
© ISO 2008 – All rights reserved

ISO/IEC JTC 1/SC 22 N 0000
Date: 2008-11-10

ISO/IEC PDTR 24772

ISO/IEC JTC 1/SC 22/WG 23 N0170

Secretariat: ANSI

Information Technology — Programming Languages — Guidance to Avoiding
Vulnerabilities in Programming Languages through Language Selection and Use

Élément introductif — Élément principal — Partie n: Titre de la partie

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to
change without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of
which they are aware and to provide supporting documentation.

Document type: International standard
Document subtype: if applicable
Document stage: (40) approval stage
Document language: E

ISO/IEC PDTR 24772

ii © ISO 2008 – All rights reserved

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the
reproduction of working drafts or committee drafts in any form for use by participants in the ISO standards
development process is permitted without prior permission from ISO, neither this document nor any
extract from it may be reproduced, stored or transmitted in any form for any other purpose without prior
written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed as
shown below or to ISO’s member body in the country of the requester:

ISO copyright office
Case postale 56, CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved iii

Contents Page

Foreword ...vi
Introduction..vii
1 Scope..1
1.1 In Scope ..1
1.2 Not in Scope...1
1.3 Approach ..1
1.4 Intended Audience ..1
1.5 How to Use This Document ...2
2 Normative references ..4
3 Terms and definitions..5
4 Symbols (and abbreviated terms) ...7
5 Vulnerability issues..8
5.1 Issues arising from lack of knowledge..8
5.2 Issues arising from human cognitive limitations ..10
5.3 Predictable execution...11
5.4 Portability ...11
6. Programming Language Vulnerabilities..12
6.1 Obscure Language Features [BRS] ...12
6.2 Unspecified Behaviour [BQF] ...13
6.3 Undefined Behaviour [EWF]..14
6.4 Implementation-defined Behaviour [FAB] ..15
6.5 Deprecated Language Features [MEM] ...17
6.6 Pre-processor Directives [NMP] ...18
6.7 Choice of Clear Names [NAI]...19
6.8 Choice of Filenames and other External Identifiers [AJN] ..21
6.9 Unused Variable [XYR]...22
6.10 Identifier Name Reuse [YOW] ...23
6.11 Type System [IHN] ...25
6.12 Bit Representations [STR] ...27
6.13 Floating-point Arithmetic [PLF] ..28
6.14 Enumerator Issues [CCB] ..30
6.15 Numeric Conversion Errors [FLC] ...32
6.16 String Termination [CJM]...34
6.17 Boundary Beginning Violation [XYX] ..35
6.18 Unchecked Array Indexing [XYZ] ...36
6.19 Unchecked Array Copying [XYW] ..37
6.20 Buffer Overflow [XZB] ..38
6.21 Pointer Casting and Pointer Type Changes [HFC]..40
6.22 Pointer Arithmetic [RVG] ...41
6.23 Null Pointer Dereference [XYH] ..41
6.24 Dangling Reference to Heap [XYK] ..42
6.25 Templates and Generics [SYM] ..44
6.26 Inheritance [RIP]..46
6.27 Initialization of Variables [LAV] ..47
6.28 Wrap-around Error [XYY]...49
6.29 Sign Extension Error [XZI]...50
6.30 Operator Precedence/Order of Evaluation [JCW] ...50
6.31 Side-effects and Order of Evaluation [SAM] ..52

ISO/IEC PDTR 24772

iv © ISO 2008 – All rights reserved

6.32 Likely Incorrect Expression [KOA] ..53
6.33 Dead and Deactivated Code [XYQ] ..54
6.34 Switch Statements and Static Analysis [CLL] ...56
6.35 Demarcation of Control Flow [EOJ] ...57
6.36 Loop Control Variables [TEX] ...58
6.37 Off-by-one Error [XZH] ..59
6.38 Structured Programming [EWD]...60
6.39 Passing Parameters and Return Values [CSJ] ..61
6.40 Dangling References to Stack Frames [DCM]..63
6.41 Subprogram Signature Mismatch [OTR]...65
6.42 Recursion [GDL]..66
6.43 Returning Error Status [NZN]..67
6.44 Termination Strategy [REU] ..70
6.45 Type-breaking Reinterpretation of Data [AMV]..71
6.46 Memory Leak [XYL]...72
6.47 Argument Passing to Library Functions [TRJ] ..74
6.48 Dynamically-linked Code and Self-modifying Code [NYY] ..75
7. Application Vulnerabilities ..77
7.1 Adherence to Least Privilege [XYN] ...77
7.2 Privilege Sandbox Issues [XYO]...77
7.3 Executing or Loading Untrusted Code [XYS]...79
7.4 Unspecified Functionality [BVQ] ...79
7.5 Memory Locking [XZX]...80
7.6 Resource Exhaustion [XZP] ..81
7.7 Injection [RST] ...82
7.8 Cross-site Scripting [XYT] ..85
7.9 Unquoted Search Path or Element [XZQ] ..87
7.10 Improperly Verified Signature [XZR]..87
7.11 Discrepancy Information Leak [XZL] ...88
7.12 Sensitive Information Uncleared Before Release [XZK] ..89
7.13 Path Traversal [EWR] ...89
7.14 Missing Required Cryptographic Step [XZS] ..91
7.15 Insufficiently Protected Credentials [XYM] ..92
7.16 Missing or Inconsistent Access Control [XZN]..93
7.17 Authentication Logic Error [XZO] ..93
7.18 Hard-coded Password [XYP]...95
A. Guideline Recommendation Factors...97
A.1 Factors that need to be covered in a proposed guideline recommendation.....................................97
A.2 Language definition ...97
A.3 Measurements of language usage ..97
A.4 Level of expertise ...97
A.5 Intended purpose of guidelines ...97
A.6 Constructs whose behaviour can very...97
A.7 Example guideline proposal template ..98
B. Guideline Selection Process ..99
B.1 Cost/Benefit Analysis ..99
B.2 Documenting of the selection process...99
C. Skeleton template for use in proposing programming language vulnerabilities..............................100
C.1 6.<x> <short title> [<unique immutable identifier>] ...100
D. Skeleton template for use in proposing application vulnerabilities..102
D.1 7.<x> <short title> [<unique immutable identifier>] ...102
E. Vulnerability Outline...103
F. Skeleton template for use in proposing language specific information for vulnerabilities106
F.1 Identification of standards ..106
F.2 General Terminology..106

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved v

F.3 <language annex>.3.<x> <short title><unique immutable identifier> ...106
Bibliography...108

ISO/IEC PDTR 24772

vi © ISO 2008 – All rights reserved

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International
Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TR 24772, which is a Technical Report of type 3, was prepared by Joint Technical Committee ISO/IEC
JTC 1, Subcommittee SC 22, Programming Languages.

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved vii

Introduction
All programming languages contain constructs that exhibit undefined behavior, are implementation-dependent,
or are difficult to use correctly. As a result, software programs can execute differently than intended by the writer.
In some cases, these vulnerabilities can be exploited by attackers to compromise the safety, security, and
privacy of a system.

This Technical Report is intended to provide guidance spanning multiple programming languages, so that
application developers will be better able to avoid the programming constructs that lead to vulnerabilities in
software written in their chosen language and their attendant consequences. This guidance can also be used by
developers to select source code evaluation tools that can discover and eliminate some constructs that could
lead to vulnerabilities in their software.

WORKING DRAFT ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 1

Information Technology — Programming Languages — Guidance to Avoiding Vulnerabilities in Programming
Languages through Language Selection and Use

1 Scope

1.1 In Scope

This Technical Report specifies software vulnerabilities that are applicable in a context where assured behaviour is
required for security, safety, mission critical and business critical software. In general, this guidance is applicable
to the software developed, reviewed, or maintained for any application.

1.2 Not in Scope

This Technical Report does not address software engineering and management issues such as how to design and
implement programs, use configuration management, and use managerial processes.

The specification of an application is not within the scope.

1.3 Approach

The impact of the guidelines in this Technical Report are likely to be highly leveraged in that they are likely to affect
many times more people than the number that worked on them. This leverage means that these guidelines have
the potential to make large savings, for a small cost, or to generate large unnecessary costs, for little benefit. For
these reasons this Technical Report has taken a cautious approach to creating guideline recommendations. New
guideline recommendations can be added over time, as practical experience and experimental evidence is
accumulated.

1.4 Intended Audience

The intended audiences for this Technical Report are those who are concerned with assuring the software of their
system; that is, those who are developing, qualifying, or maintaining a software system and need to avoid language
constructs that could cause the software to execute in a manner other than intended.

As described in the following paragraphs, developers of applications that have clear safety, security or mission
criticality are usually aware of the risks associated with their code and can be expected to use this document to
ensure that development practices address the issues presented by the chosen programming languages, for
example by subsetting or providing coding guidelines.

That should not be taken to mean that other developers could ignore this document. A weakness in an application
that of itself has no direct criticality may provide the route by which an attacker gains control of a system or may
otherwise disrupt co-located applications that are safety, security or mission critical.

It would be hoped that such developers would use this document to ensure that common vulnerabilities are
removed from all applications.

1.4.1 Safety-Critical Applications

Users who may benefit from this document include those developing, qualifying, or maintaining a system where it is
critical to prevent behaviour that might lead to:

• loss of human life or human injury, or
• damage to the environment.

ISO/IEC PDTR 24772

2 © ISO 2008 – All rights reserved

1.4.2 Security-Critical Applications

Users who may benefit from this document include those developing, qualifying, or maintaining a system where it is
critical to exhibit security properties of:

• confidentiality,
• integrity, and
• availability.

1.4.3 Mission-Critical Applications

Users who may benefit from this document include those developing, qualifying, or maintaining a system where it is
critical to prevent behaviour that might lead to:

• property loss or damage, or
• economic loss or damage.

1.4.4 Modeling and Simulation Applications

People who may benefit from this document include those who are primarily experts in areas other than
programming but need to use computation as part of their work. Such people include scientists, engineers,
economists, and statisticians. They require high confidence in the applications they write and use because of the
increasing complexity of the calculations made (and the consequent use of teams of programmers each
contributing expertise in a portion of the calculation), or to the costs of invalid results, or to the expense of individual
calculations implied by a very large number of processors used and/or very long execution times needed to
complete the calculations. These circumstances give a consequent need for high reliability and motivate the need
felt by these programmers for the guidance offered in this document.

1.5 How to Use This Document

This Technical Report gathers language-independent descriptions of programming language vulnerabilities, as well
as application vulnerabilities, which have occurred in the past and are likely to occur again. Because new
vulnerabilities are always being discovered, it is anticipated that the document will be revised and new descriptions
added. For that reason, a scheme that is distinct from document sub-clause numbering has been adopted to
identify the vulnerability descriptions. Each description has been assigned an arbitrarily generated, unique three-
letter code. These codes should be used in preference to sub-clause numbers when referencing descriptions.

The main part of the document contains descriptions that are intended to be language-independent to the greatest
possible extent. Future editions will include annexes that apply the generic guidance to particular programming
languages.

The document has been written with several possible usages in mind:

• Programmers familiar with the vulnerabilities of a specific language can reference the guide for more
generic descriptions and their manifestations in less familiar languages.

• Tool vendors can use the three-letter codes as a succinct way to “profile” the selection of vulnerabilities
considered by their tools.

• Individual organizations may wish to write their own coding standards intended to reduce the number of
vulnerabilities in their software products. The guide can assist in the selection of vulnerabilities to be
addressed in those standards and the selection of coding guidelines to be enforced.

• Organizations or individuals selecting a language for use in a project may want to consider the
vulnerabilities inherent in various candidate languages.

The following sections include suggestions for ways of avoiding the vulnerabilities. It should be noted that these
include techniques that can be applied during development, and those that must be implemented as run-time
checks. The former are likely to be appropriate to all applications. For some applications, it is relatively more

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 3

important to ensure that potential run-time errors are eliminated during development because there may be
insufficient opportunity to recover from them.

ISO/IEC PDTR 24772

4 © ISO 2008 – All rights reserved

2 Normative references
The following referenced documents are indispensable for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including any
amendments) applies.

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 5

3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.

3.1 Language Vulnerability

A property (of a programming language) that can contribute to, or that is strongly correlated with, application
vulnerabilities in programs written in that language.

Note: The term "property" can mean the presence or the absence of a specific feature, used singly or in
combination. As an example of the absence of a feature, encapsulation (control of where names may be
referenced from) is generally considered beneficial since it narrows the interface between modules and can
help prevent data corruption. The absence of encapsulation from a programming language can thus be
regarded as a vulnerability. Note that a property together with its complement may both be considered
language vulnerabilities. For example, automatic storage reclamation (garbage collection) is a vulnerability
since it can interfere with time predictability and result in a safety hazard. On the other hand, the absence of
automatic storage reclamation is also a vulnerability since programmers can mistakenly free storage
prematurely, resulting in dangling references.

3.2 Application Vulnerability

A security vulnerability or safety hazard, or defect.

3.3 Security Vulnerability

A weakness in an information system, system security procedures, internal controls, or implementation that could
be exploited or triggered by a threat.

3.4 Safety Hazard

IEC61508 part 4: defines a “Hazard” as a “potential source of harm”, where “harm” is “physical injury or damage to
the health of people either directly or indirectly as a result of damage to property or to the environment”.

IEC61508 cites ISO/IEC Guide 51 as the source for the definition.

Note: IEC61508 is titled “Functional safety of electrical/electronic/ programmable electronic safety-related
systems”, with part 4 being “Definitions and abbreviations”. Hence within IEC61508 the “safety” context of
“safety hazard” is assumed.

Note: Some derived standards, such as UK Defence Standard 00-56, broaden the definition of “harm” to
include materiel and environmental damage (not just harm to people caused by property and environmental
damage).

3.5 Safety-critical software

Software for applications where failure can cause very serious consequences such as human injury or death.
IEC61508 part 4: defines “Safety-related software” as “software that is used to implement safety functions in a
safety-related system.

Note: For this Technical Report, the term safety-critical is used for all vulnerabilities that may result in safety-
hazards. Not withstanding that is some domains a distinction is make between safety-related (may lead to any
harm) and safety-critical (life threatening).

3.6 Software quality

The degree to which software implements the requirements described by its specification.

ISO/IEC PDTR 24772

6 © ISO 2008 – All rights reserved

3.7 Predictable Execution

The property of the program such that all possible executions have results that can be predicted from the source
code, the relevant language-defined implementation characteristics and knowledge of the universe of execution.

Note: In some environments, this would raise issues regarding numerical stability, exceptional processing, and
concurrent execution.

Note: Predictable execution is an ideal that must be approached keeping in mind the limits of human
capability, knowledge, availability of tools, etc. Neither this nor any standard ensures predictable execution.
Rather this standard provides advice on improving predictability. The purpose of this document is to assist a
reasonably competent programmer approach the ideal of predictable execution.

Note: The following terms are used in relation to “Predictable execution”

• Unspecified behaviour: A situation where the implementation of a language will have to make some
choice from a finite set of alternatives, but that choice is not in general predictable by the programmer, for
example, the order in which sub-expressions are evaluated in an expression in C related languages.

• Implementation-defined behaviour: A situation where the implementation of a language will have to
make some choice, and it is required that this choice is documented and available to the programmer, for
example, using the value of a variable before it has been assigned.

• Undefined behaviour: A situation where the definition of a language can give no indication of what
behaviour to expect from a program – it may be some form of catastrophic failure (a ‘crash’) or continued
execution with some arbitrary data.

Note: This document includes a section on Unspecified functionality. This is not related to unspecified
behaviour, being a property of an application, not the language used to develop the application.

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 7

4 Symbols (and abbreviated terms)
None.

ISO/IEC PDTR 24772

8 © ISO 2008 – All rights reserved

5 Vulnerability issues
Software vulnerabilities are unwanted characteristics of software that may allow software to behave in ways that
are unexpected by a reasonably sophisticated user of the software. The expectations of a reasonably
sophisticated user of software may be set by the software's documentation or by experience with similar software.
Programmers introduce vulnerabilities into software by failing to understand the expected behaviour (the software
requirements), or by failing to correctly translate the expected behaviour into the actual behaviour of the software.

This document does not discuss a programmer's understanding of software requirements. This document does not
discuss software engineering issues per se. This document does not discuss configuration management, build
environments, code-checking tools, nor software testing. This document does not discuss the classification of
software vulnerabilities according to safety or security concerns. This document does not discuss the costs of
software vulnerabilities, or the costs of preventing them.

This document does discuss a reasonably competent programmer's failure to translate the understood
requirements into correctly functioning software. This document does discuss programming language features
known to contribute to software vulnerabilities. That is, this document discusses issues arising from those features
of programming languages found to increase the frequency of occurrence of software vulnerabilities. The intention
is to provide guidance to those who wish to specify coding guidelines for their own particular use.

A programmer writes source code in a programming language to translate the understood requirements into
working software. The programmer selects and codes constructs specified by a programming language with the
intention of achieving a written expression of the desired behaviour.

A program's expected behaviour might be stated in a complex technical document, which can result in a complex
sequence of features of the programming language. Software vulnerabilities occur when a reasonably competent
programmer fails to understand the totality of the effects of the language features combined to construct the
software. The overall software may be a very complex technical document itself (written in a programming
language whose definition is also a complex technical document).

Humans understand very complex situations by chunking, that is, by understanding pieces in a hierarchical scaled
scheme. The programmer's initial choice of the chunk for software is the line of code. (In any particular case,
subsequent analysis by a programmer may refine or enlarge this initial chunk.) The line of code is a reasonable
initial choice because programming editors display source code lines. Programming languages are often defined in
terms of statements (among other units), which in many cases are synonymous with textual lines. Debuggers may
execute programs stopping after every statement to allow inspection of the program's state. Program size and
complexity can be estimated by the number of lines of source code (automatically counted without regard to
language statements).

The recommendations contained in this Technical Report might also be considered to be code quality issues. Both
kinds of issues might be addressed through the use of a systematic development process, use of
development/analysis tools and thorough testing.

5.1 Issues arising from lack of knowledge

While there are many millions of programmers in the world, there are only several hundreds of authors engaged in
designing and specifying those programming languages defined by international standards. The design and
specification of a programming language is very different from programming. Programming involves selecting and
sequentially combining features from the programming language to (locally) implement specific steps of the
software's design. In contrast, the design and specification of a programming language involves (global)
consideration of all aspects of the programming language. This must include how all the features will interact with
each other, and what effects each will have, separately and in any combination, under all foreseeable
circumstances. Thus, language design has global elements that are not generally present in any local
programming task.

The creation of the abstractions which become programming language standards therefore involve consideration of
issues unneeded in many cases of actual programming. Therefore perhaps these issues are not routinely

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 9

considered when programming in the resulting language. These global issues may motivate the definition of subtle
distinctions or changes of state not apparent in the usual case wherein a particular language feature is used.
Authors of programming languages may also desire to maintain compatibility with older versions of their language
while adding more modern features to their language and so add what appears to be an inconsistency to the
language.

For example, some languages may allow a subprogram to be invoked without specifying the correct signature of
the subprogram. This may be allowed in order to keep compatibility with earlier versions of the language where
such usage was permitted, and despite the knowledge that modern practice demands the signature be specified.
Specifically, the programming language C does not require a function prototype be within scope1. The
programming language Fortran does not require an explicit interface. Thus, language usage is improved by coding
standards specifying that the signature be present.

A reasonably competent programmer therefore may not consider the full meaning of every language feature used,
as only the desired (local or subset) meaning may correspond to the programmer's immediate intention. In
consequence, a subset meaning of any feature may be prominent in the programmer's overall experience.

Further, the combination of features indicated by a complex programming goal can raise the combinations of
effects, making a complex aggregation within which some of the effects are not intended.

5.1.1 Compiler Selection

Compiler selection is important to ensure a system operates safely and securely. Compilers are important as they
are the intermediary between the human readable source code and the machine readable binary code. This
crucial step is often overlooked and compilers, unless coming from a trusted source with digital signature, should
be treated as any other commercial off the shelf software that has an unknown pedigree.

Often, developers analyze the source code to detect any code that can negatively impact security or safety. This
aims to solve one part of the problem. After the source gets compiled, we need to be sure that the compiler did not
insert any logic (maliciously or inadvertently) into the binary that compromises the systems security or safety. This
is especially important because this type of vulnerability will be inserted into every piece of software that the
compiler processes.

To combat against this, developers of security or safety critical systems should only use compilers from a trusted
source with a digital signature. The trusted source should also provide evidence that the compiler is free from
anomalous behaviour; similar to the way RTCA’s DO-178B defines qualifiable tools. In addition, developers of
critical software can perform source to binary traceability to ensure the compiler has not inserted any undesired
logic into the binary code.

5.1.2 Issues arising from unspecified behaviour

While every language standard attempts to specify how software written in the language will behave in all
circumstances, there will always be some behaviour that is not specified completely. In any circumstance, of
course, a particular compiler will produce a program with some specific behaviour (or fail to compile the program at
all). Where a programming language construct is insufficiently defined different translators may generate different
behaviours from the same source code. The authors of language standards often have an interpretations or
defects process in place to treat these situations once they become known, and, eventually, to specify one
behaviour. However, the time needed by the process to produce corrections to the language standard is often
long, as careful consideration of the issues involved is needed.

When programs are compiled with only one compiler, the programmer may not be aware when behaviour not
specified by the standard has been produced. Programs relying upon behaviour not specified by the language
standard may behave differently when they are compiled with different compilers. An experienced programmer
may choose to use more than one compiler, even in one environment, in order to obtain diagnostics from more

1 This feature has been deprecated in the 1999 version of the ISO C Standard.

ISO/IEC PDTR 24772

10 © ISO 2008 – All rights reserved

than one source. In this usage, any particular compiler must be considered to be a different compiler if it is used
with different options (which can give it different behaviour), or is a different release of the same compiler (which
may have different default options or may generate different code), or is on different hardware (which may have a
different instruction set). In this usage, a different computer may be the same hardware with a different operating
system, with different compilers installed, with different software libraries available, with a different release of the
same operating system, or with a different operating system configuration.

5.1.3 Issues arising from implementation-defined behaviour

In some situations, a programming language standard may specifically allow compilers to support a range of
possible behaviour to a given language feature or combination of features. This may enable a more efficient
execution on a wider range of hardware, or enable use of the programming language in a wider variety of
circumstances.

In order to allow use on a wide range of hardware, for example, many languages do not specify the amount of
storage reserved for language-defined entities such as variables. The degree to which a diligent programmer may
obtain information on the amount of storage reserved for entities varies among languages.

The authors of language standards are encouraged to provide lists of all allowed variation of behaviour (as many
already do). Such a summary will benefit applications programmers, those who define applications coding
standards, and those who make code-checking tools.

5.1.4 Issues arising from undefined behaviour

In some situations, a programming language standard may specify that program behaviour is undefined. While the
authors of language standards naturally try to minimize these situations, they may be inevitable when attempting to
define software recovery from errors, or other situations recognized as being incapable of precise definition.

An example of undefined behaviour, in many languages, is the use of the value of a variable that has not yet been
assigned.

5.2 Issues arising from human cognitive limitations

The authors of programming language standards try to define programming languages in a consistent way, so that
a programmer will see a consistent interface to the underlying functionality. Such consistency is intended to ease
the programmer's process of selecting language features, by making different functionality available as regular
variation of the syntax of the programming language. However, this goal may impose limitations on the variety of
syntax used, and may result in similar syntax used for different purposes, or even in the same syntax element
having different meanings within different contexts.

For example, in the programming language C, a name followed by a parenthesized list of expressions may
reference a macro or a function. Likewise, in the programming language Fortran, a name followed by a
parenthesized list of expressions may reference an array or a function. Thus, without further knowledge, a
semantic distinction may be invisible in the source code.

Any such situation imposes a strain on the programmer's limited human cognitive abilities to distinguish the
relationship between the totality of effects of these constructs and the underlying behaviour actually intended
during software construction.

Attempts by language authors to have distinct language features expressed by very different syntax may easily
result in different programmers preferring to use different subsets of the entire language. This imposes a
substantial difficulty to anyone who wants to employ teams of programmers to make whole software products or to
maintain software written over time by several programmers. In short, it imposes a barrier to those who want to
employ coding standards of any kind. The use of different subsets of a programming language may also render a
programmer less able to understand other programmer's code. The effect on maintenance programmers can be
especially severe.

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 11

5.3 Predictable execution

If a reasonably competent programmer has a good understanding of the state of a program after reading source
code as far as a particular line of code, the programmer ought to have a good understanding of the state of the
program after reading the next line of code. However, some features, or, more likely, some combinations of
features, of programming languages are associated with relatively decreased rates of the programmer's
maintaining their understanding as they read through a program. It is these features and combinations of features
that are indicated in this document, along with ways to increase the programmer's understanding as code is read.

Here, the term understanding means the programmer's recognition of all effects, including subtle or unintended
changes of state, of any language feature or combination of features appearing in the program. This view does not
imply that programmers only read code from beginning to end. It is simply a statement that a line of code changes
the state of a program, and that a reasonably competent programmer ought to understand the state of the program
both before and after reading any line of code. As a first approximation (only), code is interpreted line by line.

5.4 Portability

The representation of characters, the representation of true/false values, the set of valid addresses, the properties
and limitations of any (fixed point or floating-point) numerical quantities, and the representation of programmer-
defined types and classes may vary among hardware, among languages (affecting inter-language software
development), and among compilers of a given language. These variations may be the result of hardware
differences, operating system differences, library differences, compiler differences, or different configurations of the
same compiler (as may be set by environment variables or configuration files). In each of these circumstances,
there is an additional burden on the programmer because part of the program's behaviour is indicated by a factor
that is not a part of the source code. That is, the program's behaviour may be indicated by a factor that is invisible
when reading the source code. Compilation control schemes (IDE projects, make, and scripts) further complicate
this situation by abstracting and manipulating the relevant variables (target platform, compiler options, libraries, and
so forth).

Many compilers of standard-defined languages also support language features that are not specified by the
language standard. These non-standard features are called extensions. For portability, the programmer must be
aware of the language standard, and use only constructs with standard-defined semantics. The motivation to use
extensions may include the desire for increased functionality within a particular environment, or increased
efficiency on particular hardware. There are well-known software engineering techniques for minimizing the ill
effects of extensions; these techniques should be a part of any coding standard where they are needed, and they
should be employed whenever extensions are used. These issues are software engineering issues and are not
further discussed in this document.

Some language standards define libraries that are available as a part of the language definition. Such libraries are
an intrinsic part of the respective language and are called intrinsic libraries. There are also libraries defined by
other sources and are called non-intrinsic libraries.

The use of non-intrinsic libraries to broaden the software primitives available in a given development environment
is a useful technique, allowing the use of trusted functionality directly in the program. Libraries may also allow the
program to bind to capabilities provided by an environment. However, these advantages are potentially offset by
any lack of skill on the part of the designer of the library (who may have designed subtle or undocumented changes
of state into the library's behaviour), and implementer of the library (who may not have the implemented the library
identically on every platform), and even by the availability of the library on a new platform. The quality of the
documentation of a third-party library is another factor that may decrease the reliability of software using a library in
a particular situation by failing to describe clearly the library's full behaviour. If a library is missing on a new
platform, its functionality must be recreated in order to port any software depending upon the missing library. The
re-creation may be burdensome if the reason the library is missing is because the underlying capability for a
particular environment is missing.

Using a non-intrinsic library usually requires that options be set during compilation and linking phases, which
constitute a software behaviour specification beyond the source code. Again, these issues are software
engineering issues and are not further discussed in this document.

ISO/IEC PDTR 24772

12 © ISO 2008 – All rights reserved

6. Programming Language Vulnerabilities

The standard for a programming language provides definitions for that language’s constructs. This Technical
Report will in general use the terminology that is most natural to the description for each individual vulnerability,
relying upon the individual standards for terminology details. In general, the reader should be aware that “method”,
“function”, and “procedure” could denote similar constructs in different languages, as can “pointer” and “reference”.
Situations described as “undefined behaviour” in some languages are known as “unbounded behaviour” in others.

6.1 Obscure Language Features [BRS]

6.1.1 Description of application vulnerability

Every programming language has features that are obscure, difficult to understand or difficult to use correctly. The
problem is compounded if a software design must be reviewed by people who may not be language experts, such
as, hardware engineers, human-factors engineers, or safety officers. Even if the design and code are initially
correct, maintainers of the software may not fully understand the intent. The consequences of the problem are
more severe if the software is to be used in trusted applications, such as safety or mission critical ones.

6.1.2 Cross reference

JSF AV Rules: 84, 86, 88, and 97
MISRA C 2004: 3.2, 10.2, 13.1, 20.6-20.12, 12.10, and 17.5
MISRA C++ 2008: 0-2-1, 2-3-1, and 12-1-1
CERT/CC guidelines: FIO03-C, MSC05-C, MSC30-C, and MSC31-C.

6.1.3 Mechanism of failure

The use of obscure language features can lead to an application vulnerability in several ways:

• The original programmer may misunderstand the correct usage of the feature and could utilize it incorrectly
in the design or code it incorrectly.

• Reviewers of the design and code may misunderstand the intent or the usage and overlook problems.
• Maintainers of the code cannot fully understand the intent or the usage and could introduce problems

during maintenance.

6.1.4 Applicable language characteristics

This vulnerability description is intended to be applicable to any language.

6.1.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Individual programmers should avoid the use of language features that are obscure or difficult to use,
especially in combination with other difficult language features. Organizations should adopt coding
standards that discourage use of such features or show how to use them correctly.

• Organizations developing software with critically important requirements should adopt a mechanism to
monitor which language features are correlated with failures during the development process and during
deployment.

• Organizations should adopt or develop stereotypical idioms for the use of difficult language features, codify
them in organizational standards, and enforce them via review processes.

• Avoid the use of complicated features of a language.
• Avoid the use of rarely used constructs that could be difficult for entry-level maintenance personnel to

understand.
• Static analysis can be used to find incorrect usage of some language features.

