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Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees established
by the respective organization to deal with particular fields of technical activity. ISO and IEC technical
committees collaborate in fields of mutual interest. Other international organizations, governmental and non-
governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO
and IEC have established a joint technical committee, ISO/IECJTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

In exceptional circumstances, when the joint technical committee has collected data of a different kind from
that which is normally published as an International Standard (“state of the art”, for example), it may decide to
publish a Technical Report. A Technical Report is entirely informative in nature and shall be subject to review
every five years in the same manner as an International Standard.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. 1ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TR 24772, was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 22, Programming languages, their environments and system software interfaces.
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Introduction

This Technical Report provides guidance for the programming language C, so that application developers
considering C or using C will be better able to avoid the programming constructs that lead to vulnerabilities
in software written in the C language and their attendant consequences. This guidance can also be used by
developers to select source code evaluation tools that can discover and eliminate some constructs that
could lead to vulnerabilities in their software. This report can also be used in comparison with companion
Technical Reports and with the language-independent report, TR 24772-1, to select a programming
language that provides the appropriate level of confidence that anticipated problems can be avoided.

This technical report part is intended to be used with TR 24772-1, which discusses programming language
vulnerabilities in a language independent fashion.

It should be noted that this Technical Report is inherently incomplete. It is not possible to provide a

complete list of programming language vulnerabilities because new weaknesses are discovered continually.

Any such report can only describe those that have been found, characterized, and determined to have
sufficient probability and consequence.

© ISO/IEC 2015 — All rights reserved
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Technical Report ISO/IEC TR 24772:2015(E)

Information Technology — Programming Languages — Guidance to avoiding
vulnerabilities in programming languages — Vulnerability descriptions for
the programming language C

1. Scope

This Technical Report specifies software programming language vulnerabilities to be avoided in the development
of systems where assured behaviour is required for security, safety, mission-critical and business-critical software.
In general, this guidance is applicable to the software developed, reviewed, or maintained for any application.

Vulnerabilities described in this Technical Report document the way that the vulnerability described in the
language-independent TR 24772-1 are manifested in C.

2. Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments) applies.

ISO/IEC 9899:2011 — Programming Languages—C

ISO/IEC TR 24731-1:2007 — Extensions to the C library — Part 1: Bounds-checking interfaces
ISO/IEC TR 24731-2:2010 — Extensions to the C library — Part 2: Dynamic Allocation Functions
ISO/IEC 9899:2011/Cor. 1:2012 — Programming languages —C

GNU Project. GCC Bugs “Non-bugs” http://gcc.gnu.org/bugs.html#nonbugs_c (2009). | Comment [SM1]: Should be in the bibliography.

‘ Comment [SM2R1]: Move to Bibliography.

3. Terms and definitions, symbols and conventions

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 2382—1, in TR 24772-1 and the
following apply. Other terms are defined where they appear in jtalic type.

access: An execution-time action, to read or modify the value of an object. Where only one of two actions is
meant, read or modify. Modify includes the case where the new value being stored is the same as the previous
value. Expressions that are not evaluated do not access objects.

alignment: The requirement that objects of a particular type be located on storage boundaries with addresses
that are particular multiples of a byte address.

argument:

© ISO/IEC 2015 — All rights reserved 1



actual argument: The expression in the comma-separated list bounded by the parentheses in a function call
expression, or a sequence of preprocessing tokens in the comma-separated list bounded by the parentheses in a
function-like macro invocation.

behaviour: An external appearance or action.

implementation-defined behaviour: The unspecified behaviour where each implementation documents how the

choice is made. An example of implementation-defined behaviour is the propagation of the high-order bit when a
signed integer is shifted right.

locale-specific behaviour: The behaviour that depends on local conventions of nationality, culture, and language

that each implementation documents. An example, locale-specific behaviour is whether the islower() function
returns true for characters other than the 26 lower case Latin letters.

undefined behaviour: The use of a non-portable or erroneous program construct or of erroneous data, for which
the C standard imposes no requirements. Undefined behaviour ranges from ignoring the situation completely
with unpredictable results, to behaving during translation or program execution in a documented manner
characteristic of the environment (with or without the issuance of a diagnostic message), to terminating a
translation or execution (with the issuance of a diagnostic message). An example of, undefined behaviour is the
behaviour on integer overflow.

unspecified behaviour: The use of an unspecified value, or other behaviour where the C Standard provides two or
more possibilities and imposes no further requirements on which is chosen in any instance. For example,
unspecified behaviour is the order in which the arguments to a function are evaluated.

bit: The unit of data storage in the execution environment large enough to hold an object that may have one of
two values. It need not be possible to express the address of each individual bit of an object.

byte: The addressable unit of data storage large enough to hold any member of the basic character set of the
execution environment. It is possible to express the address of each individual byte of an object uniquely. A byte
is composed of a contiguous sequence of bits, the number of which is implementation-defined. The least
significant bit is called the low-order bit; the most significant bit is called the high-order bit.

character: An abstract member of a set of elements used for the organization, control, or representation of data.
single-byte character: The bit representation that fits in a byte.

multibyte character: The sequence of one or more bytes representing a member of the extended character set of
either the source or the execution environment. The extended character set is a superset of the basic character
set.

wide character: The bit representation that will ?t in an object capable of representing any character in the
current locale. The C Standard uses the type name wchar_t for this object.

correctly rounded result: The representation in the result format that is nearest in value, subject to the current

rounding mode, to what the result would be given unlimited range and precision.

