
ISO/IEC JTC 1/SC 22/OWGV N 0189
Proposed rewrite of Clause 5

Date 4 May 2009
Contributed by Larry Wagoner
Original file name 5_Vulnerability_issues_final.doc
Notes Closes Action Item #10-05

5 Vulnerability issues

Software vulnerabilities are unwanted characteristics of software that may allow software

to behave in ways that are unexpected by a reasonably sophisticated user of the software.

The expectations of a reasonably sophisticated user of software may be set by the

software's documentation or by experience with similar software. Programmers

introduce vulnerabilities into software by failing to understand the expected behaviour

(the software requirements), or by failing to correctly translate the expected behaviour

into the actual behaviour of the software.

This document does not discuss a programmer's understanding of software requirements.

This document does not discuss software engineering issues per se. This document does

not discuss configuration management, build environments, code-checking tools, nor

software testing. This document does not discuss the classification of software

vulnerabilities according to safety or security concerns. This document does not discuss

the costs of software vulnerabilities, or the costs of preventing them.

This document does discuss a reasonably competent programmer's failure to translate the

understood requirements into correctly functioning software. This document does discuss

programming language features known to contribute to software vulnerabilities. That is,

this document discusses issues arising from those features of programming languages

found to increase the frequency of occurrence of software vulnerabilities. The intention is

to provide guidance to those who wish to specify coding guidelines for their own

particular use.

A programmer writes source code in a programming language to translate the understood

requirements into working software. The programmer selects and codes constructs

specified by a programming language with the intention of achieving a written expression

of the desired behaviour.

A program's expected behaviour might be stated in a complex technical document, which

can result in a complex sequence of features of the programming language. Software

vulnerabilities occur when a reasonably competent programmer fails to understand the

totality of the effects of the language features combined to construct the software. The

overall software may be a very complex technical document itself (written in a

programming language whose definition is also a complex technical document).

Humans understand very complex situations by chunking, that is, by understanding

pieces in a hierarchical scaled scheme. The programmer's initial choice of the chunk for

software is the line of code. (In any particular case, subsequent analysis by a programmer

may refine or enlarge this initial chunk.) The line of code is a reasonable initial choice

because programming editors display source code lines. Programming languages are

often defined in terms of statements (among other units), which in many cases are

synonymous with textual lines. Debuggers may execute programs stopping after every

statement to allow inspection of the program's state. Program size and complexity can be

estimated by the number of lines of source code (automatically counted without regard to

language statements).

The recommendations contained in this Technical Report might also be considered to be

code quality issues. Both kinds of issues might be addressed through the use of a

systematic development process, use of development/analysis tools and thorough testing.

5.1 Issues arising from incomplete or evolving language specifications

While there are many millions of programmers in the world, there are only several

hundreds of authors engaged in designing and specifying those programming languages

defined by international standards. The design and specification of a programming

language is very different from programming. Programming involves selecting and

sequentially combining features from the programming language to (locally) implement

specific steps of the software's design. In contrast, the design and specification of a

programming language involves (global) consideration of all aspects of the programming

language. This must include how all the features will interact with each other, and what

effects each will have, separately and in any combination, under all foreseeable

circumstances. Thus, language design has global elements that are not generally present

in any local programming task.

The creation of the abstractions which become programming language standards

therefore involve consideration of issues unneeded in many cases of actual programming.

Therefore perhaps these issues are not routinely considered when programming in the

resulting language. These global issues may motivate the definition of subtle distinctions

or changes of state not apparent in the usual case wherein a particular language feature is

used. Authors of programming languages may also desire to maintain compatibility with

older versions of their language while adding more modern features to their language and

so add what appears to be an inconsistency to the language. For example, some

languages may allow a subprogram to be invoked without specifying the correct signature

of the subprogram. This may be allowed in order to keep compatibility with earlier

versions of the language where such usage was permitted, and despite the knowledge that

modern practice demands the signature be specified. Specifically, the programming

language C does not require a function prototype be within scope. The programming

language Fortran does not require an explicit interface. Thus, language usage is improved

by coding standards specifying that the signature be present.

A reasonably competent programmer therefore may not consider the full meaning of

every language feature used, as only the desired (local or subset) meaning may

correspond to the programmer's immediate intention. In consequence, a subset meaning

of any feature may be prominent in the programmer's overall experience.

Further, the combination of features indicated by a complex programming goal can raise

the combinations of effects, making a complex aggregation within which some of the

effects are not intended.

5.1.1 Compiler Selection

Compiler selection is important to ensure a system operates safely and securely.

