
ISO/IEC	JTC	1/SC	22/WG23	N0685	

Date:	21	January	2017	
	

	
6.37	Fault	Tolerance	and	Failure	Strategies	[REU]		

6.37.1	Description	of	application	vulnerability	

Check	that	the	current	writeup	works	now.	

AI	-		to	Erhard	to	rework	this	vulnerability	to	focus	not	on	fault	tolerance	itself,	but	on	vulnerabilities	
caused	by	it.	

In	spite	of	the	best	intentions,	system	components	may	fail,	either	from	internally	poorly	written	
software	or	external	forces	such	as	power	outages/variations,	radiation	or	inadmissible	user	input.		

Reasons	for	failures	are	plentiful	and	varied,	stemming	from	both	hard-	and	software.	Hence	the	
mechanisms	of	primary	failure	can	be	described	only	in	very	general	terms:		

• omission	failures:	a	service	is	asked	for	but	never	rendered.	The	client	might	wait	forever	or	
be	notified	about	the	failure	(termination)	of	the	service.	

• commission	failures:	a	service	initiates	unexpected	actions,	e.	g.,		communication	that	is	
unexpected	by	the	receiver.	The	service	might	wait	forever,	causing	omission	failures	for	
subsequent	calls	by	clients.	The	receiver	might	be	hindered	to	do	its	legitimate	actions	in	
time.	At	a	minimum,	resources	are	consumed	that	are	possibly	needed	by	others.		

• timing	failures:	a	service	is	not	rendered	before	an	imposed	deadline.	System	responses	will	
be	(too)	late,	causing	corresponding	damages	to	the	real	world	affected	by	the	system.	

• Value	failures:	a	service	delivers	incorrect	or	tainted	results.	The	client	continues	
computations	with	these	corrupted	values,	causing	a	spread	of	consequential	application	
errors.		

Faults	are	the	points	in	execution	where	a	failure	manifests	by	processing	going	wrong.	If	unnoticed	
or	unhandled,	they	turn	into	failures	at	the	boundaries	of	enclosing	control	units	or	components.	
Failures	of	services	are	faults	to	their	clients	and,	if	not	handled,	lead	to	a	failure	of	the	client	and	
consequently	to	faults	and	failures	in	its	clients,	possibly	until	the	entire	system	fails.		

Detection	and	handling	of	faults	constitutes	the	fault	tolerance	code	of	the	system.	The	mechanisms	
of	fault	tolerance	are	manifold,	corresponding	to	the	nature	of	the	failure	and	the	needs	of	the	
application,	and	range	from	recovery	with	subsequent	normal	continuation	of	the	system	(“full	fault	
tolerance”)	or	restricted	continuation	(“graceful	degradation”,	“fail	soft”)		to	termination	of	the	
system	(“fail	stop”,	“fail	safe”,	“fail-secure”),	possibly	combined	with	a	subsequent	restart.	

As	such,	fault	tolerance	is	itself	a	potential	source	of	vulnerabilities,	particularly	when	inappropriate	
or	incomplete	strategies	are	implemented.	Fault-handling	code	is	difficult	to	design	and	program,	
since	it	needs	to	execute	in	an	already	damaged	environment.	Handler	code	is	also	difficult	to	test,	
since	it	is	executed	only	when	primary	failures	have	occurred.	These	failures,	e.g.	radiation	damage,	
may	be	impossible	to	recreate	with	sufficient	coverage	in	a	testing	environment.	Moreover,	it	is	not	

Stephen Michell� 2017-1-21 10:12 PM
Formatted: Right

Microsoft� 2017-1-21 7:51 PM
Formatted: Font color: Red

Stephen Michell� 2017-1-21 8:49 PM
Comment [1]: Failure	strategy	is	both	an	
application	vulnerability	and	a	programming	
language	vulnerability.	The	programming	language	
pieces,	exception	handling,	concurrency	issues,	etc.	
are	fairly	well	covered.	The	design	of	fault	tolerance	
strategies	is	probably	for	section	7.	
	

Microsoft� 2017-1-21 7:51 PM
Formatted: Font color: Red
Stephen Michell� 2017-1-21 8:49 PM
Deleted:
.		