2 © ISO/IEC 2015 — All rights reserved



diagnostic message: The message belonging to an implementation-de?ned subset of the implementation’s
message output. The C Standard requires diagnostic messages for all constraint violations.

implementation: A particular set of software, running in a particular translation environment under particular
control options, that performs translation of programs for, and supports execution of functions in, a particular
execution environment.

implementation limit: The restriction imposed upon programs by the implementation.

memory location: Either an object of scalar! type, or a maximal sequence of adjacent bit-fields all having nonzero
width. A bit-field and an adjacent non-bit-field member are in separate memory locations. The same applies to
two bit-fields, if one is declared inside a nested structure declaration and the other is not, or if the two are
separated by a zero-length bit-field declaration, or if they are separated by a non-bit-field member declaration. It
is not safe to concurrently update two bit-fields in the same structure if all members declared between them are
also bit-fields, no matter what the sizes of those intervening bit-fields happen to be. For example a structure

declared as
struct {
char a;

int b:5, c:11, :0, d:8;
struct { int ee:8; } e;

}

contains four separate memory locations: The member a, and bit-fields d and e.ee are separate memory
locations, and can be modified concurrently without interfering with each other. The bit-fields b and c together
constitute the fourth memory location. The bit-fields b and c can’t be concurrently modified, but b and a, can be
concurrently modified.

object: The region of data storage in the execution environment, the contents of which can represent values.
When referenced, an object may be interpreted as having a particular type.

parameter:

formal parameter: The object declared as part of a function declaration or definition that acquires a value on
entry to the function, or an identifier from the comma-separated list bounded by the parentheses immediately
following the macro name in a function-like macro definition.

recommended practice: A specification that is strongly recommended as being in keeping with the intent of the C

Standard, but that may be impractical for some implementations.
runtime-constraint: A requirement on a program when calling a library function.

value: The precise meaning of the contents of an object when interpreted as having a specific type.

1 Integer types, Floating types and Pointer types are collectively called scalar types in the C Standard
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implementation-defined value: An unspecified value where each implementation documents how the choice for

the value is selected.
indeterminate value: Is either an unspecified value or a trap representation.

unspecified value: The valid value of the relevant type where the C Standard imposes no requirements on which
value is chosen in any instance. An unspecified value cannot be a trap representation.

trap representation: An object representation that need not represent a value of the object type.

block-structured language: A language that has a syntax for enclosing structures between bracketed keywords,
such as an if statement bracketed by if and endif, as in Fortran, or a code section bracketed by BEGIN and END, as
in PL/1.

comb-structured language: A language that has an ordered set of keywords to define separate sections within a
block, analogous to the multiple teeth or prongs in a comb separating sections of the comb. For example, in Ada,
a block is a 4-pronged comb with keywords declare, begin, exception, end, and the if statement in Ada is a 4-
pronged comb with keywords if, then, else, end if.

4. Language concepts

[This section didn’t exist in the C annex]

5. Avoiding programming language vulnerabilities in C

In addition to the Top 10 generic programming rules from TR 24772-1 clause 5.4, additional rules from this
section apply specifically to the C programming language. The recommendations of this section are
restatements of recommendations from clause 6, but represent ones stated frequently, or that are
considered as particularly noteworthy by the authors. Clause 6 of this document contains the full set of
recommendations, as well as explanations of the problems that led to the recommendations made.

Every guidance provided in this section, and in the corresponding Part section, is supported material in Clause
6 of this document, as well as other important recommendations.

What do we do with generic rules that do not apply to this Part? { Formatted: Font color: Red

What guidance do we give when the generic rule is highly qualified here?

1. Make casts explicit in the return value of malloc., { Deleted: (ref to HFC??)

Example: s = (struct foo*)malloc (sizeof (struct foo));
uses the C type system to enforce that the pointer to the allocated space will be of a type that is appropriate
for the size. Because malloc returns a void *, without the cast, "s" could be of any random pointer type; with
the cast, that mistake will be caught. _See subclause [HFC]
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2. Use length restrictive functions such as strncpy(), strncmp(), and strncat(), snprintf(), instead of strcpy(),
stremp and strcat, sprintf(), respectively. When substituting strncpy for strcpy, ensure that the result will
always be null-terminated. Use the safer and more secure functions for string handling from the
normative annex K of C11 [4], Bounds-checking interfaces. See subclause [HCB |

3. Use commonly available functions such as htonl(), htons(), ntohl() and ntohs() to convert from host byte
order to network byte order and vice versa._ See subclause [STR] |

{ Deleted: [6.3]

Use stack guarding add-ons to detect overflows of stack buffers. See subclause [HCB |
5. Perform range checking before accessing an array or before calling a memory copying function such as
memcpy() and memmove() since bounds checking is not performed automatically.
In the interest of speed and efficiency, range checking only needs to be done when it cannot be statically
shown that an access outside of the array cannot occur._See subclause [XYW |
6. Create a specific check that a pointer is not null before dereferencing it.
As this can be expensive in some cases (such as in a for loop that performs operations on each element
of a large segment of memory), judicious checking of the value of the pointer at key strategic points in
the code is recommended. See subclause [XYH |
7. Set afreed pointer to null immediately after a free() call, as illustrated in the following code:
i. free (ptr):;
ii. ptr = NULL; See subclause [XYK] |
8. Do not use memory allocated by functions such as malloc() before the memory is initialized as the
memory contents are indeterminate. See subclause [LAV |
9. Use defensive programming techniques to check whether an operation will overflow or underflow the

receiving data type. These techniques can be omitted if it can be shown at compile time that overflow or
underflow is not possible. Any of the following operators have the potential to wrap or have undefined

behavior in C:
a+ b a-b a * b a++ a--
a +=b a -=>b a *= b a << b a > b -a See subclause [FIF] |

10. Do not modify a loop control variable within a loop. Even though the capability exists in C, it is still
considered to be a dangerous programming practice. See subclause [TEX |
11. Check the value of a larger type before converting to a smaller type to see if the value in the larger type is

within the range of the smaller type. See subclause [FLC

6. Specific Guidance for C
6.1 General

This clause contains specific advice for C about the possible presence of vulnerabilities as described in TR 24772-1,
and provides specific guidance on how to avoid them in C code. This section mirrors TR 24772-1 clause 6 in that
the vulnerability “Type System [IHN]” is found in 6.2 of TR 24772-1, and C specific guidance is found in clause 6.2
and subclauses in this TR.

