	of	this	document.		For	dated	

references,	only	the	edition	cited	applies.		For	undated	references,	the	latest	edition	of	the	referenced	document	

(including	any	amendments)	applies.	

ISO/IEC	TR	24772–1:201X,	Information	Technology	—	Programming	languages	—	Guidance	to	avoiding	

vulnerabilities	in	programming	languages	

ISO	80000–2:2009,	Quantities	and	units	—	Part	2:	Mathematical	signs	and	symbols	to	be	use	in	the	natural	

sciences	and	technology	

ISO/IEC	2382–1:1993,	Information	technology	—	Vocabulary	—	Part	1:	Fundamental	terms	

IEC	60559:2011,	Information	technology	--	Microprocessor	Systems	--	Floating-Point	arithmetic	

	

3.	Terms	and	definitions,	symbols	and	conventions	

3.1	Terms	and	definitions	

For	the	purposes	of	this	document,	the	terms	and	definitions	given	in	ISO/IEC	2382–1,	in	TR	24772–1,	and	the	

following	apply.		Other	terms	are	defined	where	they	appear	in	italic	type.	

assignment	statement:	Used	to	create	(or	rebind)	a	variable	to	an	object.	The	simple	syntax	is	a=b,	the	

augmented	syntax	applies	an	operator	at	assignment	time	(for	example,	a += 1)	and	therefore	cannot	create	a	

variable	since	it	operates	using	the	current	value	referenced	by	a	variable.	Other	syntaxes	support	multiple	

targets	(that	is,	x = y = z = 1).	

Deleted: Ada

Formatted: Font:16 pt, Bold

Formatted: English (UK)
Formatted: English (UK), Highlight
Formatted: English (UK)
Formatted: Font:Italic, English (UK)
Deleted: TR	24772-1	Programming	Languages	-	etc.

Formatted: English (UK)
Formatted: Space After: 0 pt
Formatted: Font:Italic
Formatted: Font:Italic
Formatted: Font:Not Italic

Moved down [1]: Achour,	M.	(n.d.).	PHP	Manual.	Retrieved	3	

5,	2012,	from	PHP:	http://www.php.net/manual/en/

Brueggeman,	E.	(n.d.).	Retrieved	3	5,	2012,	from	The	Website	of	

Elliott	Brueggeman	:	

http://www.ebrueggeman.com/blog/integers-and-floating-

numbers

Enums	for	Python	(Python	recipe).	(n.d.).	Retrieved	from	

ActiveState:	http://code.activestate.com/recipes/67107/

Goleman,	S.	(n.d.).	Extension	Writing	Part	I:	Introduction	to	PHP	

and	Zend.	Retrieved	5	5,	12,	from	Zend	Developer	Zone:	

http://devzone.zend.com/303/extension-writing-part-i-

introduction-to-php-and-zend/

Isaac,	A.	G.	(2010,	06	23).	Python	Introduction.	Retrieved	05	12,	

2011,	from	

https://subversion.american.edu/aisaac/notes/python4class.xht

ml#introduction-to-the-interpreter

Lutz,	M.	(2009).	Learning	Python.	Sebastopol,	CA:	O'Reilly	Media,	

Inc.

Lutz,	M.	(2011).	Programming	Python.	Sebastopol,	CA:	O'Reilly	

Media,	Inc.

Martelli,	A.	(2006).	Python	in	a	Nutshell.	Sebastopol,	CA:	O'Reilly	

Media,	Inc.

Norwak,	H.	(n.d.).	10	Python	Pitfalls.	Retrieved	05	13,	2011,	from	

10	Python	Pitfalls:	

http://zephyrfalcon.org/labs/python_pitfalls.html

Pilgrim,	M.	(2004).	Dive	Into	Python.

Python	Gotchas.	(n.d.).	Retrieved	from	

http://www.ferg.org/projects/python_gotchas.html

source,	G.	(n.d.).	Big	List	of	Portabilty	in	Python.	Retrieved	6	12,	

2011,	from	stackoverflow:	

http://stackoverflow.com/questions/1883118/big-list-of-

portability-in-python

The	Python	Language	Reference.	(n.d.).	Retrieved	from	

python.org:	

http://docs.python.org/reference/index.html#reference-index

Will	Dietz,	P.	L.	(n.d.).	Understanding	Integer	Overflow	in	C/C++.	

Retrieved	3	5,	2012,	from	

http://www.cs.utah.edu/~regehr/papers/overflow12.pdf ... [3]
Formatted: Font:
Deleted: 	

	

2	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Deleted: 3

body:		The	portion	of	a	compound	statement	that	follows	the	header.	It	may	contain	other	compound	(nested)	

statements.	

boolean:	A	truth	value	where	True equivalences	to	any	non-zero	value	and	False equivalences	to	zero.	

Commonly	expressed	numerically	as	1	(true),	or	0	(false)	but referenced	as	True and	False.

built-in:	A	function	provided	by	the	Python	language	intrinsically	without	the	need	to	import	it	(called	the,	str,
slice, type).	
class:	A	program	defined	type	which	is	used	to	instantiate	objects	and	provide	attributes	that	are	common	to	all	

the	objects	that	it	instantiates.	

comment:	Comments	are	preceded	by	a	hash	symbol	“#”.	

complex	number:	A	number	made	up	of	two	parts	each	expressed	as	floating-point	numbers:	a	real	and	an	

imaginary	part.	The	imaginary	part	is	expressed	with	a	trailing	upper	or	lower	case	"J or	j".	

compound	statement:	A	structure	that	contains	and	controls	one	or	more	statements.	

CPython:	The	standard	implementation	of	Python	coded	in	ANSI	portable	C.	

dictionary:	A	built-in	mapping	consisting	of	zero	or	more	key/value	"pairs".	Values	are	stored	and	retrieved	using	

keys	which	can	be	of	mixed	types	(with	some	caveats	beyond	the	scope	of	this	annex).	

docstring:	One	or	more	lines	in	a	unit	of	code	that	serve	to	document	the	code.	Docstrings	are	retrievable	at	run-

time.	

exception:	An	object	that	encapsulates	the	attributes	of	an	exception	(an	error	or	abnormal	event).	Raising	an	

exception	is	a	process	that	creates	the	exception	object	and	propagates	it	through	a	process	that	is	optionally	

defined	in	a	program.	Lacking	an	exception	'handler",	Python	terminates	the	program	with	an	error	message.	

floating-point	number:	A	real	number	expressed	with	a	decimal	point,	an	exponent	expressed	as	an	upper	or	

lower	case	"e	or	E"	or	both	(for	example,	1.0, 27e0, .456).	

function:	A	grouping	of	statements,	either	built-in	or	defined	in	a	program	using	the	def statement,	which	can	

be	called	as	a	unit.

garbage	collection:	The	process	by	which	the	memory	used	by	unreferenced	object	and	their	namespaces	is	

reclaimed.	Python	provides	a	gc	module	to	allow	a	program	to	direct	when	and	how	garbage	collection	is	done.	

global:	A	variable	that	is	scoped	to	a	module	and	can	be	referenced	from	anywhere	within	the	module	including	

within	functions	and	classes	defined	in	that	module.	

guerrilla	patching:	Also	known	as	Monkey	Patching,	the	practice	of	changing	the	attributes	and/or	methods	of	a	

module’s	class	at	run-time	from	outside	of	the	module.	

immutability:	The	characteristic	of	being	unchangeable.	Strings,	tuples,	and	numbers	are	immutable	objects	in	

Python.	

import:	A	mechanism	that	is	used	to	make	the	contents	of	a	module	accessible	to	the	importing	program.	

	

©	ISO/IEC	2015	–	All	rights	reserved	 3	
	

Deleted: 3

inheritance:	The	ability	to	define	a	class	that	is	a	subclass	of	other	classes	(called	the	superclass).	Inheritance	uses	

a	method	resolution	order	(MRO)	to	resolve	references	to	the	correct	inheritance	level	(that	is,	it	resolves	

attributes	(methods	and	variables)).	

instance:	A	single	occurrence	of	a	class	that	is	created	by	calling	the	class	as	if	it	was	a	function	(for	example,	a =

Animal()).	

integer:	An	integer	can	be	of	any	length	but	is	more	efficiently	processed	if	it	can	be	internally	represented	by	a	

32	or	64	bit	integer.	Integer	literals	can	be	expressed	in	binary,	decimal,	octal,	or	hexadecimal	formats.	

keyword:	An	identifier	that	is	reserved	for	special	meaning	to	the	Python	interpreter	(for	example,	if,	else,	

for,	class).	

lambda	expression:	A	convenient	way	to	express	a	single	return	function	statement	within	another	statement	

instead	of	defining	a	separate	function	and	referencing	it.	

list:	An	ordered	sequence	of	zero	or	more	items	which	can	be	modified	(that	is,	is	mutable)	and	indexed.	

literals:	A	string	or	number	(for	example,	'abc', 123, 5.4).	Note	that	a	string	literal	can	use	either	double	

quote	(“)	or	single	apostrophe	pairs	(‘)	to	delimit	a	string.	

membership:	If	an	item	occurs	within	a	sequence	it	is	said	to	be	a	member.	Python	has	built-ins	to	test	for	

membership	(for	example,	if a in b).	Classes	can	provide	methods	to	override	built-in	membership	tests.	

module:	A	file	containing	source	language	(that	is,	statements)	in	Python	(or	another)	language.	A	module	has	its	

own	namespace	and	scope	and	may	contain	definitions	for	functions	and	classes.	A	module	is	only	executed	when	

first	imported	and	upon	reloading.	

mutability:	The	characteristic	of	being	changeable.	Lists	and	dictionaries	are	two	examples	of	Python	objects	that	

are	mutable.	

name:	A	variable	that	references	a	Python	object	such	as	a	number,	string,	list,	dictionary,	tuple,	set,	builtin,	

module,	function,	or	class.	

namespace:	A	place	where	names	reside	with	their	references	to	the	objects	that	they	represent.	Examples	of	

objects	that	have	their	own	namespaces	include:	blocks,	modules,	classes,	and	functions.	Namespaces	provide	a	

way	to	enforce	scope	and	thus	prevent	name	collisions	since	each	unique	name	exists	in	only	one	namespace.	

none:	A	null	object.	

number:	An	integer,	floating	point,	decimal,	or	complex	number.	

operator:	Non-alphabetic	characters,	characters,	and	character	strings	that	have	special	meanings	within	

expressions	(for	example,	+, -, not, is).	

overriding:	Coding	an	attribute	in	a	subclass	to	replace	a	superclass	attribute.	

package:	A	collection	of	one	or	more	other	modules	in	the	form	of	a	directory.	

	

4	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Deleted: 3

pickling:	The	process	of	serializing	objects	using	the	pickle module.	

polymorphism:	The	meaning	of	an	operation	–	generally	a	function/method	call	–	depends	on	the	objects	being	

operated	upon,	not	the	type	of	object.	One	of	Python’s	key	principles	is	that	object	interfaces	support	operations	

regardless	of	the	type	of	object	being	passed.	For	example,	string	methods	support	addition	and	multiplication	

just	as	methods	on	integers	and	other	numeric	objects	do.	

recursion:	The	ability	of	a	function	to	call	itself.	Python	supports	recursion	to	a	level	of	1,000	unless	that	limit	is	

modified	using	the	setrecursionlimit function.	

scope:	The	visibility	of	a	name	is	its	scope.	All	names	within	Python	exist	within	a	specific	namespace	which	is	tied	

to	a	single	block,	function,	class,	or	module	in	which	the	name	was	last	assigned	a	value.	

script:	A	unit	of	code	generally	synonymous	with	a	program	but	usually	connotes	code	run	at	the	highest	level	as	

in	“scripts	run	modules”.	

self:	By	convention,	the	name	given	to	a	class’	instance	variable.	

sequence:	An	ordered	container	of	items	that	can	be	indexed	or	sliced	using	positive	numbers.	Python	provides	

three	built-in	sequences:	strings,	tuples,	and	lists.	New	sequences	can	also	be	defined	in	libraries,	extension	

modules,	or	within	classes.	

set:	An	unordered	sequence	of	zero	or	more	items	which	do	not	need	to	be	of	the	same	type.	Sets	can	be	frozen	

(immutable)	or	unfrozen	(mutable).	

short-circuiting	operators:	Operators	and and	or can	short-circuit	the	evaluation	of	their	operand	if	the	left	

side	evaluates	to	true	(in	the	case	of	the	or)	or	false	(in	the	case	of	and).	For	example,	in	the	expression	a or

b,	there	is	no	need	to	evaluate	b if	a is	True,	likewise	in	the	expression	a and b,	there	is	no	need	to	evaluate	

b if	a is	False.	

statement:	An	expression	that	generally	occupies	one	line.	Multiple	statements	can	occupy	the	same	line	if	

separated	by	a	semicolon	(;)	but	this	is	very	unconventional	in	Python	where	each	line	typically	contains	one	

statement.	

string:	A	built-in	sequence	object	consisting	of	one	or	more	characters.	Unlike	many	other	languages,	Python	

strings	cannot	be	modified	(that	is,	they	are	"immutable")	and	they	do	not	have	a	termination	character.	

tuple:	A	sequence	of	zero	or	more	items	(for	example,	(1,2,3) or	("A", "B", "C")).	Tuples	are	

immutable	and	may	contain	different	object	types	(for	example,	(1, "a",	5.678)).	

variable:	Python	variables	(that	is,	names)	are	not	like	variables	in	most	other	languages	-	they	are	never	declared	

they	are	dynamically	referenced	to	objects,	they	have	no	type,	and	they	may	be	bound	to	objects	of	different	

types	at	different	times.	Variables	are	bound	explicitly	(for	example,	a = 1 binds	a to	the	integer	1)	and	

unbound	implicitly	(for	example,	a=1; a=2).	In	the	last	example,	a is	bound	to	the	object	(value)	1 then	

implicitly	unbound	to	that	object	when	bound	to	2 -	a	process	known	as	rebinding.	Variables	can	also	be	

unbound	explicitly	using	the	del	statement	(for	example,	del a, b, c).	

	

©	ISO/IEC	2015	–	All	rights	reserved	 5	
	

Deleted: 3

4.	Language	concepts	

The	key	concepts	discussed	in	this	section	are	not	entirely	unique	to	Python	but	they	are	implemented	in	Python	

in	ways	that	are	not	intuitive	to	new	and	experienced	programmers	alike.	

Dynamic	Typing	–	A	frequent	source	of	confusion	is	Python’s	dynamic	typing	and	its	effect	on	variable	

assignments	(name	is	synonymous	with	variable	in	this	annex).	In	Python	there	are	no	static	declarations	of	

variables	-	they	are	created,	rebound,	and	deleted	dynamically.	Further,	variables	are	not	the	objects	that	they	

point	to	-	they	are	just	references	to	objects	which	can	be,	and	frequently	are,	bound	to	other	objects	at	any	time:	

a = 1 # a is bound to an integer object whose value is 1
a = 'abc' # a is now bound to a string object

Variables	have	no	type	–	they	reference	objects	which	have	types	thus	the	statement	a = 1	creates	a	new	
variable	called	a	that	references	a	new	object	whose	value	is	1	and	type	is	integer.	That	variable	can	be	deleted	

with	a	del	statement	or	bound	to	another	object	any	time	as	shown	above.		Refer	to	6.2	Type	System	[IHN]	for	

more	on	this	subject.	For	the	purpose	of	brevity	this	annex	often	treats	the	term	variable	(or	name)	as	being	the	

object	which	is	technically	incorrect	but	simpler.		For	example,	in	the	statement	a = 1, the	numeric	object	a	is	

assigned	the	value	1.	In	reality	the	name	a	is	assigned	to	a	newly	created	object	of	type	integer	which	is	assigned	

the	value	1.	

	covers	dynamic	typing	in	more	detail.	

Mutable	and	Immutable	Objects	-	Note	that	in	the	statement:	a = a + 1, Python creates	a	new	object	

whose	value	is	calculated	by	adding	1	to	the	value	of	the	current	object	referenced	by	a.	If,	prior	to	the	execution	

of	this	statement	a’s	object	had	contained	a	value	of	1,	then	a	new	integer	object	with	a	value	of	2	would	be	

created.	The	integer	object	whose	value	was	1 is	now	marked	for	deletion	using	garbage	collection	(provided	no	

other	variables	reference	it).	Note	that	the	value	of	a	is	not	updated	in	place,	that	is,	the	object	references	by	a	
does	not	simply	have	1	added	to	it	as	would	be	typical	in	other	languages.	The	reason	this	does	not	happen	in	

Python	is	because	integer	objects,	as	well	as	string,	number	and	tuples,	are	immutable	–	they	cannot	be	changed	

in	place.	Only	lists	and	dictionaries	can	be	changed	in	place	–	they	are	mutable.	In	practice	this	restriction	of	not	

being	able	to	change	a	mutable	object	in	place	is	mostly	transparent	but	a	notable	exception	is	when	immutable	

objects	are	passed	as	a	parameter	to	a	function	or	class.	See	6.22	Initialization	of	Variables	[LAV]	for	a	description	

of	this.	

The	underling	actions	that	are	performed	to	enable	the	apparent	in-place	change	do	not	update	the	immutable	

object	–	they	create	a	new	object	and	“point”	the	variable	to	new	object.	This	can	be	proven	as	below	(the	id	

function	returns	an	object’s	address):	

a = 'abc'
print(id(a))#=> 30753768
a = 'abc' + 'def'
print(id(a))#=> 52499320
print(a)#=> abcdef

Deleted: 	

Deleted: E.3	Type	System	[IHN]

Deleted: Section	6.42	Violations	of	the	Liskov	Substitution		
Principle	or	the	Contract	Model		[BLP] ... [4]
Deleted: E.43	Extra	Intrinsics	[LRM]

	

6	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Deleted: 3

The	updating	of	objects	referenced	in	the	parameters	passed	to	a	function	or	class	is	governed	by	whether	the	

object	is	mutable,	in	which	case	it	is	updated	in	place,	or	immutable	in	which	case	a	local	copy	of	the	object	is	

created	and	updated	which	has	no	effect	on	the	passed	object.	This	is	described	in	more	detail	in	6.32	Passing	

Parameters	and	Return	Values	[CSJ].	

5.	General	guidance	for	Python	

5.1	Top	avoidance	mechanisms		

Each	vulnerability	listed	in	clause	6	provides	a	set	of	ways	that	the	vulnerability	can	be	avoided	or	mitigated.	

Many	of	the	mitigations	and	avoidance	mechanisms	are	common.	This	subclause	provides	the	most	most	

effective	and	the	most	common	mitigations,	together	with	references	to	which	vulnerabilities	they	apply.	The	

references	are	hyperlinked	to	provide	the	reader	with	easy	access	to	those	vulnerabilities	for	rationale	and	

further	exploration.	The	mitigations	provided	here	are	in	addition	to	the	ones	provided	in	TR	24772-1,	clause	5.4	

The	expectation	is	that	users	of	this	document	will	develop	and	use	a	coding	standard	based	on	this	document	

that	is	tailored	to	their	risk	environment.		
	
Number	 Recommended	avoidance	mechanism	 References	
1	 Do	not	use	floating-point	arithmetic	when	integers	or	booleans	

would	suffice	

	

2	 Use	of	enumeration	requires	careful	attention	to	readability,	

performance,	and	safety.	There	are	many	complex,	but	useful	

ways	to	simulate	enums	in	Python	[(Enums	for	Python	(Python	

recipe))]and	many	simple	ways	including	the	use	of	sets:		

colors	=	{'red',	'green',	'blue'}	

if		red		in	colors:	print('valid	color')	

Be	aware	that	the	technique	shown	above,	as	with	almost	all	

other	ways	to	simulate	enums,	is	not	safe	since	the	variable	

can	be	bound	to	another	object	at	any	time.		
en	functions	return	error	values,	check	the	error	return	values	before	

processing	any	other	returned	data.	

	

3	 Ensure	that	when	examining	code	that	you	take	into	account	

that	a	variable	can	be	bound	(or	rebound)	to	another	object	(of	

same	or	different	type)	at	any	time.	

6	

		4	 Avoid	implicit	references	to	global	values	from	within	functions	to	

make	code	clearer.	In	order	to	update	globals	within	a	function	or	

class,	place	the	global	statement	at	the	beginning	of	the	function	

definition	and	list	the	variables	so	it	is	clearer	to	the	reader	which	

variables	are	local	and	which	are	global	(for	example,	global	a,	b,	c)..	

	

5	 Use	only	spaces	or	tabs,	not	both,	to	indent	to	demark	control	flow.		

Never	use	form	feed	characters	for	indentation	

	

Deleted: [See	Template]	[Thoughts	welcomed	as	to	what	
could	be	provided	here.	Possibly	an	opportunity	for	the	
language	community	to	address	issues	that	do	not	correlate	to	
the	guidance	of	section	6.	For	languages	that	provide	non-
mandatory	tools,	how	those	tools	can	be	used	to	provide	
effective	mitigation	of	vulnerabilities	described	in	the	
following	sections]	

Formatted: Normal, Indent: Left: 0.63 cm, Space After: 0
pt, Line spacing: single, No bullets or numbering

Formatted: Indent: Left: 0.63 cm, Space After: 0 pt, Line
spacing: single, Adjust space between Latin and Asian text,
Adjust space between Asian text and numbers
Formatted: Font:11 pt, Not Bold

Formatted: Font:Not Bold, English
Formatted: Space Before: 0 pt, After: 0 pt, Line spacing:
single

	

©	ISO/IEC	2015	–	All	rights	reserved	 7	
	

Deleted: 3

6	 Use	Python’s	built-in	documentation	(such	as	docstrings)	to	obtain	

information	about	a	class’	method	before	inheriting	from	it	

	

7	 Either	avoid	logic	that	depends	on	byte	order	or	use	the	

sys.byteorder	variable	and	write	the	logic	to	account	for	byte	order	

dependent	on	its	value	('little'	or	'big').	

	

8	 When	launching	parallel	tasks	don’t	raise	a	BaseException	subclass	in	

a	callable	in	the	Future	class	

	

9	 Do	not	depend	on	the	way	Python	may	or	may	not	optimize	object	

references	for	small	integer	and	string	objects	because	it	may	vary	

for	environments	or	even	for	releases	in	the	same	environment.	

	

10	 Be	aware	of	short-circuiting	behaviour	when	expressions	with	side	effects	

are	used	on	the	right	side	of	a	Boolean	expression	such	as	if	the	first	

expression	evaluates	to	false	in	an	and	expression,	then	the	remaining	

expressions,	including	functions	calls,	will	not	be	evaluated.	

	

11	 Do	not	use	floating-point	arithmetic	when	integers	or	booleans	would	

suffice,	especially	for	counters	associated	with	program	flow,	such	as	loop	

control	variables.	

	

12	 Sanitize,	erase	or	encrypt	data	that	will	be	visible	to	others	(for	example,	

freed	memory,	transmitted	data).		
	

	

	

	

6.	Specific	Guidance	for	Python	

6.1	General		

This	clause	contains	specific	advice	for	Python	about	the	possible	presence	of	vulnerabilities	as	described	in	

TR	24772-1,	and	provides	specific	guidance	on	how	to	avoid	them	in	Python	code.	This	section	mirrors	TR	24772-1	

clause	6	in	that	the	vulnerability	“Type	System	[IHN]”	is	found	in	6.2	of	TR	24772–1,	and	Python	specific	guidance	

is	found	in	clause	6.2	and	subclauses	in	this	TR.		

	

Say	something	about	the	changes	from	Python	2	to	Python	3,	not	backwards	compatible.	

How	do	we	treat	libraries?	Python	has	many	libraries	that	essentially	change	the	programming	paradigm.	

Formatted: Space After: 0 pt, Line spacing: single, Adjust
space between Latin and Asian text, Adjust space between
Asian text and numbers
Formatted: Font:11 pt, Not Bold

Deleted: 10

Deleted: 8

Deleted: 19 ... [5]
Deleted: 20

Deleted: 21

Comment [Office1]: This	is	a	section	7	rule?	
Yes,	but	this	section	will	cover	sections	6	and	7.	One	we	pull	up	rules	

from	clause	7,	we	will	need	to	triage.	

Formatted: Normal

Formatted: Normal

	

8	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Deleted: 3

6.2	Type	System	[IHN]	

6.2.1	Applicability	to	language	

Python	abstracts	all	data	as	objects	and	every	object	has	a	type	(in	addition	to	an	identity	and	a	value).	Extensions	

to	Python,	written	in	other	languages,	can	define	new	types.	