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 13

It should be noted that consistency in coding is desirable for each of review and maintenance. Therefore, the
desirability of the particular alternatives chosen for inclusion in a coding standard does not need to be empirically
proven.

6.1.6 Implications for standardization

• Language designers should consider removing or deprecating obscure, difficult to understand, or difficult to
use features.

 6.1.7 Bibliography

Hatton 17: Use of obscure language features

6.2 Unspecified Behaviour [BQF]

6.2.1 Description of application vulnerability

The external behaviour of a program whose source code contains one or more instances of constructs having
unspecified behaviour may not be fully predictable when the source code is (re)compiled or (re)linked.

6.2.2 Cross reference

JSF AV Rules: 17-25
MISRA C 2004: 1.3, 1.5, 3.1 3.3, 3.4, 17.3, 1.2, 5.1, 18.2, 19.2, and 19.14
MISRA C++ 2008: 5-0-1, 5-2-6, 7-2-1, and 16-3-1
CERT/CC guidelines: MSC15-C
Also see guideline recommendations: Undefined Behaviour [EWF] and Implementation-defined Behaviour [FAB].

6.2.3 Mechanism of failure

Language specifications do not always uniquely define the behaviour of a construct. When an instance of a
construct that is not uniquely defined is encountered (this might be at any of compile, link, or run time)
implementations are permitted to choose from the set of behaviours allowed by the language specification. The
term 'unspecified behaviour' is sometimes applied to such behaviours, (language specific guidelines need to
analyse and document the terms used by their respective language).

A developer may use a construct in a way that depends on a subset of the possible behaviours occurring. The
behaviour of a program containing such a usage is dependent on the translator used to build it always selecting the
'expected' behaviour.

Many language constructs may have unspecified behaviour and unconditionally recommending against any use of
these constructs may be impractical. For instance, in many languages the order of evaluation of the operands
appearing on the left- and right-hand side of an assignment is unspecified, but in most cases the set of possible
behaviours always produces the same result.

The appearance of unspecified behaviour in a language specification is a recognition by the language designers
that in some cases flexibility is needed by software developers and provides a worthwhile benefit for language
translators; this usage is not a defect in the language.

The important characteristic is not the internal behaviour exhibited by a construct (e.g., the sequence of machine
code generated by a translator) but its external behaviour (i.e., the one visible to a user of a program). If the set of
possible unspecified behaviours permitted for a specific use of a construct all produce the same external effect
when the program containing them is executed, then rebuilding the program cannot result in a change of behaviour
for that specific usage of the construct.

For instance, while the following assignment statement contains unspecified behaviour in many languages (i.e., it is
possible to evaluate either the A or B operand first, followed by the other operand):

ISO/IEC PDTR 24772

14 © ISO 2008 – All rights reserved

A = B;

in most cases the order in which A and B are evaluated does not effect the external behaviour of a program
containing this statement.

6.2.4 Applicable language characteristics

This vulnerability is intended to be applicable to languages with the following characteristics:

• Languages whose specification allows a finite set of more than one behaviour for how a translator handles
some construct, where two or more of the behaviours can result in differences in external program
behaviour.

6.2.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Use language constructs that have specified behaviour.
• Ensure that a specific use of a construct having unspecified behaviour produces a result that is the same

for all of the possible behaviours permitted by the language specification.

When developing coding guidelines for a specific language all constructs that have unspecified behaviour should
be documented and for each construct the situations where the set of possible behaviours can vary shall be
enumerated.

6.2.6 Implications for standardization

• Languages should minimize the amount of unspecified behaviours, minimize the number of possible
behaviours for any given "unspecified" choice, and document what might be the difference in external
effect associated with different choices.

6.2.7 Bibliography

 [None]

6.3 Undefined Behaviour [EWF]

6.3.1 Description of application vulnerability

The external behaviour of a program containing an instance of a construct having undefined behaviour, as defined
by the language specification, is not predictable.

6.3.2 Cross reference

JSF AV Rules: 17-25
MISRA C 2004: 1.3, 1.5, 3.1 3.3, 3.4, 17.3, 1.2, 5.1, 18.2, 19.2, and 19.14
MISRA C++ 2008: 2-13-1, 5-2-2, 16-2-4, and 16-2-5
CERT/CC guidelines: MSC15-C
See guideline recommendations: Unspecified Behaviour [BQF] and Implementation-defined Behaviour [FAB].

6.3.3 Mechanism of failure

Language specifications may categorize the behaviour of a language construct as undefined rather than as a
semantic violation (i.e., an erroneous use of the language) because of the potentially high implementation cost of
detecting and diagnosing all occurrences of it. In this case no specific behaviour is required and the translator or
runtime system is at liberty to do anything it pleases (which may include issuing a diagnostic).

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 15

The behaviour of a program built from successfully translated source code containing a construct having undefined
behaviour is not predictable. For example, in some languages the value of a variable is undefined before it is
initialized.

6.3.4 Applicable language characteristics

This vulnerability is intended to be applicable to languages with the following characteristics:

• Languages that do not fully define the extent to which the use of a particular construct is a violation of the
language specification.

• Languages that do not fully define the behaviour of constructs during compile, link and program execution.

6.3.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Ensuring that undefined language constructs are not used.
• Ensuring that a use of a construct having undefined behaviour does not operate within the domain in which

the behaviour is undefined. When it is not possible to completely verify the domain of operation during
translation a runtime check may need to be performed.

• When developing coding guidelines for a specific language all constructs that have undefined behaviour
should be documented. The items on this list might be classified by the extent to which the behaviour is
likely to have some critical impact on the external behaviour of a program (the criticality may vary between
different implementations, e.g., whether conversion between object and function pointers has well defined
behaviour).

6.3.6 Implications for standardization

• Language specifiers should minimize the amount of undefined behaviour to the extent possible and
practical.

• Language specifiers should enumerate all the cases of undefined behaviour.

6.3.7 Bibliography

 [None]

6.4 Implementation-defined Behaviour [FAB]

6.4.1 Description of application vulnerability

Some constructs in programming languages are not fully defined (see Unspecified Behaviour [BQF]) and thus
leave compiler implementations to decide how the construct will operate. The behaviour of a program whose
source code contains one or more instances of constructs having implementation-defined behaviour, can change
when the source code is recompiled or relinked.

6.4.2 Cross reference

JSF AV Rules: 17-25
MISRA C 2004: 1.3, 1.5, 3.1 3.3, 3.4, 17.3, 1.2, 5.1, 18.2, 19.2, and 19.14
MISRA C++ 2008: 5-2-9, 5-3-3, 7-3-2, and 9-5-1
CERT/CC guidelines: MSC15-C
Also see guideline recommendations: Unspecified Behaviour [BQF] and Undefined Behaviour [EWF].

ISO/IEC PDTR 24772

16 © ISO 2008 – All rights reserved

6.4.3 Mechanism of failure

Language specifications do not always uniquely define the behaviour of a construct. When an instance of a
construct that is not uniquely defined is encountered (this might be at any of translation, link-time, or program
execution) implementations are permitted to choose from a set of behaviours. The only difference from
unspecified behaviour is that implementations are required to document how they behave.

A developer may use a construct in a way that depends on a particular implementation-defined behaviour
occurring. The behaviour of a program containing such a usage is dependent on the translator used to build it
always selecting the 'expected' behaviour.

Some implementations provide a mechanism for changing an implementation's implementation-defined behaviour
(e.g., use of pragmas in source code). Use of such a change mechanism creates the potential for additional
human error in that a developer may be unaware that a change of behaviour was requested earlier in the source
code and may write code that depends on the implementation-defined behavior that occurred prior to that explicit
change of behavior.

Many language constructs may have implementation-defined behaviour and unconditionally recommending against
any use of these constructs may be completely impractical. For instance, in many languages the number of
significant characters in an identifier is implementation-defined. Developers need to choose a minimum number of
characters and require that only translators supporting at least that number, N, of characters be used.

The appearance of implementation-defined behaviour in a language specification is recognition by the language
designers that in some cases implementation flexibility provides a worthwhile benefit for language translators; this
usage is not a defect in the language.

6.4.4 Applicable language characteristics

This vulnerability is intended to be applicable to languages with the following characteristics:

• Languages whose specification allows some variation in how a translator handles some construct, where
reliance on one form of this variation can result in differences in external program behaviour.

• Language implementations may not be required to provide a mechanism for controlling implementation-
defined behaviour.

6.4.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Document the set of implementation-defined features an application depends upon, so that upon a change
of translator, development tools, or target configuration it can be ensured that those dependencies are still
met

• Ensure that a specific use of a construct having implementation-defined behaviour produces an external
behaviour that is the same for all of the possible behaviours permitted by the language specification.

• Only use a language implementation whose implementation-defined behaviours are within a known subset
of implementation-defined behaviours. The known subset should be chosen so that the 'same external
behaviour' condition described above is met.

• Create highly visible documentation (e.g., at the start of a source file) that the default implementation-
defined behaviour is changed within the current file.

• When developing coding guidelines for a specific language all constructs that have implementation-defined
behaviour shall be documented and for each construct, the situations where the set of possible behaviours
can vary shall be enumerated.

• When applying this guideline on a project the functionality provided by and for changing its implementation-
defined behaviour shall be documented.

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 17

6.4.6 Implications for standardization

• Portability guidelines for a specific language should provide a list of common implementation behaviours.
• Language specifiers should enumerate all the cases of implementation-defined behaviour.

6.4.7 Bibliography

 [None]

6.5 Deprecated Language Features [MEM]

6.5.1 Description of application vulnerability

All code should conform to the current standard for the respective language. In reality though, a language standard
may change during the creation of a software system or suitable compilers and development environments may not
be available for the new standard for some period of time after the standard is published. In order to smooth the
process of evolution, features that are no longer needed or which serve as the root cause of or contributing factor
for safety or security problems are often deprecated to temporarily allow their continued use but to indicate that
those features may be removed in the future. The deprecation of a feature is a strong indication that it should not
be used. Other features, although not formally deprecated, are rarely used and there exist other more common
ways of expressing the same function. Use of these rarely used features can lead to problems when others are
assigned the task of debugging or modifying the code containing those features.

6.5.2 Cross reference

JSF AV Rules: 8 and 11
MISRA C 2004: 1.1, 4.2, and 20.10
MISRA C++ 2008: 1-0-1, 2-3-1, 2-5-1, 2-7-1, 5-2-4, and 18-0-2

6.5.3 Mechanism of failure

Most languages evolve over time. Sometimes new features are added making other features extraneous.
Languages may have features that are frequently the basis for security or safety problems. The deprecation of
these features indicates that there is a better way of accomplishing the desired functionality. However, there is
always a time lag between the acknowledgement that a particular feature is the source of safety or security
problems, the decision to remove or replace the feature and the generation of warnings or error messages by
compilers that the feature shouldn’t be used. Given that software systems can take many years to develop, it is
possible and even likely that a language standard will change causing some of the features used to be suddenly
deprecated. Modifying the software can be costly and time consuming to remove the deprecated features.
However, if the schedule and resources permit, this would be prudent as future vulnerabilities may result from
leaving the deprecated features in the code. Ultimately the deprecated features will likely need to be removed
when the features are removed.

6.5.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• All languages that have standards, though some only have defacto standards.
• All languages that evolve over time and as such could potentially have deprecated features at some point.

6.5.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Adhere to the latest published standard for which a suitable complier and development environment is
available.

• Avoid the use of deprecated features of a language.

ISO/IEC PDTR 24772

18 © ISO 2008 – All rights reserved

• Stay abreast of language discussions in language user groups and standards groups on the Internet.
Discussions and meeting notes will give an indication of problem prone features that should not be used or
used with caution.

6.5.6 Implications for standardization

• Obscure language features for which there are commonly used alternatives should be considered for
removal from the language standard.

• Obscure language features that have routinely been found to be the root cause of safety or security
vulnerabilities, or that are routinely disallowed in software guidance documents should be considered for
removal from the language standard.

6.5.7 Bibliography

 [None]

6.6 Pre-processor Directives [NMP]

6.6.1 Description of application vulnerability

Pre-processor replacements happen before any source code syntax check, therefore there is no type checking –
this is especially important in function-like macro parameters.

If great care is not taken in the writing of macros, the expanded macro can have an unexpected meaning. In many
cases if explicit delimiters are not added around the macro text and around all macro arguments within the macro
text, unexpected expansion is the result.

Source code that relies heavily on complicated pre-processor directives may result in obscure and hard to maintain
code since the syntax they expect may be different from the regular expressions programmers expect in the
programming language that the code is written.

6.6.2 Cross reference

Holtzmann-8
JSF SV Rules: 26, 27, 28, 29, 30, 31, and 32
MISRA C 2004: 19.6, 19.7, 19.8, and 19.9
MISRA C++ 2008: 16-0-3, 16-0-4, and 16-0-5
CERT/CC guidelines: PRE01-C, PRE02-C, PRE10-C, and PRE31-C

6.6.3 Mechanism of failure

Readability and maintainability is greatly increased if the language features available in the programming language
are used instead of a pre-processor directive.

While static analysis can identify many problems early; heavy use of the pre-processor can limit the effectiveness
of many static analysis tools.

In many cases where complicated macros are used, the program does not do what is intended. For example:

define a macro as follows,

 #define CD(x, y) (x + y - 1) / y
whose purpose is to divide. Then suppose it is used as follows

 a = CD (b & c, sizeof (int));

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 19

which expands into

 a = (b & c + sizeof (int) - 1) / sizeof (int);
which most times will not do what is intended. Defining the macro as

 #define CD(x, y) ((x) + (y) - 1) / (y)
will provide the desired result.

6.6.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that have a lexical-level pre-processor.
• Languages that allow unintended groupings of arithmetic statements.
• Languages that allow improperly nested language constructs.
• Languages that allow cascading macros.
• Languages that allow duplication of side effects.
• Languages that allow macros that reference themselves.
• Languages that allow nested macro calls.
• Languages that allow complicated macros.

6.6.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Where it is possible to achieve the desired functionality without the use of pre-processor directives, this
should be done in preference to the use of pre-processor directives.

6.6.6 Implications for standardization

• Standards should reduce or eliminate dependence on lexical-level pre-processors for essential functionality
(such as conditional compilation).

6.6.7 Bibliography

 [None]

6.7 Choice of Clear Names [NAI]

6.7.1 Description of application vulnerability

Humans sometimes choose similar or identical names for objects, types, aggregates of types, subprograms and
modules. They tend to use characteristics that are specific to the native language of the software developer to aid
in this effort, such as use of mixed-casing, underscores and periods, or use of plural and singular forms to support
the separation of items with similar names. Similarly, development conventions sometimes use casing for
differentiation (e.g., all uppercase for constants).

Human cognitive problems occur when different (but similar) objects, subprograms, types, or constants differ in
name so little that human reviewers are unlikely to distinguish between them, or when the system maps such
entities to a single entity.

Conventions such as the use of capitalization, and singular/plural distinctions may work in small and medium
projects, but there are a number of significant issues to be considered:

• Large projects often have mixed languages and such conventions are often language-specific.

ISO/IEC PDTR 24772

20 © ISO 2008 – All rights reserved

• Many implementations support identifiers that contain international character sets and some language
character sets have different notions of casing and plurality.

• Different word-forms tend to be language and dialect specific, such as a pidgin, and may be meaningless
to humans that speak other dialects.

An important general issue is the choice of names that differ from each other negligibly (in human terms), for
example by differing by only underscores, (none, "_" "__"), plurals ("s"), visually identical letters (such as "l" and
"1", "O" and "0"), or underscores/dashes ("-","_"). [There is also an issue where identifiers appear distinct to a
human but identical to the computer, e.g., FOO, Foo, and foo in some computer languages. Character sets
extended with diacritical marks and non-Latin characters may offer additional problems. Some languages or their
implementations may pay attention to only the first n characters of an identifier.

There are similar situations which may occur, but which are notably different. This is different from overloading or
overriding where the same name is used intentionally (and documented) to access closely linked sets of
subprograms. This is also different than using reserved names which can lead to a conflict with the reserved use
and the use of which may or may not be detected at compile time.

Although most such mistakes are unintentional, it is plausible that such usages can be intentional, if masking
surreptitious behaviour is a goal.

6.7.2 Cross Reference

JSF AV Rules: 48-56
MISRA C 2004: 1.4
CERT/CC guidelines: DCL02-C

6.7.3 Mechanism of Failure

Calls to the wrong subprogram or references to the wrong data element (that was missed by human review) can
result in unintended behaviour. Language processors will not make a mistake in name translation, but human
cognition limitations may cause humans to misunderstand, and therefore may be easily missed in human reviews.

6.7.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages with relatively flat name spaces will be more susceptible. Systems with modules, classes,
packages can use qualification to disambiguate names that originate from different parents.

• Languages that provide preconditions, postconditions, invariances and assertions or redundant coding of
subprogram signatures help to ensure that the subprograms in the module will behave as expected, but do
nothing if different subprograms are called.

• Languages that treat letter case as significant. Some languages do not differentiate between names with
differing case, while others do.

6.7.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Implementers can create coding standards that provide meaningful guidance on name selection and use.
Good language specific guidelines could eliminate most problems.

• Use static analysis tools to show the target of calls and accesses and to produce alphabetical lists of
names. Human review can then often spot the names that are sorted at an unexpected location or which
look almost identical to an adjacent name in the list.

• Use static tools (often the compiler) to detect declarations that are unused.
• Use languages with a requirement to declare names before use or use available tool or compiler options to

enforce such a requirement.

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 21

6.7.6 Implications for standardization

• Languages that do not require declarations of names should consider providing an option that does impose
that requirement.

6.7.7 Bibliography

Jones, Derek, “Some proposed language vulnerability guidelines” Submitted to the December 2006 Washington,
D.C. meeting of the ISO/IEC SC22 OWGV

Jones, Derek M., “The New C Standard (Identifiers)” www.coding-guidelines.com/cbook/sent792.pd

6.8 Choice of Filenames and other External Identifiers [AJN]

6.8.1 Description of application vulnerability

Interfacing with the directory structure or other external identifiers on a system on which software executes is very
common. Differences in the conventions used by operating systems can result in significant changes in behaviour
when the same program is executed under different operating systems. For instance, the directory structure,
permissible characters, case sensitivity, and so forth can vary among operating systems and even among
variations of the same operating system. For example, Microsoft XP prohibits “/?:&*”<>|#%”; but UNIX, Linux, and
OS X operating systems allow any character except for the reserved character ‘/’ to be used in a filename.

Some operating systems are case sensitive while others are not. On non-case sensitive operating systems,
depending on the software being used, the same filename could be displayed, as “filename”, “Filename” or
“FILENAME” and all would refer to the same file.

Some operating systems, particularly older ones, only rely on the significance of the first n characters of the file
name. N can be unexpectedly small, such as the first 8 characters in the case of Win16 architectures which would
cause “filename1”, “filename2” and “filename3” to all map to the same file.

Variations in the filename, named resource or external identifier being referenced can be the basis for various kinds
of problems. Such mistakes or ambiguity can be unintentional, or intentional, and in either case they can be
potentially exploited, if surreptitious behaviour is a goal.

6.8.2 Cross Reference

JSF AV Rules: 46, 51, 53, 54, 55, and 56
MISRA C 2004: 1.4 and 5.1
CERT/CC guidelines: MSC09-C and MSC10-C

6.8.3 Mechanism of Failure

The wrong named resource, such as a file, may be used within a program in a form that provides access to a
resource that was not intended to be accessed. Attackers could exploit this situation to intentionally misdirect
access of a named resource to another named resource.

6.8.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Any language providing for use of an API for external access of resources with varied naming conventions.
In practice, this means all languages.

• A particular language interface to a system should be consistent in its processing of filenames or external
identifiers. Consistency is only the first consideration. Even though it is consistent, it may consistently do
something that is unexpected by the developer of the software interfacing with the system.

ISO/IEC PDTR 24772

22 © ISO 2008 – All rights reserved

6.8.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Where possible, use an API that provides a known common set of conventions for naming and accessing
external resources, such as POSIX, ISO/IEC 9945:2003 (IEEE Std 1003.1-2001).

• Analyze the range of intended target systems, develop a suitable API for dealing with them, and document
the analysis.

• Ensure that programs adapt their behaviour to the platform on which they are executing, so that only the
intended resources are accessed. The means that information on such characteristics as the directory
separator string and methods of accessing parent directories need to be parameterized and not exist as
fixed strings within a program.

• Avoid creating resources, which are differentiated only by the case in their names.

6.8.6 Implications for standardization

• Language APIs for interfacing with external identifiers should be compliant with ISO/IEC 9945:2003 (IEEE
Std 1003.1-2001).

6.8.7 Bibliography

Jones, Derek, “Some proposed language vulnerability guidelines” Submitted to the December 2006 Washington,
D.C. meeting of the ISO/IEC SC22 OWGV

6.9 Unused Variable [XYR]

6.9.1 Description of application vulnerability

A variable's value is assigned but never used, making it a dead store. As a variant, a variable is declared but
neither read nor written to in the program, making it an unused variable. This type of error suggests that the design
has been incompletely or inaccurately implemented.

6.9.2 Cross reference

CWE:
563. Unused Variable

MISRA C++ 2008: 0-1-4 and 0-1-6
CERT/CC guidelines: MSC13-C

6.9.3 Mechanism of failure

A variable is declared, but never used. It is likely that the variable is simply vestigial, but it is also possible that the
unused variable points out a bug. This is likely to suggest that the design has been incompletely or inaccurately
implemented.

A variable is assigned a value but this value is never used thereafter. The assignment is then generally referred to
as a dead store. Note that this may be acceptable if the variable is a volatile variable, for which the assignment of a
value triggers some external event.

A dead store is indicative of careless programming or of a design or coding error; either the use of the value was
forgotten (almost certainly an error) or the assignment was performed even though it was not needed (unless there
is a justification for it).

An unused variable or a dead store is very unlikely to be the cause of a vulnerability. However, since compilers
diagnose unused variables routinely and dead stores occasionally, their presence is often an indication that
compiler warnings are either suppressed or are being ignored by programmers. This observation does not hold for

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 23

automatically generated code, where it is commonplace to find unused variables and dead stores, introduced to
keep the generation process simple and uniform.

6.9.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Dead stores are possible in any programming language that provides assignment. (Pure functional
languages do not have this issue.)

• Unused variables (in the technical sense above) are possible only in languages that provide variable
declarations.

6.9.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Enable detection of unused variables and dead stores in the compiler. The default setting may be to
suppress these warnings.

6.9.6 Implications for standardization

• Languages should consider requiring mandatory diagnostics for unused variables.

6.9.7 Bibliography

 [None]

6.10 Identifier Name Reuse [YOW]

6.10.1 Description of application vulnerability

When distinct entities are defined in nested scopes using the same name it is possible that program logic will
operate on an entity other than the one intended. For example, the innermost definition is deleted from the source,
the program will continue to compile without a diagnostic being issues (but execution can produce unexpected
results).

6.10.2 Cross reference

JSF AV Rules: 120 and 1359
MISRA C 2004: 5.2, 5.5, 5.6, 5.7, 20.1, 20.2
MISRA C++ 2008: 2-10-2, 2-10-3, 2-10-4, 2-10-5, 2-10-6, 17-0-1, 17-0-2, and 17-0-3
CERT/CC guidelines: DCL01-C and DCL32-C

6.10.3 Mechanism of failure

Many languages support the concept of scope. One of the ideas behind the concept of scope is to provide a
mechanism for the independent definition of identifiers that may share the same name.

For instance, in the following code fragment:

int some_var;

 {
 int t_var;
 int some_var; /* definition in nested scope */

ISO/IEC PDTR 24772

24 © ISO 2008 – All rights reserved

 t_var=3;
 some_var=2;
 }

an identifier called some_var has been defined in different scopes.

If either the definition of some_var or t_var that occurs in the nested scope is deleted (e.g., when the source is
modified) it is necessary to delete all other references to the identifier’s scope. If a developer deletes the definition
of t_var but fails to delete the statement that references it, then most languages require a diagnostic to be issued
(e.g., reference to undefined variable). However, if the nested definition of some_var is deleted but the reference
to it in the nested scope is not deleted, then no diagnostic will be issued (because the reference resolves to the
definition in the outer scope).

An example of how interpretations of a programming language can differ, in the following code fragment:

 int j = 100;
 {
 for (int j = 0; j < 10; j++) ;
 std::cout << j << std::endl; // What is the value of j
 }

According to ISO 14882:2003 (C++) standard the value printed for j should be 100, but in some implementations
that do not conform to the current version of the standard it will be 10, as the loop counter j remains in-scope after
the end of the loop statement.

In some cases non-unique identifiers in the same scope can also be introduced through the use of identifiers
whose common substring exceeds the length of characters the implementation considers to be distinct. For
example, in the following code fragment:

extern int global_symbol_definition_lookup_table_a[100];

extern int global_symbol_definition_lookup_table_b[100];

the external identifiers are not unique on implementations where only the first 31 characters are significant. This
situation only occurs in languages that allow multiple declarations of the same identifier (other languages require a
diagnostic message to be issued). (See, Choice of Filenames and other External Identifiers [AJN].)

A related problem exists in languages that allow overloading or overriding of keywords or standard library function
identifiers. Such overloading can lead to confusion about which entity is intended to be referenced.

Definitions for new identifiers should not use a name that is already visible within the scope containing the new
definition. Alternately, utilize language-specific facilities that check for and prevent inadvertent overloading of
names should be used.

6.10.4 Applicable language characteristics

This vulnerability is intended to be applicable to languages with the following characteristics:

• Languages that allow the same name to be used for identifiers defined in nested scopes.

6.10.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Ensure that a definition of an entity does not occur in a scope where a different entity with the same name
is accessible and can be used in the same context. A language-specific project coding convention can be
used to ensure that such errors are detectable with static analysis.

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 25

• Ensure that a definition of an entity does not occur in a scope where a different entity with the same name
is accessible and has a type that permits it to occur in at least one context where the first entity can occur.

• Use language features, if any, which explicitly mark definitions of entities that are intended to hide other
definitions.

• Ensure that all identifiers differ within the number of characters considered to be significant by the
implementations that are likely to be used, and document all assumptions.

6.10.6 Implications for standardization

• Languages should require mandatory diagnostics for variables with the same name in nested scopes.
• Languages should require mandatory diagnostics for variable names that exceed the length that the

implementation considers unique.
• Languages should consider requiring mandatory diagnostics for overloading or overriding of keywords or

standard library function identifiers.

6.10.7 Bibliography

Jones 2007 (sentence 792)

6.11 Type System [IHN]

6.11.1 Description of application vulnerability

When data values are converted from one data type to another, even when done intentionally, unexpected results
can occur.

6.11.2 Cross reference

JSF AV Rule: 148 and 183
MISRA C 2004: 6.1, 6.2, 6.3, 10.1, and 10.5
MISRA C++ 2008: 3-9-2, 5-0-3 to 5-0-14
CERT/CC guidelines: DCL07-C, DCL11-C, DCL35-C, EXP05-C and EXP32-C

6.11.3 Mechanism of failure

The type of a data object informs the compiler how values should be represented and which operations may be
applied. The type system of a language is the set of rules used by the language to structure and organize its
collection of types. Any attempt to manipulate data objects with inappropriate operations is a type error. A program
is said to be type safe (or type secure) if it can be demonstrated that it has no type errors [2].

Every programming language has some sort of type system. A language is statically typed if the type of every
expression is known at compile time. The type system is said to be strong if it guarantees type safety and weak if it
does not. There are strongly typed languages that are not statically typed because they enforce type safety with
run time checks [2].

In practical terms, nearly every language falls short of being strongly typed (in an ideal sense) because of the
inclusion of mechanisms to bypass type safety in particular circumstances. For that reason and because every
language has a different type system, this description will focus on taking advantage of whatever features for type
safety may be available in the chosen language.

Sometimes it is appropriate for a data value to be converted from one type to another compatible one. For
example, consider the following program fragment, written in no specific language:

float a;
integer i;
a := a + i;

ISO/IEC PDTR 24772

26 © ISO 2008 – All rights reserved

The variable "i" is of integer type. It must be converted to the float type before it can be added to the data value.
An implicit conversion, as shown, is called coercion. If, on the other hand, the conversion must be explicit, e.g., "a
:= a + float(i)", then the conversion is called a cast.

Type equivalence is the strictest form of type compatibility; two types are equivalent if they are compatible without
using coercion or casting. Type equivalence is usually characterized in terms of name type equivalence—two
variables have the same type if they are declared in the same declaration or declarations that use the same type
name—or structure type equivalence—two variables have the same type if they have identical structures. There
are variations of these approaches and most languages use different combinations of them [1]. Therefore, a
programmer skilled in one language may very well code inadvertent type errors when using a different language.

It is desirable for a program to be type safe because the application of operations to operands of an inappropriate
type may produce unexpected results. In addition, the presence of type errors can reduce the effectiveness of
static analysis for other problems. Searching for type errors is a valuable exercise because their presence often
reveals design errors as well as coding errors. Many languages check for type errors—some at compile-time,
others at run-time. Obviously, compile-time checking is more valuable because it can catch errors that are not
executed by a particular set of test cases.

Making the most use of the type system of a language is useful in two ways. First, data conversions always bear
the risk of changing the value. For example, a conversion from integer to float risks the loss of significant digits
while the inverse conversion risks the loss of any fractional value. Conversion of an integer value from a type with a
longer representation to a type with a shorter representation risks the loss of significant digits. This can produce
particularly puzzling results if the value is used to index an array. Conversion of a floating-point value from a type
with a longer representation to a type with a shorter representation risks the loss of precision. This can be
particularly severe in computations where the number of calculations increase as a power of the problem size. (It
should be noted that similar surprises can occur when an application is retargeted to a machine with different
representations of numeric values.)

Second, a coder can use the type system to increase the probability of catching design errors or coding blunders.
For example, the following Ada fragment declares two distinct floating-point types:

 type Celsius is new Float;
 type Fahrenheit is new Float;

The declaration makes it impossible to add a value of type Celsius to a value of type Fahrenheit without explicit
conversion.