6.2 Type System [IHN]

6.2.1 Applicability to language

© ISO/IEC 2015 — All rights reserved 5



Cis a statically typed language. In some ways C is both strongly and weakly typed as it requires all variables to be
typed, but sometimes allows implicit or automatic conversion between types. For example, C will implicitly
convert a long int to an int and potentially discard many significant digits. Note that integer sizes are
implementation defined so that in some implementations, the conversion from a long int to an int cannot discard
any digits since they are the same size. In some implementations, all integer types could be implemented as the
same size.

C allows implicit conversions as in the following example:
short a = 1023;
int b;
b = a;

If an implicit conversion could result in a loss of precision such as in a conversion from a 32 bit int to a 16 bit short
int:

int a = 100000;

short b;

b = a;

many compilers will issue a warning message.

C has a set of rules to determine how conversion between data types will occur. For instance, every integer type
has an integer conversion rank that determines how conversions are performed. The ranking is based on the
concept that each integer type contains at least as many bits as the types ranked below it.

The integer conversion rank is used in the usual arithmetic conversions to determine what conversions need to
take place to support an operation on mixed integer types.

Other conversion rules exist for other data type-conversions. So even though there are rules in place and the
rules are rather straightforward, the variety and complexity of the rules can cause unexpected results and
potential vulnerabilities. For example, though there is a prescribed order in which conversions will take place,

determining how the conversions will affect the final result can be difficult as in the following example:
long foo (short a, int b, int ¢, long d, long e, long f) {
return (((b + f) * d - a + e) / c);

The implicit conversions performed in the return statement can be nontrivial to discern, but can greatly impact
whether any of the intermediate values wrap around during the computation.

6.2.2 Guidance to language users
* Follow the advice provided in 6.3.5.
* Be aware of the rules for typing and conversions to avoid vulnerabilities.
* Make casts explicit to give the programmer a clearer vision and expectations of conversions.

6.3 Bit Representations [STR]

6.3.1 Applicability to language

6 © ISO/IEC 2015 — All rights reserved



C supports a variety of sizes for integers such as short int, int, long int and long long int. Each may either be
signed or unsigned. C also supports a variety of bitwise operators that make bit manipulations easy such as left
and right shifts and bitwise operators. These bit manipulations can cause unexpected results or vulnerabilities
through miscalculated shifts or platform dependent variations.

Bit manipulations are necessary for some applications and may be one of the reasons that a particular application
was written in C. Although many bit manipulations can be rather simple in C, such as masking off the bottom
three bits in an integer, more complex manipulations can cause unexpected results. For instance, right shifting a
signed integer is implementation defined in C, while shifting by an amount greater than or equal to the size of the

data type is undefined behaviour. For instance, on a host where an int is of size 32 bits,
unsigned int foo(const int k) {
unsigned int i = 1;
return 1 << k;

is undefined for values of k greater than or equal to 32.

The storage representation for interfacing with external constructs can cause unexpected results. Byte orders
may be in little-endian or big-endian format and unknowingly switching between the two can unexpectedly alter
values.

6.3.2 Guidance to language users

* Only use bitwise operators on unsigned integer values as the results of some bitwise operations on signed
integers are implementation defined.

* Use commonly available functions such as htonl(), htons(), ntohl() and ntohs()to convert from host byte
order to network byte order and vice versa. This would be needed to interface between an i80x86
architecture where the Least Significant Byte is first with the network byte order, as used on the Internet,
where the Most Significant Byte is first. Note: functions such as these are not part of the C standard and
can vary somewhat among different platforms.

* In cases where there is a possibility that the shift is greater than the size of the variable, perform a check
as the following example shows, or a modulo reduction before the shift:

unsigned int i;
unsigned int k;
unsigned int shifted i;

if (k < sizeof (unsigned int) *CHAR BIT)
shifted i = i << k;

else
// handle error condition

6.4 Floating-point Arithmetic [PLF]

6.4.1 Applicability to language

C permits the floating-point data types float, double and long double. Due to the approximate nature of floating-
point representations, the use of float and double data types in situations where equality is needed or where

© ISO/IEC 2015 — All rights reserved 7



rounding could accumulate over multiple iterations could lead to unexpected results and potential vulnerabilities
in some situations.

As with most data types, C is flexible in how float, double and long double can be used. For instance, C allows the
use of floating-point types to be used as loop counters and in equality statements. Even though a loop may be
expected to only iterate a fixed number of times, depending on the values contained in the floating-point type
and on the loop counter and termination condition, the loop could execute forever. For instance iterating a time
sequence using 10 nanoseconds as the increment:

float x;

for (x=0.0; x!=1.0; x+=0.00000001)
may or may not terminate after 10,000,000 iterations. The representations used for x and the accumulated
effect of many iterations may cause x to not be identical to 1.0 causing the loop to continue to iterate forever.

Similarly, the Boolean test

float x=1.336f;
float y=2.672%f;
if (x == (y/2))

may or may not evaluate to true. Given that x and y are constant values, it is expected that consistent results will
be achieved on the same platform. However, it is questionable whether the logic performs as expected when a
float that is twice that of another is tested for equality when divided by 2 as above. This can depend on the
values selected due to the quirks of floating-point arithmetic.