Microsoft� 2017-1-21 7:51 PM
Formatted: Font color: Red
Microsoft� 2017-1-21 7:51 PM
Deleted: .

Microsoft� 2017-1-21 6:11 PM
Moved (insertion) [1]
Microsoft� 2017-1-21 6:11 PM
Deleted: .		

Microsoft� 2017-1-21 6:11 PM
Deleted: s

Microsoft� 2017-1-21 6:11 PM
Deleted: encounter	a	

Microsoft� 2017-1-21 6:11 PM
Deleted: ure

Microsoft� 2017-1-21 7:03 PM
Formatted: List Paragraph, Bulleted +
Level: 1 + Aligned at: 0.63 cm + Indent at:
 1.27 cm

easy	to	determine	the	right	kind	of	fault	tolerance	for	a	given	fault.	For	security,	termination	of	the	
malfunctioning	system	may	be	the	best	action;	for	safety,	termination	may	be	more	catastrophic	
than	any	other	fault	tolerance	mechanism.		

Arising	vulnerabilities	are,	for	example:	

• The	fault	is	not	recognized	and	the	system	malfunctions	or	terminates	as	a	consequence	
• The	fault	is	recognized	but	the	damage	already	done	is	incompletely	repaired,	with	the	same	

consequences	as	in	the	first	bullet	
• A	value	fault	is	recognized	too	late,	allowing	the	incorrect	value	to	be	used	in	the	

computations	of	other,	thus	corrupted,	values	(which,	if	not	repaired,	can	cause	
vulnerabilities	such	as	buffer	overflows)		

• The	fault	tolerance	processing	takes	too	long	to	meet	timing	demands	
• Recovery	is	prevented	by	the	cause	of	a	permanent	fault,	e.g.,	a	programming	error,	leading	

to	an	infinite	series	of	recovery	attempts	
• The	fault	tolerance	mechanism	causes	itself	new	faults	

For	vulnerabilities	caused	by	termination	issues	associated	with	multiple	threads,	multiple	processors	
or	interrupts	also	see	Error!	Reference	source	not	found.	Error!	Reference	source	not	found.	and	
Error!	Reference	source	not	found.Error!	Reference	source	not	found..		Situations	that	cause	an	
application	to	terminate	unexpectedly	or	that	cause	an	application	to	not	terminate	because	of	other	
vulnerabilities	are	covered	in	those	vulnerabilities.	The	vulnerability	at	hand	discusses	the	overall	
fault	treatment	strategy	applicable	to	single-threaded	or	multi-threaded	programs.	

Triggering	known	fault	detection	mechanisms	can	be	used	to	initiate	or	aggravate	Denial-of-Service	
attacks.	Knowledge	of	a	lack	of	fault	detection,	particularly	of	value	faults,	can	be	used	to	initiate	
system	intrusions	through	mechanisms	explained	elsewhere	in	this	Tr.	

-----	drop	from	here	…	

	

When	a	fault	is	detected	in	a	component,	there	are	many	ways	in	which	the	component	can	react.		
The	quickest	and	most	noticeable	way	is	to	fail	hard,	also	known	as	fail	fast	or	fail	stop.		The	reaction	
to	a	detected	fault	is	then	to	halt	the	affected	service	(or	entire	system).		Alternatively,	the	reaction	
to	a	detected	fault	could	be	to	fail	soft.		The	system	would	keep	working	with	the	fault	present,	but	
the	performance	of	the	system	would	be	degraded.		Systems	used	in	a	high	availability	environment	
such	as	telephone	switching	centers,	e-commerce,	or	other	"always	available"	applications	would	
likely	use	such	a	fail-soft	approach,	also	termed	“graceful	degradation”.		Full	fault	tolerance	is	
achieved	when	the	fault	is	all	but	indistinguishable	from	the	normal	behavior	of	the	component,	e.	g.	
through	the	use	of	redundancy.	What	is	actually	done	in	a	fail-soft	approach	can	vary	depending	on	
whether	the	system	is	used	for	safety-critical	or	security-critical	purposes.		For	fail-safe	systems,	such	
as	flight	controllers,	traffic	signals,	or	medical	monitoring	systems,	there	would	be	no	effort	to	meet	
normal	operational	requirements,	but	rather	to	limit	the	damage	or	danger	caused	by	the	fault.		A	
system	that	fails	securely,	such	as	cryptologic	systems,	would	maintain	maximum	security	when	a	
fault	is	detected,	possibly	through	a	denial	of	service.	