6.11.4 Applicable language characteristics

This vulnerability is intended to be applicable to languages with the following characteristics:

• Languages that support multiple types and allow conversions between types.

6.11.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Take advantage of any facility offered by the programming language to declare distinct types and use any
mechanism provided by the language processor and related tools to check for or enforce type
compatibility.

• Use available language and tooling facilities to preclude or detect the occurrence of coercion. If it is not
possible, use human review to assist in searching for coercions.

• Avoid casting data values except when there is no alternative. Document such occurrences so that the
justification is made available to maintainers.

• Use the most restricted data type that suffices to accomplish the job. For example, use an enumeration
type to select from a limited set of choices (e.g., a switch statement or the discriminant of a union type)

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 27

rather than a more general type, such as integer. This will make it possible for tooling to check if all
possible choices have been covered.

• Treat every compiler, tool, or run-time diagnostic concerning type compatibility as a serious issue. Do not
resolve the problem by modifying the code by inserting an explicit cast, without further analysis a cast;
instead examine the underlying design to determine if the type error is a symptom of a deeper problem.

• Never ignore instances of coercion; if the conversion is necessary, convert it to a cast and document the
rationale for use by maintainers.

• Analyze the problem to be solved to learn the magnitudes and/or the precisions of the quantities needed as
auxiliary variables, partial results and final results.

6.11.6 Implications for standardization

• Language specifiers should standardize on a common, uniform terminology to describe their type systems
so that programmers experienced in other languages can reliably learn the type system of a language that
is new to them.

• Provide a mechanism for selecting data types with sufficient capability for the problem at hand.
• Provide a way for the computation to determine the limits of the data types actually selected.
• Language implementers should consider providing compiler switches or other tools to provide the highest

possible degree of checking for type errors.

6.11.7 Bibliography

[1] Robert W. Sebesta, Concepts of Programming Languages, 8th edition, ISBN-13: 978-0-321-49362-0, ISBN-10:
0-321-49362-1, Pearson Education, Boston, MA, 2008
[2] Carlo Ghezzi and Mehdi Jazayeri, Programming Language Concepts, 3rd edition, ISBN-0-471-10426-4, John
Wiley & Sons, 1998

6.12 Bit Representations [STR]

6.12.1 Description of application vulnerability

Computer languages frequently provide a variety of sizes for integer variables. Languages may support short,
integer, long, and even big integers. Interfacing with protocols, device drivers, embedded systems, low level
graphics or other external constructs may require each bit or set of bits to have a particular meaning. Those bit
sets may or may not coincide with the sizes supported by a particular language. When they do not, it is common
practice to pack all of the bits into one word. Masking and shifting of the word using powers of two to pick out
individual bits or using sums of powers of 2 to pick out subsets of bits (e.g., using 28=22+23+24 to create the mask
11100 and then shifting 2 bits) provides a way of extracting those bits. Knowledge of the underlying bit storage is
usually not necessary to accomplish simple extractions such as these. Problems can arise when programmers mix
their techniques to reference the bits or output the bits. Problems can arise when programmers mix arithmetic and
logical operations to reference the bits or output the bits. The storage ordering of the bits may not be what the
programmer expects.

6.12.2 Cross reference

JSF AV Rules 147, 154 and 155
MISRA C 2004: 3.5, 6.4, 6.5, and 12.7
MISRA C++ 2008: 5-0-21, 5-2-4 to 5-2-9, and 9-5-1
CERT/CC guidelines: EXP38-C, INT00-C, INT07-C, INT12-C, INT13-C, and INT14-C

6.12.3 Mechanism of failure

Packing of bits in an integer is not inherently problematic. However, an understanding of the intricacies of bit level
programming must be known. Some computers or other devices store the bits left to right while others store them
right to left. The type of storage can cause problems when interfacing with external devices that expect the bits in
the opposite order. One problem arises when assumptions are made when interfacing with external constructs and
the ordering of the bits or words are not the same as the receiving entity. Programmers may inadvertently use the

ISO/IEC PDTR 24772

28 © ISO 2008 – All rights reserved

sign bit in a bit field and then may not be aware that an arithmetic shift (sign extension) is being performed when
right shifting causing the sign bit to be extended into other fields. Alternatively, a left shift can cause the sign bit to
be one. Bit manipulations can also be problematic when the manipulations are done on binary encoded records
that span multiple words. The storage and ordering of the bits must be considered when doing bitwise operations
across multiple words as bytes may be stored in big endian or little endian format.

6.12.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that allow bit manipulations

6.12.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Any assumption about bit ordering should be explicitly documented.
• The way bit ordering is done on the host system and on the systems with which the bit manipulations will

be interfaced should be understood.
• Bit fields should be used in languages that support them.
• Bit operators should not be used on signed operands.

6.12.6 Implications for standardization

• For languages that are commonly used for bit manipulations, an API for bit manipulations that is
independent of word size and machine instruction set should be defined and standardized.

6.12.7 Bibliography

[1] Hogaboom, Richard, A Generic API Bit Manipulation in C, Embedded Systems Programming, Vol 12, No 7, July
1999 http://www.embedded.com/1999/9907/9907feat2.htm

6.13 Floating-point Arithmetic [PLF]

6.13.1 Description of application vulnerability

Only a relatively small proportion of real numbers can be represented exactly in a computer. To represent real
numbers, most computers use ANSI/IEEE Std 754. The bit representation for a floating-point number can vary from
compiler to compiler and on different platforms. Relying on a particular representation can cause problems when a
different compiler is used or the code is reused on another platform. Regardless of the representation, many real
numbers can only be approximated since representing the real number using a binary representation would require
an endlessly repeating string of bits or more binary digits than are available for representation. Therefore it should
be assumed that a floating-point number is only an approximation, even though it may be an extremely good one.
Floating-point representation of a real number or a conversion to floating-point can cause surprising results and
unexpected consequences to those unaccustomed to the idiosyncrasies of floating-point arithmetic.

6.13.2 Cross reference

JSF AV Rules: 146, 147, 184, 197, and 202
MISRA C 2004: 1.5, 12.12, 13.3, and 13.4
MISRA C++ 2008: 0-4-3, 3-9-3, and 6-2-2
CERT/CC guidelines: FLP00-C, FP01-C, FLP02-C and FLP30-C

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 29

6.13.3 Mechanism of failure

Floating-point numbers are generally only an approximation of the actual value. In the base 10 world, the value of
1/3 is 0.333333… The same type of situation occurs in the binary world, but numbers that can be represented with
a limited number of digits in base 10, such as 1/10=0.1 become endlessly repeating sequences in the binary world.
So 1/10 represented as a binary number is:

0.0001100110011001100110011001100110011001100110011…

Which is 0*1/2 + 0*1/4 + 0*1/8 + 1*1/16 + 1*1/32 + 0*1/64… and no matter how many digits are used, the
representation will still only be an approximation of 1/10. Therefore when adding 1/10 ten times, the final result
may or may not be exactly 1.

Using a floating-point variable as a loop counter can propagate rounding and truncation errors over many iterations
so that unexpected results can occur. Rounding and truncation can cause tests of floating-point numbers against
other values to yield unexpected results. One of the most common manifestations of floating-point error is reliance
upon comparisons of floating-point values. Tests of equality/inequality can vary due to propagation or conversion
errors. Differences in magnitudes of floating-point numbers can result in no change of a very large floating-point
number when a relatively small number is added to or subtracted from it.

Manipulating bits in floating-point numbers is also very implementation dependent. Though IEEE 754 is a
commonly used representation for floating-point data types, it is not universally used or required by all computer
languages. Some languages predate IEEE 754 and make the support for the standard optional. One IEEE 754
representation uses a 24-bit mantissa (including the sign bit) and an 8-bit exponent, but the number of bits
allocated to the mantissa and exponent can vary when using other representations as can the particular
representation used for the mantissa and exponent. Even within IEEE 754, various alternative representations are
permitted for the “extended precision” format (from 80- to 128-bit representations, with or without a hidden bit).
Typically special representations are specified for positive and negative zero and infinity. Relying on a particular bit
representation is inherently problematic, especially when a new compiler is introduced or the code is reused on
another platform. The uncertainties arising from floating-point can be divided into uncertainly about the actual bit
representation of a given value (e.g., big-endian or little-endian) and the uncertainly arising from the rounding of
arithmetic operations (e.g., the accumulation of errors when imprecise floating-point values are used as loop
indices).

6.13.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• All languages with floating-point variables can be subject to rounding or truncation errors.

6.13.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Do not use a floating-point expression in a Boolean test for equality. Instead, use a library that determines
the difference between the two values to determine whether the difference is acceptably small enough so
that two values can be considered equal. Note that if the two values are very large, the “small enough”
difference can be a very large number.

• Avoid the use of a floating-point variable as a loop counter. If necessary to use a floating-point value as a
loop control, use inequality to determine the loop control (i.e. <, <=, > or >=).

• Understand the floating-point format used to represent the floating-point numbers. This will provide some
understanding of the underlying idiosyncrasies of floating-point arithmetic.

• Manipulating the bit representation of a floating-point number should not be done except with built-in
language operators and functions that are designed to extract the mantissa and exponent.

• Do not use floating-point for exact values such as monetary amounts. Use floating-point only when
necessary such as for fundamentally inexact values such as measurements.

• Consider the use of decimal floating-point facilities when available.

ISO/IEC PDTR 24772

30 © ISO 2008 – All rights reserved

6.13.6 Implications for standardization

• Languages that do not already adhere to or only adhere to a subset of ANSI/IEEE 754 should consider
adhering completely to the standard. Note that the ANSI/IEEE 754 Standard is currently undergoing a
revision as ANSI/IEEE 754r and comments regarding 754 refer to either 754 or the new 754r standard
when it is approved. Examples of standardization that should be considered:

o C, which predates ANSI/IEEE 754 and currently has it as optional in C99, should consider
requiring ANSI/IEEE 754 for floating-point arithmetic.

o Java should consider fully adhering to ANSI/IEEE 754 instead of a subset.
• All languages should consider standardizing their data types to ISO/IEC 10967-3:2006.

6.13.7 Bibliography

[1] Goldberg, David, What Every Computer Scientist Should Know About Floating-Point Arithmetic, ACM
Computing Surveys, vol 23, issue 1 (March 1991), ISSN 0360-0300, pp 5-48.
[2] IEEE Standards Committee 754. IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-
1985. Institute of Electrical and Electronics Engineers, New York, 1985.
[3] Bo Einarsson, ed. Accuracy and Reliability in Scientific Computing, SIAM, July 2005
http://www.nsc.liu.se/wg25/book
[4] GAO Report, Patriot Missile Defense: Software Problem Led to System Failure at Dhahran, Saudi Arabia, B-
247094, Feb. 4, 1992, http://archive.gao.gov/t2pbat6/145960.pdf
[5] Robert Skeel, Roundoff Error Cripples Patriot Missile, SIAM News, Volume 25, Number 4, July 1992, page 11,
http://www.siam.org/siamnews/general/patriot.htm
[6] ARIANE 5: Flight 501 Failure, Report by the Inquiry Board, July 19, 1996 http://esamultimedia.esa.int/docs/esa-
x-1819eng.pdf (Press release is at: http://www.esa.int/esaCP/Pr_33_1996_p_EN.html and there is a link to the
report at the bottom of the press release)
[7] ISO/IEC 10967-3:2006. ISO/IEC Information technology – Language independent arithmetic – Part 3: Complex
integer and floating-point arithmetic and complex elementary numerical functions, ISO/IEC Standard 10967-3:2006,
International Organization for Standardization/International Electrotechnical Commission, May 2006
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=37994

6.14 Enumerator Issues [CCB]

6.14.1 Description of application vulnerability

Enumerations are a finite list of named entities that contain a fixed mapping from a set of names to a set of integral
values (called the representation) and an order between the members of the set. In some languages there are no
other operations available except order, equality, first, last, previous, and next; in others the full underlying
representation operators are available, such as integer “+” and “-” and bit-wise operations.

Most languages that provide enumeration types also provide mechanisms to set non-default representations. If
these mechanisms do not enforce whole-type operations and check for conflicts then some members of the set
may not be properly specified or may have the wrong maps. If the value-setting mechanisms are positional only,
then there is a risk that improper counts or changes in relative order will result in an incorrect mapping.

For arrays indexed by enumerations with non-default representations, there is a risk of structures with holes, and if
those indexes can be manipulated numerically, there is a risk of out-of-bound accesses of these arrays.

Most of these errors can be readily detected by static analysis tools with appropriate coding standards, restrictions
and annotations. Similarly mismatches in enumeration value specification can be detected statically. Without such
rules, errors in the use of enumeration types are computationally hard to detect statically as well as being difficult to
detect by human review.

6.14.2 Cross reference

JSF AV Rule: 145
MISRA C 2004: 9.3, 9.2, and 9.3

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 31

MISRA C++ 2008: 8-5-3
CERT/CC guidelines: INT09-C
Holzmann rule 6.

6.14.3 Mechanism of failure

As a program is developed and maintained the list of items in an enumeration often changes in three basic ways:
new elements are added to the list; order between the members of the set often changes; and representation (the
map of values of the items) change. Expressions that depend on the full set or specific relationships between
elements of the set can create value errors that could result in wrong results or in unbounded behaviours if used as
array indices.

Improperly mapped representations can result in some enumeration values being unreachable, or may create
“holes” in the representation where undefinable values can be propagated.

If arrays are indexed by enumerations containing nondefault representations, some implementations may leave
space for values that are unreachable using the enumeration, with a possibility of lost material or a way to pass
information undetected (hidden channel).

When enumerators are set and initialized explicitly and the language permits incomplete initializers, then changes
to the order of enumerators or the addition or deletion of enumerators can result in the wrong values being
assigned or default values being assigned improperly. Subsequent indexing or switch/case structures can result in
illegal accesses and possibly unbounded behaviours.

6.14.4 Applicable language Characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that provide named syntax for representation setting and coverage analysis can eliminate the
order issues and incomplete coverage issues, as long as no “others” choices are used (e.g., The “when
others =>” choice in Ada).

• Languages that permit incomplete mappings between enumerator specification and value assignment, or
that provide a positional-only mapping require additional static analysis tools and annotations to help
identify the complete mapping of every literal to its value.

• Languages that provide a trivial mapping to a type such as integer require additional static analysis tools to
prevent mixed type errors. They also cannot prevent illegal values from being placed into variables of such
enumerator types. For example:

enum Directions {back, forward, stop};
enum Directions a = forward, b = stop, c = a+b;

• In this example, c may have a value not defined by the enumeration, and any further use as that
enumeration will lead to erroneous results.

• Some languages provide no enumeration capability, leaving it to the programmer to define named
constants to represent the values and ranges.

6.14.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Use static analysis tools that will detect inappropriate use of enumerators, such as using them as integers
or bit maps, and that detect enumeration definition expressions that are incomplete or incorrect. For
languages with a complete enumeration abstraction this is the compiler.

• When named syntax is available for representation setting, coverage analysis can eliminate the order
issues and the incomplete coverage issues as long as no default choice is given.

ISO/IEC PDTR 24772

32 © ISO 2008 – All rights reserved

6.14.6 Implications for standardization

• Languages that currently permit arithmetic and logical operations on enumeration types could provide a
mechanism to ban such operations program-wide.

• Languages that provide automatic defaults or that do not enforce static matching between enumerator
definitions and initialization expressions could provide a mechanism to enforce such matching.

6.14.7 Bibliography

 [None]

6.15 Numeric Conversion Errors [FLC]

6.15.1 Description of application vulnerability

Certain contexts in various languages may require exact matches with respect to types [7]:

aVar := anExpression
value1 + value2
foo(arg1, arg2, arg3, … , argN)

Type conversion seeks to follow these exact match rules while allowing programmers some flexibility in using
values such as: structurally-equivalent types in a name-equivalent language, types whose value ranges may be
distinct but intersect (for example, subranges), and distinct types with sensible/meaningful corresponding values
(for example, integers and floats). Explicit conversions are called type casts. An implicit type conversion between
compatible but not necessarily equivalent types is called type coercion.

Numeric conversions can lead to a loss of data, if the target representation is not capable of representing the
original value. For example, converting from an integer type to a smaller integer type can result in truncation if the
original value cannot be represented in the smaller size and converting a floating point to an integer can result in a
loss of precision or an out-of-range value.

6.15.2 Cross reference

CWE:
192. Integer Coercion Error

MISRA C 2004: 10.1-10.6, 11.3-11.5, and 12.9
MISRA C++ 2008: 2-13-3, 5-0-3, 5-0-4, 5-0-5, 5-0-6, 5-0-7, 5-0-8, 5-0-9, 5-0-10, 5-2-5, 5-2-9, and 5-3-2
CERT/CC guidelines: FLP34-C, INT02-C, INT08-C, INT31-C, and INT35-C

6.15.3 Mechanism of failure

Numeric conversion errors results in data integrity issues, but they may also result in a number of safety and
security vulnerabilities.
Vulnerabilities typically occur when appropriate range checking is not performed, and unanticipated values are
encountered. These can result in safety issues, for example, the failure of the Ariane 5 launcher that occurred due
to an improperly handled conversion error resulting in the processor being shutdown [3].

Conversion errors can also result in security issues. An attacker may input a particular numeric value to exploit a
flaw in the program logic. The resulting erroneous value may then be used as an array index, a loop iterator, a
length, a size, state data, or in some other security critical manner. For example, a truncated integer value may be
used to allocate memory, while the actual length is used to copy information to the newly allocated memory,
resulting in a buffer overflow [6].
Numeric type conversion errors often lead to undefined states of execution resulting in infinite loops or crashes. In
some cases, integer type conversion errors can lead to exploitable buffer overflow conditions, resulting in the
execution of arbitrary code. Integer type conversion errors result in an incorrect value being stored for the variable
in question.

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 33

6.15.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that perform implicit type conversion (coercion).
• Weakly typed languages that do not strictly enforce type rules.
• Languages that support logical, arithmetic, or circular shifts on integer values.
• Languages that do not generate exceptions on problematic conversions.

6.15.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• The first line of defense against integer vulnerabilities should be range checking, either explicitly or through
strong typing. All integer values originating from a source that is not trusted should be validated for
correctness. However, it is difficult to guarantee that multiple input variables cannot be manipulated to
cause an error to occur in some operation somewhere in a program [6].

• An alternative or ancillary approach is to protect each operation. However, because of the large number of
integer operations that are susceptible to these problems and the number of checks required to prevent or
detect exceptional conditions, this approach can be prohibitively labor intensive and expensive to
implement.

• A language that generates exceptions on erroneous data conversions might be chosen. Design objects
and program flow such that multiple or complex casts are unnecessary. Ensure that any data type casting
that you must use is entirely understood to reduce the plausibility of error in use.

• The use of static analysis can often identify whether or not unacceptable numeric conversions will occur.

Verifiably in range operations are often preferable to treating out of range values as an error condition because the
handling of these errors has been repeatedly shown to cause denial-of-service problems in actual applications.
Faced with a numeric conversion error, the underlying computer system may do one of two things: (a) signal some
sort of error condition, or (b) produce a numeric value that is within the range of representable values on that
system. The latter semantics may be preferable in some situations in that it allows the computation to proceed,
thus avoiding a denial-of-service attack. However, it raises the question of what numeric result to return to the user.

A recent innovation from ISO/IEC TR 24731-1 [8] is the definition of the rsize_t type for the C programming
language. Extremely large object sizes are frequently a sign that an object’s size was calculated incorrectly. For
example, negative numbers appear as very large positive numbers when converted to an unsigned type like
size_t. Also, some implementations do not support objects as large as the maximum value that can be
represented by type size_t. For these reasons, it is sometimes beneficial to restrict the range of object sizes to
detect programming errors. For implementations targeting machines with large address spaces, it is recommended
that RSIZE_MAX be defined as the smaller of the size of the largest object supported or (SIZE_MAX >> 1), even
if this limit is smaller than the size of some legitimate, but very large, objects. Implementations targeting machines
with small address spaces may wish to define RSIZE_MAX as SIZE_MAX, which means that there is no object size
that is considered a runtime-constraint violation.

6.15.6 Implications for standardization

• Languages should consider providing means similar to the ISO/IEC TR 24731-1 definition of rsize_t type
for C in order to restrict object sizes so as to expose programming errors.

• Languages should consider making all type conversions explicit.

6.15.7 Bibliography

[1] CERT. CERT C Secure Coding Standard. https://www.securecoding.cert.org/confluence/x/HQE (2007).
[2] CERT. CERT C++ Secure Coding Standard. https://www.securecoding.cert.org/confluence/x/fQI (2007).
[3] Lions, J. L. ARIANE 5 Flight 501 Failure Report . Paris, France: European Space Agency (ESA) & National
Center for Space Study (CNES) Inquiry Board, July 1996.

ISO/IEC PDTR 24772

34 © ISO 2008 – All rights reserved

[4] Hatton 2003
[5] MISRA Limited. "MISRA C : 2004 Guidelines for the Use of the C Language in Critical Systems." Warwickshire,
UK: MIRA Limited, October 2004 (ISBN 095241564X).
[6] Seacord, R. Secure Coding in C and C++. Boston, MA: Addison-Wesley, 2005. See
http://www.cert.org/books/secure-coding for news and errata.
[7] John David N. Dionisio. Type Checking. http://myweb.lmu.edu/dondi/share/pl/type-checking-v02.pdf
[8] ISO/IEC TR 24731-1. Extensions to the C Library, — Part I: Bounds-checking interfaces. Geneva, Switzerland:
International Organization for Standardization, April 2006.

6.16 String Termination [CJM]

6.16.1 Description of application vulnerability

Some programming languages use a termination character to indicate the end of a string. Relying on the
occurrence of the string termination character without verification can lead to either exploitation or unexpected
behaviour.

6.16.2 Cross reference

CERT/CC guidelines: STR03-C, STR31-C, STR32-C, and STR36-C

6.16.3 Mechanism of failure

String termination errors occur when the termination character is solely relied upon to stop processing on the string
when the termination character is not present. Continued processing on the string can cause an error or potentially
be exploited as a buffer overflow. This may occur as a result of a programmer making an assumption that a string
that is passed as input or generated by a library contains a string termination character when it does not.

Programmers may forget to allocate space for the string termination character and expect to be able to store an n
length character string in an array that is n characters long. Doing so may work in some instances depending on
what is stored after the array in memory, but it may fail or be exploited at some point.

6.16.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that use a termination character to indicate the end of a string.
• Languages that do not do bounds checking when accessing a string or array.

6.16.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Do not rely solely on the string termination character.
• Use library calls that do not rely on string termination characters such as strncpy instead of strcpy in

the standard C library.

6.16.6 Implications for standardization

Specifiers of languages might consider:

• Eliminating library calls that make assumptions about string termination characters.
• Checking bounds when an array or string is accessed.
• Specifying a string construct that does not need a string termination character.

6.16.7 Bibliography

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 35

[None]

6.17 Boundary Beginning Violation [XYX]

6.17.1 Description of application vulnerability

A buffer underwrite condition occurs when an array is indexed outside its lower bounds, or pointer arithmetic results
in an access to storage that occurs before the beginning of the intended object.

6.17.2 Cross reference

CWE:
124. Boundary Beginning Violation (‘Buffer Underwrite’)
129. Unchecked Array Indexing

JSF AV Rule: 25
MISRA C 2004: 21.1
MISRA C++ 2008: 5-0-15 to 5-0-18
CERT/CC guidelines: ARR30-C, ARR32-C, and ARR38-C

6.17.3 Mechanism of failure

There are several kinds of failures (in both cases an exception may be raised if the accessed location is outside of
some permitted range):

• A read access will return a value that has no relationship to the intended value, e.g., the value of another
variable or uninitialised storage.

• An out-of-bounds read access may be used to obtain information that is intended to be confidential.
• A write access will not result in the intended value being updated and may result in the value of an

unrelated object (that happens to exist at the given storage location) being modified.
• When the array has been allocated storage on the stack an out-of-bounds write access may modify internal

runtime housekeeping information (e.g., a functions return address) which might change a programs
control flow.

6.17.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that do not detect and prevent an array being accessed outside of its declared bounds.
• Languages that do not automatically allocate storage when accessing an array element for which storage

has not already been allocated.

6.17.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:.

• Use of implementation provided functionality to automatically check array element accesses and prevent
out-of-bounds accesses.

• Use of static analysis to verify that all array accesses are within the permitted bounds. Such analysis may
require that source code contain certain kinds of information, e.g., that the bounds of all declared arrays be
explicitly specified, or that pre- and post-conditions be specified.

• Sanity checks should be performed on all calculated expressions used as an array index or for pointer
arithmetic.

Some guideline documents recommend only using variables having an unsigned type when indexing an array, on
the basis that an unsigned type can never be negative. This recommendation simply converts an indexing
underflow to an indexing overflow because the value of the variable will wrap to a large positive value rather than a

ISO/IEC PDTR 24772

36 © ISO 2008 – All rights reserved

negative one. Also some language support arrays whose lower bound is greater than zero, so an index can be
positive and be less than the lower bound.

In the past the implementation of array bound checking has sometimes incurred what has been considered to be a
high runtime overhead (often because unnecessary checks were performed). It is now practical for translators to
perform sophisticated analysis that significantly reduces the runtime overhead (because runtime checks are only
made when it cannot be shown statically that no bound violations can occur).

6.17.6 Implications for standardization

• Languages that use pointer types should consider specifying a standard for a pointer type that would
enable array bounds checking, if such a pointer is not already in the standard.

6.17.7 Bibliography

 [None]

6.18 Unchecked Array Indexing [XYZ]

6.18.1 Description of application vulnerability

Unchecked array indexing occurs when a value is used as an index into an array without checking that it falls within
the acceptable index range.

6.18.2 Cross reference

CWE:
129. Unchecked Array Indexing

JSF AV Rules: 164 and 15
MISRA C 2004: 21.1
MISRA C++ 2008: 5-0-15 to 5-0-18
CERT/CC guidelines: ARR30-C, ARR32-C, ARR33-C, and ARR38-C

6.18.3 Mechanism of failure

A single fault could allow both an overflow and underflow of the array index. An index overflow exploit might use
buffer overflow techniques, but this can often be exploited without having to provide "large inputs." Array index
overflows can also trigger out-of-bounds read operations, or operations on the wrong objects; i.e., "buffer
overflows" are not always the result. Unchecked array indexing, depending on its instantiation, can be responsible
for any number of related issues. Most prominent of these possible flaws is the buffer overflow condition. Due to
this fact, consequences range from denial of service, and data corruption, to arbitrary code execution. The most
common condition situation leading to unchecked array indexing is the use of loop index variables as buffer
indexes. If the end condition for the loop is subject to a flaw, the index can grow or shrink unbounded, therefore
causing a buffer overflow or underflow. Another common situation leading to this condition is the use of a function's
return value, or the resulting value of a calculation directly as an index in to a buffer. Unchecked array indexing can
result in the corruption of relevant memory and perhaps instructions, lead to the program halting, if the values are
outside of the valid memory area. If the memory corrupted is data, rather than instructions, the system might
continue to function with improper values. If the corrupted memory can be effectively controlled, it may be possible
to execute arbitrary code, as with a standard buffer overflow.

Language implementations might or might not statically detect out of bound access and generate a compile-time
diagnostic. At runtime the implementation might or might not detect the out of bounds access and provide a
notification at runtime. The notification might be treatable by the program or it might not be. Accesses might violate
the bounds of the entire array or violate the bounds of a particular extent. It is possible that the former is checked
and detected by the implementation while the latter is not. The information needed to detect the violation might or

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 37

might not be available depending on the context of use. (For example, passing an array to a subroutine via a
pointer might deprive the subroutine of information regarding the size of the array.)

Aside from bounds checking, some languages have ways of protecting against out of bounds accessed. Some
languages automatically extend the bounds of an array to accommodate accesses that might otherwise have been
beyond the bounds. However, this may or may not match the programmer's intent and can mask errors. Some
languages provide for whole array operations that may obviate the need to access individual elements thus
preventing unchecked array accesses.

6.18.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that do not automatically bounds check array accesses.
• Languages that do not automatically extend the bounds of an array to accommodate array accesses.

6.18.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Include sanity checks to ensure the validity of any values used as index variables.
• The choice could be made to use a language that is not susceptible to these issues.
• When available, use whole array operations whenever possible.

6.18.6 Implications for standardization

• Language should consider providing compiler switches or other tools to check the size and bounds of
arrays and their extents that are statically determinable.

• Languages should consider providing whole array operations that may obviate the need to access
individual elements.

• Languages should consider the capability to generate exceptions or automatically extend the bounds of an
array to accommodate accesses that might otherwise have been beyond the bounds.

6.18.7 Bibliography

 [None]

6.19 Unchecked Array Copying [XYW]

6.19.1 Description of application vulnerability

A buffer overflow occurs when some number of bytes (or other units of storage) is copied from one buffer to
another and the amount being being copied is greater than is allocated for the destination buffer.

6.19.2 Cross reference

CWE:
121. Stack-based Buffer Overflow

JSF AV Rule: 15
MISRA C 2004: 21.1
MISRA C++ 2008: 5-0-15 to 5-0-18
CERT/CC guidelines: ARR33-C and STR31-C

ISO/IEC PDTR 24772

38 © ISO 2008 – All rights reserved

6.19.3 Mechanism of failure

Many languages and some third party libraries provide functions that efficiently copy the contents of one area of
storage to another area of storage. Most of these libraries do not perform any checks to ensure that the copied
from/to storage area is large enough to accommodate the amount of data being copied.

The arguments to these library functions include the addresses of the contents of the two storage areas and the
number of bytes (or some other measure) to copy Passing the appropriate combination of incorrect start
addresses or number of bytes to copy makes it is possible to read or write outside of the storage allocated to the
source/destination area. When passed incorrect parameters the library function performs one or more unchecked
array index accesses, as described in XYZ Unchecked Array Indexing.

