

1

Introduction

This abstract introduces the introductory chapter of theStandard. This chapter describes the purpose and
organization of the Standard.

1 Introduction

This Standard specifies requirements for processors of the@gramming language. The first such
requirement is that they implement the language, and so this Standard also defif@th€r requirements
and relaxations of the first requirement appear at various places within the Standard.

CH is a general purpose programming language based on the C programming Iénglaa;gﬁtion to
the facilities provided by C,+€ provides classes, templates, exceptions, inline functions, operator over-
loading, function name overloading, constant types, references, free store management operators, and func-
tion argument checking and type conversion. These extensions to C are summarized in 19.1. The differ-
ences between+€ and 1SO & are summarized in 19.2. The extensions 46 €nce the 1985 edition of
this manual are summarized in 19.1.2.

1.1 Overview

This manual is organized like this:

1. Introduction 10. Derived Classes
2. Lexical Conventions 11. Member Access Control
3. Basic Concepts 12. Special Member Functions
4. Standard Conversions 13. Overloading
5. Expressions 14. Templates
6. Statements 15. Exception Handling
7. Declarations 16. Preprocessing
8. Declarators Appendix A: Grammar Summary
9. Classes Appendix B: Compatibility
1.2 Syntax notation O

In the syntax notation used in this manual, syntactic categories are indicétit tiype, and literal words

and characters ioonstant width type. Alternatives are listed on separate lines except in a few cases
where a long set of alternatives is presented on one line, marked by the"phes& An optional termi-

nal or nonterminal symbol is indicated by the subs¢opt” so

TeThe C Programming Langudgey Brian W. Kernighan and Dennis M. Ritchie, Prentice Hall, 1978 and 1988.
International Standards Organization 1S9899-1990.

1—2 Introduction DRAFT September 28, 1993 Chapter 1

{ expressiop), }

indicates an optional expression enclosed in braces.
Names for syntactic categories have generally been chosen according to the following rules:

X-nameis a context dependent keyword (e.g. class-name, typedef-name).
X-id is an identifier with no context-dependent meaning (e.g. qualified-id).
X-seqis one or moreX's without intervening delimiters.

X-list is one or moreX's separated by intervening commas (expression-lisis a series of expres-
sions separated by commas).
Processors shall issue a diagnostic message for programs that are syntactically incorrect. a

1.3 The G+ memory model a

The fundamental storage unit in the-@nemory model is thbyte. A byte is at least large enough to con-

tain any member of the basic execution character set and is composed of a contiguous sequence of bits, the
number of which is implementation-defined. The least significant bit is callddwherder bit; the most
significant bit is called thaigh-orderbit. The memory accessible to a-@rogram is comprised of one or

more contiguous sequences of bytes. Each byte (except perhaps registers) has a unique address.

The constructs in at€ program create, refer to, access, and manipolgéetsin memory. Each object
(except bit-fields) occupies one or more contiguous bytes. Objects are created by definitions (3.1) and
new-expressiong.3.3). Each object hastgpe determined by the construct that creates it. The type in
turn determines the number of bytes that the object occupies and the interpretation of their contents.
Objects may contain other objects, caltdb-objectd9.2, 10). An object that is not a sub-object of any
other object is called eomplete object The complete object containing an object is called the complete
object of the object. (An object may be its own complete object),

C+ provides a variety of built-in types and several ways of composing new types from existing types.

Certain types havalignmentrestrictions. An object of one of those types may only appear at an
address that is divisible by a particular integer. a

1.4 Definitions of terms a

In this Standard;shall’ is to be interpreted as a requirement e# Qrocessors, antshall not is to be
interpreted as a prohibition.
The following terms are used in this document.

Diagnostic message— a message belonging to an implementation-defined subset of the
implementation’s message output.

Implementation-defined behavier behavior, for a correct program construct and correct data, that
depends on the implementation and that each implementation shall document. The range of possible
behaviors is delineated by the standard.

Implementation limits— restrictions imposed upon programs by the implementation.

Locale-specific behavio— behavior that depends on local conventions of nationality, culture, and lan-
guage that each implementation shall document.

Multibyte character— a sequence of one or more bytes representing a member of the extended charac-
ter set of either the source or the execution environment. The extended character set is a superset of the
basic character set.

Undefined behavior— behavior, upon use of an erroneous program construct, of erroneous data, or of

Section 1.4 DRAFT September 28, 1993 Definitions of terms —13

indeterminately valued objects, for which the standard imposes no requirements. Permissible undefined
behavior ranges from ignoring the situation completely with unpredictable results, to behaving during
translation or program execution in a documented manner characteristic of the environment (with or
without the issuance of a diagnostic message), to terminating a translation or execution (with the
issuance of a diagnostic message). Note that many erroneous program constructs do not engender unde-
fined behavior. They are required to be diagnosed.

Unspecified behavior behavior, for a correct program construct and correct data, that depends on the
implementation. The range of possible behaviors is delineated by the standard. The implementation is
not required to document which behavior occurs.

Argument— an expression in the comma-separated list bounded by the parentheses in a function call
expression, a sequence of prepreocessing tokens in the comma-separated list bounded by the parenthe-
ses in a function-like macro invocation, the operandhobw , or an expression in the comma-
separated list bounded by the angle brackets in a template instantiation. Also knowacsamrgu-

ment or “actual parametér.

Parameter— an object or reference declared as part of a function declaration or definition ir the catch
clause of an exception handler that acquires a value on entry to the function or handler, an identifier
from the comma-separated list bounded by the parentheses immediately following the macro name in a
function-like macro definition, or emplate-parameterA function may said tétake argumentsor to

“have parametersParameters are also known d@$@amal argumentsor “formal parameters.

Static type— The static typeof an expression is the type (3.6) resulting from analysis of the program
without consideration of execution semantics. It depends only on the form of the program and does not
change.

Dynamic type— Thedynamic typef an expression is determined by its current value and may change
during the execution of a program. If a pointer (8.2.1) whose static typeirger to clas®” is point-

ing to an object of clad3, derived from B (10), the dynamic type of the pointéipginter toD.” Refer- [
ences (8.2.2) are treated similarly.

Other terms are defined at their first appearance, indicatéwllrytype. Terms explicitly defined in
this standard are not to be presumed to refer implicitly to similar terms defined elsewhere. Terms not
defined in this standard are to be interpreted according fantlegican National Dictionary for Information
Processing Systemigformation Processing Systems Technical Repngl X3/TR-1-82 (1982).

2

Lexical Conventions

This chapter presents the lexical conventions+gf Qt lists the phases of translation and describes tokens in a
C+ program including comments, identifiers, keywords, and integer, character, floating point, and string literals.
Operators are discussed in 5. The @rammar based on these token is summarized in 18.

2 Lexical conventions 0

A C+ program need not all be translated at the same time. The text of the program is kept in units called
source filegn this standard. A source file together with all the headers and source files included (16.2) via
the preprocessing directi¥énclude , less any source lines skipped by any of the conditional inclusion
(16.1) preprocessing directives, is callettamslation unit Previously translated translation units may be
preserved individually or in libraries. The separate translation units of a program communicate (3.3) by
(for example) calls to functions whose identifiers have external linkage, manipulation of objects whose
identifiers have external linkage, or manipulation of data files. Translation units may be separately trans-
lated and then later linked to produce an executable program. (3.3). O

2.1 Phases of translation g

The precedence among the syntax rules of translation is specified by the following3phases.

1 Physical source file characters are mapped to the source character set (introducing new-line charac-
ters for end-of-line indicators) if necessary. Trigraph sequences are replaced by corresponding
single-character internal representations.

2 Each instance of a new-line character and an immediately preceding backslash character is deleted,
splicing physical source lines to form logical source lines. A source file that is not empty shall end
in a new-line character, which shall not be immediately preceded by a backslash character.

3 The source file is decomposed into preprocessing tokens (2.3) and sequences of white-space charac-
ters (including comments). A source file shall not end in a partial preprocessing token or comment.
Each comment is replaced by one space character. New-line characters are retained. Whether each
nonempty sequence of white-space characters other than new-line is retained or replaced by one
space character is implementation-defined. The process of dividing a source file’s characters into
preprocessing tokens is context-dependent. For example, see the handlimighaf a#include
preprocessing directive.

4 Preprocessing directives are executed and macro invocations are expandgdclude

S Implementations must behave as if these separate phases occur, although in practice different phases may be folded together.

2—2 Lexical Conventions DRAFT September 28, 1993 Chapter 2

preprocessing directive causes the named header or source file to be processed from phase 1 through
phase 4, recursively.

5 Each source character set member and escape sequence in character constants and string literals is
converted to a member of the execution character set.

6 Adjacent character string literal tokens are concatenated and adjacent wide string literal tokens are
concatenated.

7 White-space characters separating tokens are no longer significant. Each preprocessing token is
converted into a token. (See 2.4). The resulting tokens are syntactically and semantically analyzed
and translated. The result of this process starting from a single source file is datladlation
unit.

8 The translation units that will form a program are combined. All external object and function refer-
ences are resolved.

g What about shared libraried?

Library components are linked to satisfy external references to functions and objects not defined in
the current translation. All such translator output is collected into a program image which contains
information needed for execution in its execution environment.

2.2 Trigraph sequences O

1 Before any other processing takes place, each occurrence of one of the following sequences of three charac-
ters (trigraph sequencés$ is replaced by the single character indicated in the table below.

Ltrigraph _replacementU trigraph _replacement _trigraph _replacemlent

o 27 # 527([22< { o

0 22 \ 2?)] 277 } 0

g ?? A B2 | ?2?H ~ H
2 For example,

??=define arraycheck(a,b) a??(b??) ??1??! b??(a??)
becomes
#define arraycheck(a,b) a[b] || b[a]

2.3 Preprocessing tokens O

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
operator
digraph
punctuator
each non-white-space character that cannot be one of the above

1 Each preprocessing token that is converted to a token (2.5) shall have the lexical form of a keyword, an
identifier, a constant, a string literal, an operator, a digraph, or a punctuator.

Section 2.3 DRAFT September 28, 1993 Preprocessing tokens —2

A preprocessing tokeis the minimal lexical element of the language in translation phases 3 through 6.
The categories of preprocessing token &emader namesdentifiers preprocessing numbersharacter
constantsstring literals operators punctuators digraphs and single non-white-space characters that do
not lexically match the other preprocessing token categories. olf @"” character matches the last cate-
gory, the behavior is undefined. Preprocessing tokens can be separatbiebgpacgthis consists of
comments (2.6), awvhite-space charactefspace, horizontal tab, new-line, vertical tab, and form-feed), or
both. As described in 16, in certain circumstances during translation phase 4, white space (or the absence
thereof) serves as more than preprocessing token separation. White space may appear within a preprocess-
ing token only as part of a header name or between the quotation characters in a character constant or string
literal.

If the input stream has been parsed into preprocessing tokens up to a given character, the next prepro-
cessing token is the longest sequence of characters that could constitute a preprocessing token.

The program fragmeritEx is parsed as a preprocessing number token (one that is not a valid floating
or integer constant token), even though a parse as the pair of preprocessing @Bz might produce
a valid expression (for example Bk were a macro defined ad). Similarly, the program fragmed€1
is parsed as a preprocessing number (one that is a valid floating constant token), whethé&r isranot
macro name.

The program fragment+++++y is parsed ag ++ ++ +y , which violates a constraint on incre-
ment operators, even though the parse + ++y might yield a correct expression. O

2.4 Digraph sequences O

Alternate representations are provided for the operators and punctuators whose primary representations use
the“national charactersThese include digraphs and additional reserved words.
digraph:
<%
%>
<:
>
%%
In translation phase 3 (2.1) the digraphs are recognized as preprocessing tokens. Then in translation

phase 7 the digraphs and the additional identifiers listed below are converted into tokens identical to those
from the corresponding primary representations.

Lalternate _primary [alternate primaryl! _alternate primag
o <% { - and & apd eq &= 0
o %> } hitor | or_eq |= O
U < [Uor I xor_edq A= 0
e] or B nay ! E
O %% # O compl ~ not_eq I= O
Fpitand & g H B
2.5 Tokens
token:

identifier

keyword

literal

operator

punctuator

There are five kinds of tokens: identifiers, keywords, literals (which include strings and character and
numeric constants), operators, and other separators. Blanks, horizontal and vertical tabs, newlines, form-
feeds, and comments (collectivetyyhite spac®), as described below, are ignored except as they serve to
separate tokens. Some white space is required to separate otherwise adjacent identifiers, keywords, and

2—4 Lexical Conventions DRAFT September 28, 1993 Chapter 2

literals.
If the input stream has been parsed into tokens up to a given character, the next token is taken to be the

longest string of characters that could possibly constitute a token.

2.6 Comments

The character§ start a comment, which terminates with the chara¢tersThese comments do not nest.
The character§ start a comment, which terminates at the end of the line on which they occur. The com-
ment characterf , /* , and*/ have no special meaning within//a comment and are treated just like
other characters. Similarly, the comment charadterand/* have no special meaning within*a com-

ment.

2.7 ldentifiers

identifier:
nondigit
identifier nondigit
identifier digit

nondigit one of
_abcdefghijklm
nopgqrstuvwxyz
ABCDEFGHIJKLM
NOPQRSTUVWXYZ

digit: one of
0123456789

An identifier is an arbitrarily long sequence of letters and digits. The first character must be a letter; the
underscore counts as a letter. Upper- and lower-case letters are different. All characters are significant.

2.8 Keywords

The following identifiers are reserved for use as keywords, and may not be used otherwise in phases 7 and
8:

asm default friend protected switch void

auto delete goto public template volatile
break do if register this wchar_t
case double inline return throw while
catch else int short try

char enum long signed typedef

class extern new sizeof union

const float operator static unsigned

continue for private struct virtual

Furthermore, the following alternate representations for certain operators and punctuators (see 2.4) are
reserved and may not be used otherwise:

bitand and bitor or xor compl
and_eq or_eq xor_eq not not_eq

In addition, identifiers containing a double underscore) are reserved for use byHCimplementa-
tions and standard libraries and should be avoided by users.

The ASCII representation of+€ programs uses the following characters as operators or for punctua-
tion:

Section 2.8 DRAFT September 28, 1993 Keywords —5

and the following character combinations are used as operators:

>+ - > << >> <= >= == I= &&
” *= [= Op= 4= = <<= >>= &= N= |: .

Each is converted to a single token in translation phase 7 (2.1).
The following character combinations are used as alternative representations for certain operators and
punctuators (see 2.4):

<% %> < > %%

Each of these is also recognized as a single token in translation phases 3 and 7.
In addition, the following tokens are used by the preprocessor:

W% %%%%

Certain implementation-dependent properties, such as the typsiz#ad (5.3.2) and the ranges of
fundamental types (3.6.1), are defined in the standard header files (16.2)

<float.h> <limits.h> <stddef.h>

These headers are part of the ANSI C standard. In addition the headers

<new.h> <stdarg.h> <stdlib.h>
define the types of the most basic library functions. The last two headers are part of the ANSI C standard,;
<new.h> is C+ specific.
2.9 Literals

There are several kinds of literals (often referred tcasstants).

literal:
integer-literal
character-literal
floating-literal
string-literal
2.9.1 Integer literals O

integer-literal:
decimal-literal integer-suffiy,
octal-literal integer-suffix,
hexadecimal-literal integer-suffjy

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

2—6 Lexical Conventions DRAFT September 28, 1993 Chapter 2

hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
1234567829

octal-digit: one of
012 3 4586 7

hexadecimal-digit: one of
01234567829
abocdef

A B CDEF

integer-suffix:
unsigned-suffix long-suffjx
long-suffix unsigned-suffjx

unsigned-suffix:one of
u u

long-suffix: one of
I L

An integer literal consisting of a sequence of digits is taken to be decimal (base ten) unless it befins with
(digit zero). A sequence of digits starting withis taken to be an octal integer (base eight). The dgits
and9 are not octal digits. A sequence of digits precedetxbgr 0X is taken to be a hexadecimal integer
(base sixteen). The hexadecimal digits incladar A throughf or F with decimal values ten through fif-
teen. For example, the number twelve can be writfsr914, or 0XC,

The type of an integer literal depends on its form, value, and suffix. If it is decimal and has no suffix, it
has the first of these types in which its value can be represeritedong int , unsigned long int .
If it is octal or hexadecimal and has no suffix, it has the first of these types in which its value can be repre-
sentedint , unsigned int ,long int ,unsigned long int . Ifitis suffixed byu or U, its type is
the first of these types in which its value can be represemségned int , unsigned long int . If
it is suffixed byl orL, its type is the first of these types in which its value can be represkmgdint ,
unsigned long int . If it is suffixed byul , lu , uL, Lu, Ul, IU, UL, or LU, its type isunsigned

long int .

A program is ill-formed if it contains an integer literal that cannot be represented by any of the alldwed
types. O
2.9.2 Character literals U

character-literal:
' c-char-sequence
L’ c-char-sequence

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except
the single-quoté, backslash , or new-line character
escape-sequence

Section 2.9.2 DRAFT September 28, 1993 Character literals —27

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequencene of
LS S VAR
\a \b \f \n \r \t W

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

A character literal is one or more characters enclosed in single quotesx’as isingle character literals
have typechar . The value of a single character literal is the numerical value of the character in the
machine’s character set. Multicharacter literals have tgpe. The value of a multicharacter literal is
implementation dependent.

Certain nongraphic characters, the single qugtéhe double quoté, the question marR, and the
backslash , may be represented according to the following table of escape sequences:

new-line NL(LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
alert BEL \a
backslash \ \
guestion mark ? \?
single quote ’ \
double quote " \"
octal number ooo \ ooo
hex number hhh \x hhh

If the character following a backslash is not one of those specified, the behavior is undefined. An escape
sequence specifies a single character.

The escap& ooo consists of the backslash followed by one, two, or three octal digits that are taken to
specify the value of the desired character. The estapbh consists of the backslash followed ky
followed by a sequence of hexadecimal digits that are taken to specify the value of the desired character.
There is no limit to the number of hexadecimal digits in the sequence. A sequence of octal or hexadecimal
digits is terminated by the first character that is not an octal digit or a hexadecimal digit, respectively. The
value of a character literal is implementation dependent if it exceeds that of thedhegest

A character literal immediately preceded by the lditefor examplel’'ab’ , is a wide-character lit-
eral. A wide-character literal is of typechar _t . Wide-characters are intended for character sets where a
character does not fit into a single byte. ad

2.9.3 Floating literals ad

floating-constant:
fractional-constant exponent-pgjtfloating-suffix,
digit-sequence exponent-part floating-siffix

2—8 Lexical Conventions DRAFT September 28, 1993 Chapter 2

fractional-constant:
digit-sequencs, . digit-sequence
digit-sequence.

exponent-part:
e sign,, digit-sequence
E sign,y digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
fl F L

A floating literal consists of an integer part, a decimal point, a fraction pagtpak, an optionally signed

integer exponent, and an optional type suffix. The integer and fraction parts both consist of a sequence of
decimal (base ten) digits. Either the integer part or the fraction part (not both) may be missing; either the
decimal point or the letter (or E) and the exponent (not both) may be missing. The type of a floating lit-
eral isdouble unless explicitly specified by a suffix. The suffifeandF specifyfloat , the suffixed

andL specifylong double . a
2.9.4 String literals a
string-literal:

" s-char-sequengg’
L" s-char-sequengg

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except
the double-quot®, backslash , or new-line character
escape-sequence

A string literal is a sequence of characters (as defined in 2.9.2) surrounded by double quotes; as.in
A string has typéarray ofchar " and storage clasgtatic (3.5), and is initialized with the given characters.
Whether all string literals are distinct (that is, are stored in nonoverlapping objects) is implementation
dependent. The effect of attempting to modify a string literal is undefined.

Adjacent string literals are concatenated. Characters in concatenated strings are kept distinct. For
example,

"\XA" "B"

contains the two charactekgA’ and’B’ after concatenation (and not the single hexadecimal character
XAB’).

After any necessary concatenatit®i is appended so that programs that scan a string can find its
end. The size of a string is the number of its characters including this terminator. Within a string, the dou-
ble quote charactér must be preceded by\a

A string literal immediately preceded by the lettefor examplel "asdf" , is a wide-character string.

A wide-character string is of typ&rray ofwchar_t .” Concatenation of ordinary and wide-character
string literals is undefined.

Basic Concepts

This chapter presents the basic concepts of thdaBguage. It explains the difference betweemlgectand a

nameand how they relate to the notion of laalue It introduces the concepts oflaclarationand adefinition

and presents+€'s notion oftype scope linkage andstorage class The mechanisms for starting and terminat-

ing a program are discussed. Finally, this chapter presents the fundamental types of the language and lists the
ways of constructing derived types from these.

This chapter does not cover concepts that affect only a single part of the language. Such concepts are discussed
in the relevant chapters.

3 Basic concepts 0

A name denotes an object, a function, a set of functions, an enumerator, a type, a class member, a template,
a value, or a label. A name is introduced into a program by a declaration. A name can be used only within
a region of program text called isgope A name has a type, which determines its use. A name used in
more than one translation unit may (or may not) refer to the same object, function, type, template, or value
in these translation units depending on the linkage (3.3) specified in the translation units.

An object is a region of storage (3.7). A named object has a storage class (3.5) that determines its life-
time. The meaning of the values found in an object is determined by the type of the expression used to
access it. O

3.1 Declarations and definitions a

A declaration (7) introduces one or more names into a program. A declaration is a definition unless it
declares a function without specifying the body (8.3), it containgxtern specifier (7.1.1) and no ini-
tializer or function body, it is the declaration of a static data member in a class declaration (9.4), it is a class
name declaration (9.1), or it is a typedef declaration (7.1.3). The following, for example, are definitions:

int a;

extern const c = 1,

int f(int x) { return x+a; }

struct S {int a; int b; };

enum { up, down };

whereas these are just declarations:

externint a;
extern const c;
int f(int);

struct S;
typedef int Int;

3—2 Basic Concepts DRAFT September 28, 1993 Chapter 3

There must be exactly one definition of each object, function, class, and enumerator used in a program.
If, however, a function is never called and its address is never taken, it need not be defined. Also, if a
declared object is unused, or is only used as the operasizkof |, it need not be defined. Similarly, if
the name of a class is used only in a way that does not require its definition to be known, it need not be
defined.

g This needs to be made more precise.

3.2 Scopes

There are four kinds of scope: local, function, file, and class.

Local: A name declared in a block (6.3) is local to that block and can be used only in it and in blocks
enclosed by it after the point of declaration. Names of parameters for a function are treated as if
they were declared in the outermost block of that function. In a function declaration, names of
parameters (if supplied) hafenction prototype scopeavhich terminates at the end of the function
declarator.

Function Labels (6.1) can be used anywhere in the function in which they are declared. Only labels
have function scope.

File: A name declared outside all blocks (6.3) and classes (9) has file scope and can be used in the
translation unit in which it is declared after the point of declaration. Names declardilersdtope
are said to bglobal.

Class The name of a class member is local to its class and can be used only in a member function of
that class (9.3), after the operator applied to an object of its class (5.2.4) or a class derived from
(10) its class, after the> operator applied to a pointer to an object of its class (5.2.4) or a class
derived from its class, or after the scope resolution operator (5.1) applied to the name of its class

or a class derived from its class. A name first declaredfograd declaration belongs to either

the global scope or a function scope; see 11.4. The name of a class first declared in a return or
parameter type belongs to the global scope.