Python	is	also	a	strongly	typed	language	–	you	cannot	perform	operations	on	an	object	that	are	not	valid	for	that	

type.	Python’s	dynamic	typing	is	a	key	feature	designed	to	promote	polymorphism	to	provide	flexibility.	Another	

aspect	of	dynamic	typing	is	a	variable	does	not	maintain	any	type	information	–	that	information	is	held	by	the	

object	that	the	variable	references	at	a	specific	time.	A	Python	program	is	free	to	assign	(bind),	and	reassign	

(rebind),	any	variable	to	any	type	of	object	at	any	time.	

Variables	are	created	when	they	are	first	assigned	a	value	(see	6.17	Choice	of	Clear	Names	[NAI]	for	more	on	this	

subject).		Variables	are	generic	in	that	they	do	not	have	a	type,	they	simply	reference	objects	which	hold	the	

object’s	type	information.	Variables	in	an	expression	are	replaced	with	the	object	they	reference	when	that	

expression	is	evaluated	therefore	a	variable	must	be	explicitly	assigned	before	being	referenced	otherwise	a	run-

time	exception	is	raised:	

a = 1
if a == 1 : print(b) # error – b is not defined

When	line	1	above	is	interpreted	an	object	of	type	integer	is	created	to	hold	the	value	1	and	the	variable	a	is	

created	and	linked	to	that	object.	The	second	line	illustrates	how	an	error	is	raised	if	a	variable	(b	in	this	case)	is	

referenced	before	being	assigned	to	an	object.	

a = 1
b = a
a = 'x'
print(a,b)#=> x 1

Variables	can	share	references	as	above	–	b	is	assigned	to	the	same	object	as	a.		This	is	known	as	a	shared	

reference.		If	a	is	later	reassigned	to	another	object	(as	in	line	3	above),	b	will	still	be	assigned	to	the	initial	object	
that	a	was	assigned	to	when	b	shared	the	reference,	in	this	case	b would	equal	to	1.	

The	subject	of	shared	references	requires	particular	care	since	its	effect	varies	according	to	the	rules	for	in-place	

object	changes.	In-places	object	changes	are	allowed	only	for	mutable	(that	is,	alterable)	objects.		Numeric	

objects	and	strings	are	immutable	(unalterable).		Lists	and	dictionaries	are	mutable	which	affects	how	shared	

references	operate	as	below:	

a = [1,2,3]
b = a
a[0] = 7
print(a) # [7, 2, 3]
print(b) # [7, 2, 3]

Deleted: E.3

Deleted: E.3

Comment [SGM2]: Recommendation	from	Nick	Coghlan:		

- the section on typing should discuss the official introduction of
gradual typing, and the availability of static type checkers such
as mypy and pytype (see PEP 484 and 526)
	

	

©	ISO/IEC	2015	–	All	rights	reserved	 9	
	

Deleted: 3

In	the	example	above,	a	and	b	have	a	shared	reference	to	the	same	list	object	so	a	change	to	that	list	object	

affects	both	references.		If	the	shared	reference	effects	are	not	well	understood	the	change	to	b	can	cause	

unexpected	results.	

Automatic	conversion	occurs	only	for	numeric	types	of	objects.		Python	converts	(coerces)	from	the	simplest	type	

up	to	the	most	complex	type	whenever	different	numeric	types	are	mixed	in	an	expression.	For	example:	

a = 1
b = 2.0
c = a + b; print(c) #=> 3.0

In	the	example	above,	the	integer	a	is	converted	up	to	floating	point	(that	is,	1.0)	before	the	operation	is	

performed.	The	object	referred	to	by	a	is	not	affected	–	only	the	intermediate	values	used	to	resolve	the	

expression	are	converted.	If	the	programmer	does	not	realize	this	conversion	takes	place	he	may	expect	that	c	is	

an	integer	and	use	it	accordingly	which	could	lead	to	unexpected	results.	

Automatic	conversion	also	occurs	when	an	integer	becomes	too	large	to	fit	within	the	constraints	of	the	large	

integer	specified	in	the	language	(typically	C)	used	to	create	the	Python	interpreter.	When	an	integer	becomes	

too	large	to	fit	into	that	range	it	is	converted	to	an	unlimited	precision	integer	of	arbitrary	length.	

Explicit	conversion	methods	can	also	be	used	to	explicitly	convert	between	types	though	this	is	seldom	required	

since	Python	will	automatically	convert	as	required.		Examples	include:	

a = int(1.6666) # a converted to 1
b = float(1) # b converted to 1.0
c = int('10') # c integer 10 created from a string
d = str(10) # d string '10' created from an integer
e = ord('x') # e integer assigned integer value 120
f = chr(121) # f assigned the string 'y'

Dynamic	typing	is	a	key	feature	of	Python	which	promotes	polymorphism	for	flexibility.	Strict	typing	can,	

however,	be	imposed:	

a = 'abc' # a refers to a string object
if isinstance(a, str): print('a type is string')

Using	code	to	explicitly	check	the	type	of	an	object	is	strongly	discouraged	in	Python	since	it	defeats	the	benefit	

that	dynamic	typing	provides	-	flexibility	which	allows	functions	to	potentially	operate	correctly	with	objects	of	

more	than	one	type.	

6.2.2	Guidance	to	language	users	

• Use	static	type	checkers	such	as	mypy	and	pytype	to	detect	typing	errors	

• Pay	special	attention	to	issues	of	magnitude	and	precision	when	using	mixed	type	expressions;	

• Be	aware	of	the	consequences	of	shared	references;	

• Be	aware	of	the	conversion	from	simple	to	complex;	and	

• Do	not	check	for	specific	types	of	objects	unless	there	is	good	justification,	for	example,	when	calling	an	

Deleted: E.3

	

10	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Deleted: 3

extension	that	requires	a	specific	type.	

6.3	Bit	Representations	[STR]	

6.3.1	Applicability	to	language	

Python	provides	hexadecimal,	octal	and	binary	built-in	functions.		oct	converts	to	octal,	hex	to	hexadecimal	and	

bin	to	binary:	

print(oct(256)) # 0o400
print(hex(256)) # 0x100
print(bin(256)) # 0b100000000

The	notations	shown	as	comments	above	are	also	valid	ways	to	specify	octal,	hex	and	binary	values	respectively:	

print(0o400)# => 256
a=0x100+1; print(a)# => 257

The	built-in	int	function	can	be	used	to	convert	strings	to	numbers	and	optionally	specify	any	number	base:	

int('256') # the integer 256 in the default base 10
int('400', 8) # => 256
int('100', 16) # => 256
int('24', 5) # => 14

Python	stores	integers	that	are	beyond	the	implementation’s	largest	integer	size	as	an	internal	arbitrary	length	so	

that	programmers	are	only	limited	by	performance	concerns	when	very	large	integers	are	used	(and	by	memory	

when	extremely	large	numbers	are	used).	For	example:	

a=2**100 # => 1267650600228229401496703205376

Python	treats	positive	integers	as	being	infinitely	padded	on	the	left	with	zeroes	and	negative	numbers	(in	two’s	

complement	notation)	with	1’s	on	the	left	when	used	in	bitwise	operations:	

a<<b # a shifted left b bits
a>>b # a shifted right b bits

There	is	no	overflow	check	for	shifting	left	or	right	so	a	program	expecting	an	exception	to	halt	it	will	instead	

unexpectedly	continue	leading	to	unexpected	results.	

6.3.2	Guidance	to	language	users	

• Keep	in	mind	that	using	a	very	large	integer	will	have	a	negative	effect	on	performance;	and	

• Don't	use	bit	operations	to	simulate	multiplication	and	division.	

Deleted: E.4

Deleted: E.4

Deleted: E.4

	

©	ISO/IEC	2015	–	All	rights	reserved	 11	
	

Deleted: 3

6.4	Floating-point	Arithmetic	[PLF]	

6.4.1	Applicability	to	language	

Python	supports	floating-point	arithmetic.	Literals	are	expressed	with	a	decimal	point	and	or	an	optional	e	or	E:	

1., 1.0, .1, 1.e0

There	is	no	way	to	determine	the	precision	of	the	implementation	from	within	a	Python	program.	For	example,	in	

the	CPython	implementation,	it’s	implemented	as	a	C	double	which	is	approximately	53	bits	of	precision.	

6.4.2	Guidance	to	language	users	

• Use	floating-point	arithmetic	only	when	absolutely	needed;	

• Do	not	use	floating-point	arithmetic	when	integers	or	booleans	would	suffice;	

• Be	aware	that	precision	is	lost	for	some	real	numbers	(that	is,	floating-point	is	an	approximation	with	

limited	precision	for	some	numbers);	

• Be	aware	that	results	will	frequently	vary	slightly	by	implementation	(see	6.53	Provision	of	Inherently	

Unsafe	Operations	[SKL]	for	more	on	this	subject);	and	

• Testing	floating-point	numbers	for	equality	(especially	for	loops)	can	lead	to	unexpected	results.	Instead,	

if	floating-point	numbers	are	needed	for	loop	control	use	>=	or	<=	comparisons,	unless	it	can	be	shown	

that	the	logic	implemented	by	the	equality	test	cannot	be	affected	by	prior	rounding	errors.	

6.5	Enumerator	Issues	[CCB]	

6.5.1	Applicability	to	language	

Python	has	an	enumerate	built-in	type	but	it	is	not	at	all	related	to	the	implementation	of	enumeration	as	

defined	in	other	languages	where	constants	are	assigned	to	symbols.	Given	that	enumeration	is	a	useful	

programming	device	and	that	there	is	no	enumeration	construct	in	Python,	many	programmers	choose	to	

implement	their	own	“enum”	objects	or	types	using	a	wide	variety	of	methods	including	the	creation	of	“enum”	

classes,	lists,	and	even	dictionaries.	One	simple	method	is	to	simply	assign	a	list	of	names	to	integers:	

Red, Green, Blue = range (3)
print(Red, Green, Blue) # => 0 1 2

Code	can	then	reference	these	“enum”	values	as	they	would	in	other	languages	which	have	native	support	for	

enumeration:	

a = 1
if a == Green: print("a=Green")# => a=Green

There	are	disadvantages	to	the	approach	above	though	since	any	of	the	“enum”	variables	could	be	assigned	new	

values	at	any	time	thereby	undoing	their	intended	role	as	“pseudo”	constants.	There	are	many	forum	discussions	

and	articles	that	illustrate	other,	safer	ways	to	simulate	enumeration	which	are	beyond	the	scope	of	this	annex.	

Deleted: E.

Deleted: 5

Deleted: E.5

Deleted: E.5

Deleted: E.6

Deleted: E.6

Comment [SGM3]: From	Nick	Coghlan	(2017-09-21)		

- the section on enumerations should discuss the standard
library's
enum module (added in Python 3.4, available for 2.7 on PyPI
as enum34)

	

12	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Deleted: 3

6.5.2	Guidance	to	language	users	

Use	of	enumeration	requires	careful	attention	to	readability,	performance,	and	safety.	There	are	many	complex,	

but	useful	ways	to	simulate	enums	in	Python	[[1]]and	many	simple	ways	including	the	use	of	sets:	

colors = {'red', 'green', 'blue'}
if "red" in colors: print('valid color')

	Be	aware	that	the	technique	shown	above,	as	with	almost	all	other	ways	to	simulate	enums,	is	not	safe	since	the	

variable	can	be	bound	to	another	object	at	any	time.	

6.6	Conversion	Errors	[FLC]	

6.6.1	Applicability	to	language	

Python	converts	numbers	to	a	common	type	before	performing	any	arithmetic	operations.	The	common	type	is	

coerced	using	the	following	rules	as	defined	in	the	standard	(http://docs.python.org/release/1.4/ref/ref5.html):	

If	either	argument	is	a	complex	number,	the	other	is	converted	to	the	complex	type;	

otherwise,	if	either	argument	is	a	floating	point	number,	the	other	is	converted	to	floating	point;	

otherwise,	if	either	argument	is	a	long	integer,	the	other	is	converted	to	long	integer;	

otherwise,	both	must	be	plain	integers	and	no	conversion	is	necessary.	

Integers	in	the	Python	language	are	of	a	length	bounded	only	by	the	amount	of	memory	in	the	machine.	Integers	

are	stored	in	an	internal	format	that	has	faster	performance	when	the	number	is	smaller	than	the	largest	integer	

supported	by	the	implementation	language	and	platform.	

Implicit	or	explicit	conversion	floating	point	to	integer,	implicitly	(or	explicitly	using	the	int	function),	will	

typically	cause	a	loss	of	precision:	

a = 3.0; print(int(a))# => 3 (no loss of precision)
a = 3.1415; print(int(a))# => 3 (precision lost)

Precision	can	also	be	lost	when	converting	from	very	large	integer	to	floating	point.	Losses	in	precision,	whether	

from	integer	to	floating	point	or	vice	versa,	do	not	generate	errors	but	can	lead	to	unexpected	results	especially	

when	floating	point	numbers	are	used	for	loop	control.	

6.6.2	Guidance	to	language	users	

• Though	there	is	generally	no	need	to	be	concerned	with	an	integer	getting	too	large	(rollover)	or	small,	be	

aware	that	iterating	or	performing	arithmetic	with	very	large	positive	or	small	(negative)	integers	will	hurt	

performance;	and	
• Be	aware	of	the	potential	consequences	of	precision	loss	when	converting	from	floating	point	to	integer.	

6.7	String	Termination	[CJM]	

This	vulnerability	is	not	applicable,	Python	strings	are	immutable	objects	whose	length	can	be	queried	with	built-

in	functions	therefore	Python	does	not	permit	accesses	past	the	end,	or	beginning,	of	a	string.	

Deleted: E.6

Deleted: E.7

Deleted: Numeric	

Comment [SM4]: We	removed	“Numeric”	from	“Numeric	

Conversion	Error”	and	are	generalizing	the	issues.	Please	try	to	

ensure	that	Python	6.6	is	in	sync.	

Deleted: E.7

Comment [SM5]: Put	in	bibliography	and	reference.	

Deleted: E.7

Deleted: E.8

	

©	ISO/IEC	2015	–	All	rights	reserved	 13	
	

Deleted: 3

a = '12345'
b = a[5] #=> IndexError: string index out of range

6.8	Buffer	Boundary	Violation	[HCB]	

This	vulnerability	is	not	applicable	to	Python	because	Python’s	run-time	checks	the	boundaries	of	arrays	and	

raises	an	exception	when	an	attempt	is	made	to	access	beyond	a	boundary.	

6.9	Unchecked	Array	Indexing	[XYZ]	

This	vulnerability	is	not	applicable	to	Python	because	Python’s	run-time	checks	the	boundaries	of	arrays	and	

raises	an	exception	when	an	attempt	is	made	to	access	beyond	a	boundary.	

6.10	Unchecked	Array	Copying	[XYW]	

This	vulnerability	is	not	applicable	to	Python	because	Python’s	run-time	checks	the	boundaries	of	arrays	and	

raises	an	exception	when	an	attempt	is	made	to	access	beyond	a	boundary.	

6.11	Pointer	Type	Conversions	[HFC]	

This	vulnerability	is	not	applicable	to	Python	because	Python	does	not	use	pointers.	

6.12	Pointer	Arithmetic	[RVG]	

This	vulnerability	is	not	applicable	to	Python	because	Python	does	not	use	pointers.	

6.13	Null	Pointer	Dereference	[XYH]	

This	vulnerability	is	not	applicable	to	Python	because	Python	does	not	use	pointers.	

6.14	Dangling	Reference	to	Heap	[XYK]	

This	vulnerability	is	not	applicable	to	Python	because	Python	does	not	use	pointers.		Specifically,	Python	only	uses	

namespaces	to	access	objects	therefore	when	an	object	is	deallocated,	any	reference	to	it	causes	an	exception	to	

be	raised.	

6.15	Arithmetic	Wrap-around	Error	[FIF]	

6.15.1	Applicability	to	language	

Operations	on	integers	in	Python	cannot	cause	wrap-around	errors	because	integers	have	no	maximum	size	other	

than	what	the	memory	resources	of	the	system	can	accommodate.	

Normally	the	OverflowError	exception	is	raised	for	floating	point	wrap-around	errors	but,	for	

implementations	of	Python	written	in	C,	exception	handling	for	floating	point	operations	cannot	be	assumed	to	

catch	this	type	of	error	because	they	are	not	standardized	in	the	underlying	C	language.	Because	of	this,	most	

floating	point	operations	cannot	be	depended	on	to	raise	this	exception.	

Deleted: E.9

Deleted: E.10

Deleted: E.11

Deleted: E.12

Deleted: E.13

Deleted: E.14

Deleted: E.15

Deleted: E.16

Deleted: E.16

	

14	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Deleted: 3

6.15.2	Guidance	to	language	users	

• Be	cognizant	that	most	arithmetic	and	bit	manipulation	operations	on	non-integers	have	the	potential	for	

undetected	wrap-around	errors.	

• Avoid	using	floating	point	or	decimal	variables	for	loop	control	but	if	you	must	use	these	types	then	

bound	the	loop	structures	so	as	to	not	exceed	the	maximum	or	minimum	possible	values	for	the	loop	

control	variables.	

• Test	the	implementation	that	you	are	using	to	see	if	exceptions	are	raised	for	floating	point	operations	

and	if	they	are	then	use	exception	handling	to	catch	and	handle	wrap-around	errors.	

6.16	Using	Shift	Operations	for	Multiplication	and	Division	[PIK]	

This	vulnerability	is	not	applicable	to	Python	because	it	does	not	check	for	overflow.	In	addition	there	is	no	

practical	way	to	overflow	an	integer	since	integers	have	unlimited	precision.	

>>> print(-1<<100)#=> -1267650600228229401496703205376
>>> print(1<<100) #=> 1267650600228229401496703205376

6.17	Choice	of	Clear	Names	[NAI]	

6.17.1	Applicability	to	language	

Python	provides	very	liberal	naming	rules:	

• Names	may	be	of	any	length	and	consist	of	letters,	numerals,	and	underscores	only.	All	characters	in	a	

name	are	significant.	Note	that	unlike	some	other	languages	where	only	the	first	n	number	of	characters	

in	a	name	are	significant,	all	characters	in	a	Python	name	are	significant.	This	eliminates	a	common	

source	of	name	ambiguity	when	names	are	identical	up	to	the	significant	length	and	vary	afterwards	

which	effectively	makes	all	such	names	a	reference	to	one	common	variable.	

• All	names	must	start	with	an	underscore	or	a	letter;	and		

• Names	are	case	sensitive,	for	example,	Alpha,	ALPHA,	and	alpha	are	each	unique	names.	While	this	is	

a	feature	of	the	language	that	provides	for	more	flexibility	in	naming,	it	is	also	can	be	a	source	of	

programmer	errors	when	similar	names	are	used	which	differ	only	in	case,	for	example,	aLpha	versus	

alpha.	

The	following	naming	conventions	are	not	part	of	the	standard	but	are	in	common	use:	

• Class	names	start	with	an	upper	case	letter,	all	other	variables,	functions,	and	modules	are	in	all	lower	

case;	

• Names	starting	with	a	single	underscore	(_)	are	not	imported	by	the	from module import *
statement	–	this	not	part	of	the	standard	but	most	implementations	enforce	it;	and	

• Names	starting	and	ending	with	two	underscores	(__)	are	system-defined	names.	

• Names	starting	with,	but	not	ending	with,	two	underscores	are	local	to	their	class	definition	

• Python	provides	a	variety	of	ways	to	package	names	into	namespaces	so	that	name	clashes	can	be	

avoided:	

• Names	are	scoped	to	functions,	classes,	and	modules	meaning	there	is	normally	no	collision	with	names	

utilized	in	outer	scopes	and	vice	versa;	and	

Deleted: E.16

Deleted: E.17

Deleted: 6.16E.17.1	Applicability	to	language

Formatted: French

Deleted: 6.17E.18	Sign	Extension	Error	[XZI] ... [6]
Deleted: 8

Deleted: E.19

Deleted: 8

Deleted: E.19

Comment [SGM6]: Email	from	Nick	Coghlan	(2017-09-21)	

- the section on ambiguous naming needs to be updated to
account for
full Unicode identifier support in Python 3:

=============
	

Сonfused = True�
Confused = False�
Сonfused == Confused
False

"Сonfused"
'Сonfused'

ascii("Сonfused")
"'\\u0421onfused'"

ascii("Confused")
"'Confused'"
=============

	

©	ISO/IEC	2015	–	All	rights	reserved	 15	
	

Deleted: 3

• Names	in	modules	(a	file	containing	one	or	more	Python	statements)	are	local	to	the	module	and	are	

referenced	using	qualification	(for	example,	a	function	x	in	module	y	is	referenced	as	y.x).	Though	local	

to	the	module,	a	module’s	names	can	be,	and	routinely	are,	copied	into	another	namespace	with	a	from
module import statement.	

Python’s	naming	rules	are	flexible	by	design	but	are	also	susceptible	to	a	variety	of	unintentional	coding	errors:	

• Names	are	never	declared	but	they	must	be	assigned	values	before	they	are	referenced.	This	means	that	

some	errors	will	never	be	exposed	until	runtime	when	the	use	of	an	unassigned	variable	will	raise	an	

exception	(see	6.22	Initialization	of	Variables	[LAV]).	

• Names	can	be	unique	but	may	look	similar	to	other	names,	for	example,	alpha	and	aLpha,	__x	and	
_x,	_beta__	and	__beta_	which	could	lead	to	the	use	of	the	wrong	variable.	Python	will	not	detect	

this	problem	at	compile-time.	

Python	utilizes	dynamic	typing	with	types	determined	at	runtime.	There	are	no	type	or	variable	declarations	for	

an	object	,which	can	lead	to	subtle	and	potentially	catastrophic	errors:	

x = 1
lots of code…
if some rare but important case:
 X = 10

In	the	code	above	the	programmer	intended	to	set	(lower	case)	x	to	10	and	instead	created	a	new	upper	case	X

to	10	so	the	lower	case	x	remains	unchanged.	Python	will	not	detect	a	problem	because	there	is	no	problem	–	it	

sees	the	upper	case	X	assignment	as	a	legitimate	way	to	bring	a	new	object	into	existence.	It	could	be	argued	that	

Python	could	statically	detect	that	X	is	never	referenced	and	therefore	indicate	the	assignment	is	dubious	but	

there	are	also	cases	where	a	dynamically	defined	function	defined	downstream	could	legitimately	reference	X	as	

a	global.	

6.17.2	Guidance	to	language	users	

• For	more	guidance	on	Python’s	naming	conventions,	refer	to	Python	Style	Guides	contained	in	PEP	8	at	

http://www.python.org/dev/peps/pep-0008/	.	

• Avoid	names	that	differ	only	by	case	unless	necessary	to	the	logic	of	the	usage;	

• Adhere	to	Python’s	naming	conventions;	

• Do	not	use	overly	long	names;	

• Use	names	that	are	not	similar	(especially	in	the	use	of	upper	and	lower	case)	to	other	names;	

• Use	meaningful	names;	and	

• Use	names	that	are	clear	and	visually	unambiguous	because	the	compiler	cannot	assist	in	detecting	

names	that	appear	similar	but	are	different.	

Deleted: 8

Deleted: E.19

	

16	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Deleted: 3

6.18	Dead	Store	[WXQ]	

6.18.1	Applicability	to	language	

It	is	possible	to	assign	a	value	to	a	variable	and	never	reference	that	variable	which	causes	a	“dead	store”.	This	in	

itself	is	not	harmful,	other	than	the	memory	that	it	wastes,	but	if	there	is	a	substantial	amount	of	dead	stores	

then	performance	could	suffer	or,	in	an	extreme	case,	the	program	could	halt	due	to	lack	of	memory.	

Python	provides	the	ability	to	dynamically	create	variables	when	they	are	first	assigned	a	value.	In	fact,	

assignment	is	the	only	way	to	bring	a	variable	into	existence.	All	values	in	a	Python	program	are	accessed	through	

a	reference	which	refers	to	a	memory	location	which	is	always	an	object	(for	example,	number,	string,	list,	and	so	

on).	A	variable	is	said	to	be	bound	to	an	object	when	it	is	assigned	to	that	object.	A	variable	can	be	rebound	to	

another	object	which	can	be	of	any	type.	For	example:	

a = 'alpha' # assignment to a string
a = 3.142 # rebinding to a float
a = b = (1, 2, 3) # rebinding to a tuple
print(a) # => (1, 2, 3)
del a
print(b)# => (1, 2, 3)

print(a)# => NameError: name 'a' is not defined

The	first	three	statements	show	dynamic	binding	in	action.	The	variable	a	is	bound	to	a	string,	then	to	a	float,	

then	to	another	variable	which	in	turn	is	assigned	a	tuple	of	value	(1, 2, 3).	The	del	statement	then	unbinds	

the	variable	a	from	the	tuple	object	which	effectively	deletes	the	a	variable	(if	there	were	no	other	references	to	

the	tuple	object	it	too	would	have	been	deleted	because	an	object	with	zero	references	is	marked	for	garbage	

collection	(but	is	not	necessarily	actually	deleted	immediately)).	But	in	this	case	we	see	that	b	is	still	referencing	

the	tuple	object	so	the	tuple	is	not	deleted.	The	final	statement	above	shows	that	an	exception	is	raised	when	an	

unbound	variable	is	referenced.	