6.19.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that contain Standard library functions for performing bulk copying of storage areas.
• The same range of languages having the characteristics listed in XYZ Unchecked Array Indexing.

6.19.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Only use library functions that perform checks on the arguments to ensure no buffer overrun can occur
(perhaps by writing a wrapper for the Standard provided functions). Perform checks on the argument
expressions prior to calling the Standard library function to ensure that no buffer overrun will occur.

• Use static analysis to verify that the appropriate library functions are only called with arguments that do not
result in a buffer overrun. Such analysis may require that source code contain certain kinds of information,
e.g., that the bounds of all declared arrays be explicitly specified, or that pre- and post-conditions be
specified as annotations or language constructs.

6.19.6 Implications for standardization

• Languages should consider only providing libraries that perform checks on the parameters to ensure that
no buffer overrun can occur.

• Languages should consider providing optional canary style bounds checking.

6.19.7 Bibliography

 [None]

6.20 Buffer Overflow [XZB]

6.20.1 Description of application vulnerability

A buffer overflow arises when, due to unchecked array indexing or unchecked array copying, storage outside the
buffer is accessed. Usually overflows describe the situation where such storage is then written. Depending on
where the buffer is located, logically unrelated portions of the stack or the heap could be modified maliciously or
unintentionally. Usually, buffer overflows describe accesses to contiguous memory beyond the end of the buffer
data, as may arise when arrays are copied without length checks. However, accessing before the beginning of the
buffer data is equally possible, dangerous and maliciously exploitable.

6.20.2 Cross reference

CWE:
122. Heap-based Buffer Overflow

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 39

JSF AV Rule: 15
MISRA C 2004: 21.1
MISRA C++ 2008: 5-0-15 to 5-0-18
CERT/CC guidelines: ARR33-C, STR31-C and MEM35-C

6.20.3 Mechanism of failure

Overwriting adjacent data (or data at arbitrarily computed locations) outside the area allocated for an array leads to
value failures of the application. The program statements causing the buffer overflow are often difficult to find. But
not only data storage can be corrupted. Buffer overflow may also inadvertently or even maliciously overwrite
function pointers that may be in memory, pointing them to the attacker's code. Even in applications that do not
explicitly use function pointers, the run-time will usually store function pointers in memory. For example, object
methods in object-oriented languages are generally implemented using function pointers in data structures that are
kept in memory. Since the consequence of a buffer overflow can be targeted to cause arbitrary code execution, this
vulnerability can be used to subvert any security service.

6.20.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Copying of arrays can be done without an automatic length check ensuring that source and target locations
are of the same size.

• Indexing of array elements can be done without an automatic check that the indexing is within the bounds
of the array.

• Accesses might violate the physical bounds of the entire array or violate the logical bounds of a particular
extent. The vulnerability is somewhat mitigated, if the former violation is checked for and detected by the
implementation although the latter is not.

• The bounds of an array are not automatically extended to accommodate accesses that might otherwise
have been beyond the bounds. (This may or may not match the programmer's intent.)

6.20.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Use a language or compiler that performs automatic bounds checking on elements accesses and
automatic length checking on copying entire arrays.

• Use an abstraction library to add checks on top of library functions that copy arrays without length checks.
• Checks that prevent overflows can be disabled in some languages to increase performance. This option

should be used rarely.
• Implementation-defined checks that prevent overflows can be enabled in some languages that do not

require such checks. This option should be used whenever feasible.

6.20.6 Implications for standardization

• Languages should provide safe copying of arrays as built-in operation.
• Languages should consider only providing array copy routines in libraries that perform checks on the

parameters to ensure that no buffer overrun can occur.
• Languages should perform automatic bounds checking on accesses to array elements. This

capability may need to be disabled at times for performance reasons.

6.20.7 Bibliography

[None]

ISO/IEC PDTR 24772

40 © ISO 2008 – All rights reserved

6.21 Pointer Casting and Pointer Type Changes [HFC]

6.21.1 Description of application vulnerability

The code produced for access via a data or function pointer requires that the type of the pointer is appropriate for
the data or function being accessed. Otherwise undefined behaviour can occur. Specifically, “access via a data
pointer” is defined to be “fetch or store indirectly through that pointer” and “access via a function pointer” is defined
to be “invocation indirectly through that pointer.” The detailed requirements for what is meant by the “appropriate”
type may vary among languages.

Even if the type of the pointer is appropriate for the access, erroneous pointer operations can still cause a fault.

 6.21.2 Cross reference

CWE
136. Type Errors
188. Reliance on Data/Memory Layout

JSF AV Rules: 182 and 183
MISRA C 2004: 11.1, 11.2, 11.3, 11.4, and 11.5
MISRA C++ 2008: 5-2-2 to 5-2-9
CERT/CC guidelines: INT11-C and EXP36-A
Hatton 13: Pointer casts

6.21.3 Mechanism of failure

If a pointer’s type or value is not appropriate for the data or function being accessed, data can be corrupted or
privacy can be broken by inappropriate read or write operation using the indirection provided by the pointer value.
With a suitable type definition, large portions of memory can be maliciously or accidentally modified or read. Such
modification of data objects will generally lead to value faults of the application. Modification of code elements such
as function pointers or internal data structures for the support of object-orientation can affect control flow. This can
make the code susceptible to targeted attacks by causing invocation via a pointer-to-function that has been
manipulated to point to an attacker’s payload.

6.21.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Pointers (and/or references) can be converted to different pointer types.
• Pointers to functions can be converted to pointers to data.
• Addresses of specific storage locations can be calculated.
• Integers can be added to, or subtracted from, pointers, thereby designating different objects.

6.21.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Treat the compiler’s pointer-conversion warnings as serious errors.
• Adopt programming guidelines (preferably augmented by static analysis) that restrict pointer conversions.

For example, consider the rules itemized above from JSF AV, CERT/CC, Hatton, or MISRA C.
• Other means of assurance might include proofs of correctness, analysis with tools, verification techniques,

etc.

6.21.6 Implications for standardization

[None]

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 41

6.21.7 Bibliography

Hatton 13: Pointer casts

6.22 Pointer Arithmetic [RVG]

6.22.1 Description of application vulnerability

Using pointer arithmetic incorrectly can lead to miscalculations that can result in buffer overflows and underflows,
and address arbitrary locations, which in turn can cause a program to behave in unexpected ways.

6.22.2 Cross reference

JSF AV Rule: 215
MISRA C 2004: 17.1, 17.2, 17.3, and 17.4
MISRA C++ 2008: 5-0-15 to 5-0-18
CERT/CC guidelines: EXP08-C

6.22.3 Mechanism of failure

Pointer arithmetic used incorrectly can produce:

• Buffer overflow
• Buffer underflow
• Addressing arbitrary memory locations
• Addressing memory outside the range of the program

6.22.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that allow pointer arithmetic.

6.22.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Use pointer arithmetic only for indexing objects defined as arrays.
• Use only an integer for addition and subtraction of pointers

6.22.6 Implications for standardization

 [None]

6.22.7 Bibliography

 [None]

6.23 Null Pointer Dereference [XYH]

6.23.1 Description of application vulnerability

A null-pointer dereference takes place when a pointer with a value of NULL is used as though it pointed to a valid
memory location. This is a special case of accessing storage via an invalid pointer.

ISO/IEC PDTR 24772

42 © ISO 2008 – All rights reserved

6.23.2 Cross reference

CWE:
476. NULL Pointer Dereference

JSF AV Rule 174
CERT/CC guidelines: EXP34-C

6.23.3 Mechanism of failure

Before being assigned to point to a particular place in memory, pointers typically are initialized to NULL. However,
if the pointer with a value of NULL is used as though it pointed to a valid memory location, then a null-pointer
dereference is said to take place. This will result in a segmentation fault, unhandled exception, or other runtime
error.

6.23.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that permit the use of pointers and that do not check the validity of the location being accessed
prior to the access.

• Languages that allow the use of a NULL pointer.

6.23.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Before dereferencing a pointer, ensure it is not equal to NULL.

6.23.6 Implications for standardization

• Pointers could be checked for a NULL value before performing the access. This could be implemented
through a compiler option.

6.23.7 Bibliography

 [None]

6.24 Dangling Reference to Heap [XYK]

6.24.1 Description of application vulnerability

A dangling reference is a reference to an object whose lifetime has ended due to explicit deallocation or the stack
frame in which the object resided has been freed due to exiting the dynamic scope. The memory for the object may
be reused; therefore, any access through the dangling reference may affect an apparently arbitrary location of
memory, corrupting data or code.

This description concerns the former case, dangling references to the heap. The description of dangling references
to stack frames is DCM. In many languages references are called pointers; the issues are identical.

A notable special case of using a dangling reference is calling a deallocator, for example, free(), twice on the
same memory address. Such a “Double Free” may corrupt internal data structures of the heap administration,
leading to faulty application behaviour (such as infinite loops within the allocator, returning the same memory
repeatedly as the result of distinct subsequent allocations, or deallocating memory legitimately allocated to another
request since the first free()call, to name but a few), or it may have no adverse effects at all.

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 43

Memory corruption through the use of a dangling reference is among the most difficult of errors to locate.

With sufficient knowledge about the heap management scheme (often provided by the OS or run-time system), use
of dangling references is an exploitable vulnerability, since the dangling reference provides a method with which to
read and modify valid data in the designated memory locations after freed memory has been re-allocated by
subsequent allocations.

6.24.2 Cross reference

CWE:
415. Double Free (Note that Double Free (415) is a special case of Use After Free (416))
416. Use After Free

MISRA C 2004: 17.1-6
MISRA C++ 2008: 0-3-1, 7-5-1, 7-5-2, 7-5-3, and 18-4-1
CERT/CC guidelines: MEM01-C, MEM30-C, and MEM31.C

6.24.3 Mechanism of failure

The lifetime of an object is the portion of program execution during which storage is guaranteed to be reserved for
it. An object exists and retains its last-stored value throughout its lifetime. If an object is referred to outside of its
lifetime, the behaviour is undefined. Explicit deallocation of heap-allocated storage ends the lifetime of the object
residing at this memory location (as does leaving the dynamic scope of a declared variable). The value of a pointer
becomes indeterminate when the object it points to reaches the end of its lifetime. Such pointers are called
dangling references.

The use of dangling references to previously freed memory can have any number of adverse consequences —
ranging from the corruption of valid data to the execution of arbitrary code, depending on the instantiation and
timing of the deallocation causing all remaining copies of the reference to become dangling, of the system's reuse
of the freed memory, and of the subsequent usage of a dangling reference.

Like memory leaks and errors due to double de-allocation, the use of dangling references has two common and
sometimes overlapping causes:

• An error condition or other exceptional circumstances.
• Developer confusion over which part of the program is responsible for freeing the memory.

If a pointer to previously freed memory is used, it is possible that the referenced memory has been reallocated.
Therefore, assignment using the original pointer has the effect of changing the value of an unrelated variable. This
induces unexpected behaviour in the affected program. If the newly allocated data happens to hold a class
description, in an object-oriented language for example, various function pointers may be scattered within the heap
data. If one of these function pointers is overwritten with an address of malicious code, execution of arbitrary code
can be achieved.

6.24.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that permit the use of pointers and that permit explicit deallocation by the developer or provide
for alternative means to reallocate memory still pointed to by some pointer value.

6.24.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Use a language or implementation that performs garbage collection and does not permit developers to
explicitly release allocated storage. In this case, the program must set all pointers/references to NULL
when no longer needed (or else garbage collection will not collect the referenced memory). Alternatively

ISO/IEC PDTR 24772

44 © ISO 2008 – All rights reserved

use a language or implementation that provides for storage pools and performs deallocation upon leaving
the scope of the pool.

• Use an implementation that checks whether a pointer is used that designates a memory location that has
already been freed.

• Use a coding style that does not permit deallocation.
• In complicated error conditions, be sure that clean-up routines respect the state of allocation properly. If the

language is object-oriented, ensure that object destructors delete each chunk of memory only once.
Ensuring that all pointers are set to NULL once the memory they point to have been freed can be an
effective strategy. The utilization of multiple or complex data structures may lower the usefulness of this
strategy.

• Use a static analysis tool that is capable of detecting some situations when a pointer is used after the
storage it refers to is no longer a pointer to valid memory location.

• Allocating and freeing memory in different modules and levels of abstraction burdens the programmer with
tracking the lifetime of that block of memory. This may cause confusion regarding when and if a block of
memory has been allocated or freed, leading to programming defects such as double-free vulnerabilities,
accessing freed memory, or dereferencing NULL pointers or pointers that are not initialized. To avoid
these situations, it is recommended that memory be allocated and freed at the same level of abstraction,
and ideally in the same code module.

6.24.6 Implications for standardization

• Implementations of the free function could tolerate multiple frees on the same reference/pointer or frees of
memory that was never allocated.

• A storage allocation interface should be provided that will allow the called function to set the pointer used
to NULL after the referenced storage is deallocated.

6.24.7 Bibliography

 [None]

6.25 Templates and Generics [SYM]

6.25.1 Description of application vulnerability

Many languages provide a mechanism that allows objects and/or functions to be defined parameterized by type,
and then instantiated for specific types. In C++ and related languages, these are referred to as “templates”, and in
Ada and Java, “generics”. To avoid having to keep writing ‘templates/generics’, in this section these will simply be
referred to collectively as generics.

Used well, generics can make code clearer, more predictable and easier to maintain. Used badly, they can have
the reverse effect, making code difficult to review and maintain, leading to the possibility of program error.

6.25.2 Cross reference

JSF AV Rules: 101, 102, 103, 104, and 105
MISRA C 2004: 14-7-2, 14-8-1, and 14-8-2
MISRA C++ 2008: 14-6-1, 14-6-2, 14-7-1 to 14-7-3, 14-8-1, and 14-8-2

6.25.3 Mechanism of failure

The value of generics comes from having a single piece of code that supports some behaviour in a type
independent manner. This simplifies development and maintenance of the code. It should also assist in the
understanding of the code during review and maintenance, by providing the same behaviour for all types with
which it is instantiated.

Problems arise when the use of a generic actually makes the code harder to understand during review and
maintenance, by not providing consistent behaviour.

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 45

In most cases, the generic definition will have to make assumptions about the types it can legally be instantiated
with. For example, a sort function requires that the elements to be sorted can be copied and compared. If these
assumptions are not met, the result is likely to be a compiler error. For example if the sort function is instantiated
with a user defined type that doesn’t have a relational operator. Where ‘misuse’ of a generic leads to a compiler
error, this can be regarded as a development issue, and not a software vulnerability.

Confusion, and hence potential vulnerability, can arise where the instantiated code is apparently illegal, but doesn’t
result in a compiler error. For example, a generic class defines a series of members, a subset of which rely on a
particular property of the instantiation type (e.g., a generic container class with a sort member function, only the
sort function relies on the instantiating type having a defined relational operator). In some languages, such as C++,
if the generic is instantiated with a type that doesn’t meet all the requirements but the program never subsequently
makes use of the subset of members that rely on the property of the instantiating type, the code will compile and
execute (e.g., the generic container is instantiated with a user defined class that doesn’t define a relational
operator, but the program never calls the sort member of this instantiation). When the code is reviewed the generic
class will appear to reference a member of the instantiating type that doesn’t exist.

The problem as described in the two prior paragraphs can be reduced by a language feature (such as the concepts
language feature being designed the C++ committee).

Similar confusion can arise if the language permits specific elements of a generic to be explicitly defined, rather
than using the common code, so that behaviour is not consistent for all instantiations. For example, for the same
generic container class, the sort member normally sorts the elements of the container into ascending order. In
languages such as C++, a ‘special case’ can be created for the instantiation of the generic with a particular type.
For example, the sort member for a ‘float’ container may be explicitly defined to provide different behaviour, say
sorting the elements into descending order. Specialization that doesn’t affect the apparent behaviour of the
instantiation is not an issue. Again, for C++, there are some irregularities in the semantics of arrays and pointers
that can lead to the generic having different behaviour for different, but apparently very similar, types. In such
cases, specialization can be used to enforce consistent behaviour.

6.25.4 Applicable language characteristics

This vulnerability is intended to be applicable to languages with the following characteristics:

• Languages that permit definitions of objects or functions to be parameterized by type, for later instantiation
with specific types, e.g.:

o templates: C++
o generics: Ada, Java

6.25.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Document the properties of an instantiating type necessary for the generic to be valid.
• If an instantiating type has the required properties, the whole of the generic should be valid, whether

actually used in the program or not.
• Preferably avoid, but at least carefully document, any ‘special cases’ where the generic instantiated with a

specific type doesn’t behave as it does for other types.

6.25.6 Implications for standardization

• Language specifiers should standardize on a common, uniform terminology to describe generics/templates
so that programmers experienced in one language can reliably learn and refer to the type system of
another language that that has the same concept, but with a different name.

6.25.7 Bibliography

 [None]

ISO/IEC PDTR 24772

46 © ISO 2008 – All rights reserved

6.26 Inheritance [RIP]

6.26.1 Description of application vulnerability

Inheritance, both single and multiple, increases code complexity. As the levels of inheritance increases, so does
code complexity. This causes maintenance and verification activities to become increasingly more difficult. This is
especially true for code reviews; structural coverage and flow analysis that are key activities in identifying malicious
code and code that can negatively impact system safety. Children classes that reside deeper in the class hierarchy
are much more fault-prone and harder to predict behavior due to the large number of definitions it inherits from its
ancestors.

A specific problem occurs when applying unit tests to classes with C++ virtual/Java non-final (or equivalent)
functions. The concept of unit testing is that a component can be tested in isolation, verified, and then when
composed with other components, the integration of their 'confirmed' behaviours verified. This is challenged by the
late/dynamic binding that may occur for virtual etc. function. A declaration introduced later in the program may
modify the behaviour of the code previously tested. Whilst not insuperable, it requires the verification plan to be
aware of the need to allow for late binding when deciding what constitutes a unit.

6.26.2 Cross reference

JSF AV Rules: 86 to 97
MISRA C++ 2008: 0-1-12, 8-3-1, 10-1-1 to 10-1-3, and 10-3-1 to 10-3-3

6.26.3 Mechanism of failure

The use of inheritance can lead to an exploitable application vulnerability or negatively impact system safety in
several ways:

• Developers may not be aware of, or fully understand, the functionality the child class inherits from one or
more of its ancestors. This will likely increase the probability that the code has unanticipated and
unintended behavior that may be easy to exploit or that has behavior that negatively impacts system
safety.

• It will be more difficult to detect malicious code or code that can contribute to a safety hazard during the
development of the software. Heavy use of inheritance will make code reviews harder and will also make it
infeasible to perform certain types of structural coverage and flow analysis.

• Each class within the hierarchy will likely have some characteristics that shared with the ancestor classes
and some characteristics that are unique to it. Keeping track of the unique vs. common characteristics
make software maintenance difficult and increase the chances that an error will be introduce during
maintenance.

6.26.4 Applicable language characteristics

This is applicable to all languages that allow single and multiple inheritances.

6.26.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Avoid the use of multiple inheritance in a critical applications. If inheritance must be used, thoroughly
document the inherited characteristics that the child class inherits from its ancestors.

• Merge the super class(es) and the child class so that all methods and variables are within the child class.
This essentially eliminates inheritance.

• Inheritance should be limited to one level or be eliminated in critical subsets of a language.

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 47

6.26.6 Implications for standardization

6.26.7 Bibliography

[1] P. V. Bhansali, A systematic approach to identifying a safe subset for safety-critical software, ACM SIGSOFT
Software Engineering Notes, v.28 n.4, July 2003
[2] Ghassan, A., & Alkadi, I. (2003). Application of a Revised DIT Metric to Redesign an OO Design. Journal of
Object Technology , 127-134.
[3] Subramanian, S., Tsai, W.-T., & Rayadurgam, S. (1998). Design Contraint Violation Detection in Safety-Critical
Systems. The 3rd IEEE International Symposium on High-Assurance Systems Engineering , 109 - 116.

6.27 Initialization of Variables [LAV]

6.27.1 Description of application vulnerability

Reading a variable that has not been assigned a value appropriate to its type can cause unpredictable execution in
the block that uses the value of the variable, and has the potential to export bad values to callers, or cause out of
bounds memory accesses.

Uninitialized variable usage is often not detected until after testing and often when the code in question is delivered
and in use, often because happenstance will provide variables with adequate values (such as default data settings
or accidental left-over values) until some other change exposes the defect.

Variables that are declared during module construction (such as a class constructor, instantiation, or elaboration)
may have alternate paths that can read values before they are set. This can happen in straight sequential code but
is more prevalent when concurrency or co-routines are present, with the same impacts described above.

Another vulnerability occurs when compound objects are initialized incompletely, as can happen when objects are
incrementally built, or fields are added under maintenance.

When possible and supported by the language, whole-structure initialization is preferable to field-by-field
initialization statements, and named association is preferable to positional, as it facilitates human review and is less
susceptible to failures under maintenance. For classes, the declaration and initialization may occur in separate
modules. In such cases it must be possible to show that every field that needs an initial value receives that value,
and to document ones that do not require initial values.

6.27.2 Cross reference

JSF AV Rules: 71, 143, and 147
MISRA C 2004: 9.1, 9.2, and 9.3
CERT/CC guidelines: DCL14-C and EXP33-C
MISRA C++ 2008: 8-5-1

6.27.3 Mechanism of failure

Uninitialized objects may have illegal values, legal but wrong values, or legal and dangerous values. Wrong values
could cause unbounded branches in conditionals or unbounded loop executions, or could simply cause wrong
calculations and results.

There is a special case of pointers or access types. When such a type contains null values, a bound violation and
hardware exception can result. When such a type contains plausible but meaningless values, random data reads
and writes can collect erroneous data or can destroy data that is in use by another part of the program; when such
a type is an access to a subprogram with a plausible (but wrong) value, then either a bad instruction trap may occur
or a transfer to an unknown code fragment can occur. All of these scenarios can result in unbounded behaviours.

ISO/IEC PDTR 24772

48 © ISO 2008 – All rights reserved

Uninitialized variables are difficult to identify and use for attackers, but can be arbitrarily dangerous in safety
situations.

6.27.4 Applicable Language Characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that permit variables to be read before they are assigned.

6.27.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• The general problem of showing that all objects are initialized is intractable; hence developers must
carefully structure programs to show that all variables are set before first read on every path throughout the
subprogram. Where objects are visible from many modules, it is difficult to determine where the first read
occurs, and identify a module that must set the value before that read. When concurrency, interrupts and
coroutines are present, it becomes especially imperative to identify where early initialization occurs and to
show that the correct order is set via program structure, not by timing, OS precedence, or chance.

• The simplest method is to initialize each object at elaboration time, or immediately after subprogram
execution commences and before any branches. If the subprogram must commence with conditional
statements, then the programmer is responsible to show that every variable declared and not initialized
earlier is initialized on each branch.

• Applications can consider defining or reserving fields or portions of the object to only be set when
initialized.

• It should be possible to use static analysis tools to show that all objects are set before use in certain
specific cases, but as the general problem is intractable, programmers should keep initialization algorithms
simple so that they can be analyzed.

• When declaring and initializing the object together, if the language does not require that the compiler
statically verify that the declarative structure and the initialization structure match, use static analysis tools
to help detect any mismatches.

• When setting compound objects, if the language provides mechanisms to set all components together, use
those in preference to a sequence of initializations as this helps coverage analysis; otherwise use tools that
perform such coverage analysis and document the initialization. Do not perform partial initializations unless
there is no choice, and document any deviations from 100% initialization.

• Where default assignment to multiple components are performed, explicit declaration of the component
names and/or ranges helps static analysis and identification of component changes during maintenance.

• Some languages that have named assignments that can be used to build reviewable assignment
structures that can be analyzed by the language processor for completeness. Languages with positional
notation only can use comments and secondary tools to help show correct assignment.

6.27.6 Implications for standardization

• Some languages have ways to determine if modules and regions are elaborated and initialized and to raise
exceptions if this does not occur. Languages that do not could consider adding such capabilities.

• Languages could consider setting aside fields in all objects to identify if initialization has occurred,
especially for security and safety domains.

• Languages that do not support whole-object initialization could consider adding this capability.

6.27.7 Bibliography

 [None]

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 49

6.28 Wrap-around Error [XYY]

6.28.1 Description of application vulnerability

Wrap-around errors can occur whenever a value is incremented past the maximum value representable in its type
and therefore "wraps around" to either a very small, negative, or undefined value. Using shift operations as a
surrogate for multiply or divide may produce a similar error.

6.28.2 Cross reference

CWE:
128. Wrap-around Error

JSF AV Rules: 164 and 15
MISRA C 2004: 10.1 to 10.6, 12.8 and 12.11
MISRA C++ 2008: 2-13-3, 5-0-3 to 5-0-10, and 5-19-1
CERT/CC guidelines: INT30-C, INT32-C, and INT34-C

6.28.3 Mechanism of failure

Due to how arithmetic is performed by computers, if a variable is incremented past the maximum value
representable in its type, the system may fail to provide an overflow indication to the program. The most common
processor behaviour is to “wrap” to a very large negative value, another behaviour is to saturate at the largest
representable value.

Shift operations may also produce values that cannot be easily predicted as a result of the different representations
of negative integers on various hardware, and, when treating signed quantities, of the differences in behaviour
between logical shifts and arithmetic shifts (the particular effect of filling with the sign bit).

Wrap-around often generates an unexpected negative value; this unexpected value may cause a loop to continue
for a long time (because the termination condition requires a value greater than some positive value) or an array
bounds violation. A wrap-around can sometimes trigger buffer overflows that can be used to execute arbitrary
code.

6.28.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that do not trigger an exception condition when a wrap-around error occurs.
• Languages that do not fully specify the distinction between arithmetic and logical shifts.

6.28.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Determine applicable upper and lower bounds for the range of all variables and use language mechanisms
or static analysis to determine that values are confined to the proper range.

• Analyze the software using static analysis looking for unexpected consequences of arithmetic operations.
• Avoid using shift operations as a surrogate for multiplication and division. Most compilers will use the

correct operation in the appropriate fashion when it is applicable.

6.28.6 Implications for standardization

• Language standards-writers should consider providing facilities to specify either an error, a saturated
value, or a modulo result when numeric overflow occurs.

ISO/IEC PDTR 24772

50 © ISO 2008 – All rights reserved

6.28.7 Bibliography

 [None]

6.29 Sign Extension Error [XZI]

6.29.1 Description of application vulnerability

Extending a signed variable that holds a negative value may produce an incorrect result.

6.29.2 Cross reference

CWE:
194. Incorrect Sign Extension

MISRA C++ 2008: 5-0-4
CERT/CC guidelines: INT13-C

6.29.3 Mechanism of failure

Converting a signed data type to a larger data type or pointer can cause unexpected behaviour due to the
extension of the sign bit. A negative data element that is extended with an unsigned extension algorithm will
produce an incorrect result. For instance, this can occur when a signed character is converted to a type short or a
signed integer (32-bit) is converted to an integer type long (64-bit). Sign extension errors can lead to buffer
overflows and other memory based problems. This can occur unexpectedly when moving software designed and
tested on a 32-bit architecture to a 64-bit architecture computer.

6.29.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that are weakly typed due to their lack of enforcement of type classifications and interactions.
• Languages that allow implicit type conversion.

6.29.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Use a sign extension library, standard function, or appropriate language-specific coding methods to extend
signed values.

• Use static analysis tools to help locate situations in which the conversion of variables might have
unintended consequences.

6.29.6 Implications for standardization

• Languages definitions should disallow implicit conversions from signed types to unsigned types, or to types
with smaller ranges.

6.29.7 Bibliography

 [None]

6.30 Operator Precedence/Order of Evaluation [JCW]

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 51

6.30.1 Description of application vulnerability

Each language provides rules of precedence and associativity, for each expression that operands bind to which
operators. These rules are also known as “grouping” or “binding”.

Experience and experimental evidence shows that developers can have incorrect beliefs about the relative
precedence of many binary operators. See, Developer beliefs about binary operator precedence. C Vu, 18(4):14-
21, August 2006

6.30.2 Cross reference

JSF AV Rules: 204 and 213
MISRA C 2004: 12.1, 12.2, 12.5, 12.6, 13.2, 19.10, 19.12, and 19.13
MISRA C++ 2008: 4-5-1, 4-5-2, 4-5-3, 5-0-1, 5-0-2, 5-2-1, 5-3-1, 16-0-6, 16-3-1, and 16-3-2
CERT/CC Guidelines: EXP00-C 

6.30.3 Mechanism of failure

In C and C++, the bitwise operators (bitwise logical and bitwise shift) are sometimes thought of by the programmer
having similar precedence to arithmetic operations, so just as one might correctly write “x – 1 == 0” (“x minus
one is equal to zero”), a programmer might erroneously write “x & 1 == 0”, mentally thinking “x anded-with 1 is
equal to zero”, whereas the operator precedence rules of C and C++ actually bind the expression as “compute
1==0, producing ‘false’ i.e. zero, then bitwise-and the result with x”, producing (a constant) zero, contrary to the
programmer’s intent.

Examples from an opposite extreme can be found in programs written in APL, which is noteworthy for the absence
of any distinctions of precedence. One commonly made mistake is to write “a * b + c”, intending to produce “a
times b plus c”, whereas APL’s uniform right-to-left associatively produces “c plus b, times a”.

6.30.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages whose precedence rules are sufficiently complex that developers do not remember them.

6.30.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Adopt programming guidelines (preferably augmented by static analysis). For example, consider the rules
itemized above from JSF C++, CERT/CC or MISRA C.

• Use parenthesis around binary operator combinations that are known to be a source of error (e.g., mixed
arithmetic/bitwise and bitwise/relational operator combinations).

6.30.6 Implications for standardization

• Language definitions should avoid providing precedence or a particular associativity for operators that are
not typically ordered with respect to one another in arithmetic, and instead require full parenthesization to
avoid misinterpretation.

• Language designers should develop an ISO standard containing one (or at most a few) accepted
precedence orders.

