
ISO/IEC JTC 1/SC 22/OWGV N 0190
Proposed rewrite of Sub-clause 6.26

Date 5 May 2009
Contributed by Robert Karlin
Original file name 6-26 rewrite.doc
Notes Closes Action Item #10-06

6.26 Inheritance [RIP]

6.26.1 Description of application vulnerability

Inheritance, the ability to create enhanced and/or restricted object classes based on existing
object classes can introduce a number of vulnerabilities, both inadvertent and malicious.
Because Inheritance allows the overriding of methods of the parent class and because object
oriented systems are designed to separate and encapsulate code and data, it can be difficult to
determine where in the hierarchy an invoked method is actually defined. Also, since an
overriding method does not need to call the method in the parent class that has been overridden,
essential initialization and manipulation of class data may be bypassed. This can be especially
dangerous during constructor and destructor methods.

Languages that allow multiple inheritance add additional complexities to the resolution of method
invocations. Different object brokerage systems may resolve the method identity to different
classes, based on how the inheritance tree is traversed.

6.26.2 Cross reference

JSF AV Rules: 86 to 97
MISRA C++ 2008: 0-1-12, 8-3-1, 10-1-1 to 10-1-3, and 10-3-1 to 10-3-3

6.26.3 Mechanism of failure

The use of inheritance can lead to an exploitable application vulnerability or negatively impact
system safety in a number of ways:

 Execution of malicious redefinitions - this can occur through the insertion of a class into
the class hierarchy that overrides commonly called methods in the parent classes.

 Accidental redefinition - where a method is defined that inadvertently overrides a method
that has already been defined in a parent class

 Accidental failure of redefinition - when a method is incorrectly named, or the parameters
are not defined properly, and thus does not override a method in a parent class

 Breaking of class invariants - this can be cause by redefining methods that initialize or
validate class data without including that initialization or validation in the overriding
methods

These vulnerabilities can increase dramatically as the complexity of the hierarchy increases,
especially in the use of multiple inheritance.

 6.26.4 Applicable language characteristics

This is applicable to all languages that allow single and multiple inheritances.

6.26.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

 Avoid the use of multiple inheritance whenever possible

 Provide complete documentation of all encapsulated data, and how each method affects
that data for each object in the hierarchy

 Inherit only from trusted sources, and, whenever possible, check the version of the parent
classes during compilation and/or initialization

 Provide a method that provides versioning information for each class.

6.26.6 Implications for standardization

 Language specification should include the definition of a common versioning method

 Compilers should provide an option to report the class in which a resolved method
resides

 Runtime environments should provide a trace of all runtime method resolutions

6.26.7 Bibliography
[1] P. V. Bhansali, A systematic approach to identifying a safe subset for safety-critical software,
ACM SIGSOFT
Software Engineering Notes, v.28 n.4, July 2003
[2] Ghassan, A., & Alkadi, I. (2003). Application of a Revised DIT Metric to Redesign an OO
Design. Journal of
Object Technology , 127-134.
[3] Subramanian, S., Tsai, W.-T., & Rayadurgam, S. (1998). Design Contraint Violation Detection
in Safety-Critical
Systems. The 3rd IEEE International Symposium on High-Assurance Systems Engineering , 109
- 116.