Special rules apply to names declared in function parameter declarations (8.2.5), and friend declarations
(11.4).
A name may be hidden by an explicit declaration of that same name in an enclosed block or in a class.
A hidden class member name can still be used when it is qualified by its class name usinggbeator
(5.1, 9.4, 10). A hidden name of an object, function, type, or enumerator with file scope can still be used
when it is qualified by the unary operator (5.1). In addition, a class hame (9.1) may be hidden by the
name of an object, function, or enumerator declared in the same scope. If a class and an object, function, or
enumerator are declared in the same scope (in any order) with the same name the class name is hidden. A
class name hidden by a name of an object, function, or enumerator in local or class scope can still be used
when appropriately (7.1.6) prefixed withass , struct , orunion , or when followed by the opera-
tor. Similarly, a hidden enumeration name can be used when appropriately (7.1.6) prefixed with ‘enum.’
The scope rules are summarized in 10.4.
The point of declaratiorfor a name is immediately after its complete declarator (8) and before its ini-
tializer (if any). For example,
intx = 12;
{intx=x;}

Here the seconx is initialized with its own (unspecified) value.
The point of declaration for an enumerator is immediately after the identifier that names it. For exam-

ple,

AW

Section 3.2 DRAFT September 28, 1993 Scopes —3

enum {x=x},

Here, again, the enumeratois initialized to its own (uninitialized) value.
A nonlocal name remains visible up to the point of declaration of the local name that hides it. For
example,

constint i=2;

{int i[i]; }
declares a local array of two integers. O
3.3 Program and linkage O

A program consists of one or more files (2) linked together. A file consists of a sequence of declarations.

A name of file scope that is explicitly declarsttic hasinternal linkage. Such names are local to
their translation units and can be used as names for other objects, functions, and so on, in other translation
units. A name of file scope that is explicitly declanelithe has internal linkage. A name of file scope
that is explicitly declare¢onst and not explicitly declaredxtern has internal linkage. So does the
name of a class that has not been used in the declaration of an object, function, or class that has external
linkage and has no static members (9.4) and no noninline member functions (9.3.2). Every declaration of a
particular name of file scope that is not declared to have internal linkage in one of these ways in a multifile
program refers to the same object (3.7), function (8.2.5), or class (9). Such names are saieixtietmave
linkage. In particular, since it is not possible to declare a class statie , every use of a particular file
scope class name that has been used in the declaration of an object or function with external linkage or has
a static member or a noninline member function refers to the same class.

Typedef names (7.1.3), enumerators (7.2), and template names (14) do not have external linkage.

Static class members (9.4) have external linkage.

Noninline class member functions have external linkage. Inline class member functions must have
exactly one definition in a program.

Local names (3.2) explicitly declarectern have external linkage unless already declatatic
(7.1.1).

The types specified in all declarations of a particular external name must be identical except for the use
of typedef names (7.1.3) and unspecified array bounds (8.2.4).

A function may be defined only in file or class scope.

Linkage to non-& declarations can be achieved usidigplkage-specificatiorf7.4). O

3.4 Start and termination O

A program must contain a function callegiin . This function is the designated start of the program. This
function is not predefined by the compiler, it cannot be overloaded, and its type is implementation depen-
dent. The two examples below are allowed on any implementation. It is recommended that any further
(optional) parameters be added aétegv . The functioomain() may be defined as

intmain() {/*...*/}
or
int main(int argc, char* argv[]) { /* ... */ }

In the latter formargc shall be the number of arguments passed to the program from an environment in
which the program is run. Hrgc is nonzero these arguments shall be supplied as zero-terminated strings
in argv[0] throughargv[argc-1] andargv[0] shall be the name used to invoke the program or
" . Itis guaranteed thatrgv([argc]==0

The functionmain() may not be called from within a program. The linkage (3.3mafn() is
implementation dependent. The addressnafn() cannot be taken anmain() may not be declared
inline or static

Calling the function

void exit(int);

3—4 Basic Concepts DRAFT September 28, 1993 Chapter 3

declared in<stdlib.h> terminates the program without leaving the current block and hence without
destroying any local variables (12.4). The argument value is returned to the program’s environment as the
value of the program.

A return statement imain() has the effect of leaving the main function (destroying any local vari-
ables) and callingxit() with the return value as the argument.

The initialization of nonlocal static objects (3.5) in a translation unit is done before the first use of any
function or object defined in that translation unit. Such initializations (8.4, 9.4, 12.1, 12.6.1) may be done
before the first statement afain() or deferred to any point in time before the first use of a function or
object defined in that translation unit. The default initialization of all static objects to zero (8.4) is per-
formed before any dynamic (that is, run-time) initialization. No further order is imposed on the initial-
ization of objects from different translation units. The initialization of local static objects is described in
6.7.

Destructors (12.4) for initialized static objects are called when returningrfram() and when call-
ing exit() . Destruction is done in reverse order of initialization. The functtexit() from
<stdlib.h> can be used to specify that a function must be called at exitexit() is to be called,
objects initialized before aatexit() call may not be destroyed until after the function specified in the
atexit() call has been called. Where atGmplementation coexists with a C implementation, any
actions specified by the C implementation to take place afteatéht() functions have been called
take place after all destructors have been called.

Calling the function

void abort();

declared irgstdlib.h> terminates the program without executing destructors for static objects and with-
out calling the functions passedatexit() . a

3.5 Storage classes a

There are two declarable storage classes: automatic and static.
Automaticobjects are associated with an invocation of a block.
Staticobjects exist and retain their values throughout the execution of the entire program.

Named automatic objects are initialized (12.1) each time the control flow reaches their definition and
destroyed (12.4) on exit from their block (6.6).

A named automatic object may not be destroyed before the end of its block nor may a automatic named
object of a class with a constructor or a destructor with side effects be eliminated even if it appears to be
unused.

Similarly, a defined global object of a class with a constructor or a destructor with side effects may not
be eliminated even if it appears to be unused.

Static objects are initialized and destroyed as described in 3.4 and 6.7. Some objects are not associated
with names; see 5.3.3 and 12.2. All global objects have storagesitss Local objects and class mem-
bers can be given static storage class by explicit use efdtie storage class specifier (7.1.1).

3.6 Types

There are two kinds of types: fundamental types and derived types. Types may describe objects, arrays,
references, or functions.

Arrays of unknown size and classes which have been declared but not defined armaaigdete
types because the size of an instance of the type is unknown. Alsojdhdype represents an empty set
of values; it is an incomplete type that cannot be completed.

A class type may be incomplete at one point in a compilation unit and complete later on. Also, the type
of an array may be incomplete at one point in a compilation unit and complete later on. However, the type
of a pointer to array of unknown size cannot be completed.

Section 3.6 DRAFT September 28, 1993 Types —5

Variables that have incomplete type may not be used in some contexts, for example:

class X; /I X us an incomplete type

extern X* xp; /I Xp is a pointer to an incomplete type
externint arr[]; //the type of arr is incomplete

typedef int UNKA[]; // UNKA is an incomplete type

UNKA* arrp; /[arrp is a pointer to an incomplete type
UNKA** arrpp;
void foo()
{
Xp++; /l'ill-formed: X is incomplete

arrp++; //ill-formed: incomplete type
arrpp++; // okay: sizeof UNKA* is known

}
struct X {inti; }; // now X is a complete type
int arr[10]; /I now the type of arr is complete
void bar()
{
Xp++; /l okay: X is complete
arrp++; /lill-formed: UNKA can’t be completed
}
3.6.1 Fundamental types U

There are several fundamental types. The standard hdadis.h> specifies the largest and smallest
values of each for an implementation.

Objects declared as charactethdr) are large enough to store any member of the implementation’s
basic character set. If a character from this set is stored in a character variable, its value is equivalent to the
integer code of that character. Characters may be explicitly dealasggned or signed. Plain
char , signed char , andunsigned char are three distinct types. éhar , asigned char , and an
unsigned char consume the same amount of space.

An enumerationcomprises a set of named integer constant values. Each distinct enumeration consti-
tutes a differenénumerated type

Up to three sizes of integer, declagdrt int ,int , andlong int , are available. Longer integers
provide no less storage than shorter ones, but the implementation may make either short integers or long
integers, or both, equivalent to plain integers. Plain integers have the natural size suggested by the machine
architecture; the other sizes are provided to meet special needs.

Typewchar_t is atype whose range of values can represent distinct codes for all members of the larg-
est extended character set specified among the supported locales (17.4.4\vchigpd has the same
size, signedness, and alignment requirements as one of the other integral types, catledyiag type

For each of the typesigned char , short ,int , andlong , there exists a corresponding (but dif-
ferent)unsigned type, which occupies the same amount of storage and has the same alignment require-
ments. Analignment requiremeris an implementation-dependent restriction on the value of a pointer to
an object of a given type (5.4).

Unsigned integers, declaredsigned , obey the laws of arithmetic modul8 &heren is the number
of bits in the representation. This implies that unsigned arithmetic does not overflow.

There are thre#oating types:float , double , andlong double . The typedouble provides no
less precision thafioat , and the typdongdouble provides no less precision thalouble . An
implementation will define the characteristics of the fundamental floating point types in the standard header
<float.h>

Typeschar , and the signed and unsigned integer types are collectively caégdal types. Enumera-
tions (7.2) are not integral, but they can be promoted (4.1) to signed or unsigned Integral and
floating types are collectively calleatithmetictypes.

10

3—6 Basic Concepts DRAFT September 28, 1993 Chapter 3

Thevoid type specifies an empty set of values. It is used as the return type for functions that do not
return a value. No object of typmid may be declared. Any expression may be explicitly converted to
type void (5.4); the resulting expression may be used only as an expression statement (6.2), as the left
operand of a comma expression (5.18), or as a second or third opePan(bdf6). O

3.6.2 Derived types O

There is a conceptually infinite number of derived types constructed from the fundamental types in the fol-
lowing ways:

arraysof objects of a given type, 8.2.4;

functions which have parameters of given types and return objects of a given type, 8.2.5;
pointersto objects or functions (including static members of classes) of a given type, 8.2.1;
referencego objects or functions of a given type, 8.2.2;

constantswhich are values of a given type, 7.1.6;

classescontaining a sequence of objects of various types (9), a set of functions for manipulating
these objects (9.3), and a set of restrictions on the access to these objects and functions, 11;

structures which are classes without default access restrictions, 11;
unions which are classes capable of containing objects of different types at different times, 9.5;

pointers to non-statitclass membersvhich identify members of a given type within objects of a
given class, 8.2.3.

In general, these methods of constructing types can be applied recursively; restrictions are mentioned in
8.2.1,8.2.4,8.2.5, and 8.2.2.

Any type so far mentioned is amqualified type Each unqualified type has three corresponding
qualified versionf its type.5 a const-qualifiedversion, avolatile-qualifiedversion, and a version having
both qualifications (see 7.1.6). The qualified or unqualified versions of a type are distinct types that belong
to the same type category and have the same representation and alignment reqﬁiﬂerdetriWed type is
not cv-qualified (3.6.3) by the cv-qualifiers (if any) of the type from which it is derived.

A pointer to objects of a typE s referred to as ‘gointer toT.” For example, a pointer to an object of
typeint is referred to aSpointer toint ” and a pointer to an object of classs called & pointer toX.”
Pointers to incomplete types are allowed although there are restrictions on what can be done with them (see
3.6).

Objects of cv-qualified (3.6.3) or unqualified typeid* (pointer to void), can be used to point to
objects of unknown type. Roid* must have enough bits to hold any object pointer.

Except for pointers to static members, text referringpminters does not apply to pointers to mem-

bers. O
3.6.3 CV-qualifiers O
There are twav-qualifiers, const andvolatile . When applied to an objeatpnst means the pro-

gram may not change the object, anthtile has an implementation-defined mean?n@n object may

% Static class members are objects or functions, and pointers to them are ordinary pointers to objects or functions.

See_xxx.yyy_ regarding qualified array and function types.

The same representation and alignment requirements are meant to imply interchangeability as arguments to functions, return values from functions,
e}nd members of unions.

Roughly, volatile means the object may change of its own accord (that is, the processor may not assume that the object continues to hold a previ-
ously held value).

Section 3.6.3 DRAFT September 28, 1993 CV-qualifiers —37

have both cv-qualifiers.
There is a (hon-total) ordering on cv-qualifiers, so that one object or pointer may be said to be more cv-
qualified than another. The following relations constitute this ordering.

Lho cv-qualifier < const O

o cv-qualifier < volatile E
ho cv-qualifier < const volatile 0
O const < const volatile 0
g volatile < const volatile B

A pointer or reference to cv-qualified type (sometimes called a cv-qualified pointer or reference) need
not actually point to a cv-qualified object, but it is treated as if it does. For example, a poauastto
int may point to an unqualifieitit , but a well-formed program may not attempt to change the pointed-to
object through that pointer even though it may change the same object through some other access path.
CV-Qualifiers are supported by the type system so that a cv-qualified object or cv-qualified access path to
an object may not be subverted without casting (5.4). For example:

void f()

{
inti=2; /l not cv-qualified O
constint ci = 3; // cv-qualified (initialized as required)
ci=4; /I error: attempt to modify const
constint* cip; // pointer to const int
cip = &i; Il okay: cv-qualified access path to unqualified
*Cip = 4; /I error: attempt to modify through ptr to const
int* ip;
ip = cip; I error: attempt to create unqualified access path

}

3.6.4 Type names g

Fundamental and derived types can be given names hypbéef mechanism (7.1.3), and families of
types and functions can be specified and named betinglate mechanism (14).

3.7 Lvalues

An objectis a region of storage; dmalueis an expression referring to an object or function. An obvious
example of an Ivalue expression is the name of an object. Some operators yield Ivalues. For example, if
is an expression of pointer type, th#h is an lvalue expression referring to the object to wikigioints.
The namé'lvalu€’ comes from the assignment expresdidn= E2 in which the left operanB1 must be
an Ivalue expression. The discussion of each operator in 5 indicates whether it expects lvalue operands and
whether it yields an Ivalue.

Whenever an lvalue that refers to a non-ffrrabject appears in a context where an Ivalue is not
expected, the value contained in the referenced object is used. When this occurs, the value has the unquali-
fied type of the Ivalue. For example:

const int* cip;
inti=*cip // "™cip" has type int

If this type is incomplete, the program is ill-formed.

g In C this is undefinedB8

For example:

S An Ivalue that refers to an array object is usually converted to a (non-lvalue) pointer to the first element of the array; see 4.6.

3—8 Basic Concepts DRAFT September 28, 1993 Chapter 3

struct X;

X* Xp;

Xp; /I okay: pointer to incomplete type
*Xp; /l error: incomplete type

However, when an Ivalue is used as the operamsizedf the value contained in the referenced object is
notaccessed, since that operator does not evaluate its operand.

An Ivalue can also be used to modify its referent under certain circumstances. Functions cannot be
modified, but pointers to functions may be modifiable. Objects of incomplete type cannot be modified, but
a pointer to such an object may be modifiable and the object itself may be modifiable at some pointlin the
program where its type is complete. Array objects cannot be modified, but their elements may be modifi-
able. The referent of eonst -qualified Ivalue cannot be modified (through that Ivalue). Class or union
objects cannot be modified if any of their elements is a referenceconss or cannot be modified for
any of the foregoing reasons. If an Ivalue can be used to modify its object, it is calétifiable Ivalue
A program that attempts to modify a nonmodifiable Ivalue is ill-formed.

A

Standard Conversions

This chapter presents standard type conversions, including integral promotions, integral conversions, floating
point conversions, conversions between floating and integral types, and arithmetic conversions, as well as
pointer, reference, and pointer to member conversions.

4 Standard conversions i

Some operators may, depending on their operands, cause conversion of the value of an operand from one
type to another. This section summarizes the conversions demanded by most ordinary operators and

explains the result to be expected from such conversions; it will be supplemented as required by the discus-

sion of each operator. These conversions are also used in initialization (8.4, 8.4.3, 12.8, 12.1). 12.3 and

13.2 describe user-defined conversions and their interaction with standard conversions. The result of a con-

version is an Ivalue only if the result is a reference (8.2.2). O

4.1 Integral promotions 0

A char ,wchar_t , ashort int , enumerator, object of enumeration type (7.2), antn bit-field (9.6)

(in both their signed and unsigned varieties) may be used wherever an integer rvalue may be used. In con-
texts where a constant integer is required,ctier , wchar_t , short int , object of enumeration type

(7.2), or bit-field must be constant. (Enumerators are always constant). Except for enumerators, objects of
enumeration type, and typechar_t , if anint can represent all the values of the original type, the value

is converted tant ; otherwise it is converted tansigned int . For enumerators, objects of enumera-

tion type, and typevchar_t , if anint can represent all the values of the underlying type, the value is
converted to amt ; otherwise if arunsigned int can represent all the values, the value is converted to
anunsigned int ; otherwise, if dong can represent all the values, the value is converteddioga;

otherwise it is converted tmsigned long . This process is calldédtegral promotion O

4.2 Integral conversions 0

An integer rvalue may be converted to any integral type. If the target tyosigned the resulting value
is the least unsigned integer congruent to the source integer (m8dulegen is the number of bits used
to represent the unsigned type). In a two's complement representation, this conversion is conceptual and
there is no change in the bit pattern.

When an integer is converted to a signed type, the value is unchanged if it can be represented in the new
type; otherwise the value is implementation dependent. O

4—2 Standard Conversions DRAFT September 28, 1993 Chapter 4

4.3 Float and double a

Single-precision floating point arithmetic may be usedflfat expressions. When a less precise float-
ing value is converted to an equally or more precise floating type, the value is unchanged. When a more
precise floating value is converted to a less precise floating type and the value is within representable range,
the result may be either the next higher or the next lower representable value. If the result is out of range,
the behavior is undefined. O

4.4 Floating and integral O

Conversion of a floating value to an integral type truncates; that is, the fractional part is discarded. Such
conversions are machine dependent; for example, the direction of truncation of negative numbers varies
from machine to machine. The result is undefined if the value cannot be represented in the integral type.

Conversions of integral values to floating type are as mathematically correct as the hardware allows.
Loss of precision occurs if an integral value cannot be represented exactly as a value of the floating fype.
4.5 Arithmetic conversions O

Many binary operators that expect operands of arithmetic type cause conversions and yield result types in a
similar way. The purpose is to yield a common type, which is also the type of the result. This pattern is
called the' usual arithmetic conversiofis.

If either operand is of typeng double , the other is converted tong double .

Otherwise, if either operandd®uble , the other is converted twuble .

Otherwise, if either operandfipat , the other is converted float

Otherwise, the integral promotions (4.1) are performed on both operands.

Then, if either operand imsigned long the other is converted tmsigned long .

Otherwise, if one operand isl@ng int and the otheunsigned int , then if along int can

represent all the values of ansigned int , theunsigned int is converted to éong int ;

otherwise both operands are convertedrsigned long int

Otherwise, if either operandlisng , the other is converted tong .

Otherwise, if either operandisisigned , the other is converted tmsigned

Otherwise, both operands ane¢ .

4.6 Pointer conversions a

The following conversions may be performed wherever pointers (8.2.1) are assigned, initialized, compared,
or otherwise used:

A constant expression (5.19) that evaluates to zero (the null pointer constant) when assigned to,
compared with, alternated with (5.16), or used as an initializer of an operand of pointer type is con-
verted to a pointer of that type. It is guaranteed that this value will produce a pointer distinguishable
from a pointer to any object or function.

A pointer to a cv-qualified or unqualified object type may be converted to a pointer to the same type
with greater cv-qualifications (3.6.3). That is, for any unqualified fyp@T* may be converted to
aconst T*, avolatile T*, or aconst volatile T*; aconst T* may be converted to a

Section 4.6 DRAFT September 28, 1993 Pointer conversions —3

const volatile T*; or avolatile T* may be converted toaonst volatile T*.

A pointer to any object type may be converted twoed* with the greater or equal cv-
qualifications. That is, for any unqualified tyfpe a T* may be converted toid* , aconst
void* , avolatile void* , or aconst volatile void* ;aconst T* may be converted to
aconst void* oraconst volatile void* ; avolatile T* may be converted tomla-
tile void* oraconst volatile void* ; and aconst volatile T* may be converted to
aconst volatile void*

For any unqualified typ&, aT** may be converted to@nst T *const * , and similarly for
more levels of indirection, e.g, ®** may be converted to @nst T *const *const * ,
and aT**** may be converted to @nst T *const *const *const * , etc. This rule
may be applied usingplatile in place ofconst . O

A pointer to function may be converted te@d* provided avoid* has sufficient bits to hold it.

A pointer to a class may be converted to a pointer to an accszible class of that class (20) pro-

vided the conversion is unambiguous (10.1); a base class is accessible if its public members are
accessible (11.1). The result of the conversion is a pointer to the base class sub-object of the derived
class object. The null pointed)is converted into itself.

An expression with typtarray of T” may be converted to a pointer to the initial element of the array

(5).

An expression with typéfunction returningT” is converted td' pointer to function returning”
except when used as the operand of the address-of op&@ttine function call operat@y or the
sizeof operator.

4.7 Reference conversions a

The following conversion may be performed wherever references (8.2.2) are initialized (including argument
passing (5.2.2) and function value return (6.6.3)):

A reference to a cv-qualified or unqualified object type may be converted to a reference to the same
type with increased cv-qualifications.

A reference to a class may be converted to a reference to an accessible base class (10, 11.1) of that
class (8.4.3) provided this conversion can be done unambiguously (10.1.1). The result of the con-
version is a reference to the base class sub-object of the derived class object.

4.8 Pointers to members a

The following conversion may be performed wherever pointers to members (8.2.3) are initialized, assigned,
compared, or otherwise used:

A constant expression (5.19) that evaluates to zero is converted to a pointer to member. It is guaran-
teed that this value will produce a pointer to member distinguishable from any other pointer to mem-
ber.

A pointer to a member of a class may be converted to a pointer to member of a class derived from
that class provided the (inverse) conversion from the derived class to the base class pointer is

Ia pointer to a class may be explicitly converted to a pointer to a base class, regardless of accessibility, using a cast (5.2.3 or 5.4).

4—4 Standard Conversions DRAFT September 28, 1993 Chapter 4

accessible (11.1) and provided this conversion can be done unambiguously (10.1.1).

The rule for conversion of pointers to members (from pointer to member of base to pointer to member
of derived) appears inverted compared to the rule for pointers to objects (from pointer to derived to pointer
to base) (4.6, 10). This inversion is necessary to ensure type safety.

Note that a pointer to member is not a pointer to object or a pointer to function and the rules for conver-
sions of such pointers do not apply to pointers to members. In particular, a pointer to member cannot be
converted to &oid*

Expressions

This chapter discussesHCexpressions, the primary building blocks for computatiofit f@2ovides the usual
arithmetic operators+(-, *, and so on), bit manipulation operatogs |(, ~, and so on), operators for pointer
manipulationt, &[] , ->), storage managememtefv anddelete), conditional evaluation , || , &&), and
the pointer to member operators (and->*).

This chapter also describes explicit type conversiteass(ing).

5 Expressions

This section defines the syntax, order of evaluation, and meaning of expressions. An expression is a
sequence of operators and operands that specifies a computation. An expression may result in a value and
may cause side effects.

Operators can be overloaded, that is, given meaning when applied to expressions of class type (9). Uses
of overloaded operators are transformed into function calls as described in 13.4. Overloaded operators obey
the rules for syntax specified in this section, but the requirements of operand type, Ivalue, and evaluation
order are replaced by the rules for function call. Relations between operators, stiahnasaninga+=1,
are not guaranteed for overloaded operators (13.4).

This section defines the operators when applied to types for which they have not been overloaded.
Operator overloading cannot modify the rules for operators applied to types for which they are defined by
the language itself.

Operators may be regrouped according to the usual mathematical rules only where the operators really
are associative or commutative. Overloaded operators are never assumed to be associative or commutative.
Except where noted, the order of evaluation of operands of individual operators and subexpressions of indi-
vidual expressions is unspecified. In particular, if a value is modified twice in an expression, the result of
the expression is unspecified except where an ordering is guaranteed by the operators involved. For exam-
ple,

i = V[i++]; /l the value of ‘" is undefined
I=7,i++,i++; /'’ becomes 9

The handling of overflow and divide by zero in expression evaluation is implementation dependent.
Most existing implementations of+€ignore integer overflows. Treatment of division by zero and all
floating point exceptions vary among machines, and is usually adjustable by a library function.

