
Ada's approach to Software
Vulnerabilities

Stephen Michell
Maurya Software
Ottawa Canada

25/06/06

Outline

● Introduction, History
● Rationale
● Approach
● Language Analysis
● Assessment of Approach

Introduction

● Developed by High Integrity Rapporteur
Group of SC22/WG9 (Ada) to address
specific needs of Safety and Security
communities

● Coined the term High Integrity to represent
them

● Based on Requirements for software development and
verification of various standards

– Airborne Civil Aeronautics(DO-178B)
– Nuclear Power (IEC880) (NRC)
– Medical Systems (IEC 601-4) (FDA)
– UK Defence (DS 00-55)
– European Security (ITSEC)
– European Rail (EN50128)
– UK Automotive (MISRA)
– Space (NASA)

Introduction
(cont)

Introduction
(cont)

● Developed a framework for analysis of
software
– Started with examination of current common

verification techniques

● Developed analysis approach to analyse the
appropriateness of language features

● Always come back to requirements of
community that needs this

● Why?
– If they can't get the information, they will use

something else
– Stops language-war or methodology-war

arguments
● You need to show how XXX satisfies requirement YYY

Introduction
(cont)

Introduction
(cont)

● Observation about term “vulnerabilities”
– Really a negative term
– All software is vulnerable

● Assembler the most

– Modern languages already impose restrictions on the
way that we can express certain concepts and check that
the usage was proper

– Really guidance on the use of language features to
enhance verifiability

– Need a positive spin on what we produce

History of Guidance on use of
Ada in HI Systems

● Began as Ada9X project was publishing
Ada95

● Number of Software-related safety
documents being developed/published
– UK DIS 0055/56
– MISRA
– CAC/SEC

● Ada 83 (subsets) being used in HI systems,
● Ada95 added many newcapabilities

History of Guidance on use of
Ada in HI Systems

● WG9 formed HRG to address needs of Safety and
Security communities

● Canadian study (with HRG input) developed
Framework for Analysis, feature x feature analysis,
initial ratings

● HRG took work
– Extended (tasking, exceptions, generics)
– Condensed (tabular form)
– Published as TR15942 Guidance on the use of the Ada

Programming Language for High Integrity Systems

History of Guidance on use of
Ada in HI Systems

● In use by many organizations to support their
HI development
– Aviation
– Rail
– Space
– Nuclear

Rationale

● Language features add capability
– Expressability
– Better conceptualization
– Better human communication

● Features may have high implementation,
usage or verification costs.

Rationale (cont)

● Why not just use tools?
– Ada syntax straightforward
– Ada semantics (overloading, overriding, name

resolution) beyond most simple tools
– Tools often misused

● Ignored when most needed (eg systems integration)
● Tool misinterpretation or extra requirements

Verification Techniques

● TR defined approaches required by HI
standards
– Traceability
– Reviews
– Analysis
– Testing

● Traceability
– Requirements<->requirements
– Requirements -> design, code, test
– Object code -> source code

● Reviews
– Human based
– Formal or informal
– Independent

Verification Techniques
(cont)

Verification Techniques
(cont)

● Traceability and Reviews human activities
– Ones that include language-specific or tools (for

repeatability) included in “analysis”
● Rest left out of scope

Verification Techniques
(cont)

● Analysis
– Static

● Control Flow Data Flow
● Information Flow Symbolic Execution
● Formal Code Verif Range Checking
● Stack Usage Timing Analysis
● Other Mem Usage Object Code Analysis

● Dynamic (Testing)
– Levels

● Unit
● Integration
● Hw/Sw integration
● System

– Types
● Requirements-Based Testing
● Structure-Based testing

Verification Techniques
(cont)

Language Analysis(cont)

● Nine categories captured
– Flow Analysis(FA)
– Symbolic Analysis(SA)
– Range Checking(RC)
– Stack Usage(SU)
– Timing Analysis(TA)
– Other Memory Usage(OMU)
– Object Code Analysis(OMA)
– Requirements-based Testing(RT)
– Structure-based Testing(ST)