The	way	in	which	Python	dynamically	binds	and	rebinds	variables	is	a	source	of	some	confusion	to	new	

programmers	and	even	experienced	programmers	who	are	used	to	static	binding	where	a	variable	is	permanently	

bound	to	a	single	memory	location.	

The	Python	language,	by	design,	allows	for	dynamic	binding	and	rebinding.	Because	Python	performs	a	syntactic	

analysis	and	not	a	semantic	analysis	(with	one	exception	which	is	covered	in	6.21	Namespace	Issues	[BJL]	

Applicability	to	language)	and	because	of	the	dynamic	way	in	which	variables	are	brought	into	a	program	at	run-

time,	Python	cannot	warn	that	a	variable	is	referenced	but	never	assigned	a	value.	The	following	code	illustrates	

this:	

if a > b:
 import x
else:
 import y

Depending	on	the	current	value	of	a	and	b,	either	module	x	or y	is	imported	into	the	program.	If	x	assigns	a	
value	to	a	variable	z	and	module	y	references	z then,		dependent	on	which	import	statement	is	executed	first	

Deleted: 9

Deleted: E.20

Deleted: 9

Deleted: E.20

Comment [SGM7]: Email	from	Nick	Coghlan	(2017-09-21)	

- the discussion of dead stores may want to mention
ResourceWarning
(which emits a warning when external resources are cleaned
up implicitly rather than explicitly) and the tracemalloc module
(which allows resource warnings to report where the resource
managing object
was allocated)

Deleted: E.22.1	Namespace	Issues	[BJL]

	

©	ISO/IEC	2015	–	All	rights	reserved	 17	
	

Deleted: 3

(an	import	always	executes	all	code	in	the	module	when	it	is	first	imported),	an	unassigned	variable	reference	

exception	will	or	will	not	be	raised.	

6.18.2	Guidance	to	language	users	

• Avoid	rebinding	except	where	it	adds	value;	

• Ensure	that	when	examining	code	that	you	take	into	account	that	a	variable	can	be	bound	(or	rebound)	

to	another	object	(of	same	or	different	type)	at	any	time;	and	

• Variables	local	to	a	function	are	deleted	automatically	when	the	encompassing	function	is	exited	but,	

though	not	a	common	practice,	you	can	also	explicitly	delete	variables	using	the	del	statement	when	

they	are	no	longer	needed.	

6.19	Unused	Variable	[YZS]	

The	applicability	to	language	and	guidance	to	language	users	sections	of	TR	24772-1	clause	6.18	Dead	Store	

[WXQ]	write-up	are	applicable	to	Python.	

6.20	Identifier	Name	Reuse	[YOW]	

6.20.1	Applicability	to	language	

Python	has	the	concept	of	namespaces	which	are	simply	the	places	where	names	exist	in	memory.	Namespaces	

are	associated	with	functions,	classes,	and	modules.	When	a	name	is	created	(that	is,	when	it	is	first	assigned	a	

value),	it	is	associated	(that	is,	bound)	to	the	namespace	associated	with	the	location	where	the	assignment	

statement	is	made	(for	example,	in	a	function	definition).	The	association	of	a	variable	to	a	specific	namespace	is	

elemental	to	how	scoping	is	defined	in	Python.	

Scoping	allows	for	the	definition	of	more	than	one	variable	with	the	same	name	to	reference	different	objects.	

For	example:	

a = 1
def x():
 a = 2
 print(a)#=> 2
print(a) #=> 1

The	a	variable	within	the	function	x	above	is	local	to	the	function	only	–	it	is	created	when	x	is	called	and	

disappears	when	control	is	returned	to	the	calling	program.	If	the	function	needed	to	update	the	outer	variable	

named	a	then	it	would	need	to	specify	that	a	was	a	global	before	referencing	it	as	in:	

a = 1
def x():
 global a
 a = 2
 print(a)#=> 2
print(a) #=> 2

Deleted: 9

Deleted: E.20

Deleted: 20

Deleted: E.21

Deleted: the

Deleted: E.19

Deleted: here

Deleted: 21

Deleted: E.22

Deleted: 1

Deleted: E.22

	

18	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Deleted: 3

In	the	case	above,	the	function	is	updating	the	variable	a	that	is	defined	in	the	calling	module.	There	is	a	subtle	

but	important	distinction	on	the	locality	versus	global	nature	of	variables:	assignment	is	always	local	unless	

global	is	specified	for	the	variable	as	in	the	example	above	where	a	is	assigned	a	value	of	2.	If	the	function	had	

instead	simply	referenced	a	without	assigning	it	a	value,	then	it	would	reference	the	topmost	variable	a	which,	by	

definition,	is	always	a	global:	

a = 1
def x():
 print(a)
x() #=> 1

The	rule	illustrated	above	is	that	attributes	of	modules	(that	is,	variable,	function,	and	class	names)	are	global	to	

the	module	meaning	any	function	or	class	can	reference	them.	

Scoping	rules	cover	other	cases	where	an	identically	named	variable	name	references	different	objects:	

• A	nested	function’s	variables	are	in	the	scope	of	the	nested	function	only;	and	

• Variables	defined	in	a	module	are	in	global	scope	which means	they	are	scoped	to	the	module	only	and	

are	therefore	not	visible	within	functions	defined	in	that	module	(or	any	other	function)	unless	explicitly	

identified	as	global	at	the	start	of	the	function.	

Python	has	ways	to	bypass	implicit	scope	rules:	

• The	global	statement	which	allows	an	inner	reference	to	an	outer	scoped	variable(s);	and		

• The	nonlocal	statement	which	allows	an	enclosing	function	definition	to	reference	a	nested	function’s	

variable(s).	

The	concept	of	scoping	makes	it	safer	to	code	functions	because	the	programmer	is	free	to	select	any	name	in	a	

function	without	worrying	about	accidentally	selecting	a	name	assigned	to	an	outer	scope	which	in	turn	could	

cause	unwanted	results.	In	Python,	one	must	be	explicit	when	intending	to	circumvent	the	intrinsic	scoping	of	

variable	names.	The	downside	is	that	identical	variable	names,	which	are	totally	unrelated,	can	appear	in	the	

same	module	which	could	lead	to	confusion	and	misuse	unless	scoping	rules	are	well	understood.	

Names	can	also	be	qualified	to	prevent	confusion	as	to	which	variable	is	being	referenced:	

a = 1
class xyz():
 a = 2
 print(a)#=> 2
print(xyz.a, a) #=> 2 1

The	final	print	function	call	above	references	the	a	variable	within	the	xyz	class	and	the	global	a.		

6.20.2	Guidance	to	language	users	

• Do	not	use	identical	names	unless		necessary	to	reference	the	correct	object;	
• Avoid	the	use	of	the	global	and	nonlocal	specifications	because	they	are	generally	a	bad	

programming	practice	for	reasons	beyond	the	scope	of	this	annex	and	because	their	bypassing	of	

Deleted: 1

Deleted: E.22

	

©	ISO/IEC	2015	–	All	rights	reserved	 19	
	

Deleted: 3

standard	scoping	rules	make	the	code	harder	to	understand;	and	
• Use	qualification	when	necessary	to	ensure	that	the	correct	variable	is	referenced.	

6.21	Namespace	Issues	[BJL]	

6.21.1	Applicability	to	language	

Python	has	a	hierarchy	of	namespaces	which	provides	isolation	to	protect	from	name	collisions,	ways	to	explicitly	

reference	down	into	a	nested	namespace,	and	a	way	to	reference	up	to	an	encompassing	namespace.	Generally	

speaking,	namespaces	are	very	well	isolated.	For	example,	a	program’s	variables	are	maintained	in	a	separate	

namespace	from	any	of	the	functions	or	classes	it	defines	or	uses.	The	variables	of	modules,	classes,	or	functions	

are	also	maintained	in	their	own	protected	namespaces.		

Accessing	a	namespace’s	attribute	(that	is,	a	variable,	function,	or	class	name),	is	generally	done	in	an	explicit	

manner	to	make	it	clear	to	the	reader	(and	Python)	which	attribute	is	being	accessed:	

n = Animal.num # fetches a class’ variable called num
x = mymodule.y # fetches a module’s variable called y

The	examples	above	exhibit	qualification	–	there	is	no	doubt	where	a	variable	is	being	fetched	from.	Qualification	

can	also	occur	from	an	encompassed	namespace	up	to	the	encompassing	namespace	using	the	global	statement:	

def x():
 global y
 y = 1

The	example	above	uses	an	explicit	global	statement	which	makes	it	clear	that	the	variable	y	is	not	local	to	the	

function	x;	it	assigns	the	value	of	1	to	the	variable	y	in	the	encompassing	module14F

1.	

Python	also	has	some	subtle	namespace	issues	that	can	cause	unexpected	results	especially	when	using	imports	

of	modules.	For	example,	assuming	module	a.py	contains:	

a = 1

And	module	b.py	contains:	

b = 1

Executing	the	following	code	is	not	a	problem	since	there	is	no	variable	name	collision	in	the	two	modules	(the	

from modulename import	*	statement	brings	all	of	the	attributes	of	the	named	module	into	the	local	

namespace):	

from a import *
print(a) #=> 1

																																																													

1	Values	are	assigned	to	objects	which	in	turn	are	referenced	by	variables	but	it’s	simpler	to	say	the	value	is	assigned	to	the	variable.	Also,	

the	encompassing	code	could	be	at	a	prompt	level	instead	of	a	module.	For	brevity	this	annex	uses	this	simpler,	though	not	as	exact,	

wording.	

Deleted: 2

Deleted: E.23

Deleted: 2

Deleted: E.23

Comment [SGM8]: Email	from	Nick	Coghlan	(2017-09-21)	

metaclass __prepare__ methods can inject extra names into a
class body
execution namespace that the compiler knows nothing about
(see
types.prepare_class and
https://docs.python.org/3/reference/datamodel.html#preparing-
the-class-namespace)	

Formatted: Spanish

	

20	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Deleted: 3

from b import *
print(b) #=> 1

Later	on	the	author	of	the	b	module	adds	a	variable	named	a and	assigns	it	a	value	of	2. b.py now	contains:	

b = 1
a = 2 # new assignment

The	programmer	of	module	b.py	may	have	no	knowledge	of	the	a	module	and	may	not	consider	that	a	program	

would	import	both	a	and	b.	The	importing	program,	with	no	changes,	is	run	again:

from a import *
print(a) #=> 1
from b import *
print(a) #=> 2

The	results	are	now	different	because	the	importing	program	is	susceptible	to	unintended	consequences	due	to	

changes	in	variable	assignments	made	in	two	unrelated	modules	as	well	as	the	sequence	in	which	they	were	

imported.	Also	note	that	the	from modulename import *	statement	brings	all	of	the	modules	attributes	

into	the	importing	code	which	can	silently	overlay	like-named	variables,	functions,	and	classes.	

A	common	misunderstanding	of	the	Python	language	is	that	Python	detects	local	names	(a	local	name	is	a	name	

that	lives	within	a	class	or	function’s	namespace)	statically	by	looking	for	one	or	more	assignments	to	a	name	

within	the	class/function.	If	one	or	more	assignments	are	found	then	the	name	is	noted	as	being	local	to	that	

class/function.	This	can	be	confusing	because	if	only	references	to	a	name	are	found	then	the	name	is	referencing	

a	global	object	so	the	only	way	to	know	if	a	reference	is	local	or	global,	barring	an	explicit	global	statement,	is	to	

examine	the	entire	function	definition	looking	for	an	assignment.	This	runs	counter	to	Python’s	goal	of	Explicit	is	

Better	Than	Implicit	(EIBTI):	

a = 1
def f():
 print(a)
 a = 2
f() #=> UnboundLocalError: local variable 'a' referenced before
 assignment
now with the assignment commented out
a = 1
def f():
 print(a)#=> 1
 #a = 2
Assuming a new session:
a = 1
def f():
 global a
 a = 2
f()
print(a)#=> 2

	

©	ISO/IEC	2015	–	All	rights	reserved	 21	
	

Deleted: 3

Note	that	the	rules	for	determining	the	locality	of	a	name	applies	to	the	assignment	operator	=	as	above,	but	also	

to	all	other	kinds	of	assignments	which	includes	module	names	in	an	import	statement,	function	and	class	

names,	and	the	arguments	declared	for	them.		See	6.19	Unused	Variable	[YZS]	for	more	detail	on	this.	

Name	resolution	follows	a	simple	Local,	Enclosing,	Global,	Built-ins	(LEGB)	sequence:	

• First	the	local	namespace	is	searched;		

• Then	the	enclosing	namespace	(that	is,	a	def	or	lambda (A	lambda	is	a	single	expression	function	

definition));		

• Then	the	global	namespace;	and	

• Lastly	the	built-in’s	namespace.	

6.21.2	Guidance	to	language	users	

• When	practicable,	consider	using	the	import	statement	without	the	from	clause.		This	forces	the	

importing	program	to	use	qualification	to	access	the	imported	module’s	attributes.		While	it	is	true	that	

using	the	from	statement	is	more	convenient	due	to	less	typing	required	(for	example,	no	need	to	qualify	

names),	the	from	statement	can	cause	namespace	corruption;	

• When	using	the	import	statement,	rather	than	use	the	from X import *	form	(which	imports	all	of	

module	X’s	attributes	into	the	importing	program’s	namespace),	instead	explicitly	name	the	attributes	

that	you	want	to	import	(for	example,	from X import a, b, c)	so	that	variables,	functions	and	

classes	are	not	inadvertently	overlaid;	and	
• Avoid	implicit	references	to	global	values	from	within	functions	to	make	code	clearer.	In	order	to	update	

globals	within	a	function	or	class,	place	the	global	statement	at	the	beginning	of	the	function	definition	

and	list	the	variables	so	it	is	clearer	to	the	reader	which	variables	are	local	and	which	are	global	(for	

example,	global a, b, c).	

6.22	Initialization	of	Variables	[LAV]	

6.22.1	Applicability	of	language	

Python	does	not	check	to	see	if	a	statement	references	an	uninitialized	variable	until	runtime.	This	is	by	design	in	

order	to	support	dynamic	typing	which	in	turn	means	there	is	no	ability	to	declare	a	variable.	Python	therefore	

has	no	way	to	know	if	a	variable	is	referenced	before	or	after	an	assignment.	For	example:	

if y > 0:
 print(x)

The	above	statement	is	legal	at	compile	time	even	if	x	is	not	defined	(that	is,	assigned	a	value).	An	exception	is	

raised	at	runtime	only	if	the	statement	is	executed	and	y>0.	This	scenario	does	not	lend	itself	to	static	analysis	

because,	as	in	the	case	above,	it	may	be	perfectly	logical	to	not	ever	print	x	unless	y>0.	

There	is	no	ability	to	use	a	variable	with	an	uninitialized	value	because	assigned	variables	always	reference	

objects	which	always	have	a	value	and	unassigned	variables	do	not	exist.		Therefore	Python	raises	an	exception	

when	an	unassigned	(that	is,	non-existent)	variable	is	referenced.	

Deleted: 2

Deleted: E.23

Deleted: 3

Deleted: E.24

Deleted: 3

Deleted: E.24

	

22	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Deleted: 3

Initialization	of	class	arguments	can	cause	unexpected	results	when	an	argument	is	set	to	a	default	object	which	is	

mutable:	

def x(y=[]):
 y.append(1)
 print(y)
x([2])#=> [2, 1], as expected (default was not needed)
x() # [1]
x() # [1, 1] continues to expand with each subsequent call

The	behaviour	above	is	not	a	bug	-	it	is	a	defined	behaviour	for	mutable	objects	but	it’s	a	very	bad	idea	in	almost	

all	cases	to	assign	default	values	to	mutable	objects.		

6.22.2	Guidance	to	language	users	

• Ensure	that	it	is	not	logically	possible	to	reach	a	reference	to	a	variable	before	it	is	assigned.	The	example	

above	illustrates	just	such	a	case	where	the	programmer	wants	to	print	the	value	of	x	but	has	not	
assigned	a	value	to	x	–	this	proves	that	there	is	missing,	or	bypassed,	code	needed	to	provide	x	with	a	

meaningful	value	at	runtime.	

6.23	Operator	Precedence	and	Associativity	[JCW]	

6.23.1	Applicability	to	language	

Python	provides	many	operators	and	levels	of	precedence	so	it	is	not	unexpected	that	operator	precedence	and	

order	of	operation	are	not	well	understood	and	hence	misused.	For	example:	

1 + 2 * 3 #=> 7, evaluates as 1 + (2 * 3)
(1 + 2) * 3 #=> 9, parenthesis are allowed to coerce precedence

Expressions	that	use	and	or	or	are	evaluated	left-to-right	which	can	cause	a	short	circuit:	

a or b or c

In	the	expression	above	c	is	never	evaluated	if	either	a	or	b	evaluate	to	True because	the	entire	expression	

evaluates	to	True immediately	when	any	sub	expression	evaluates	to	True.	The	short	circuit	effect	is	non-

consequential	above	but	in	the	case	below	the	effect	is	subtle	and	potentially	destructive:	

def x(i):
 if i:
 return True
 else:
 1/0 # Hard stop
a = 1
b = 0
while True:
 if x(a) or x(b):
 print('a or b is True')

Deleted: 3

Deleted: E.24

Deleted: 4

Deleted: E.25

Deleted: /Order	of	Evaluation

Deleted: 4

Deleted: E.25

	

©	ISO/IEC	2015	–	All	rights	reserved	 23	
	

Deleted: 3

The	code	above	will	go	into	an	endless	loop	because	x(b)	is	never	evaluated.	If	it	was	the	program	would	

terminate	due	to	an	attempted	division	by	zero.	

6.23.2	Guidance	to	language	users	

• Use	parenthesis	liberally	to	force	intended	precedence	and	increase	readability;	

• Be	aware	that	short-circuited	expressions	can	cause	subtle	errors	because	not	all	sub-expressions	may	be	

evaluated;	and	

• Break	large/complex	statements	into	smaller	ones	using	temporary	variables	for	interim	results.	

6.24	Side-effects	and	Order	of	Evaluation	of	Operands	[SAM]	

6.24.1	Applicability	to	language	

Python	supports	sequence	unpacking	(parallel	assignment)	in	which	each	element	of	the	right	hand	side	

(expressed	as	a	tuple)	is	evaluated	and	then	assigned	to	each	element	of	the	left-hand	side	(LHS)	in	left-to-right	

sequence.	For	example,	the	following	is	a	safe	way	to	exchange	values	in	Python:	

a = 1
b = 2
a, b = b, a # swap values between a and b
print (a,b)#=> 2, 1

Assignment	of	the	targets	(LHS)	proceeds	left-to-right	so	overlaps	on	the	left	side	are	not	safe:	

a = [0,0]
i = 0
i, a[i] = 1, 2 #=> Index is set to 1; list is updated at [1]
print(a) #=> 0,2

Python	Boolean	operators	are	often	used	to	assign	values	as	in:	

a = b or c or d or None

a	is	assigned	the	first	value	of	the	first	object	that	has	a	non-zero	(that	is,	True)	value	or,	in	the	example	above,	

the	value	None	if	b,	c,	and	d are	all	False.	This	is	a	common	and	well	understood	practice.	However,	trouble	

can	be	introduced	when	functions	or	other	constructs	with	side	effects	are	used	on	the	right	side	of	a	Boolean	

operator:	

if a() or b()

If	function	a	returns	a	True	result	then	function	b	will	not	be	called	which	may	cause	unexpected	results.	

6.24.2	Guidance	to	language	users	

• Be	aware	of	Python’s	short-circuiting	behaviour	when	expressions	with	side	effects	are	used	on	the	right	

side	of	a	Boolean	expression;	if	necessary	perform	each	expression	first	and	then	evaluate	the	results:	

x = a()

Deleted: 4

Deleted: E.25

Deleted: 5

Deleted: E.26

Deleted: 6

Deleted: E.26

Comment [SGM9]: Email	from	Nick	Coghlan	(2017-09-21)	

- for order of evaluation: it was noticed a couple of years ago
that dictionary displays didn't actually evaluate in the expected
left to right order (they went value/key rather than key/value).

This has been fixed (in 3.6 if I recall correctly), but may be
useful as an example of the value of ensuring that operations
with side effects don't depend on subtle order of evaluation
details
	

Deleted: 5

Deleted: E.26

	

24	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Deleted: 3

y = b()
if x or y …

• Be	aware	that,	even	though	overlaps	between	the	left	hand	side	and	the	right	hand	side	are	safe,	it	is	

possible	to	have	unintended	results	when	the	variables	on	the	left	side	overlap	with	one	another	so	

always	ensure	that	the	assignments	and	left-to-right	sequence	of	assignments	to	the	variables	on	the	left	

hand	side	never	overlap.	If	necessary,	and/or	if	it	makes	the	code	easier	to	understand,	consider	breaking	

the	statement	into	two	or	more	statements;	

overlapping
a = [0,0]
i = 0
i, a[i] = 1, 2 #=> Index is set to 1; list is updated at [1]
print(a) #=> 0,2
Non-overlapping
a = [0,0]
i, a[0] = 1, 2
print(a) #=> 2,0

6.25	Likely	Incorrect	Expression	[KOA]	

6.25.1	Applicability	to	language	

Python	goes	to	some	lengths	to	help	prevent	likely	incorrect	expressions:	

• Testing	for	equivalence	cannot	be	confused	with	assignment:	

a = b = 1
if (a=b): print(a,b) #==> syntax error
if (a==b): print(a,b) #==> 1 1

• Boolean	operators	use	English	words	not,	and,	or;	bitwise	operators	use	symbols	~,	&,	|	respectively.	

However	Python	does	have	some	subtleties	that	can	cause	unexpected	results:	

o Skipping	the	parentheses	after	a	function	does	not	invoke	a	call	to	the	function	and	will	fail	

silently	because	it’s	a	legitimate	reference	to	the	function	object:	

class a:
 def demo():
 print("in demo")
a.demo()#=> in demo
a.demo #=> <function demo at 0x000000000342A9C8>
x = a.demo
x() #=> in demo

The	two	lines	that	reference	the	function	without	trailing	parentheses	above	demonstrate	how	

that	syntax	is	a	reference	to	the	function	object	and	not	a	call	to	the	function.	

• Built-in	functions	that	perform	in-place	operations	on	mutable	objects	(that	is,	lists,	dictionaries,	and	

some	class	instances)	do	not	return	the	changed	object	–	they	return	None:	

Deleted: 6

Deleted: E.27

Deleted: 6

Deleted: E.27

Comment [SGM10]: Email	from	Nick	Coghlan	(2017-09-21)	

- async/await syntax introduces another opportunity for a "likely
incorrect expression", which is to forget to await a coroutine –
see https://github.com/python-trio/trio/issues/79 for discussion
(it does cause a "Coroutine was never awaited" runtime
warning)	

	

©	ISO/IEC	2015	–	All	rights	reserved	 25	
	

Deleted: 3

a = []
a.append("x")
print(a) #=> ['x']
a = a.append("y")
print(a) #=> None

6.25.2	Guidance	to	language	users	

• Be	sure	to	add	parentheses	after	a	function	call	in	order	to	invoke	the	function;	and	

• Keep	in	mind	that	any	function	that	changes	a	mutable	object	in	place	returns	a	None	object	–	not	the	

changed	object	since	there	is	no	need	to	return	an	object	because	the	object	has	been	changed	by	the	

function.		

6.26	Dead	and	Deactivated	Code	[XYQ]	

6.26.1	Applicability	to	language	

There	are	many	ways	to	have	dead	or	deactivated	code	occur	in	a	program	and	Python	is	no	different	in	that	

regard.	Further,	Python	does	not	provide	static	analysis	to	detect	such	code	nor	does	the	very	dynamic	design	of	

Python’s	language	lend	itself	to	such	analysis.		