Except where noted, operands of typeast T, volatile T, T&, const T&, andvolatile T&
can be used as if they were of the plain typeSimilarly, except where noted, operands of fypeonst
andT*volatile can be used as if they were of the plain type Similarly, a plainT can be used where
avolatile Toraconst Tisrequired. These rules apply in combination so that, except where noted, a
const T*volatile can be used whereTd is required. Such uses do not count as standard conversions
when considering overloading resolution (13.2).

5—2 Expressions DRAFT September 28, 1993 Chapter 5

If an expression has the typeeference tal” (8.2.2, 8.4.3), the value of the expression is the object of
type“T” denoted by the reference. The expression is an Ivalue. A reference can be thought of as a name of
an object.

User-defined conversions of class objects to and from fundamental types, pointers, and so on, can be
defined (12.3). If unambiguous (13.2), such conversions may be applied by the compiler wherever a class
object appears as an operand of an operator, as an initializer (8.4), as the controlling expression in a selec-
tion (6.4) or iteration (6.5) statement, as a function return value (6.6.3), or as a function argument (5.212).

5.1 Primary expressions O

Primary expressions are literals, names, and names qualified by the scope resolution:pperator

primary-expression:

literal

this
identifier
operator-function-id
qualified-id

(expression)

id-expression

A literal is a primary expression. Its type depends on its form (2.9).

In the body of a nonstatic member function (9.3), the keywhisd names a pointer to the object for
which the function was invoked. The keywdtds cannot be used outside a class member function
body.

g In a constructor it is common practice to allthis in mem-initializers &

The operator: followed by anidentifier, a qualified-id or an operator-function-idis a primary
expression. Its type is specified by the declaration of the identifier, nanopetator-function-id The
result is the identifier, name, operator-function-id The result is an Ivalue if the identifier is. The identi-
fier or operator-function-idnust be of file scope. Use of allows a type, an object, a function, or an enu-
merator to be referred to even if its identifier has been hidden (3.2).
A parenthesized expression is a primary expression whose type and value are identical to those of the
unadorned expression. The presence of parentheses does not affect whether the expression is an Ivalue.
A id-expressiorns a restricted form of primary-expressiothat can appear afterand-> (5.2.4):
id-expression:
identifier
operator-function-id
conversion-function-id
~ class-name
qualified-id

An identifier is anid-expressiorprovided it has been suitably declared (7). &oerator-function-ig,
see 13.4. Foconversion-function-isl see 12.3.2. Alass-nameprefixed by~ denotes a destructor; see
12.4.

qualified-id:
nested-class-specifier. id-expression

A nested-class-specifi€®.1) followed by:: and the name of a member of that class (9.2), or a mem-
ber of a base of that class (10), igualified-id its type is the type of the member. The result is the mem-
ber. The result is an Ivalue if the member is. Tlass-namenay be hidden by a nontype name, in which
case theclass-names still found and used. Whentass-name: class-namer class-name: ~ class-
nameis used, the twalass-namg must refer to the same class; this notation names constructors (12.1) and
destructors (12.4), respectively. Multiply qualified names, sudiila®N2::N3::n , can be used to refer
to nested types (9.7). O

Section 5.2 DRAFT September 28, 1993 Postfix expressions —35

5.2 Postfix expressions O

Postfix expressions group left-to-right.

postfix-expression:
primary-expression
postfix-expressior] expression]
postfix-expression(expression-ligf,)
simple-type-specifie expression-ligf;)
postfix-expression id-expression
postfix-expression> id-expression
postfix-expressiont++
postfix-expression-
dynamic_cast < type-name> (expression)
typeid (expression)
typeid (type-name)

expression-list:
assignment-expression
expression-list, assignment-expression

5.2.1 Subscripting

A postfix expression followed by an expression in square brackets is a postfix expression. The intuitive
meaning is that of a subscript. One of the expressions must have tlipdiyger toT” and the other must

be of enumeration or integral type. The type of the resull.is The type“T” must be complete. The
expressiorE1[E2] is identical (by definition) t6((E1)+(E2)) . See 5.3 and 5.7 for details*ofind+

and 8.2.4 for details of arrays. O

5.2.2 Function call O

There are two kinds of function call: ordinary function call and member fur]lgt(érB) call. A function

call is a postfix expression followed by parentheses containing a possibly empty, comma-separated list of
expressions which constitute the arguments to the function. For ordinary function call, the postfix expres-
sion must be a function name, or a pointer or reference to function. For member function call, the postfix
expression must be a class member access (5.2.4) whespressioris a function member name, or a
pointer-to-member expression (5.5) selecting a function member. The first expression in the postfix expres-
sion is then called thebject expressigrand the call is as a member of the object pointed to or referred to.

If a function or member function name is used, the name may be overloaded (13), in which case the appro-
priate function will be selected according to the rules in 13.2. The function called in a member function
call is normally selected according to the static type of the object expression (see 10), but if that function is
virtual the function actually called will be the final overrider (10.2) of the selected function inthe
dynamic type of the object expression (i.e., the type of the object pointed or referred to by the currerif value
of the object expression).

The type of the function call expression is the return type of the statically chosen function (i.e., ignoring
the virtual keyword), even if the type of the function actually called is different. This type must be
complete or the typeoid .

When a function is called, each parameter (8.2.5) is initialized (8.4.3, 12.8, 12.1) with its corresponding
argument. Standard (4) and user-defined (12.3) conversions are performed. The value of a functionl call is
the value returned by the called function except in a virtual function call if the return type of the final Qver-
rider is different from the return type of the statically chosen function, the value returned from theffinal
overrider is converted to the return type of the statically chosen function. A function may change the val-
ues of its nonconstant parameters, but these changes cannot affect the values of the arguments except where
a parameter is of a naenst reference type (8.2.2). Where a parameter is of reference type a temporary
variable is introduced if needed (7.1.6, 2.9, 2.9.4, 8.2.4, 12.2). In addition, it is possible to modify the

YA static member function (9.4) is an ordinary function.

10

5—4 Expressions DRAFT September 28, 1993 Chapter 5

values of nonconstant objects through pointer parameters.

A function may be declared to accept fewer arguments (by declaring default parameters 8.2.6) or more
arguments (by using the ellipsis, 8.2.5) than the number of parameters in the function definition (8.3).

If no declaration of the called function is accessible from the scope of the call the program is ill-formed.
This implies that, except where the ellipsis () is used, a parameter is available for each argument.

Any argument of typdloat for which there is no parameter is converteddoble before the call;
any ofchar , short , enumeration, or a bit-field type for which there is no parameter are conveiried to
or unsigned by integral promotion (4.1). An object of a class for which no parameter is declared is
passed as a data structure.

g What does it mean to pass a parameter as a data strugture?

An object of a class for which a parameter is declared is passed by initializing the parameter with the
argument by a constructor call before the function is entered (12.2, 12.8).

The order of evaluation of arguments is unspecified; take note that compilers differ. All side effects of
argument expressions take effect before the function is entered. The order of evaluation of the postfix
expression and the argument expression list is unspecified.

Recursive calls are permitted.

A function call is an Ivalue if and only if the result type is a reference. O

5.2.3 Explicit type conversion (functional notation) O

A simple-type-specifief7.1.6) followed by a parenthesizedpression-listonstructs a value of the speci-

fied type given the expression list. If the expression list specifies a single value, the expression is equiva-
lent (in definedness, and if defined in meaning) to the corresponding cast expression (5.4). If the expres-
sion list specifies more than a single value, the type must be a class with a suitably declared constructor
(8.4, 12.1).

A simple-type-specifigf7.1.6) followed by a (empty) pair of parentheses constructs a value of the speci-
fied type. If the type is a class, the class must have a default constructor (12.1) (otherwise the expression is
erroneous) and that constructor will be called; otherwise (the type is not a class) the result is an unspecified
value of the specified type. See also (5.4). O

5.2.4 Class member access a

A postfix expression followed by a dat)(or an arrow) followed by anid-expressions a postfix
expression. For the first option (dot) the type of the first expressiomlfjeet expressigrmust be'class
object (of a complete type). For the second option (arrow) the type of the first expressiqoi(ttes
expressiopmust bée' pointer to class objet{of a complete type). Thd-expressioimust name a member
of that class, except that an imputed destructor may be explicitly invoked for a built-in type, see 12.4. If the
id-expressioris aqualified-id, the nested-class-specifi@f the qualified-id is looked up as a type both in
the class of the object expression (or the class pointed to by the pointer expression) and the context in
which the entirgostfix-expressionccurs. If thenested-class-specifieontains demplate-class-ig14.2),
its template-argumestare evaluated in the context in which the emostfix-expressiooccurs. For the
purpose of this type lookup, the name, if any, of each class is also considered a nested class member of that
class. These searches must yield a single type which may be found in either or both contexid- If the
expressiomames a nonstatic data member, the result is the named member of the object designated by the
value of the first expression, and it is an Ivalue if the class object and the member are Ivaluesl- If the
expressiomames a static data member, the result is the named member of the classd-éixgression
names a (possibly overloaded) nonstatic function member, the expression can only be used as part of a
member function call (5.2.2). If thd-expressiomames a (possibly overloaded) static function member,
the result is the function.

Thus ifE1 is a pointer to a class object, the expresEib»MOSis the same agE1).MOS .

Note that'class objectscan be structures (9.2) and unions (9.5). Classes are discussed in 9. O

Section 5.2.5 DRAFT September 28, 1993 Increment and decrement —5

5.2.5 Increment and decrement a

The value obtained by applying a postfix is the value of the operand. The operand must be a modifiable
Ivalue. The type of the operand must be an arithmetic type or a pointer to object type. After the result is
noted, the object is incremented by The type of the result is the same as the type of the operand, but it is
not an lvalue. See also 5.7 and 5.17.

The operand of postfix is decremented analogously to the postfixoperator. O
5.2.6 Dynamic cast O
The result of the expressiaglynamic_cast<T>(v) is of typeT, which must be a pointer or a reference

to a complete class eoid* . The type ofv must be a complete pointer type€Tifis a pointer, or a com-
plete reference type T is a reference.

If T is a pointer to clasB andv is a pointer to clasB such thaB is an unambiguous accessible direct
or indirect base class & the result is a pointer to the unigBesub-object of th® object pointed to by.
Similarly, if T is a reference to clag&andyv is a reference to clagssuch thaB is an unambiguous acces-
sible direct or indirect base class@fthe result is a reference to the unijq]IB sub-object of thé® object
referred to by. For example,

struct B {};
struct D : B {};
void foo(D* dp)
{

B* bp = dynamic_cast<B*>(dp); // equivalent to B* bp = dp;
}

Otherwisev must be a pointer or reference to a polymorphic type (10.2).

If Tisvoid* then the result is a pointer to the complete object (12.6.2) pointedvto ©yherwise, a
run-time check is applied to see if the object pointed or referred to ¢an be converted to the typél
pointed or referred to by.

The run-time check logically executes like this: If, in the complete object pointed (referredy te by
points (refers) to an umambiguous base class sub-object obgect, the result is a pointer (reference) to
thatT object. Otherwise, if the type of the complete object has an unambiguous public base clasg,of type
the result is a pointer (reference) to Theub-object of the complete object. Otherwise, the run-time check
fails.

The value of a failed cast to pointer type is the null pointer. A failed cast to reference type throws
Bad_cast (17.1.3.3.3). For example,

class A { virtual void f(); };
class B { virtual void g(); };
class D : public virtual A, private B {};

void g()
{
D d;
B* bp = (B*)&d; // cast needed to break protection
A* ap = &d; I/ public derivation, no cast needed
D& dr = dynamic_cast<D&>(*bp); // succeeds
ap = dynamic_cast<A*>(bp); Il succeeds
bp = dynamic_cast<B*>(ap); /l fails
ap = dynamic_cast<A*>(&dr); /I succeeds
bp = dynamic_cast<B*>(&dr); // fails
}

T The complete object pointed or refereed tosrbyay contain otheB objects as base classes, but these are ignored.

5—6 Expressions DRAFT September 28, 1993 Chapter 5

class E : public D, public B {};
class F : public E, public D {}
void h()

{
F f
A* ap = &f; [/ okay: finds unique A
D* dp =dynamic_cast<D*>(ap); // fails: ambiguous
E* ep = (E*ap; // error: cast from virtual base
E* ep = dynamic_cast<E*>(ap); // succeeds

5.2.7 Type identification O

The result of dypeid expression is of typeonst Type_info& (17.1.2). The value is a reference to a
Type_info object that represents thge-namer the type of thexpressionespectively.

If the expressioris a reference to a polymorphic type (10.2) Tlype-info for the complete object
(12.6.2) referred to is the result. Where theressions a pointer to a polymorphic type dereferenced
using* or [expressioh the Type-info for the complete object pointed to is the result. Otherwise, the
result is theType-info representing the (static) type of #vepression O

5.3 Unary operators O

Expressions with unary operators group right-to-left.

unary-expression:
postfix-expression
++ unary-expression
-~ unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-id)
new-expression
delete-expression

unary-operator: one of
* & + - | ~

The unary* operator meanmdirection the expression must be a pointer, and the result is an lvalue refer-
ring to the object to which the expression points. If the type of the expressmmiriter toT,” the type of
the result isT.”

The result of the unar§ operator is a pointer to its operand. The operand must be a function, an lvalue,
or aqualified-id In the first two cases, if the type of the expressidiT j5the type of the result igointer
to T.” In particular, the address of an object of type-qualifiedT” is “pointer to cv-qualifiedr,” with the
same cv-qualifiers. For example, the address of an object ottyp T has typeconst T*; vola-
tile is handled similarly. For qualified-id if the member is not static and of typE’ in class‘C,” the
type of the result i$pointer to member of of type T.” For a static member of type the type is plain
“pointer toT.”

The address of an object of incomplete type may be taken, but only if the complete type of that object
does not have the address-of operaipefator&()) overloaded.

g This is (probably) an example of an error of form that need not be diagrigsed.

The address of an overloaded function (13) can be taken only in a context that uniquely determines
which version of the overloaded function is referred to (see 13.3).

The operand of the unaryoperator must have arithmetic or pointer type and the result is the value of
the argument. Integral promotion is performed on integral operands. The type of the result is the type of
the promoted operand.

AW

Section 5.3 DRAFT September 28, 1993 Unary operators —57

The operand of the unary operator must have arithmetic type and the result is the negation of its
operand. Integral promotion is performed on integral operands. The negative of an unsigned quantity is
computed by subtracting its value fror, @vheren is the number of bits in the promoted operand. The
type of the result is the type of the promoted operand.

The operand of the logical negation operatomust have arithmetic type or be a pointer or a pointer to
member; its value i4 if the value of its operand is zero (for arithmetic types) or null (for pointer and
pointer to member types), and zero otherwise. The type of the rastilt.is

The operand of must have integral type; the result is the one’s complement of its operand. Integral
promotions are performed. The type of the result is the type of the promoted operand. O

5.3.1 Increment and decrement a

The operand of prefix+ is incremented by. The operand must be a modifiable Ivalue. The type of the
operand must be an arithmetic type or a pointer to object type. The value is the new value of the operand; it
is an Ivalue. The expressiertx is equivalent toc+=1. See the discussions of addition (5.7) and assign-
ment operators (5.17) for information on conversions.

The operand of prefix is decremented analogously to the prefixoperator.

5.3.2 Sizeof

Thesizeof operator yields the size, in bytes, of its operand. The operand is either an expression, which
is not evaluated, or a parenthesized type name.sitkef operator may not be applied to a function, a
bit-field, an undefined class, the typeid , or an array with an unspecified dimensionbyieis unspeci-

fied by the language except in terms of the valugzgfof ; sizeof(char) is 1.

When applied to a reference, the result is the size of the referenced object. When applied to a class, the
result is the number of bytes in an object of that class including any padding required for placing such
objects in an array. The size of any class or class object is greater than zero. When applied to an array, the
result is the total number of bytes in the array. This implies that the size of an arelgmknts i: times
the size of an element.

Thesizeof operator may be applied to a pointer to a function, but not to a function.

Types may not be defined irsezeof expression.

The result is a constant of tygeze t , an implementation-dependent unsigned integral type defined
in the standard headestddef.h>

5.3.3 New

The new-expressioattempts to create an object of tgpe-id(8.1) to which it is applied. This type must
be a complete object type.

new-expression:
T opt NEW new-placemepy new-typ_e-id new-?n_it?alﬁzg;;t
T opt NEW new-placemegy, (type-id) new-initializeg,

new-placement:
(expression-list)

new-type-id:
type-specifier-seq new-declaraigr

new-declarator:
* cv-qualifier-seg, new-declaratog,
qyalified-class-specifien: * cv-qualifier-segy, new-declaratog,
direct-new-declarator

direct-new-declarator:
direct-new-declaratqy, [expression]

10

11

5—8 Expressions DRAFT September 28, 1993 Chapter 5

new-initializer:
(expression-ligf;)

The lifetime of an object created bynaw-expressiors not restricted to the scope in which it is created.

The new-expressioneturns a pointer to the object created. When that object is an array (thatiswthe
declaratog,|[expressiohsyntax is used), a pointer to its initial element (if any) is returned. For example,
bothnew int andnew int[10] return anint Oand the type ofiew int[i][10] isint (*)[10]

Where an array type (8.2.4) is specified all array dimensions but the first must be constant integral expres-
sions (5.19) with positive values. The first array dimension can be a general ietggesisioreven when

the type-idis used (despite the general restriction of array dimensiotyp@ics to constant-expressian

(5.19)). If the value of the first array dimension is negative the result is undefined.

When the value of the first array dimension is zero, an array with no elements is allocated. The pointer
returned by th@ew-expressiowill be non-null and distinct from the pointer to any other object.

Thetype-specifier-semay not contairtonst , volatile , class declarations, or enumeration declara-
tions.

Storage for the object created byew-expressiors obtained from the appropriaddiocation function
(12.5) pperator new() for non-arrays ooperator new[]() for arrays). When the allocation func-
tion is called, the first argument will be amount of space requested (which may be larger than the size of the
object being created only if that object is an array). Adw-placemendyntax can be used to supply addi-
tional arguments. For exampleew T results in a call obperator new(sizeof(T)) ,hew(2,f) T
results in a call obperatornew(sizeof(T),2,f) , newT[5] results in a call obperator
new[](xX) , andnew(2,f) T[5] resultsin a call ocbperator newl[](y,2,f) , Wherex andy are
greater than or equal sizeof(T[5])

The return value from the allocation function, if non-null, will be assumed to point to a block of appro-
priately aligned available storage of the requested size, and the object will be created in that block (but not
necessarily at the beginning of the block, if the object is an array). The allocation function may indicate
failure by throwing arxalloc exception (15, 17.1.3.3.2). In this case no initialization is done.

If a class has one or more constructors (12rigve-expressiofor that class calls one of them to initial-
ize the object. If the class does not have a default constructor, suitable arguments (13.2) must be provided
in a new-initializer. If there is no constructor and reew-initializer is used, it must be of the forin
expression) or () . If an expression is present it will be used to initialize the object; if not,newa
initializer is not used, the object will start out with an unspecified value.

Access and ambiguity control are done for both the allocation function and the constructor (12.1, 12.5).

No initializers can be specified for arrays. Arrays of objects of a class with constructors can be created
by anew-expressioonly if the class has a default constructor. In that case, the default constructor will be
called for each element of the array.

Whether the allocation function is called before evaluating the constructor arguments, after evaluating
the constructor arguments but before entering the constructor, or by the constructor itself is unspecified. It
is also unspecified whether the arguments to a constructor are evaluated if the allocation function returns
the null pointer or throws an exception.

In anew-type-idused as the operand foew, parentheses may not be used. This implies that

new int(*[101)(); Il error
is ill-formed because the binding is O
(new int) (*[10])(); // error

The explicitly parenthesized version of ti@w operator can be used to create objects of derived types. For
example,

new (int (*[101)0);
allocates an array df0 pointers to functions (taking no argument and returimng).

The new-typein a new-expressiors the longest possible sequencenefv-declaratos. This prevents
ambiguities between declarator operatars, [] , and their expression counterparts. For example,

w

Section 5.3.3 DRAFT September 28, 1993 New —B

new int*i; /I syntax error: parsed as ‘(new int*) i’
i not as ‘(new int)*’

The* is the pointer declarator and not the multiplication operator.

5.3.4 Delete

Thedelete-expressiooperator destroys a complete object (1.3) or array createddwy-axpressian

delete-expression:
T opt delete cast-expression
i opt delete [] cast-expression

The first alternative is for non-array objects, and the second is for arrays. The result kagltype a

In either alternative, if the value of the operanddefete is the null pointer the operation has no
effect. Otherwise, in the first alternativde{ete objeqdt the value of the operand délete must be a O
pointer to a non-array object created byew-expressiomwithout a new-placemenspecification, or a
pointer to a sub-object representing a base class of such an object. In the second alteleaé\aray,
the value of the operand dElete must be a pointer to an array created mewa-expressiomwithout a
new-placemergpecification. Otherwise, the result is undefined.

In the first alternativedelete objedt if the static type of the operand is different from its dynamic tyfge
and the class of the complete object has a destructor (12.4), the static type must have a virtual destirlictor or
the result is undefined. In the second alternatidadete array if the dynamic type of the object to be
deleted is a class that has a destructor and its static type is different from its dynamic type, the result is
undefined.

The effect of attempting to access a deleted object is undefined and the deletion of an object may
change its value. Furthermore, if the expression denoting the objedelpta-expressiois a modifiable
Ivalue, any attempt to access its value after the deletion is undefined.

A program that appliedelete to a pointer to constant is ill formed.

If the class of the object being deleted is incomplete at the point of deletion and the class has a
destructor or an allocation function or a deallocation function, the result is undefined.

Thedelete-expressiowill invoke the destructor (if any) for the object or the elements of the array being
deleted.

To free the storage pointed to, thelete-expressiomwill call a deallocation function(operator
delete() for non-arrays ooperator delete[]() for arrays); see 12.5. a

5.4 Explicit type conversion (cast notation) a

An explicit type conversion can be expressed using either functional notation (5.2.33asttizgation.

cast-expression:
unary-expression
(type-id) cast-expression

Thecastnotation is needed to express conversion to a type that does notdiranpdeatype-specifier

Types may not be defined in casts.

Any type conversion not mentioned below and not explicitly defined by the user (12.3) is ill-formed]

Any type that can be converted to another by a standard conversion (4) can also be converted by explicit
conversion and the meaning is the same.

A value of integral type may be explicitly converted to an enumeration type. If the integral value is not
equal to the value of one of the enumerators, the result is undefined.

A pointer may be explicitly converted to any integral type large enough to hold it. The mapping func-
tion is implementation dependent, but is intended to be unsurprising to those who know the addressing
structure of the underlying machine.

A value of integral type may be explicitly converted to a pointer. A pointer converted to an integer of
sufficient size (if any such exists on the implementation) and back to the same pointer type will have its
original value; mappings between pointers and integers are otherwise implementation dependent.

10

11

12

13

14

15

16

17

18

19

20

21

5—10 Expressions DRAFT September 28, 1993 Chapter 5

A pointer to one object type may be explicitly converted to a pointer to another object type (subject to
the restrictions mentioned in this section). The resulting pointer may be invalid if the subject pointer does
not refer to an object suitably aligned in storage. It is guaranteed that a pointer to an object of a given
alignment may be converted to a pointer to an object of the same or less strict alignment and back again;
the result shall compare equal to the original pointer. (An object that has character type has the least strict
alignment). Different machines may differ in the number of bits in pointers and in alignment requirements
for objects. Aggregates are aligned on the strictest boundary required by any of their constituents. A
void* is considered a pointer to object type. A pointer to any object type may be conveditf toand
back again without change.

A pointer to a complete clasmay be explicitly converted to a pointer to a complete debsit haB
as a direct or indirect base class if an unambiguous conversiorbftorB exists (4.6, 10.1.1) and B is
not a virtual base class (10.1). Such a cast from a base to a derived class is only valid if the pointer points
to an object of the base class that is actually a sub-object of an object of the derived class; the resulting
pointer points to the enclosing object of the derived class. Otherwise (the object of the base class is not a
sub-object of an object of the derived class) the result of the cast is undefined.

