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1 Introduction

The starting point of this paper is the concept of predictable execution as defined
in [8]. Hence we are adopting a high level language view. Consider as an
example, the high level language statement:

a[i] := a[i] + 1;

To be predictable we require:

1. i has been assigned.

2. i is in the index range of the array a.

3. a[i] has been assigned.

4. a[i] is not equal to the largest integer (for simplicity, we are assuming
integers).

Hence it is clear that some degree of automation is required if reasonably
sized programs are to be shown to be predictable.

Conceptually, the language-based method of ensuring predictable execution
should allow for tools to verify the property, or indicate statements which are not
predictable. Unfortunately, there are severe practical limits to this approach.
Comprehensive languages like Ada 95 or C++ which are used without regard
to static analysis makes checking many properties virtually intractable, such as
ensuring no access to unset variables. (It is tempting to think that the speed of
modern computers checking of code in the full language would be possible —
this is not the case due to the exponential nature of the analysis required.)

The prognosis of using static analysis to show predictable execution is not
good since the comparatively small issue of buffer overflow has proved tricky, at
least with the C programming language, see [2, 4].

However, we need to be able to assess static analysis tools and gain some
assurance of their application to real code. We do this by analysis of the major
issues in a language-independent fashion.

If full access to the source text is not available, then there is likely to be
significant limitations to the assurance that can be provided. For those modules
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for which the source is not available, information about the access and use of
external data would be vital. Design information should be available in this
case.

Assurance via static analysis will be very different for a hard real-time system
with full source compared with a very large system using many components
available only in binary form.

2 Language problems

We list here some of the issues which are likely to present problems in under-
taking static analysis.

Execution order. If the execution order is not defined, then a combinatorial
problem can arise in attempting to predict the execution characteristics
of a program.

Apart from expressions, for the chosen language, it is necessary to enu-
merate the language structures which can be evaluated in a different order
such that an execution will not be predictable.

Example:
printf("hello ")+printf("world")

Computations versus update of state. Languages like Pascal and Ada sep-
arate functions and procedures so that the operations of computing a value
and update of the state are syntactically separated. C/C++ and Java do
not which can give rise to confusion is some cases. Program proof and
static analysis is easy for languages making the separation. Note that
Java is well-defined here by specifying the order of evaluation of expres-
sions.

Example:
f((*a)++, *b)
where a and b point to the same entity.

Parameter passing. Fortran introduced special wording, which very few peo-
ple understood to allow some flexibility in this area. Ada does something
similar which can cause problems unless aliasing can be avoided. (In some
situations, Ada structures can be passed by copy or reference.)

Aliasing. If an item of storage is accessible in more than one way, then the
compiled code may depend upon how two different accesses are handled.
Program proof has similar problems. Particularly troublesome with point-
ers.

Example:
f((*a)++, *b)
where a and b are aliased.
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Storage control. This is handled automatically with Java (but then gives
problems with timing). Ada has an unsafe feature for reclaiming stor-
age and hence does not require garbage collection.

Tasking. A very tricky area. This is not considered here.

3 Qualification of tools

Since modern programming languages are relatively complex, showing that a
tool is fit-for-purpose is difficult. There are four vital characteristics:

1. Claims made by the tool supplier.

2. Showing that the tool reports cases of unpredictable aspects of the code;

3. Noting the extent to which a tool reports false positives, ie warns of inse-
cure aspects which on further analysis turn out not to be insecure;

4. Aspects of usability of the tool.

It seems that the only feasible approach is to check these three aspects by
running test cases. This is a very difficult and time-consuming task. In essence,
it is similar approach used to validate compilers.

We now consider the validation of a tool for our chosen language L. We do
this by considering some of the language problem areas listed above:

Execution order. We assume our language L has already been analysed so
that the features whose execution order can vary are known.

Each of the features could be allowed or prohibited in an application.

For each prohibited feature, we need to be assured that our chosen tool
can check for its absence. This can be checked by a suitable test.

For each allowed feature whose execution order can vary, we need a suitable
test case of its use. Applying the tool to these test cases can ensure that
the tool detects these allowed instances of non-predictable execution.

Computations versus update of state. For languages in the Pascal/Ada
style, side-effects in functions should be prohibited and checked by an
appropriate tool. This is undertaken by the SPARK Examiner [1].

For language like C/C++ and Java the situation is more complex and
harder to analyse.

Parameter passing. The analysis of the programming language semantics
must determine if the parameter passing mechanism guarantees predictable
execution or not.

If predictable execution is not guaranteed, then it is necessary to produce
a test case whose execution could vary. This test needs to be applied to
the chosen tool to demonstrate that this problem is detected.
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Aliasing. Aliasing is a problem if program proof is being attempted. The
paper [8] does not cover this issue, so we can ignore this and only address
the issue of assurance of predictable execution. Note sequence points in
C/C++ are introduced to allow some code optimization but can result in
unpredictable execution via aliasing.

Hence the issue is whether the language semantics restricts aliasing in
any way. For instance, program optimization might place x in a register.
What happens if x is aliased to y and y is changed? The language C allows
this between sequence points which therefore provides a potential source
of non-predictable execution.

The analysis of the language must provide a list of such aliasing.

Test cases must be written to show that the chosen tool detects such
situations.

Storage control. Languages such as Java and C# undertake automatic stor-
age control and therefore the issue of validity of pointers does not arise at
the language level (only at the implementation level).

There are several strategies that can be adopted here. Firstly, to prohibit
all uses of constructs involving storage allocation (other than the stack);
use a restricted set of facilities (typically allocating storage only during
program initialisation) and lastly using the full facilities of the language.

The set test cases needed therefore varies according to the restrictions
made. With no restrictions, many cases need to be considered in which
storage control is misused. A typical case is to allocate and then deallocate
storage, but then attempt to access the deallocated storage.

4 Conclusions

It seems feasible to provide guidance on the qualification to tools used the aid
checking for predictable execution in a language independent fashion.

There is a significant issue which is not addressed here at all — the use
of annotations, especially to give design information which can be checked by
static analyis tools.

At this point, no attempt has been made to provide wording for the ISO
guidelines.
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