The	module	and	related	import	statement	provides	convenient	ways	to	group	attributes	(for	example,	

functions,	names,	and	classes)	into	a	file	which	can	then	be	copied,	in	whole,	or	in	part	(using	the	from	

statement),	into	another	Python	module.	All	of	the	attributes	of	a	module	are	copied	when	either	of	the	following	

forms	of	the	import	statement	is	used.	This	is	roughly	equivalent	to	simply	copying	in	all	of	code	directly	into	

the	importing	program	which	can	result	in	code	that	is	never	invoked	(for	example,	functions	which	are	never	

called	and	hence	“dead”):	

import modulename
from modulename import *

The	import	statement	in	Python	loads	a	module	into	memory,	compiles	it	into	byte	code,	and	then	executes	it.	

Subsequent	executions	of	an	import	for	that	same	module	are	ignored	by	Python	and	have	no	effect	on	the	

program	whatsoever.	The	reload	statement	is	required	to	force	a	module,	and	its	attributes,	to	be	loaded,	

compiled,	and	executed.	

6.26.2	Guidance	to	language	users	

• Import	just	the	attributes	that	are	required	by	using	the	from	statement	to	avoid	adding	dead	code;	and	

• Be	aware	that	subsequent	imports	have	no	effect;	use	the	reload	statement	instead	if	a	fresh	copy	of	

the	module	is	desired.	

Deleted: 6

Deleted: E.27

Deleted: 7

Deleted: E.28

Deleted: 7

Deleted: E.28

Deleted: 7

Deleted: E.28

	

26	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Deleted: 3

6.27	Switch	Statements	and	Static	Analysis	[CLL]	

6.27.1	Applicability	to	language	

By	design	Python	does	not	have	a	switch	statement	nor	does	it	have	the	concept	of	labels	or	branching	to	a	

demarcated	“place”.	Python	enforces	structure	by	not	providing	these	constructs	but	it	also	provides	several	

statements	to	select	actions	to	perform	based	on	the	value	of	a	variable	or	expression.	The	first	of	these	are	the	

if/elif/else	statements	which	operate	as	they	do	in	other	languages	so	this	warrants	no	further	coverage	

here.	

Python	provides	a	break	statement	which	allows	a	loop	to	be	broken	with	an	immediate	branch	to	the	first	

statement	after	the	loop	body:	

a = 1
while True:
 if a > 3:
 break
 else:
 print(a)
 a += 1

The	loop	above	prints	1,	2	and	3,	each	on	separate	lines,	then	terminates	upon	execution	of	the	break	

statement.	

6.27.2	Guidance	to	language	users	

Use	if/elif/else	statements	to	provide	the	equivalent	of	switch	statements.	

6.28	Demarcation	of	Control	Flow	[EOJ]	

6.28.1	Applicability	to	language	

Python	makes	demarcation	of	control	flow	very	clear	because	it	uses	indentation	(using	spaces	or	tabs	–	but	not	

both)	and	undentation	as	the	only	demarcation	construct:	

a, b = 1, 1
if a:
 print("a is True")
else:
 print("False")
 if b:
 print("b is true")

 print("back to main level")

The	code	above	prints	“a is True”	followed	by	“back to main level”.	Note	how	control	is	passed	from	

the	first	if	statement’s	True	path	to	the	main	level	based	entirely	on	indentation	while	in	most	other	languages	

the	final	line	would	execute	only	when	the	second	if	evaluated	to	True.	

Deleted: 8

Deleted: E.29

Deleted: 8

Deleted: E.29

Deleted: 8

Deleted: E.29

Deleted: se

Deleted: 9

Deleted: E.30

Deleted: 9

Deleted: E.30

Comment [SGM11]: Email	from	Nick	Coghlan	(20170921)	

- Python 3 makes mixing tabs and spaces for indentation a
compile-time error

Deleted: de

Comment [SM12]: Check	-	is	it	“dendentation”	or	
“undentation”?	

	

©	ISO/IEC	2015	–	All	rights	reserved	 27	
	

Deleted: 3

6.28.2	Guidance	to	language	users	

Use	only	spaces	or	tabs,	not	both,	to	indent	to	demark	control	flow.	

6.29	Loop	Control	Variables	[TEX]	

6.29.1	Applicability	to	language	

Python	provides	two	loop	control	statements:	while	and	for. They	each	support	very	flexible	control	
constructs	beyond	a	simple	loop	control	variable.	Assignments	in	the	loop	control	statement	(that	is,	while	or	

for)	which	can	be	a	frequent	source	of	problems,	are	not	allowed	in	Python	–	Python’s	loop	control	statements	

use	expressions	which	cannot	contain	assignment	statements.	

The	while	statement	leaves	the	loop	control	entirely	up	to	the	programmer	as	in	the	example	below:	

a = 1
while a:
 print('in loop')
 a = False # force loop to end after one iteration
else:
 print('exiting loop')

The	for	statement	is	unusual	in	that	it	does	not	provide	a	loop	control	variable	therefore	it	is	not	possible	to	vary	

the	sequence	or	number	of	iterations	that	are	performed	other	than	by	the	use	of	the	break	statement	(covered	

in	6.28	Demarcation	of	Control	Flow	[EOJ])	which	can	be	used	to	immediately	branch	to	the	statement	after	the	

loop	block.	

When	using	the	for	statement	to	iterate	though	an	iterable	object	such	as	a	list,	there	is	no	way	to	influence	the	

loop	“count”	because	it’s	not	exposed.	The	variable	a	in	the	example	below	takes	on	the	value	of	the	first,	then	

the	second,	then	the	third	member	of	the	list:	

x = ['a', 'b', 'c']
for a in x:
 print(a)
#=>a
#=>b
#=>c

It	is	possible,	though	not	recommended,	to	change	a	mutable	object	as	it	is	being	traversed	which	in	turn	changes	

the	number	of	iteratons	performed.	In	the	case	below	the	loop	is	performed	only	two	times	instead	of	the	three	

times	had	the	list	been	left	intact:		

x = ['a', 'b', 'c']
for a in x:
 print(a)
 del x[0]
print(x)
#=> a

Deleted: 9

Deleted: E.30

Deleted: 30

Deleted: E.31

Deleted: 30

Deleted: E.31

Comment [SGM13]: Email	from	Nick	Coghlan	(2017-09-21)	

- in Python 2, a particularly problematic case of loop control
variables leaking is in list comprehensions. In Python 3,
comprehensions use their own scope, so the loop variable
doesn't leak anymore

Deleted: E.29

Formatted: Spanish

	

28	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Deleted: 3

#=> c
#=> ['c']

6.29.2	Guidance	to	language	users	

• Be	careful	to	only	modify	loop	control	variables	in	ways	that	are	easily	understood	and	in	ways	that	

cannot	lead	to	a	premature	exit	or	an	endless	loop.	
• When	using	the	for	statement	to	iterate	through	a	mutable	object,	do	not	add	or	delete	members	

because	it	could	have	unexpected	results.	

6.30	Off-by-one	Error	[XZH]	

6.30.1	Applicability	to	language	

The	Python	language	itself	is	vulnerable	to	off	by	one	errors	as	is	any	language	when	used	carelessly	or	by	a	

person	not	familiar	with	Python’s	index	from	zero	versus	from	one.	Python	does	not	prevent	off	by	one	errors	but	

its	runtime	bounds	checking	for	strings	and	lists	does	lessen	the	chances	that	doing	so	will	cause	harm.	It	is	also	

not	possible	to	index	past	the	end	or	beginning	of	a	string	or	list	by	being	off	by	one	because	Python	does	not	use	

a	sentinel	character	and	it	always	checks	indexes	before	attempting	to	index	into	strings	and	lists	and	raises	an	

exception	when	their	bounds	are	exceeded.	

6.30.2	Guidance	to	language	users	

• Be	aware	of	Python’s	indexing	from	zero	and	code	accordingly.	

6.31	Structured	Programming	[EWD]	

6.31.1	Applicability	to	language	

Python	is	designed	to	make	it	simpler	to	write	structured	program	by	requiring	indentation	and	dedentation	to	

show	scope	of	control	in	blocks	of	code:	

a = 1
b = 1
if a == b:
 print("a == b")#=> a == b
 if a > b:
 print("a > b")
else:
 print("a != b")

In	many	languages	the	last	print	statement	would	be	executed	because	they	associate	the	else	with	the	
immediately	prior	if	while	Python	uses	indentation	to	link	the	else	with	its	associated	if	statement	(that	is,	

the	one	above	it).	

Python	also	encourages	structured	programming	by	not	introducing	any	language	constructs	which	could	lead	to	

unstructured	code	(for	example,	GO	TO	statements).	

Deleted: 30

Deleted: E.31

Deleted: 1

Deleted: E.32

Deleted: 1

Deleted: E.32

Deleted: 1

Deleted: E.32

Deleted: 2

Deleted: E.33

Deleted: 2

Deleted: E.33

Comment [SGM14]: Email	from	Nick	Coghlan	(2017-09-21)	

- for structured programming, the use of with statements and
context managers may be preferable to ad hoc try/except and
try/finally statements

	

©	ISO/IEC	2015	–	All	rights	reserved	 29	
	

Deleted: 3

Python	does	have	two	statements	that	could	be	viewed	as	unstructured.	The	first	is	the	break	statement.	It’s	

used	in	a	loop	to	exit	the	loop	and	continue	with	the	first	statement	that	follows	the	last	statement	within	the	

loop	block.	This	is	a	type	of	branch	but	it	is	such	a	useful	construct	that	few	would	consider	it	“unstructured”	or	a	

bad	coding	practice.	

The	second	is	the	try/except	block	which	is	used	to	trap	and	process	exceptions.	When	an	exception	is	

thrown	a	branch	is	made	to	the	except	block:	

def divider(a,b):
 return a/b
try:
 print(divider(1,0))
except ZeroDivisionError:
 print('division by zero attempted')

6.31.2	Guidance	to	language	users	

• Python	offers	few	constructs	that	could	lead	to	unstructured	code.		However,	judicious	use	of	break	

statements	is	encouraged	to	avoid	confusion.	

6.32	Passing	Parameters	and	Return	Values	[CSJ]	

6.32.1	Applicability	to	language	

Python’s	only	subprogram	type	is	the	function.	Even	though	the	import	statement	does	execute	the	imported	

module’s	top	level	code	(the	first	time	it	is	imported),	the	import	statement	cannot	effectively	be	used	as	a	way	

to	repeatedly	execute	a	series	of	statements	

Python	passes	arguments	by	assignment	which	is	similar	to	passing	by	pointer	or	reference.	Python	assigns	the	

passed	arguments	to	the	function’s	local	variables	but	unlike	some	other	languages,	simply	having	the	address	of	

the	caller’s	argument	does	not	automatically	allow	the	called	function	to	change	any	of	the	objects	referenced	by	

those	arguments	–	only	mutable	objects	referenced	by	passed	arguments	can	be	changed.	Python	has	no	concept	

of	aliasing	where	a	function’s	variables	are	mapped	to	the	caller’s	variables	such	that	any	changes	made	to	the	

function’s	variables	are	mapped	over	to	the	memory	location	of	the	caller’s	arguments.		

a = 1
def f(x):
 x += 1
 print(x)#=> 2
f(a)
print(a)#=> 1

In	the	example	above,	an	immutable	integer	is	passed	as	an	argument	and	the	function’s	local	variable	is	updated	

and	then	discarded	when	the	function	goes	out	of	scope	therefore	the	object	the	caller’s	argument	references	is	

not	affected.	In	the	example	below,	the	argument	is	mutable	and	is	therefore	updated	in	place:	

a = [1]
def f(x):

Deleted: 2

Deleted: E.33

Deleted: 3

Deleted: E.34

Deleted: 3

Deleted: E.34

	

30	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Deleted: 3

 x[0] = 2
f(a)
print(a)#=> [2]

Note	that	the	list	object	a	is	not	changed	–	it’s	the	same	object	but	its	content	at	index	0	has	changed.	

The	return	statement	can	be	used	to	return	a	value	for	a	function:	

def doubler(x):
 return x * 2
x = 1
x = doubler(x)
print(x)#=> 2

The	example	above	also	demonstrates	a	way	to	emulate	a	call	by	reference	by	assigning	the	returned	object	to	

the	passed	argument.	This	is	not	a	true	call	by	reference	and	Python	does	not	replace	the	value	of	the	object	x,	

rather	it	creates	a	new	object	x	and	assigns	it	the	value	returned	from	the	doubler	function	as	proven	by	the	

code	below	which	displays	the	address	of	the	initial	and	the	new	object	x:	

def doubler(x):
 return x * 2
x = 1
print(id(x)) #=> 506081728
x = doubler(x)
print(id(x)) #=> 506081760

The	object	replacement	process	demonstrated	above	follows	Python’s	normal	processing	of	any	statement	which	

changes	the	value	of	an	immutable	object	and	is	not	a	special	exception	for	function	returns.	

Note	that	Python	functions	return	a	value	of	none	when	no	return	statement	is	executed	or	when	a	return	

with	no	arguments	is	executed.

6.32.2	Guidance	to	language	users	

• Create	copies	of	mutable	objects	before	calling	a	function	if	changes	are	not	wanted	to	mutable	

arguments;	and	

• If	a	function	wants	to	ensure	that	it	does	not	change	mutable	arguments	it	can	make	copies	of	those	

arguments	and	operate	on	them	instead.	

6.33	Dangling	References	to	Stack	Frames	[DCM]	

This	vulnerability	is	not	applicable	to	Python	because,	while	Python	does	provide	a	way	to	inspect	the	address	of	

an	object,	for	example,	the	id	function,	it	does	not	provide	a	way	to	use	that	address	to	access	an	object.	

Formatted: French

Deleted: 3

Deleted: E.34

Deleted: 4

Deleted: E.35

Comment [SGM15]: This	section	needs	a	rewrite	to	
acknowledge	the	vulnerability.		

Email	from	Nick	Coghlan	(2017-09-21)	

- reading the section on dangling references to stack frames
reminded me that if you want to write robust, secure, and
reliable code, don't use the ctypes module (since that *does*
let you access arbitrary memory addresses). cffi is a safer third
party alternative, since it will read C header files and generate
safe(r) Python wrappers than direct C ABI access with ctypes.

	

©	ISO/IEC	2015	–	All	rights	reserved	 31	
	

Deleted: 3

6.34	Subprogram	Signature	Mismatch	[OTR]	

6.34.1	Applicability	to	language	

Python	supports	positional,	“keyword=value”,	or	both	kinds	of	arguments.	It	also	supports	variable	numbers	of	

arguments	and,	other	than	the	case	of	variable	arguments,	will	check	at	runtime	for	the	correct	number	of	

arguments	making	it	impossible	to	corrupt	the	call	stack	in	Python	when	using	standard	modules.	

Python	has	extensive	extension	and	embedding	APIs	that	includes	functions	and	classes	to	use	when	extending	or	

embedding	Python.	These	provide	for	subprogram	signature	checking	at	runtime	for	modules	coded	in	non-

Python	languages.	Discussion	of	this	API	is	beyond	the	scope	of	this	annex	but	the	reader	should	be	aware	that	

improper	coding	of	any	non-Python	modules	or	their	interface	could	cause	a	call	stack	problem	

6.34.2	Guidance	to	language	users	

Apply	the	guidance	described	in	TR	24772-1	clause	6.34.5.	

6.35	Recursion	[GDL]	

6.35.1	Applicability	to	language	

Recursion	is	supported	in	Python	and	is,	by	default,	limited	to	a	depth	of	1,000	which	can	be	overridden	using	the	

setrecursionlimit function.	If	the	limit	is	set	high	enough,	a	runaway	recursion	could	exhaust	all	memory	

resources	leading	to	a	denial	of	service.	

6.35.2	Guidance	to	language	users	

Apply	the	guidance	described	in	TR	24772-1	clause	6.35.5	

6.36	Ignored	Error	Status	and	Unhandled	Exceptions	[OYB]	

6.36.1	Applicability	to	language	

Python	provides	statements	to	handle	exceptions	which	considerably	simplify	the	detection	and	handling	of	

exceptions.	Rather	than	being	a	vulnerability,	Python’s	exception	handling	statements	provide	a	way	to	foil	denial	

of	service	attacks:	

def mainpgm(x, y):
 return x/y
for x in range(3):
 try:
 y = mainpgm(1,x)
 except:
 print('Problem in mainpgm')
 # clean up code…
 else:
 print (y)

Deleted: 5

Deleted: E.36

Deleted: 5

Deleted: E.36

Deleted: 5

Deleted: E.36

Deleted: 6

Deleted: 6

Deleted: E.37

Deleted: 6

Deleted: E.37

Deleted: 6

Deleted: E.37

Deleted: 7

Deleted: 7

Deleted: E.38

Deleted: 7

Deleted: E.38

	

32	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Deleted: 3

The	example	code	above	prints:	

Problem in mainpgm
1.0
0.5

The	idea	above	is	to	ensure	that	the	main	program,	which	could	be	a	web	server,	is	allowed	to	continue	to	run	

after	an	exception	by	virtue	of	the	try/except	statement	pair.	

6.36.2	Guidance	to	language	users	

• Use	Python’s	exception	handling	with	care	in	order	to	not	catch	errors	that	are	intended	for	other	

exception	handlers;	and	
• Use	exception	handling,	but	directed	to	specific	tolerable	exceptions,	to	ensure	that	crucial	processes	can	

continue	to	run	even	after	certain	exceptions	are	raised.	

6.37	Type-breaking	Reinterpretation	of	Data	[AMV]	

This	vulnerability	is	not	applicable	to	Python	because	assignments	are	made	to	objects	and	the	object	always	

holds	the	type	–	not	the	variable,	therefore	all	referenced	objects	has	the	same	type	and	there	is	no	way	to	have	

more	than	one	type	for	any	given	object.	

6.38	Deep	vs.	Shallow	Copying	[YAN]	

6.38.1	Applicability	to	language	

TBD	

6.38.2	Guidance	to	language	users	

TBD	

6.39	Memory	Leaks	and	Heap	Fragmentation	[XYL]	

6.39.1	Applicability	to	language	

Python	supports	automatic	garbage	collection	so	in	theory	it	should	not	have	memory	leaks.	However,	there	are	

at	least	three	general	cases	in	which	memory	can	be	retained	after	it	is	no	longer	needed.	The	first	is	when	

implementation-dependent	memory	allocation/de-allocation	algorithms	(or	even	bugs)	cause	a	leak	–	this	is	

beyond	the	scope	of	this	annex.	The	second	general	case	is	when	objects	remain	referenced	after	they	are	no	

longer	needed.	This	is	a	logic	error	which	requires	the	programmer	to	modify	the	code	to	delete	references	to	

objects	when	they	are	no	longer	required.		

There	is	a	third	very	subtle	memory	leak	case	wherein	objects	mutually	reference	one	another	without	any	

outside	references	remaining	–	a	kind	of	deadly	embrace	where	one	object	references	a	second	object	(or	group	

of	objects)	so	the	second	object(s)	can’t	be	collected	but	the	second	object(s)	also	reference	the	first	one(s)	so	

it/they	too	can’t	be	collected.		This	group	is	known	as	cyclic	garbage.		Python	provides	a	garbage	collection	

Deleted: 7

Deleted: E.38

Deleted: 6.38E.39	Termination	Strategy	[REU] ... [7]
Deleted: 9

Deleted: E.40

Comment [SGM16]: Comment	from	Nick	Coghlan:	

For shallow copying: we don't detect or prevent it, but
reference counting at least ensures the references copied that
way remain alive.
(Hmm, that does prompt a thought though: memoryview and
the PEP 3118 buffer protocol do create some interesting new
issues, since the obligation is on the buffer publisher to ensure
that the memory remains valid at least as long as the object
lives, while buffer consumers need to make sure they keep an
active reference to the publisher)
	

Formatted: Normal, Level 1
Deleted: 9

Formatted: Normal, Level 1
Deleted: 40

Deleted: E.41

Deleted: 40

Deleted: E.41

	

©	ISO/IEC	2015	–	All	rights	reserved	 33	
	

Deleted: 3

module	called	gc	which	has	functions	which	enable	the	programmer	to	enable	and	disable	cyclic	garbage	

collection	as	well	as	inspect	the	state	of	objects	tracked	by	the	cyclic	garbage	collector	so	that	these,	often	very	

subtle	leaks,	can	be	traced	and	eliminated.	

• Release	all	objects	when	they	are	no	longer	required.	

6.40	Templates	and	Generics	[SYM]	

This	vulnerability	is	not	applicable	to	Python	because	Python	does	not	implement	these	mechanisms.	

6.41	Inheritance	[RIP]	

6.41.1	Applicability	to	language	

Python	supports	inheritance	through	a	hierarchical	search	of	namespaces	starting	at	the	subclass	and	proceeding	

upward	through	the	superclasses.	Multiple	inheritance	is	also	supported.	Any	inherited	methods	are	subject	to	

the	same	vulnerabilities	that	occur	whenever	using	code	that	is	not	well	understood.	

6.41.2	Guidance	to	language	users	

• Inherit	only	from	trusted	classes;	and	

• Use	Python’s	built-in	documentation	(such	as	docstrings)	to	obtain	information	about	a	class’	method	

before	inheriting	from	it.	

6.42	Violations	of	the	Liskov	Substitution		Principle	or	the	Contract	Model		[BLP]	

6.42.1	Applicability	to	language	

TBD	

6.42.2	Guidance	to	language	users	

TBD	

	
6.43	Redispatching	[PPH]	

6.43.1	Applicability	to	language	

TBD	

6.43.2	Guidance	to	language	users	

TBD	

Deleted: 6.40E.41.2	Guidance	to	language	users

Deleted: 1

Deleted: E.42

Deleted: 2

Deleted: E.43

Deleted: 2

Deleted: E.43

Deleted: 2

Deleted: E.43

Comment [SGM17]: Note	from	Nick	Coghlan:	For
Liskov/redispatch/polymorphism, I'm not really the right person
to ask - the folks working on mypy and other typechecking
tools are.
Probably the best way to contact them would be to file an issue
on https://github.com/python/typing/issues asking for their
feedback.	

Formatted: Normal, Level 1

Formatted: Normal, Level 1

Comment [SGM18]: Comment	from	Nick	Coghlan:	

For Liskov/redispatch/polymorphism, I'm not really the right
person to ask - the folks working on mypy and other
typechecking tools are.
Probably the best way to contact them would be to file an issue
on https://github.com/python/typing/issues asking for their
feedback.	

	

34	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Deleted: 3

6.44	Polymorphic	variables	[BKK]	

6.44.1	Applicability	to	language	

TBD	

6.44.2	Guidance	to	language	users	

TBD	

	

6.45	Extra	Intrinsics	[LRM]	

6.45.1	Applicability	to	language	

Python	provides	a	set	of	built-in	intrinsics	which	are	implicitly	imported	into	all	Python	scripts.	Any	of	the	built-in	

variables	and	functions	can	therefore	easily	be	overridden:	

x = 'abc'
print(len(x))#=> 3
def len(x):
 return 10
print(len(x))#=> 10

If	the	example	above	the	built-in	len	function	is	overridden	with	logic	that	always	returns	10.	Note	that	the	def	

statement	is	executed	dynamically	so	the	new	overriding	len	function	has	not	yet	been	defined	when	the	first	
call	to	len	is	made	therefore	the	built-in	version	of	len	is	called	in	line	2	and	it	returns	the	expected	result	(3	in	

this	case).	After	the	new	len	function	is	defined	it	overrides	all	references	to	the	builtin-in	len	function	in	the	

script.	This	can	later	be	“undone”	by	explicitly	importing	the	built-in	len	function	with	the	following	code:	

from builtins import len
print(len(x))#=> 3

It’s	very	important	to	be	aware	of	name	resolution	rules	when	overriding	built-ins	(or	anything	else	for	that	

matter).	In	the	example	below,	the	overriding	len	function	is	defined	within	another	function	and	therefore	is	

not	found	using	the	LEGB	rule	for	name	resolution	(see	6.21	Namespace	Issues	[BJL]):	

x = 'abc'
print(len(x))#=> 3
def f(x):
 def len(x):
 return 10
print(len(x))#=> 3

6.45.2	Guidance	to	language	users	

• Do	not	override	built-in	“intrinsics”	unless	absolutely	necessary	

Comment [SGM19]: Note	from	Nick	Coghlan:	

For Liskov/redispatch/polymorphism, I'm not really the right
person to ask - the folks working on mypy and other
typechecking tools are.
Probably the best way to contact them would be to file an issue
on https://github.com/python/typing/issues asking for their
feedback.	