6.30.7 Bibliography

 [None]

ISO/IEC PDTR 24772

52 © ISO 2008 – All rights reserved

6.31 Side-effects and Order of Evaluation [SAM]

6.31.1 Description of application vulnerability

Some programming languages allow subexpressions to cause side-effects (such as assignment, increment, or
decrement). For example, some programming languages permit such side-effects, and if, within one expression
(such as “i = v[i++]”), two or more side-effects modify the same object, undefined behaviour results.

Some languages allow subexpressions to be evaluated in an unspecified ordering. If these subexpressions contain
side-effects, then the value of the full expression can be dependent upon the order of evaluation. Furthermore, the
objects that are modified by the side-effects can receive values that are dependent upon the order of evaluation.

If a program contains these unspecified or undefined behaviours, testing the program and seeing that it yields the
expected results may give the false impression that the expression will always yield the expected result.

6.31.2 Cross reference

JSF AV Rules: 157, 158, 166, 204, 204.1, and 213
MISRA C 2004: 12.1-12.5
MISRA C++ 2008: 5-0-1
CERT/CC Guidelines: EXP10-C, EXP30-C

6.31.3 Mechanism of failure

When subexpressions with side effects are used within an expression, the unspecified order of evaluation can
result in a program producing different results on different platforms, or even at different times on the same
platform. For example, consider

 a = f(b) + g(b);

where f and g both modify b. If f(b) is evaluated first, then the b used as a parameter to g(b) may be a different
value than if g(b) is performed first. Likewise, if g(b) is performed first, f(b) may be called with a different value
of b.

Other examples of unspecified order, or even undefined behaviour, can be manifested, such as

 a = f(i) + i++;

or

 a[i++] = b[i++];

Parentheses around expressions can assist in removing ambiguity about grouping, but the issues regarding side-
effects and order of evaluation are not changed by the presence of parenthesis; consider

 j = i++ * i++;

where even if parentheses are placed around the i++ subexpressions, undefined behaviour still remains. (All
examples above pertain to C and to C++.)

6.31.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that permit expressions to contain subexpressions with side effects.
• Languages whose subexpressions are computed in an unspecified ordering.

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 53

6.31.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Make use of one or more programming guidelines which (a) prohibit these unspecified or undefined
behaviours, and (b) can be enforced by static analysis. (See JSF AV and MISRA rules in Cross reference
section [SAM])

• Keep expressions simple. Complicated code is prone to error and difficult to maintain.

6.31.6 Implications for standardization

• In developing new or revised languages, give consideration to language restrictions that will eliminate or
mitigate this vulnerability.

6.31.7 Bibliography

 [None]

6.32 Likely Incorrect Expression [KOA]

6.32.1 Description of application vulnerability

Certain expressions are symptomatic of what is likely to be a mistake made by the programmer. The statement is
not wrong, but it is unlikely to be right. The statement may have no effect and effectively is a null statement or may
introduce an unintended side-effect. A common example is the use of = in an if expression in C where the
programmer meant to do an equality test using the == operator. Other easily confused operators in C are the
logical operators such as && for the bitwise operator &, or vice versa. It is legal and possible that the programmer
intended to do an assignment within the if expression, but due to this being a common error, a programmer doing
so would be using a poor programming practice. A less likely occurrence, but still possible is the substitution of ==
for = in what is supposed to be an assignment statement, but which effectively becomes a null statement. These
mistakes may survive testing only to manifest themselves or even be exploited as a vulnerability under certain
conditions.

6.32.2 Cross reference

CWE:
480. Use of Incorrect Operator
481. Assigning instead of Comparing
482. Comparing instead of Assigning
570. Expression is Always False
571. Expression is Always True

JSF AV Rules: 160 and 166
MISRA 2004: 12.3, 12.4, 12.13, 13.1, 13.7, and 14.2
MISRA 2008: 0-1-9, 5-0-1, 6-2-1, and 6-5-2
CERT/CC guidelines: MSC02-C and MSC03-C

6.32.3 Mechanism of failure

Some of the failures are simply a case of programmer carelessness. Substitution of = instead of == in a Boolean
test is easy to do and most C and C++ programmers have made this mistake at one time or another. Other
instances can be the result of intricacies of the language definition that specifies what part of an expression must
be evaluated. For instance, having an assignment expression in a Boolean statement is likely making an
assumption that the complete expression will be executed in all cases. However, this is not always the case as
sometimes the truth-value of the Boolean expression can be determined after only executing some portion of the
expression. For instance:

ISO/IEC PDTR 24772

54 © ISO 2008 – All rights reserved

if ((a == b) || (c = (d-1)))

There is no guarantee which of the two subexpressions (a == b) or (c=(d-1)) will be executed first. Should
(a==b) be determined to be true, then there is no need for the subexpression (c=(d-1)) to be executed and as
such, the assignment (c=(d-1)) will not occur.

Embedding expressions in other expressions can yield unexpected results. Increment and decrement operators
(++ and --) can also yield unexpected results when mixed into a complex expression. 

6.32.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• All languages are susceptible to likely incorrect expressions.

6.32.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Simplify expressions.
• Do not use assignment expressions as function parameters. Sometimes the assignment may not be

executed as expected. Instead, perform the assignment before the function call.
• Do not perform assignments within a Boolean expression. This is likely unintended, but if not, then move

the assignment outside of the Boolean expression for clarity and robustness.
• On some rare occasions, some statements intentionally do not have side effects and do not cause control

flow to change. These should be annotated through comments and made obvious that they are
intentionally no-ops with a stated reason. If possible, such reliance on null statements should be avoided.
In general, except for those rare instances, all statements should either have a side effect or cause control
flow to change.

6.32.6 Implications for standardization

• Languages should consider providing warnings for statements that are unlikely to be right such as
statements without side effects. A null (no-op) statement may need to be added to the language for those
rare instances where an intentional null statement is needed. Having a null statement as part of the
language will reduce confusion as to why a statement with no side effects is present in code.

• Languages should consider not allowing assignments used as function parameters.
• Languages should consider not allowing assignments within a Boolean expression.
• Language definitions should avoid situations where easily confused symbols (e.g. = and ==, or ; and :, or

!= and /=) are legal in the same context. For example, = is not generally legal in an if statement in Java
because it does not normally return a boolean value.

6.32.7 Bibliography

 [None]

6.33 Dead and Deactivated Code [XYQ]

6.33.1 Description of application vulnerability

Dead and Deactivated code (the distinction is addressed in 6.33.3) is code that exists in the executable, but which
can never be executed, either because there is no call path that leads to it (e.g., a function that is never called), or
the path is semantically infeasible (e.g., its execution depends on the state of a conditional that can never be
achieved).

Dead and Deactivated code is undesirable because it indicates the possibility of a coding error and because it may
provide a "jump" target for an intrusion.

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 55

Also covered in this vulnerability is code which is believed to be dead, but which is inadvertently executed.

6.33.2 Cross reference

CWE:
570. Expression is Always False
571. Expression is Always True

JSF AV Rules: 127 and 186
MISRA C 2004: 14.1 and 2.4
MISRA C++ 2008: 0-1-1 to 0-1-10, 2-7-2, and 2-7-3
CERT/CC guidelines: MSC07-C and MSC12-C
DO178B/C

6.33.3 Mechanism of failure

DO-178B defines Dead and Deactivated code as:

• Dead code – Executable object code (or data) which... cannot be executed (code) or used (data) in an
operational configuration of the target computer environment and is not traceable to a system or software
requirement.

• Deactivated code – Executable object code (or data) which by design is either (a) not intended to be
executed (code) or used (data), for example, a part of a previously developed software component, or (b)
is only executed (code) or used (data) in certain configurations of the target computer environment, for
example, code that is enabled by a hardware pin selection or software programmed options.]

Dead code is code that exists in an application, but which can never be executed, either because there is no call
path to the code (e.g., a function that is never called) or because the execution path to the code is semantically
infeasible, e.g., in

integer i = 0;
if (i > 0)
 then fun_a();
 else fun_b();

fun_b is dead code, as only fun_a can ever be executed.

The presence of dead code is not in itself an error, but begs the question why is it there? Is its presence an
indication that the developer believed it to be necessary, but some error means it will never be executed? Or is
there a legitimate reason for its presence, for example:

• Defensive code, only executed as the result of a hardware failure.
• Code that is part of a library not required in this application.
• Diagnostic code not executed in the operational environment.

Such code may be referred to as “deactivated”. That is, dead code that is there by intent.

There is a secondary consideration for dead code in languages that permit overloading of functions and other
constructs and uses complex name resolution strategies. The developer may believe that some code is not going
to be used (deactivated), but its existence in the program means that it appears in the namespace, and may be
selected as the best match for some use that was intended to be of an overloading function. That is, although the
developer believes it is never going to be used, in practice it is used in preference to the intended function.

6.33.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that allow code to exist in the executable that can never be executed.

ISO/IEC PDTR 24772

56 © ISO 2008 – All rights reserved

6.33.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• The developer should endeavour to remove, as a first resort and as far as practical, dead code from an
application.

• When a developer identifies code that is dead because a conditional always evaluates to the same value,
this could be indicative of an earlier bug and additional testing may be needed to ascertain why the same
value is occurring.

• The developer should identify any dead code in the application, and provide a justification (if only to
themselves) as to why it is there.

• The developer should also ensure that any code that was expected to be unused is actually recognised as
dead code.

6.33.6 Implications for standardization

6.33.7 Bibliography

 [None]

6.34 Switch Statements and Static Analysis [CLL]

6.34.1 Description of application vulnerability

Many programming languages provide a construct, such as a switch statement, that chooses among multiple
alternative control flows based upon the evaluated result of an expression. The use of such constructs may
introduce application vulnerabilities if not all possible cases appear within the switch or if control unexpectedly flows
from one alternative to another.

6.34.2 Cross reference

JSF AV Rules: 148, 193, 194, 195, and 196
MISRA C 2004: 15.2, 15.3, and 15.5
MISRA C++ 2008: 6-4-3, 6-4-5, 6-4-6, and 6-4-8
CERT/CC guidelines: MSC01-C

6.34.3 Mechanism of failure

The fundamental challenge when using a switch statement is to make sure that all possible cases are, in fact,
dealt with.

6.34.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Contain a construct, such as a switch statement, that provides a selection among alternative control
flows based on the evaluation of an expression.

6.34.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Switch on an expression that has a small number of potential values that can be statically enumerated. In
languages that provide them, a variable of an enumerated type is to be preferred because its possible set
of values is known statically and is small in number (as compared, for example, to the value set of an
integer variable). In languages that don’t provide enumerated types, a tightly constrained integer sub-type

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 57

might be a good alternative. Where it is practical to statically enumerate the switched type, it is preferable
to omit the default case, because the static analysis is simplified and because maintainers can better
understand the intent of the original programmer. When one must switch on some other form of type, it is
necessary to have a default case, preferably to be regarded as a serious error condition.

• Avoid “flowing through” from one case to another. Even if correctly implemented, it is difficult for reviewers
and maintainers to distinguish whether the construct was intended or is an error of omission. (Using
multiple labels on individual alternatives is not a violation of this guideline, though.) In cases where flow-
through is necessary and intended, an explicitly coded branch may be preferable in order to clearly mark
the intent. Providing comments regarding intention can be helpful to reviewers and maintainers.

• Perform static analysis to determine if all cases are, in fact, covered by the code. (Note that the use of a
default case can hamper the effectiveness of static analysis since the tool cannot determine if omitted
alternatives were or were not intended for default treatment.)

• Other means of mitigation include manual review, bounds testing, tool analysis, verification techniques,
and proofs of correctness.

6.34.6 Implications for standardization

• Language specifications could require compilers to ensure that a complete set of alternatives is provided in
cases where the value set of the switch variable can be statically determined.

6.34.7 Bibliography

Hatton 14: Switch statements

6.35 Demarcation of Control Flow [EOJ]

6.35.1 Description of application vulnerability

Some programming languages explicitly mark the end of an if statement or a loop, whereas other languages mark
only the end of a block of statements. Languages of the latter category are prone to oversights by the programmer,
causing unintended sequences of control flow.

6.35.2 Cross reference

JSF AV Rules: 59 and 192
MISRA C 2004: 14.8, 14.9, 14.10, and 19.5
MISRA C++ 2008: 6-3-1, 6-4-1, 6-4-2, 6-4-3, 6-4-8, 6-5-1, 6-5-6, 6-6-1 to 6-6-5, and16-0-2
Hatton 18: Control flow – if structure

6.35.3 Mechanism of failure

Programmers may rely on indentation to determine inclusion of statements within constructs. Testing of the
software may not reveal that statements thought to be included in an if-then, if-then-else, or loops may not in reality
be part of it. This could lead to unexpected results.

6.35.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that contain loops and conditional statements that are not explicitly terminated by an “end”
construct.

6.35.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

ISO/IEC PDTR 24772

58 © ISO 2008 – All rights reserved

• Adopt a convention for marking the closing of a construct that can be checked by a tool, to ensure that
program structure is apparent.

• Adopt programming guidelines (preferably augmented by static analysis). For example, consider the rules
itemized above from JSF AV, MISRA C, MISRA C++ or Hatton.

• Other means of assurance might include proofs of correctness, analysis with tools, verification techniques,
etc.

• Pretty-printers and syntax-aware editors may be helpful in finding such problems, but sometimes disguise
them.

• Include a final else statement at the end of if-…-else-if constructs to avoid confusion.
• Always enclose the body of statements of an if, while, for, etc. in braces (“{}”) or other demarcation

indicators appropriate to the language used.

6.35.6 Implications for standardization

• Specifiers of languages might consider explicit termination of loops and conditional statements.
• Specifiers might consider features to terminate named loops and conditionals and determine if the

structure as named matches the structure as inferred.

6.35.7 Bibliography

Hatton 18: Control flow – if structure

6.36 Loop Control Variables [TEX]

6.36.1 Description of application vulnerability

Many languages support a looping construct whose number of iterations is controlled by the value of a loop control
variable. Looping constructs provide a method of specifying an initial value for this loop control variable, a test that
terminates the loop and the quantity by which it should be decremented/incremented on each loop iteration.

In some languages it is possible to modify the value of the loop control variable within the body of the loop.
Experience shows that such value modifications are sometimes overlooked by readers of the source code,
resulting in faults being introduced.

6.36.2 Cross reference

JSF AV Rule: 201
MISRA C 2004: 13.6
MISRA C++ 2008: 6-5-1 to 6-5-6

6.36.3 Mechanism of failure

Readers of source code often make assumptions about what has been written. A common assumption is that a
loop control variable is not modified in the body of its associated loop since such variables are not usually modified
in the body of a loop. A reader of the source may incorrectly assume that a loop control variable is not modified in
the body of its loop and write (incorrect) code based on this assumption.

6.36.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that permit a loop control variable to be modified in the body of its associated loop (some
languages (e.g., Ada) treat such usage as an erroneous construct and require translators to diagnose it).

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 59

6.36.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Not modifying a loop control variable in the body of its associated loop body.
• Some languages, such as C and C++ do not explicitly specify which of the variables appearing in a loop

header is the loop control variable. MISRA-C [15], MISRA C++ [20], and Jones have proposed algorithms
for deducing which, if any, of these variables is the loop control variable in the programming languages C
and C++ (these algorithms could also be applied to other languages that support a C-like for-loop).

6.36.6 Implications for standardization

• Language designers should consider the addition of an identifier type for loop control that cannot be
modified by anything other than the loop control construct.

6.36.7 Bibliography

MISRA-C: 2004 Guidelines for the use of the C language in critical systems
MISRA C++ 2008: Guidelines for the use of the C++ language in critical systems
Loops and their control variables: Discussion and proposed guidelines, Derek M. Jones, February 2006.

6.37 Off-by-one Error [XZH]

6.37.1 Description of application vulnerability

A program uses an incorrect maximum or minimum value that is 1 more or 1 less than the correct value. This
usually arises from one of a number of situations where the bounds as understood by the developer differ from the
design, such as:

• Confusion between the need for < and <= or > and >= in a test.
• Confusion as to the index range of an algorithm, such as beginning an algorithm at 1 when the

underlying structure is indexed from 0, beginning an algorithm at 0 when the underlying structure is
indexed from 1 (or some other start point) or using the length or a structure as the bounds instead of
the sentinel values.

• Failing to allow for storage of a sentinel value, such as the NULL string terminator that is used in the C and
C++ programming languages.

These issues arise from mistakes in mapping the design into a particular language, in moving between languages
(such as between languages where all arrays start at 0 and other languages where arrays start at 1), and when
exchanging data between languages with different default array sentinel values.

The issue also can arise in algorithms where relationships exist between components, and the existence of a
sentinel value changes the conditions of the test.

The existence of this possible flaw can also be a serious security hole as it can permit someone to surreptitiously
provide an unused location (such as 0 or the last element) that can be used for undocumented features or hidden
channels).

6.37.2 Cross reference

CWE:
193. Off-by-one Error

6.37.3 Mechanism of failure

An off-by-one error could lead to:

ISO/IEC PDTR 24772

60 © ISO 2008 – All rights reserved

• an out-of bounds access to an array (buffer overflow),
• an incomplete comparisons or calculation mistakes,
• a read from the wrong memory location, or
• an incorrect conditional.

Such incorrect accesses can cause cascading errors or references to illegal locations, resulting in potentially
unbounded behaviour.

Off-by-one errors are not often exploited in attacks because they are difficult to identify and exploit externally, but
the cascading errors and boundary-condition errors can be severe.

6.37.4 Applicable language characteristics

As this vulnerability arises because of an algorithmic error by the developer, it can in principle arise in any
language; however, it is most likely to occur when:

• The language relies on the developer having implicit knowledge of structure start and end indices (e.g.,
knowing whether arrays start at 0 or 1 – or indeed some other value).

• Where the language relies upon explicit sentinel values to terminate variable length arrays.

6.37.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• A systematic development process, use of development/analysis tools and thorough testing are all
common ways of preventing errors, and in this case, off-by-one errors.

• Where references are being made to structure indices and the languages provide ways to specify the
whole structure or the starting and ending indices explicitly (e.g., Ada provides xxx'First and xxx'Last for
each dimension), these should be used always. Where the language doesn't provide these, constants can
be declared and used in preference to numeric literals.

• Where the language doesn’t encapsulate variable length arrays, encapsulation should be provided through
library objects and a coding standard developed that requires such arrays to only be used via those library
objects, so the developer does not need to be explicitly concerned with managing sentinel values.

6.37.6 Implications for standardization

Languages should provide encapsulations for arrays that:

• Prevent the need for the developer to be concerned with explicit sentinel values,
• Provide the developer with symbolic access to the array start, end and iterators.

6.37.7 Bibliography

 [None]

6.38 Structured Programming [EWD]

6.38.1 Description of application vulnerability

Programs that have a convoluted control structure are likely to be more difficult to be human readable, less
understandable, harder to maintain, more difficult to modify, harder to statically analyze, and more difficult to match
the allocation and release of resources.

6.38.2 Cross reference

JSF AV Rules: 20, 113, 189, 190, and 191

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 61

MISRA C 2004: 14.4,14.5, and 20.7
MISRA C++ 2008: 6-6-1, 6-6-2, 6-6-3, and 17-0-5
CERT/CC guidelines: SIG32-C

6.38.3 Mechanism of failure

Lack of structured programming can lead to:

• Memory or resource leaks.
• Error prone maintenance.
• Design that is difficult or impossible to validate.
• Source code that is difficult or impossible to statically analyze.

6.38.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that allow leaving a loop without consideration for the loop control.
• Languages that allow local jumps (goto statement).
• Languages that allow non-local jumps (setjmp/longjmp in the C programming language).
• Languages that support multiple entry and exit points from a function, procedure, subroutine or method.

6.38.4 Avoiding the vulnerability or mitigating its effects

Use only those features of the programming language that enforce a logical structure on the program. The
program flow follows a simple hierarchical model that employs looping constructs such as for, repeat, do, and
while.

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Avoid using language features such as goto.
• Avoid using language features such as continue and break in the middle of loops.
• Avoid using language features that transfer control of the program flow via a jump.
• Avoid multiple exit points to a function/procedure/method/subroutine.
• Avoid multiple entry points to a function/procedure/method/subroutine.

6.38.6 Implications for standardization

• Languages should support and favour structured programming through their constructs to the extent
possible.

6.38.7 Bibliography

Holtzmann-1

6.39 Passing Parameters and Return Values [CSJ]

6.39.1 Description of application vulnerability

Nearly every procedural language provides some method of process abstraction permitting decomposition of the
flow of control into routines, functions, subprograms, or methods. (For the purpose of this description, the term
subprogram will be used.) To have any effect on the computation, the subprogram must change data visible to the
calling program. It can do this by changing the value of a non-local variable, changing the value of a parameter, or,
in the case of a function, providing a return value. Because different languages use different mechanisms with
different semantics for passing parameters, a programmer using an unfamiliar language may obtain unexpected
results.

ISO/IEC PDTR 24772

62 © ISO 2008 – All rights reserved

6.39.2 Cross reference

JSF AV Rules: 116, 117, and 118
MISRA C 2004: 16.1, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7, and 16.9
MISRA C++ 2008: 0-3-2, 7-1-2, 8-4-1, 8-4-2, 8-4-3, and 8-4-4
CERT/CC guidelines: EXP12-C and DCL33-C

6.39.3 Mechanism of failure

The mechanisms for parameter passing include: call by reference, call by copy, and call by name. The last is so
specialized and supported by so few programming languages that it will not be treated in this description.

In call by reference, the calling program passes the addresses of the arguments to the called subprogram. When
the subprogram references the corresponding formal parameter, it is actually sharing data with the calling program.
If the subprogram changes a formal parameter, then the corresponding actual argument is also changed. If the
actual argument is an expression or a constant, then the address of a temporary location is passed to the
subprogram; this may be an error in some languages. Some languages may control changes to formal parameters
based on labels such as in, out, or inout.

In call by copy, the called subprogram does not share data with the calling program. Instead, formal parameters act
as local variables. Values are passed between the actual arguments and the formal parameters by copying. There
are three cases to consider: call by value for in parameters; call by result for out parameters and function return
values; and call by value-result for inout parameters. For call by value, the calling program evaluates the actual
arguments and copies the result to the corresponding formal parameters that are then treated as local variables by
the subprogram. For call by value, the values of the locals corresponding to formal parameters are copied to the
corresponding actual arguments. For call by value-result, the values are copied in from the actual arguments at the
beginning of the subprogram's execution and back out to the actual arguments at its termination.

The obvious disadvantage of call by copy is that extra copy operations are needed and execution time is required
to produce the copies. Particularly if parameters represent sizable objects, such as large arrays, the cost of call by
copy can be high. For this reason, many languages also provide the call by reference mechanism. The
disadvantage of call by reference is that the calling program cannot be assured that the subprogram hasn't
changed data that was intended to be unchanged. For example, if an array is passed by reference to a subprogram
intended to sum its elements, the subprogram could also change the values of one or more elements of the array.
However, some languages enforce the subprogram's access to the shared data based on the labeling of actual
arguments with modes—such as in, out, or inout or by constant pointers.

Another problem with call by reference is unintended aliasing. It is possible that the address of one actual argument
is the same as another actual argument or that two arguments overlap in storage. A subprogram, assuming the two
formal parameters to be distinct, may treat them inappropriately. For example, if one codes a subprogram to swap
two values using the exclusive-or method, then a call to swap(x,x) will zero the value of x. Aliasing can also
occur between arguments and non-local objects. For example, if a subprogram modifies a non-local object as a
side-effect of its execution, referencing that object by a formal parameter will result in aliasing and, possibly,
unintended results.

Some languages provide only simple mechanisms for passing data to subprograms, leaving it to the programmer to
synthesize appropriate mechanisms. Often, the only available mechanism is to use call by copy to pass small
scalar values or pointer values containing addresses of data structures. Of course, the latter amounts to using call
by reference with no checking by the language processor. In such cases, subprograms can pass back pointers to
anything whatsoever, including data that is corrupted or absent.

Some languages use call by copy for small objects, such as scalars, and call by reference for large objects, such
as arrays. The choice of mechanism may even be implementation-defined. Because the two mechanisms produce
different results in the presence of aliasing, it is very important to avoid aliasing.

An additional problem may occur if the called subprogram fails to assign a value to a formal parameter that the
caller expects as an output from the subprogram. In the case of call by reference, the result may be an uninitialized

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 63

variable in the calling program. In the case of call by copy, the result may be that a legitimate initialization value
provided by the caller is overwritten by an uninitialized value because the called program did not make an
assignment to the parameter. This error may be difficult to detect through review because the failure to initialize is
hidden in the subprogram.

An additional complication with subprograms occurs when one or more of the arguments are expressions. In such
cases, the evaluation of one argument might have side-effects that result in a change to the value of another or
unintended aliasing. Implementation choices regarding order of evaluation could affect the result of the
computation. This particular problem is described in Order of Evaluation section [SAM].

6.39.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that provide mechanisms for defining subprograms where the data passes between the calling
program and the subprogram via parameters and return values. This includes methods in many popular
object-oriented languages.

6.39.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Use available mechanisms to label parameters as constants or with modes like in, out, or inout.
• When a choice of mechanisms is available, pass small simple objects using call by copy.
• When a choice of mechanisms is available and the computational cost of copying is tolerable, pass larger

objects using call by copy.
• When the choice of language or the computational cost of copying forbids using call by copy, then take

safeguards to prevent aliasing:
o Minimize side-effects of subprograms on non-local objects; when side-effects are coded, ensure

that the affected non-local objects are not passed as parameters using call by reference.
o To avoid unintentional aliasing, avoid using expressions or functions as actual arguments; instead

assign the result of the expression to a temporary local and pass the local.
o Utilize tooling or other forms of analysis to ensure that non-obvious instances of aliasing are

absent.
o Perform reviews or analysis to determine that called subprograms fulfill their responsibilities to

assign values to all output parameters.

6.39.6 Implications for standardization

• Programming language specifications could provide labels—such as in, out, and inout—that controls
the subprogram’s access to its formal parameters, and enforces the access.

6.39.7 Bibliography

[1] Robert W. Sebesta, Concepts of Programming Languages, 8th edition, ISBN-13: 978-0-321-49362-0, ISBN-10:
0-321-49362-1, Pearson Education, Boston, MA, 2008
[2] Carlo Ghezzi and Mehdi Jazayeri, Programming Language Concepts, 3rd edition, ISBN-0-471-10426-4, John
Wiley & Sons, 1998

6.40 Dangling References to Stack Frames [DCM]

6.40.1 Description of application vulnerability

Many languages allow treating the address of a local variable as a value stored in other variables. Examples are
the application of the address operator in C or C++, or of the ‘Access or ‘Address attributes in Ada. In some
languages, this facility is also used to model the call-by-reference mechanism by passing the address of the actual
parameter by-value. An obvious safety requirement is that the stored address shall not be used after the lifetime of

ISO/IEC PDTR 24772

64 © ISO 2008 – All rights reserved

the local variable has expired. Technically, the stack frame, in which the local variable lived, has been popped and
memory may have been reused for a subsequent call. Therefore, the invalidity of the stored address is very difficult
to decide. This situation can be described as a “dangling reference to the stack”.

6.40.2 Cross reference

JSF AV Rule: 173
MISRA C 2004: 17.6 and 21.1
MISRA C++ 2008: 0-3-1, 7-5-1, 7-5-2, and 7-5-3
CERT/CC guidelines: EXP35-C and DCL30-C

6.40.3 Mechanism of failure

The consequences of dangling references to the stack come in two variants: a deterministically predictable variant,
which therefore can be exploited, and an intermittent, non-deterministic variant, which is next to impossible to elicit
during testing. The following code sample illustrates the two variants; the behaviour is not language-specific:

struct s { … };
typedef struct s array_type[1000];
array_type* ptr;
array_type* F()
{
 struct s Arr[1000];
 ptr = &Arr; // Risk of variant 1;
 return &Arr; // Risk of variant 2;
}
…
 struct s secret;
 array_type* ptr2;
 ptr2 = F();
 secret = (*ptr2)[10]; // Fault of variant 2
 …

 secret = (*ptr)[10]; // Fault of variant 1

The risk of variant 1 is the assignment of the address of Arr to a pointer variable that survives the lifetime of Arr.
The fault is the subsequent use of the dangling reference to the stack, which references memory since altered by
other calls and possibly validly owned by other routines. As part of a call-back, the fault allows systematic
examination of portions of the stack contents without triggering an array-bounds-checking violation. Thus, this
vulnerability is easily exploitable. As a fault, the effects can be most astounding, as memory gets corrupted by
completely unrelated code portions. (A life-time check as part of pointer assignment can prevent the risk. In many
cases, e.g., the situations above, the check is statically decidable by a compiler. However, for the general case, a
dynamic check is needed to ensure that the copied pointer value lives no longer than the designated object.)

The risk of variant 2 is an idiom “seen in the wild” to return the address of a local variable in order to avoid an
expensive copy of a function result, as long as it is consumed before the next routine call occurs. The idiom is
based on the ill-founded assumption that the stack will not be affected by anything until this next call is issued. The
assumption is false, however, if an interrupt occurs and interrupt handling employs a strategy called “stack
stealing”, i.e., using the current stack to satisfy its memory requirements. Thus, the value of Arr can be overwritten
before it can be retrieved after the call on F. As this fault will only occur if the interrupt arrives after the call has
returned but before the returned result is consumed, the fault is highly intermittent and next to impossible to re-
create during testing. Thus, it is unlikely to be exploitable, but also exceedingly hard to find by testing. It can begin
to occur after a completely unrelated interrupt handler has been coded or altered. Only static analysis can relatively
easily detect the danger (unless the code combines it with risks of variant 1). Some compilers issue warnings for
this situation; such warnings need to be heeded, and some forms of static analysis are effective in identifying such
problems.

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 65

6.40.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• The address of a local entity (or formal parameter) of a routine can be obtained and stored in a variable or
can be returned by this routine as a result.

• No check is made that the lifetime of the variable receiving the address is no larger than the lifetime of the
designated entity.