Compilers are important as they are the intermediary between the human readable source

code and the machine readable binary code. This crucial step is often overlooked and

compilers, unless coming from a trusted source with digital signature, should be treated

as any other commercial off the shelf software that has an unknown pedigree.

Often, developers analyze the source code to detect any code that can negatively impact

security or safety. This aims to solve one part of the problem. After the source gets

compiled, we need to be sure that the compiler did not insert any logic (maliciously or

inadvertently) into the binary that compromises the systems security or safety. This is

especially important because this type of vulnerability will be inserted into every piece of

software that the compiler processes.

To combat against this, developers of security or safety critical systems should only use

compilers from a trusted source with a digital signature. The trusted source should also

provide evidence that the compiler is free from anomalous behaviour; similar to the way

RTCA’s DO-178B defines qualifiable tools. In addition, developers of critical software

can perform source to binary traceability to ensure the compiler has not inserted any

undesired logic into the binary code.

5.1.2 Issues arising from unspecified behaviour

While every language standard attempts to specify how software written in the language

will behave in all circumstances, there will always be some behaviour that is not

specified completely. In any circumstance, of course, a particular compiler will produce a

program with some specific behaviour (or fail to compile the program at all). Where a

programming language construct is insufficiently defined different translators may

generate different behaviours from the same source code. The authors of language

standards often have an interpretations or defects process in place to treat these situations

once they become known, and, eventually, to specify one behaviour. However, the time

needed by the process to produce corrections to the language standard is often long, as

careful consideration of the issues involved is needed.

When programs are compiled with only one compiler, the programmer may not be aware

when behaviour not specified by the standard has been produced. Programs relying upon

behaviour not specified by the language standard may behave differently when they are

compiled with different compilers. An experienced programmer may choose to use more

than one compiler, even in one environment, in order to obtain diagnostics from more

than one source. In this usage, any particular compiler must be considered to be a

different compiler if it is used with different options (which can give it different

behaviour), or is a different release of the same compiler (which may have different

default options or may generate different code), or is on different hardware (which may

have a different instruction set). In this usage, a different computer may be the same

hardware with a different operating system, with different compilers installed, with

different software libraries available, with a different release of the same operating

system, or with a different operating system configuration.

5.1.3 Issues arising from implementation-defined behaviour

In some situations, a programming language standard may specifically allow compilers to

support a range of possible behaviours to a given language feature or combination of

features. This may enable a more efficient execution on a wider range of hardware, or

enable use of the programming language in a wider variety of circumstances.

In order to allow use on a wide range of hardware, for example, many languages do not

specify the amount of storage reserved for language-defined entities such as variables.

The degree to which a diligent programmer may obtain information on the amount of

storage reserved for entities varies among languages.

The authors of language standards are encouraged to provide lists of all allowed

variations of behaviour (as many already do). Such a summary will benefit applications

programmers, those who define applications coding standards, and those who make code-

checking tools.

5.1.4 Issues arising from undefined behaviour

In some situations, a programming language standard may specify that program

behaviour is undefined. While the authors of language standards naturally try to minimize

these situations, they may be inevitable when attempting to define software recovery

from errors, or other situations recognized as being incapable of precise definition.

An example of undefined behaviour, in many languages, is the use of the value of a

variable that has not yet been assigned.

5.2 Issues arising from human cognitive limitations

The authors of programming language standards try to define programming languages in

a consistent way, so that a programmer will see a consistent interface to the underlying

functionality. Such consistency is intended to ease the programmer's process of selecting

language features, by making different functionality available as regular variation of the

syntax of the programming language. However, this goal may impose limitations on the

variety of syntax used, and may result in similar syntax used for different purposes, or

even in the same syntax element having different meanings within different contexts. For

example, in the programming language C, a name followed by a parenthesized list of

expressions may reference a macro or a function. Likewise, in the programming language

Fortran, a name followed by a parenthesized list of expressions may reference an array or

a function. Thus, without further knowledge, a semantic distinction may be invisible in

the source code.

Any such situation imposes a strain on the programmer's limited human cognitive

abilities to distinguish the relationship between the totality of effects of these constructs

and the underlying behaviour actually intended during software construction.

Attempts by language authors to have distinct language features expressed by very

different syntax may easily result in different programmers preferring to use different

subsets of the entire language. This imposes a substantial difficulty to anyone who wants

to employ teams of programmers to make whole software products or to maintain

software written over time by several programmers. In short, it imposes a barrier to those

who want to employ coding standards of any kind. The use of different subsets of a

programming language may also render a programmer less able to understand other

programmer's code. The effect on maintenance programmers can be especially severe.