Deleted: 3

Deleted: E.44

Deleted: 3

Deleted: E.44

Deleted: 3

Deleted: E.44

	

©	ISO/IEC	2015	–	All	rights	reserved	 35	
	

Deleted: 3

6.46	Argument	Passing	to	Library	Functions	[TRJ]	

6.46.1	Applicability	to	language	

Refer	to	6.34	Subprogram	Signature	Mismatch	[OTR].	

6.46.2	Guidance	to	language	users	

Refer	to	6.34	Subprogram	Signature	Mismatch	[OTR].	

6.47	Inter-language	Calling	[DJS]	

6.47.1	Applicability	to	language	

Python	has	a	documented	API	for	extending	Python	using	libraries	coded	in	C	or	C++.	The	library(s)	are	then	

imported	into	a	Python	module	and	used	in	the	same	manner	as	a	module	written	in	Python.	Python’s	standard	

for	interfacing	to	the	“C”	language	is	documented	in	http://docs.python.org/py3k/c-api/.	

Conversely,	code	written	in	C	or	C++	can	embed	Python.	The	standard	for	embedding	Python	is	documented	in:	

http://docs.python.org/py3k/extending/embedding.html.	

The	Jython	system	is	a	Java-based	implementation	that	interfaces	with	Java	and	IronPython	provides	interfaces	to	

Microsoft	.NET	languages.	

6.47.2	Guidance	to	language	users	

• Use	the	language	interface	APIs	documented	on	the	Python	web	site	for	interfacing	to	C/C++,	the	Jython	

web	site	for	Java,	the	IronPython	web	site	for	.NET	languages,	and	for	all	other	languages	consider	

creating	intermediary	C	or	C++	modules	to	call	functions	in	the	other	languages	since	many	languages	

have	documented	API’s	to	C	and	C++.	

6.48	Dynamically-linked	Code	and	Self-modifying	Code	[NYY]	

6.48.1	Applicability	to	language	

Python	supports	dynamic	linking	by	design.	The	import	statement	fetches	a	file	(known	as	a	module	in	Python),	

compiles	it	and	executes	the	resultant	byte	code	at	run	time.	This	is	the	normal	way	in	which	external	logic	is	

made	accessible	to	a	Python	program	therefore	Python	is	inherently	exposed	to	any	vulnerabilities	that	cause	a	

different	file	to	be	imported:	

• Alteration	of	a	file	directory	path	variable	to	cause	the	file	search	locate	a	different	file	first;	and	

• Overlaying	of	a	file	with	an	alternate.	

Python	also	provides	an	eval	and	an	exec	statement	each	of	which	can	be	used	to	create	self-modifying	code:	

x = "print('Hello " + "World')"
eval(x)#=> Hello World

Deleted: 4

Deleted: E.45

Deleted: 4

Deleted: E.45

Deleted: E.35	Subprogram	Signature	Mismatch	[OTR]

Deleted: 4

Deleted: E.45

Deleted: E.36	Subprogram	Signature	Mismatch	[OTR]

Deleted: 5

Deleted: E.46

Deleted: 5

Deleted: E.46

Comment [SM20]: Put	reference	in	the	bibliography	and	
reference	the	bibliography	(here	and	2	lines	down).	

Deleted: 5

Deleted: E.46

Deleted: 6

Deleted: E.47

Deleted: 6

Deleted: E.47

	

36	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Deleted: 3

Guerrilla	patching,	also	known	as	monkey	patching,	is	a	way	to	dynamically	modify	a	module	or	class	at	run-time	

to	extend,	or	subvert	their	processing	logic	and/or	attributes.	It	can	be	a	dangerous	practice	because	once	

“patched”	any	other	modules	or	classes	that	use	the	modified	class	or	module	may	unwittingly	be	using	code	that	

does	not	do	what	they	expect	which	could	cause	unexpected	results.	

6.48.2	Guidance	to	language	users	

• Avoid	using	exec	or	eval	and	never	use	these	with	untrusted	code;	

• Be	careful	when	using	Guerrilla	patching	to	ensure	that	all	users	of	the	patched	classes	and/or	modules	

continue	to	function	as	expected;	conversely,	be	aware	of	any	code	that	patches	classes	and/or	modules	

that	your	code	is	using	to	avoid	unexpected	results;	and		

• Ensure	that	the	file	path	and	files	being	imported	are	from	trusted	sources.	

6.49	Library	Signature	[NSQ]	

6.49.1	Applicability	to	language	

Python	has	an	extensive	API	for	extending	or	embedding	Python	using	modules	written	in	C,	Java,	and	Fortran.	

Extensions	themselves	have	the	potential	for	vulnerabilities	exposed	by	the	language	used	to	code	the	extension	

which	is	beyond	the	scope	of	this	annex.		

Python	does	not	have	a	library	signature	checking	mechanism	but	its	API	provides	functions	and	classes	to	help	

ensure	that	the	signature	of	the	extension	matches	the	expected	call	arguments	and	types.		See	6.34	Subprogram	

Signature	Mismatch	[OTR].	

6.49.2	Guidance	to	language	users	

• Use	only	trusted	modules	as	extensions;	and	

• If	coding	an	extension	utilize	Python’s	extension	API	to	ensure	a	correct	signature	match.	

6.50	Unanticipated	Exceptions	from	Library	Routines	[HJW]	

6.50.1	Applicability	to	language	

Python	is	often	extended	by	importing	modules	coded	in	Python	and	other	languages.	For	modules	coded	in	

Python	the	risks	include:	

• Interception	of	an	exception	that	was	intended	for	a	module’s	imported	exception	handling	code	(and	

vice	versa);	and	

• Unintended	results	due	to	namespace	collisions	(covered	in	6.21	Namespace	Issues	[BJL]	and	elsewhere	in	

this	annex).	

For	modules	coded	in	other	languages	the	risks	include:	

• Unexpected	termination	of	the	program;	and	

• Unexpected	side	effects	on	the	operating	environment.	

Deleted: 6

Deleted: E.47

Comment [SM21]: This	may	not	be	dynamically	linked	code,	but	

the	recommendation	is	good	(just	maybe	elsewhere).		

Deleted: 7

Deleted: E.48

Deleted: 7

Deleted: E.48

Deleted: 7

Deleted: E.48

Deleted: 48

Deleted: E.49

Deleted: 48

Deleted: E.49

Deleted: E.22

	

©	ISO/IEC	2015	–	All	rights	reserved	 37	
	

Deleted: 3

6.50.2	Guidance	to	language	users	

• Wrap	calls	to	library	routines	and	use	exception	handling	logic	to	intercept	and	handle	exceptions	when	

practicable.	

6.51	Pre-processor	Directives	[NMP]	

This	vulnerability	is	not	applicable	to	Python	because	Python	has	no	pre-processor	directives.	

6.52	Suppression	of	Language-defined	Run-time	Checking	[MXB]	

This	vulnerability	is	not	applicable	to	Python	because	Python	does	not	have	a	mechanism	for	suppressing	run-

time	error	checking.	The	only	suppression	available	is	the	suppression	of	run-time	warnings	using	the	command	

line	–W	option	which	suppresses	the	printing	of	warnings	but	does	not	affect	the	execution	of	the	program.		

6.53	Provision	of	Inherently	Unsafe	Operations	[SKL]	

6.53.1	Applicability	to	language	

Python	has	very	few	operations	that	are	inherently	unsafe.	For	example,	there	is	no	way	to	suppress	error	

checking	or	bounds	checking.	However	there	are	two	operations	provided	in	Python	that	are	inherently	unsafe	in	

any	language:	

• Interfaces	to	modules	coded	in	other	languages	since	they	could	easily	violate	the	security	of	the	calling	of	

embedded	Python	code;	and	

• Use	of	the	exec	and	eval	dynamic	execution	functions	(see	6.48	Dynamically-linked	Code	and	Self-

modifying	Code	[NYY]).	

6.53.2		Guidance	to	language	users	

• Use	only	trusted	modules;	and	

• Avoid	the	use	of	the	exec	and	eval	functions.	

6.54	Obscure	Language	Features	[BRS]	

6.54.1	Applicability	of	language		

Python	has	some	obscure	language	features	as	described	below:	

Functions	are	defined	when	executed:	

a = 1
while a < 3:
 if a == 1:
 def f():
 print("a must equal 1")
 else:
 def f():

Deleted: 48

Deleted: E.49

Deleted: 49

Deleted: E.50

Comment [SGM22]: Email	from	Nick	Coghlan	(2017-09-21)	

	

- the "pre-processor directives" section isn't strictly true: "from
__future__ import feature" is a compile-time directive, and the
encoding cookie declarations in source headers allow for
arbitrary source->source translations when loading source
modules. The import hook mechanisms also provide a lot of
flexibility for runtime code to change how imports in other parts
of the program are actually handled.
	

Deleted: 50

Deleted: E.51

Deleted: 51

Deleted: E.52

Deleted: 1

Deleted: E.52

Deleted: 1

Deleted: E.52

Deleted: 2

Deleted: E.53

Deleted: 2

Deleted: E.53

Comment [SGM23]: Email	from	Nick	Coghlan	(2017-09-21)	

- the asyncio infrastructure has introduced a number of new
"obscure language features" for use by event loop
implementors (e.g. there's a hook that gets called any time a
native coroutine is created)
	

	

38	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Deleted: 3

 print("a must not equal 1")
 f()
 a += 1

The	function	f	is	defined	and	redefined	to	result	in	the	output	below:	

a must equal 1
a must not equal 1

A	function’s	variables	are	determined	to	be	local	or	global	using	static	analysis:	if	a	function	only	references	a	

variable	and	never	assigns	a	value	to	it	then	it	is	assumed	to	be	global	otherwise	it	is	assumed	to	be	local	and	is	

added	to	the	function’s	namespace.	This	is	covered	in	some	detail	in	6.22	Initialization	of	Variables	[LAV].		

A	function’s	default	arguments	are	assigned	when	a	function	is	defined,	not	when	it	is	executed:	

def f(a=1, b=[]):
 print(a, b)
 a += 1
 b.append("x")
f()
f()
f()

The	output	from	above	is	typically	expected	to	be:	

1 []
1 []
1 []

But	instead	it	prints:	

1 []
1 ['x']
1 ['x', 'x']

This	is	because	neither	a	nor	b are	reassigned	when	f	is	called	with	no	arguments	because	they	were	assigned	

values	when	the	function	was	defined.	The	local	variable	a	references	an	immutable	object	(an	integer)	so	a	new	

object	is	created	when	the	a += 1	statement	is	created	and	the	default	value	for	the	a	argument	remains	

unchanged.	The	mutable	list	object	b	is	updated	in	place	and	thus	“grows”	with	each	new	call.		

The	+=	Operator	does	not	work	as	might	be	expected	for	mutable	objects:	

x = 1
x += 1
print(x) #=> 2 (Works as expected)

But	when	we	perform	this	with	a	mutable	object:	

x = [1, 2, 3]

Deleted: E.23

Formatted: Spanish

	

©	ISO/IEC	2015	–	All	rights	reserved	 39	
	

Deleted: 3

y = x
print(id(x), id(y))#=> 38879880 38879880
x += [4]
print(id(x), id(y))#=> 38879880 38879880
x = x + [5]
print(id(x), id(y))#=> 48683400 38879880
print(x,y)#=> [1, 2, 3, 4, 5] [1, 2, 3, 4]

The	+=	operator	changes	x	in	place	while	the	x = x + [5]	creates	a	new	list	object	which,	as	the	example	

above	shows,	is	not	the	same	list	object	that	y	still	references.	This	is	Python’s	normal	handling	for	all	

assignments	(immutable	or	mutable)	–	create	a	new	object	and	assign	to	it	the	value	created	by	evaluating	the	

expression	on	the	right	hand	side	(RHS):	

x = 1
print(id(x)) #=> 506081728
x = x + 1
print(id(x)) #=> 506081760

Equality	(or	equivalence)	refers	to	two	or	more	objects	having	the	same	value.		It	is	tested	using	the	==	operator	

which	can	thought	of	as	the	‘is	equal	to	test’.	On	the	other	hand,	two	or	more	names	in	Python	are	considered	

identical	only	if	they	reference	the	same	object	(in	which	case	they	would,	of	course,	be	equivalent	too).	For	

example:	

a = [0,1]
b = a
c = [0,1]
a is b, b is c, a == c #=> (True, False, True)

a and	b	are	both	names	that	reference	the	same	objects	while	c	references	a	different	object	which	has	the	

same	value	as	both	a	and	b.	

Python	provides	built-in	classes	for	persisting	objects	to	external	storage	for	retrieval	later.	The	complete	object,	

including	its	methods,	is	serialized	to	a	file	(or	DBMS)	and	re-instantiated	at	a	later	time	by	any	program	which	has	

access	to	that	file/DBMS.	This	has	the	potential	for	introducing	rogue	logic	in	the	form	of	object	methods	within	a	

substituted	file	or	DBMS.	

Python	supports	passing	parameters	by	keyword	as	in:	

a = myfunc(x = 1, y = "abc")

This	can	make	the	code	more	readable	and	allows	one	to	skip	parameters.	It	can	also	reduce	errors	caused	by	

confusing	the	order	of	parameters.	

6.54.2	Guidance	to	language	users	

Ensure	that	a	function	is	defined	before	attempting	to	call	it;	Be	aware	that	a	function	is	defined	dynamically	so	its	

composition	and	operation	may	vary	due	to	variations	in	the	flow	of	control	within	the	defining	program;	

Formatted: French

Formatted: Spanish

Deleted: 2

Deleted: E.53

	

40	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Deleted: 3

• Be	aware	of	when	a	variable	is	local	versus	global;	

• Do	not	use	mutable	objects	as	default	values	for	arguments	in	a	function	definition	unless	you	absolutely	

need	to	and	you	understand	the	effect;	

• Be	aware	that	when	using	the	+=	operator	on	mutable	objects	the	operation	is	done	in	place;		

• Be	cognizant	that	assignments	to	objects,	mutable	and	immutable,	always	create	a	new	object;		

• Understand	the	difference	between	equivalence	and	equality	and	code	accordingly;	and	

• Ensure	that	the	file	path	used	to	locate	a	persisted	file	or	DBMS	is	correct	and	never	ingest	objects	from	

an	untrusted	source.	

6.55	Unspecified	Behaviour	[BQF]	

6.55.1	Applicability	of	language		

Understanding	how	Python	manages	identities	becomes	less	clear	when	a	script	is	run	using	integers	(or	short	

strings):	

a=1
b=a
c=1
a is b, b is c, a == c #=> (True, True, True)

In	the	example	above	c references	the	same	object	as	a	and	b even	though	c	was	never	assigned	to	either	a	or	

b.	This	is	a	nuance	of	how	Python	is	optimized	to	cache	short	strings	and	small	integers.	Other	than	in	a	test	for	

identity	as	above,	this	nuance	has	no	effect	on	the	logic	of	the	program	(for	example,	changing	the	value	of	c	to	2	

will	not	affect	a	or	b).	Refer	also	to	4.	Language	concepts.	

When	persisting	objects	using	pickling,	if	an	exception	is	raised	then	an	unspecified	number	of	bytes	may	have	

already	been	written	to	the	file.		

6.55.2	Guidance	to	language	users	

• Do	not	rely	on	the	content	of	error	messages	–	use	exception	objects	instead;		

• When	persisting	object	using	pickling	use	exception	handling	to	cleanup	partially	written	files;	and		

• Do	not	depend	on	the	way	Python	may	or	may	not	optimize	object	references	for	small	integer	and	string	

objects	because	it	may	vary	for	environments	or	even	for	releases	in	the	same	environment.	

6.56	Undefined	Behaviour	[EWF]	

6.56.1	Applicability	to	language	

Python	has	undefined	behaviour	in	the	following	instances:	

• Caching	of	immutable	objects	can	result	in	(or	not	result	in)	a	single	object	being	referenced	by	two	or	

more	variables.	Comparing	the	variables	for	equivalence	(that	is,	if a == b)	will	always	yield	a	True	

but	checking	for	equality	(using	the	is	built-in)	may,	or	may	not,	dependent	on	the	implementation:	

a = 1

Deleted: 3

Deleted: E.54

Deleted: 3

Deleted: E.54

Deleted: E.2.2	Key	Concepts

Deleted: 3

Deleted: E.54

Deleted: 4

Deleted: E.55

Deleted: 4

Deleted: E.55

	

©	ISO/IEC	2015	–	All	rights	reserved	 41	
	

Deleted: 3

b = 2-1
print(a == b, a is b) #=> (True, ?)

• The	sequence	of	keys	in	a	dictionary	is	undefined	because	the	hashing	function	used	to	index	the	keys	is	

unspecified	therefore	different	implementations	are	likely	to	yield	different	sequences.	

• The	Future	class	encapsulates	the	asynchronous	execution	of	a	callable.	The	behaviour	is	undefined	if	
the	add_done_callback(fn)	method	(which	attaches	the	callable	fn	to	the	future)	raises	a	

BaseException	subclass.	

• Modifying	the	dictionary	returned	by	the	vars	built-in	has	undefined	effects	when	used	to	retrieve	the	

dictionary	(that	is,	the	namespace)	for	an	object.	

• Form	feed	characters	used	for	indentation	have	an	undefined	effect	on	the	character	count	used	to	

determine	the	scope	of	a	block.	

• The	catch_warnings	function	in	the	context	manager	can	be	used	to	temporarily	suppress	warning	

messages	but	it	can	only	be	guaranteed	in	a	single-threaded	application	otherwise,	when	two	or	more	

threads	are	active,	the	behaviour	is	undefined.	

• When	sorting	a	list	using	the	sort()	method,	attempting	to	inspect	or	mutate	the	content	of	the	list	will	

result	in	undefined	behaviour.	

• The	order	of	sort	of	a	list	of	sets,	using	list.sort(),		is	undefined	as	is	the	use	of	the	function	used	on	
a	list	of	sets	that	depend	on	total	ordering	such	as	min(), max(), and	sorted().	

• Undefined	behaviour	will	occur	if	a	thread	exits	before	the	main	procedure	from	which	it	was			called	

itself	exits.	

6.56.2	Guidance	to	language	users	

• Understand	the	difference	between	testing	for	equivalence	(for	example,	==)	and	equality	(for	example,	

is)	and	never	depend	on	object	identity	tests	to	pass	or	fail	when	the	variables	reference	immutable	

objects;	

• Do	not	depend	on	the	sequence	of	keys	in	a	dictionary	to	be	consistent	across	implementations.	

• When	launching	parallel	tasks	don’t	raise	a	BaseException	subclass	in	a	callable	in	the	Future	class;	

• Never	modify	the	dictionary	object	returned	by	a	vars	call;	

• Never	use	form	feed	characters	for	indentation;	

• Consider	using	the	id	function	to	test	for	object	equality;	

• Do	not	try	to	use	the	catch_warnings	function	to	suppress	warning	messages	when	using	more	than	

one	thread;	and	

• Never	inspect	or	change	the	content	of	a	list	when	sorting	a	list	using	the	sort()	method.	

6.57	Implementation–defined	Behaviour	[FAB]	

6.57.1	Applicability	to	language	

Python	has	implementation-defined	behaviour	in	the	following	instances:	

• Mixing	tabs	and	spaces	to	indent	is	defined	differently	for	UNIX	and	non-UNIX	platforms;	

• Byte	order	(little	endian	or	big	endian)	varies	by	platform;	

• Exit	return	codes	are	handled	differently	by	different	operating	systems;	

Deleted: 4

Deleted: E.55

Deleted: 5

Deleted: E.56

Deleted: 5

Deleted: E.56

	

42	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Deleted: 3

• The	characteristics,	such	as	the	maximum	number	of	decimal	digits	that	can	be	represented,	vary	by	

platform;	

• The	filename	encoding	used	to	translate	Unicode	names	into	the	platform’s	filenames	varies	by	platform;	

and	

• Python	supports	integers	whose	size	is	limited	only	by	the	memory	available.	Extensive	arithmetic	using	

integers	larger	than	the	largest	integer	supported	in	the	language	used	to	implement	Python	will	degrade	

performance	so	it	may	be	useful	to	know	the	integer	size	of	the	implementation.	

6.57.2	Guidance	to	language	users	

• Always	use	either	spaces	or	tabs	(but	not	both)	for	indentations;	

• Consider	using	the	-tt	command	line	option	to	raise	an	IndentationError;	

• Consider	using	a	text	editor	to	find	and	make	consistent,	the	use	of	tabs	and	spaces	for	indentation;	

• Either	avoid	logic	that	depends	on	byte	order	or	use	the	sys.byteorder	variable	and	write	the	logic	to	
account	for	byte	order	dependent	on	its	value	('little'	or	'big').	

• Use	zero	(the	default	exit	code	for	Python)	for	successful	execution	and	consider	adding	logic	to	vary	the	

exit	code	according	to	the	platform	as	obtained	from	sys.platform	(such	as,	'win32',	'darwin',	or	

other).	

• Interrogate	the	sys.float.info	system	variable	to	obtain	platform	specific	attributes	and	code	

according	to	those	constraints.	

• Call	the	sys.getfilesystemcoding() function	to	return	the	name	of	the	encoding	system	used.	

• When	high	performance	is	dependent	on	knowing	the	range	of	integer	numbers	that	can	be	used	without	

degrading	performance	use	the	sys.int_info struct	sequence	to	obtain	the	number	of	bits	per	

digit	(bits_per_digit)	and	the	number	of	bytes	used	to	represent	a	digit	(sizeof_digit).	

6.58	Deprecated	Language	Features	[MEM]	

6.58.1	Applicability	to	language	

The	following	features	were	deprecated	in	the	latest	(as	of	this	writing)	version	of	E	3.1.	These	are	documented	at	

http://docs.python.org/release/3.1.3/whatsnew/3.1.html:	

• The	string.maketrans()	function	is	deprecated	and	is	replaced	by	new	static	methods,	bytes.maketrans()	

and	bytearray.maketrans().	This	change	solves	the	confusion	around	which	types	were	supported	by	the	

string	module.	Now,	str,	bytes,	and	bytearray	each	have	their	own	maketrans	and	translate	methods	with	

intermediate	translation	tables	of	the	appropriate	type.	

• The	syntax	of	the	with	statement	now	allows	multiple	context	managers	in	a	single	statement:	

with open('mylog.txt') as infile, open('a.out', 'w') as outfile:
 for line in infile:
 if '<critical>' in line:
 outfile.write(line)

• With	the	new	syntax,	the	contextlib.nested() function	is	no	longer	needed	and	is	now	

deprecated.	

Deleted: 5

Deleted: E.56

Deleted: 6

Deleted: E.57

Deleted: 6

Deleted: E.57

Comment [SM24]: Put	in	bibliography	and	reference	
bibliography.	

	

©	ISO/IEC	2015	–	All	rights	reserved	 43	
	

Deleted: 3

• Deprecated	PyNumber_Int().	Use	PyNumber_Long() instead.	

• Added	a	new	PyOS_string_to_double() function	to	replace	the	deprecated	functions	

PyOS_ascii_strtod() and	PyOS_ascii_atof().	

• Added	PyCapsule	as	a	replacement	for	the	PyCObject	API.	The	principal	difference	is	that	the	new	

type	has	a	well	defined	interface	for	passing	typing	safety	information	and	a	less	complicated	signature	

for	calling	a	destructor.	The	old	type	had	a	problematic	API	and	is	now	deprecated.	

6.58.2	Guidance	to	language	users	

• When	practicable,	migrate	Python	programs	to	the	current	standard.	

6.59	Concurrency	–	Activation	[CGA]	

6.59.1	Applicability	to	language	

TBW:	Analyze	the	standard	Python	libraries:	

• threading:	Reference	implementation	seems	to	always	raise	an	exception	if	start()	method	is	not	

able	to	create	the	thread,	but	is	not	documented	in	the	specification	and	thus	the	user	cannot	rely	on	

this.	Furthermore,	even	if	the	standard	library	/	OS	can	create	the	new	thread,	it	can	die	during	the	

initialization	phase	when	executing	the	user’s	code.	Method	join()	does	not	return	if	the	thread	died	

through	an	unhandled	exception?	Method	is_alive()	to	check	whether	is	still	running,	and	timeouts	

for	lock	objects.	Timer	object	TBA	

• multiprocessing:	Exception	raised	if	not	activated?	TBA	

• concurrency.futures:	TBA	

6.59.2	Guidance	to	language	users	

TBW	

6.60	Concurrency	–	Directed	termination	[CGT]	

6.60.1	Applicability	to	language	

TBW:	Analyze	the	standard	Python	libraries:	

• threading:	No	mechanism	to	abort	another	thread,	the	thread	has	to	terminate	itself.	Alien	threads	

cannot	be	terminated	nor	joined.	