● Provides a 3-way categorization to capture
the applicability of language features viz-a-
viz the analysis categories

Language Analysis(cont)

● Three guidance categories
– Inc – Included -

● Directly amenable to analysis technique

– Alld – Allowed
● Technique not straightforward but achievable OR
● Use of feature needed and problems in verification technique can be

circumvented

– Exc – Excluded
● No current cost effective analysis technique
● Projects should have ways to ensure capability is excluded

Language Analysis(cont)

– Discussion of a number of issues in writing
verifiable programs

● How language rules
– Affect Predicatbility
– Support Modelling
– Facilitate Testing

Language Analysis(cont)

Language Analysis(cont)

– Language devided into 14 sets of features
● Types with static attributes Arithmetic Types
● Declarations Low level/Interfacing
● Names Generics
● Types with Dynamic att's Expressions
● Statements Exceptions
● Subprograms Tasking
● Packages Distribution

Language Analysis(cont)

● Example – Types with Dynamic Attributes
– Introduction

● Most unconstrained types have constrained objects
● Unconstrained parameters have constrained actuals
● Access types more secure than many languages, but must avoid heap

and watch aliasing
● Storage pool preferrable to Heap
● Run-time sizing of objects makes bounding storage use difficult
● No variant records

Language Analysis(cont)
Types with Dynamic Attributes

Fe a tu re FA SA RC SU TA OMU OCA RT ST

Un c on s tra in e d
a rra y typ e s -
in c lu d in g s tr in g s1

Fu ll a c c e ss typ e s

Re s tr ic te d s tora g e
p ools 3

Ge n e ra l a c c e ss
typ e s

Ac c e ss to
su b p rog ra m

Con trolle d typ e s
in c lu d in g
u n re s tr ic te d
s tora g e p ools

In d e fin ite ob je c ts 7

Non -s ta tic a rra y
ob je c ts 8

In c In c In c In c In c In c In c In c In c

In c In c In c In c

In c

In c

In c

In c

In c In c In c In c In c In c

In c In c In c In c In c In c

In c In c In c In c

In c In c

In c

Ex c

In c

Alld4 Alld4

Alld5 Alld5

Alld6 Alld6

AlldAlldAlldAlldAlld Alld

AlldAlld Alld In c

In c

Ex cEx cEx c

Ex c 6 In c In cEx c 6

Ex c 5 Ex c 5

Ex c 4 Ex c 4

Ex c 2 Ex c 2 Ex c 2 Ex c 2 Ex c 2

Types with Dynamic Attributes

● Notes
● 1. reference sect 5.6,Concatenate fn returns UT
● 2. Full access types use runtime heap, Mem use, TA

problematic, fragmentation. Risk of unbounded aliasing
● 3. Pool-specific access types similar to stack-based types, watch

implementation
● 4. Aliasing problem
● 5. CFA, TA intractible
● 6. Hidden control flows in controlled ttypes
● 7. TA, SA of indefinite objects unpredictable
● 8. TA, SA of run-time dynamically bound types

Types with Dynamic Attributes

● Guidance
– Language-provided restrictions

● No_Implicit_Heap_Allocation
● No_Allocators
● No_Access_Subprograms

– Caution on “Inc” features – risk of aliasing, difficulties of review

Assessment of Approach

● Imtimately tied with technology at time of
writing
– Verification approaches mature with time.

● Considered but doesn't explicitly express
some of the concerns being considered here,
such as attack modes

WG9's next steps

● Current guidelines published and in
significant use for 6 years

● SC22 documents likely to be many years
from publication, and quality unknown

● Eager to participate but don't want to delay
own work

● Hope new insights and approaches may
come from analysis in larger arena

● Currently WG9/HRG looking to revise
existing document
– HI Standards have changed
– New analysis techniques
– New threats
– New analysis techniques for some language

features may change approach (concurrency,
OO)

– New language features (Interfaces)

WG9's next steps (cont)

