
Liaison Report:
JSR-282 (Real-Time Specification for Java)
JSR-302 (Safety-Critical Java Technologies)

Liaison Report:
JSR-282 (Real-Time Specification for Java)
JSR-302 (Safety-Critical Java Technologies)

Presentation cover 
page EU

North American
Headquarters:

104 Fifth Avenue, 15th Floor
New York, NY 10011

+1-212-620-7300 (voice)
+1-212-807-0162 (FAX)

www.adacore.com Ben Brosgol brosgol@adacore.com

ISO/IEC JTC1/SC22/OWGV Meeting
Ottawa, Canada

18-20 July 2007 

European Headquarters:
8 rue de Milan

75009 Paris France
+33-1-4970-6716 (voice)
+33-1-4970-0552 (FAX)

ISO/IEC JTC 1/SC 22/OWGV N 0088



1

Introduction
Language vulnerability application susceptible to safety hazard or security 
failure
Main language requirements for avoiding such hazards / failures

• Reliability

• Predictability

• Analyzability

A dilemma
• Features that are beneficial in general may complicate certification against safety or 

security standards

Object-Oriented Programming

Generic templates

Inline expansion

Exception handling

Concurrency features

General purposes languages (C, C++, Ada, Java, …) are too large / complex
• Subsetting is required

• Enforcement of subset should be automatable



2

Java for safety-critical / high-security systems
Some advantages

• Reliability

Avoids “buffer overflow” problems and “dangling reference” issues

• Predictability: precisely defined semantics, in general

Order of expression evaluation, “precise” exception behavior

• Analyzability

No uninitialized variables; no unreachable code”

Built-in security model

Some issues
• Reliability

C-based syntax (literals, “dangling else”), low-level thread model

• Predictability

Thread-related issues (priority semantics, unbounded priority inversions)

Garbage collection issues

• Analyzability

Unconventional execution model (JVM)

Language and API size/complexity

Built-in security model



3

Java Community Process (“JCP”)

JCP Member Proposal for new
Java Spec Request (“JSR”) Executive Committee Initiation

Spec Lead

Expert Group
Public

JSR - Early Draft

JSR - Public Draft

Exec Comm

JSR – Revised Public Draft

Reference Implementation (“RI”)

Technology Compatibility Kit (“TCK”)

Reference Implementation Team

Technology Compatibility Kit Team

Development

Maintenance

Maintenance Lead

Expert Group
Public

JSR (minor revision)

Revised RI

Revised TCK

Exec Comm

TCK Team

RI Team

Sun-administered process for augmenting/modifying the Java platform
www.jcp.org/en/procedures/jcp2



4

Background – Real-Time Specification for Java
What is the Real-Time Specification for Java (JSR-001, JSR-282)?

• API + JVM constraints designed to give real-time predictability to Java platform

Addresses several major issues with Java for real-time systems

Status
• Original spec (JSR-001) completed in 2001, led by IBM (Greg Bollella, Peter Haggar)

Several maintenance releases since then, led by TimeSys (Peter Dibble)

Several commercial implementations available

• Minor update (JSR-282) now in progress, also led by TimeSys (Peter Dibble)

RTSJ not appropriate for safety-critical systems: analyzability issues
• Complex semantics (e.g., Asynchronous Transfer of Control)

• Scoped memory rules requiring run-time checks, complicate analysis

Imprecision of thread semantics for 
scheduling (role of priorities)

“RealTime Threads” + priority-based scheduler, FIFO 
within priorities, for both wait queues and locks

Possibility of unbounded priority 
inversion

Monitor control policies:
Priority Inheritance, Priority Ceiling Emulation

Garbage collection interference / latency Non-GC’ed “memory areas”; special threads that are 
not allowed to reference the heap

Inadequate functionality Asynchrony, high-resolution time, low-level features



5

Background – Safety-Critical Java Technology
What is Safety-Critical Java Technology (JSR-302)?

• RTSJ profile, designed to allow certification to safety standards such as DO-178B Level A

Approach
• Remove unneeded classes, methods from RTSJ

Example: no asynchronous transfer of control

• Do not require Garbage Collection

• Require specific approach (Priority Ceiling Emulation) for priority inversion control

• Add statically-checkable annotations to facilitate analysis

Avoid run-time checks implied by RTSJ rules for memory reference assignment

• Define multiple levels of compliance, corresponding to required application generality

Most restrictive level reflects classical single-threaded “cyclic executive”

• No attempt to address general Java analyzability issues (e.g. OOP)

Some open issues
• Specifics of statically checkable annotations 

Status
• In-progress, spec expected Q1 2008, led by The Open Group (Doug Locke)

• Inspired by work from HIJA (aicas, Univ. of York, …) and Aonix

• Several related commercial implementations available



6

Resources
Books

• P. Dibble; Real-Time Java Platform Programming; Prentice-Hall; 2002; 
ISBN 0130282618 

• A. Wellings; Concurrent and Real-Time Programming in Java; John Wiley & Sons; 2004; 
ISBN 047084437X

Websites
• JSR-1: jcp.org/en/jsr/detail?id=1

• JSR-282: jcp.org/en/jsr/detail?id=1

• P. Dibble (spec. lead), R. Belliardi, B. Brosgol, D. Holmes, and A. Wellings. 
Real-Time Specification for JavaTM, V1.0.1, June 2005. www.rtsj.org

• JSR-302 (Safety-Critical Java Technology): jcp.org/en/jsr/detail?id=302


	Presentation cover page EU
	Introduction
	Java for safety-critical / high-security systems
	Java Community Process (“JCP”)
	Background – Real-Time Specification for Java
	Background – Safety-Critical Java Technology
	Resources