6.40.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Do not use the address of locally declared entities as storable, assignable or returnable value (except
where idioms of the language make it unavoidable).

• Where unavoidable, ensure that the lifetime of the variable containing the address is completely enclosed
by the lifetime of the designated object.

• Never return the address of a local variable as the result of a function call.

6.40.6 Implications for standardization

Language designers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Do not provide means to obtain the address of a locally declared entity as a storable value; or
• Define implicit checks to implement the assurance of enclosed lifetime expressed in 6.44.6. Note that, in

many cases, the check is statically decidable, for example, when the address of a local entity is taken as
part of a return statement or expression.

6.40.7 Bibliography

 [None]

6.41 Subprogram Signature Mismatch [OTR]

6.41.1 Description of application vulnerability

If a subprogram is called with a different number of parameters than it expects, or with parameters of different
types than it expects, then the results will be incorrect. Depending on the language, the operating environment, and
the implementation, the error might be as benign as a diagnostic message or as extreme as a program continuing
to execute with a corrupted stack. The possibility of a corrupted stack provides opportunities for penetration.

6.41.2 Cross reference

CWE:
230. Failure to Handle Missing Value
231. Failure to Handle Extra Value
234. Failure to Handle Missing Parameter

JSF AV Rule: 108
MISRA C 2004: 8.1, 8.2, 8.3, 16.1, 16.3, 16.4, 16.5, 16.6
MISRA C++ 2008: 0-3-2, 3-2-1, 3-2-2, 3-2-3, 3-2-4, 3-3-1, 3-9-1, 8-3-1, 8-4-1, and 8-4-2
CERT/CC guidelines: DCL31-C, and DCL35-C

6.41.3 Mechanism of failure

When a subprogram is called, the actual arguments of the call are pushed on to the execution stack. When the
subprogram terminates, the formal parameters are popped off the stack. If the number and type of the actual

ISO/IEC PDTR 24772

66 © ISO 2008 – All rights reserved

arguments does not match the number and type of the formal parameters, then the push and the pop will not be
commensurable and the stack will be corrupted. Stack corruption can lead to unpredictable execution of the
program and can provide opportunities for execution of unintended or malicious code.

The compilation systems for many languages and implementations can check to ensure that the list of actual
parameters and any expected return match the declared set of formal parameters and return value (the
subprogram signature) in both number and type. (In some cases, programmers should observe a set of
conventions to ensure that this is true.) However, when the call is being made to an externally compiled
subprogram, an object-code library, or a module compiled in a different language, the programmer must take
additional steps to ensure a match between the expectations of the caller and the called subprogram.

6.41.4 Applicable language characteristics

This vulnerability description is intended to be applicable to implementations or languages with the following
characteristics:

• Languages that do not require their implementations to ensure that the number and types of actual
arguments are equal to the number and types of the formal parameters.

• Implementations that permit programs to call subprograms that have been externally compiled (without a
means to check for a matching subprogram signature), subprograms in object code libraries, any
subprograms compiled in other languages.

6.41.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Take advantage of any mechanism provided by the language to ensure that parameter signatures match.
• Avoid any language features that permit variable numbers of actual arguments without a method of

enforcing a match for any instance of a subprogram call.
• Take advantage of any language or implementation feature that would guarantee matching the

subprogram signature in linking to other languages or to separately compiled modules.
• Intensively review and subprogram calls where the match is not guaranteed by tooling.

6.41.6 Implications for standardization

• Language specifiers could ensure that the signatures of subprograms match within a single compilation
unit and could provide features for asserting and checking the match with externally compiled
subprograms.

6.41.7 Bibliography

[None]

6.42 Recursion [GDL]

6.42.1 Description of application vulnerability

Recursion is an elegant mathematical mechanism for defining the values of some functions. It is tempting to write
code that mirrors the mathematics. However, the use of recursion in a computer can have a profound effect on the
consumption of finite resources, leading to denial of service.

6.42.2 Cross reference

JSF AV Rule: 119
MISRA C 2004: 16.2
MISRA C++ 2008: 7-5-4

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 67

CERT/CC guidelines: MEM05-C

6.42.3 Mechanism of failure

Recursion provides for the economical definition of some mathematical functions. However, economical definition
and economical calculation are two different subjects. It is tempting to calculate the value of a recursive function
using recursive subprograms because the expression in the programming language is straightforward and easy to
understand. However, the impact on finite computing resources can be profound. Each invocation of a recursive
subprogram may result in the creation of a new stack frame, complete with local variables. If stack space is limited
and the calculation of some values will lead to an exhaustion of resources resulting in the program terminating.

In calculating the values of mathematical functions the use of recursion in a program is usually obvious, but this is
not true in the general case. For example, finalization of a computing context after treating an error condition might
result in recursion (e.g., attempting to "clean up" by closing a file after an error was encountered in closing the
same file). Although such situations may have other problems, they typically do not result in exhaustion of
resources but may otherwise result in a denial of service.

6.42.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Any language that permits the recursive invocation of subprograms.

6.42.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Minimize the use of recursion.
• Converting recursive calculations to the corresponding iterative calculation. In principle, any recursive

calculation can be remodeled as an iterative calculation which will have a smaller impact on some
computing resources but which may be harder for a human to comprehend. The cost to human
understanding must be weighed against the practical limits of computing resource.

• In cases where the depth of recursion can be shown to be statically bounded by a tolerable number, then
recursion may be acceptable, but should be documented for the use of maintainers.

It should be noted that some languages or implementations provide special (more economical) treatment of a form
of recursion known as tail-recursion. In this case, the impact on computing economy is reduced. When using such
a language, tail recursion may be preferred to an iterative calculation.

6.42.6 Implications for standardization

[None]

6.42.7 Bibliography

[None]

6.43 Returning Error Status [NZN]

6.43.1 Description of application vulnerability

Unpredicted error conditions--perhaps from hardware (such as an I/O device error), perhaps from software (such
as heap exhaustion)—sometimes arise during the execution of code. Programming languages provide a
surprisingly wide variety of mechanisms to deal with such errors. The choice of a mechanism that doesn't match
the programming language can lead to errors in the execution of the software or unexpected termination of the

ISO/IEC PDTR 24772

68 © ISO 2008 – All rights reserved

program. This could lead to a simple decrease in the robustness of a program or it could be exploited in a denial of
service attack.

6.43.2 Cross reference

JSF AV Rules: 115 and 208
MISRA C 2004: 16.10
MISRA C++ 2008: 15-3-2 and 19-3-1
CERT/CC guidelines: DCL09-C, ERR00-C, and ERR02-C

6.43.3 Mechanism of failure

Even in the best-written programs, error conditions sometimes arise. Some errors occur because of defects in the
software itself, but some result from external conditions in hardware, such as errors in I/O devices, or in the
software system, such as exhaustion of heap space. If left untreated, the effect of the error might result in
termination of the program or continuation of the program with incorrect results. To deal with the situation,
designers of programming languages have equipped their languages with different mechanisms to detect and treat
such errors. These mechanisms are typically intended to be used in specific programming idioms. However, the
mechanisms differ among languages. A programmer expert in one language might mistakenly use an inappropriate
idiom when programming in a different language with the result that some errors are left untreated, leading to
termination or incorrect results. Attackers can exploit such weaknesses in denial of service attacks.

In general, languages make no distinction between dealing with programming errors (like an access to protected
memory), unexpected hardware errors (like device error), expected but unusual conditions (like end of file), and
even usual conditions that fail to provide the typical result (like an unsuccessful search). This description will use
the term "error" to apply to all of the above. The description applies equally to error conditions that are detected via
hardware mechanisms and error conditions that are detected via software during execution of a subprogram (such
as an inappropriate parameter value).

6.43.4 Applicable language characteristics

Different programming languages provide remarkably different mechanisms for treating errors. In languages that
provide a number of error detection and treatment mechanisms, it becomes a design issue to match the
mechanism to the condition. This section will describe the mechanisms that are provided in widely used languages.

The simplest case is the set of languages that provide no special mechanism for the notification and treatment of
unusual conditions. In such languages, error conditions are signaled by the value of an auxiliary status variable,
sometimes a subprogram parameter. The programming language C standard library functions use a variant of this
approach; the error status is provided as the return value and sometimes in an additional global error value.
Obviously, in such languages, it is imperative to check and act upon the status variable after every call to a
subprogram that might provide an error indication. If error conditions can occur in an asynchronous manner, it is
necessary to provide means to check for errors in a systematic and periodic manner.

Some languages permit the passing of a label parameter. If an error is encountered, the subprogram returns to the
indicated label rather than to the point at which it was called. Similarly some languages accept the name of a
subprogram to be used to handle errors. In either case, it is imperative to provide labeled code or a subprogram to
deal with all possible error situations.

The approaches described above have the disadvantage that error checking must be provided at every call to a
subprogram. This can clutter the code immensely to deal with situations that may occur rarely. For this reason,
some languages provide an exception mechanism that automatically transfers control when an error is
encountered. This has the potential advantage of allowing error treatment to be factored into distinct error handlers,
leaving the main execution path to deal with the usual results. The disadvantages, of course, are that the language
design is complicated and the programmer must deal with the conceptually more complex problem of providing
error handlers that are removed from the immediate context of a specific call to a subprogram. Furthermore,
different languages provide exception-handling mechanisms that differ in the manner in which various design
issues are treated:

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 69

• How is the occurrence of an exception bound to a particular handler?
• What happens when no handler is local to an exception occurrence? Is the exception propagated in some

manner or is it lost?
• What happens after an exception handler executes? Is control returned to the point before the call or after

the call, or is the calling routine terminated in some way? If the calling routine is terminated, is there some
provision for finalization, such as closing files or releasing resources?

• Are programmers permitted to define additional exceptions?
• Does the language provide default handlers for some exceptions or must the programmer explicitly provide

for all of them?
• Can predefined exceptions be raised explicitly by a subprogram?
• Under what circumstances can error checking be disabled?

6.43.5 Avoiding the vulnerability or mitigating its effects

Given the variety of error handling mechanisms, it is difficult to write general guidelines. However, dealing with
exception handlers can stress the capability of many static analysis tools and can, in some cases, reduce the
effectiveness of their analysis. Therefore, for situations where the highest of reliability is required, the application
should be designed so that exception handling is not used at all. In the more general case, exception-handling
mechanisms should be reserved for truly unexpected situations and other situations (possibly hardware arithmetic
overflow) where no other mechanism is available. Situations which are merely unusual, like end of file, should be
treated by explicit testing—either prior to the call which might raise the error or immediately afterward.

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Checking error return values or auxiliary status variables following a call to a subprogram is mandatory
unless it can be demonstrated that the error condition is impossible.

• In dealing with languages where untreated exceptions can be lost (e.g., an exception that goes untreated
within an Ada task), it is mandatory to deal with the exception in the local context before it is lost.

• When execution within a particular context is abandoned due to an exception, it is important to finalize the
context by closing open files, releasing resources and restoring any invariants associated with the context.

• It is often not appropriate to repair an error condition and retry the operation. In such cases, one often
treats a symptom but not the underlying problem. It is usually a better solution to finalize and terminate the
current context and retreat to a context where the situation is known.

• Error checking provided by the language, the software system, or the hardware should never be disabled
in the absence of a conclusive analysis that the error condition is rendered impossible.

• Because of the complexity of error handling, careful review of all error handling mechanisms is appropriate.
• In applications with the highest requirements for reliability, defense-in-depth approaches are often

appropriate, i.e. checking and handling errors thought to be impossible.

6.43.6 Implications for standardization

• A standardized set of mechanisms for detecting and treating error conditions should be developed so that
all languages to the extent possible could use them. This does not mean that all languages should use the
same mechanisms as there should be a variety (e.g. label parameters, auxiliary status variables), but each
of the mechanisms should be standardized.

6.43.7 Bibliography

[1] Robert W. Sebesta, Concepts of Programming Languages, 8th edition, ISBN-13: 978-0-321-49362-0, ISBN-10:
0-321-49362-1, Pearson Education, Boston, MA, 2008
[2] Carlo Ghezzi and Mehdi Jazayeri, Programming Language Concepts, 3rd edition, ISBN-0-471-10426-4, John
Wiley & Sons, 1998

ISO/IEC PDTR 24772

70 © ISO 2008 – All rights reserved

6.44 Termination Strategy [REU]

6.44.1 Description of application vulnerability

Expectations that a system will be dependable are based on the confidence that the system will operate as
expected and not fail in normal use. The dependability of a system and its fault tolerance can be measured
through the component part's reliability, availability, safety and security. Reliability is the ability of a system or
component to perform its required functions under stated conditions for a specified period of time [IEEE 1990
glossary]. Availability is how timely and reliable the system is to its intended users. Both of these factors matter
highly in systems used for safety and security. In spite of the best intentions, systems may encounter a failure,
either from internally poorly written software or external forces such as power outages/variations, floods, or other
natural disasters. The reaction to a fault can affect the performance of a system and in particular, the safety and
security of the system and its users.

When a fault is detected, there are many ways in which a system can react. The quickest and most noticeable way
is to fail hard, also known as fail fast or fail stop. The reaction to a detected fault is to immediately halt the system.
Alternatively, the reaction to a detected fault could be to fail soft. The system would keep working with the faults
present, but the performance of the system would be degraded. Systems used in a high availability environment
such as telephone switching centers, e-commerce, etc. would likely use a fail soft approach. What is actually done
in a fail soft approach can vary depending on whether the system is used for safety critical or security critical
purposes. For fail-safe systems, such as flight controllers, traffic signals, or medical monitoring systems, there
would be no effort to meet normal operational requirements, but rather to limit the damage or danger caused by the
fault. A system that fails securely, such as cryptologic systems, would maintain maximum security when a fault is
detected, possibly through a denial of service.

6.44.2 Cross reference

JSF AV Rule: 24
MISRA C 2004: 20.11
MISRA C++ 2008: 0-3-2, 15-5-2, 15-5-3, and 18-0-3
CERT/CC guidelines: ERR04-C, ERR06-C and ENV32-C

6.44.3 Mechanism of failure

The reaction to a fault in a system can depend on the criticality of the part in which the fault originates. When a
program consists of several tasks, each task may be critical, or not. If a task is critical, it may or may not be
restartable by the rest of the program. Ideally, a task that detects a fault within itself should be able to halt leaving
its resources available for use by the rest of the program, halt clearing away its resources, or halt the entire
program. The latency of task termination and whether tasks can ignore termination signals should be clearly
specified. Having inconsistent reactions to a fault can potentially be a vulnerability.

6.44.4 Applicable language characteristics

This vulnerability description is intended to be applicable to all languages.

6.44.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• A strategy for fault handling should be decided. Consistency in fault handling should be the same with
respect to critically similar parts.

• A multi-tiered approach of fault prevention, fault detection and fault reaction should be used.
• System-defined components that assist in uniformity of fault handling should be used when available. For

one example, designing a "runtime constraint handler" (as described in ISO/IEC TR 24731-1) permits the
application to intercept various erroneous situations and perform one consistent response, such as flushing
a previous transaction and re-starting at the next one.

• When there are multiple tasks, a fault-handling policy should be specified whereby a task may

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 71

o halt, and keep its resources available for other tasks (perhaps permitting restarting of the faulting
task)

o halt, and remove its resources (perhaps to allow other tasks to use the resources so freed, or to
allow a recreation of the task)

o halt, and signal the rest of the program to likewise halt.

6.44.6 Implications for standardization

• Languages should consider providing a means to perform fault handling. Terminology and the means
should be coordinated with other languages.

6.44.7 Bibliography

 [None]

6.45 Type-breaking Reinterpretation of Data [AMV]

6.45.1 Description of application vulnerability

In most cases, objects in programs are assigned locations in processor storage to hold their value. If the same
storage space is assigned to more than one object—either statically or temporarily—then a change in the value of
one object will have an effect on the value of the other. Furthermore, if the representation of the value of an object
is reinterpreted as being the representation of the value of an object with a different type, unexpected results may
occur.

6.45.2 Cross reference

JSF AV Rules 153 and183
MISRA 2004: 18.2, 18.3, and18.4
MISRA C++ 2008: 4-5-1 to 4-5-3, 4-10-1, 4-10-2, and 5-0-3 to 5-0-9
CERT/CC guidelines: MEM08-C

6.45.3 Mechanism of failure

Sometimes there is a legitimate need for applications to place different interpretations upon the same stored
representation of data. The most fundamental example is a program loader that treats a binary image of a program
as data by loading it, and then treats it as a program by invoking it. Most programming languages permit type-
breaking reinterpretation of data, however, some offer less error prone alternatives for commonly encountered
situations.

Type-breaking reinterpretation of representation presents obstacles to human understanding of the code, the ability
of tools to perform effective static analysis, and the ability of code optimizers to do their job.

Examples include:
• Providing alternative mappings of objects into blocks of storage performed either statically (e.g., Fortran

common) or dynamically (e.g., pointers).
• Union types, particularly unions that do not have a discriminant stored as part of the data structure.
• Operations that permit a stored value to be interpreted as a different type (e.g., treating the representation

of a pointer as an integer).

In all of these cases accessing the value of an object may produce an unanticipated result.

A related problem, the aliasing of parameters, occurs in languages that permit call by reference because
supposedly distinct parameters might refer to the same storage area, or a parameter and a non-local object might
refer to the same storage area. That vulnerability is described in CSJ, 6.39 Passing Parameters and Return
Values.

ISO/IEC PDTR 24772

72 © ISO 2008 – All rights reserved

6.45.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• A programming language that permits multiple interpretations of the same bit pattern.

6.45.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Programmers should avoid reinterpretation performed as a matter of convenience; for example, using an
integer pointer to manipulate character string data should be avoided. When type-breaking reinterpretation
is necessary, it should be carefully documented in the code. However this vulnerability cannot be
completely avoided because some applications view stored data in alternative ways.

• When using union types it is preferable to use discriminated unions. This is a form of a union where a
stored value indicates which interpretation is to be placed upon the data. Some languages (e.g., variant
records in Ada) enforce the view of data indicated by the value of the discriminant. If the language does not
enforce the interpretation (e.g., equivalence in Fortran and union in C and C++), then the code should
implement an explicit discriminant and check its value before accessing the data in the union, or use some
other mechanism to ensure that correct interpretation is placed upon the data value.

• Operations that reinterpret the same stored value as representing a different type should be avoided. It is
easier to avoid such operations when the language clearly identifies them. For example, the name of Ada's
Unchecked_Conversion function explicitly warns of the problem. A much more difficult situation occurs
when pointers are used to achieve type reinterpretation. Some languages perform type-checking of
pointers and place restrictions on the ability of pointers to access arbitrary locations in storage. Others
permit the free use of pointers. In such cases, code must be carefully reviewed in a search for unintended
reinterpretation of stored values. Therefore it is important to explicitly comment the source code where
intended reinterpretations occur.

• Static analysis tools may be helpful in locating situations where unintended reinterpretation occurs. On the
other hand, the presence of reinterpretation greatly complicates static analysis for other problems, so it
may be appropriate to segregate intended reinterpretation operations into distinct subprograms.

6.45.6 Implications for standardization

• Because the ability to perform reinterpretation is sometimes necessary, but the need for it is rare,
programming language designers might consider putting caution labels on operations that permit
reinterpretation. For example, the operation in Ada that permits unconstrained reinterpretation is called
Unchecked_Conversion.

• Because of the difficulties with undiscriminated unions, programming language designers might consider
offering union types that include distinct discriminants with appropriate enforcement of access to objects.

6.45.7 Bibliography

[1] Robert W. Sebesta, Concepts of Programming Languages, 8th edition, ISBN-13: 978-0-321-49362-0, ISBN-10:
0-321-49362-1, Pearson Education, Boston, MA, 2008
[2] Carlo Ghezzi and Mehdi Jazayeri, Programming Language Concepts, 3rd edition, ISBN-0471-10426-4 John
Wiley & Sons, 1998

6.46 Memory Leak [XYL]

6.46.1 Description of application vulnerability

A memory leak occurs when software does not release allocated memory after it ceases to be used. Repeated
occurrences of a memory leak can consume considerable amounts of available memory. A memory leak can be
exploited by attackers to generate denial-of-service attacks and can cause premature shutdown for safety-critical
systems.

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 73

6.46.2 Cross reference

CWE:
401. Failure to Release Memory Before Removing Last Reference (aka ‘Memory Leak’)

JSF AV Rule: 206
MISRA C 2004: 20.4
CERT/CC guidelines: MEM00-C and MEM31-C

6.46.3 Mechanism of failure

As a process or system runs, any memory taken from dynamic memory and not returned or reclaimed (by the
runtime system or a garbage collector) after it ceases to be used, may result in future memory allocation requests
failing for lack of free space. Alternatively, memory claimed and partially returned can cause the heap to fragment,
which will eventually result in an inability to take the necessary size storage. Either condition will result in a memory
exhaustion exception, and program termination or a system crash.

If an attacker can determine the cause of an existing memory leak, the attacker may be able to cause the
application to leak quickly and therefore cause the application to crash.

6.46.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that support mechanisms to dynamically allocate memory and reclaim memory under program
control.

6.46.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Use of Garbage collectors that reclaim memory that will never be used by the application again. Some
garbage collectors are part of the language while others are add-ons. Again, this is not a complete solution
as it is not 100% effective, but it can significantly reduce the likelihood of memory leaks.

• Allocating and freeing memory in different modules and levels of abstraction may make it difficult for
developers to match requests to free storage with the appropriate storage allocation request. This may
cause confusion regarding when and if a block of memory has been allocated or freed, leading to memory
leaks. To avoid these situations, it is recommended that memory be allocated and freed at the same level
of abstraction, and ideally in the same code module.

• Storage pools are a specialized memory mechanism where all of the memory associated with a class of
objects is allocated from a specific bounded region. When used with strong typing one can ensure a strong
relationship between pointers and the space accessed such that storage exhaustion in one pool does not
affect the code operating on other memory.

• Memory leaks can be eliminated by avoiding the use of dynamically allocated storage entirely, or by doing
initial allocation exclusively and never allocating once the main execution commences. For safety-critical
systems and long running systems, the use of dynamic memory is almost always prohibited, or restricted
to the initialization phase of execution.

• Use static analysis that is capable of detecting when allocated storage is no longer used and has not been
freed (for reuse).

6.46.6 Implications for standardization

• Languages can provide syntax and semantics to guarantee program-wide that dynamic memory is not
used (such as the configuration pragmas feature offered by some programming languages).

• Languages can document or can specify that implementations must document choices for dynamic
memory management algorithms, to help designers decide on appropriate usage patterns and recovery
techniques as necessary.

ISO/IEC PDTR 24772

74 © ISO 2008 – All rights reserved

6.46.7 Bibliography

 [None]

6.47 Argument Passing to Library Functions [TRJ]

6.47.1 Description of application vulnerability

Libraries that supply objects or functions are in most cases not required to check the validity of parameters passed
to them. In those cases where parameter validation is required there might not be adequate parameter validation.

6.47.2 Cross reference

CWE:
114. Process Control

JSF AV Rules 16, 18, 19, 20, 21, 22, 23, 24, and 25
MISRA C 2004: 20.2, 20.3, 20.4, 20.6, 20.7, 20.8, 20.9, 20.10, 20.11, and 20.12
MISRA C++ 2008: 17-0-1, 17-0-5, 18-0-2, 18-0-3, 18-0-4, 18-2-1, 18-7-1 and 27-0-1
CERT/CC guidelines: INT03-C and STR07-C

6.47.3 Mechanism of failure

When calling a library, either the calling function or the library may make assumptions about parameters. For
example, it may be assumed by a library that a parameter is non-zero so division by that parameter is performed
without checking the value. Sometimes some validation is performed by the calling function, but the library may
use the parameters in ways that were unanticipated by the calling function resulting in a potential vulnerability.
Even when libraries do validate parameters, their response to an invalid parameter is usually undefined and can
cause unanticipated results.

6.47.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages providing or using libraries that do not validate the parameters accepted by functions, methods
and objects.

6.47.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

There are several approaches that can be taken, some work best if used in conjunction with each other.

• Libraries should be defined so that as many parameters as possible are validated.
• Libraries should be defined to validate any values passed to the library before the value is used.
• Develop wrappers around library functions that check the parameters before calling the function.
• Demonstrate statically that the parameters are never invalid.
• Use only libraries known to have been developed with consistent and validated interface requirements.

6.47.6 Implications for standardization

• All languages that define a support library should consider removing most if not all cases of undefined
behaviour from the library sections.

• Libraries should be defined so that all parameters are validated.

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 75

6.47.7 Bibliography

Holtzmann-7 

6.48 Dynamically-linked Code and Self-modifying Code [NYY]

6.48.1 Description of application vulnerability

Code that is dynamically linked may be different from the code that was tested. This may be the result of replacing
a library with another of the same name or by altering an environment variable such as LD_LIBRARY_PATH on
UNIX platforms so that a different directory is searched for the library file. Executing code that is different than that
which was tested may lead to unanticipated errors or intentional malicious activity.

On some platforms, and in some languages, instructions can modify other instructions in the code space.
Historically self-modifying code was needed for software that was required to run on a platform with very limited
memory. It is now primarily used (or misused) to hide functionality of software and make it more difficult to reverse
engineer or for specialty applications such as graphics where the algorithm is tuned at runtime to give better
performance. Self-modifying code can be difficult to write correctly and even more difficult to test and maintain
correctly leading to unanticipated errors.

6.48.2 Cross reference

JSF AV Rule: 2

6.48.3 Mechanism of failure

Through the alteration of a library file or environment variable, the code that is dynamically linked may be different
from the code which was tested resulting in different functionality.

On some platforms, a pointer-to-data can erroneously be given an address value that designates a location in the
instruction space. If subsequently a modification is made through that pointer, then an unanticipated behaviour can
result.

6.48.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

• Languages that allow a pointer-to-data to be assigned an address value that designates a location in the
instruction space

• Languages that allow execution of code that exists in data space, i.e. the stack
• Languages that permit the use of dynamically linked or shared libraries

Languages must also be run on an OS that permits program memory to be both writable and executable.

6.48.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Verify that the dynamically linked or shared code being used is the same as that which was tested.
• Do not write self-modifying code except in extremely rare instances. Most software applications should

never have a requirement for self-modifying code.
• In those extremely rare instances where its use is justified, self-modifying code should be very limited and

heavily documented.

ISO/IEC PDTR 24772

76 © ISO 2008 – All rights reserved

6.48.6 Implications for standardization

• Languages should consider providing a means so that a program can either automatically or manually
check that the digital signature of a library matches the one in the compile/test environment.

6.48.7 Bibliography

 [None]

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 77

7. Application Vulnerabilities

7.1 Adherence to Least Privilege [XYN]

7.1.1 Description of application vulnerability

Failure to adhere to the principle of least privilege amplifies the risk posed by other vulnerabilities.

7.1.2 Cross reference

CWE:
250. Design Principle Violation: Failure to Use Least Privilege

CERT/CC guidelines: POS02-C

7.1.3 Mechanism of failure

This vulnerability type refers to cases in which an application grants greater access rights than necessary.
Depending on the level of access granted, this may allow a user to access confidential information. For example,
programs that run with root privileges have caused innumerable Unix security disasters. It is imperative that you
carefully review privileged programs for all kinds of security problems, but it is equally important that privileged
programs drop back to an unprivileged state as quickly as possible in order to limit the amount of damage that an
overlooked vulnerability might be able to cause. Privilege management functions can behave in some less-than-
obvious ways, and they have different quirks on different platforms. These inconsistencies are particularly
pronounced if you are transitioning from one non-root user to another. Signal handlers and spawned processes run
at the privilege of the owning process, so if a process is running as root when a signal fires or a sub-process is
executed, the signal handler or sub-process will operate with root privileges. An attacker may be able to leverage
these elevated privileges to do further damage. To grant the minimum access level necessary, first identify the
different permissions that an application or user of that application will need to perform their actions, such as file
read and write permissions, network socket permissions, and so forth. Then explicitly allow those actions while
denying all else.

7.1.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Very carefully manage the setting, management and handling of privileges. Explicitly manage trust zones
in the software.

• Follow the principle of least privilege when assigning access rights to entities in a software system.

7.1.5 Bibliography

 [None]

7.2 Privilege Sandbox Issues [XYO]

7.2.1 Description of application vulnerability

A variety of vulnerabilities occur with improper handling, assignment, or management of privileges. These are
especially present in sandbox environments, although it could be argued that any privilege problem occurs within
the context of some sort of sandbox.

7.2.2 Cross reference

CWE:

ISO/IEC PDTR 24772

78 © ISO 2008 – All rights reserved

266. Incorrect Privilege Assignment
267. Privilege Defined With Unsafe Actions
268. Privilege Chaining
269. Privilege Management Error
270. Privilege Context Switching Error
272. Least Privilege Violation
273. Failure to Check Whether Privileges were Dropped Successfully
274. Failure to Handle Insufficient Privileges
276. Insecure Default Permissions

CERT/CC guidelines: POS36-C

7.2.3 Mechanism of failure

The failure to drop system privileges when it is reasonable to do so is not an application vulnerability by itself. It
does, however, serve to significantly increase the severity of other vulnerabilities. According to the principle of least
privilege, access should be allowed only when it is absolutely necessary to the function of a given system, and only
for the minimal necessary amount of time. Any further allowance of privilege widens the window of time during
which a successful exploitation of the system will provide an attacker with that same privilege.

Many situations could lead to a mechanism of failure:

• A product could incorrectly assign a privilege to a particular entity.
• A particular privilege, role, capability, or right could be used to perform unsafe actions that were not

intended, even when it is assigned to the correct entity. (Note that there are two separate sub-categories
here: privilege incorrectly allows entities to perform certain actions; and the object is incorrectly accessible
to entities with a given privilege.)

• Two distinct privileges, roles, capabilities, or rights could be combined in a way that allows an entity to
perform unsafe actions that would not be allowed without that combination.

• The software may not properly manage privileges while it is switching between different contexts that cross
privilege boundaries.