6.4.2 Guidance to language users
* Do not use a floating-point expression in a Boolean test for equality. In C, implicit casts may make an
expression floating-point even though the programmer did not expect it.
* Check for an acceptable closeness in value instead of a test for equality when using floats and doubles to
avoid rounding and truncation problems.
* Do not convert a floating-point number to an integer unless the conversion is a specified algorithmic
requirement or is required for a hardware interface.

6.5 Enumerator Issues [CCB]

6.5.1 Applicability to language

The enum type in C comprises a set of named integer constant values as in the example:
enum abc {A,B,C,D,E,F,G,H} var_ abc;

The values of the contents of abc would be A=0, B=1, C=2, and so on. C allows values to be assigned to the

enumerated type as follows:
enum abc {A,B,C=6,D,E,F=7,G,H} var_abc;

This would result in:
A=0, B=1, C=6, D=7, E=8, F=7, G=8, H=9
yielding both gaps in the sequence of values and repeated values.

8 © ISO/IEC 2015 — All rights reserved



If a poorly constructed enum type is used in loops, problems can arise

defined above used in a loop:
int x[8];
for (i=A; i<=H; i++){
t = x[1i];
}

. Consider the enumerated type abc

Because the enumerated type abc has been renumbered and because some numbers have been skipped, the

array will go out of bounds and there is potential for unintentional gaps in the use of x.

6.5.2 Guidance to language users
* Follow the guidance of 6.6.5.

* use enumerated types in the default form starting at 0 and incrementing by 1 for each member if

possible. The use of an enumerated type is not a problem if it
assigned to the members.
* Avoid using loops that iterate over an enum that has represen

is well understood what values are

tation specified for the enums, unless it can

be guaranteed that there are no gaps or repetition of representation values within the enum definition.

* Use an enumerated type to select from a limited set of choices to make possible the use of tools to detect

omissions of possible values such as in switch statements.

¢ Use the following format if the need is to start from a value other than 0 and have the rest of the values

be sequential:
enum abc {A=5,B,C,D,E,F,G,H} var_abc;

* Use the following format if gaps are needed or repeated values are desired and so as to be explicit as to

the values in the enum, then:
enum abc {
A=0,

’

’

1
6
7,
8,
7,
8
9

’

IC)"’JI;"JUOUJ

} var_abc;

6.6 Conversion Errors [FLC]

Ensure that this address more general conversions. Specifically, Structs can be assigned to a compatible struct as a

whole operation (and only to a compatible struct). Also, characters of
the wrong representation unless one uses the character conversion fu
subclause 2 guidance. Al - Clive

6.6.1 Applicability to language

C permits implicit conversions. That is, C will automatically perform a
instance, C allows

© ISO/IEC 2015 — All rights reserved
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inti;

float f=1.25f;

i=f;
This implicit conversion will discard the fractional part of f and set i to 1. If the value of f is greater than INT_MAX,
then the assignment of f to i would be undefined.

The rules for implicit conversions in C are defined in the C standard. For instance, integer types smaller than int
are promoted when an operation is performed on them. If all values of Boolean, character or integer type can be
represented as an int, the value of the smaller type is converted to an int; otherwise, it is converted to an
unsigned int.

Integer promotions are applied as part of the usual arithmetic conversions to certain argument expressions;
operands of the unary +, -, and ~ operators, and operands of the shift operators. The following code fragment

shows the application of integer promotions:
char cl, c2;
cl = cl + c2;

Integer promotions require the promotion of each variable (c1 and c2) to int size. The two int values are added
and the sum is truncated to fit into the char type.

Integer promotions are performed to avoid arithmetic errors resulting from the overflow of intermediate values.

For example:
signed char cresult, cl, c2, c3;
cl = 100;
c2 = 3;
c3 = 4;
cresult = cl * ¢c2 / c3;

In this example, the value of c1 is multiplied by c2. The product of these values is then divided by the value of ¢3
(according to operator precedence rules). Assuming that signed char is represented as an 8-bit value, the product
of c1 and c2 (300) cannot be represented. Because of integer promotions, however, c1, c2, and c3 are each
converted to int, and the overall expression is successfully evaluated. The resulting value is truncated and stored
in cresult. Because the final result (75) is in the range of the signed char type, the conversion from int back to
signed char does not result in lost data. It is possible that the conversion could result in a loss of data should the
data be larger than the storage location.

A loss of data (truncation) can occur when converting from a signed type to a signed type with less precision. For

example, the following code can result in truncation:
signed long int sl = LONG_MAX;
signed char sc = (signed char)sl;

The C standard defines rules for integer promotions, integer conversion rank, and the usual arithmetic
conversions. The intent of the rules is to ensure that the conversions result in the same numerical values, and that
these values minimize surprises in the rest of the computation.

A recent innovation from ISO/IEC TR 24731-1 [13] that has been added to the C standard 9899:2011 [4] is the
definition of the rsize t type. Extremely large object sizes are frequently a sign that an object’s size was
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calculated incorrectly. For example, negative numbers appear as very large positive numbers when converted to
an unsigned type like size t.Also, some implementations do not support objects as large as the maximum
value that can be represented by type size t. For these reasons, it is sometimes beneficial to restrict the range
of object sizes to detect programming errors. For implementations targeting machines with large address spaces,
it is recommended that RSIZE MAX be defined as the smaller of the size of the largest object supported or
(SIZE _MAX >> 1), evenifthislimitis smaller than the size of some legitimate, but very large, objects.
Implementations targeting machines with small address spaces may wish to define RSIZE_MAX as SIZE_MAX,
which means that there is no object size that is considered a runtime-constraint violation.