• multiprocessing:	TBA	

• concurrency.futures:	TBA	

	

6.60.2	Guidance	to	language	users	

TBW:	

Deleted: 7

Deleted: E.57

Deleted:

Formatted: Heading 3

Formatted: Highlight
Formatted: Normal, Level 1
Formatted: Font:(Default) Courier New, English (UK), Kern at
14 pt, Highlight
Formatted: List Paragraph, Space After: 6 pt, Bulleted +
Level: 1 + Aligned at: 0.63 cm + Indent at: 1.27 cm, No
widow/orphan control, Suppress line numbers, Don't allow
hanging punctuation
Formatted: Highlight
Formatted: Font:(Default) Courier New, English (UK), Kern at
14 pt, Highlight
Formatted: Highlight
Formatted: Highlight
Formatted: Highlight
Formatted: Font:(Default) Courier New, English (UK), Kern at
14 pt, Highlight
Formatted: Highlight
Formatted: Font:(Default) Calibri, Highlight
Formatted: Font:(Default) Courier New, English (UK), Kern at
14 pt, Highlight
Formatted: Font:(Default) Calibri, Highlight
Formatted: Font:(Default) Courier New, English (UK), Kern at
14 pt, Highlight
Formatted: Highlight
Formatted: Normal, Level 1
Deleted:

Deleted:

Formatted: Heading 3

Formatted: Normal

Formatted: Normal, Level 1

	

44	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Deleted: 3

6.61	Concurrent	Data	Access	[CGX]		

6.61.1	Applicability	to	language	

TBW:	Analyze	the	standard	Python	libraries:	

• threading:	Different	mechanisms	TBA::	Lock,	RLock	(recursive	lock),	Semaphore,	Condition,	Event,	

Barrier.	Use	‘with	statement’	with	locks	

• multiprocessing:	TBA	

• concurrency.futures:	TBA	

	

6.61.2	Guidance	to	language	users	

TBW	

• threading:	Use	‘with	statement’	with	locks	

• multiprocessing:	TBA	

• concurrency.futures:	TBA	

	

6.62	Concurrency	–	Premature	Termination	[CGS]	

6.62.1	Applicability	to	language	

TBW:	Analyze	the	standard	Python	libraries:	

• threading:	TBA	

• multiprocessing:	TBA	

• concurrency.futures:	TBA	

	

6.62.2	Guidance	to	language	users	

TBW	

6.63	Protocol	Lock	Errors	[CGM]	

6.63.1	Applicability	to	language	

TBW:	Analyze	the	standard	Python	libraries:	

• threading:	Use	‘with	statement’	with	locks		

• multiprocessing:	TBA	

• concurrency.futures:	TBA	

Deleted:

Formatted: Heading 3

Formatted: Normal

Formatted: Normal, Level 1

Formatted: Normal

Deleted:

Deleted:

Formatted: Heading 3

Formatted: Normal

Formatted: Normal, Level 1

Deleted: 0

Deleted: 3	

Deleted:

Formatted: Heading 3

	

©	ISO/IEC	2015	–	All	rights	reserved	 45	
	

Deleted: 3

	

6.63.2	Guidance	to	language	users	

TBW		

• threading:	TBA		

• multiprocessing:	TBA	

• concurrency.futures:	TBA	

6.64	Reliance	on	External	Format	String		[SHL]		
6.64.1	Applicability	to	language	

TBD	

6.64.2	Guidance	to	language	users	

TBD	

	

7.	Language	specific	vulnerabilities	for	Python	

	

8.	Implications	for	standardization	or	future	revision	

Future	standardization	efforts	should	consider	the	following	items	to	address	vulnerability	issues	identified	earlier	

in	this	Technical	Report.	

This	is	a	dummy	citation	with	the	Word	bibliography	feature	[2]	,	and	the	following	one	using	bookmars	[1].	

	

Bibliography	

[1]	 ISO/IEC	Directives,	Part	2,	Rules	for	the	structure	and	drafting	of	International	Standards,	2004	

[2]	 ISO/IEC	TR	10000-1,	Information	technology	—	Framework	and	taxonomy	of	International	Standardized	

Profiles	—	Part	1:	General	principles	and	documentation	framework	

[3]	 ISO	10241	(all	parts),	International	terminology	standards	

[4]	 Steve	Christy,	Vulnerability	Type	Distributions	in	CVE,	V1.0,	2006/10/04	

[5]	 Carlo	Ghezzi	and	Mehdi	Jazayeri,	Programming	Language	Concepts,	3rd	edition,	ISBN-0-471-10426-4,	John	

Wiley	&	Sons,	1998	

Formatted: Normal

Deleted: 0

Formatted: Highlight
Formatted: Normal, Level 1
Formatted: Normal, Level 1
Deleted:

Formatted: Normal
Deleted: ... [8]

Formatted: Heading 1

Comment [SGM25]: Note	from	Nick	Coghlan:	

Speaking of clocks & timing, there are some use cases that
should be updated to use time.monotonic() rather than
time.time() or time.clock()
: https://www.python.org/dev/peps/pep-0418/#time-monotonic	
	

Windows applications should also be aware of the fact that
Python 3.6
always uses utf-8 for binary filesystem and console interfaces:
https://docs.python.org/dev/whatsnew/3.6.html#pep-529-
change-windows-filesystem-encoding-to-utf-8

Non-Windows applications should be aware of the fact that
Python 3.7+
will attempt to coerce the C locale to C.UTF-8 (or an equivalent
locale), and that implementing that behaviour is an approved
option
for redistributor's Python 3.6 implementations (e.g. the system
Python
in Fedora implements the option).
https://www.python.org/dev/peps/pep-0538/ has the details of
that.	
	

Comment [SGM26R25]: 	

Deleted:

Formatted: Normal
Formatted: Highlight
Formatted: Not Highlight
Formatted: Not Highlight
Formatted: Not Highlight
Formatted: Not Highlight
Field Code Changed

Deleted: Page Break
Formatted: Space After: 6 pt, No widow/orphan control,
Suppress line numbers, Don't allow hanging punctuation

Deleted: 1

Deleted: 2

Deleted: 3

Deleted: [4] ISO/IEC	9899:2011,	Information	technology	—	

Programming	languages	—	C

[26] ARIANE	5:	Flight	501	Failure,	Report	by	the	Inquiry	Board,	

July	19,	1996	http://esamultimedia.esa.int/docs/esa-x-

1819eng.pdf	 ... [9]
Deleted: 25

Deleted: [26] ARIANE	5:	Flight	501	Failure,	Report	by	the	... [10]
Deleted: 28

	

46	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Deleted: 3

[6]	 John	David	N.	Dionisio.	Type	Checking.		http://myweb.lmu.edu/dondi/share/pl/type-checking-v02.pdf	

[7]	 The	Common	Weakness	Enumeration	(CWE)	Initiative,	MITRE	Corporation,	(http://cwe.mitre.org/)	

[8]	 Goldberg,	David,	What	Every	Computer	Scientist	Should	Know	About	Floating-Point	Arithmetic,	ACM	

Computing	Surveys,	vol	23,	issue	1	(March	1991),	ISSN	0360-0300,	pp	5-48.	

[9]	 IEEE	Standards	Committee	754.	IEEE	Standard	for	Binary	Floating-Point	Arithmetic,	ANSI/IEEE	Standard	

754-2008.	Institute	of	Electrical	and	Electronics	Engineers,	New	York,	2008.	

[10]	 Robert	W.	Sebesta,	Concepts	of	Programming	Languages,	8th	edition,	ISBN-13:	978-0-321-49362-0,	ISBN-

10:	0-321-49362-1,	Pearson	Education,	Boston,	MA,	2008	

[11]	 Bo	Einarsson,	ed.	Accuracy	and	Reliability	in	Scientific	Computing,	SIAM,	July	2005	

http://www.nsc.liu.se/wg25/book	

	

[1] "Enums for Python (Python recipe)," [Online]. Available: http://code.activestate.com/recipes/67107/.

[2] M. Pilgrim, Dive Into Python, 2004.

[3] M. Lutz, Learning Python, Sebastopol, CA: O'Reilly Media, Inc, 2009.

[4] "The Python Language Reference," [Online]. Available:
http://docs.python.org/reference/index.html#reference-index.

[5] A. Martelli, Python in a Nutshell, Sebastopol, CA: O'Reilly Media, Inc., 2006.

[6] M. Lutz, Programming Python, Sebastopol, CA: O'Reilly Media, Inc., 2011.

[7] A. G. Isaac, "Python Introduction," 23 06 2010. [Online]. Available:
https://subversion.american.edu/aisaac/notes/python4class.xhtml#introduction-to-the-interpreter.
[Accessed 12 05 2011].

[8] H. Norwak, "10 Python Pitfalls," [Online]. Available:
http://zephyrfalcon.org/labs/python_pitfalls.html. [Accessed 13 05 2011].

[9] "Python Gotchas," [Online]. Available: http://www.ferg.org/projects/python_gotchas.html.

[10] G. source, "Big List of Portabilty in Python," [Online]. Available:
http://stackoverflow.com/questions/1883118/big-list-of-portability-in-python. [Accessed 12 6 2011].

	

	

		

Deleted: [29] Lions,	J.	L.	ARIANE	5	Flight	501	Failure	Report.	

European	Space	Agency	(ESA)	&	National	Center	for	Space	Study	

(CNES)	Inquiry	Board,	July	1996.

[32] MISRA	Limited.	"MISRA	C:	2012	Guidelines	for	the	Use	of	

the	C	Language	in	Critical	Systems."	Warwickshire,	UK:	MIRA	

Limited,	March	2013	(ISBN	978-1-906400-10-1	and	978-1-906400-

11-8).

Formatted: English (US)

Deleted: 31

Deleted: [32] MISRA	Limited.	"MISRA	C:	2012	Guidelines	for	

the	C	Language	in	Critical	Systems."	Warwickshire,	UK:	MIRA	

Limited,	March	2013	(ISBN	978-1-906400-10-1	and	978-1-906400-

11-8).

Deleted: 33

Deleted:)

Deleted: 34

Deleted: 35

Deleted: 36

Deleted: 37

Moved (insertion) [1]

Formatted: French

Formatted: French

Formatted: French
Comment [SM27]: Rationalize	with	rest	of	bibliography.	

Deleted: [38] GAO	Report,	Patriot	Missile	Defense:	Software	

Problem	Led	to	System	Failure	at	Dhahran,	Saudi	Arabia,	B-

247094,	Feb.	4,	1992,	http://archive.gao.gov/t2pbat6/145960.pdf... [11]
Formatted: English (US)
Formatted: English (US)
Formatted: English (US)
Formatted: English (US)

	

©	ISO/IEC	2015	–	All	rights	reserved	 47	
	

Deleted: 3

	 	

	

48	 ©	ISO/IEC	2015	–	All	rights	reserved	

	

Deleted: 3

Index	

	

		

LHS	(left-hand	side),	22	

	

Formatted: Number of columns: 2

Deleted: Section Break (Continuous)
	 ... [12]

Page iv: [1] Deleted Santiago Urueña 5/26/15 12:38:00 PM

Foreword	..	xvi	

Introduction	..	xvii	

1.	Scope	...	1	

2.	Normative	references	...	1	

3.	Terms	and	definitions,	symbols	and	conventions	...	1	
3.1	Terms	and	definitions	...	1	
3.2	Symbols	and	conventions	...	5	

4.	Basic	concepts	..	6	
4.1	Purpose	of	this	Technical	Report	...	6	
4.2	Intended	audience	...	6	
4.3	How	to	use	this	document	..	7	

5	Vulnerability	issues	...	8	
5.1	Predictable	execution	...	8	
5.2	Sources	of	unpredictability	in	language	specification	...	9	
5.2.1	Incomplete	or	evolving	specification	..	9	
5.2.2	Undefined	behaviour	...	10	
5.2.3	Unspecified	behaviour	...	10	
5.2.4	Implementation-defined	behaviour	..	10	
5.2.5	Difficult	features	..	10	
5.2.6	Inadequate	language	support	..	10	
5.3	Sources	of	unpredictability	in	language	usage	...	10	
5.3.1	Porting	and	interoperation	..	10	
5.3.2	Compiler	selection	and	usage	..	11	

6.	Programming	Language	Vulnerabilities	...	11	
6.1	General	..	11	
6.2	Terminology	...	11	
6.3	Type	System	[IHN]	..	12	
6.4	Bit	Representations		[STR]	..	14	
6.5	Floating-point	Arithmetic	[PLF]	...	16	
6.6	Enumerator	Issues		[CCB]	..	18	
6.7	Numeric	Conversion	Errors	[FLC]	...	20	
6.8	String	Termination	[CJM]	..	22	
6.9	Buffer	Boundary	Violation	(Buffer	Overflow)	[HCB]	...	23	
6.10	Unchecked	Array	Indexing	[XYZ]	..	25	
6.11	Unchecked	Array	Copying	[XYW]	...	27	
6.12	Pointer	Casting	and	Pointer	Type	Changes	[HFC]	...	28	
6.13	Pointer	Arithmetic	[RVG]	..	29	
6.14	Null	Pointer	Dereference	[XYH]	...	30	
6.15	Dangling	Reference	to	Heap	[XYK]	...	31	
6.16	Arithmetic	Wrap-around	Error	[FIF]	..	34	
6.17	Using	Shift	Operations	for	Multiplication	and	Division	[PIK]	...	35	
6.18	Sign	Extension	Error	[XZI]	..	36	
6.19	Choice	of	Clear	Names	[NAI]	...	37	
6.20	Dead	Store	[WXQ]	..	39	
6.21	Unused	Variable	[YZS]	...	40	

6.22	Identifier	Name	Reuse	[YOW]	...	41	
6.23	Namespace	Issues	[BJL]	..	43	
6.24	Initialization	of	Variables	[LAV]	...	45	
6.25	Operator	Precedence/Order	of	Evaluation	[JCW]	...	47	
6.26	Side-effects	and	Order	of	Evaluation	[SAM]	...	49	
6.27	Likely	Incorrect	Expression	[KOA]	..	50	
6.28	Dead	and	Deactivated	Code	[XYQ]	..	52	
6.29	Switch	Statements	and	Static	Analysis	[CLL]	..	54	
6.30	Demarcation	of	Control	Flow	[EOJ]	...	56	
6.31	Loop	Control	Variables	[TEX]	...	57	
6.32	Off-by-one	Error	[XZH]	..	58	
6.33	Structured	Programming	[EWD]	..	60	
6.34	Passing	Parameters	and	Return	Values	[CSJ]	..	61	
6.35	Dangling	References	to	Stack	Frames	[DCM]	...	63	
6.36	Subprogram	Signature	Mismatch	[OTR]	..	65	
6.37	Recursion	[GDL]	..	67	
6.38	Ignored	Error	Status	and	Unhandled	Exceptions	[OYB]	..	68	
6.39	Termination	Strategy	[REU]	..	70	
6.40	Type-breaking	Reinterpretation	of	Data	[AMV]	...	72	
6.41	Memory	Leak	[XYL]	...	74	
6.42	Templates	and	Generics	[SYM]	..	76	
6.43	Inheritance	[RIP]	...	78	
6.44	Extra	Intrinsics	[LRM]	..	79	
6.45	Argument	Passing	to	Library	Functions	[TRJ]	...	80	
6.46	Inter-language	Calling	[DJS]	..	81	
6.47	Dynamically-linked	Code	and	Self-modifying	Code	[NYY]	...	83	
6.48	Library	Signature	[NSQ]	..	84	
6.49	Unanticipated	Exceptions	from	Library	Routines	[HJW]	...	86	
6.50	Pre-processor	Directives	[NMP]	..	87	
6.51	Suppression	of	Language-defined	Run-time	Checking	[MXB]	..	89	
6.52	Provision	of	Inherently	Unsafe	Operations	[SKL]	..	90	
6.53	Obscure	Language	Features	[BRS]	...	91	
6.54	Unspecified	Behaviour	[BQF]	..	92	
6.55	Undefined	Behaviour	[EWF]	..	94	
6.56	Implementation-defined	Behaviour	[FAB]	...	95	
6.57	Deprecated	Language	Features	[MEM]	...	97	
6.58	Concurrency	–	Activation	[CGA]	..	98	
6.59	Concurrency	–	Directed	termination	[CGT]	..	100	
6.60	Concurrent	Data	Access	[CGX]	..	101	
6.61	Concurrency	–	Premature	Termination	[CGS]	..	103	
6.62	Protocol	Lock	Errors	[CGM]	...	105	
6.63	Inadequately	Secure	Communication	of	Shared	Resources	[CGY]	...	107	
6.64	Use	of	unchecked	data	from	an	uncontrolled	or	tainted	source	[EFS]	...	109	
6.65	Uncontrolled	Format	String		[SHL]	...	110	

7.	Application	Vulnerabilities	..	111	
7.1	General	..	111	
7.2	Terminology	...	111	
7.3	Unspecified	Functionality	[BVQ]	..	111	
7.4	Distinguished	Values	in	Data	Types	[KLK]	...	112	

7.5	Adherence	to	Least	Privilege	[XYN]	...	113	
7.6	Privilege	Sandbox	Issues	[XYO]	..	114	
7.7	Executing	or	Loading	Untrusted	Code	[XYS]	...	116	
7.8	Memory	Locking	[XZX]	..	117	
7.9	Resource	Exhaustion	[XZP]	..	118	
7.10	Unrestricted	File	Upload	[CBF]	..	119	
7.11	Resource	Names	[HTS]	..	120	
7.12	Injection	[RST]	..	122	
7.13	Cross-site	Scripting	[XYT]	..	125	
7.14	Unquoted	Search	Path	or	Element	[XZQ]	...	127	
7.15	Improperly	Verified	Signature	[XZR]	..	128	
7.16	Discrepancy	Information	Leak	[XZL]	..	129	
7.17	Sensitive	Information	Uncleared	Before	Use	[XZK]	...	130	
7.18	Path	Traversal	[EWR]	..	130	
7.19	Missing	Required	Cryptographic	Step	[XZS]	...	133	
7.20	Insufficiently	Protected	Credentials	[XYM]	..	133	
7.21	Missing	or	Inconsistent	Access	Control	[XZN]...	134	
7.22	Authentication	Logic	Error	[XZO]	...	135	
7.23	Hard-coded	Password	[XYP]	..	136	
7.24	Download	of	Code	Without	Integrity	Check	[DLB]	..	137	
7.25	Incorrect	Authorization	[BJE]	..	138	
7.26	Inclusion	of	Functionality	from	Untrusted	Control	Sphere	[DHU]	...	139	
7.27	Improper	Restriction	of	Excessive	Authentication	Attempts	[WPL]	...	140	
7.28	URL	Redirection	to	Untrusted	Site	('Open	Redirect')	[PYQ]	...	140	
7.29	Use	of	a	One-Way	Hash	without	a	Salt	[MVX]	..	141	

8.	New	Vulnerabilities	..	142	
8.1	General	..	142	
8.2	Terminology	...	142	

Annex	A	(informative)	Vulnerability	Taxonomy	and	List	...	142	
A.1	General	..	142	
A.2	Outline	of	Programming	Language	Vulnerabilities	...	143	
A.3	Outline	of	Application	Vulnerabilities	..	144	
A.4	Vulnerability	List	..	145	

Annex	B	(informative)	Language	Specific	Vulnerability	Template	...	148	

Annex	C	(informative)	Vulnerability	descriptions	for	the	language	Ada	..	150	
C.1	Identification	of	standards	and	associated	documentation	..	150	
C.2	General	terminology	and	concepts	...	150	
C.3	Type	System	[IHN]	..	156	
C.4	Bit	Representation	[STR]	...	156	
C.5	Floating-point	Arithmetic	[PLF]	...	157	
C.6	Enumerator	Issues	[CCB]	..	157	
C.7	Numeric	Conversion	Errors	[FLC]	..	158	
C.8	String	Termination	[CJM]	..	158	
C.9	Buffer	Boundary	Violation	(Buffer	Overflow)	[HCB]	...	159	
C.10	Unchecked	Array	Indexing	[XYZ]	...	159	
C.11	Unchecked	Array	Copying	[XYW]	...	159	
C.12	Pointer	Casting	and	Pointer	Type	Changes	[HFC]	...	159	

C.13	Pointer	Arithmetic	[RVG]	..	160	
C.14	Null	Pointer	Dereference	[XYH]	...	160	
C.15	Dangling	Reference	to	Heap	[XYK]	...	160	
C.16	Arithmetic	Wrap-around	Error	[FIF]	..	160	
C.17	Using	Shift	Operations	for	Multiplication	and	Division	[PIK]	...	161	
C.18	Sign	Extension	Error	[XZI]	..	161	
C.19	Choice	of	Clear	Names	[NAI]	...	161	
C.20	Dead	store	[WXQ]	..	162	
C.21	Unused	Variable	[YZS]	..	162	
C.22	Identifier	Name	Reuse	[YOW]	...	163	
C.23	Namespace	Issues	[BJL]	..	163	
C.24	Initialization	of	Variables	[LAV]	...	163	
C.25	Operator	Precedence/Order	of	Evaluation	[JCW]	...	164	
C.26	Side-effects	and	Order	of	Evaluation	[SAM]	...	164	
C.27	Likely	Incorrect	Expression	[KOA]	..	165	
C.28	Dead	and	Deactivated	Code	[XYQ]	..	166	
C.29	Switch	Statements	and	Static	Analysis	[CLL]	..	166	
C.30	Demarcation	of	Control	Flow	[EOJ]	...	167	
C.31	Loop	Control	Variables	[TEX]	...	167	
C.32	Off-by-one	Error	[XZH]	..	167	
C.33	Structured	Programming	[EWD]	..	168	
C.34	Passing	Parameters	and	Return	Values	[CSJ]	...	168	
C.35	Dangling	References	to	Stack	Frames	[DCM]	...	169	
C.36	Subprogram	Signature	Mismatch	[OTR]	..	169	
C.37	Recursion	[GDL]	..	170	
C.38	Ignored	Error	Status	and	Unhandled	Exceptions	[OYB]	..	170	
C.39	Termination	Strategy	[REU]	..	171	
C.40	Type-breaking	Reinterpretation	of	Data	[AMV]	...	171	
C.41	Memory	Leak	[XYL]	...	172	
C.42	Templates	and	Generics	[SYM]	...	172	
C.43	Inheritance	[RIP]	..	173	
C.44	Extra	Intrinsics	[LRM]	..	173	
C.45	Argument	Passing	to	Library	Functions	[TRJ]	...	173	
C.46	Inter-language	Calling	[DJS]	..	174	
C.47	Dynamically-linked	Code	and	Self-modifying	Code	[NYY]	...	174	
C.48	Library	Signature	[NSQ]	..	174	
C.49	Unanticipated	Exceptions	from	Library	Routines	[HJW]	...	174	
C.50	Pre-Processor	Directives	[NMP]	..	175	
C.51	Suppression	of	Language-defined	Run-time	Checking	[MXB]	..	175	
C.52	Provision	of	Inherently	Unsafe	Operations	[SKL]	..	175	
C.53	Obscure	Language	Features	[BRS]	...	176	
C.54	Unspecified	Behaviour	[BQF]	..	176	
C.55	Undefined	Behaviour	[EWF]	..	177	
C.56	Implementation-Defined	Behaviour	[FAB]	...	178	
C.57	Deprecated	Language	Features	[MEM]	...	179	
C.58	Implications	for	standardization	..	179	

Annex	D	(informative)	Vulnerability	descriptions	for	the	language	C	..	181	
D.1	Identification	of	standards	and	associated	documents	..	181	
D.2	General	terminology	and	concepts	...	181	