A pointer to an object of a derived class (10) may be explicitly converted to a pointer to one of its base
classes regardless of accessibility restrictions (11.2), provided the conversion is unambiguous (10.1.1). The
resulting pointer will refer to the contained object of the base class.

The null pointer @) is converted into itself.

An incomplete class may be used in a pointer cast. If there is any inheritance relationship between the
source and target classes, the behavior is undefined.

An object may be explicitly converted to a reference Wgéf a pointer to that object may be explicitly
converted to afX*. Constructors or conversion functions are not called as the result of a cast to a refer-
ence. Conversion of a reference to a base class to a reference to a derived class is handled similarly to the
conversion of a pointer to a base class to a pointer to a derived class with respect to ambiguity, virtual
classes, and so on.

The result of a cast to a reference type is an lvalue; the results of other casts are not. Operations per-
formed on the result of a pointer or reference cast refer to the same object as the original (uncast) expres-
sion.

A pointer to function may be explicitly converted to a pointer to an object type provided the object
pointer type has enough bits to hold the function pointer. A pointer to an object type may be explicitly con-
verted to a pointer to function provided the function pointer type has enough bits to hold the object pointer.
In both cases, use of the resulting pointer may cause addressing exceptions if the subject pointer does not
refer to suitable storage.

A pointer to a function may be explicitly converted to a pointer to a function of a different type. The
effect of calling a function through a pointer to a function type that differs from the type used in the defini-
tion of the function is undefined. See also 4.6.

An object or a value may be converted to a class object (only) if an appropriate constructor or conver-
sion operator has been declared (12.3).

A pointer to member may be explicitly converted into a different pointer to member type when the two
types are both pointers to members of the same class or when the two types are pointers to member of
classes one of which is unambiguously derived from the other (4.6).

A pointer toconst can be cast into a pointer to noonst with otherwise identical type. The result-
ing pointer will refer to the original object. @onst object or a reference tmnst can be cast into a ref-
erence to nomonst with otherwise identical type. The resulting reference will refer to the original
object. Depending on the type of the referenced object, a write operation through the resulting pointer or
reference may be undefined; see 7.1.6.

A pointer tovolatile can be cast into a pointer to a narlatile with otherwise identical type.

The resulting pointer will refer to the original object. An object afolatile type or a reference to
volatile can be cast into a reference to a motatile with otherwise identical type.

Any expression may be explicitly converted to typed . O

w

Section 5.5 DRAFT September 28, 1993 Pointer-to-member operators —31

5.5 Pointer-to-member operators O

The pointer-to-member operaters and.* group left-to-right.

pm-expression:
cast-expression
pm-expression* cast-expression
pm-expression>* cast-expression

The binary operator* binds its second operand, which must be of typ@nter to member of” to
its first operand, which must be of claB®r of a class of whicfl is an unambiguous and accessible base
class. The result is an object or a function of the type specified by the second operand.
The binary operato>* binds its second operand, which must be of typEnter to member of” to
its first operand, which must be of typgointer toT” or “pointer to a class of which is an unambiguous
and accessible base clsBhe result is an object or a function of the type specified by the second operand.
If the result of* or->* is a function, then that result can be used only as the operand for the function
call operatof) . For example,

(ptr_to_obj->*ptr_to_mfct)(10);

calls the member function denoted jpy _to_mfct for the object pointed to bgtr_to_obj . The
result of an* expression or &* expression is an Ivalue only if its first operand is an Ivalue and its sec-
ond operand refers to an lvalue. a
5.6 Multiplicative operators a

The multiplicative operators, / , and%group left-to-right.

multiplicative-expression:
pm-expression
multiplicative-expressior* pm-expression
multiplicative-expression pm-expression
multiplicative-expressiorfo pm-expression

The operands of and/ must have arithmetic type; the operand®@hust have integral type. The
usual arithmetic conversions (4.5) are performed on the operands and determine the type of the result.

The binary* operator indicates multiplication.

The binary/ operator yields the quotient, and the bin@gperator yields the remainder from the divi-
sion of the first expression by the second. If the second operdndrcfois zero the result is undefined;
otherwise(a/b)*b + a%b is equal taa. If both operands are nonnegative then the remainder is nonneg-
ative; if not, the sign of the remainder is implementation dependent. O

5.7 Additive operators O

The additive operators and- group left-to-right. The usual arithmetic conversions (4.5) are performed
for operands of arithmetic type.

additive-expression:
multiplicative-expression
additive-expression+ multiplicative-expression
additive-expression multiplicative-expression

For addition, either both operands shall have arithmetic type, or one operand shall be a pointer to a com-
pletely defined object type and the other shall have integral type.

For subtraction, one of the following shall hold:

both operands have arithmetic type;

both operands are pointers to qualified or unqualified versions of the same completely defined object
type; or

the left operand is a pointer to a completely defined object type and the right operand has integral type.

5—12 Expressions DRAFT September 28, 1993 Chapter 5

If both operands have arithmetic type, the usual arithmetic conversions are performed on them. The
result of the binary operator is the sum of the operands. The result of the binapgrator is the differ-
ence resulting from the subtraction of the second operand from the first.

For the purposes of these operators, a pointer to a nonarray object behaves the same as a pointer to the
first element of an array of length one with the type of the object as its element type.

When an expression that has integral type is added to or subtracted from a pointer, the result has the
type of the pointer operand. If the pointer operand points to an element of an array object, and the array is
large enough, the result points to an element offset from the original element such that the difference of the
subscripts of the resulting and original array elements equals the integral expression. In other words, if the
expressiorP points to the-th element of an array object, the expressi#)sN (equivalently,N+(P))
and (P)-N (whereN has the valua) point to, respectively, thetn-th andi—n-th elements of the array
object, provided they exist. Moreover, if the expres$t@oints to the last element of an array object, the
expressionP)+1 points one past the last element of the array object, and if the expr@gsbams one
past the last element of an array object, the exprefQiph points to the last element of the array object.

If both the pointer operand and the result point to elements of the same array object, or one past the last ele-
ment of the array object, the evaluation shall not produce an overflow; otherwise, the behavior is undefined.

If the result is used as an operand of the unasperator, the behavior is undefined unless both the pointer
operand and the result point to elements of the same array object, or the pointer operand points one past the
last element of an array object and the result points to an element of the same array object.

When two pointers to elements of the same array object are subtracted, the result is the difference of the
subscripts of the two array elements. The type of the result is an implementation-defined signed integral
type, ptrdiff_t , defined in the<stddef.h> header.

g Is this a typedef for some signed integral type or a different tﬁae?

As with any other arithmetic overflow, if the result does not fit in the space provided, the behavior is unde-
fined. In other words, if the expressioRsand Q point to, respectively, theth andj-th elements of an

array object, the expressiqR)-(Q) has the valué—j provided the value fits in an object of type
ptrdiff_t . Moreover, if the expressidd points either to an element of an array object or one past the
last element of an array object, and the expres3ipaints to the last element of the same array object, the
expression(Q)+1)-(P) has the same value §8)-(P))+1 and as-((P)-((Q)+1)) , and has

the value zero if the expressiéhpoints one past the last element of the array object, even though the
expression{Q)+1 does not point to an element of the array object. Unless both pointers point to elements
of the same array object, or one past the last element of the array object, the behavior is dfidefined. O

5.8 Shift operators O

The shift operators< and>> group left-to-right.

shift-expression:
additive-expression
shift-expression<< additive-expression
shift-expression>> additive-expression

The operands must be of integral type and integral promotions are performed. The type of the result is that
of the promoted left operand. The result is undefined if the right operand is negative, or greater than or
equal to the length in bits of the promoted left operand. The valag gk E2 is E1 (interpreted as a bit
pattern) left-shiftedE?2 bits; vacated bits are zero-filled. The valud&df>> E2 is E1 right-shiftedE2 bit
positions. The right shift is guaranteed to be logical (zero-filllihas an unsigned type or if it has a non-
negative value; otherwise the result is implementation dependent. O

12 Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In this scheme the integral expression added to or
subtracted from the converted pointer is first multiplied by the size of the object originally pointed to, and the resulting pointer is converted back to the
original type. For pointer subtraction, the result of the difference between the character pointers is similarly divided by the size of the object originally
pointed to.

When viewed in this way, an implementation need only provide one extra byte (which may overlap another object in the program) just after the end
of the object in order to satisfy thene past the last elemémequirements.

Section 5.9 DRAFT September 28, 1993 Relational operators —83

5.9 Relational operators O

The relational operators group left-to-right, but this fact is not very usefbkc means(a<b)<c and
not (a<b)&&(b<c)

relational-expression:
shift-expression
relational-expression< shift-expression
relational-expression> shift-expression
relational-expression<=shift-expression
relational-expression>=shift-expression

The operands must have arithmetic or pointer type. The operaftass than)> (greater than)s= (less
than or equal to), ane= (greater than or equal to) all yield zero if the specified relation is fals#& &nt
is true. The type of the resultirg

The usual arithmetic conversions are performed on arithmetic operands. Pointer conversions are per-
formed on pointer operands to bring them to the same type, which must be a qualified or unqualified ver-
sion of the type of one of the operands. This implies that any pointer may be compared to a constant
expression evaluating to zero and any pointer can be compared to a pointer of qualified or unqualified type
void* (in the latter case the pointer is first convertegdm*). Pointers to objects or functions of the
same type (after pointer conversions) may be compared; the result depends on the relative positions of the
pointed-to objects or functions in the address space.

If two pointers of the same type point to the same object or function, or both point one past the end of
the same array, or are both null, they compare equal. If two pointers of the same type point to different
objects or functions, or only one of them is null, they compare unequal. If two pointers point to nonstatic
data members of the same object, the pointer to the later declared member compares higher provided the
two members not separated by aatess-specifidabel (11.1) and provided their class is not a union. If
two pointers point to nonstatic members of the same object separateddneas-specifidabel (11.1) the
result is unspecified. If two pointers point to data members of the same union, they compare equal (after
conversion tovoid* , if necessary). If two pointers point to elements of the same array or one beyond the
end of the array, the pointer to the object with the higher subscript compares higher. Other pointer compar-
isons are implementation dependent. O

5.10 Equality operators O

equality-expression:
relational-expression
equality-expression==relational-expression
equality-expression= relational-expression

The == (equal to) and thé= (not equal to) operators are exactly analogous to the relational operators
except for their lower precedence. (Tl == c<d is 1 whenevera<b andc<d have the same truth-
value.)

In addition, pointers to members of the same type may be compared. Pointer to member conversions
(4.8) are performed. A pointer to member may be compared to a constant expression that evaluatesio zero.

5.11 BitwiseAND operator O

and-expression:
equality-expression
and-expression& equality-expression

The usual arithmetic conversions are performed; the result is the binaseinction of the operands. The
operator applies only to integral operands. a

5—14 Expressions DRAFT September 28, 1993 Chapter 5

5.12 Bitwise exclusivéOR operator O

exclusive-or-expression:
and-expression
exclusive-or-expressiort and-expression

The usual arithmetic conversions are performed; the result is the bitwise exadasfuaction of the
operands. The operator applies only to integral operands. O

5.13 Bitwise inclusiveOR operator O

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expressior] exclusive-or-expression

The usual arithmetic conversions are performed; the result is the bitwise inchrsifusction of its
operands. The operator applies only to integral operands. O

5.14 LogicalAND operator O

logical-and-expression:
inclusive-or-expression
logical-and-expression&& inclusive-or-expression

The && operator groups left-to-right. The operands need not have the same type, but each must have arith-
metic type or be a pointer or pointer to member. It retlirifidoth its operands are nonzero (for arithmetic
types) or non-null (for pointer or pointer to member types), zero otherwise. &nl&& guarantees left-
to-right evaluation; moreover the second operand is not evaluated if the first operand evaluates to zero or
the null pointer or the null pointer to member.

The result is annt . All side effects of the first expression happen before the second expression is
evaluated. O

5.15 LogicalOR operator a

logical-or-expression:
logical-and-expression
logical-or-expression|| logical-and-expression

The|| operator groups left-to-right. The operands need not have the same type, but each must have arith-
metic type or be a pointer or a pointer to member. It retunfi®ither of its operands is honzero or non-
null, and zero otherwise. Unlike || guarantees left-to-right evaluation; moreover, the second operand is
not evaluated if the first operand evaluates to nonzero or non-null.

The result is annt . All side effects of the first expression happen before the second expression is
evaluated. O

5.16 Conditional operator O

conditional-expression:
logical-or-expression
logical-or-expression? expression: assignment-expression

Conditional expressions group right-to-left. The first expression must have arithmetic or pointer or pointer
to member type. It is evaluated and if it is nonzero or nonnull, the result of the conditional expression is the
value of the second expression, otherwise that of the third expression. All side effects of the first expres-
sion happen before the second or third expression is evaluated.

If either the second or third expression thr@w-expressioi(15.2), the result is of the type of the other.

If both the second and the third expressions are of arithmetic type, then if they are of the same type the
result is of that type; otherwise the usual arithmetic conversions are performed to bring them to a common
type. Otherwise, if both the second and the third expressions are either a pointer or a constant expression

Section 5.16 DRAFT September 28, 1993 Conditional operator —515

that evaluates to zero, pointer conversions (4.6) are performed to bring them to a common type which must
be a qualified or unqualified version of the type of either the second or the third expression. Otherwise, if
both the second and the third expressions are either a pointer to member or a constant expression that evalu-
ates to zero, pointer to member conversions (4.8) are performed to bring them to a commonhigbe

must be a qualified or unqualified version of the type of either the second or the third expression. Other-
wise, if both the second and the third expressions are references, reference conversions (4.7) are performed
to bring them to a common type which must be a qualified or unqualified version of the type of either the
second or the third expression. Otherwise, if both the second and the third expressiois atke com-

mon type isvoid . Otherwise, if both the second and the third expressions are of the samg, thass
common type idl. Otherwise the expression is ill formed. The result has the common type; only one of
the second and third expressions is evaluated. The result is an Ivalue if the second and the third operands
are of the same type and both are Ivalues. O

5.17 Assignment operators g

There are several assignment operators, all of which group right-to-left. All require a modifiable Ivalue as
their left operand, and the type of an assignment expression is that of its left operand. The result of the
assignment operation is the value stored in the left operand after the assignment has taken place; the result
is an Ivalue.

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression
throw-expression

assignment-operatorone of
= *= [= Op= += = >>= <<= &= "= |:

In simple assignmenty{, the value of the expression replaces that of the object referred to by the left
operand. If both operands have arithmetic type, the right operand is converted to the type of the left
preparatory to the assignment. There is no implicit conversion to an enumeration (7.2), so if the left
operand is of an enumeration type the right operand must be of the same type. If the left operand is of
pointer type, the right operand must be the null pointer (4.6) or of a type that can be converted to the type of
the left operand, which conversion takes place before the assignment.

A pointer of typeT*const can be assigned to a pointer of tyffg but the reverse assignment is not
allowed (7.1.6). Objects of typewnstT andvolatileT can be assigned to plainlvalues and to
Ivalues of typevolatile T; see also (8.4).

If the left operand is of pointer to member type, the right operand must be of pointer to member type or
a constant expression that evaluates to zero; the right operand is converted to the type of the left before the

assignment.
Assignment to objects of a class }s defined by the functioiX::operator=() (13.4.3). Unless
the user defines aX::operator=() , the default version is used for assignment (12.8). This implies

that an object of a class derived frofdirectly or indirectly) by unambiguous public derivation (4.6) can
be assigned to ax.

A pointer to a member of claBsmay be assigned to a pointer to a member of &asfsthe same type
providedD s derived fromB (directly or indirectly) by unambiguous public derivation (10.1.1).

Assignment to an object of tygeeference tal” assigns to the object of tyfedenoted by the refer-
ence.

The behavior of an expression of the fdeth op= E2 is equivalentt&el = E1 op (E2) ; except
that E1 is evaluated only once. W= and-=, the left operand may be a pointer to completely defined
object type, in which case the (integral) right operand is converted as explained in 5.7; all right operands
and all nonpointer left operands must have arithmetic type.

L3 This is one instance in which theomposite typ¥ as described in the C Standard, is still employedHn C

10

5—16 Expressions DRAFT September 28, 1993 Chapter 5

For class objects, assignment is not in general the same as initialization (8.4, 12.1, 12.6, 12.8).
See 15.2 for throw expressions. O

5.18 Comma operator g
The comma operator groups left-to-right.

expression:
assignment-expression
expression, assignment-expression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left expression is
discarded. All side effects of the left expression are performed before the evaluation of the right expres-
sion. The type and value of the result are the type and value of the right operand; the result is an Ivalue if
its right operand is.

In contexts where comma is given a special meaning, for example, in lists of arguments to functions
(5.2.2) and lists of initializers (8.4), the comma operator as described in this section can appear only in
parentheses; for example,

f(a, (t=3, t+2), c);

has three arguments, the second of which has the ¥alue O

5.19 Constant expressions g

In several places,+€ requires expressions that evaluate to an integral constant: as array bounds (8.2.4), as
case expressions (6.4.2), as bit-field lengths (9.6), and as enumerator initializers (7.2).

constant-expression:
conditional-expression

A constant-expressiocan involve only literals (2.9), enumeratocenst values of integral types initial-

ized with constant expressions (8.4), aimbof expressions. Floating constants (2.9.3) must be cast to
integral types. Only type conversions to integral types may be used. In particular, exsigpbfn
expressions, functions, class objects, pointers, and references cannot be used. The comma operator and
assignment-operatermay not be used in a constant expression.

Statements

This chapter discusses statements, which control the execution sequence of programs.

C+ provides statements for conditional executibn éndswitch) and iterationdo, for , andwhile). The

break , continue ,return , andgoto statements transfer control in atQorogram. Other statements evalu-

ate an expression (the expression statement) or do nothing (the null statement). Statements may be grouped in
{} pairs to form compound statements.

A declaration is a statement ir+C declarations are introduced in this chapter and discussed in detail in the fol-
lowing two chapters.

6 Statements

Except as indicated, statements are executed in sequence.

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block

6.1 Labeled statement g

A statement may be labeled.

labeled-statement:
identifier : statement
case constant-expression statement
default : statement

An identifier label declares the identifier. The only use of an identifier label is as the targetof.aThe
scope of a label is the function in which it appears. Labels cannot be redeclared within a function. A label
can be used ingoto statement before its definition. Labels have their own name space and do not inter-
fere with other identifiers.

Case labels and default labels may occur only in switch statements. O

6—2 Statements DRAFT September 28, 1993 Chapter 6

6.2 Expression statement g

Most statements are expression statements, which have the form

expression-statement:
expressiog), ;

Usually expression statements are assignments or function calls. All side effects from an expression state-
ment are completed before the next statement is executed. An expression statement with the expression
missing is called a null statement; it is useful to carry a label just befoyeafh@ compound statement and
to supply a null body to an iteration statement suchiale (6.5.1). O

6.3 Compound statement or block O

So that several statements can be used where one is expected, the compound statement (also, and equiva-
lently, called“block’) is provided.

compound-statement:
{ statement-seg }

statement-seq:
statement
statement-seq statement

A compound statement defines a local scope (3.2).
Note that a declaration isstatement6.7). O

6.4 Selection statements U

Selection statements choose one of several flows of control.

selection-statement:
if (condition) statement
if (condition) statementelse statement
switch (condition) statement

condition:
expression
type-specifier declarator= expression

The statementn a selection-statemeriboth statements, in trelse form of theif statement) implicitly
defines a local scope (3.2). This can be expressed as a rewriting rule in which the statement is replaced by a
compound statement containing the original statement. For example,
if (x)
for (inti;;) {
...
}

may be equivalently rewritten as
if () {
for (inti;;) {
...
}

}

Thus after théf statement, is no longer in scope.

The rules forconditiors appply both teselection-statemesitand to thfor andwhile statements
(6.5). Thedeclaratormay not specify a function or an array. Tlype-specifiermay not declare a new
class or enumeration.

A name introduced by a declaration ieanditionis in scope from its point of declaration until the end
of the statements controlled by the condition. The valueamingitionthat is an initialized declaration is
the value of the initialized variable.

Section 6.4 DRAFT September 28, 1993 Selection statements —3%

A variable, constant, etc. in the outermost block of a statement controlled by a condition may not have
the same name as a variable, constant, etc. declared in the condition.

If a conditioncan be syntactically resolved as either an expression or the declaration of a local name, it
is interpreted as a declaration. O

6.4.1 Theif statement a

The expression must be of arithmetic or pointer or pointer to member type or of a class type for which an
unambiguous conversion to arithmetic or pointer or pointer to member type exists (12.3).

The expression is evaluated and if it is nonzero (for arithmetic types) or non-null (for pointer or pointer
to member types), the first substatement is executeelsdf is used, the second substatement is executed
if the expression is zero or null. Tlse ambiguity is resolved by connecting alse with the last
encountereélse -lessif . O

6.4.2 Theswitch statement a

Theswitch statement causes control to be transferred to one of several statements depending on the value
of an expression.

The expression must be of integral type or of a class type for which an unambiguous conversion to inte-
gral type exists (12.3). Integral promotion is performed. Any statement within the statement may be
labeled with one or more case labels as follows:

case constant-expression

where theconstant-expressiofb.19) is converted to the promoted type of the switch expression. No two of
the case constants in the same switch may have the same value.
There may be at most one label of the form

default :

within aswitch statement.

Switch statements may be nested;ase or default label is associated with the smallest switch
enclosing it.

When theswitch statement is executed, its expression is evaluated and compared with each case con-
stant. If one of the case constants is equal to the value of the expression, control is passed to the statement
following the matched case label. If no case constant matches the expression, and if tbefauls a
label, control passes to the statement labeled by the default label. If no case matches and if there is no
default then none of the statements in the switch is executed.

case anddefault labels in themselves do not alter the flow of control, which continues unimpeded
across such labels. To exit from a switch, ls®ak , 6.6.1.

Usually, the statement that is the subject of a switch is compound. Declarations may appear in the
statemeniof a switch-statement. However, a program that jumps past a declaration with an explicit or
implicit initializer is ill formed unless the declaration is in an inner block that is not entered (that is, com-
pletely bypassed by the transfer of control; 6.7). This implies that declarations that contain explicit or
implicit initializers must be contained in an inner block. O

6.5 Iteration statements a

Iteration statements specify looping.

iteration-statement:
while (condition) statement
do statement while (expression) ;
for (for-init-statement conditiq, ; expressiog,) statement

for-init-statement:
expression-statement
declaration-statement

6—4 Statements DRAFT September 28, 1993 Chapter 6

Note that dor-init-statemenends with a semicolon.

The statemenin aniteration-statemenimplicitly defines a local scope (3.2) which is entered and exited
each time through the loop. This can be expressed as a rewriting rule in which the statement is replaced by
a compound statement containing the original statement. For example,

while (x)
for (inti;;) {
...
}

may be equivalently rewritten as
while (x) {
for (inti;;) {
...
}

}

Thus after thevhile statementi is no longer in scope.
See 6.4 for the rules aonditiors. O

6.5.1 Thewhile statement a

In thewhile statement the substatement is executed repeatedly until the value of the expression becomes
zero or null. The test takes place before each execution of the statement.

The expression must be of arithmetic or pointer or pointer to member type or of a class type for which
an unambiguous conversion to arithmetic or pointer or pointer to member type exists (12.3).

6.5.2 Thedo statement

In thedo statement the substatement is executed repeatedly until the value of the expression becomes zero
or null. The test takes place after each execution of the statement.

The expression must be of arithmetic or pointer or pointer to member type or of a class type for which
an unambiguous conversion to arithmetic or pointer or pointer to member type exists (12.3). a

6.5.3 Thefor statement a

Thefor statement

for (for-init-statement expressiongl ; expression-g,) statement

is equivalent to

for-init-statement

while (expression-1) {
statement
expression-2;

}

except that acontinue in statement(not enclosed in another iteration statement) will execute
expression-before re-evaluatingxpression-1 Thus the first statement specifies initialization for the loop;
the first expression specifies a test, made before each iteration, such that the loop is exited when the expres-
sion becomes zero or null; the second expression often specifies incrementing that is done after each itera-
tion. The first expression must be of arithmetic or pointer or pointer to member type or of a class type for
which an unambiguous conversion to arithmetic or pointer or pointer to member type exists (12.3).