6.6.2 Guidance to language users
* Check the value of a larger type before converting it to a smaller type to see if the value in the larger type
is within the range of the smaller type. Any conversion from a type with larger precision to a smaller
precision type could potentially result in a loss of data. In some instances, this loss of precision is desired.
Such cases should be explicitly acknowledged in comments. For example, the following code could be
used to check whether a conversion from an unsigned integer to an unsigned character will result in a loss

of precision:
unsigned int i;
unsigned char c;

if (i <= UCHAR_MAX) { // check against the maximum value for an object of
type unsigned char
c = (unsigned char) 1i;
}
else {
// handle error condition
}
¢ Close attention should be given to all warning messages issued by the compiler regarding multiple casts.
Making a cast in C explicit will both remove the warning and acknowledge that the change in precision is

on purpose.
6.7 String Termination [C]JM]
6.7.1 Applicability to language

A string in C is composed of a contiguous sequence of characters terminated by and including a null character (a
byte with all bits set to 0). Therefore strings in C cannot contain the null character except as the terminating
character. Inserting a null character in a string either through a bug or through malicious action can truncate a
string unexpectedly. Alternatively, not putting a null character terminator in a string can cause actions such as
string copies to continue well beyond the end of the expected string. Overflowing a string buffer through the
intentional lack of a null terminating character can be used to expose information or to execute malicious code.

6.7.2 Guidance to language users
* Use the safer and more secure functions for string handling that are defined in normative Annex K from
ISO/IEC 9899:2011 [4] or the ISO TR24731-2 — Part Il: Dynamic allocation functions. Both of these define
alternative string handling library functions to the current Standard C Library. The functions verify that
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receiving buffers are large enough for the resulting strings being placed in them and ensure that resulting
strings are null terminated. One implementation of these functions has been released as the Safe C
Library.

6.8 Buffer Boundary Violation [HCB]
6.8.1 Applicability to language

A buffer boundary violation condition occurs when an array is indexed outside its bounds, or pointer arithmetic
results in an access to storage that occurs outside the bounds of the object accessed.
In C, the subscript operator [] is defined such that E1[E2] is identical to (*((E1)+(E2))), so that in either
representation, the value in location (E1+E2) is returned. C does not perform bounds checking on arrays, so the
following code:
int foo(const int i) {
int x[] = {0,0,0,0,0,0,0,0,0,0};
return x[1];

will return whatever is in location x[i] even if, i were equal to -10 or 10 (assuming either subscript was still within
the address space of the program). This could be sensitive information or even a return address, which if altered
by changing the value of x[-10]or x[10], could change the program flow.

The following code is more appropriate and would not violate the boundaries of the array x:
int foo( const int i) {
int x[X _SIZE] = {0};
if (1 <0 || i >= X SIZE) {
return ERROR_CODE;
}
else {
return x[1i];

}

A buffer boundary violation may also occur when copying, initializing, writing or reading a buffer if attention to
the index or addresses used are not taken. For example, in the following move operation there is a buffer
boundary violation:

char buffer src[]={“abcdefg”};

char buffer dest[5]={0};

strcpy (buffer_dest, buffer src);

the buffer_src is longer than the buffer_dest, and the code does not check for this before the actual copy
operation is invoked. A safer way to accomplish this copy would be:

char buffer src[]={“abcdefg”];

char buffer dest[5]={0};

strncpy (buffer dest, buffer src, sizeof (buffer dest) -1);
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this would not cause a buffer bounds violation, however, because the destination buffer is smaller than the
source buffer, the destination buffer will now hold “abcd”, the 5th element of the array would hold the null
character.

6.8.2 Guidance to language users

* Validate all input values.

* Check any array index before use if there is a possibility the value could be outside the bounds of the
array.

* Use length restrictive functions such as strncpy() instead of strcpy().

* Use stack guarding add-ons to detect overflows of stack buffers.

* Do not use the deprecated functions or other language features such as gets().

* Beaware that the use of all of these measures may still not be able to stop all buffer overflows from
happening. However, the use of them can make it much rarer for a buffer overflow to occur and much
harder to exploit it.

* Use the safer and more secure functions for string handling from the normative annex K of C11 [4],
Bounds-checking interfaces. The functions verify that output buffers are large enough for the intended
result and return a failure indicator if they are not. Optionally, failing functions call a runtime-constraint
handler to report the error. Data is never written past the end of an array. All string results are null
terminated. In addition, these functions are re-entrant: they never return pointers to static objects owned
by the function. Annex K also contains functions that address insecurities with the C input-output
facilities.

6.9 Unchecked Array Indexing [XYZ]

6.9.1 Applicability to language

C does not perform bounds checking on arrays, so though arrays may be accessed outside of their bounds, the
value returned is undefined and in some cases may result in a program termination. For example, in C the

following code is valid, though, for example, if i has the value 10, the result is undefined:
int foo(const int 1) {
int t;
int x[] = {0,0,0,0,0};
t = x[i];
return t;

The variable t will likely be assigned whatever is in the location pointed to by x[10] (assuming that x[10] is still
within the address space of the program).

6.9.2 Guidance to language users
* Perform range checking before accessing an array since C does not perform bounds checking
automatically. In the interest of speed and efficiency, range checking only needs to be done when it
cannot be statically shown that an access outside of the array cannot occur.
* Use the safer and more secure functions for string handling from the normative annex K of C11 [4],
Bounds-checking interfaces. These are alternative string handling library functions. The functions verify
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that receiving buffers are large enough for the resulting strings being placed in them and ensure that
resulting strings are null terminated.

6.10 Unchecked Array Copying [XYW]
6.10.1 Applicability to language

A buffer overflow occurs when some number of bytes (or other units of storage) is copied from one buffer to
another and the amount being copied is greater than is allocated for the destination buffer.