D.3	Type	System	[IHN]	...	184	
D.4	Bit	Representations	[STR]	...	185	
D.5	Floating-point	Arithmetic	[PLF]	...	186	
D.6	Enumerator	Issues	[CCB]	..	187	
D.7	Numeric	Conversion	Errors	[FLC]	..	188	
D.8	String	Termination	[CJM]	..	190	
D.9	Buffer	Boundary	Violation	(Buffer	Overflow)	[HCB]	...	190	
D.10	Unchecked	Array	Indexing	[XYZ]	...	192	
D.11	Unchecked	Array	Copying	[XYW]	..	192	
D.12	Pointer	Casting	and	Pointer	Type	Changes	[HFC]	...	193	
D.13	Pointer	Arithmetic	[RVG]	..	193	
D.14	Null	Pointer	Dereference	[XYH]	..	194	
D.15	Dangling	Reference	to	Heap	[XYK]	..	194	
D.16	Arithmetic	Wrap-around	Error	[FIF]	..	196	
D.17	Using	Shift	Operations	for	Multiplication	and	Division	[PIK]	...	197	
D.18	Sign	Extension	Error	[XZI]	...	197	
D.19	Choice	of	Clear	Names	[NAI]	...	197	
D.20	Dead	Store	[WXQ]	..	198	
D.21	Unused	Variable	[YZS]	..	198	
D.22	Identifier	Name	Reuse	[YOW]	...	198	
D.23	Namespace	Issues	[BJL]	..	199	
D.24	Initialization	of	Variables	[LAV]	...	199	
D.25	Operator	Precedence/Order	of	Evaluation	[JCW]	..	200	
D.26	Side-effects	and	Order	of	Evaluation	[SAM]	..	200	
D.27	Likely	Incorrect	Expression	[KOA]	..	201	
D.28	Dead	and	Deactivated	Code	[XYQ]	..	202	
D.29	Switch	Statements	and	Static	Analysis	[CLL]	..	203	
D.30	Demarcation	of	Control	Flow	[EOJ]	...	204	
D.31	Loop	Control	Variables	[TEX]	..	205	
D.32	Off-by-one	Error	[XZH]	...	206	
D.33	Structured	Programming	[EWD]	...	206	
D.34	Passing	Parameters	and	Return	Values	[CSJ]	...	207	
D.35	Dangling	References	to	Stack	Frames	[DCM]	...	208	
D.36	Subprogram	Signature	Mismatch	[OTR]	..	208	
D.37	Recursion	[GDL]	...	209	
D.38	Ignored	Error	Status	and	Unhandled	Exceptions	[OYB]	..	209	
D.39	Termination	Strategy	[REU]	..	210	
D.40	Type-breaking	Reinterpretation	of	Data	[AMV]	...	210	
D.41	Memory	Leak	[XYL]	..	211	
D.42	Templates	and	Generics	[SYM]	...	211	
D.43	Inheritance	[RIP]	..	211	
D.44	Extra	Intrinsics	[LRM]	...	211	
D.45	Argument	Passing	to	Library	Functions	[TRJ]	...	212	
D.46	Inter-language	Calling	[DJS]	..	212	
D.47	Dynamically-linked	Code	and	Self-modifying	Code	[NYY]	...	212	
D.48	Library	Signature	[NSQ]	..	213	
D.49	Unanticipated	Exceptions	from	Library	Routines	[HJW]	...	213	
D.50	Pre-processor	Directives	[NMP]	..	214	
D.51	Suppression	of	Language-defined	Run-time	Checking	[MXB]	...	215	

D.52	Provision	of	Inherently	Unsafe	Operations	[SKL]	...	215	
D.53	Obscure	Language	Features	[BRS]	...	215	
D.54	Unspecified	Behaviour	[BQF]	..	216	
D.55	Undefined	Behaviour	[EWF]	...	216	
D.56	Implementation-defined	Behaviour	[FAB]	...	217	
D.57	Deprecated	Language	Features	[MEM]	...	217	
D.58	Implications	for	standardization	...	218	

Annex	E	(informative)	Vulnerability	descriptions	for	the	language	Python	...	221	
E.1	Identification	of	standards	and	associated	documents	...	221	
E.2	General	Terminology	and	Concepts	...	222	
E.3	Type	System	[IHN]	..	226	
E.4	Bit	Representations	[STR]	...	228	
E.5	Floating-point	Arithmetic	[PLF]	...	229	
E.6	Enumerator	Issues	[CCB]	...	229	
E.7	Numeric	Conversion	Errors	[FLC]	...	230	
E.8	String	Termination	[CJM]	..	231	
E.9	Buffer	Boundary	Violation	[HCB]	...	231	
E.10	Unchecked	Array	Indexing	[XYZ]	..	231	
E.11	Unchecked	Array	Copying	[XYW]	...	231	
E.12	Pointer	Casting	and	Pointer	Type	Changes	[HFC]	...	231	
E.13	Pointer	Arithmetic	[RVG]	..	231	
E.14	Null	Pointer	Dereference	[XYH]	...	231	
E.15	Dangling	Reference	to	Heap	[XYK]	...	231	
E.16	Arithmetic	Wrap-around	Error	[FIF]	...	232	
E.17	Using	Shift	Operations	for	Multiplication	and	Division	[PIK]	...	232	
E.18	Sign	Extension	Error	[XZI]	..	232	
E.19	Choice	of	Clear	Names	[NAI]	...	232	
E.20	Dead	Store	[WXQ]	..	234	
E.21	Unused	Variable	[YZS]	...	235	
E.22	Identifier	Name	Reuse	[YOW]	...	235	
E.23	Namespace	Issues	[BJL]	..	237	
E.24	Initialization	of	Variables	[LAV]	..	240	
E.25	Operator	Precedence/Order	of	Evaluation	[JCW]	...	240	
E.26	Side-effects	and	Order	of	Evaluation	[SAM]	...	241	
E.27	Likely	Incorrect	Expression	[KOA]	..	242	
E.28	Dead	and	Deactivated	Code	[XYQ]	..	243	
E.29	Switch	Statements	and	Static	Analysis	[CLL]	..	244	
E.30	Demarcation	of	Control	Flow	[EOJ]	..	244	
E.31	Loop	Control	Variables	[TEX]	...	245	
E.32	Off-by-one	Error	[XZH]	..	246	
E.33	Structured	Programming	[EWD]	..	246	
E.34	Passing	Parameters	and	Return	Values	[CSJ]	..	247	
E.35	Dangling	References	to	Stack	Frames	[DCM]	...	249	
E.36	Subprogram	Signature	Mismatch	[OTR]	...	249	
E.37	Recursion	[GDL]	..	249	
E.38	Ignored	Error	Status	and	Unhandled	Exceptions	[OYB]	...	249	
E.39	Termination	Strategy	[REU]	...	250	
E.40	Type-breaking	Reinterpretation	of	Data	[AMV]	..	250	
E.41	Memory	Leak	[XYL]	...	250	

E.42	Templates	and	Generics	[SYM]	..	251	
E.43	Inheritance	[RIP]	...	251	
E.44	Extra	Intrinsics	[LRM]	..	251	
E.45	Argument	Passing	to	Library	Functions	[TRJ]..	252	
E.46	Inter-language	Calling	[DJS]	...	252	
E.47	Dynamically-linked	Code	and	Self-modifying	Code	[NYY]	...	253	
E.48	Library	Signature	[NSQ]	..	253	
E.49	Unanticipated	Exceptions	from	Library	Routines	[HJW]	...	254	
E.50	Pre-processor	Directives	[NMP]	..	254	
E.51	Suppression	of	Language-defined	Run-time	Checking	[MXB]	..	254	
E.52	Provision	of	Inherently	Unsafe	Operations	[SKL]	..	254	
E.53	Obscure	Language	Features	[BRS]	...	255	
E.54	Unspecified	Behaviour	[BQF]	..	257	
E.55	Undefined	Behaviour	[EWF]	..	258	
E.56	Implementation–defined	Behaviour	[FAB]	...	259	
E.57	Deprecated	Language	Features	[MEM]	..	260	

Annex	F	(informative)	Vulnerability	descriptions	for	the	language	Ruby	...	261	
F.1	Identification	of	standards	and	associated	documents	...	261	
F.2	General	Terminology	and	Concepts	...	261	
F.3	Type	System	[IHN]	..	262	
F.4	Bit	Representations	[STR]	...	263	
F.5	Floating-point	Arithmetic	[PLF]	...	264	
F.6	Enumerator	Issues	[CCB]	...	264	
F.7	Numeric	Conversion	Errors	[FLC]	...	265	
F.8	String	Termination	[CJM]	..	265	
F.9	Buffer	Boundary	Violation	(Buffer	Overflow)	[HCB]	..	265	
F.10	Unchecked	Array	Indexing	[XYZ]	..	265	
F.11	Unchecked	Array	Copying	[XYW]	...	265	
F.12	Pointer	Casting	and	Pointer	Type	Changes	[HFC]	...	265	
F.13	Pointer	Arithmetic	[RVG]	..	266	
F.14	Null	Pointer	Dereference	[XYH]	...	266	
F.15	Dangling	Reference	to	Heap	[XYK]	...	266	
F.16	Arithmetic	Wrap-around	Error	[FIF]	...	266	
F.17	Using	Shift	Operations	for	Multiplication	and	Division	[PIK]	...	266	
F.18	Sign	Extension	Error	[XZI]	..	266	
F.19	Choice	of	Clear	Names	[NAI]	...	266	
F.20	Dead	Store	[WXQ]	..	267	
F.21	Unused	Variable	[YZS]	...	267	
F.22	Identifier	Name	Reuse	[YOW]	...	267	
F.23	Namespace	Issues	[BJL]	..	268	
F.24	Initialization	of	Variables	[LAV]	..	268	
F.25	Operator	Precedence/Order	of	Evaluation	[JCW]	...	268	
F.26	Side-effects	and	Order	of	Evaluation	[SAM]	...	269	
F.27	Likely	Incorrect	Expression	[KOA]	..	270	
F.28	Dead	and	Deactivated	Code	[XYQ]	...	270	
F.29	Switch	Statements	and	Static	Analysis	[CLL]	...	271	
F.30	Demarcation	of	Control	Flow	[EOJ]	..	271	
F.31	Loop	Control	Variables	[TEX]	...	271	
F.32	Off-by-one	Error	[XZH]	..	271	

F.33	Structured	Programming	[EWD]	..	272	
F.34	Passing	Parameters	and	Return	Values	[CSJ]	..	272	
F.35	Dangling	References	to	Stack	Frames	[DCM]	..	273	
F.36	Subprogram	Signature	Mismatch	[OTR]	...	273	
F.37	Recursion	[GDL]	..	274	
F.38	Ignored	Error	Status	and	Unhandled	Exceptions	[OYB]	...	274	
F.39	Termination	Strategy	[REU]	...	274	
F.40	Type-breaking	Reinterpretation	of	Data	[AMV]	..	274	
F.41	Memory	Leak	[XYL]	...	274	
F.42	Templates	and	Generics	[SYM]	..	275	
F.43	Inheritance	[RIP]	...	275	
F.44	Extra	Intrinsics	[LRM]	..	275	
F.45	Argument	Passing	to	Library	Functions	[TRJ]	..	275	
F.46	Inter-language	Calling	[DJS]	...	275	
F.47	Dynamically-linked	Code	and	Self-modifying	Code	[NYY]	..	276	
F.48	Library	Signature	[NSQ]	...	276	
F.49	Unanticipated	Exceptions	from	Library	Routines	[HJW]	..	276	
F.50	Pre-processor	Directives	[NMP]	..	276	
F.51	Suppression	of	Language-defined	Run-time	Checking	[MXB]	..	277	
F.52	Provision	of	Inherently	Unsafe	Operations	[SKL]	..	277	
F.53	Obscure	Language	Features	[BRS]	...	277	
F.54	Unspecified	Behaviour	[BQF]	...	277	
F.55	Undefined	Behaviour	[EWF]	..	277	
F.56	Implementation-defined	Behaviour	[FAB]	..	278	
F.57	Deprecated	Language	Features	[MEM]	..	278	

Annex	G	(informative)	Vulnerability	descriptions	for	the	language	SPARK	..	279	
G.1	Identification	of	standards	and	associated	documentation	..	279	
G.2	General	terminology	and	concepts	...	279	
G.3	Type	System	[IHN]	...	280	
G.4	Bit	Representation	[STR]	..	281	
G.5	Floating-point	Arithmetic	[PLF]	...	281	
G.6	Enumerator	Issues	[CCB]	..	281	
G.7	Numeric	Conversion	Errors	[FLC]	..	281	
G.8	String	Termination	[CJM]	..	281	
G.9	Buffer	Boundary	Violation	(Buffer	Overflow)	[HCB]	...	281	
G.10	Unchecked	Array	Indexing	[XYZ]	...	281	
G.11	Unchecked	Array	Copying	[XYW]	..	281	
G.12	Pointer	Casting	and	Pointer	Type	Changes	[HFC]	...	282	
G.13	Pointer	Arithmetic	[RVG]	..	282	
G.14	Null	Pointer	Dereference	[XYH]	..	282	
G.15	Dangling	Reference	to	Heap	[XYK]	..	282	
G.16	Arithmetic	Wrap-around	Error	[FIF]	..	282	
G.17	Using	Shift	Operations	for	Multiplication	and	Division	[PIK]	...	282	
G.18	Sign	Extension	Error	[XZI]	...	282	
G.19	Choice	of	Clear	Names	[NAI]	...	282	
G.20	Dead	store	[WXQ]	..	282	
G.21	Unused	Variable	[YZS]	..	283	
G.22	Identifier	Name	Reuse	[YOW]	...	283	
G.23	Namespace	Issues	[BJL]	..	283	

G.24	Initialization	of	Variables	[LAV]	...	283	
G.25	Operator	Precedence/Order	of	Evaluation	[JCW]	..	283	
G.26	Side-effects	and	Order	of	Evaluation	[SAM]	..	283	
G.27	Likely	Incorrect	Expression	[KOA]	...	283	
G.28	Dead	and	Deactivated	Code	[XYQ]	..	283	
G.29	Switch	Statements	and	Static	Analysis	[CLL]	..	284	
G.30	Demarcation	of	Control	Flow	[EOJ]	...	284	
G.31	Loop	Control	Variables	[TEX]	..	284	
G.32	Off-by-one	Error	[XZH]	...	284	
G.33	Structured	Programming	[EWD]	...	284	
G.34	Passing	Parameters	and	Return	Values	[CSJ]	...	284	
G.35	Dangling	References	to	Stack	Frames	[DCM]	...	285	
G.36	Subprogram	Signature	Mismatch	[OTR]	..	285	
G.37	Recursion	[GDL]	...	285	
G.38	Ignored	Error	Status	and	Unhandled	Exceptions	[OYB]	..	285	
G.39	Termination	Strategy	[REU]	..	285	
G.40	Type-breaking	Reinterpretation	of	Data	[AMV]	...	286	
G.41	Memory	Leak	[XYL]	..	286	
G.42	Templates	and	Generics	[SYM]	...	286	
G.43	Inheritance	[RIP]	..	286	
G.44	Extra	Intrinsics	[LRM]	...	286	
G.45	Argument	Passing	to	Library	Functions	[TRJ]	...	286	
G.46	Inter-language	Calling	[DJS]	..	286	
G.47	Dynamically-linked	Code	and	Self-modifying	Code	[NYY]	...	287	
G.48	Library	Signature	[NSQ]	..	287	
G.49	Unanticipated	Exceptions	from	Library	Routines	[HJW]	...	287	
G.50	Pre-Processor	Directives	[NMP]	..	287	
G.51	Suppression	of	Language-defined	Run-time	Checking	[MXB]	...	287	
G.52	Provision	of	Inherently	Unsafe	Operations	[SKL]	...	287	
G.53	Obscure	Language	Features	[BRS]	...	287	
G.54	Unspecified	Behaviour	[BQF]	..	288	
G.55	Undefined	Behaviour	[EWF]	...	288	
G.56	Implementation-Defined	Behaviour	[FAB]	...	288	
G.57	Deprecated	Language	Features	[MEM]	...	288	
G.58	Implications	for	standardization	...	288	

Annex	H	(informative)	Vulnerability	descriptions	for	the	language	PHP	..	289	
H.1	Identification	of	standards	and	associated	documentation	..	289	
H.2	General	Terminology	and	Concepts	..	290	
H.3	Type	System	[IHN]	...	291	
H.4	Bit	Representations	[STR]	...	292	
H.5	Floating-point	Arithmetic	[PLF]	...	293	
H.6	Enumerator	Issues	[CCB]	..	293	
H.7	Numeric	Conversion	Errors	[FLC]	..	294	
H.8	String	Termination	[CJM]	..	295	
H.9	Buffer	Boundary	Violation	(Buffer	Overflow)	[HCB]	...	296	
H.10	Unchecked	Array	Indexing	[XYZ]	...	296	
H.11	Unchecked	Array	Copying	[XYW]	..	296	
H.12	Pointer	Casting	and	Pointer	Type	Changes	[HFC]	...	296	
H.13	Pointer	Arithmetic	[RVG]	..	296	

H.14	Null	Pointer	Dereference	[XYH]	..	297	
H.15	Dangling	Reference	to	Heap	[XYK]	..	297	
H.16	Arithmetic	Wrap-around	Error	[FIF]	..	297	
H.17	Using	Shift	Operations	for	Multiplication	and	Division	[PIK]	...	298	
H.18	Sign	Extension	Error	[XZI]	...	299	
H.19	Choice	of	Clear	Names	[NAI]	...	299	
H.20	Dead	Store	[WXQ]	..	301	
H.21	Unused	Variable	[YZS]	..	301	
H.22	Identifier	Name	Reuse	[YOW]	...	301	
H.23	Namespace	Issues	[BJL]	..	302	
H.24	Initialization	of	Variables	[LAV]	...	303	
H.25	Operator	Precedence/Order	of	Evaluation	[JCW]	..	304	
H.26	Side-effects	and	Order	of	Evaluation	[SAM]	..	304	
H.27	Likely	Incorrect	Expression	[KOA]	..	305	
H.28	Dead	and	Deactivated	Code	[XYQ]	..	306	
H.29	Switch	Statements	and	Static	Analysis	[CLL]	..	307	
H.30	Demarcation	of	Control	Flow	[EOJ]	...	307	
H.31	Loop	Control	Variables	[TEX]	..	308	
H.32	Off-by-one	Error	[XZH]	...	309	
H.33	Structured	Programming	[EWD]	...	309	
H.34	Passing	Parameters	and	Return	Values	[CSJ]	...	310	
H.35	Dangling	References	to	Stack	Frames	[DCM]	...	310	
H.36	Subprogram	Signature	Mismatch	[OTR]	..	310	
H.37	Recursion	[GDL]	...	311	
H.38	Ignored	Error	Status	and	Unhandled	Exceptions	[OYB]	..	311	
H.39	Termination	Strategy	[REU]	..	313	
H.40	Type-breaking	Reinterpretation	of	Data	[AMV]	...	313	
H.41	Memory	Leak	[XYL]	..	313	
H.42	Templates	and	Generics	[SYM]	...	314	
H.43	Inheritance	[RIP]	..	314	
H.44	Extra	Intrinsics	[LRM]	...	314	
H.45	Argument	Passing	to	Library	Functions	[TRJ]	...	314	
H.46	Inter-language	Calling	[DJS]	..	314	
H.47	Dynamically-linked	Code	and	Self-modifying	Code	[NYY]	...	315	
H.48	Library	Signature	[NSQ]	..	315	
H.49	Unanticipated	Exceptions	from	Library	Routines	[HJW]	...	315	
H.50	Pre-processor	Directives	[NMP]	..	316	
H.51	Suppression	of	Run-time	Checking	[MXB]	...	316	
H.52	Provision	of	Inherently	Unsafe	Operations	[SKL]	...	316	
H.53	Obscure	Language	Features	[BRS]	...	316	
H.54	Unspecified	Behaviour	[BQF]	..	317	
H.55	Undefined	Behaviour	[EWF]	...	318	
H.56	Implementation–defined	Behaviour	[FAB]	..	319	
H.57	Deprecated	Language	Features	[MEM]	...	319	

Annex	I	(informative)	Vulnerability	descriptions	for	the	language	Fortran	..	320	
I.1	Identification	of	Standards	...	320	
I.2	General	Terminology	and	Concepts	...	320	
I.3	Type	System	[IHN]	...	323	
I.4	Bit	Representations	[STR]	..	324	

I.5	Floating-point	Arithmetic	[PLF]	..	325	
I.6	Enumerator	Issues	[CCB]	...	326	
I.7	Numeric	Conversion	Errors	[FLC]	..	326	
I.8	String	Termination	[CJM]	...	327	
I.9	Buffer	Boundary	Violation	[HCB]	..	327	
I.10	Unchecked	Array	Indexing	[XYZ]...	328	
I.11	Unchecked	Array	Copying	[XYW]	..	329	
I.12	Pointer	Casting	and	Pointer	Type	Changes	[HFC]	..	330	
I.13	Pointer	Arithmetic	[RVG]	...	330	
I.14	Null	Pointer	Dereference	[XYH]	..	330	
I.15.1	Applicability	to	language	...	331	
I.16	Arithmetic	Wrap-around	Error	[FIF]	...	331	
I.17	Using	Shift	Operations	for	Multiplication	and	Division	[PIK]	..	332	
I.18	Sign	Extension	Error	[XZI]	...	332	
I.19	Choice	of	Clear	Names	[NAI]	..	332	
I.20	Dead	Store	[WXQ]	...	333	
I.21	Unused	Variable	[YZS]	...	333	
I.22	Identifier	Name	Reuse	[YOW]	..	333	
I.23	Namespace	Issues	[BJL]	...	334	
I.24	Initialization	of	Variables	[LAV]	..	334	
I.25	Operator	Precedence/Order	of	Evaluation	[JCW]	..	334	
I.26	Side-effects	and	Order	of	Evaluation	[SAM]	..	335	
I.27	Likely	Incorrect	Expression	[KOA]	...	335	
I.28	Dead	and	Deactivated	Code	[XYQ]	...	336	
I.29	Switch	Statements	and	Static	Analysis	[CLL]	...	336	
I.30	Demarcation	of	Control	Flow	[EOJ]	..	336	
I.31	Loop	Control	Variables	[TEX]	..	337	
I.32	Off-by-one	Error	[XZH]	...	337	
I.33	Structured	Programming	[EWD]	...	338	
I.34	Passing	Parameters	and	Return	Values	[CSJ]	...	338	
I.35	Dangling	References	to	Stack	Frames	[DCM]	..	339	
I.36	Subprogram	Signature	Mismatch	[OTR]	...	339	
I.37	Recursion	[GDL]	...	339	
I.38	Ignored	Error	Status	and	Unhandled	Exceptions	[OYB]	...	340	
I.39	Termination	Strategy	[REU]	...	340	
I.40	Type-breaking	Reinterpretation	of	Data	[AMV]	..	341	
I.41	Memory	Leak	[XYL]	..	341	
I.42	Templates	and	Generics	[SYM]	...	341	
I.43	Inheritance	[RIP]	..	341	
I.44	Extra	Intrinsics	[LRM]	...	342	
I.45	Argument	Passing	to	Library	Functions	[TRJ]	..	342	
I.46	Inter-language	Calling	[DJS]	...	342	
I.47	Dynamically-linked	Code	and	Self-modifying	Code	[NYY]	..	343	
I.48	Library	Signature	[NSQ]	...	343	
I.49	Unanticipated	Exceptions	from	Library	Routines	[HJW]	..	343	
I.50	Pre-processor	Directives	[NMP]	...	343	
I.51	Suppression	of	Language-defined	Run-time	Checking	[MXB]	...	344	
I.52	Provision	of	Inherently	Unsafe	Operations	[SKL]	...	344	
I.53	Obscure	Language	Features	[BRS]	..	345	

I.54	Unspecified	Behaviour	[BQF]	...	345	
I.55	Undefined	Behaviour	[EWF]	...	345	
I.56	Implementation-defined	Behaviour	[FAB]	..	346	
I.57	Deprecated	Language	Features	[MEM]	..	346	
I.58	Implications	for	Standardization	..	347	

Bibliography	..	348	

Index	 351	

Page vi: [2] Deleted Santiago Urueña 5/26/15 1:35:00 PM

Furthermore,	to	focus	its	limited	resources,	the	working	group	developing	this	report	decided	to	defer	
comprehensive	treatment	of	several	subject	areas	until	future	editions	of	the	report.		These	subject	areas	
include:	

 Object-oriented	language	features	(although	some	simple	issues	related	to	inheritance	are	described	in	
6.43	Inheritance	[RIP])	

 Numerical	analysis	(although	some	simple	items	regarding	the	use	of	floating	point	are	described	in	6.5	
Floating-point	Arithmetic	[PLF])	

Inter-language	operability	
	

Page 1: [3] Moved to page 46 (Move #1) Stephen Michell 9/18/15 3:14:00 PM

Achour,	M.	(n.d.).	PHP	Manual.	Retrieved	3	5,	2012,	from	PHP:	http://www.php.net/manual/en/	

Brueggeman,	E.	(n.d.).	Retrieved	3	5,	2012,	from	The	Website	of	Elliott	Brueggeman	:	
http://www.ebrueggeman.com/blog/integers-and-floating-numbers	

Enums	for	Python	(Python	recipe).	(n.d.).	Retrieved	from	ActiveState:	http://code.activestate.com/recipes/67107/	

Goleman,	S.	(n.d.).	Extension	Writing	Part	I:	Introduction	to	PHP	and	Zend.	Retrieved	5	5,	12,	from	Zend	Developer	
Zone:	http://devzone.zend.com/303/extension-writing-part-i-introduction-to-php-and-zend/	

Isaac,	A.	G.	(2010,	06	23).	Python	Introduction.	Retrieved	05	12,	2011,	from	
https://subversion.american.edu/aisaac/notes/python4class.xhtml#introduction-to-the-interpreter	

Lutz,	M.	(2009).	Learning	Python.	Sebastopol,	CA:	O'Reilly	Media,	Inc.	

