
6.X	Object	method	qualification	[???]	

6.X.1	Description	of	application	vulnerability	

A	number	of	OO	languages	support	the	idea	of	member	function	qualification:	for	example	in	C++	
const	and	static,	in	Ada	<what’s	the	Ada	–	or	other	language’s	-	equivalent>.	Where:	

• a	const	member	function	doesn’t	alter	(write)	any	member	variables	of	a	class	instance,	nor	
calls	any	non-const	functions	of	the	class	

• a	static	member	function	doesn’t	access	(read	or	write)	any	member	variables	of	the	class	
instance,	nor	calls	any	non-static	functions	of	the	class.	A	static	function	may	access	
variables	for	which	there	is	only	one	instance	accessed	by	all	objects	of	that	class	(in	C++	
terms,	a	static	member	variable)	

It	is	generally	regarded	as	good	programming	practice	to	document	the	intended	use	to	be	made	of	
a	variable	when	it	is	passed	as	a	function	parameter,	by	making	the	parameter	const	if	there	is	no	
intension	to	modify	the	variable	or	non-const	if	it	may	be	modified.	This	is	particularly	significant	if	
the	parameter	is	passed	by	reference	rather	than	value.		

If	the	parameter	is	of	class	type,	and	a	call	of	a	class	member	function	is	required,	if	the	class	
member	function	is	not	qualified	as	const,	the	parameter	must	be	non-const,	as	calling	the	function	
may	modify	the	parameter	object.	Conversely,	for	a	const	parameter	object,	only	const	member	
function	may	be	called	on	it.	

6.X.2	Cross	references	

MISRA	C++:2008		rule	9-3-3	
JSF++		rule	69	
+TBD	
	
6.X.3	Mechanism	of	failure	

If	a	class	member	function	that	could	be	const	is	not	qualified	as	const,	then	the	expected	use	of	a	
function	parameter	of	this	class	type	(or	reference)	cannot	be	documented	as	const	if	that	
unqualified	member	function	needs	to	be	called.	

Whilst	not	a	failure	as	such,	a	valuable	piece	of	documentation	of	programmer	intent	may	be	lost	,	
which	can	impact	future	maintenance,	with	what	was	intended	to	be	a	constant	object	getting	
modified.	

Similarly,	if	a	class	member	function	that	could	be	static	is	not	qualified	as	static,	then	that	function	
will	not	be	available	to	be	used	without	access	to	an	object	of	the	required	class	type.	

These	two	properties	have	to	be	considered	together	as	they	both	consider	what	use	is	to	be	made	
of	member	variables	of	a	class	instance	

6.X.4	Application	language	characteristics	

This	vulnerability	applies	to	OO	languages	which	support	the	notions	of	const	and/or	static	member	
function	qualification		

6.X.5	Avoiding	the	vulnerability	or	mitigating	its	effects	



A	number	of	static	analysis	standards	have	rules	along	the	lines	‘any	class	member	function	that	can	
be	made	static,	shall	be	made	static’	‘any	non-static	class	member	function	that	can	be	made	const	
shall	be	made	const’	

6.X.6	Implications	for	language	design	and	evolution	

Whether	a	class	member	function	may	be	const	or	static	is	an	easy	property	for	a	compiler	to	
determine,	As	a	minimum,	compilers	should	give	a	warning	if:		

• a	class	member	function	that	could	be	static	is	not	qualified	as	static	
• a	class	member	function	that	could	be	const	is	not	qualified	as	const	

	

	

	

	

	

	

	

	