Either or both of the expressions may be dropped. A missipgession-Inakes the impliedvhile
clause equivalent tahile(1)

If the for-init-statements a declaration, the scope of the names declared extends to the end of the block
enclosing thdor-statement O

Section 6.6 DRAFT September 28, 1993 Jump statements —6

6.6 Jump statements g

Jump statements unconditionally transfer control.

jump-statement:
break ;
continue ;
return expressiog), ;
goto identifier ;

On exit from a scope (however accomplished), destructors (12.4) are called for all constructed named
auto objects declared in that scope, in the reverse order of their declaration. Transfer out of a loop, out of
a block, or back past an initializedito variable involves the destruction afito variables declared at
the point transferred from but not at the point transferred to. (See 6.7 for transfers into blocks). However,
the program may be terminated (by callexjt() or abort() , for example) without destroying auto-
matic class objects. a

6.6.1 Thebreak statement a

Thebreak statement may occur only in #gration-statemenor aswitch statement and causes termi-
nation of the smallest enclosiitgration-statementr switch statement; control passes to the statement
following the terminated statement, if any. a

6.6.2 Thecontinue statement a

Thecontinue statement may occur only in &aration-statemenand causes control to pass to the loop-
continuation portion of the smallest enclositegation-statementthat is, to the end of the loop. More pre-
cisely, in each of the statements

while (foo) { do { for ;) {
...
contin: ; contin: ; contin: ;
} } while (foo); }
acontinue not contained in an enclosed iteration statement is equivalgatdocontin . a
6.6.3 Thereturn statement a

A function returns to its caller by thieturn statement.

A return statement without an expression can be used only in functions that do not return a value, that
is, a function with the return value typeid , a constructor (12.1), or a destructor (12.4). A return state-
ment with an expression can be used only in functions returning a value; the value of the expression is
returned to the caller of the function. If required, the expression is converted, as in an initialization, to the
return type of the function in which it appears. This may involve the construction and copy of a temporary
object (12.2). Flowing off the end of a function is equivalent tetarn with no value; this results in

undefined behavior in a value-returning function. a
6.6.4 Thegoto statement a
Thegoto statement unconditionally transfers control to the statement labeled by the identifier. The identi-
fier must be a label (6.1) located in the current function. a
6.7 Declaration statement O

A declaration statement introduces one or more new identifiers into a block; it has the form

declaration-statement:
declaration

If an identifier introduced by a declaration was previously declared in an outer block, the outer declaration
is hidden for the remainder of the block, after which it resumes its force.

6—6 Statements DRAFT September 28, 1993 Chapter 6

Any initializations ofauto or register variables are done each time theéclaration-statemeris
executed. Destruction of local variables declared in the block is done on exit from the block (6.6).

It is possible to transfer into a block, but not in a way that causes initializations not to be done. A pro-
gram that jumps past a declaration with an explicit or implicit initializer is ill formed unless the declaration
is in an inner block that is not entered (that is, completely bypassed by the transfer of control) or unless the
jump is from a point where the variable has already been initialized. For example,

void f()
{
...
goto Ix; /[error: jump past initializer
...
ly:
Xa=1;
...
Ix:
goto ly; /I ok, jump implies destructor
/I call for ‘a’
}

Initialization of a local object with storage clesstic (7.1.1) is done the first time control passes
through its declaration (only). Wherestatic variable is initialized with an expression that is not a
constant-expressigrdefault initialization to zero of the appropriate type (8.4) happens before its block is
first entered.

The destructor for a locaktatic object will be executed if and only if the variable was constructed.
The destructor must be called either immediately before or as part of the callatefxik{g functions
(3.4). Exactly when is unspecified. O

6.8 Ambiguity resolution O

There is an ambiguity in the grammar involviegpression-statemenainddeclaratiors: An expression-
statementvith a function-style explicit type conversion (5.2.3) as its leftmost subexpression can be indis-
tinguishable from aeclarationwhere the firstleclaratorstarts with & . In those cases ttstatements a
declaration

To disambiguate, the whoktatemenimay have to be examined to determine if it iseapression-
statemenbr adeclaration This disambiguates many examples. For example, assumisg simple-
type-specifie(7.1.6),

T(@)->m =7, /I expression-statement
T(@)++; /I expression-statement
T(a,5)<<c; /I expression-statement
T(*d)(int); /I declaration

T(e)[; /l declaration

T()={1,2}; Il declaration
T(*g)(double(3)); // declaration

In the last example abovg, which is a pointer td, is initialized todouble(3) . This is of course ill- O
formed for semantic reasons, but that does not affect the syntactic analysis.
The remaining cases adeclaratiors. For example,

T(a); Il declaration
T(*b)(); /I declaration
T(c)=7, /I declaration

T(d),e,f=3; // declaration
T(9)(h,2); /I declaration

The disambiguation is purely syntactic; that is, the meaning of the names, beyond whether they are
type-ics or not, is not used in the disambiguation.

Section 6.8 DRAFT September 28, 1993 Ambiguity resolution —67

A slightly different ambiguity betweeexpression-statemenainddeclaratiors is resolved by requiring
atype-idfor function declarations within a block (6.3). For example,

void g()
{
intf(); // declaration
int a; /I declaration
fQ); /I expression-statement
a; /I expression-statement

7

Declarations

A declaration introduces one or more names into a program and specifies how those names are to be interpreted.
A declaration can specify a storage class, type, and linkage for an object or function. It can also provide the defi-
nition of a function or an initial value for an object. A declaration can give a nhame to a constant (enumeration
declaration), declare a new type, or specify a synonym for a type. Inline functoss, , volatile , and the

provision of type-safe linkage are discussed.

7 Declarations

Declarations specify the interpretation given to each identifier; they do not necessarily reserve storage asso-
ciated with the identifier (3.1). Declarations have the form

declaration:
decl-specifier-seg, init-declarator-list,; ;
asm-definition
function-definition
template-declaration
linkage-specification

The declarators in thait-declarator-list(8) contain the identifiers being declared. Only in function defini-
tions (8.3) and function declarations may deel-specifier-sege omitted. Only when declaring a class (9)
or enumeration (7.2), that is, when tthecl-specifieris a class-specifieor enum-specifiermay theinit-
declarator-listbe empty.asm-definitios are described in 7.3, alidkage-specificatiosin 7.4. A declara-
tion occurs in a scope (3.2); the scope rules are summarized in 10.4.

7.1 Specifiers
The specifiers that can be used in a declaration are

decl-specifier:
storage-class-specifier
type-specifier
function-specifier
template-specifier
friend
typedef

decl-specifier-seq;:
decl-specifier-segj, decl-specifier

The longest sequence dkcl-specifies that could possibly be a type name is taken asddod
specifier-segf adeclaration The sequence must be self-consistent as described below. For example,

7—2 Declarations DRAFT September 28, 1993 Chapter 7

typedef char* Pc;
static Pc; [/l error: name missing

Here, the declaratiostaticPc is undefined because no name was specified for the static variable of
type Pc. To get a variable of typat calledPc, thetype-specifieint must be present to indicate that
the typedef-naméc is the name being (re)declared, rather than being part afettiespecifiersequence.

For example,

void f(const Pc); // void f(char*const)
void g(const int Pc); // void g(const int)

Note that sincesigned , unsigned , long , andshort by default implyint , a typedef-name
appearing after one of those specifiers must be the name being (re)declared. For example,

void h(unsigned Pc); // void h(unsigned int)
void k(unsigned int Pc); // void k(unsigned int)

7.1.1 Storage class specifiers O

The storage class specifiers are

storage-class-specifier:
auto
register
static
extern

Theauto orregister specifiers can be applied only to names of objects declared in a block (6.3)
and function parameters (8.3). Theto declarator is almost always redundant and not often used; one
use ofauto is to distinguish @eclaration-statemeritom anexpression-stateme(@.2) explicitly.

A register declaration is aauto declaration, together with a hint to the compiler that the variables
declared will be heavily used. The hint may be ignored and in most implementations it will be ignored if
the address of the variable is taken.

An object declaration is a definition unless it containstttern specifier and has no initializer (3.1).

A definition causes the appropriate amount of storage to be reserved and any appropriate initialization
(8.4) to be done.

Theextern specifier can be applied only to names of objects and functionsstatie specifier
can be applied only to names of objects and functions and to anonymous unions (9.5). There can be no
static function declarations within a block, nor astatic or extern function parameters. Static
class members are described in (%4)ern cannot be used for class members.

A name specifiedtatic has internal linkage. Objects declamhst have internal linkage unless
they have previously been given external linkage. A name speektech has external linkage unless it
has previously been given internal linkage. A file scope name withstarage-class-specifidras exter-
nal linkage unless it has previously been given internal linkage and provided it is not dectested For
a nonmember function anline specifier is equivalent tostatic ~ specifier for linkage purposes (3.3).

All linkage specifications for a name must agree. For example,

static char* f(); // f() has internal linkage

char* f() I/ () still has internal linkage
{rF..*}%

char* g(); /I g() has external linkage

static char* g() // error: inconsistent linkage
{rF..*}%

static int a; /l ‘a’ has internal linkage

int a; /I error: two definitions

Section 7.1.1 DRAFT September 28, 1993 Storage class specifiers—37

static int b; //'b’ has internal linkage
extern int b; Il ‘b’ still has internal linkage
intc; /I ‘¢’ has external linkage
static int c; /I error: inconsistent linkage
extern d; /1 'd" has external linkage
static int d; /I error: inconsistent linkage

The name of a declared but undefined class can be use@xtean declaration. Such a declaration,
however, cannot be used before the class has been defined. For example,

struct S;

extern S a;
extern S f();
extern void g(S);

void h()
g(a); Il error: S undefined
f0; [l error: S undefined
}
7.1.2 Function specifiers O

Some specifiers can be used only in function declarations.

function-specifier:
inline
virtual
Theinline specifier is a hint to the compiler that inline substitution of the function body is to be pre-
ferred to the usual function call implementation. The hint may be ignored. For a honmember function
inline specifier also gives the function default internal linkage (3.3). A function (5.2.2, 8.2.5) defined
within the declaration of a classiidine by default.
An inline member function must have exactly the same definition in every compilation in which it
appears.
A class member function need not be explicitly decléanéde in the class declaration to be inline.
When noinline specifier is used, linkage will be external unlessrdine definition appears before
the first call.

class X {
public:
int f():
inline int g(); // X::g() has internal linkage
int h();
I3
void k(X* p)
inti=p->f(); // now X::f() has external linkage
intj = p->g();

...
}

inline int X::f() /I error: called before defined
/l as inline
{

}

...

7—4 Declarations DRAFT September 28, 1993 Chapter 7

inline int X::g()
...
}
inline int X::h() // now X::h() has internal linkage
{
...
}
Thevirtual specifier may be used only in declarations of nonstatic class member functions within a
class declaration; see 10.2. O
7.1.3 Thetypedef specifier O

Declarations containing thaecl-specifietypedef declare identifiers that can be used later for naming
fundamental or derived types. Ttypedef specifier may not be used irfumnction-definition(8.3).

typedef-name:
identifier
Within the scope (3.2) oftypedef declaration, each identifier appearing as part of any declarator therein
becomes syntactically equivalent to a keyword and names the type associated with the identifier in the way
described in 8. Aypedef-namés thus a synonym for another type.tybedef-nameoes not introduce a
new type the way a class declaration (9.1) does. For example, after

typedef int MILES, *KLICKSP;
the constructions

MILES distance;
extern KLICKSP metricp;

are all correct declarations; the typedaftance isint ; that ofmetricp is “pointer toint .
A typedef may be used to redefine a name to refer to the type to which it already-refeza in the
scope where the type was originally declared. For example,

typedef structs {/* ... */ } s;
typedefint [;

typedef int [;

typedef I [;

A typedef may not redefine a name of a type declared in the same scope to refer to a different type.
For example,

class complex { /* ... */ };
typedef int complex; /I error: redefinition

Similarly, a class may not be declared with the hame of a type declared in the same scope to refer to a dif-
ferent type. For example,

typedef int complex;
class complex { /* ... */ }; [/ error: redefinition

A typedef-naméhat names a class iskss-namég9.1). The synonym may not be used aftelass |,
struct , orunion prefix and not in the names for constructors and destructors within the class declara-
tion itself. For example,

3

Section 7.1.3 DRAFT September 28, 1993 Thepedef specifier 75

struct S {
S(;
~S();
5

typedef struct S T;

Sa=T(); /I ok
struct T *p; [/l error

An unnamed class defined in a typedef gets a dummy name and the typedef name for linkage (3.3) and
as a synonym for its true name. Such a class cannot have constructors or destructors. For example,

typedef struct {
S(); I/l an ordinary member function, not a constructor
1S

7.1.4 Thetemplate specifier

Thetemplate specifier is used to specify families of types or functions; see 14.

7.1.5 Thefriend specifier

Thefriend specifier is used to specify access to class members; see 11.4.

7.1.6 Type specifiers O
The type-specifiers are

type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier

typedef-name

const
volatile

The wordsconst andvolatile may be added to artype-specifiein the declaration of an object. Oth-
erwise, at most ongype-specifiemay be given in a declaration. donst object may be initialized, but

its value may not be changed thereafter without an explicit cast. Unless explicitly dectsmed , a

const object does not have external linkage and must be initialized (8.4; 12.1). An taeger initial-

ized by a constant expression may be used in constant expressions (5.19). Each eleowarst ofaaray

is const and each nonfunction, nonstatic member afoast class object ixonst (9.3.1). A type

which has no user-defined constructors or destructor and no base classes or members with user-defined con-
structors or destructors is callBDMable(but no objects are ever required to be placed in read-only mem-
ory). The effect of a write operation on any part ebast object of a non-ROMable type is the same as

if the object was natonst . The effect of a write operation on any part @bast object of a ROMable

type (which is not a sub-object of an object of a non-ROMable type) is undefined. Such an object may be
placed in readonly memory.

There are no implementation-independent semanticgfatile objects;volatile is a hint to the
compiler to avoid aggressive optimization involving the object because the value of the object may be
changed by means undetectable by a compiler. Each elementotdtite array isvolatile and
each nonfunction, nonstatic member afodatile class object igolatile (9.3.1). An object may be
bothconst andvolatile , with thetype-specifies appearing in either order.

If the type-specifieis missing from a declaration, it is taken toife .

7—6 Declarations DRAFT September 28, 1993 Chapter 7

simple-type-specifier:

qualified-class-specifier

qualified-type-specifier

char

wchar_t

short

int

long

signed

unsigned

float

double

void
At most one of the wordeng orshort may be specified together withit . Either may appear alone,
in which casant is understood. The woldng may appear together wittouble . At most one of the
wordssigned andunsigned may be specified together withar , short ,int , orlong . Either may
appear alone, in which casdg is understood. Thsigned specifier forceshar objects and bit-fields

to be signed; it is redundant with other integral types.
class-specifies andenum-specifier are discussed in 9 and 7.2, respectively.

elaborated-type-specifier:
class-key identifier
class-key qualified-class-specifier identifier
enum identifier
enum qualified-class-specifier: identifier

class-key:
class
struct
union

If an identifier is specified, thelaborated-type-specifiateclares it to be alass-namg9.1) orenum-
name(7.2).

If defined, a name declared using tidon specifier must be defined as a union. If defined, a name
declared using either tlodass or struct specifier must be defined using either theess or struct
specifier. When aualified-class-specifieis used, thadentifier must already have been declared as a
class-name Names of nested types (9.7) can be qualified by the name of their enclosing class:

qualified-type-specifier:
typedef-name
class-name:: qualified-type-specifier

qualified-class-specifier:
nested-class-specifier
nested-class-specifier

nested-class-specifier:
class-name
class-name:: nested-class-specifier

A name qualified by &lass-namemust be a type defined in that class or in a base class of that class. As
usual, a name declared in a derived class hides members of that name declared in base classes; seél3.2.

7.2 Enumeration declarations O

An enumeration is a distinct type (3.6.1) with named constants. Its name becoenesnanamethat is, a
reserved word within its scope.

enum-name:
identifier

Section 7.2 DRAFT September 28, 1993 Enumeration declarations —7

enum-specifier:
enum identifier,,, { enumerator-lisf, }

enumerator-list:
enumerator
enumerator-list, enumerator

enumerator:

identifier

identifier = constant-expression
The identifiers in arenumerator-listare declared as constants, and may appear wherever constants are
required. If no enumerators withappear, then the values of the corresponding constants begin at zero and
increase by one as the declaration is read from left to right. An enumerator gites the associated
identifier the value indicated by tlvenstant-expressigisubsequent identifiers without initializers continue
the progression from the assigned value. ddrestant-expressiomust be of integral type.

The names of enumerators must be distinct from those of ordinary variables and other enumerators in

the same scope. The values of the enumerators need not be distinct. An enumerator is considered defined
immediately after it and its initializer, if any, has been seen. For example,

enum{a, b,c=0};
enum {d, e, f=e+2 };

definesa, ¢, andd to be zerob ande to bel, andf to be3.

Each enumeration defines a type that is different from all other types. The type of an enumerator is its
enumeration.

The underlying typeof an enumeration is an integral type, not gratuitously Iargerim‘lar,\14 that can
represent all enumberator values defined in the enumeration. If the enumerator list is empty, the underlying
type is as if the enumeration had a single enumerator with value 0. The valneod() applied to an O
enumeration type, an object of enumeration type, or an enumerator, is the vsizeoffj applied to
the underlying type.

For an enumeration wheeg,;, is the smallest enumerator agg,, is the largest, the values of the enu-
meration are the values of the underlying type in the rapgeto b, Whereb,,, andb,., are, respec-
tively, the smallest and largest values of the smallest bit-field that canegfgrand e .. On a two's- O
complement machind,,,,, is the smallest value greater than or equal to @las{é,i,) ;abSemax)) of the O
form 2 —1; b, is zero ifeq, is non-negative and (b, + 1) otherwise. It is possible to define an enu-
meration that has values not defined by any of its enumerators.

The value of an enumerator or an object of an enumeration type is converted to an integer by integral
promotion (4.1). For example,

enum color { red, yellow, green=20, blue },
color col =red;

color* cp = &col;

if (*cp == blue) // ...

makescolor a type describing various colors, and then declewksas an object of that type, aod as a
pointer to an object of that type. The possible values of an object ocojpe arered , yellow ,
green , blue ; these values can be converted to the integral values20, and21. Since enumerations
are distinct types, objects of typelor may be assigned only values of tyqmdor . For example,

colorc = 1; /I error: type mismatch,
/I no conversion from int to color
inti =yellow; // ok: yellow converted to integral value 1

I integral promotion

See also 19.3.

% The type should be larger thamt only if the value of an enumerator won't fit in am .

7—8 Declarations DRAFT September 28, 1993 Chapter 7

An expression of arithmetic type or of typehar t may be converted to an enumeration type explic-
itly. The value is unchanged if it is in the range of enumeration values of the enumeration type; otherwise
the resulting enumeration value is unspecified.

g This means the program does not crdsh.

Enumerators defined in a class (9) are in the scope of that class and can be referred to outside member
functions of that class only by explicit qualification with the class name (5.1). The name of the enumera-
tion itself is also local to the class (9.7). For example,

class X {
public:
enum direction { left="", right="r' };
int f(int i)
{return i==left ? 0 : i==right 71 :2;}
2

void g(X* p)
{

direction d; /I error: ‘direction’ not in scope
inti;

i = p->f(left); Il error: ‘left’ not in scope

i = p->f(X::right); // ok

...

7.3 Asm declarations a

An asm declaration has the form

asm-definition:
asm (string-literal) ;

The meaning of aasm declaration is implementation dependent. Typically it is used to pass information
through the compiler to an assembler. O

7.4 Linkage specifications O

Linkage (3.3) betweert€ and non-&+ code fragments can be achieved usiligkage-specification

linkage-specification:
extern string-literal { declaration-seg, }
extern string-literal declaration

declaration-seq:
declaration
declaration-seq declaration

The string-literal indicates the required linkage. The meaning of dtreng-literal is implementation
dependent. Linkage to a function written in the C programming langt@ge,and linkage to a+& func-
tion, "C++" , must be provided by every implementation. Default linkag€+s-" . For example,

complex sqgrt(complex); /I C++ linkage by default
extern "C" {

double sqrt(double); // C linkage
}

Linkage specifications nest. A linkage specification does not establish a scdipkage-specification
may occur only irfile scope (3.2). Ainkage-specificatiorior a class applies to nonmember functions and
objects declared within it. Ainkage-specificatiorfor a function also applies to functions and objects
declared within it. A linkage declaration with a string that is unknown to the implementation is ill-fornied.

Section 7.4 DRAFT September 28, 1993 Linkage specifications —9

If a function has more than otiekage-specificationthey must agree; that is, they must specify the
samestring-literal. A function declaration without a linkage specification may not precede the first linkage
specification for that function. A function may be declared without a linkage specification after an explicit
linkage specification has been seen; the linkage explicitly specified in the earlier declaration is not affected
by such a function declaration.

At most one of a set of overloaded functions (13) with a particular name can have C linkage. See 7.4.

Linkage can be specified for objects. For example,

extern "C" {
...
_iobuf _iob[_NFILE];
...
int _flsbuf(unsigned,_iobuf*);
...
}

Functions and objects may be declastatic ~ within the{} of a linkage specification. The linkage
directive is ignored for such a function or object. Otherwise, a function declared in a linkage specification
behaves as if it was explicitly declarextern . For example,

extern "C" double f();
static double f(); Il error

is ill-formed (7.1.1). An object defined within an a
extern "C" {/* ... */ }

construct is still defined (and not just declared).

Linkage from @+ to objects defined in other languages and to objects defined-ifradn other lan-
guages is implementation and language dependent. Only where the object layout strategies of two language
implementations are similar enough can such linkage be achieved.

When the name of a programming language is used to name a style of linkagstiimghkteral in a
linkage-specificationit is recommended that the spelling be taken from the document defining that lan-
guage, for examplédda (not ADA andFORTRANnotFortran).

w

Declarators

A declarator declares a single object, function, or type, within a declaration. The syntax for declarators, includ-
ing pointers, references, pointers to members, arrays, functions, and types, is explained, as well as how to initial-
ize a declarator in a declaration.

8 Declarators

The init-declarator-list appearing in a declaration is a comma-separated sequence of declarators, each of
which may have an initializer.

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator initializeg,,

The two components of declarationare the specifiersdécl-specifier-seq7.1) and the declarators
(init-declarator-lisf). The specifiers indicate the fundamental type, storage class, or other properties of the
objects and functions being declared. The declarators specify the names of these objects and functions and
(optionally) modify the type with operators such*a§ointer to) and) (function returning). Initial val-
ues can also be specified in a declarator; initializers are discussed in 8.4 and 12.6.

Eachinit-declaratorin a declaration is analyzed separately as if it was in a declaration b)]/‘ritself.