Microsoft� 2017-1-21 6:35 PM
Formatted: List Paragraph, Bulleted +
Level: 1 + Aligned at: 0.63 cm + Indent at:
 1.27 cmMicrosoft� 2017-1-21 6:12 PM
Deleted: floods,	or	other	natural	disasters.		The	
reaction	to	a	fault	can	affect	the	performance	of	a	
system	and	in	particular,	the	safety	and	security	of	
the	system	and	its	users. ... [1]

Microsoft� 2017-1-21 6:11 PM
Moved up [1]: .		In	spite	of	the	best	intentions,	
systems	may	encounter	a	failure,	either	from	
internally	poorly	written	software	or	external	forces	
such	as	power	outages/variations,	floods,	or	other	
natural	disasters.		The	reaction	to	a	fault	can	affect	
the	performance	of	a	system	and	in	particular,	the	
safety	and	security	of	the	system	and	its	users.

Stephen Michell� 2017-1-21 10:14 PM
Deleted: Error!	Reference	source	not	found.

Stephen Michell� 2017-1-21 10:14 PM
Deleted: 6.61	Concurrency	–	Directed	termination	
[CGT]

Stephen Michell� 2017-1-21 10:14 PM
Deleted: 6.63	Concurrency	–	Premature	
Termination	[CGS]

Stephen Michell� 2017-1-21 10:14 PM
Deleted: Error!	Reference	source	not	found.

Microsoft� 2017-1-21 8:02 PM
Formatted: Font color: Red
Microsoft� 2017-1-21 6:55 PM
Deleted: When	the	software	unexpectedly	fails	to	
render	a	requested	service	or	terminates	in	an	
unspecified	way,	safety	or	security	may	be	
compromised.	In	safety-related	systems	the	results	
can	be	catastrophic:	for	other	systems	the	result	
can	mean	failure	of	the	complete	system.		Failures	
need	not	necessarily	cause	the	termination	of	the	
failing	service;	delivering	an	incorrectly	computed	
result	is	a	failure	that,	when	not	discovered,		can	
have	even	more	catastrophic	consequences	than	a	
termination	of	the	failing	service.		 ... [2]

Microsoft� 2017-1-21 6:50 PM
Moved (insertion) [3]
Microsoft� 2017-1-21 6:50 PM
Moved up [3]: termination	issues	associated	
with	multiple	threads,	multiple	processors	or	
interrupts	also	see	Error!	Reference	source	not	
found.	6.61	Concurrency	–	Directed	termination	
[CGT]	and	6.63	Concurrency	–	Premature	
Termination	[CGS]Error!	Reference	source	not	
found..		Situations	that	cause	an	application	to	
terminate	unexpectedly	or	that	cause	an	application	
to	not	terminate	because	of	other	vulnerabilities	
are	covered	in	those	vulnerabilities.	The	
vulnerability	at	hand	discusses	the	overall	fault	
treatment	strategy	applicable	to	single-threaded	or	
multi-threaded	programs.

Microsoft� 2017-1-21 6:59 PM
Deleted: ... [3]

Microsoft� 2017-1-21 7:00 PM
Moved down [4]: Numerous	checks	on	values	
can	and	should	be	made	(value	range,	plausibility	
within	history,	reversal	checks,	checksums,	
structural	checks,	etc.)	to	establish	the	validity	of	
computed	results	or	input	received.	Similarly,	
crucial	timing	failures	should	be	detected	by	 ... [4]

Whatever	the	failure	or	termination	process,	the	termination	of	an	application	should	not	result	in	
damage	to	system	elements		that	rely	upon	it.	Thus,	it	should	perform	“last	wishes”	to	minimize	the	
effects	of	the	failure	on	enclosing	components	(e	.g.,	release	software	locks)	and	the	real	world	(e.	g.	
close	valves).	