• A product may not properly track, modify, record, or reset privileges.
• In some contexts, a system executing with elevated permissions will hand off a process/file/etc. to another

process/user. If the privileges of an entity are not reduced, then elevated privileges are spread throughout
a system and possibly to an attacker.

• The software may not properly handle the situation in which it has insufficient privileges to perform an
operation.

• A program, upon installation, may set insecure permissions for an object.

7.2.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• The principle of least privilege when assigning access rights to entities in a software system should be
followed. The setting, management and handling of privileges should be managed very carefully. Upon
changing security privileges, one should ensure that the change was successful.

• Consider following the principle of separation of privilege. Require multiple conditions to be met before
permitting access to a system resource.

• Trust zones in the software should be explicitly managed. If at all possible, limit the allowance of system
privilege to small, simple sections of code that may be called atomically.

• As soon as possible after acquiring elevated privilege to call a privileged function such as chroot(), the
program should drop root privilege and return to the privilege level of the invoking user.

• In newer Windows implementations, make sure that the process token has the SeImpersonate Privilege.

7.2.5 Bibliography

 [None]

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 79

7.3 Executing or Loading Untrusted Code [XYS]

7.3.1 Description of application vulnerability

Executing commands or loading libraries from an untrusted source or in an untrusted environment can cause an
application to execute malicious commands (and payloads) on behalf of an attacker.

7.3.2 Cross reference

CWE:
114. Process Control

CERT/CC guidelines: PRE09-C, ENV02-C, and ENV03-C

7.3.3 Mechanism of failure

Process control vulnerabilities take two forms:

• An attacker can change the command that the program executes so that the attacker explicitly controls
what the command is.

• An attacker can change the environment in which the command executes so that the attacker implicitly
controls what the command means.

Considering only the first scenario, the possibility that an attacker may be able to control the command that is
executed, process control vulnerabilities occur when:

• Data enters the application from an untrusted source.
• The data is used as or as part of a string representing a command that is executed by the application.
• By executing the command, the application gives an attacker a privilege or capability that the attacker

would not otherwise have.

7.3.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Libraries that are loaded should be well understood and come from a trusted source with a digital
signature. The application can execute code contained in the native libraries, which often contain calls
that are susceptible to other security problems, such as buffer overflows or command injection.

• All native libraries should be validated to determine if the application requires the use of the native library.
It is very difficult to determine what these native libraries actually do, and the potential for malicious code is
high.

• To help prevent buffer overflow attacks, validate all input to native calls for content and length.
• If the native library does not come from a trusted source, review the source code of the library. The library

should be built from the reviewed source before using it.

7.3.5 Bibliography

 [None]

7.4 Unspecified Functionality [BVQ]

7.4.1 Description of application vulnerability

Unspecified functionality is code that may be executed, but whose behaviour does not contribute to the
requirements of the application. While this may be no more than an amusing ‘Easter Egg’, like the flight simulator in
a spreadsheet, it does raise questions about the level of control of the development process.

ISO/IEC PDTR 24772

80 © ISO 2008 – All rights reserved

In a security-critical environment particularly, the developer of an application could include a ‘trap-door’ to allow
illegitimate access to the system on which it is eventually executed, irrespective of whether the application has
obvious security requirements.

7.4.2 Cross reference

JSF Rule: 127
MISRA C 2004: 2.2, 2.3, 2.4, and 14.1
XYQ: Dead and Deactivated code.

7.4.3 Mechanism of failure

Unspecified functionality is not a software vulnerability per se, but more a development issue. In some cases,
unspecified functionality may be added by a developer without the knowledge of the development organization. In
other cases, typically Easter Eggs, the functionality is unspecified as far as the user is concerned (nobody buys a
spreadsheet expecting to find it includes a flight simulator), but is specified by the development organization. In
effect they only reveal a subset of the program’s behaviour to the users.

In the first case, one would expect a well managed development environment to discover the additional
functionality during validation and verification. In the second case, the user is relying on the supplier not to release
harmful code.

In effect, a program’s requirements are ‘the program should behave in the following manner …. and do nothing
else’. The ‘and do nothing else’ clause is often not explicitly stated, and can be difficult to demonstrate.

7.4.4 Avoiding the vulnerability or mitigating its effects

End user’s can avoid the vulnerability or mitigate its ill effects in the following ways:

• Programs that are to be used in critical applications should come from a developer with a recognized and
audited development process. For example: ISO 9001 or CMMI®.

• The development process should generate documentation showing traceability from source code to
requirements, in effect answering ‘why is this unit of code in this program?’. Where unspecified functionality
is there for a legitimate reason (e.g., diagnostics required for developer maintenance or enhancement), the
documentation should also record this. It is not unreasonable for customers of bespoke critical code to ask
to see such traceability as part of their acceptance of the application

7.4.5 Bibliography

[None]

7.5 Memory Locking [XZX]

7.5.1 Description of application vulnerability

Sensitive data stored in memory that was not locked or that has been improperly locked may be written to swap
files on disk by the virtual memory manager.

7.5.2 Cross reference

CWE:
 591. Sensitive Data Storage in Improperly Locked Memory
CERT/CC guidelines: MEM06-C

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 81

7.5.3 Mechanism of failure

Sensitive data that is not kept cryptographically secure may become visible to an attacker by any of several
mechanisms. Some operating systems may write memory to swap or page files that may be visible to an attacker.
Some operating systems may provide mechanisms to examine the physical memory of the system or the virtual
memory of another application. Application debuggers may be able to stop the target application and examine or
alter memory.

7.5.4 Avoiding the vulnerability or mitigating its effects

In almost all cases, these attacks require elevated or appropriate privilege.

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Remove debugging tools from production systems.
• Log and audit all privileged operations.
• Identify data that needs to be protected and use appropriate cryptographic and other data obfuscation

techniques to avoid keeping plaintext versions of this data in memory or on disk.

Note: Several implementations of the POSIX mlock() and the Microsoft Windows VirtualLock() functions
will prevent the named memory region from being written to a swap or page file. However, such usage is not
portable.

Systems that provide a "hibernate" facility (such as laptops) will write all of physical memory to a disk file that may
be visible to an attacker on resume.

7.5.5 Bibliography

 [None]

7.6 Resource Exhaustion [XZP]

7.6.1 Description of application vulnerability

The application is susceptible to generating and/or accepting an excessive number of requests that could
potentially exhaust limited resources, such as memory, file system storage, database connection pool entries, or
CPU. This could ultimately lead to a denial of service that could prevent any other applications from accessing
these resources.

7.6.2 Cross reference

CWE:
400. Resource Exhaustion

7.6.3 Mechanism of failure

There are two primary failures associated with resource exhaustion. The most common result of resource
exhaustion is denial of service. In some cases an attacker or a defect may cause a system to fail in an unsafe or
insecure fashion by causing an application to exhaust the available resources.

Resource exhaustion issues are generally understood but are far more difficult to prevent. Taking advantage of
various entry points, an attacker could craft a wide variety of requests that would cause the site to consume
resources. Database queries that take a long time to process are good DoS (Denial of Service) targets. An
attacker would only have to write a few lines of Perl code to generate enough traffic to exceed the site's ability to
keep up. This would effectively prevent authorized users from using the site at all.

ISO/IEC PDTR 24772

82 © ISO 2008 – All rights reserved

Resources can be exhausted simply by ensuring that the target machine must do much more work and consume
more resources in order to service a request than the attacker must do to initiate a request. Prevention of these
attacks requires either that the target system either recognizes the attack and denies that user further access for a
given amount of time or uniformly throttles all requests in order to make it more difficult to consume resources more
quickly than they can again be freed. The first of these solutions is an issue in itself though, since it may allow
attackers to prevent the use of the system by a particular valid user. If the attacker impersonates the valid user, he
may be able to prevent the user from accessing the server in question. The second solution is simply difficult to
effectively institute and even when properly done, it does not provide a full solution. It simply makes the attack
require more resources on the part of the attacker.

The final concern that must be discussed about issues of resource exhaustion is that of systems which "fail open."
This means that in the event of resource consumption, the system fails in such a way that the state of the system
— and possibly the security functionality of the system — is compromised. A prime example of this can be found in
old switches that were vulnerable to "macof" attacks (so named for a tool developed by Dugsong). These attacks
flooded a switch with random IP and MAC address combinations, therefore exhausting the switch's cache, which
held the information of which port corresponded to which MAC addresses. Once this cache was exhausted, the
switch would fail in an insecure way and would begin to act simply as a hub, broadcasting all traffic on all ports and
allowing for basic sniffing attacks.

7.6.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Implement throttling mechanisms into the system architecture. The best protection is to limit the amount of
resources that an application can cause to be expended. A strong authentication and access control model
will help prevent such attacks from occurring in the first place. The authentication application should be
protected against denial of service attacks as much as possible. Limiting the database access, perhaps by
caching result sets, can help minimize the resources expended. To further limit the potential for a denial of
service attack, consider tracking the rate of requests received from users and blocking requests that
exceed a defined rate threshold.

• Ensure that applications have specific limits of scale placed on them, and ensure that all failures in
resource allocation cause the application to fail safely.

7.6.5 Bibliography

 [None]

7.7 Injection [RST]

7.7.1 Description of application vulnerability

Injection problems span a wide range of instantiations. The basic form of this weakness involves the software
allowing injection of additional data in input data in order to alter the control flow of the process. Command
injection problems are a subset of injection problem, in which the process can be tricked into calling external
processes of an attacker’s choice through the injection of command syntax into the input data. Multiple
leading/internal/trailing special elements injected into an application through input can be used to compromise a
system. As data is parsed, improperly handled multiple leading special elements may cause the process to take
unexpected actions that result in an attack. Software may allow the injection of special elements that are non-
typical but equivalent to typical special elements with control implications. This frequently occurs when the product
has protected itself against special element injection. Software may allow inputs to be fed directly into an output
file that is later processed as code, e.g., a library file or template. Line or section delimiters injected into an
application can be used to compromise a system.

Many injection attacks involve the disclosure of important information -- in terms of both data sensitivity and
usefulness in further exploitation. In some cases injectable code controls authentication; this may lead to a remote
vulnerability. Injection attacks are characterized by the ability to significantly change the flow of a given process,
and in some cases, to the execution of arbitrary code. Data injection attacks lead to loss of data integrity in nearly

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 83

all cases as the control-plane data injected is always incidental to data recall or writing. Often the actions
performed by injected control code are not logged.

SQL injection attacks are a common instantiation of injection attack, in which SQL commands are injected into
input in order to effect the execution of predefined SQL commands. Since SQL databases generally hold sensitive
data, loss of confidentiality is a frequent problem with SQL injection vulnerabilities. If poorly implemented SQL
commands are used to check user names and passwords, it may be possible to connect to a system as another
user with no previous knowledge of the password. If authorization information is held in a SQL database, it may be
possible to change this information through the successful exploitation of the SQL injection vulnerability. Just as it
may be possible to read sensitive information, it is also possible to make changes or even delete this information
with a SQL injection attack.

Injection problems encompass a wide variety of issues -- all mitigated in very different ways. The most important
issue to note is that all injection problems share one thing in common – they allow for the injection of control data
into the user controlled data. This means that the execution of the process may be altered by sending code in
through legitimate data channels, using no other mechanism. While buffer overflows and many other flaws involve
the use of some further issue to gain execution, injection problems need only for the data to be parsed. Many
injection attacks involve the disclosure of important information in terms of both data sensitivity and usefulness in
further exploitation. In some cases injectable code controls authentication, this may lead to a remote vulnerability.

 7.7.2 Cross reference

CWE:
76. Failure to Resolve Equivalent Special Elements into a Different Plane
78. Failure to Sanitize Data into an OS Command (aka ‘OS Command Injection’)
90. Failure to Sanitize Data into LDAP Queries (aka ‘LDAP Injection’)
91. XML Injection (aka Blind XPath Injection)
92. Custom Special Character Injection
95. Insufficient Control of Directives in Dynamically Code Evaluated Code (aka 'Eval Injection')
97. Failure to Sanitize Server-Side Includes (SSI) Within a Web Page
98. Insufficient Control of Filename for Include/Require Statement in PHP Program (aka ‘PHP File Inclusion’)
99. Insufficient Control of Resource Identifiers (aka ‘Resource Injection’)
144. Failure to Sanitize Line Delimiters
145. Failure to Sanitize Section Delimiters
161. Failure to Sanitize Multiple Leading Special Elements
163. Failure to Sanitize Multiple Trailing Special Elements
165. Failure to Sanitize Multiple Internal Special Elements
166. Failure to Handle Missing Special Element
167. Failure to Handle Additional Special Element
168. Failure to Resolve Inconsistent Special Elements
564. SQL Injection: Hibernate

CERT/CC guidelines: FIO30-C

7.7.3 Mechanism of failure

A software system that accepts and executes input in the form of operating system commands (e.g., system(),
exec(), open()) could allow an attacker with lesser privileges than the target software to execute commands with
the elevated privileges of the executing process. Command injection is a common problem with wrapper
programs. Often, parts of the command to be run are controllable by the end user. If a malicious user injects a
character (such as a semi-colon) that delimits the end of one command and the beginning of another, he may then
be able to insert an entirely new and unrelated command to do whatever he pleases.

Dynamically generating operating system commands that include user input as parameters can lead to command
injection attacks. An attacker can insert operating system commands or modifiers in the user input that can cause
the request to behave in an unsafe manner. Such vulnerabilities can be very dangerous and lead to data and
system compromise. If no validation of the parameter to the exec command exists, an attacker can execute any
command on the system the application has the privilege to access.

ISO/IEC PDTR 24772

84 © ISO 2008 – All rights reserved

There are two forms of command injection vulnerabilities. An attacker can change the command that the program
executes (the attacker explicitly controls what the command is). Alternatively, an attacker can change the
environment in which the command executes (the attacker implicitly controls what the command means). The first
scenario where an attacker explicitly controls the command that is executed can occur when:

• Data enters the application from an untrusted source.
• The data is part of a string that is executed as a command by the application.
• By executing the command, the application gives an attacker a privilege or capability that the attacker

would not otherwise have.

Eval injection occurs when the software allows inputs to be fed directly into a function (e.g., "eval") that dynamically
evaluates and executes the input as code, usually in the same interpreted language that the product uses. Eval
injection is prevalent in handler/dispatch procedures that might want to invoke a large number of functions, or set a
large number of variables.

A PHP file inclusion occurs when a PHP product uses require or include statements, or equivalent statements,
that use attacker-controlled data to identify code or HTML to be directly processed by the PHP interpreter before
inclusion in the script.

A resource injection issue occurs when the following two conditions are met:

• An attacker can specify the identifier used to access a system resource. For example, an attacker might be
able to specify part of the name of a file to be opened or a port number to be used.

• By specifying the resource, the attacker gains a capability that would not otherwise be permitted. For
example, the program may give the attacker the ability to overwrite the specified file, run with a
configuration controlled by the attacker, or transmit sensitive information to a third-party server. Note:
Resource injection that involves resources stored on the file system goes by the name path manipulation
and is reported in separate category. See the path manipulation description for further details of this
vulnerability. Allowing user input to control resource identifiers may enable an attacker to access or modify
otherwise protected system resources.

Line or section delimiters injected into an application can be used to compromise a system. As data is parsed, an
injected/absent/malformed delimiter may cause the process to take unexpected actions that result in an attack.
One example of a section delimiter is the boundary string in a multipart MIME message. In many cases, doubled
line delimiters can serve as a section delimiter.

 7.7.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Assume all input is malicious. Use an appropriate combination of black lists and white lists to ensure only
valid, expected and appropriate input is processed by the system.

• Narrowly define the set of safe characters based on the expected values of the parameter in the request.
• Developers should anticipate that delimiters and special elements would be injected/removed/manipulated

in the input vectors of their software system and appropriate mechanisms should be put in place to handle
them.

• Implement SQL strings using prepared statements that bind variables. Prepared statements that do not
bind variables can be vulnerable to attack.

• Use vigorous white-list style checking on any user input that may be used in a SQL command. Rather than
escape meta-characters, it is safest to disallow them entirely since the later use of data that have been
entered in the database may neglect to escape meta-characters before use.

• Follow the principle of least privilege when creating user accounts to a SQL database. Users should only
have the minimum privileges necessary to use their account. If the requirements of the system indicate that
a user can read and modify their own data, then limit their privileges so they cannot read/write others' data.

• Assign permissions to the software system that prevents the user from accessing/opening privileged files.
• To avert eval injections, refractor your code so that it does not need to use eval().

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 85

7.7.5 Bibliography

 [None]

7.8 Cross-site Scripting [XYT]

7.8.1 Description of application vulnerability

Cross-site scripting (XSS) occurs when dynamically generated web pages display input, such as login information,
that is not properly validated, allowing an attacker to embed malicious scripts into the generated page and then
execute the script on the machine of any user that views the site. If successful, cross-site scripting vulnerabilities
can be exploited to manipulate or steal cookies, create requests that can be mistaken for those of a valid user,
compromise confidential information, or execute malicious code on the end user systems for a variety of nefarious
purposes.

7.8.2 Cross reference

CWE:
80. Failure to Sanitize Script-Related HTML Tags in a Web Page (Basic XSS)
81. Failure to Sanitize Directives in an Error Message Web Page
82. Failure to Sanitize Script in Attributes of IMG Tags in a Web Page
83. Failure to Sanitize Script in Attributes in a Web Page
84. Failure to Resolve Encoded URI Schemes in a Web Page
85. Doubled Character XSS Manipulations
86. Invalid Characters in Identifiers
87. Alternate XSS Syntax

7.8.3 Mechanism of failure

Cross-site scripting (XSS) vulnerabilities occur when an attacker uses a web application to send malicious code,
generally JavaScript, to a different end user. When a web application uses input from a user in the output it
generates without filtering it, an attacker can insert an attack in that input and the web application sends the attack
to other users. The end user trusts the web application, and the attacks exploit that trust to do things that would not
normally be allowed. Attackers frequently use a variety of methods to encode the malicious portion of the tag, such
as using Unicode, so the request looks less suspicious to the user.

XSS attacks can generally be categorized into two categories: stored and reflected. Stored attacks are those where
the injected code is permanently stored on the target servers in a database, message forum, visitor log, and so
forth. Reflected attacks are those where the injected code takes another route to the victim, such as in an email
message, or on some other server. When a user is tricked into clicking a link or submitting a form, the injected code
travels to the vulnerable web server, which reflects the attack back to the user's browser. The browser then
executes the code because it came from a 'trusted' server. For a reflected XSS attack to work, the victim must
submit the attack to the server. This is still a very dangerous attack given the number of possible ways to trick a
victim into submitting such a malicious request, including clicking a link on a malicious Web site, in an email, or in
an inner-office posting.

XSS flaws are very common in web applications, as they require a great deal of developer discipline to avoid them
in most applications. It is relatively easy for an attacker to find XSS vulnerabilities. Some of these vulnerabilities
can be found using scanners, and some exist in older web application servers. The consequence of an XSS attack
is the same regardless of whether it is stored or reflected.

The difference is in how the payload arrives at the server. XSS can cause a variety of problems for the end user
that range in severity from an annoyance to complete account compromise. The most severe XSS attacks involve
disclosure of the user's session cookie, which allows an attacker to hijack the user's session and take over their
account. Other damaging attacks include the disclosure of end user files, installation of Trojan horse programs,
redirecting the user to some other page or site, and modifying presentation of content.

ISO/IEC PDTR 24772

86 © ISO 2008 – All rights reserved

Cross-site scripting (XSS) vulnerabilities occur when:

• Data enters a Web application through an untrusted source, most frequently a web request. The data is
included in dynamic content that is sent to a web user without being validated for malicious code.

• The malicious content sent to the web browser often takes the form of a segment of JavaScript, but may
also include HTML, Flash or any other type of code that the browser may execute. The variety of attacks
based on XSS is almost limitless, but they commonly include transmitting private data like cookies or other
session information to the attacker, redirecting the victim to web content controlled by the attacker, or
performing other malicious operations on the user's machine under the guise of the vulnerable site.

Cross-site scripting attacks can occur wherever an untrusted user has the ability to publish content to a trusted web
site. Typically, a malicious user will craft a client-side script, which — when parsed by a web browser — performs
some activity (such as sending all site cookies to a given e–mail address). If the input is unchecked, this script will
be loaded and run by each user visiting the web site. Since the site requesting to run the script has access to the
cookies in question, the malicious script does also. There are several other possible attacks, such as running
"Active X" controls (under Microsoft Internet Explorer) from sites that a user perceives as trustworthy; cookie theft
is however by far the most common. All of these attacks are easily prevented by ensuring that no script tags — or
for good measure, HTML tags at all — are allowed in data to be posted publicly.

Specific instances of XSS are:

• 'Basic' XSS involves a complete lack of cleansing of any special characters, including the most
fundamental XSS elements such as "<", ">", and "&".

• A web developer displays input on an error page (e.g., a customized 403 Forbidden page). If an attacker
can influence a victim to view/request a web page that causes an error, then the attack may be successful.

• A Web application that trusts input in the form of HTML IMG tags is potentially vulnerable to XSS attacks.
Attackers can embed XSS exploits into the values for IMG attributes (e.g., SRC) that is streamed and then
executed in a victim's browser. Note that when the page is loaded into a user's browsers, the exploit will
automatically execute.

• The software does not filter "javascript:" or other URI's from dangerous attributes within tags, such as
onmouseover, onload, onerror, or style.

• The web application fails to filter input for executable script disguised with URI encodings.
• The web application fails to filter input for executable script disguised using doubling of the involved

characters.
• The software does not strip out invalid characters in the middle of tag names, schemes, and other

identifiers, which are still rendered by some web browsers that ignore the characters.
• The software fails to filter alternate script syntax provided by the attacker.

Cross-site scripting attacks may occur anywhere that possibly malicious users are allowed to post unregulated
material to a trusted web site for the consumption of other valid users. The most common example can be found in
bulletin-board web sites that provide web based mailing list-style functionality. The most common attack performed
with cross-site scripting involves the disclosure of information stored in user cookies. In some circumstances it
may be possible to run arbitrary code on a victim's computer when cross-site scripting is combined with other flaws.

7.8.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Carefully check each input parameter against a rigorous positive specification (white list) defining the
specific characters and format allowed.

• All input should be sanitized, not just parameters that the user is supposed to specify, but all data in the
request, including hidden fields, cookies, headers, the URL itself, and so forth.

• A common mistake that leads to continuing XSS vulnerabilities is to validate only fields that are expected
to be redisplayed by the site.

• Data is frequently encountered from the request that is reflected by the application server or the
application that the development team did not anticipate. Also, a field that is not currently reflected may be
used by a future developer. Therefore, validating ALL parts of the HTTP request is recommended.

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 87

7.8.5 Bibliography

 [None]

7.9 Unquoted Search Path or Element [XZQ]

7.9.1 Description of application vulnerability

Strings injected into a software system that are not quoted can permit an attacker to execute arbitrary commands.

7.9.2 Cross reference

CWE:
428. Unquoted Search Path or Element

CERT/CC guidelines: ENV04-C

7.9.3 Mechanism of failure

The mechanism of failure stems from missing quoting of strings injected into a software system. By allowing white-
spaces in identifiers, an attacker could potentially execute arbitrary commands. This vulnerability covers
"C:\Program Files" and space-in-search-path issues. Theoretically this could apply to other operating systems
besides Windows, especially those that make it easy for spaces to be in files or folders.

7.9.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Software should quote the input data that can be potentially executed on a system.

7.9.5 Bibliography

 [None]

7.10 Improperly Verified Signature [XZR]

7.10.1 Description of application vulnerability

The software does not verify, or improperly verifies, the cryptographic signature for data. By not adequately
performing the verification step, the data being received should not be trusted and may be corrupted or made
intentionally incorrect by an adversary.

7.10.2 Cross reference

CWE:
347. Improperly Verified Signature

7.10.3 Mechanism of failure

Data is signed using techniques that assure the integrity of the data. This should ensure the integrity of the data,
but there are two ways that the integrity can be intentionally compromised. The exchange of the cryptologic keys
may have been compromised so that an attacker could provide encrypted data that has been altered. Alternatively,
the cryptologic verification could be flawed so that the encryption of the data is flawed which again allows an
attacker to alter the data.

ISO/IEC PDTR 24772

88 © ISO 2008 – All rights reserved

7.10.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Use data signatures to the extent possible to help ensure trust in data.
• Use built-in verifications for data.

7.10.5 Bibliography

 [None]

7.11 Discrepancy Information Leak [XZL]

7.11.1 Description of application vulnerability

A discrepancy information leak is an information leak in which the product behaves differently, or sends different
responses, in a way that reveals security-relevant information about the state of the product, such as whether a
particular operation was successful or not.

7.11.2 Cross reference

CWE:
204. Response Discrepancy Information Leak
206. Internal Behavioural Inconsistency Information Leak
207. External Behavorial Inconsistency Information Leak
208. Timing Discrepancy Information Leak

7.11.3 Mechanism of failure

A response discrepancy information leak occurs when the product sends different messages in direct response to
an attacker's request, in a way that allows the attacker to learn about the inner state of the product. The leaks can
be inadvertent (bug) or intentional (design).

A behavioural discrepancy information leak occurs when the product's actions indicate important differences based
on (1) the internal state of the product or (2) differences from other products in the same class. Attacks such as OS
fingerprinting rely heavily on both behavioural and response discrepancies. An internal behavioural inconsistency
information leak is the situation where two separate operations in a product cause the product to behave differently
in a way that is observable to an attacker and reveals security-relevant information about the internal state of the
product, such as whether a particular operation was successful or not. An external behavioural inconsistency
information leak is the situation where the software behaves differently than other products like it, in a way that is
observable to an attacker and reveals security-relevant information about which product is being used, or its
operating state.

A timing discrepancy information leak occurs when two separate operations in a product require different amounts
of time to complete, in a way that is observable to an attacker and reveals security-relevant information about the
state of the product, such as whether a particular operation was successful or not.

7.11.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
• Compartmentalize your system to have "safe" areas where trust boundaries can be unambiguously drawn.
• Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with

a compartment outside of the safe area.

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 89

7.11.5 Bibliography

 [None]

7.12 Sensitive Information Uncleared Before Release [XZK]

7.12.1 Description of application vulnerability

The software does not fully clear previously used information in a data structure, file, or other resource, before
making that resource available to another party that did not have access to the original information.

7.12.2 Cross reference

CWE:
226. Sensitive Information Uncleared Before Release

CERT/CC guidelines: MEM03-C

7.12.3 Mechanism of failure

This typically involves memory in which the new data is not as long as the old data, which leaves portions of the old
data still available ("memory disclosure"). However, equivalent errors can occur in other situations where the
length of data is variable but the associated data structure is not. This can overlap with cryptographic errors and
cross-boundary cleansing info leaks.

Dynamic memory managers are not required to clear freed memory and generally do not because of the additional
runtime overhead. Furthermore, dynamic memory managers are free to reallocate this same memory. As a result,
it is possible to accidentally leak sensitive information if it is not cleared before calling a function that frees dynamic
memory. Programmers should not and can not rely on memory being cleared during allocation.

7.12.4 Avoiding the vulnerability or mitigating its effects

Use library functions and or programming language features that would provide automatic clearing of freed buffers
and or the functionality to clear buffers.

7.12.5 Bibliography

 [None]

7.13 Path Traversal [EWR]

7.13.1 Description of application vulnerability

The software constructs a path that contains relative traversal sequence such as ".." or an absolute path sequence
such as "/path/here." Attackers run the software in a particular directory so that the hard link or symbolic link used
by the software accesses a file that the attacker has under their control. In doing this, the attacker may be able to
escalate their privilege level to that of the running process.

7.13.2 Cross reference

CWE:
 24. Path Traversal: - '../filedir'

25. Path Traversal: '/../filedir'
26. Path Traversal: '/dir/../filename’
27. Path Traversal: 'dir/../../filename'
28. Path Traversal: '..\filename'
29. Path Traversal: '\..\filename'

ISO/IEC PDTR 24772

90 © ISO 2008 – All rights reserved

30. Path Traversal: '\dir\..\filename'
31. Path Traversal: 'dir\..\filename'
32. Path Traversal: '...' (Triple Dot)
33. Path Traversal: '....' (Multiple Dot)
34. Path Traversal: '....//'
35. Path Traversal: '.../...//'
37. Path Traversal: ‘/absolute/pathname/here’
38. Path Traversal: ‘ \absolute\pathname\here’
39. Path Traversal: 'C:dirname'
40. Path Traversal: '\\UNC\share\name\' (Windows UNC Share)
61. UNIX Symbolic Link (Symlink) Following
62. UNIX Hard Link
64. Windows Shortcut Following (.LNK)
65. Windows Hard Link

CERT/CC guidelines: FIO02-C

7.13.3 Mechanism of failure

There are two primary ways that an attacker can orchestrate an attack using path traversal. In the first, the
attacker alters the path being used by the software to point to a location that the attacker has control over.
Alternatively, the attacker has no control over the path, but can alter the directory structure so that the path points
to a location that the attacker does has control over.

For instance, a software system that accepts input in the form of: '..\filename', '\..\filename', '/directory/../filename',
'directory/../../filename', '..\filename', '\..\filename', '\directory\..\filename', 'directory\..\..\filename', '...', '....' (multiple
dots), '....//', or '.../...//' without appropriate validation can allow an attacker to traverse the file system to access an
arbitrary file. Note that '..' is ignored if the current working directory is the root directory. Some of these input forms
can be used to cause problems for systems that strip out '..' from input in an attempt to remove relative path
traversal.