Declarators have the syntax

19 A declaration with several declarators is usually equivalent to the corresponding sequence of declarations each with a single declarator. That is
T D1,D2,...Dn;

is usually equvalent to
T D1;TD2;..TDn;

whereT is adecl-specifier-se@nd eaclDi is ainit-declarator. The exception occurs when one declarator modifies the name environment used by a
following declarator, as in

struct S{... };
S S, T, /ldeclare two instances of struct S

which is not equivalent to
struct S{... };

S S
S T; [lerror

8—2 Declarators DRAFT September 28, 1993 Chapter 8

declarator:
direct-declarator
ptr-operator declarator

direct-declarator:
declarator-id
direct-declarator (parameter-declaration-claus¢ cv-qualifier-seg, exception-specificatiop,
direct-declarator [constant-expressigp]
(declarator)

ptr-operator:
* cv-qualifier-segy
& cv-qualifier-segy,
qualified-class-specifier: * cv-qualifier-segy,

cv-qualifier-seq:
cv-qualifier cv-qualifier-seg

cv-qualifier:
const
volatile

declarator-id:
id-expression
qualified-type-specifier

A class-naméhas special meaning in a declaration of the class of that name and when qualified by that
name using the scope resolution operatof12.1, 12.4). O

8.1 Type names g

To specify type conversions explicitly, and as an argumesizebf or new, the name of a type must be
specified. This can be done withygpe-id which is syntactically a declaration for an object or function of
that type that omits the name of the object or function.

type-id:
type-specifier-seq abstract-declaraggr

type-specifier-seq:
type-specifier type-specifier-sgg

abstract-declarator:
ptr-operator abstract-declaratgy
direct-abstract-declarator

direct-abstract-declarator:
direct-abstract-declaratqy, (parameter-declaration-claus¢ cv-qualifier-seg, exception-specificatiqg
direct-abstract-declaratqg, [constant-expressigp]
(abstract-declarator)

It is possible to identify uniquely the location in thiestract-declaratomwhere the identifier would appear
if the construction were a declarator in a declaration. The named type is then the same as the type of the
hypothetical identifier. For example,

int /linti

int * /lint *pi
int *[3] /l'int *p[3]
int (*)[3] /l'int (*p3i)[3]
int *() Il'int *f()

int (*)(double) [l int (*pf)(double)

name respectively the typémteger, “pointer to integet, “array of 3 pointers to integets;pointer to

Section 8.1 DRAFT September 28, 1993 Type names —8

array of 3 integer,“function having no parameters and returning pointer to integed pointer to func-
tion of double returning an integer.

A type can also be named (often more easily) by usigpelef(7.1.3).

Note that arexception-specificatiodoes not affect the function type, so its appearance abstnact-
declaratorwill have empty semantics. O

8.1.1 Ambiguity resolution O

The ambiguity arising from the similarity between a function-style cast and a declaration mentioned in 6.8
can also occur in the context of a declaration. In that context, it surfaces as a choice between a function
declaration with a redundant set of parentheses around a parameter name and an object declaration with a
function-style cast as the initializer. Just as for statements, the resolution is to consider any construct that
could possibly be a declaration a declaration. A declaration can be explicitly disambiguated by a
nonfunction-style cast or=ato indicate initialization. For example,

struct S {
S(int);
2
void foo(double a)
{
S x(int(a)); / function declaration
S y((int)a); /I object declaration
Sz =int(a); /I object declaration
}
8.2 Meaning of declarators a

A list of declarators appears after an optionald@gl-specifier-se7.1). Each declarator contains exactly
onedeclarator-id it names the identifier that is declared. Except for the declarations of some special func-
tions (12.3, 13.4) declarator-idwill be a simpleidentifier. An auto , static , extern , register
friend , inline , virtual , or typedef specifier applies directly to eadafeclarator-idin a init-
declarator-list the type specified for eadteclarator-id depends on both thaecl-specifier-se@nd its
declarator.

Thus, a declaration of a particular identifier has the form

TD

whereT is adecl-specifier-se@ndD is a declarator. The following subsections give an inductive proce-
dure for determining the type specified for the contadtelarator-idby such a declaration.
First, thedecl-specifier-sedetermines a type. For example, in the declaration

int unsigned i;

the type specifierint unsigned determine the typeunsigned int .” Or in general, in the declara-
tion
TD

thedecl-specifier-seq determines the typer.”
In a declaratiom DwhereDis an unadorned identifier the type of this identifigfTis
In a declaratiom DwhereD has the form

(D1)
the type of the containatkeclarator-idis the same as that of the contaidedlarator-idin the declaration
TD1

Parentheses do not alter the type of the embedielddrator-id but they may alter the binding of complex
declarators.

AW

8—4 Declarators DRAFT September 28, 1993 Chapter 8

8.2.1 Pointers
In a declaratiom DwhereD has the form
* cv-qualifier-segy, D1

the type of the containatkclarator-idis “... cv-qualifier-segpointer toT1,” whereT1 is the type assigned
to the containedeclarator-idin the declaratiom D1. Thecv-qualifiers apply to the pointer and not to the
object pointed to.
For example, the declarations

constint ci = 10, *pc = &ci, *const cpc = pc, **ppc;

inti, *p, *const cp = &i;
declareci , a constant integepc, a pointer to a constant integepc, a constant pointer to a constant
integer,ppc, a pointer to a pointer to a constant integeran integerp, a pointer to integer; anth, a
constant pointer to integer. The valuecdf cpc, andcp cannot be changed after initialization. The value
of pc can be changed, and so can the object pointed¢p b¥xamples of correct operations are

i=ci;

*cp = Ci;
pc++;

pc = cpc;
pc=p;
ppC = &pc;

Examples of ill-formed operations are
ci=1,; I error
Ci++; Il error
*pe = 2; /I error
cp = &ci; /I error
Cpc++; I error
p = pc; Il error

ppc = &p; I error

Each is unacceptable because it would either change the value of an object dealstredr allow it to be
changed through an unqualified pointer later, for example:

*ppc = &ci; // okay, but would make p point to ci ...
I ... because of previous error
*p =5; /I clobber ci

volatile specifiers are handled similarly.
See also 5.17 and 8.4.
There can be no pointers to references (8.2.2) or pointers to bit-fields (9.6).
8.2.2 References
In a declaratiom DwhereD has the form
& cv-qualifier-seg, D1

the type of the containedeclarator-idis “... cv-qualifier-seqreference tol'l,” whereT1 is the type
assigned to the containddclarator-idin the declaratioff D1. The typevoid& is not permitted.

H Should cv-qualifiers be allowed here? What d%s
B int& const i=0; O
Lmean? H

For example,

Section 8.2.2 DRAFT September 28, 1993 References —B

void f(double& a) { a += 3.14; }
...

double d = 0;

f(d);

declares to be a reference parameteff oo the calf(d) willadd3.14 tod.

int v[20];

...

int& g(int i) { return v[i]; }

I ...

93) =7,
declares the functiog() to return a reference to an integer$8)=7 will assign7 to the fourth element
of the arrayv.

struct link {
link* next;

b

link* first;

void h(link*& p) // ‘p’ is a reference to pointer

p->next = first;

first = p;
p=0;

}

void k()

link* g = new link;
h(a);

declareg to be a reference to a pointedittk soh(qg) will leave g with the value zero. See also 8.4.3.

There can be no references to references, no references to bit-fields (9.6), no arrays of references, and no
pointers to references. The declaration of a reference must contaiiaizer (8.4.3) except when the
declaration contains an explieiktern specifier (7.1.1), is a class member (9.2) declaration within a class
declaration, or is the declaration of an parameter or a return type (8.2.5); see 3.1. A reference must be ini-
tialized to refer to a valid object. In particular, null references are prohibited. a

8.2.3 Pointers to members a

In a declaratiod DwhereD has the form
qualified-class-specifier: * cv-qualifier-seg, D1

the type of the containeadbclarator-idis “... cv-qualifier-segpointer to member of clagtass-namef type
T1,” whereT1 is the type assigned to the contaidedlarator-idin the declaratiod D1.
For example,

class X {
public:
void f(int);
int a;

h

int X::* pmi = &X::a;

void (X::* pmf)(int) = &X::f;
declarepmi andpmf to be a pointer to a memberXbf typeint and a pointer to a memberXbf type
void(int) , respectively. They can be used like this:

8—6 Declarators DRAFT September 28, 1993 Chapter 8

X obj;
/...
obj.*pmi=7; /[assign 7 to an integer
/I member of obj
(obj.*pmf)(7); // call a function member of obj
// with the argument 7

Note that a pointer to member cannot point to a static member of a class (9.4). There are no references
to members. See also 5.5 and 5.3.

8.2.4 Arrays
In a declaratiom DwhereD has the form
D1 [constant-expressigg]

and the type of the identifier in the declarafioD1 is “type-modifiefT,” then the type of the identifier &f

is “type-modifierarray of T.” If the constant-expressiofb.19) is present, it must be of enumeration or inte-

gral type and have a value greater than zero. The constant expression specifies the number of elements in
the array. If the constant expressioijshe array hablelements humbered zeroNel .

An array may be constructed from one of the fundamental types (exadpj, from a pointer, from a
pointer to member, from a class, from an enumeration, or from another array.

When severatarray of specifications are adjacent, a multidimensional array is created; the constant
expressions that specify the bounds of the arrays may be omitted only for the first member of the sequence.
This elision is useful for function parameters of array types, and when the array is external and the defini-
tion, which allocates storage, is given elsewhere. Theclinsstant-expressiomay also be omitted when
the declarator is followed by anitializer-clause(8.4). In this case the size is calculated from the number
of initial elements supplied (8.4.1).

The declaration

float fa[17], *afp[17];
declares an array éibat numbers and an array of pointerdloeat numbers. The declaration
static int x3d[3][5][7];

declares a static three-dimensional array of integers, with reb¥73 In complete detaik3d is an array
of three items; each item is an array of five arrays; each of the latter arrays is an array of seven integers.
Any of the expressiong3d, x3d[i] , x3d[i][j] , x3d[i][ilk] may reasonably appear in an
expression.

When an identifier of array type appears in an expression, except as the opesaadfof or & or
used to initialize a reference (8.4.3), it is converted into a pointer to the first member of the array. Because
of this conversion, arrays are not modifiable Ivalues. Except where it has been declared for a class (13.4.5),
the subscript operatdi is interpreted in such a way thBtl[E2] is identical to*((E1)+(E2))
Because of the conversion rules that apphy,td E1 is an array an&2 an integer, thek1[E2] refers to
the E2-th member ofE1l. Therefore, despite its asymmetric appearance, subscripting is a commutative
operation.

A consistent rule is followed for multidimensional arrays.Elfis an n-dimensional array of rank
ixjx - .xk, thenE appearing in an expression is converted to a pointer tm al Y-dimensional array
with rankjx - - - xk. If the* operator, either explicitly or implicitly as a result of subscripting, is applied to
this pointer, the result is the pointed-to-1)-dimensional array, which itself is immediately converted
into a pointer.

For example, consider

int x[3][5];

Herex is a X5 array of integers. Whenappears in an expression, it is converted to a pointer to (the first

of three) five-membered arrays of integers. In the expres§ijon, which is equivalent té(x+i) , x is

first converted to a pointer as described; theéin is converted to the type &f which involves multiplying

i by the length of the object to which the pointer points, namely five integer objects. The results are added

Section 8.2.4 DRAFT September 28, 1993 Arrays 87

and indirection applied to yield an array (of five integers), which in turn is converted to a pointer to the first
of the integers. If there is another subscript the same argument applies again; this time the result is an inte-
ger.

It follows from all this that arrays in#€ are stored row-wise (last subscript varies fastest) and that the
first subscript in the declaration helps determine the amount of storage consumed by an array but plays no
other part in subscript calculations.

8.2.5 Functions
In a declaratiodm DwhereD has the form
D1 (parameter-declaration-claus¢ cv-qualifier-segy

and the type of the containeéclarator-idin the declaratiom D1 is “type-modifierT1,” the type of the
declarator-id in D is “type-modifier cv-qualifier-sgg function with parameters of typparameter-
declaration-clausend returningrl1.”

parameter-declaration-clause:
parameter-declaration-ligh; ... op
parameter-declaration-list, ...

parameter-declaration-list:
parameter-declaration
parameter-declaration-list, parameter-declaration

parameter-declaration:
decl-specifier-seq declarator
decl-specifier-seq declarator expression
decl-specifier-seq abstract-declaraggr
decl-specifier-seq abstract-declaraggr=expression

The parameter-declaration-clausgetermines the arguments that can be specified, and their procedsing,
when the function is called. If tiEarameter-declaration-claugerminates with an ellipsis, the number of
arguments is known only to be equal to or greater than the number of parameters specified; if it is empty,
the function takes no arguments. The parametefMat) is equivalent to the empty parameter list.
Except for this special cas®id may not be a parameter type (though types derived ¥aich , such as
void* , may). Where syntactically corre¢t,... 7 is synonymous witlf... ”. The standard header
<stdarg.h> contains a mechanism for accessing arguments passed using the ellipsis, see 17.4.8. See
12.1 for the treatment of array arguments.

A single name may be used for several different functions in a single scope; this is function overloading
(13). All declarations for a function with a given parameter list must agree exactly both in the type of the
value returned and in the number and type of parameters; the presence or absence of the ellipsis is consid-
ered part of the function type. Parameter types that differ only in the use of typedef (7.1.3) names, the
register storage-class-specifieor unspecified array bounds agree exactly.

g This needs to be made more precise.

A parameter that is declared ‘agray oftype’ or “function returningyp€’ is adjusted td pointer totype’
or “pointer to function returningype” respectively. The return type and the parameter types, but not the
default parameters (8.2.6), are part of the function typev-dualifier-seqcan only be part of a declaration
or definition of a nonstatic member function, and of a pointer to a member function; see 9.3.1. It is part of
the function type.

Functions cannot return arrays or functions, although they can return pointers and references to such
things. There are no arrays of functions, although there may be arrays of pointers to functions.

Types may not be defined in return or parameter types.

The parameter-declaration-clauses used to check and convert arguments in calls and to check
pointer-to-function and reference-to-function assignments and initializations.

10

8—8 Declarators DRAFT September 28, 1993 Chapter 8

An identifier can optionally be provided as a parameter name; if present in a function declaration, it can-
not be used since it goes out of scope at the end of the function declarator (3.2); if present in a function def-
inition (8.3), it names a parameter (sometimes cdffermal argumeri)). In particular, parameter names
are also optional in function definitions and names used for a parameter in different declarations and the
definition of a function need not be the same.

The declaration

inti,
*pi,
f0,
*fpi(int),
(*pif)(const char*, const char*);
(*fpif(int))(int);

declares an integér, a pointempi to an integer, a functioh taking no arguments and returning an integer,
a functionfpi taking an integer argument and returning a pointer to an integer, a gfintés a function
which takes two pointers to constant characters and returns an integer, a fipiictiotaking an integer
argument and returning a pointer to a function that takes an integer argument and returns an integer. It is
especially useful to compafigi andpif . The binding offpi(int) is *(fpi(int)) , S0 the decla-
ration suggests, and the same construction in an expression requires, the calling of affiinctime then
using indirection through the (pointer) result to yield an integer. In the decldrptf)(const
char*, const char*) ,the extra parentheses are necessary to indicate that indirection through a pointer
to a function yields a function, which is then called.

Typedefs are sometimes convenient when the return type of a function is complex. For example, the
functionfpif above could have been declared

typedefint IFUNC(int);
IFUNC* fpif(int);

The declaration
fseek(FILE*, long, int);

declares a function taking three arguments of the specified types. Since no return value type is specified it
is taken to bént (7.1.6). The declaration

printf(const char* ...);
declares a function that can be called with varying numbers and types of arguments. For example,

printf("hello world");
printf("a=%d b=%d", a, b);

It must always have a value, however, that can be convertembtesta char* as its first argument. O

8.2.6 Default parameters O

If an expression is specified in a parameter declaration this expression is used as a default parameter. All
subsequent parameters must have default parameters supplied in this or previous declarations of this func-
tion. Default parameters will be used in calls where trailing arguments are missing. A default parameter
cannot be redefined by a later declaration (not even to the same value). A declaration may add default
parameters, however, not given in previous declarations.

The declaration

point(int = 3, int = 4);

declares a function that can be called with zero, one, or two arguments it typ& may be called in any
of these ways:

point(1,2); point(1); point();

The last two calls are equivalentgoint(1,4) andpoint(3,4) , respectively.

Section 8.2.6 DRAFT September 28, 1993 Default parameters —8

Default parameter expressions in non-member functions have their hames bound and their types
checked at the point of declaration, and are evaluated at each point of call. In member functions, names in
default parameter expressions are bound at the end of the class declaration, like names in inline member
function bodies (9.3.2). In the following exampdewill be called with the valu§2)

inta=1;
int f(int);
int g(int x = f(a)); // default parameter: f(::a)

void h() {
a=2;
{
inta=3;
90); 11'g(f(::a))
}
Local variables may not be used in default parameter expressions. For example,
void f()
{
inti;

extern void g(int x =i); // error
...

}

Note that default parameters are evaluated before entry into a function and that the order of evaluation
of function arguments is implementation dependent. Consequently, parameters of a function may not be
used in default parameter expressions. Paramaters of a function declared before a default parameter expres-
sion are in scope and may hide global and class member names. For example,

int a;
int f(int a, int b = a); Il error: parameter ‘a’

/l used as default parameter
typedef int [;

int g(float I, int b = I(2)); // error: ‘float’ called

Similarly, the declaration ak::mem1() in the following example is undefined because no object is
supplied for the nonstatic membéra used as an initializer.

int b;
class X {
int a;
meml(int i = a); // error: nonstatic member ‘a’
// used as default parameter
mem2(int i = b); // ok; use X::b
static b;
b

The declaration oK::mem2() is meaningful, however, since no object is needed to access the static
memberX::b . Classes, objects, and members are described in 9.
A default parameter is not part of the type of a function.

int f(int = 0);

void h()

{

intj = f(1);

int k = (); /I fine, means f(0)
}

int (*p1)(int) = &f;
int (*p2)() = &f; /I error: type mismatch

8—10 Declarators DRAFT September 28, 1993 Chapter 8

7 An overloaded operator (13.4) cannot have default parameters. O
8.3 Function definitions O
1 Function definitions have the form

function-definition:
decl-specifier-seg, declarator ctor-initializeg,, function-body

function-body:
compound-statement

Thedeclaratorin afunction-definitionmust contain a declarator with the form
D1(parameter-declaration-clausg¢ cv-qualifier-seg,

as described in 8.2.5.

2 The parameters are in the scope of the outermost block fofritton-body
3 A simple example of a complete function definition is
int max(int a, int b, int)
{
intm=(a>b)?a:b;
return (m>c¢) ? m:c;
}
Hereint is thedecl-specifier-segmax(int a, int b, int c¢) is thedeclarator, { /* ... */ } is
thefunction-body
4 A ctor-initializer is used only in a constructor; see 12.1 and 12.6.
5 A cv-qualifier-seqcan be part of a non-static member function declaration, non-static member function
definition, or pointer to member function only; see 9.3.1. It is part of the function type.
6 Note that unused parameters need not be named. For example,
void print(int a, int)
{
printf("a = %d\n",a);
}

8.4 Initializers

1 A declarator may specify an initial value for the identifier being declared.
initializer:
= initializer-clause
(expression-list)

initializer-clause:
assignment-expression
{ initializer-list , o }

initializer-list:
initializer-clause
initializer-list , initializer-clause

2 Automatic, register, static, and external variables at file scope may be initialized by arbitrary expres-
sions involving constants and previously declared variables and functions.

int f(int);
inta=2;
int b = f(a);
int c(b);

Section 8.4 DRAFT September 28, 1993 Initializers -811

A pointer of typeconst T* or volatile T*, orconst volatile T*, that is, a pointer to con-
stant, volatile, or constant volatile can be initialized with a pointer of tyde, but none of the reverse
initializations are allowed. Objects of tyfecan be initialized with objects of type independently of
const andvolatile modifiers on both the initialized variable and on the initializer. For example,

int a;
constintb = a;
int c = b;

const int* p0 = &a;
const int* pl = &b;
int* p2 = &b; Il error: makes a pointer to
// nonconst point to a const

int *const p3 = p2;
int *const p4 = pl; // error: makes a pointer to

// nonconst point to a const
const int* p5 = p1;

The declarations gf2 andp4 are ill-formed for the same reason: had those initializations been allowkd,
they would have allowed the value of something declamwt to be changed through an unqualified
pointer.

Default parameter expressions are more restricted; see 8.2.6.

Initialization of objects of classes with constructors is described in 12.6.1. Copying of class objects is
described in 12.8. The order of initialization of static objects is described in 3.4 and 6.7.

Variables with storage class static (3.5) that are not initialized and do not have a constructor are guaran-
teed to start off as zero converted to the appropriate type. If the objeclassa or struct , its data
members start off as zero converted to the appropriate type. If the objegti@na, its first data member
starts off as zero converted to the appropriate type. The initial values of automatic and register variables
that are not initialized are indeterminate.

When an initializer applies to a pointer or an object of enumeration or arithmetic type, it consists of a
single expression, perhaps in braces. The initial value of the object is taken from the expression; the same
conversions as for assignment are performed.

Note that sincé) is not an initializer,

X a();

is not the declaration of an object of clagsbut the declaration of a function taking no argument and
returning anX.
An initializer for a static member is in the scope of the member’s class. For example,

int a;

struct X {
static int a;
static int b;

h

int X::a=1;
intX:b=a; //X:b=X:a

See 8.2.6 for initializers used as default parameters.

8.4.1 Aggregates

An aggregateis an array or an object of a class (9) with no constructors (12.1), no private or protected
members (11), no base classes (10), and no virtual functions (10.2). When an aggregate is initialized the
initializer may be arinitializer-clauseconsisting of a brace-enclosed, comma-separated list of initializers

for the members of the aggregate, written in increasing subscript or member order. If the aggregate con-
tains subaggregates, this rule applies recursively to the members of the subaggregate. If there are fewer ini-
tializers in the list than there are members of the aggregate, then the aggregate is padded with zeros of the

9

8—12 Declarators DRAFT September 28, 1993 Chapter 8

appropriate types.
For example,

struct S { int a; char* b; int c; };
Sss={1, "asdf" };

initializesss.a with 1, ss.b with "asdf' , andss.c with zero.

An aggregate that is a class may also be initialized with an object of its class or of a class publicly
derived from it (12.8).

Braces may be elided as follows. If tindtializer-clausebegins with a left brace, then the succeeding
comma-separated list of initializers initializes the members of the aggregate; it is erroneous for there to be
more initializers than members. If, however, ithiializer-clauseor a subaggregate does not begin with a
left brace, then only enough elements from the list are taken to account for the members of the aggregate;
any remaining members are left to initialize the next member of the aggregate of which the current aggre-
gate is a part.

For example,

intx[]={1,3,5}

declares and initializes as a one-dimensional array that has three members, since no size was specified
and there are three initializers.
float y[4][3] = {
{1,3,5},
{2,4,6},
{3,5,7},
I3
is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the &y, namely
y[0][0] ,y[O][1] ,andy[O][2] . Likewise the nexttwo lines initializg1l] andy[2] . The initial-
izer ends early and therefoy§3] is initialized with zeros. Precisely the same effect could have been
achieved by
float y[4][3] = {
1,3,52,4,6,3,5,7
2
The last (rightmost) index varies fastest (8.2.4).
The initializer fory begins with a left brace, but the one §§0] does not, therefore three elements
from the list are used. Likewise the next three are taken successivgly]fomandy[2] . Also,

float y[4][3] = {
\ {1h{2}{3}L{4}

initializes the first column of (regarded as a two-dimensional array) and leaves the rest zero.

Initialization of arrays of objects of a class with constructors is described in 12.6.1.

The initializer for a union with no constructor is either a single expression of the same type, or a brace-
enclosed initializer for the first member of the union. For example,

union u {int a; char* b; };

ua={1}

ub=a;

uc=1; /I error
ud={0, "asdf"}; [/ error
ue={"asdf"}; Il error

There may not be more initializers than there are members or elements to initialize. For example,
charcv[4]={'a,’'s’,'d,'f,0}; /lerror

is ill-formed. a

10

Section 8.4.1 DRAFT September 28, 1993 Aggregates —8&3

A POD-struct® is an aggregate structure that contains neither references nor pointers to members.
Similarly, aPOD-unionis an aggregate union that contains neither references nor pointers to members.