In the interest of ease and efficiency, C library functions such as

memcpy (void * restrict sl, const void * restrict s2, size t n) and

memmove (void *sl, const void *s2, size t n) areused to copy the contents from one area to
another. memcpy() and memmove() simply copy memory and no checks are made as to whether the destination
area is large enough to accommodate the n units of data being copied. It is assumed that the calling routine has
ensured that adequate space has been provided in the destination. Problems can arise when the destination
buffer is too small to receive the amount of data being copied or if the indices being used for either the source or
destination are not the intended indices.

6.10.2 Guidance to language users
¢ Perform range checking before calling a memory copying function such as memcpy() and memmove().
These functions do not perform bounds checking automatically. In the interest of speed and efficiency,
range checking only needs to be done when it cannot be statically shown that an access outside of the
array cannot occur.
* Use the safer and more secure functions for string handling from the normative annex K of C11 [4],
Bounds-checking interfaces.

6.11 Pointer Type Conversions [HFC]
6.11.1 Applicability to language

C allows casting the value of a pointer to and from another data type. These conversions can cause unexpected
changes to pointer values.

Pointers in C refer to a specific type, such as integer. If sizeof(int) is 4 bytes, and ptr is a pointer to integers that
contains the value 0x5000, then ptr++ would make ptr equal to 0x5004. However, if ptr were a pointer to char,
then ptr++ would make ptr equal to 0x5001. It is the difference due to data sizes coupled with conversions
between pointer data types that cause unexpected results and potential vulnerabilities. Due to arithmetic
operations, pointers may not maintain correct memory alignment or may operate upon the wrong memory
addresses.

In particular, make casts explicit in the return value of malloc

Example: s = (struct foo*)malloc(sizeof (struct foo));
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This uses the C type system to enforce that the pointer to the allocated space will be of a type that is appropriate

for the size. Because malloc returns a void *, without the cast, "s" could be of any random pointer type; with the

cast, that mistake will be caught

6.11.2 Guidance to language users
* Follow the advice provided by TR 24772-1 clause 6.11.5.
* Maintain the same type to avoid errors introduced through conversions.

* Always cast the value returned by malloc to an appropriate type

* Heed compiler warnings that are issued for pointer conversion instances. The decision may be made to
avoid all conversions so any warnings must be addressed. Note that casting into and out of “void *”
pointers will most likely not generate a compiler warning as this is valid in C.

6.12 Pointer Arithmetic [RVG]

6.12.1 Applicability to language

When performing pointer arithmetic in C, the size of the value to add to a pointer is automatically scaled to the
size of the type of the pointed-to object. For instance, when adding a value to the byte address of a 4-byte
integer, the value is scaled by a factor 4 and then added to the pointer. The effect of this scaling is that if a pointer
P points to the i-th element of an array object, then (P) + N will point to the i+n-th element of the array. Failing to
understand how pointer arithmetic works can lead to miscalculations that result in serious errors, such as buffer
overflows.

In C, arrays have a strong relationship to pointers. The following example will illustrate arithmetic in C involving a
pointer and how the operation is done relative to the size of the pointer's target. Consider the following code

snippet:
int buf[5];
int *buf ptr = buf;

where the address of buf is 0x1234, after the assignment buf_ptr points to buf[0]. Adding 1 to buf_ptr will result
in buf_ptr being equal to 0x1238 on a host where an int is 4 bytes; buf_ptr will then point to buf[1]. Not realizing
that address operations will be in terms of the size of the object being pointed to can lead to address
miscalculations and undefined behaviour.

6.12.2 Guidance to language users
* Consider an outright ban on pointer arithmetic due to the error-prone nature of pointer arithmetic.
e Verify that all pointers are assigned a valid memory address for use.

6.13 NULL Pointer Dereference [XYH]
6.13.1 Applicability to language
C allows memory to be dynamically allocated primarily through the use of malloc(), calloc(), and realloc(). Each

will return the address to the allocated memory. Due to a variety of situations, the memory allocation may not
occur as expected and a null pointer will be returned. Other operations or faults in logic can result in a memory
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pointer being set to null. Using the null pointer as though it pointed to a valid memory location can cause a
segmentation fault and other unanticipated situations.

Space for 10000 integers can be dynamically allocated in C in the following way:
int *ptr = malloc(10000*sizeof (int)); // allocate space for 10000 ints

malloc() will return the address of the memory allocation or a null pointer if insufficient memory is available for
the allocation. It is good practice after the attempted allocation to check whether the memory has been allocated

via an if test against NULL:
if (ptr != NULL) // check to see that the memory could be allocated

Memory allocations usually succeed, so neglecting this test and using the memory will usually work. That is why
neglecting the null test will frequently go unnoticed. An attacker can intentionally create a situation where the
memory allocation will fail leading to a segmentation fault.

Faults in logic can cause a code path that will use a memory pointer that was not dynamically allocated or after
memory has been deallocated and the pointer was set to null as good practice would indicate.

6.13.2 Guidance to language users
* Create a specific check that a pointer is not null before dereferencing it. As this can be expensive in some
cases (such as in a for loop that performs operations on each element of a large segment of memory),
judicious checking of the value of the pointer at key strategic points in the code is recommended.

6.14 Dangling Reference to Heap [XYK]

6.14.1 Applicability to language

C allows memory to be dynamically allocated primarily through the use of malloc(), calloc(), and realloc(). C
allows a considerable amount of freedom in accessing the dynamic memory. Pointers to the dynamic memory
can be created to perform operations on the memory. Once the memory is no longer needed, it can be released
through the use of free(). However, freeing the memory does not prevent the use of the pointers to the memory
and issues can arise if operations are performed after memory has been freed.