The	reaction	to	a	detected	fault	in	a	system	can	depend	on	the	criticality	of	the	portion	in	which	the	
fault	originates.		When	a	program	consists	of	several	tasks,	each	task	may	be	critical,	or	not.		If	a	task	
is	critical,	it	may	or	may	not	be	restartable	by	the	rest	of	the	program	as	a	fault	handling	measure.		A	
task	that	detects	a	fault	within	itself	but	must	leave	the	fault	handling	to	a	higher	authority,	should	
be	able	to	halt	leaving	its	resources	available	for	use	by	the	rest	of	the	program,	halt	clearing	away	its	
resources,	or	halt	the	entire	program.	The	latency	of	task	termination	and	whether	tasks	can	ignore	
termination	signals	should	be	clearly	specified.		

----	…	to	here	------------	

	

6.37.2	Cross	reference	

JSF	AV	Rule:	24	
MISRA	C	2012:	4.1	
MISRA	C++	2008:	0-3-2,	15-5-2,	15-5-3,	and	18-0-3	
CERT	C	guidelines:	ERR04-C,	ERR06-C	and	ENV32-C	
Ada	Quality	and	Style	Guide:	5.8	and	7.5	

6.37.3	Mechanism	of	failure	

Reasons	for	failures	are	plentiful	and	varied,	stemming	from	both	hard-	and	software.	Hence	the	
mechanisms	of	failure	from	fault	tolerance	or	the	lack	thereof	can	be	described	only	in	very	general	
terms:		

• Fault	tolerance	code,	in	particular	fault	checking	code,	may	interfere	with	the	timeliness	of	
the	components	to	meet	their	deadlines	

• An	inappropriate	fault	tolerance	mechanism	or	strategy	may	lead	to	failures	in	fault	
detection	and	other	secondary	failures	

• Considerable	latency	and	processor	use	can	arise	from	finalization	and	garbage	collection	
caused	by	the	termination	of	a	task.	Thus,	termination	must	be	designed	carefully	to	avoid	
causing	timing	failures	of	other	tasks.		The	termination	of	tasks	can	be	maliciously	used	to	
prevent	on-time	performance	of	other	active	tasks.	

• Having	inconsistent	approaches	to	detecting	and	handling	a	fault	or	a	lack	of	overall	design	
for	the	fault	tolerance	code	can	potentially	be	a	vulnerability,	as	faults	might	escape	the	
necessary	attention.		

• If	faults	are	not	detected	in	time	and	repaired	completely,	the	following	failures	arise:	
- omission	failures:	a	service	is	asked	for	but	never	rendered.	The	client	might	wait	

forever	or	be	notified	too	late	about	the	failure	(termination)	of	the	service.	
- commission	failures:	a	service	initiates	unexpected	actions,	e.	g.,		communication	

that	is	unexpected	by	the	receiver.	The	service	might	wait	forever,	causing	omission	
failures	for	subsequent	calls	by	clients,	or	the	actions	might	interfere	with	the	regular	

ploedere� 2016-8-15 7:01 PM
Formatted: Font:Not Italic
ploedere� 2016-8-15 7:01 PM
Formatted: Font:Not Italic
ploedere� 2016-8-15 7:01 PM
Formatted: Font:Not Italic
ploedere� 2016-8-15 7:01 PM
Formatted: Font:Not Italic
Microsoft� 2017-1-21 8:03 PM
Formatted: Font color: Red
Microsoft� 2017-1-21 7:01 PM
Deleted:

ploedere� 2016-8-15 6:11 PM
Formatted: List Paragraph, Bulleted +
Level: 1 + Aligned at: 0.63 cm + Indent at:
 1.27 cm

Microsoft� 2017-1-21 7:36 PM
Moved (insertion) [5]

Microsoft� 2017-1-21 7:36 PM
Formatted: List Paragraph, Bulleted +
Level: 1 + Aligned at: 0.63 cm + Indent at:
 1.27 cmMicrosoft� 2017-1-21 7:36 PM

Deleted:

ploedere� 2016-8-15 6:11 PM
Formatted: List Paragraph, Bulleted +
Level: 1 + Aligned at: 0.63 cm + Indent at:
 1.27 cmMicrosoft� 2017-1-21 7:33 PM
Formatted: List Paragraph, Bulleted +
Level: 2 + Aligned at: 1.9 cm + Indent at:
2.54 cm

processing	going	on	in	the	meantime.	At	a	minimum,	it	consumes	resources	possibly	
needed	by	others	to	meet	deadlines.		