5.3 Issues arising from a lack of predictable execution

If a reasonably competent programmer has a good understanding of the state of a

program after reading source code as far as a particular line of code, the programmer

ought to have a good understanding of the state of the program after reading the next line

of code. However, some features, or, more likely, some combinations of features, of

programming languages are associated with relatively decreased rates of the

programmer's maintaining their understanding as they read through a program. It is these

features and combinations of features that are indicated in this document, along with

ways to increase the programmer's understanding as code is read.

Here, the term understanding means the programmer's recognition of all effects,

including subtle or unintended changes of state, of any language feature or combination

of features appearing in the program. This view does not imply that programmers only

read code from beginning to end. It is simply a statement that a line of code changes the

state of a program, and that a reasonably competent programmer ought to understand the

state of the program both before and after reading any line of code. As a first

approximation (only), code is interpreted line by line.

5.4 Issues arising from portability and interoperability

The representation of characters, the representation of true/false values, the set of valid

addresses, the properties and limitations of any (fixed point or floating-point) numerical

quantities, and the representation of programmer defined types and classes may vary

among hardware, among languages (affecting inter-language software development), and

among compilers of a given language. These variations may be the result of hardware

differences, operating system differences, library differences, compiler differences, or

different configurations of the same compiler (as may be set by environment variables or

configuration files). In each of these circumstances, there is an additional burden on the

programmer because part of the program's behaviour is indicated by a factor that is not a

part of the source code. That is, the program's behaviour may be indicated by a factor that

is invisible when reading the source code. Compilation control schemes (IDE projects,

make, and scripts) further complicate this situation by abstracting and manipulating the

relevant variables (target platform, compiler options, libraries, and so forth).

Many compilers of standard-defined languages also support language features that are not

specified by the language standard. These non-standard features are called extensions.

For portability, the programmer must be aware of the language standard, and use only

constructs with standard-defined semantics. The motivation to use extensions may

include the desire for increased functionality within a particular environment, or

increased efficiency on particular hardware. There are well-known software engineering

techniques for minimizing the ill effects of extensions; these techniques should be a part

of any coding standard where they are needed, and they should be employed whenever

extensions are used. These issues are software engineering issues and are not further

discussed in this document.

Some language standards define libraries that are available as a part of the language

definition. Such libraries are an intrinsic part of the respective language and are called

intrinsic libraries. There are also libraries defined by other sources and are called non-

intrinsic libraries.

 The use of non-intrinsic libraries to broaden the software primitives available in a given

development environment is a useful technique, allowing the use of trusted functionality

directly in the program. Libraries may also allow the program to bind to capabilities

provided by an environment. However, these advantages are potentially offset by any

lack of skill on the part of the designer of the library (who may have designed subtle or

undocumented changes of state into the library's behaviour), and implementer of the

library (who may not have the implemented the library identically on every platform),

and even by the availability of the library on a new platform. The quality of the

documentation of a third-party library is another factor that may decrease the reliability

of software using a library in a particular situation by failing to describe clearly the

library's full behaviour. If a library is missing on a new platform, its functionality must be

recreated in order to port any software depending upon the missing library. The re-

creation may be burdensome if the reason the library is missing is because the underlying

capability for a particular environment is missing.

Using a non-intrinsic library usually requires that options be set during compilation and

linking phases, which constitute a software behaviour specification beyond the source

code. Again, these issues are software engineering issues and are not further discussed in

this document.

Languages need to acknowledge the existence of other languages. Support for inter-

language operability permits the implementation of large heterogeneous systems (systems

which consist of a mixture of hardware platforms running software implemented using a

mixture of compilers/languages).

Some languages define methods of binding to object code written in other common

programming languages. Without considering interoperability, problems are encountered

such as how to call a C function from Ada where the C function writes to one of its

arguments – something that is not permitted in an Ada function because Ada has the

concept of parameter modes and functions may only be “in” mode parameters where as

procedure parameters may be “in” mode, “out” mode or “in out” mode – Ada solves this

problem by treating a C function as if it were a procedure with an extra “out” mode

parameter – the return value. Without such provision, it wouldn’t be possible for Ada to

interface with C libraries.”

5.6 Inadequate language intrinsic support

Many languages are created to facilitate programming within an application domain.

Some languages are specifically designed for programming of business applications,

numerical computation or systems programming. Problems can arise when, for example,

a language being used to implement a real-time, multi-threaded system lacks key features

that are needed such as a way of enforcing mutual exclusion. Such features can be

provided by the programming environment in the form of libraries, but the definition of

such libraries may be proprietary and inclined to change in later releases. A vendor may

even decide to withdraw support entirely for such a library. Also, such a library may not

be verified and validated to the same standard as the compiler and the application being

developed.