8.4.2 Character arrays O

A char array (whether signed or unsigned) may be initialized biriag-literal; successive characters of
the string initialize the members of the array. For example,

char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string. Note that Betause a single
character and because a traili@j is appendedsizeof(msg) is 25.
There may not be more initializers than there are array elements. For example,

char cv[4] = "asdf"; // error

is ill-formed since there is no space for the implied traiNdg . O

8.4.3 References

A variable declared to beT&, that is“reference to typ&” (8.2.2), must be initialized by an object of type
T or by an object that can be converted infio &or example,

void f()
{ . .
inti;
int&r=i; //'rrefersto '
r=1; /I the value of ‘i’ becomes 1

int* p = &r; // 'p’ points to ‘'
int& rr =r; // ‘rr’ refers to what ‘r’ refers to,
/I that is, to ‘I’
}

A reference cannot be changed to refer to another object after initialization. Note that initialization of a
reference is treated very differently from assignment to it. Argument passing (5.2.2) and function value
return (6.6.3) are initializations.

The initializer may be omitted for a reference only in a parameter declaration (8.2.5), in the declaration
of a function return type, in the declaration of a class member within its class declaration (9.2), and where
theextern specifier is explicitly used. For example,

int& ri; /I error: initializer missing
extern int& r2; // ok

If the initializer for a reference to typeis an Ivalue of typd or of a type derived (10) fror for
which T is an unambiguous accessible base (4.6), the reference will refer T phe of the) initializer;
otherwise, if and only if the reference is toanst and an object of typ€ can be created from the initial-
izer, such an object will be created. The reference then becomes a name for that object. For example,

double d =2.0;

double& rd = d; / rd refers to ‘d’
const double& rcd = d; // rcd refers to ‘d’
double& rd2 = 2.0; /I error: not an Ivalue
int i=2;

doubleé& rd3 = i; /I error: type mismatch

const double& rcd2 = 2; // rcd2 refers to temporary
[/l with value ‘2’

O The acronym POD stands fgplain ol’ data’

8—14 Declarators DRAFT September 28, 1993 Chapter 8

A reference to a&onst object is required to beonst . Similarly a reference to waolatile or
const volatile object is required to beolatile orconst volatile (respectively). However, a

const ,volatile , orconst volatile reference can refer to a plain object. For example,
const double d = 2.0;
doubleé& rd = d; I/ error: non-const reference to const
const volatile double& rcvd = d; // okay: rcvd refers to ‘d’
const double& rcd = revd; // error: non-volatile reference to volatile

The lifetime of a temporary object created in this way is the scope in which it is created (3.5). Note that
a reference to a clagcan be initialized by an object of a cld3providedB is an accessible and unam-
biguous base class Df(in that case ®is aB); see 4.7.

Classes

A classis a user-defined type. A class definition specifies the representation of objects of the class and the set of
operations that can be applied to such objects. This chapter presents the syntax and semantics for simple classes.
The definition of bothstatic and nonstatic members is discussed, and the scope rules involving classes

and functions- including local and nested classes containing member functiare described. The mecha-

nisms for controlling the layout of class objects, for conforming to externally imposed formats, and for maintain-
ing compatibility with C layoutsstruct s,union s and bit-fields) are presented.

Derived classes (that is, inheritance), access control, and special member functions are discussed in the next three
chapters.

9 Classes

A class is a type. Its name becometaas-nam€9.1), that is, a reserved word within its scope.

class-name:
identifier
template-class-id

Class-specifies andelaborated-type-specifier(7.1.6) are used to makkss-nams. An object of a class
consists of a (possibly empty) sequence of members.

class-specifier:
class-head{ member-specificatiqp, }

class-head:
class-key identifigp, base-clausgy,
class-key nested-class-specifier base-clgyse

class-key:
class
struct
union

The name of a class can be used dass-nameven within thenember-specificatioaf the class spec-
ifier itself. A class-specifieis commonly referred to as a class definition. A class is considered defined
when itsclass-specifiehas been seen even though its member functions are in general not yet defined.

Objects of an empty class have a nonzero size.

Class objects may be assigned, passed as arguments to functions, and returned by functions (except
objects of classes for which copying has been restricted; see 12.8). Other plausible operators, such as
equality comparison, can be defined by the user; see 13.4.

A structureis a class declared with tletass-keystruct ; its members and base classes (10) are public
by default (11). Aunionis a class declared with tldass-keyunion ; its members are public by default
and it holds only one member at a time (9.5). O

9—2 Classes DRAFT September 28, 1993 Chapter 9

9.1 Class names a

A class definition introduces a new type. For example,

struct X { int a; };
struct Y {inta; };
X al;

Y az;

int a3;

declares three variables of three different types. This implies that

al = az; I error: Y assigned to X
al =a3; [l error: int assigned to X

are type mismatches, and that

int f(X);
int f(Y);

declare an overloaded (13) functiifn and not simply a single functid) twice. For the same reason,

struct S {inta; };
struct S {inta; }; // error, double definition

is ill-formed because it definé&stwice. O

A class definition introduces the class name into the scope where it is defined and hides any class,
object, function, or other declaration of that name in an enclosing scope (3.2). If a class name is declared in
a scope where an object, function, or enumerator of the same name is also declared the class can be referred
to only using arelaborated-type-specifi€7.1.6). For example,

struct stat {
...
2

stat gstat; /I use plain ‘stat’ to
/I define variable

int stat(struct stat*); // redefine ‘stat’ as function

void f()
{
struct stat* ps; /I *struct’ prefix needed
/l to name struct stat
...
stat(ps); /I call stat()
...
}

An elaborated-type-specifiarith a class-keyused without declaring an object or function introduces a
class name exactly like a class definition but without defining a class. For example,

structs{inta; };
void g()
{

struct s; // hide global struct ‘s’
s* p; I/ refer to local struct ‘s’
struct s { char* p; }; // declare local struct ‘s’

}
Such declarations allow definition of classes that refer to each other. For example,

Section 9.1 DRAFT September 28, 1993 Class names —3

class vector;

class matrix {
...
friend vector operator*(matrix&, vector&);

k

class vector {
...
friend vector operator*(matrix&, vector&);

k

Declaration ofriend s is described in 11.4, operator functions in 13.4.

An elaborated-type-specifi€f.1.6) can also be used in the declarations of objects and functions. It dif-
fers from a class declaration in that if a class of the elaborated name is in scope the elaborated name will
refer to it. For example,

structs{inta; };

void g(int s)
struct s* p = new struct s; /l global ‘s’
p->a=s; /l'local ‘s’
}
A name declaration takes effect immediately afteidkatifieris seen. For example,
class A*A;

first specifiesA to be the name of a class and then redefines it as the name of a pointer to an object of that
class. This means that the elaborated folass A must be used to refer to the class. Such artistry with
names can be confusing and is best avoided.

A typedef-namé€7.1.3) that names a class islass-namgsee also 7.1.3. O

9.2 Class members a

member-specification:
member-declaration member-specificatjpn
access-specifier. member-specificatiqp

member-declaration:
decl-specifier-seg, member-declarator-ligf, ;
function-definition
qualified-id ;

7 opt

member-declarator-list:
member-declarator
member-declarator-list, member-declarator

member-declarator:
declarator pure-specifigy,
identifier,, : constant-expression

pure-specifier:
=0

The member-specificatiom a class definition declares the full set of members of the class; no member
can be added elsewhere. Members of a class are data members, member functions (9.3), nested types, and
member constants. Data members and member functions are static or nonstatic; see 9.4. Nested types are
classes (9.1, 9.7) and enumerations (7.2) defined in the class, and arbitrary types declared as members by
use of a typedef declaration (7.1.3). The enumerators of an enumeration (7.2) defined in the class are

w

10

11

12

13

9—4 Classes DRAFT September 28, 1993 Chapter 9

member constants of the class. Except when used to declare friends (11.4) or to adjust the access to a mem-
ber of a base class (11.3hember-declaration declare members of the class, and each merhber-
declarationmust declare at least one member name of the class. A member may not be declared twice in
themember-specificatigrexcept that a nested class may be declared and then later defined.

Note that a single name can denote several function members provided their types are sufficiently dif-
ferent (13). Note that member-declaratocannot contain amitializer (8.4). A member can be initialized
using a constructor; see 12.1.

A member may not bauto , extern , orregister

Thedecl-specifier-segan be omitted in function declarations only. Thember-declarator-listan be
omitted only after aclass-specifier an enum-specifier or a decl-specifier-sepf the form friend
elaborated-type-specifierA pure-specifiemay be used only in the declaration of a virtual function (10.2).

Nonstatic (9.4) members that are class objects must be objects of previously declared classes. In
particular, a classl may not contain an object of clagls, but it may contain a pointer or reference to an
object of classl . When an array is used as the type of a nonstatic member all dimensions must be speci-
fied.

A simple example of a class definition is

struct tnode {
char tword[20];
int count;
tnode *left;
tnode *right;
h
which contains an array of twenty characters, an integer, and two pointers to similar structures. Once this
definition has been given, the declaration

tnode s, *sp;

declares to be atnode andsp to be a pointer to tnode . With these declarationsp->count refers
to thecount member of the structure to whislp points;s.left refers to thdeft subtree pointer of
the structures; ands.right->tword[0] refers to the initial character of tthword member of the
right subtree of.

Nonstatic data members of a class declared without an intervaciegs-specifiesire allocated so that
later members have higher addresses within a class object. The order of allocation of nonstatic data mem-
bers separated by asrcess-specifiers implementation dependent (11.1). Implementation alignment
requirements may cause two adjacent members not to be allocated immediately after each other; so may
requirements for space for managing virtual functions (10.2) and virtual base classes (10.1); see also 5.4.

If two typesT1 andT2 are the same type, th@&i andT2 arelayout-compatibleypes.

Two POD-struct (8.4.1) types are layout-compatible if they have the same number of members, and cor-
responding members (in order) have layout-compatible types.

Two POD-union (8.4.1) types are layout-compatible if they have the same number of members, and cor-
responding members (in any order) have layout-compatible types.

g Shouldn’t this be the sansetof types?H

Two enumeration types are layout-compatible if they have the same sets of enumerator values.

5 Shouldn't this be the sammderlying typ@ &

If a POD-union contains several POD-structs that share a common initial sequence, and if the POD-
union object currently contains one of these POD-structs, it is permitted to inspect the common initial part
of any of them. Two POD-structs share a common initial sequence if corresponding members have layout-
compatible types (and, for bit-fields, the same widths) for a sequence of one or more initial members.

A pointer to a POD-struct object, suitably converted, points to its initial member (or if that member is a
bit-field, then to the unit in which it resides) and vice versa. There may therefore be unnamed padding
within a POD-struct object, but not at its beginning, as necessary to achieve appropriate alignment.

14

15

16

17

18

19

20

21

Section 9.2 DRAFT September 28, 1993 Class members —85

The range of nonnegative values of a signed integral type is a subrange of the corresponding unsigned
integral type, and the representation of the same value in each type is the same.

Even if the implementation defines two or more basic types to have the same representation, they are
nevertheless different types.

The representations of integral types shall define values by use of a pure binary numeration system.

g Does this mean two’s complement? |s there a definitidpafe binary numeration systetn®

The qualified or unqualified versions of a type are distinct types that have the same representation and
alignment requirements.

A qualified or unqualifiedvroid* shall have the same representation and alignment requirements as a
qualified or unqualifieathar* .

Similarly, pointers to qualified or unqualified versions of layout-compatible types shall have the same
representation and alignment requirements.

If the program attempts to access the stored value of an object other than through an Ivalue of one of the
following types:

the declared type of the object,
a qualified version of the declared type of the object,
a type that is the signed or unsigned type corresponding to the declared type of the object,

a type that is the signed or unsigned type corresponding to a qualified version of the declared type of
the object,

an aggregate or union type that includes one of the aforementioned types among its members (includ-
ing, recursively, a member of a subaggregate or contained union), or

a character typg.

the result is undefined.
A function member (9.3) with the same name as its class is a constructor (12.1). A static data member,
enumerator, member of an anonymous union, or nested type may not have the same name as its cldss.

9.2.1 Scope rules for classes O
The following rules describe the scope of names declared in classes.
1. The scope of a name declared in a class consists not only of the text following the name’s declarator,

but also of all function bodies, default parameters, and constructor initializers in that class (including
such things in nested classes).

2. A nameN used in a clasS must refer to the same declaration when re-evaluated in its context and
in the completed scope of S.

3. If reordering member declarations in a class yields an alternate valid program under (1) and (2), the
program’s meaning is undefined.

4. A declaration in a nested declarative region hides a declaration whose declarative region contains
the nested declarative region.

<7 The intent of this list is to specify those circumstances in which an object may or may not be aliased.

9—6 Classes DRAFT September 28, 1993 Chapter 9

5. A declaration within a member function hides a declaration whose scope extends to or past the end
of the member function’s class.

6. The scope of a declaration that extends to or past the end of a class definition also extends to the
regions defined by its member definitions, even if defined lexically outside the class (this includes
both function member bodies and static data member initializations).

For example:

typedefint c;
enum{i=1}

class X {
char V[i]; // error: '’ refers to :i
// but when reevaluated is X::i
int f() { return sizeof(c); } // okay: X::c
char c;
enum{i=2}

h

typedef char* T,;
struct Y {
T a /I error: 'T' refers to ;T
/I but when reevaluated is Y::T
typedeflong T,;

T b;
I3
struct Z {
int f(constR); /I error: 'R’ is parameter name
// but swapping the two declarations
/I changes it to a type
typedefint R;
9.3 Member functions O

A function declared as a member (without thend specifier; 11.4) is called a member function, and is
called for an object using the class member syntax (5.2.4). For example,

struct tnode {
char tword[20];
int count;
tnode *left;
tnode *right;
void set(char*, tnode* |, thode* r);

3

Hereset is a member function and can be called like this:

void f(tnode n1, tnode n2)

{
nl.set("abc",&n2,0);

n2.set("def",0,0);
}

The definition of a member function is considered to be within the scope of its class. This means that
(provided it is nonstatic 9.4) it can use names of members of its class directly. Such names then refer to the
members of the object for which the function was called.

A static local variable in a member function always refers to the same object. A static member function
can use only the names of static members, enumerators, and nested types directly. If the definition of a
member function is lexically outside the class definition, the member function name must be qualified by

Section 9.3 DRAFT September 28, 1993 Member functions —9

the class name using the operator. For example,

void tnode::set(char* w, thode* |, tnode* r)

{
count = strlen(w+1);
if (sizeof(tword)<=count)
error("tnode string too long");
strcpy(tword,w);
left=1;
right =r;
}

The notationtnode::set specifies that the functioset is a member of and in the scope of class
tnode . The member naméword , count , left , andright refer to members of the object for which
the function was called. Thus, in the aall.set("abc",&n2,0) , tword refers tonl.tword, and

in the calln2.set("def",0,0) it refers ton2.tword . The functionstrlen , error , andstrcpy

must be declared elsewhere.

Members may be defined (3.1) outside their class definition if they have already been declared but not
defined in the class definition; they may not be redeclared. See also 3.3. Function members may be men-
tioned in friend declarations after their class has been defined. Each member function that is called must
have exactly one definition in a program.

The effect of calling a nonstatic member function (9.4) of a dldes something that is not an object of
classXis undefined. O

9.3.1 Thethis pointer a

In a nonstatic (9.3) member function, the keywthis is a non-lvalue expression whose value is the
address of the object for which the function is called. The typlei®f in a member function of a cla¥s

is X* unless the member function is declaoeshst or volatile ; in those cases, the typetbis is
const X* orvolatile X*, respectively. A function declarednst andvolatile has ahis with

the typeconst volatile X*. See also 19.3.3. For example,

struct s {
int a;
int f() const;
int g() { return a++; }
int h() const { return a++; } // error

I3
int s::f() const { return a; }

The a++ in the body ofs::h is ill-formed because it tries to modify (a part of) the object for whith
s::h() is called. This is not allowed in@nst member function wherthis is a pointer taconst |,
that is,*this is aconst .

A const member function (that is, a member function declared withctimst qualifier) may be
called forconst and noneonst objects, whereas a n@onst member function may be called only for
a noneonst object. For example,

void k(s& x, const s& y)

{
x.f0;
x.90);
y.f0;
y.90; /I error

}

The cally.g() is ill-formed becausg is const ands:g() is a noneonst member function that O
could (and does) modify the object for which it was called.

Similarly, onlyvolatile member functions (that is, a member function declared wittdlagile
specifier) may be invoked forolatile objects. A member function can be battnst andvola-
tile

9—8 Classes DRAFT September 28, 1993 Chapter 9

Constructors (12.1) and destructors (12.4) may be invoked donst or volatile object. Con-
structors (12.1) and destructors (12.4) cannot be dectarest or volatile . O

9.3.2 Inline member functions a

A member function may be defined (8.3) in the class definition, in which cadalines (7.1.2). Defin-
ing a function within a class definition is equivalent to declaririglihe and defining it immediately
after the class definition; this rewriting is considered to be done after preprocessing but before syntax analy-
sis and type checking of the function definition. Thus
int b;
struct x {
char* f() { return b; }
char* b;

b
is equivalent to

int b;

struct x {
char* f();
char* b;

2
inline char* x::f() { return b; } // moved

Thus theb used inx::f() is X::b and not the globdl. See alsoclass.local.type
Member functions can be defined even in local or nested class definitions where this rewriting would be
syntactically incorrect. See 9.8 for a discussion of local classes and 9.7 for a discussion of nested classes.

9.4 Static members a

A data or function member of a class may be declsratic in the class definition. There is only one
copy of a static data member, shared by all objects of the class and any derived classes in a program. A
static member is not part of objects of a class. Static members of a global class have external linkage (3.3).
The declaration of a static data member in its class definitiontia definition and may be of an incom-
plete type. A definition is required elsewhere; see also 19.3.

A static member function does not havehis pointer so it can access nonstatic members of its class
only by using. or->. A static member function cannot bigtual . There cannot be a static and a non-
static member function with the same name and the same parameter types.

Static members of a local class (9.8) have no linkage and cannot be defined outside the class definition.
It follows that a local class cannot have static data members.

A static membememof classcl can be referred to ag:mem (5.1), that is, independently of any
object. It can also be referred to using thend-> member access operators (5.2.4). When a static mem-
ber is accessed through a member access operator, the expression on the left siderefbthe not eval-
uated. The static memberemexists even if no objects of clasls have been created. For example, in the
following, run_chain ,idle , and so on exist even if poocess objects have been created:

class process {
static int no_of_processes;
static process* run_chain;
static process* running;
static process* idle;
...

public:
...
int state();
static void reschedule();
...

Section 9.4 DRAFT September 28, 1993 Static members —9

andreschedule can be used without reference tpracess object, as follows:
void f()
{
}

Static members of a global class are initialized exactly like global objects and only in file scope. For
example,

process::reschedule();

void process::reschedule() { /* ... */ };

int process::no_of_processes = 1;

process* process::running = get_main();
process* process::run_chain = process::running;

Static members obey the usual class member access rules (11) except that they can be initialized (in file
scope). The initializer of a static member of a class has the same access rights as a member function, as in

process::run_chain above.

The type of a static member does not involve its class name; thus the typecess :
no_of processes isint and the type o&process : reschedule isvoid(*)()
9.5 Unions

A union may be thought of as a class whose member objects all begin at offset zero and whose size is suffi-
cient to contain any of its member objects. At most one of the member objects can be stored in a union at
any time. A union may have member functions (including constructors and destructors), but not virtual
(10.2) functions. A union may not have base classes. A union may not be used as a base class. An object
of a class with a constructor or a destructor or a user-defined assignment operator (13.4.3) cannot be a
member of a union. A union can havestatic = data members.

g Shouldn’t we prohibit references in union&?

A union of the form
union { member-specificatior} ;

is called an anonymous union; it defines an unnamed object (and not a type). The names of the members of
an anonymous union must be distinct from other names in the scope in which the union is declared; they are
used directly in that scope without the usual member access syntax (5.2.4). For example,

void f()
{
union {int a; char* p; };
a=1;
...
p = "Jennifer";

...
}

Herea andp are used like ordinary (nonmember) variables, but since they are union members they have
the same address.
A global anonymous union must be declasétic . An anonymous union may not hapevate
or protected members (11). An anonymous union may not have function members.
A union for which objects or pointers are declared is not an anonymous union. For example,
union { int aa; char* p; } obj, *ptr = &obj;
aa=1, Il error
ptr->aa=1; // ok

The assignment to plaiaa is ill formed since the member name is not associated with any particular
object.

9—10 Classes DRAFT September 28, 1993 Chapter 9

Initialization of unions that do not have constructors is described in 8.4.1. a

9.6 Bit-fields O
A member-declaratoof the form
identifier,, : constant-expression

specifies a bit-field; its length is set off from the bit-field name by a colon. Allocation of bit-fields within a
class object is implementation dependent. Fields are packed into some addressable allocation unit. Fields
straddle allocation units on some machines and not on others. Alignment of bit-fields is implementation
dependent. Fields are assigned right-to-left on some machines, left-to-right on others.

An unnamed bit-field is useful for padding to conform to externally-imposed layouts. Unnamed fields
are not members and cannot be initialized. As a special case, an unnamed bit-field with a width of zero
specifies alignment of the next bit-field at an allocation unit boundary.

A bit-field may not be a static member. A bit-field must have integral or enumeration type (3.6.1). ltis
implementation dependent whether a plain (neither explicitly signed nor unsighedield is signed or
unsigned. The address-of operafanay not be applied to a bit-field, so there are no pointers to bit-fields.
Nor are there references to bit-fields. O

9.7 Nested class declarations a

A class may be defined within another class. A class defined within another is calistbaclass. The

name of a nested class is local to its enclosing class. The nested class is in the scope of its enclosing class.
Except by using explicit pointers, references, and object names, declarations in a nested class can use only
type names, static members, and enumerators from the enclosing class.

int x;
inty;
class enclose {
public:
int x;
static int s;
class inner {
void f(int i)
{
x =1i; [/ error: assign to enclose::x
s =1i; [/ ok: assign to enclose::s
X = i; /] ok: assign to global x
y =i Il ok: assign to global y
}
void g(enclose* p, int i)
{
p->x=i; [/l ok: assign to enclose::x
}
|3
2

inner* p=0; // error ‘inner’ not in scope

Member functions of a nested class have no special access to members of an enclosing class; they obey the
usual access rules (11). Member functions of an enclosing class have no special access to members of a
nested class; they obey the usual access rules. For example,

Section 9.7 DRAFT September 28, 1993 Nested class declarations —19

class E {
int x;

class | {

inty;

void f(E* p, int i)

p->x =i; [l error: E:x is private

I3
int g(I* p)
{

return p->y; [l error: I:1y is private

2

Member functions and static data members of a nested class can be defined in the global scope. For exam-
ple,

class enclose {

class inner {
static int x;
void f(int i);
2

h

typedef enclose::inner ei;
inteinx=1;

void enclose::inner:f(int i) { /* ... */ }
A nested class may be declared in a class and later defined in the same or an enclosing scope. For example:

class E {
class I1; /I forward declaration of nested class
class 12;
class 11 {}; // definition of nested class

I3

class E::I2 {}; /I definition of nested class
Like a member function, a friend function defined within a class is in the lexical scope of that class; it
obeys the same rules for name binding as the member functions (described above and in 10.4) and like
them has no special access rights to members of an enclosing class or local variables of an enclosing func-
tion (11). O

9.8 Local class declarations a

A class can be defined within a function definition; such a class is cdtbedlalass. The name of a local
class is local to its enclosing scope. The local class is in the scope of the enclosing scope. Declarations in a
local class can use only type names, static variabldsrn variables and functions, and enumerators
from the enclosing scope. For example,
int x;
void f()
{

staticint s ;
int x;
extern int g();

9—12 Classes DRAFT September 28, 1993 Chapter 9

struct local {
intg() { return x; } /I error: ‘X’ is auto
inth() {returns; } Il ok
int k() { return ::x; } // ok
int1() { return g(); } // ok

}

local* p=0; // error: ‘local’ not in scope

An enclosing function has no special access to members of the local class; it obeys the usual access
rules (11). Member functions of a local class must be defined within their class definition. A local class
may not have static data members. O

9.9 Nested type names O

Type names obey exactly the same scope rules as other names. In particular, type names defined within a
class definition cannot be used outside their class without qualification. For example,

class X {

public:
typedef int [;
classY {/*...*};
la;

h

| b; /I error
Y c; /I error
X:Yd; //ok
X:le; /lok

10

Derived Classes

This chapter explainmheritance A class can bderivedfrom one or more other classes, which are then called
baseclasses of the derived class. The derived class inherits the properties of its base classes, including its data
members and member functions. In addition, the derived class can owaémidé functions of its bases and

declare additional data members, functions, and so on. Access to class members is checked for ambiguity.
Sharing among the (base) classes that make up a class can be expressaduasibgse classesClasses can

be declare@bstractto ensure that they are used only as base classes.