- timing	failures:	a	service	is	not	rendered	before	an	imposed	deadline.	System	
responses	will	be	(too)	late,	causing	corresponding	damages	to	the	real	world	
affected	by	the	system.	

- Value	failures:	a	service	delivers	incorrect	or	tainted	results.	If	not	the	client	
continues	computations	with	these	corrupted	values,	causing	a	spread	of	
consequential	application	errors	and	implementation	vulnerabilities	caused	by	
corrupted	values	as	discussed	elsewhere	in	this	TR.		

	

• 	
• 	

	

6.37.4	Applicable	language	characteristics	

This	vulnerability	description	is	intended	to	be	applicable	to	all	languages.	

6.37.5	Avoiding	the	vulnerability	or	mitigating	its	effects	

Software	developers	can	avoid	the	vulnerability	or	mitigate	its	ill	effects	in	the	following	ways:	

• Decide	on	a	strategy	for	fault	handling.		Consistency	in	fault	handling	should	be	the	same	
with	respect	to	critically	similar	parts.		

• Use	a	multi-tiered	approach	of	fault	prevention,	fault	detection	and	fault	reaction.	
• Unambiguously	describe	the	failure	modes	of	each	possibly	failing	task	as	fail-stop,	fail-safe,	

fail-secure,	or	fail-soft	as	explained	in	6.37.1.		
• Check	early	for	any	faults,	particularly	value	faults	
• Numerous	checks	on	values	can	and	should	be	made	(value	range,	plausibility	within	history,	

reversal	checks,	checksums,	structural	checks,	etc.)	to	establish	the	validity	of	computed	
results	or	input	received.		

• Timing	failures	should	be	detected	by	“Watch-dog	timers”	and	similar	mechanisms	that	can	
be	used	to	stop	rogue	tasks.	

• Always	validate	incoming	data.	Validate	computed	results	at	strategic	points	to	discover	
value	failures.	See	also	pre-	and	postconditions	in	<<	reference	to	BLP,	Liskov>>.	

• Use	environment-	or	language-provided	means	to	stop	tasks	that	substantially	exceed	
deadlines.	

• Always	prepare	for	the	possibility	that	a	service	does	not	return	with	a	requested	result	in	
due	time.		

• Keep	fault	handling	simple.	If	in	doubt,	decide	for	a	lesser	level	of	fault	tolerance.	
• In	the	case	of	continued	execution,	make	sure	that	any	corrupted	variables	of	the	program	

state	have	been	corrected	to	an	actual	and	correct	or	at	least	safe	value.		
• System-defined	components	that	assist	in	uniformity	of	fault	handling	should	be	used	when	

available.	For	one	example,	designing	a	"runtime	constraint	handler"	(as	described	in	Annex	
K	of	9899:2012	[4])	permits	the	application	to	intercept	various	erroneous	situations	and	

Microsoft� 2017-1-21 7:18 PM
Deleted: T

Microsoft� 2017-1-21 7:18 PM
Deleted: .	

Microsoft� 2017-1-21 6:28 PM
Moved (insertion) [2]

Microsoft� 2017-1-21 6:28 PM
Deleted: <#>Faults	are	the	points	in	execution,	
where	a	failure	manifests	by	processing	going	
wrong.	If	unnoticed	or	unhandled,	they	turn	into	
failures	at	the	boundaries	of	enclosing	control	
units	or	components.	Failures	of	services	are	
faults	to	their	clients	and,	if	not	handled,	lead	to	
a	failure	of	the	client	and	consequently	to	faults	
and	failures	in	its	clients,	possibly	until	the	entire	
system	fails.	Detection	and	handling	of	faults	
constitutes	the	fault	tolerance	code	of	the	
system.	As	such,	it	is	itself	a	potential	source	of	
failures.	Fault-handling	code	is	particularly	
difficult	to	design	and	program,	since	it	needs	to	... [5]