The use of OOP language features may well be highly appropriate for implementing a

GUI but at the same time, other features such as dynamic memory management, heap

utilization, inefficient data representation, and dynamic polymorphism are very

unsuitable for implementing a solid real-time safety-critical system. If a language is so

intrinsically bound to OOP, it is sensible to seek an alternative language for

implementing some applications. Conversely, if the problem domain is GUI development,

it will often (although not always) be advisable to use a language that has OOP features.

Some potential problems may be preventable through the use of stronger types, or the use

of controls such as array bounds checking or integer checking to avoid overflows. These

stronger restraints on a language have a cost both in performance and in the flexibility to

perform certain operations. Language designers must strike a balance between restraints

in the language, performance and flexibility causing some languages to lean heavily

toward one or more extremes in pursuit of some language attributes. The intrinsic

support provided by a language can help considerably in avoiding vulnerabilities, but

such support can cause the utility of programming within a particular application domain

to diminish.

5.7 Language features prone to erroneous use

Certain language constructs are relatively simple and straightforward to use. Other ones

are complex to use or easily misused in a legal, but unintended way. Programmers may

use floating point variables and pointers without fully understanding the nuances of the

data representation. Rarely needed constructs or constructs that can be substituted for a

series of simpler constructs can be used without a complete understanding of the full

effects of the constructs.

Syntactic language features that are not intolerant of common typo errors can produce

some problems that are notoriously difficult to find. One common example of this is that

C permits an unintentional assignment to be performed in a Boolean expression by the

accidental use of a single “=” (assignment) instead of the intended “==” test for equality.

It then allows the resulting value to be treated as a Boolean.

Mapping of vulnerabilities to sections in chapter 5:

5.1 Lack of knowledge Incomplete or evolving language specifications
6.2 Unspecified Behaviour [BQF]

6.3 Undefined Behaviour [EWF]

6.4 Implementation-defined Behaviour [FAB]

6.5 Deprecated Language Features [MEM]

5.2 Human cognitive limitations
6.7 Choice of Clear Names [NAI]

6.32 Likely Incorrect Expression [KOA]

6.38 Structured Programming [EWD]

5.3 Predictable execution
6.33 Dead and Deactivated Code [XYQ]

6.35 Demarcation of Control Flow [EOJ]

6.43 Returning Error Status [NZN]

6.44 Termination Strategy [REU]

6.48 Dynamically-linked Code and Self-modifying Code [NYY]

6.15 Numeric Conversion Errors [FLC]

6.30 Operator Precedence/Order of Evaluation [JCW]

6.31 Side-effects and Order of Evaluation [SAM]

5.4 Portability and Interoperability
6.8 Choice of Filenames and other External Identifiers [AJN]

6.12 Bit Representations [STR]

6.39 Passing Parameters and Return Values [CSJ]

6.47 Argument Passing to Library Functions [TRJ]

5.6 Inadequate language intrinsic support
6.9 Unused Variable [XYR]

6.11 Type System [IHN]

6.14 Enumerator Issues [CCB]

6.16 String Termination [CJM]

6.17 Boundary Beginning Violation [XYX]

6.18 Unchecked Array Indexing [XYZ]

6.19 Unchecked Array Copying [XYW]

6.20 Buffer Overflow [XZB]

6.23 Null Pointer Dereference [XYH]

6.24 Dangling Reference to Heap [XYK]

6.27 Initialization of Variables [LAV]

6.28 Wrap-around Error [XYY]

6.29 Sign Extension Error [XZI]

6.34 Switch Statements and Static Analysis [CLL]

6.36 Loop Control Variables [TEX]

6.41 Subprogram Signature Mismatch [OTR]

6.45 Type-breaking Reinterpretation of Data [AMV]

6.46 Memory Leak [XYL]

5.7 Language features prone to erroneous use
6.1 Obscure Language Features [BRS]
6.6 Pre-processor Directives [NMP]

6.10 Identifier Name Reuse [YOW]

6.13 Floating-point Arithmetic [PLF]

6.21 Pointer Casting and Pointer Type Changes [HFC]

6.22 Pointer Arithmetic [RVG]

6.25 Templates and Generics [SYM]

6.26 Inheritance [RIP]

6.37 Off-by-one Error [XZH]

6.40 Dangling References to Stack Frames [DCM]

6.42 Recursion [GDL]