Lutz,	M.	(2011).	Programming	Python.	Sebastopol,	CA:	O'Reilly	Media,	Inc.	

Martelli,	A.	(2006).	Python	in	a	Nutshell.	Sebastopol,	CA:	O'Reilly	Media,	Inc.	

Norwak,	H.	(n.d.).	10	Python	Pitfalls.	Retrieved	05	13,	2011,	from	10	Python	Pitfalls:	
http://zephyrfalcon.org/labs/python_pitfalls.html	

Pilgrim,	M.	(2004).	Dive	Into	Python.	

Python	Gotchas.	(n.d.).	Retrieved	from	http://www.ferg.org/projects/python_gotchas.html	

source,	G.	(n.d.).	Big	List	of	Portabilty	in	Python.	Retrieved	6	12,	2011,	from	stackoverflow:	
http://stackoverflow.com/questions/1883118/big-list-of-portability-in-python	

The	Python	Language	Reference.	(n.d.).	Retrieved	from	python.org:	
http://docs.python.org/reference/index.html#reference-index	

Will	Dietz,	P.	L.	(n.d.).	Understanding	Integer	Overflow	in	C/C++.	Retrieved	3	5,	2012,	from	
http://www.cs.utah.edu/~regehr/papers/overflow12.pdf	

	
	

Page 5: [4] Deleted Stephen Michell 9/22/17 9:29:00 AM

Section	6.42	Violations	of	the	Liskov	Substitution		Principle	or	the	Contract	Model		
[BLP]	

6.42.1	Applicability	to	language	

TBD	

6.42.2	Guidance	to	language	users	

TBD	

	
6.43	Redispatching	[PPH]	

6.43.1	Applicability	to	language	

TBD	

6.43.2	Guidance	to	language	users	

TBD	

6.44	Polymorphic	variables	[BKK]	

6.44.1	Applicability	to	language	

TBD	

6.44.2	Guidance	to	language	users	

TBD	

	

6.45	Extra	Intrinsics	[LRM]6.43	Extra	Intrinsics	[LRM]	
	

Page 7: [5] Deleted Stephen Michell 9/22/17 9:38:00 AM

19	 Avoid	fall-through	from	one	case	(or	switch)	statement	into	the	following	
case	statement:	if	a	fall-through	is	necessary	then	provide	a	comment	to	
inform	the	reader	that	it	is	intentional.	

	

Page 14: [6] Deleted Stephen Michell 6/25/15 4:35:00 AM

6.17E.18	Sign	Extension	Error	[XZI]	

This	vulnerability	is	not	applicable	to	Python	because	Python	converts	between	types	without	ever	extending	the	
sign.	

Page 32: [7] Deleted Stephen Michell 3/7/17 11:09:00 AM

6.38E.39	Termination	Strategy	[REU]	

6.38E.39.1	Applicability	to	language	

Python	has	a	rich	set	of	exception	handling	statements	which	can	be	utilized	to	implement	a	termination	strategy	
that	assures	the	best	possible	outcome	ranging	from	a	hard	stop	to	a	clean-up	and	fail	soft	strategy.	Refer	to	6.37	
Ignored	Error	Status	and	Unhandled	Exceptions	[OYB]E.38	for	an	example	of	an	implementation	that	cleans	up	
and	continues.	

6.38E.39.2	Guidance	to	language	users	

 Use	Python’s	exception	handling	statements	to	implement	an	appropriate	termination	strategy.	

Page 45: [8] Deleted Stephen Michell 3/7/17 11:27:00 AM

	

	

Page 45: [9] Deleted Santiago Urueña 5/26/15 12:47:00 PM

[4]	 ISO/IEC	9899:2011,	Information	technology	—	Programming	languages	—	C	

[5]	 ISO/IEC	9899:2011/Cor.1:2012,	Technical	Corrigendum	1	

[6]	 ISO/IEC	30170:2012,	Information	technology	—	Programming	languages	—	Ruby	

[7]	 ISO/IEC/IEEE	60559:2011,	Information	technology	–	Microprocessor	Systems	–	Floating-Point	arithmetic	

[8]	 ISO/IEC	1539-1:2010,	Information	technology	—	Programming	languages	—	Fortran	—	Part	1:	Base	
language	

[9]	 ISO/IEC	8652:1995,	Information	technology	—	Programming	languages	—	Ada	

[10]	 ISO/IEC	14882:2011,	Information	technology	—	Programming	languages	—	C++	

[11]	 R.	Seacord,	The	CERT	C	Secure	Coding	Standard.	Boston,MA:	Addison-Westley,	2008.	

[12]	 Motor	Industry	Software	Reliability	Association.	Guidelines	for	the	Use	of	the	C	Language	in	Vehicle	Based	
Software,	2012	(third	edition)16F

1.	

[13]	 ISO/IEC	TR24731–1,	Information	technology	—	Programming	languages,	their	environments	and	system	
software	interfaces	—	Extensions	to	the	C	library	—	Part	1:	Bounds-checking	interfaces	

																																																													
1	The	first	edition	should	not	be	used	or	quoted	in	this	work.	

[14]	 ISO/IEC	TR	15942:2000,	Information	technology	—	Programming	languages	—	Guide	for	the	use	of	the	
	 Ada	programming	language	in	high	integrity	systems	

[15]	 Joint	Strike	Fighter	Air	Vehicle:	C++	Coding	Standards	for	the	System	Development	and	Demonstration	
Program.	Lockheed	Martin	Corporation.	December	2005.	

[16]	 Motor	Industry	Software	Reliability	Association.	Guidelines	for	the	Use	of	the	C++	Language	in	critical	
systems,	June	2008	

[17]	 ISO/IEC	TR	24718:	2005,	Information	technology	—	Programming	languages	—	Guide	for	the	use	of	the	
Ada	Ravenscar	Profile	in	high	integrity	systems	

[18]	 L.	Hatton,	Safer	C:	developing	software	for	high-integrity	and	safety-critical	systems.	McGraw-Hill	1995	

[19]	 ISO/IEC	15291:1999,	Information	technology	—	Programming	languages	—	Ada	Semantic	Interface	
Specification	(ASIS)	

[20]	 Software	Considerations	in	Airborne	Systems	and	Equipment	Certification.	Issued	in	the	USA	by	the	
Requirements	and	Technical	Concepts	for	Aviation	(document	RTCA	SC167/DO-178B)	and	in	Europe	by	the	
European	Organization	for	Civil	Aviation	Electronics	(EUROCAE	document	ED-12B).December	1992.	

[21]	 IEC	61508:	Parts	1-7,	Functional	safety:	safety-related	systems.	1998.	(Part	3	is	concerned	with	software).	

[22]	 ISO/IEC	15408:	1999	Information	technology.	Security	techniques.	Evaluation	criteria	for	IT	security.	

[23]	 J	Barnes,	High	Integrity	Software	-	the	SPARK	Approach	to	Safety	and	Security.	Addison-Wesley.	2002.	

Page 45: [10] Deleted Santiago Urueña 5/26/15 12:48:00 PM

[26]	 ARIANE	5:	Flight	501	Failure,	Report	by	the	Inquiry	Board,	July	19,	1996	
http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf		

[27]	 Hogaboom,	Richard,	A	Generic	API	Bit	Manipulation	in	C,	Embedded	Systems	Programming,	Vol	12,	No	7,	
July	1999	http://www.embedded.com/1999/9907/9907feat2.htm	

Page 46: [11] Deleted Santiago Urueña 5/26/15 1:31:00 PM

[38]	 GAO	Report,	Patriot	Missile	Defense:	Software	Problem	Led	to	System	Failure	at	Dhahran,	Saudi	Arabia,	B-
247094,	Feb.	4,	1992,	http://archive.gao.gov/t2pbat6/145960.pdf	

[39]	 Robert	Skeel,	Roundoff	Error	Cripples	Patriot	Missile,	SIAM	News,	Volume	25,	Number	4,	July	1992,	page	
11,	http://www.siam.org/siamnews/general/patriot.htm	

[40]	 CERT.	CERT	C++	Secure	Coding	
Standard.		https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637	(2009).		

[41]	 Holzmann,	Garard	J.,	Computer,	vol.	39,	no.	6,	pp	95-97,	Jun.,	2006,	The	Power	of	10:	Rules	for	Developing	
Safety-Critical	Code	

[42]	 P.	V.	Bhansali,	A	systematic	approach	to	identifying	a	safe	subset	for	safety-critical	software,	ACM	SIGSOFT	
Software	Engineering	Notes,	v.28	n.4,	July	2003	

[43]	 Ada	95	Quality	and	Style	Guide,	SPC-91061-CMC,	version	02.01.01.	Herndon,	Virginia:	Software	
Productivity	Consortium,	1992.		Available	from:	http://www.adaic.org/docs/95style/95style.pdf	

[44]	 Ghassan,	A.,	&	Alkadi,	I.	(2003).	Application	of	a	Revised	DIT	Metric	to	Redesign	an	OO	Design.	Journal	of	
Object	Technology	,	127-134.	

[45]	 Subramanian,	S.,	Tsai,	W.-T.,	&	Rayadurgam,	S.	(1998).	Design	Constraint	Violation	Detection	in	Safety-
Critical	Systems.	The	3rd	IEEE	International	Symposium	on	High-Assurance	Systems	Engineering	,	109	-	
116.	

[46]	Lundqvist,	K	and	Asplund,	L.,	“A	Formal	Model	of	a	Run-Time	Kernel	for	Ravenscar”,	The	6th	International	
Conference	on	Real-Time	Computing	Systems	and	Applications	–	RTCSA	1999	
	

Page 48: [12] Deleted Santiago Urueña 5/26/15 12:38:00 PM

Section Break (Continuous)		
Ada,	13,	59,	63,	73,	76	
AMV	–	Type-breaking	Reinterpretation	of	Data,	72	
API	

Application	Programming	Interface,	16	
APL,	48	
Apple	

OS	X,	120	
application	vulnerabilities,	9	
Application	Vulnerabilities	

Adherence	to	Least	Privilege	[XYN],	113	
Authentication	Logic	Error	[XZO],	135	
Cross-site	Scripting	[XYT],	125	
Discrepancy	Information	Leak	[XZL],	129	
Distinguished	Values	in	Data	Types	[KLK],	112	
Download	of	Code	Without	Integrity	Check	[DLB],	137	
Executing	or	Loading	Untrusted	Code	[XYS],	116	
Hard-coded	Password	[XYP],	136	
Improper	Restriction	of	Excessive	Authentication	

Attempts	[WPL],	140	
Improperly	Verified	Signature	[XZR],	128	
Inclusion	of	Functionality	from	Untrusted	Control	

Sphere	[DHU],	139	
Incorrect	Authorization	[BJE],	138	
Injection	[RST],	122	
Insufficiently	Protected	Credentials	[XYM],	133	
Memory	Locking	[XZX],	117	
Missing	or	Inconsistent	Access	Control	[XZN],	134	
Missing	Required	Cryptographic	Step	[XZS],	133	
Path	Traversal	[EWR],	130	
Privilege	Sandbox	Issues	[XYO],	114	
Resource	Exhaustion	[XZP],	118	
Resource	Names	[HTS],	120	
Sensitive	Information	Uncleared	Before	Use	[XZK],	130	
Unquoted	Search	Path	or	Element	[XZQ],	127	
Unrestricted	File	Upload	[CBF],	119	
Unspecified	Functionality	[BVQ],	111	
URL	Redirection	to	Untrusted	Site	('Open	Redirect')	

[PYQ],	140	
Use	of	a	One-Way	Hash	without	a	Salt	[MVX],	141	

application	vulnerability,	5	
Ariane	5,	21	

		
bitwise	operators,	48	
BJE	–	Incorrect	Authorization,	138	
BJL	–	Namespace	Issues,	43	
black-list,	120,	124	
BQF	–	Unspecified	Behaviour,	92,	94,	95	
break,	60	
BRS	–	Obscure	Language	Features,	91	
buffer	boundary	violation,	23	
buffer	overflow,	23,	26	
buffer	underwrite,	23	
BVQ	–	Unspecified	Functionality,	111	
		
C,	22,	48,	50,	51,	58,	60,	63,	73	
C++,	48,	51,	58,	63,	73,	76,	86	
C11,	192	
call	by	copy,	61	
call	by	name,	61	
call	by	reference,	61	
call	by	result,	61	
call	by	value,	61	
call	by	value-result,	61	
CBF	–	Unrestricted	File	Upload,	119	
CCB	–	Enumerator	Issues,	18	
CGA	–	Concurrency	–	Activation,	98	
CGM	–	Protocol	Lock	Errors,	105	
CGS	–	Concurrency	–	Premature	Termination,	103	
CGT	-	Concurrency	–	Directed	termination,	100	
CGX	–	Concurrent	Data	Access,	101	
CGY	–	Inadequately	Secure	Communication	of	

Shared	Resources,	107	
CJM	–	String	Termination,	22	
CLL	–	Switch	Statements	and	Static	Analysis,	54	
concurrency,	2	
continue,	60	
cryptologic,	71,	128	
CSJ	–	Passing	Parameters	and	Return	Values,	61,	82	
		
dangling	reference,	31	
DCM	–	Dangling	References	to	Stack	Frames,	63	
Deactivated	code,	53	
Dead	code,	53	
deadlock,	106	

DHU	–	Inclusion	of	Functionality	from	Untrusted	
Control	Sphere,	139	

Diffie-Hellman-style,	136	
digital	signature,	84	
DJS	–	Inter-language	Calling,	81	
DLB	–	Download	of	Code	Without	Integrity	Check,	

137	
DoS	

Denial	of	Service,	118	
dynamically	linked,	83	
		
EFS	–	Use	of	unchecked	data	from	an	uncontrolled	

or	tainted	source,	109	
encryption,	128,	133	
endian	

big,	15	
little,	15	

endianness,	14	
Enumerations,	18	
EOJ	–	Demarcation	of	Control	Flow,	56	
EWD	–	Structured	Programming,	60	
EWF	–	Undefined	Behaviour,	92,	94,	95	
EWR	–	Path	Traversal,	124,	130	
exception	handler,	86	
		
FAB	–	Implementation-defined	Behaviour,	92,	94,	95	
FIF	–	Arithmetic	Wrap-around	Error,	34,	35	
FLC	–	Numeric	Conversion	Errors,	20	
Fortran,	73	
		
GDL	–	Recursion,	67	
generics,	76	
GIF,	120	
goto,	60	
		
HCB	–	Buffer	Boundary	Violation	(Buffer	Overflow),	

23,	82	
HFC	–	Pointer	Casting	and	Pointer	Type	Changes,	28	
HJW	–	Unanticipated	Exceptions	from	Library	

Routines,	86	
HTML	

Hyper	Text	Markup	Language,	124	
HTS	–	Resource	Names,	120	
HTTP	

Hypertext	Transfer	Protocol,	127	
		
IEC	60559,	16	
IEEE	754,	16	
IHN	–Type	System,	12	
inheritance,	78	
IP	address,	119	
		
Java,	18,	50,	52,	76	
JavaScript,	125,	126,	127	
JCW	–	Operator	Precedence/Order	of	Evaluation,	47	

		
KLK	–	Distinguished	Values	in	Data	Types,	112	
KOA	–	Likely	Incorrect	Expression,	50	
		
language	vulnerabilities,	9	
Language	Vulnerabilities	

Argument	Passing	to	Library	Functions	[TRJ],	80	
Arithmetic	Wrap-around	Error	[FIF],	34	
Bit	Representations	[STR],	14	
Buffer	Boundary	Violation	(Buffer	Overflow)	[HCB],	23	
Choice	of	Clear	Names	[NAI],	37	
Concurrency	–	Activation	[CGA],	98	
Concurrency	–	Directed	termination	[CGT],	100	
Concurrency	–	Premature	Termination	[CGS],	103	
Concurrent	Data	Access	[CGX],	101	
Dangling	Reference	to	Heap	[XYK],	31	
Dangling	References	to	Stack	Frames	[DCM],	63	
Dead	and	Deactivated	Code	[XYQ],	52	
Dead	Store	[WXQ],	39	
Demarcation	of	Control	Flow	[EOJ],	56	
Deprecated	Language	Features	[MEM],	97	
Dynamically-linked	Code	and	Self-modifying	Code	

[NYY],	83	
Enumerator	Issues	[CCB],	18	
Extra	Intrinsics	[LRM],	79	
Floating-point	Arithmetic	[PLF],	xvii,	16	
Identifier	Name	Reuse	[YOW],	41	
Ignored	Error	Status	and	Unhandled	Exceptions	[OYB],	

68	
Implementation-defined	Behaviour	[FAB],	95	
Inadequately	Secure	Communication	of	Shared	

Resources	[CGY],	107	
Inheritance	[RIP],	78	
Initialization	of	Variables	[LAV],	45	
Inter-language	Calling	[DJS],	81	
Library	Signature	[NSQ],	84	
Likely	Incorrect	Expression	[KOA],	50	
Loop	Control	Variables	[TEX],	57	
Memory	Leak	[XYL],	74	
Namespace	Issues	[BJL],	43	
Null	Pointer	Dereference	[XYH],	30	
Numeric	Conversion	Errors	[FLC],	20	
Obscure	Language	Features	[BRS],	91	
Off-by-one	Error	[XZH],	58	
Operator	Precedence/Order	of	Evaluation	[JCW],	47	
Passing	Parameters	and	Return	Values	[CSJ],	61,	82	
Pointer	Arithmetic	[RVG],	29	
Pointer	Casting	and	Pointer	Type	Changes	[HFC],	28	
Pre-processor	Directives	[NMP],	87	
Protocol	Lock	Errors	[CGM],	105	
Provision	of	Inherently	Unsafe	Operations	[SKL],	90	
Recursion	[GDL],	67	
Side-effects	and	Order	of	Evaluation	[SAM],	49	
Sign	Extension	Error	[XZI],	36	

String	Termination	[CJM],	22	
Structured	Programming	[EWD],	60	
Subprogram	Signature	Mismatch	[OTR],	65	
Suppression	of	Language-defined	Run-time	Checking	

[MXB],	89	
Switch	Statements	and	Static	Analysis	[CLL],	54	
Templates	and	Generics	[SYM],	76	
Termination	Strategy	[REU],	70	
Type	System	[IHN],	12	
Type-breaking	Reinterpretation	of	Data	[AMV],	72	
Unanticipated	Exceptions	from	Library	Routines	[HJW],	

86	
Unchecked	Array	Copying	[XYW],	27	
Unchecked	Array	Indexing	[XYZ],	25	
Uncontrolled	Fromat	String	[SHL],	110	
Undefined	Behaviour	[EWF],	94	
Unspecified	Behaviour	[BFQ],	92	
Unused	Variable	[YZS],	40	
Use	of	unchecked	data	from	an	uncontrolled	or	tainted	

source	[EFS],	109	
Using	Shift	Operations	for	Multiplication	and	Division	

[PIK],	35	
language	vulnerability,	5	
LAV	–	Initialization	of	Variables,	45	
LHS	(left-hand	side),	241	
Linux,	120	
livelock,	106	
longjmp,	60	
LRM	–	Extra	Intrinsics,	79	
		
MAC	address,	119	
macof,	118	
MEM	–	Deprecated	Language	Features,	97	
memory	disclosure,	130	
Microsoft	

Win16,	121	
Windows,	117	
Windows	XP,	120	

MIME	
Multipurpose	Internet	Mail	Extensions,	124	

MISRA	C,	29	
MISRA	C++,	87	
mlock(),	117	
MVX	–	Use	of	a	One-Way	Hash	without	a	Salt,	141	
MXB	–	Suppression	of	Language-defined	Run-time	

Checking,	89	
		
NAI	–	Choice	of	Clear	Names,	37	
name	type	equivalence,	12	
NMP	–	Pre-Processor	Directives,	87	
NSQ	–	Library	Signature,	84	
NTFS	

New	Technology	File	System,	120	
NULL,	31,	58	
NULL pointer,	31	

null-pointer,	30	
NYY	–	Dynamically-linked	Code	and	Self-modifying	

Code,	83	
		
OTR	–	Subprogram	Signature	Mismatch,	65,	82	
OYB	–	Ignored	Error	Status	and	Unhandled	

Exceptions,	68,	163	
		
Pascal,	82	
PHP,	124	
PIK	–	Using	Shift	Operations	for	Multiplication	and	

Division,	34,	35,	197	
PLF	–	Floating-point	Arithmetic,	xvii,	16	
POSIX,	99	
pragmas,	75,	96	
predictable	execution,	4,	8	
PYQ	–	URL	Redirection	to	Untrusted	Site	('Open	

Redirect'),	140	
		
real	numbers,	16	
Real-Time	Java,	105	
resource	exhaustion,	118	
REU	–	Termination	Strategy,	70	
RIP	–	Inheritance,	xvii,	78	
rsize_t,	22	
RST	–	Injection,	109,	122	
runtime-constraint	handler,	191	
RVG	–	Pointer	Arithmetic,	29	
		
safety	hazard,	4	
safety-critical	software,	5	
SAM	–	Side-effects	and	Order	of	Evaluation,	49	
security	vulnerability,	5	
SeImpersonatePrivilege,	115	
setjmp,	60	
SHL	–	Uncontrolled	Format	String,	110	
size_t,	22	
SKL	–	Provision	of	Inherently	Unsafe	Operations,	90	
software	quality,	4	
software	vulnerabilities,	9	
SQL	

Structured	Query	Language,	112	
STR	–	Bit	Representations,	14	
strcpy,	23	
strncpy,	23	
structure	type	equivalence,	12	
switch,	54	
SYM	–	Templates	and	Generics,	76	
symlink,	131	
		
tail-recursion,	68	
templates,	76,	77	
TEX	–	Loop	Control	Variables,	57	
thread,	2	
TRJ	–	Argument	Passing	to	Library	Functions,	80	
type	casts,	20	

type	coercion,	20	
type	safe,	12	
type	secure,	12	
type	system,	12	
		
UNC	

Uniform	Naming	Convention,	131	
Universal	Naming	Convention,	131	

Unchecked_Conversion,	73	
UNIX,	83,	114,	120,	131	
unspecified	functionality,	111	
Unspecified	functionality,	111	
URI	

Uniform	Resource	Identifier,	127	
URL	

Uniform	Resource	Locator,	127	
		
VirtualLock(),	117	
		
white-list,	120,	124,	127	
Windows,	99	
WPL	–	Improper	Restriction	of	Excessive	

Authentication	Attempts,	140	
WXQ	–	Dead	Store,	39,	40,	41	
		
XSS	

Cross-site	scripting,	125	
XYH	–	Null	Pointer	Deference,	30	
XYK	–	Dangling	Reference	to	Heap,	31	
XYL	–	Memory	Leak,	74	
XYM	–	Insufficiently	Protected	Credentials,	9,	133	
XYN	–Adherence	to	Least	Privilege,	113	
XYO	–	Privilege	Sandbox	Issues,	114	
XYP	–	Hard-coded	Password,	136	
XYQ	–	Dead	and	Deactivated	Code,	52	
XYS	–	Executing	or	Loading	Untrusted	Code,	116	
XYT	–	Cross-site	Scripting,	125	
XYW	–	Unchecked	Array	Copying,	27	
XYZ	–	Unchecked	Array	Indexing,	25,	28	
XZH	–	Off-by-one	Error,	58	
XZI	–	Sign	Extension	Error,	36	
XZK	–	Senitive	Information	Uncleared	Before	Use,	

130	
XZL	–	Discrepancy	Information	Leak,	129	
XZN	–	Missing	or	Inconsistent	Access	Control,	134	
XZO	–	Authentication	Logic	Error,	135	
XZP	–	Resource	Exhaustion,	118	
XZQ	–	Unquoted	Search	Path	or	Element,	127	
XZR	–	Improperly	Verified	Signature,	128	
XZS	–	Missing	Required	Cryptographic	Step,	133	
XZX	–	Memory	Locking,	117	
		
YOW	–	Identifier	Name	Reuse,	41,	44	
YZS	–	Unused	Variable,	39,	40	

Section Break (Next Page)

	