Microsoft� 2017-1-21 6:28 PM
Moved up [2]: Faults	are	the	points	in	execution,	... [6]

Microsoft� 2017-1-21 7:36 PM
Moved up [5]: Considerable	latency	and	... [7]

ploedere� 2016-8-15 6:51 PM
Formatted: Font:Not Italic
Microsoft� 2017-1-21 7:35 PM
Formatted ... [8]

ploedere� 2016-8-15 6:51 PM
Formatted: Font:Not Italic
Microsoft� 2017-1-21 7:35 PM
Formatted: Font:Not Italic
Microsoft� 2017-1-21 7:35 PM
Formatted: Font:Not Italic
Microsoft� 2017-1-21 7:35 PM
Formatted: Font:Not Italic
Microsoft� 2017-1-21 7:35 PM
Formatted: Font:Not Italic
ploedere� 2016-8-15 6:38 PM
Deleted: The	reaction	to	a	fault	in	a	system	can	... [9]

ploedere� 2016-8-15 6:55 PM
Deleted: .

ploedere� 2016-8-15 6:56 PM
Deleted: 3

Microsoft� 2017-1-21 7:38 PM
Formatted: Normal
Microsoft� 2017-1-21 7:00 PM
Moved (insertion) [4]
Microsoft� 2017-1-21 7:39 PM

Deleted: Similarly,	crucial	t

Microsoft� 2017-1-21 7:38 PM
Deleted: ... [10]

Microsoft� 2017-1-21 7:38 PM
Formatted
Microsoft� 2017-1-21 7:40 PM

Deleted: 	

Microsoft� 2017-1-21 7:41 PM
Deleted: 	

perform	one	consistent	response,	such	as	flushing	a	previous	transaction	and	re-starting	at	
the	next	one.	<<		is	this	example	appropriate	?>>	

• Prior	to	any	abnormal	termination	of	a	component,	perform	“last	wishes”	to	minimize	the	
effects	of	the	failure	on	enclosing	components	(e	.g.,	release	software	locks	held	locally)	and	
the	real	world	(e.	g.	close	valves	opened	by	the	component).	

• Specify	a	fault-handling	policy	whereby	a	task,	in	the	absence	of	simple	full	fault	tolerance	or	
graceful	degradation,	may		

o Halt,	and	keep	its	resources	available	for	other	tasks	(perhaps	permitting	restarting	
of	the	faulting	task).	

o Halt,	and	release	its	resources	(perhaps	to	allow	other	tasks	to	use	the	resources	so	
freed,	or	to	allow	a	recreation	of	the	task).	

o Halt,	and	signal	the	rest	of	the	program	to	likewise	halt.	

<<<	I	consider	this	last	advice	a	bit	too	specific	to	one	particular	model	of	execution.	In	
fact,	I	disagreed	with	the	original,	since	it	excluded	full	fault	tolerance	altogether.	
simplify	to	“kill	everything	or	do	the	right	thing	about	resources”	?	i.e.	incorporate	in	
“last	wishes”	above?	>>>	

6.37.6	Implications	for	standardization	

In	future	standardization	activities,	the	following	items	should	be	considered:	

• Languages	should	consider	providing	a	means	to	perform	fault	handling.		Terminology	and	
the	means	should	be	coordinated	with	other	languages.	

	

Microsoft� 2017-1-21 8:03 PM
Formatted: Font color: Red
Microsoft� 2017-1-21 8:03 PM
Formatted: Font color: Red
Microsoft� 2017-1-21 7:43 PM
Formatted: Font:
Microsoft� 2017-1-21 7:43 PM
Formatted: List Paragraph
Microsoft� 2017-1-21 7:47 PM

Deleted: When	there	are	multiple	tasks,	

Microsoft� 2017-1-21 7:48 PM
Deleted: should	be	specified	

Microsoft� 2017-1-21 8:04 PM
Formatted: Font color: Red
ploedere� 2016-8-15 7:40 PM
Formatted: Indent: Left: 1.9 cm, No
bullets or numbering
Microsoft� 2017-1-21 8:04 PM
Formatted: Font color: Red