There are several common ways that an attacker can point a file access to a file the attacker has under their
control. A software system that accepts input in the form of '/absolute/pathname/here' or '\absolute\pathname\here'
without appropriate validation can also allow an attacker to traverse the file system to unintended locations or
access arbitrary files. An attacker can inject a drive letter or Windows volume letter ('C:dirname') into a software
system to potentially redirect access to an unintended location or arbitrary file. A software system that accepts
input in the form of a backslash absolute path () without appropriate validation can allow an attacker to traverse the
file system to unintended locations or access arbitrary files. An attacker can inject a Windows UNC share
('\\UNC\share\name') into a software system to potentially redirect access to an unintended location or arbitrary file.
A software system that allows UNIX symbolic links (symlink) as part of paths whether in internal code or through
user input can allow an attacker to spoof the symbolic link and traverse the file system to unintended locations or
access arbitrary files. The symbolic link can permit an attacker to read/write/corrupt a file that they originally did not
have permissions to access. Failure for a system to check for hard links can result in vulnerability to different types
of attacks. For example, an attacker can escalate their privileges if he/she can replace a file used by a privileged
program with a hard link to a sensitive file, for example, etc/passwd. When the process opens the file, the attacker
can assume the privileges of that process.

 A software system that allows Windows shortcuts (.LNK) as part of paths whether in internal code or through user
input can allow an attacker to spoof the symbolic link and traverse the file system to unintended locations or access
arbitrary files. The shortcut (file with the .lnk extension) can permit an attacker to read/write a file that they originally
did not have permissions to access.

 Failure for a system to check for hard links can result in vulnerability to different types of attacks. For example, an
attacker can escalate their privileges if he/she can replace a file used by a privileged program with a hard link to a
sensitive file (e.g., etc/passwd). When the process opens the file, the attacker can assume the privileges of that
process or possibly prevent a program from accurately processing data in a software system.

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 91

7.13.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file system.
• Use an appropriate combination of black lists and white lists to ensure only valid and expected input is

processed by the system.
• Warning: if you attempt to cleanse your data, then do so that the end result is not in the form that can be

dangerous. A sanitizing mechanism can remove characters such as ‘.' and ‘;' which may be required fir
some exploits. An attacker can try to fool the sanitizing mechanism into "cleaning" data into a dangerous
form. Suppose the attacker injects a ‘.' inside a filename (e.g., "sensi.tiveFile") and the sanitizing
mechanism removes the character resulting in the valid filename, "sensitiveFile". If the input data are now
assumed to be safe, then the file may be compromised.

• Files can often be identified by other attributes in addition to the file name, for example, by comparing file
ownership or creation time. Information regarding a file that has been created and closed can be stored
and then used later to validate the identity of the file when it is reopened. Comparing multiple attributes of
the file improves the likelihood that the file is the expected one.

• Follow the principle of least privilege when assigning access rights to files.
• Denying access to a file can prevent an attacker from replacing that file with a link to a sensitive file.
• Ensure good compartmentalization in the system to provide protected areas that can be trusted.
• When two or more users, or a group of users, have write permission to a directory, the potential for sharing

and deception is far greater than it is for shared access to a few files. The vulnerabilities that result from
malicious restructuring via hard and symbolic links suggest that it is best to avoid shared directories.

• Securely creating temporary files in a shared directory is error prone and dependent on the version of the
runtime library used, the operating system, and the file system. Code that works for a locally mounted file
system, for example, may be vulnerable when used with a remotely mounted file system.

• [The mitigation should be centered on converting relative paths into absolute paths and then verifying that
the resulting absolute path makes sense with respect to the configuration and rights or permissions. This
may include checking "whitelists" and "blacklists", authorized super user status, access control lists, etc.]

7.13.5 Bibliography

 [None]

7.14 Missing Required Cryptographic Step [XZS]

7.14.1 Description of application vulnerability

Cryptographic implementations should follow the algorithms that define them exactly otherwise encryption can be
faulty.

7.14.2 Cross reference

CWE:
325. Missing Required Cryptographic Step

7.14.3 Mechanism of failure

Not following the algorithms that define cryptographic implementations exactly can lead to weak encryption. This
could be the result of many factors such as a programmer missing a required cryptographic step or using weak
randomization algorithms.

7.14.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

ISO/IEC PDTR 24772

92 © ISO 2008 – All rights reserved

• Implement cryptographic algorithms precisely.
• Use system functions and libraries rather than writing the function.

7.14.5 Bibliography

 [None]

7.15 Insufficiently Protected Credentials [XYM]

7.15.1 Description of application vulnerability

This weakness occurs when the application transmits or stores authentication credentials and uses an insecure
method that is susceptible to unauthorized interception and/or retrieval.

7.15.2 Cross reference

CWE:
256. Plaintext Storage of a Password
257. Storing Passwords in a Recoverable Format

7.15.3 Mechanism of failure

Storing a password in plaintext may result in a system compromise. Password management issues occur when a
password is stored in plaintext in an application's properties or configuration file. A programmer can attempt to
remedy the password management problem by obscuring the password with an encoding function, such as Base64
encoding, but this effort does not adequately protect the password. Storing a plaintext password in a configuration
file allows anyone who can read the file access to the password-protected resource. Developers sometimes
believe that they cannot defend the application from someone who has access to the configuration, but this attitude
makes an attacker's job easier. Good password management guidelines require that a password never be stored
in plaintext.

The storage of passwords in a recoverable format makes them subject to password reuse attacks by malicious
users. If a system administrator can recover the password directly or use a brute force search on the information
available to him, he can use the password on other accounts.

The use of recoverable passwords significantly increases the chance that passwords will be used maliciously. In
fact, it should be noted that recoverable encrypted passwords provide no significant benefit over plain-text
passwords since they are subject not only to reuse by malicious attackers but also by malicious insiders.

7.15.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Avoid storing passwords in easily accessible locations.
• Never store a password in plaintext.
• Ensure that strong, non-reversible encryption is used to protect stored passwords.
• Consider storing cryptographic hashes of passwords as an alternative to storing in plaintext.

7.15.5 Bibliography

 [None]

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 93

7.16 Missing or Inconsistent Access Control [XZN]

7.16.1 Description of application vulnerability

The software does not perform access control checks in a consistent manner across all potential execution paths.

7.16.2 Cross reference

CWE:
285. Missing or Inconsistent Access Control

CERT/CC guidelines: FIO06-C

7.16.3 Mechanism of failure

For web applications, attackers can issue a request directly to a page (URL) that they may not be authorized to
access. If the access control policy is not consistently enforced on every page restricted to authorized users, then
an attacker could gain access to and possibly corrupt these resources.

7.16.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• For web applications, make sure that the access control mechanism is enforced correctly at the server side
on every page. Users should not be able to access any information that they are not authorized for by
simply requesting direct access to that page. Ensure that all pages containing sensitive information are not
cached, and that all such pages restrict access to requests that are accompanied by an active and
authenticated session token associated with a user who has the required permissions to access that page.

7.16.5 Bibliography

 [None]

7.17 Authentication Logic Error [XZO]

7.17.1 Description of application vulnerability

The software does not properly ensure that the user has proven their identity.

7.17.2 Cross reference

CWE:
 288. Authentication Bypass by Alternate Path/Channel
 289. Authentication Bypass by Alternate Name
 290. Authentication Bypass by Spoofing
 294. Authentication Bypass by Capture-replay

301. Reflection Attack in an Authentication Protocol
302. Authentication Bypass by Assumed-Immutable Data
303. Improper Implementation of Authentication Algorithm
305. Authentication Bypass by Primary Weakness

7.17.3 Mechanism of failure

There are many ways that an attacker can potentially bypass the validation of a user. Some of the ways are
means of impersonating a legitimate user while others are means of bypassing the authentication mechanisms that
are in place. In either case, a user who should not have access to the software system gains access.

ISO/IEC PDTR 24772

94 © ISO 2008 – All rights reserved

Authentication bypass by alternate path or channel occurs when a product requires authentication, but the product
has an alternate path or channel that does not require authentication. Note that this is often seen in web
applications that assume that access to a particular CGI program can only be obtained through a "front" screen, but
this problem is not just in web apps.

Authentication bypass by alternate name occurs when the software performs authentication based on the name of
the resource being accessed, but there are multiple names for the resource, and not all names are checked.

Authentication bypass by capture-replay occurs when it is possible for a malicious user to sniff network traffic and
bypass authentication by replaying it to the server in question to the same effect as the original message (or with
minor changes). Messages sent with a capture-relay attack allow access to resources that are not otherwise
accessible without proper authentication. Capture-replay attacks are common and can be difficult to defeat without
cryptography. They are a subset of network injection attacks that rely listening in on previously sent valid
commands, then changing them slightly if necessary and resending the same commands to the server. Since any
attacker who can listen to traffic can see sequence numbers, it is necessary to sign messages with some kind of
cryptography to ensure that sequence numbers are not simply doctored along with content.

Reflection attacks capitalize on mutual authentication schemes in order to trick the target into revealing the secret
shared between it and another valid user. In a basic mutual-authentication scheme, a secret is known to both a
valid user and the server; this allows them to authenticate. In order that they may verify this shared secret without
sending it plainly over the wire, they utilize a Diffie-Hellman-style scheme in which they each pick a value, then
request the hash of that value as keyed by the shared secret. In a reflection attack, the attacker claims to be a valid
user and requests the hash of a random value from the server. When the server returns this value and requests its
own value to be hashed, the attacker opens another connection to the server. This time, the hash requested by the
attacker is the value that the server requested in the first connection. When the server returns this hashed value, it
is used in the first connection, authenticating the attacker successfully as the impersonated valid user.

Authentication bypass by assumed-immutable data occurs when the authentication scheme or implementation
uses key data elements that are assumed to be immutable, but can be controlled or modified by the attacker, e.g.,
if a web application relies on a cookie "Authenticated=1".

Authentication logic error occurs when the authentication techniques do not follow the algorithms that define them
exactly and so authentication can be jeopardized. For instance, a malformed or improper implementation of an
algorithm can weaken the authorization technique.

An authentication bypass by primary weakness occurs when the authentication algorithm is sound, but the
implemented mechanism can be bypassed as the result of a separate weakness that is primary to the
authentication error.

7.17.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Funnel all access through a single choke point to simplify how users can access a resource. For every
access, perform a check to determine if the user has permissions to access the resource. Avoid making
decisions based on names of resources (e.g., files) if those resources can have alternate names.

• Canonicalize the name to match that of the file system's representation of the name. This can sometimes
be achieved with an available API (e.g. in Win32 the GetFullPathName function).

• Utilize some sequence or time stamping functionality along with a checksum that takes this into account in
order to ensure that messages can be parsed only once.

• Use different keys for the initiator and responder or of a different type of challenge for the initiator and
responder.

• Assume all input is malicious. Use an appropriate combination of black lists and white lists to ensure only
valid and expected input is processed by the system. For example, valid input may be in the form of an
absolute pathname(s). You can also limit pathnames to exist on selected drives, have the format specified
to include only separator characters (forward or backward slashes) and alphanumeric characters, and
follow a naming convention such as having a maximum of 32 characters followed by a '.' and ending with
specified extensions.

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 95

7.17.5 Bibliography

 [None]

7.18 Hard-coded Password [XYP]

7.18.1 Description of application vulnerability

Hard coded passwords may compromise system security in a way that cannot be easily remedied. It is never a
good idea to hardcode a password. Not only does hard coding a password allow all of the project's developers to
view the password, it also makes fixing the problem extremely difficult. Once the code is in production, the
password cannot be changed without patching the software. If the account protected by the password is
compromised, the owners of the system will be forced to choose between security and availability.

7.18.2 Cross reference

CWE:
259. Hard-Coded Password

7.18.3 Mechanism of failure

The use of a hard-coded password has many negative implications -- the most significant of these being a failure of
authentication measures under certain circumstances. On many systems, a default administration account exists
which is set to a simple default password that is hard-coded into the program or device. This hard-coded password
is the same for each device or system of this type and often is not changed or disabled by end users. If a malicious
user comes across a device of this kind, it is a simple matter of looking up the default password (which is likely
freely available and public on the Internet) and logging in with complete access. In systems that authenticate with
a back-end service, hard-coded passwords within closed source or drop-in solution systems require that the back-
end service use a password that can be easily discovered. Client-side systems with hard-coded passwords
propose even more of a threat, since the extraction of a password from a binary is exceedingly simple. If hard-
coded passwords are used, it is almost certain that unauthorized users will gain access through the account in
question.

7.18.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

• Rather than hard code a default username and password for first time logins, utilize a "first login" mode
that requires the user to enter a unique strong password.

• For front-end to back-end connections, there are three solutions that may be used.
1. Use of generated passwords that are changed automatically and must be entered at given

time intervals by a system administrator. These passwords will be held in memory and only be
valid for the time intervals.

2. The passwords used should be limited at the back end to only performing actions for the front
end, as opposed to having full access.

3. The messages sent should be tagged and checksummed with time sensitive values so as to
prevent replay style attacks.

7.18.5 Bibliography

 [None]

ISO/IEC PDTR 24772

96 © ISO 2008 – All rights reserved

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 97

Annex A
(informative)

Guideline Recommendation Factors

A. Guideline Recommendation Factors

A.1 Factors that need to be covered in a proposed guideline recommendation

These are needed because circumstances might change, for instance:

• Changes to language definition.
• Changes to translator behaviour.
• Developer training.
• More effective recommendation discovered.

A.1.1 Expected cost of following a guideline

How to evaluate likely costs.

A.1.2 Expected benefit from following a guideline

How to evaluate likely benefits.

A.2 Language definition

Which language definition to use. For instance, an ISO/IEC Standard, Industry standard, a particular
implementation.

Position on use of extensions.

A.3 Measurements of language usage

Occurrences of applicable language constructs in software written for the target market.

How often do the constructs addressed by each guideline recommendation occur?

A.4 Level of expertise

How much expertise, and in what areas, are the people using the language assumed to have?

Is use of the alternative constructs less likely to result in faults?

A.5 Intended purpose of guidelines

For instance: How the listed guidelines cover the requirements specified in a safety critical standard.

A.6 Constructs whose behaviour can very

The different ways in which language definitions specify behaviour that is allowed to vary between implementations
and how to go about documenting these cases.

ISO/IEC PDTR 24772

98 © ISO 2008 – All rights reserved

A.7 Example guideline proposal template

A.7.1 Coding Guideline

Anticipated benefit of adhering to guideline

• Cost of moving to a new translator reduced.
• Probability of a fault introduced when new version of translator used reduced.
• Probability of developer making a mistake is reduced.
• Developer mistakes more likely to be detected during development.
• Reduction of future maintenance costs.

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 99

Annex B
(informative)

Guideline Selection Process

B. Guideline Selection Process
It is possible to claim that any language construct can be misunderstood by a developer and lead to a failure to
predict program behaviour. A cost/benefit analysis of each proposed guideline is the solution adopted by this
Technical Report.

The selection process has been based on evidence that the use of a language construct leads to unintended
behaviour (i.e., a cost) and that the proposed guideline increases the likelihood that the behaviour is as intended
(i.e., a benefit). The following is a list of the major source of evidence on the use of a language construct and the
faults resulting from that use:

• a list of language constructs having undefined, implementation-defined, or unspecified behaviours,
• measurements of existing source code. This usage information has included the number of occurrences of

uses of the construct and the contexts in which it occurs,
• measurement of faults experienced in existing code,
• measurements of developer knowledge and performance behaviour.

The following are some of the issues that were considered when framing guidelines:

• An attempt was made to be generic to particular kinds of language constructs (i.e., language independent),
rather than being language specific.

• Preference was given to wording that is capable of being checked by automated tools.
• Known algorithms for performing various kinds of source code analysis and the properties of those

algorithms (i.e., their complexity and running time).

B.1 Cost/Benefit Analysis

The fact that a coding construct is known to be a source of failure to predict correct behaviour is not in itself a
reason to recommend against its use. Unless the desired algorithmic functionality can be implemented using an
alternative construct whose use has more predictable behaviour, then there is no benefit in recommending against
the use of the original construct.

While the cost/benefit of some guidelines may always come down in favor of them being adhered to (e.g., don't
access a variable before it is given a value), the situation may be less clear-cut for other guidelines. Providing a
summary of the background analysis for each guideline will enable development groups.

Annex A provides a template for the information that should be supplied with each guideline.

It is unlikely that all of the guidelines given in this Technical Report will be applicable to all application domains.

B.2 Documenting of the selection process

The intended purpose of this documentation is to enable third parties to evaluate:

• the effectiveness of the process that created each guideline,
• the applicability of individual guidelines to a particular project.

ISO/IEC PDTR 24772

100 © ISO 2008 – All rights reserved

Annex C
(informative)

Template for use in proposing programming language vulnerabilities

C. Skeleton template for use in proposing programming language
vulnerabilities

C.1 6.<x> <short title> [<unique immutable identifier>]

No text should appear here—in the space between 6.x and 6.x.1. This is simply an explanation of the header.

Notes on template header. The number "x" depends on the order in which the vulnerabilities are listed in Clause 6.
It will be assigned by the editor. The "short title" should be a noun phrase summarizing the description of the
application vulnerability. The "unique immutable identifier" is intended to provide an enduring identifier for the
vulnerability description, even if their order is changed in the document. No additional text should appear here.

C.1.0 6.<x>.0 Status and history

The header will be removed before publication.

This temporary section will hold the edit history for the vulnerability along with the current status of the vulnerability.

C.1.1 6.<x>.1 Description of application vulnerability

Replace this with a brief description of the application vulnerability. It should be a short paragraph.

C.1.2 6.<x>.2 Cross reference

CWE: Replace this with the CWE identifier. At a later date, other cross-references may be added.

C.1.3 6.<x>.3 Mechanism of failure

Replace this with a brief description of the mechanism of failure. This description provides the link between the
programming language vulnerability and the application vulnerability. It should be a short paragraph.

C.1.4 6.<x>.4 Applicable language characteristics

This vulnerability description is applicable to languages with the following characteristics:

Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this
discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that
have not been treated in the language-specific annexes.

C.1.5 6.<x>.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

Replace this with a bullet list summarizing various ways in which programmers can avoid the programming
language vulnerability, break the chain of causation to the application vulnerability, or contain the bad effects of the
application vulnerability. Begin with the more direct, concrete, and effective means and then progress to the more
indirect, abstract, and probabilistic means.

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 101

C.1.6 6.<x>.6 Implications for standardization

Recommendations for other working groups will be recorded here. For example, we might record suggestions for
changes to language standards or API standards.
C.1.7 6.<x>.7 Bibliography

Insert numbered references for other documents cited in your description. These will eventually be collected into an
overall bibliography for the TR. So, please make the references complete. Someone will eventually have to
reformat the references into an ISO-required format, so please err on the side of providing too much information
rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson
Education, Boston, MA, 2004

ISO/IEC PDTR 24772

102 © ISO 2008 – All rights reserved

Annex D
(informative)

Template for use in proposing application vulnerabilities

D. Skeleton template for use in proposing application vulnerabilities

D.1 7.<x> <short title> [<unique immutable identifier>]

Notes on template header. The number "x" depends on the order in which the vulnerabilities are listed in Clause 6.
It will be assigned by the editor. The "short title" should be a noun phrase summarizing the description of the
application vulnerability. The "unique immutable identifier" is intended to provide an enduring identifier for the
vulnerability description, even if their order is changed in the document. No additional text should appear here.

D.1.0 7.<x>.0 Status and history

The header will be removed before publication.

This temporary section will hold the edit history for the vulnerability. With the current status of the vulnerability.

D.1.1 7.<x>.1 Description of application vulnerability

Replace this with a brief description of the application vulnerability. It should be a short paragraph.

D.1.2 7.<x>.2 Cross reference

CWE: Replace this with the CWE identifier. At a later date, other cross-references may be added.

D.1.3 7.<x>.3 Mechanism of failure

Replace this with a brief description of the mechanism of failure. It should be a short paragraph.

D.1.4 7.<x>.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

Replace this with a bullet list summarizing various ways in which programmers can avoid the programming
language vulnerability, break the chain of causation to the application vulnerability, or contain the bad effects of the
application vulnerability. Begin with the more direct, concrete, and effective means and then progress to the more
indirect, abstract, and probabilistic means.

D.1.5 7.<x>.5 Bibliography

Insert numbered references for other documents cited in your description. These will eventually be collected into an
overall bibliography for the TR. So, please make the references complete. Someone will eventually have to
reformat the references into an ISO-required format, so please err on the side of providing too much information
rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson
Education, Boston, MA, 2004

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 103

Annex E
(informative)

Vulnerability Outline

E. Vulnerability Outline

E.1. Human Factors
E.1.1. [BRS] Obscure Language Features

E.2. Environment
E.2.1. [XYN] Adherence to Least Privilege
E.2.2. [XYO] Privilege Sandbox Issues
E.2.3. Interactions with environment

E.2.3.1. [XYS] Executing or Loading Untrusted Code
E.3. Core Language Issues

E.3.1. [BQF] Unspecified Behaviour
E.3.2. [EWF] Undefined Behaviour
E.3.3. [FAB] Implementation-defined Behaviour
E.3.4. [MEM] Deprecated Language Features
E.3.5. [BVQ] Unspecified Functionality

E.4. Pre-processor
E.4.1. [NMP] Pre-processor Directives

E.5. Declarations and Definitions
E.5.1. [NAI] Choice of Clear Names
E.5.2. [AJN] Choice of Filenames and other External Identifiers
E.5.3. [XYR] Unused Variable
E.5.4. [YOW] Identifier Name Reuse

E.6. Types
E.6.1. Representation

E.6.1.1. [IHN] Type System
E.6.1.2. [STR] Bit Representations

E.6.2. Constants
E.6.3. Floating-point

E.6.3.1. [PLF] Floating-point Arithmetic
E.6.4. Enumerated Types

E.6.4.1. [CCB] Enumerator Issues
E.6.5. Integers

E.6.5.1. [FLC] Numeric Conversion Errors
E.6.6. Characters and strings

E.6.6.1 [CJM] String Termination
E.6.7. Arrays

E.6.7.1. [XYX] Boundary Beginning Violation
E.6.7.2. [XYZ] Unchecked Array Indexing
E.6.7.3. [XYW] Unchecked Array Copying
E.6.7.4. [XZB] Buffer Overflow

E.6.8. Structures and Unions
E.6.9. Pointers

E.6.9.1. [HFC] Pointer Casting and Pointer Type Changes
E.6.9.2. [RVG] Pointer Arithmetic
E.6.9.3. [XYH] Null Pointer Dereference
E.6.9.4. [XYK] Dangling Reference to Heap

E.7. Templates/Generics
E.7.1. [SYM] Templates and Generics
E.7.2. [RIP] Inheritance

E.8. Initialization
E.8.1. [LAV] Initialization of Variables

E.9. Type Conversions/Limits
E.9.1. [XYY] Wrap-around Error

ISO/IEC PDTR 24772

104 © ISO 2008 – All rights reserved

E.9.2. [XZI] Sign Extension Error
E.10. Operators/Expressions

E.10.1. [JCW] Operator Precedence/Operator Precedence
E.10.2. [SAM] Side-effects and Order of Evaluation
E.10.3. [KOA] Likely Incorrect Expressions
E.10.4. [XYQ] Dead and Deactivated Code

E.11. Control Flow
E.11.1. Conditional Statements

E.11.1.1. [CLL] Switch Statements and Static Analysis
E.11.1.2. [EOJ] Demarcation of Control Flow

E.11.2. Loops
E.11.2.1. [TEX] Loop Control Variables
E.11.2.2. [XZH] Off-by-one Error

E.11.3. Subroutines (Functions, Procedures, Subprograms)
E.11.3.1. [EWD] Structured Programming
E.11.3.2. [CSJ] Passing Parameters and Return Values
E.11.3.3. [DCM] Dangling References to Stack Frames
E.11.3.4. [OTR] Subprogram Signature Mismatch
E.11.3.5. [GDL] Recursion
E.11.3.7. [NZN] Returning Error Status

E.11.4. Termination Strategy
E.11.4.1. [REU] Termination Strategy

E.12. External interfaces
E.12.1. Memory Management

E.12.1.1. [AMV] Type-breaking Reinterpretation of Data
E.12.1.2. [XYL] Memory Leak
E.12.1.3. [XZX] Memory Locking
E.12.1.4. [XZP] Resource Exhaustion

E.12.2. Input
E.12.2.1. [RST] Injection
E.12.2.2. [XYT] Cross-site Scripting
E.12.2.3. [XZQ] Unquoted Search Path or Element
E.12.2.4. [XZR] Improperly Verified Signature
E.12.2.5. [XZL] Discrepancy Information Leak

E.12.3. Output
E.12.3.1. [XZK] Sensitive Information Uncleared Before Use

E.12.4. Libraries
E.12.4.1. [TRJ] Argument Passing to Library Functions
E.12.4.2. [NYY] Dynamically-linked Code and Self-modifying Code

E.12.5. Files
E.12.5.1. [EWR] Path Traversal

E.13. Miscellaneous
E.13.1. [XZS] Missing Required Cryptographic Step
E.13.2. Authentication

E.13.2.1. [XYM] Insufficiently Protected Credentials
E.13.2.2. [XZN] Missing or Inconsistent Access Control
E.13.2.3. [XZO] Authentication Logic Error
E.13.2.4. [XYP] Hard-coded Password

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 105

ISO/IEC PDTR 24772

106 © ISO 2008 – All rights reserved

Annex F
(informative)

Language Specific Vulnerability Template

F. Skeleton template for use in proposing language specific information for
vulnerabilities
Every vulnerability description of Clause 6 of the main document should be addressed in the annex in the same
order even if there is simply a notation that it is not relevant to the language in question.

F.1 Identification of standards

This section should list the relevant language standards.

F.2 General Terminology

This section should provide an overview of general terminology if desired.

F.3 <language annex>.3.<x> <short title><unique immutable identifier>

The "short title" and "unique immutable identifier" are copied from 6.x

F.3.0 <language annex>.3.<x>.0 Status and history

The header will be removed before publication.

This temporary section will hold the edit history and status for this language specific vulnerability.

[The following descriptions should assume that the reader has read the corresponding material in the main body of
the document. They should explain differences in terminology and how the general concepts relate to the specific
language but should not repeat the general material The text should be the minimum necessary to describe the
relationship to the language, supplemented with examples.]

F.3.1 <language annex>.3.<x>.1 Language-specific terminology

This sub-section should deal with terminology differences between the body of the document and the terminology
used in the language standard.

F.3.2 <language annex>.3.<x>.2 Description of application vulnerability

Replace this with a brief description and examples of how the general description relates to the language. The
description should describe why the language is susceptible and provide examples of the vulnerability in the
language if possible.

F.3.3 <language annex>.3.<x>.3 Mechanism of failure

Replace this with a section describing the mechanism of failure in terms relevant to the language being described.

F.3.3 <language annex>.3.<x>.4 Avoiding the vulnerability or mitigating its effects in <language>

This vulnerability can be avoided or mitigated in <language> in the following ways:

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 107

Replace this with a bullet list summarizing the ways in which the vulnerability can be avoided or mitigated in <
language>. The bullet points should only apply to <language>. This is the spot for usage guidelines.

F.3.4 <language annex>.3.<x>.5 Implications for standardization in <language>

Optionally, replace with a bullet list summarizing various ways that standardization for <language> has assisted in
mitigating the vulnerability. This is the opportunity to talk about actions that the language committee has already
taken, such as deprecating features or providing alternatives. There is also the possibility of talking about future
plans.

F.3.5 <language annex>.3.<x>.6 Bibliography

Insert numbered references for other documents specific to <language>. These will eventually be collected into an
overall bibliography for the TR. So, please make the references complete. Someone will eventually have to
reformat the references into an ISO-required format, so please err on the side of providing too much information

rather than too little. Here [1] is an example of a reference:

 [1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson
Education, Boston, MA, 2004

ISO/IEC PDTR 24772

108 © ISO 2008 – All rights reserved

Bibliography

[1] ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, 2001

[2] ISO/IEC TR 10000-1, Information technology — Framework and taxonomy of International Standardized
Profiles — Part 1: General principles and documentation framework

[3] ISO 10241, International terminology standards — Preparation and layout

[4] ISO/IEC TR 15942:2000, "Information technology - Programming languages - Guide for the use of the
 Ada programming language in high integrity systems"

[5] Joint Strike Fighter Air Vehicle: C++ Coding Standards for the System Development and Demonstration
Program. Lockheed Martin Corporation. December 2005.

[6] ISO/IEC 9899:1999, Programming Languages – C

[7] ISO/IEC 1539-1:2004, Programming Languages – Fortran

[8] ISOISO/IEC 8652:1995/Cor 1:2001/Amd 1:2007, Information technology -- Programming languages – Ada

[9] ISO/IEC 15291:1999, Information technology - Programming languages - Ada Semantic Interface
Specification (ASIS)

[10] Software Considerations in Airborne Systems and Equipment Certification. Issued in the USA by the
Requirements and Technical Concepts for Aviation (document RTCA SC167/DO-178B) and in Europe by
the European Organization for Civil Aviation Electronics (EUROCAE document ED-12B).December 1992.

[11] IEC 61508: Parts 1-7, Functional safety: safety-related systems. 1998. (Part 3 is concerned with software).

[12] ISO/IEC 15408: 1999 Information technology. Security techniques. Evaluation criteria for IT security.

[13] J Barnes. High Integrity Software - the SPARK Approach to Safety and Security. Addison-Wesley. 2002.

[14] R. Seacord Preliminary draft of the CERT C Programming Language Secure Coding Standard. ISO/IEC
JTC 1/SC 22/OWGV N0059, April 2007.

[15] Motor Industry Software Reliability Association. Guidelines for the Use of the C Language in Vehicle Based
Software, 2004 (second edition)3.

[16] ISO/IEC TR24731-1, Extensions to the C Library, — Part I: Bounds-checking interfaces

[17] Steve Christy, Vulnerability Type Distributions in CVE, V1.0, 2006/10/04

[18] Douglas Gregor, Jaakko Jarbvi, Jeremy Siek Concepts: Linguistic Support for Generic Programming in C++

[19] Gabriel Dos Reis and Bjarne Stroustrup, Specifying C++ Concepts POPL06. January 2006

3 The first edition should not be used or quoted in this work.

ISO/IEC PDTR 24772

© ISO 2008 – All rights reserved 109

[20] Motor Industry Software Reliability Association. Guidelines for the Use of the C++ Language in critical
systems, June 2008