Consider the following segment of code:
int foo() {
int *ptr = malloc (100*sizeof (int));/* allocate space for 100 integers*/
if (ptr != NULL) { /* check to see that the memory could be allocated */
/* perform some operations on the dynamic memory */
free (ptr); /* memory is no longer needed, so free it */
/* program continues performing other operations */
ptr[0] = 10; /* ERROR - memory being used after released */

The use of memory in C after it has been freed is undefined. Depending on the execution path taken in the
program, freed memory may still be free or may have been allocated via another malloc() or other dynamic
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memory allocation. If the memory that is used is still free, use of the memory may be unnoticed. However, if the
memory has been reallocated, altering of the data contained in the memory can result in data corruption.
Determining that a dangling memory reference is the cause of a problem and locating it can be difficult.

Setting and using another pointer to the same section of dynamically allocated memory can also lead to
undefined behaviour. Consider the following section of code:

int foo () {
int *ptr = malloc (100*sizeof (int));/* allocate space for 100 integers */
if (ptr != NULL) { /* check to see that the memory
could be allocated */
int ptr2 = &ptr([10]; /* set ptr2 to point to the 10th

element of the allocated memory */
/* perform some operations on the

dynamic memory */
free (ptr); /* memory is no longer needed */
ptr = NULL; /* set ptr to NULL to prevent ptr

from being used again */

/* program continues performing

other operations */
ptr2[0] = 10; /* ERROR - memory is being used

after it has been released via ptr2 */

}
return (0);
}

Dynamic memory was allocated via a malloc() and then later in the code, ptr2 was used to point to an address in
the dynamically allocated memory. After the memory was freed using free(ptr) and the good practice of setting
ptr to NULL was followed to avoid a dangling reference by ptr later in the code, a dangling reference still existed

using ptr2.

6.14.2 Guidance to language users
* Follow the advice provided by TR 24772-1 clause 6.15.2.
* Set a freed pointer to null immediately after a free() call, as illustrated in the following code:
free (ptr);
ptr = NULL;
* Do not create and use additional pointers to dynamically allocated memory.
* Only reference dynamically allocated memory using the pointer that was used to allocate the memory.

6.15 Arithmetic Wrap-around Error [FIF]
6.15.1 Applicability to language

Given the limited size of any computer data type, continuously adding one to the data type eventually will cause
the value to go from a the maximum possible value to a small value. C permits this to happen without any

detection or notification mechanism.
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C is often used for bit manipulation. Part of this is due to the capabilities in C to mask bits and shift them.
Another part is due to the relative closeness C has to assembly instructions. Manipulating bits on a signed value
can inadvertently change the sign bit resulting in a number potentially going from a large positive value to a large
negative value.

For example, consider the following code for a short int containing 16 bits:
int foo( short int i ) {
i++;

return 1i;

Calling foo with the value of 32767 would cause undefined behaviour, such as wrapping to -32768. Manipulating
a value in this way can result in unexpected results such as overflowing a buffer.

In C, bit shifting by a value that is greater than the size of the data type or by a negative number is undefined. The

following code, where a int is 16 bits, would be undefined when j is greater than or equal to 16 or negative:
int foo( int i, const int j ) {
return i>>j;

6.15.2 Guidance to language users

* Be aware that any of the following operators have the potential to wrap in C:
a + b a - b a*b at++ a--
a +=Db a -=>b a *= b a << b a>Db -a

* Use defensive programming techniques to check whether an operation will overflow or underflow the
receiving data type. These techniques can be omitted if it can be shown at compile time that overflow or
underflow is not possible.

¢ Only conduct bit manipulations on unsigned data types. The number of bits to be shifted by a shift
operator should lie between 1 and (n-1), where n is the size of the data type.

6.16 Using Shift Operations for Multiplication and Division [PIK]

6.16.1 Applicability to language

The issues for C are well defined in TR 24772-1 clause 6.16 Using Shift Operations for Multiplication and Division
[PIK]. Also see clause 6.15 Arithmetic Wrap-around Error [FIF].

6.16.2 Guidance to language users

The guidance for C users is well defined in TR 24772-1 clause 6.16 Using Shift Operations for Multiplication and
Division [PIK]. Also see, 6.15 Arithmetic Wrap-around Error [FIF].
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6.17 Choice of Clear Names [NAI]

6.17.1 Applicability to language

Cis somewhat susceptible to errors resulting from the use of similarly appearing names. C does require the
declaration of variables before they are used. However, C allows scoping so that a variable that is not declared
locally may be resolved to some outer block and a human reviewer may not notice that resolution. Variable
name length is implementation specific and so one implementation may resolve names to one length whereas
another implementation may resolve names to another length resulting in unintended behaviour.

As with the general case, calls to the wrong subprogram or references to the wrong data element (when missed
by human review) can result in unintended behaviour.

6.17.2 Guidance to language users

* Use names that are clear and non-confusing.

* Use consistency in choosing names.

* Keep names short and concise in order to make the code easier to understand.

* Choose names that are rich in meaning.

¢ Keep in mind that code will be reused and combined in ways that the original developers never imagined.

* Make names distinguishable within the first few characters due to scoping in C. This will also assist in
averting problems with compilers resolving to a shorter name than was intended.

* Do not differentiate names through only a mixture of case or the presence/absence of an underscore
character.

* Avoid differentiating through characters that are commonly confused visually such as ‘O’ and ‘0’, ‘I’ (lower
case ‘L’), ‘I' (capital ‘I') and ‘1’, ‘S” and ‘5’, 2" and ‘2’, and ‘n’ and ‘h’.

¢ Develop coding guidelines to define a common coding style and to avoid the above dangerous practices.

6.18 Dead Store [WXQ]

6.18.1 Applicability to language

Because C is an imperative language, programs in C can contain dead stores. This can result from an error in the
initial design or implementation of a program, or from an incomplete or erroneous modification of an existing
program.

A store into a volatile-qualified variable generally should not be considered a dead store because accessing such a
variable may cause additional side effects, such as input/output (memory-mapped 1/0) or observability by a
debugger or another thread of execution.

6.18.2 Guidance to language users
* Use compilers and analysis tools to identify dead stores in the program.
* Declare variables as volatile when they are intentional targets of a store whose value does not appear to
be used.
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6.19 Unused Variable [YZS]

6.19.1 Applicability to language

Variables may be declared, but never used when writing code or the need for a variable may be eliminated in the
code, but the declaration may remain. Most compilers will report this as a warning and the warning can be easily
resolved by removing the unused variable.

6.19.2 Guidance to language users
* Resolve all compiler warnings for unused variables. This is trivial in C as one simply needs to remove the
declaration of the variable. Having an unused variable in code indicates that either warnings were turned
off during compilation or were ignored by the developer.

6.20 Identifier Name Reuse [YOW]

6.20.1 Applicability to language

C allows scoping so that a variable that is not declared locally may be resolved to some outer block and that
resolution may cause the variable to operate on an entity other than the one intended.
Because the variable name varl was reused in the following example, the printed value of varl may be

unexpected.
int varl; /* declaration in outer scope */
varl = 10;
{

int var2;

int varl; /* declaration in nested (inner) scope */
var2 = 5;
varl = 1; /* varl in inner scope is 1 */

print (“varl=%d\n”, varl); /* will print “varl=10” as varl refers */
/* to varl in the outer scope */

Removing the declaration of var2 will result in a diagnostic message being generated making the programmer
aware of an undeclared variable. However, removing the declaration of varl in the inner block will not result in a
diagnostic as varl will be resolved to the declaration in the outer block and a programmer maintaining the code
could very easily miss this subtlety. The removing of inner block varl will result in the printing of “varl=1" instead
of “var1=10".
6.20.2 Guidance to language users
* Ensure that a definition of an entity does not occur in a scope where a different entity with the same
name is accessible and can be used in the same context. A language-specific project coding convention
can be used to ensure that such errors are detectable with static analysis.
* Ensure that a definition of an entity does not occur in a scope where a different entity with the same
name is accessible and has a type that permits it to occur in at least one context where the first entity can

occur.
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* Ensure that all identifiers differ within the number of characters considered to be significant by the
implementations that are likely to be used, and document all assumptions.

6.21 Namespace Issues [B]L]
6.21.1 Applicability to language

Does not apply to C because C requires unique names and has a single global namespace. A diagnostic message is
required for duplicate names in a single compilation.

6.22 Initialization of Variables [LAV]

6.22.1 Applicability to language

Local, automatic variables can assume unexpected values if they are used before they are initialized. The C
Standard specifies, "If an object that has automatic storage duration is not initialized explicitly, its value is
indeterminate". In the common case, on architectures that make use of a program stack, this value defaults to
whichever values are currently stored in stack memory. While uninitialized memory often contains zeros, this is
not guaranteed. Consequently, uninitialized memory can cause a program to behave in an unpredictable or
unplanned manner and may provide an avenue for attack.

Assuming that an uninitialized variable is 0 can lead to unpredictable program behaviour when the variable is
initialized to a value other than 0.

Many implementations will issue a diagnostic message indicating that a variable was not initialized.

6.22.2 Guidance to language users
* Heed compiler warning messages about uninitialized variables. These warnings should be resolved as
recommended to achieve a clean compile at high warning levels.
* Do not use memory allocated by functions such as malloc() before the memory is initialized as the
memory contents are indeterminate.

6.23 Operator Precedence and Associativity [JCW]
6.23.1 Applicability to language

Operator precedence and associativity in C are clearly defined.
Mixed logical operators are allowed without parentheses.
6.23.2 Guidance to language users

* Follow the guidance provided in TR 24772-1 clause 6.23.5
* Use parentheses any time arithmetic operators, logical operators, and shift operators are mixed in an
expression.
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6.24 Side-effects and Order of Evaluation of Operands [SAM]
6.24.1 Applicability to language

C allows expressions to have side effects. If two or more side effects modify the same expression as in:
int v[10];
int 1i;
/* o x/
i = v[i++];

the behaviour is undefined and this can lead to unexpected results. Either the “i++” is performed first or the
assignment “i=v[i]” is performed first. Because the order of evaluation can have drastic effects on the
functionality of the code, this can greatly impact portability.

There are several situations in C where the order of evaluation of subexpressions or the order in which side
effects take place is unspecified including:
* The order in which the arguments to a function are evaluated (C99, Section 6.5.2.2,"Function calls").
¢ The order of evaluation of the operands in an assignment statement (C99, Section 6.5.16,"Assignment
operators").
* The order in which any side effects occur among the initialization list expressions is unspecified. In
particular, the evaluation order need not be the same as the order of subobject initialization (C99, Section
6.7.8, “Initialization").

Because these are unspecified behaviours, testing may give the false impression that the code is working and
portable, when it could just be that the values provided cause evaluations to be performed in a particular order
that causes side effects to occur as expected.

6.24.2 Guidance to language users

* Follow the guidance provided in TR 24772-1 clause 6.24.5
* Expressions should be written so that the same effects will occur under any order of evaluation that the C
standard permits since side effects can be dependent on an implementation specific order of evaluation.

6.25 Likely Incorrect Expression [KOA]

6.25.1 Applicability to language

C has several instances