The final section of this chapter (10.4) is a summary of #hesCope rules.

10 Derived classes 0

A list of base classes may be specified in a class declaration using the notation:

base-clause:
base-specifier-list

base-specifier-list:
base-specifier
base-specifier-list, base-specifier

base-specifier:
qualified-class-specifier
virtual access-specifigy; qualified-class-specifier
access-specifievirtual , qualified-class-specifier

access-specifier:
private
protected
public

Theclass-namén abase-specifiemust denote a previously declared class (9), which is catléect base

classfor the class being declared. A cld&ss a base class of a cld3sdf it is a direct base class &for a

direct base class of one D& base classes. A class isiadirect base class of another if it is a base class

but not a direct base class. A class is said to be (directly or indirdetiypdfrom its (direct or indirect)

base classes. For the meaningaofess-specifiesee 11. Unless redefined in the derived class, members

of a base class can be referred to as if they were members of the derived class. The base class members are
said to banheritedby the derived class. The scope resolution operatqs.1) may be used to refer to a

base member explicitly. This allows access to a name that has been redefined in the derived class. A
derived class can itself serve as a base class subject to access control; see 11.2. A pointer to a derived class
may be implicitly converted to a pointer to an accessible unambiguous base class (4.6). A reference to a
derived class may be implicitly converted to a reference to an accessible unambiguous base class (4.7).

10—2 Derived Classes DRAFT September 28, 1993 Chapter 10

For example,

class Base {
public:
inta, b, c;

h

class Derived : public Base {
public:

int b;
I3

class Derived?2 : public Derived {
public:
int c;
5
Here, an object of clafderived2 will have a sub-object of claBerived which in turn will have a

sub-object of clasBase. A derived class and its base classes can be represented by a directed acyclic
graph DAG) where an arrow mearislirectly derived fronf. A DAG of classes is often referred to as a
“class lattic€. For example,

Base
Derived

Derived?2

Note that the arrows need not have a physical representation in memory and the order in which the sub-
objects appear in memory is unspecified.

Name lookup proceeds from the original class (the named class in the capeabfied-id) along the
edges of the lattice until the name is found. If a name is found in more than one class in the lattice, the
access is ambiguous (see 10.1.1) unless one occurrence of the narfeatiittes others. A namB::f
hidesa nameA::f if its classB hasA as a base and the instancéBafontainingB::f has the instance of
A containingA::f as a sub-object. The second part of this definition is trivially satisfied when multiple
inheritance is not used. For example,

void f()
{
Derived2 x;
x.a=1; /| Base::a
x.b=2; /I Derived::b
X.c=3; /I Derived2:.c
x.Base::b = 4; /I Base::b
x.Derived::c = 5; // Base::.c
Base* bp = &x; /I standard conversion:
/I Derived2* to Base*
}

assigns to the five membersxofind makesp point tox.

Note that in theclass-name: id-expressiomotation,id-expressiomeed not be a member ofass-
name the notation simply specifies a class in which to start lookinglfexpression

Initialization of objects representing base classes can be specified in constructors; see 12.6.2. 0

LS This criterion is calleddominance in the ARM.

4

Section 10.1 DRAFT September 28, 1993 Multiple base classes —ID

10.1 Multiple base classes O

A class may be derived from any number of base classes. For example,

classA{/*..*}
classB {/*...* };
classC{/*...* };
class D : public A, public B, public C { /* ... */ };

The use of more than one direct base class is often called multiple inheritance.

The order of derivation is not significant except possibly for default initialization by constructor (12.1),
for cleanup (12.4), and for storage layout (5.4, 9.2, 11.1).

A class may not be specified as a direct base class of a derived class more than once but it may be an
indirect base class more than once.

classB {/*...* };
class D : public B, public B{/*...*/}; /lillegal

classL {/*...*};

class A: publicL{/*...*};

class B : public L {/*...*/ };

class C : public A, publicB{/*...*/}; /llegal

Here, an object of clagdwill have two sub-objects of claksas shown below.
L L

A B
\ i /
The keywordvirtual may be added to a base class specifier. A single sub-object of the virtual base

class is shared by every base class that specified the base class to be virtual. For example,

classV {/*...*}

class A : virtual public V { /* ... */ };
class B : virtual public V { /* ... */ };
class C : public A, publicB{/* ... */ };

Here clas< has only one sub-object of clagsas shown below.
V
A/ \B
\ i /

A class may have both virtual and nonvirtual base classes of a given type.

classB {/*...* };

class X : virtual public B { /* ... */ };

class'Y : virtual public B { /* ... */ };

class Z : public B {/* ... */ };

class AA : public X, public Y, public Z {/* ... */ };

Here clas®\A has two sub-objects of claBsZ’'s B and the virtuaB shared by andY, as shown below.

10—4 Derived Classes DRAFT September 28, 1993 Chapter 10

10.1.1 Ambiguities

Access to base class members must be unambiguous. Access to a base class member is ambiguous if the
id-expressioror qualified-id used does not refer to a unique function, object, type, or enumerator. The
check for ambiguity takes place before access control (11). For example,

class A {
public:
int a;
int (*b)();
int f();
int f(int);
int g();
I3
class B {
int a;
int b();
public:
int f();
int g;
int h();
int h(int);
I3

class C : public A, public B {};
void g(C* pc)
{

pc->a=1; /[l error: ambiguous: A::a or B::a
pc->b(); /I error: ambiguous: A::b or B::b
pc->f(); /Il error: ambiguous: A::f or B::f
pc->f(1); // error: ambiguous: A::f or B::f
pc->g(); // error: ambiguous: A::g or B::g
pc->g =1; [/ error: ambiguous: A::g or B::g
pc->h(); 1l ok

pc->h(1); // ok

}

If the name of an overloaded function is unambiguously found overloading resolution also takes place
before access control. Ambiguities can be resolved by qualifying a name with its class name. For example,

class A {
public:

int f();
I3

class B {
public:
int f();
I3
class C : public A, public B {
int f() { return A::f() + B::f(); }
I3
A single function, object, type, or enumerator may be reached through more than one path through the
directed acyclic graph of base classes. This is not an ambiguity. For example,

Section 10.1.1 DRAFT September 28, 1993 Ambiguities 36

class V { public: int v; };
class A {
public:
int a;
staticint s;
enum{e};
I3
class B : public A, public virtual V {};
class C : public A, public virtual V {};

class D : public B, public C {};

void f(D* pd)

pd->v++; Il ok: only one ‘v’ (virtual)
pd->s++; I/ ok: only one ‘s’ (static)
inti=pd->e; // ok: only one ‘e’ (enumerator)
pd->a++; [error, ambiguous: two ‘a’s in ‘D’

}

When virtual base classes are used, a hidden function, object, or enumerator may be reached along a path
through the inheritance DAG that does not pass through the hiding function, object, or enumerator. This is
not an ambiguity. The identical use with nonvirtual base classes is an ambiguity; in that case there is no
unique instance of the name that hides all the others. For example,

class V { public: int f(); intx;};
class W { public: int g(); inty;};
class B : public virtual V, public W

{

public:
intf(); intx;
intg(); inty;

c'lass C : public virtual V, public W { };

class D : public B, public C { void g(); };

The names defined i and the left hand instance Wfare hidden by those B, but the names defined in
the right hand instance @are not hidden at all.

void D::g()
{
X++; /I ok: B::x hides V::x
fQ); I/ ok: B::f() hides V::f()
y++; /I error: B::y and C’'s W::y
g(); I/l error: B::g() and C's W::g()
}

An explicit or implicit conversion from a pointer or reference to a derived class to a pointer or reference to
one of its base classes must unambiguously refer to a unique object representing the base class. For exam-
ple,

10—6 Derived Classes DRAFT September 28, 1993 Chapter 10

classV {};

class A{};

class B : public A, public virtual V { };
class C : public A, public virtual V { };
class D : public B, public C { };

void g()
{

Dd;

B* pb = &d;

A* pa = &d; /I error, ambiguous: C's AorB'sA?
V* pv = &d; // fine: only one V sub-object

10.2 Virtual functions a

Virtual functions support dynamic binding and object-oriented programming. A class that declares or
inherits a virtual function is calledpolymorphic class

If a virtual member functionf is declared in a clad8ase and in a clas®erived , derived directly
or indirectly from Base, a member functiorn/f with the same name and same parameter list as
Base::vf is declared, themerived::vf is also virtual (whether or not it is so declared) and it
overrided® Base::vf . For convenience we say that any virtual function overrides itself. Then in any
well-formed class, for each virtual function declared in that class or any of its direct or indirect base classes
there is a uniquénal overriderthat overrides that function and every other overrider of that function.

A program is ill-formed if the return type of any overriding function differs from the return type oflihe
overridden function unless the return type of the latter is pointer or reference (possibly cv-qualified) to a
classB, and the return type of the former is pointer or reference (respectively) to ®eladls thaB is an [
unambiguous direct or indirect base clas®phccessible in the class of the overriding function, and the
cv-qualification in the return type of the overriding function is less than or equal to the cv-qualificatiaon in
the return type of the overridden function. In that case when the overriding function is called as the final
overrider of the overridden function, its result is converted to the type returned by the (statically chosen)
overridden function. See 5.2.2. For example,

class B {};
class D : private B { friend class Derived; };
struct Base {
virtual void vf1();
virtual void vf2();
virtual void vf3();
virtual B* vf4();
void f();
I3

struct No_good : public Base {
D* vf4(); Il error: B (base class of D) inaccessible

h

9 A function with the same name but a different parameter list (see 13) as a virtual function is not necessarily virtual and does not override. The use of
the virtual specifier in the declaration of an overriding function is legal but redundant (has empty semantics). Access control (11) is not considered
in determining overriding.

4

Section 10.2 DRAFT September 28, 1993

struct Derived : public Base {

void vf1(); [virtual and overrides Base::vf1()
void vf2(int); /I not virtual, hides Base::vf2()
char vf3(); /I error: invalid difference in return type only
D* vf4(); /I okay: returns pointer to derived class
void f();
2
void g()
{
Derived d;
Base* bp = &d; /l standard conversion:
/I Derived* to Base*
bp->vfl(); /I calls Derived::vf1()
bp->vf2(); /I calls Base::vf2()
bp->f(); Il calls Base::f() (not virtual)
B* p = bp->vf4(); // calls Derived::pf() and converts the
/I result to B*
Derived* dp = &d;
D* q = dp->vf4(); // calls Derived::pf() and does not
/I convert the result to B*
dp->vf2(); /I 'ill formed: argument mismatch
}

That is, the interpretation of the call of a virtual function depends on the type of the object for which it
is called (the dynamic type), whereas the interpretation of a call of a nonvirtual member function depends

Virtual functions 107

only on the type of the pointer or reference denoting that object (the static type). See 5.2.2.

The virtual specifier implies membership, so a virtual function cannot be a global (honmember)
(7.1.2) function. Nor can a virtual function be a static member, since a virtual function call relies on a spe-

cific object for determining which function to invoke. A virtual function can be declafegrad in

another class. A virtual function declared in a class must be defined or declared pure (10.3) in that class.

Following are some examples of virtual functions used with multiple base classes:

struct A {
virtual void f();
I3
struct B1: A{ // note non-virtual derivation
void f();
I3
struct B2 : A {
void f();
2
struct D : B1, B2 { // D has two separate A sub-objects
I3
void foo()
{
D d;
/I A* ap = &d; // would be ill formed: ambiguous
B1* blp = &d;
A* ap=blp;
ap->f(); // calls D::B1:f
dp->f(); //ill formed: ambiguous
}

In classD above there are two occurrences of clasmnd hence two occurrences of the virtual member

function A::f . The final overrider oB1::A::f is B1::f and the final overrider oB2::A::f is

B2::f

10—8 Derived Classes DRAFT September 28, 1993 Chapter 10

The following example shows a function that does not have a unique final overrider:

struct A {
virtual void f();

h

struct VBL1 : virtual A{ // note virtual derivation
void f();
2

struct VB2 : virtual A {
void f();
I3

struct Error : VB1, VB2 { //ill-formed
h

struct Okay : VB1, VB2 {
void f();
2

BothVB1::f andVB2:f overrideA:f butthere is no overrider of both of them in clgssor . This [
example is therefore ill-formed. Cla€kay is well formed, however, becauS€kay::f is a final over-
rider.

The following example uses the well-formed classes from above.

struct VB1la : virtual A { // does not declare f

h

struct Da : VB1la, VB2 {
h

void foe()

{
VBla* vblap = new Da;

vblap->f(); // calls VB2:f

Explicit qualification with the scope operator (5.1) suppresses the virtual call mechanism. For example,

class B { public: virtual void f(); };
class D : public B { public: void f(); };

void D::f() { /* ... */ B::f(); }

Here, the function call iD::f really does calB::f and noD::f . O

10.3 Abstract classes u

The abstract class mechanism supports the notion of a general concept, sgblaes,aof which only
more concrete variants, suchcgle andsquare , can actually be used. An abstract class can also be
used to define an interface for which derived classes provide a variety of implementations.

An abstract classs a class that can be used only as a base class of some other class; no objects of an
abstract class may be created except as sub-objects of a class derived from it. A class is abstract if it has at
least ongoure virtual function(which may be inherited: see below). A virtual function is specffige by
using apure-specifiel(9.2) in the function declaration in the class declaration. A pure virtual function need
be defined only if explicitly called with theualified-id syntax (5.1). For example,

Section 10.3 DRAFT September 28, 1993 Abstract classes —9

class point{ /* ... */ };

class shape { /I abstract class
point center;
...

public:
point where() { return center; }
void move(point p) { center=p; draw(); }
virtual void rotate(int) = 0; // pure virtual
virtual void draw() = 0; I/ pure virtual
...

h

An abstract class may not be used as an parameter type, as a function return type, or as the type of an
explicit conversion. Pointers and references to an abstract class may be declared. For example,

shape x; /I error: object of abstract class
shape* p; Il ok

shape f(); I error

void g(shape); I error

shape& h(shape&); // ok
Pure virtual functions are inherited as pure virtual functions. For example,

class ab_circle : public shape {
int radius;
public:
void rotate(int) {}
/I ab_circle::draw() is a pure virtual

kh

Sinceshape::draw() is a pure virtual functiorab_circle::draw() is a pure virtual by default.
The alternative declaration,

class circle : public shape {
int radius;
public:
void rotate(int) {}
void draw(); // must be defined somewhere

h

would make classircle nonabstract and a definition aifcle::draw() must be provided.

An abstract class may be derived from a class that is not abstract, and a pure virtual function may over-
ride a virtual function which is not pure.

Member functions can be called from a constructor of an abstract class; the effect of calling a pure vir-
tual function directly or indirectly for the object being created from such a constructor is undefined. 0O

10.4 Summary of scope rules O

The scope rules for+#€ programs can now be summarized. These rules apply uniformly for all names
(including typedef-name§7.1.3) andclass-name$9.1)) wherever the grammar allows such names in the
context discussed by a particular rule. This section discusses lexical scope only; see 3.3 for an explanation
of linkage issues. The notion of point of declaration is discussed in (3.2).

Any use of a name must be unambiguous (up to overloading) in its scope (10.1.1). Only if the name is
found to be unambiguous in its scope are access rules considered (11). Only if no access control errors are
found is the type of the object, function, or enumerator named considered.

A name used outside any function and class or prefixed by the unary scope opefarwinot quali-
fied by the binary: operator or the> or. operators) must be the name of a global object, function, or
enumerator.

A name specified afteX:: , afterobj. , whereobj is anX or a reference t¥, or afterptr-> , where
ptr is a pointer taX must be the name of a member of clfs be a member of a base class<ofln
addition, ptr in ptr-> may be an object of a clasg that hasoperator->() declared so

10—10 Derived Classes DRAFT September 28, 1993 Chapter 10

ptr->operator->() eventually resolves to a pointerXq13.4.6).

A name that is not qualified in any of the ways described above and that is used in a function that is not
a class member must be declared before its use in the block in which it occurs or in an enclosing block or
globally. The declaration of a local name hides previous declarations of the same name in enclosing blocks
and at file scope. In particular, no overloading occurs of names in different scopes (13.4).

A name that is not qualified in any of the ways described above and that is used in a function that is a
nonstatic member of cladmust be declared in the block in which it occurs or in an enclosing block, be a
member of clasX or a base class of claXsor be a global name. The declaration of a local name hides
declarations of the same name in enclosing blocks, members of the function’s class, and global names. The
declaration of a member name hides declarations of the same name in base classes and global names.

A name that is not qualified in one of the ways described above and is used in a static member function
of a classX must be declared in the block in which it occurs, in an enclosing block, be a static member of
classX, or a base class of classor be a global name.

A function parameter name in a function definition (8.3) is in the scope of the outermost block of the
function (in particular, it is a local name). A function parameter name in a function declaration (8.2.5) that
is not a function definition is in a local scope that disappears immediately after the function declaration. A
default parameter is in the scope determined by the point of declaration (3.2) of its parameter, but may not
access local variables or nonstatic class members; it is evaluated at each point of call (8.2.6).

A ctor-initializer (12.6.2) is evaluated in the scope of the outermost block of the constructor it is speci-
fied for. In particular, it can refer to the constructor’'s parameter names.

11

Member Access Control

This chapter explains mechanisms for control of access to class members. Access control is based on the use of
the keywordsublic , private , andprotected to control access to individual members of a class and on

the use ofrrivate , protected , andpublic specifiers to control access to base class members in a derived
class object. Thériend mechanism provides a way of granting individual functions and classes access to
members of a class.

Access control applies uniformly to function members, data members, member constants, and nested types.

11 Member access control O
A member of a class can be

private ; that is, its name can be used only by member functions and friends of the class in
which it is declared.

protected ; that is, its name can be used only by member functions and friends of the class in
which it is declared and by member functions and friends of classes derived from this class (see
11.5).

public ; that is, its name can be used by any function.

Members of a class declared with the keywolaks areprivate by default. Members of a
class declared with the keyworstsuct orunion arepublic by default. For example,

class X {
inta; /I X::ais private by default

h

struct S {
inta; // S:ais public by default
h

11.1 Access specifiers U
Member declarations may be labeled byaacess-specifigil0):
access-specifier. member-specificatiqp,

An access-specifiespecifies the access rules for members following it until the end of the class or until
anotheraccess-specifigs encountered. For example,

11—2 Member Access Control DRAFT September 28, 1993 Chapter 11

class X {

inta; // X:ais private by default: ‘class’ used
public:

intb; // X:bis public

intc; // X::cis public
h

Any number of access specifiers is allowed and no particular order is required. For example,

struct S {
inta; // S:ais public by default: ‘struct’ used
protected:
intb; // S:bis protected
private:
intc; // S:cis private
public:
intd; // S:dis public
2

The order of allocation of data members with sepaatess-specifidabels is implementation depen-
dent (9.2). O

11.2 Access specifiers for base classes O

If a class is declared to be a base class (10) for another class ugiltbe access specifier, thaib-
lic members of the base class are accessilppilsiic members of the derived class gmdtected
members of the base class are accessilpectscted members of the derived class (but see 13.1). If a
class is declared to be a base class for another class uspmtdeed access specifier, thaublic
andprotected members of the base class are accessibeotscted members of the derived class.
If a class is declared to be a base class for another class uspriy#he access specifier, thaublic
andprotected members of the base class are accessilge\age = members of the derived class. Pri-
vate members of a base class remain inaccessible even to derived classeliemiessdeclarations
within the base class declaration are used to grant access explicitly.

In the absence of aaccess-specifiefor a base clasqublic is assumed when the derived class is
declaredstruct andprivate is assumed when the class is declatads . For example,

classB {/*...* };

class D1 : private B { /* ... */ };

class D2 : publicB{/* ... */ };
classD3:B{/*...*} /[‘B’ private by default
struct D4 : public B { /* ... */ };

struct D5 : private B { /* ... */ };

struct D6 : B{/*...*/'}; [/ ‘B’ public by default
class D7 : protected B{ /* ... */ };

struct D8 : protected B { /* ... */ };

HereB is a public base db2, D4, andD6, a private base dd1, D3, andD5, and a protected base BY
andDS8.

Because of the rules on pointer conversion (4.6), a static member of a private base class may be inacces-
sible as an inherited name, but accessible directly. For example,

Section 11.2 DRAFT September 28, 1993 Access specifiers for base classes—311

class B {
public:
int mi; /I nonstatic member
static int si; // static member
b
lass D : private B {
3
class DD : public D {
void f();
b
void DD::f() {
mi = 3; [error: mi is private in D
si=3; / error: si is private in D
B b;
b.mi =3; /I okay (b.mi is different from this->mi)
b.si =3; I/ okay (b.si is the same as this->si)
B::si=3; Il okay
B* bpl = this; // error: B is a private base class
B* bp2 = (B*)this; // okay with cast
bp2->mi =3; // okay and bp2->mi is the same as this->mi
}

Members and friends of a cla¥scan implicitly convert arX* to a pointer to a private or protected

immediate base class Xf

11.3 Access declarations

The access of public or protected member of a private or protected base class can be restored to the same
level in the derived class by mentioning dgsalified-id in the public (for public members of the base
class) omprotected (for protected members of the base class) part of a derived class declaration. Such

mention is called aaccess declaratian
For example,

class A {
public:
int z;
int z1;

k

class B : public A {
int a;
public:
intb, c;
int bf();
protected:
int x;
inty;

11—4 Member Access Control DRAFT September 28, 1993 Chapter 11

class D : private B {
intd;

public:
B::c; // adjust access to ‘B::c’
B::z; // adjust access to ‘A::z’
A::z1; I/ adjust access to ‘A::z1’

int e;
int df();
protected:
B::x; [/l adjust access to ‘B::x’
int g;
I3
class X : public D {
int xf();
2
int ef(D&);
int ff(X&);

The external functioef can use only the namesz, z1, e, anddf . Being a member dp, the function
df can use the namésc, z, z1, bf , x,y, d, e, df , andg, but nota. Being a member d, the function
bf can use the membess b, ¢, z, z1, bf , X, andy. The functionxf can use the public and protected
names fronD, that is,c, z, z1, e, anddf (public), andx, andg (protected). Thus the external function
ff has access only m z, z1, e, anddf . If Dwere a protected or private base clasX,off would have
the same privileges as before, ffutwould have no access at all.
An access declaration may not be used to restrict access to a member that is accessible in the base class,
nor may it be used to enable access to a member that is not accessible in the base class. For example,

class A {
public:
int z;
h
class B : private A {
public:
int a;
int x;
private:
int b;
protected:
int c;
h
class D : private B {
public:
B::a; // make ‘a’ a public member of D
B::b; [/l error: attempt to grant access
I/l can’'t make ‘b’ a public member of D
A::z; [/l error: attempt to grant access
protected:
B::c; // make ‘c’ a protected member of D
B::x; /I error: attempt to reduce access
I/l can’'t make ‘X’ a protected member of D
I3

class E : protected B {
public:
B::a; // make ‘a’ a public member of E

h

Section 11.3 DRAFT September 28, 1993 Access declarations —HL

The names andx are protected membersBby virtue of its protected derivation froB1 An access dec-
laration for the name of an overloaded function adjusts the access to all functions of that name in the base
class. For example,

class X {
public:
f0;
f(int);
I3
class Y : private X {
public:
X:f; [/ makes X:f() and X::f(int) public in Y
2
4 The access to a base class member cannot be adjusted in a derived class that also defines a member of
that name. For example,
class X {
public:
void f();
2
class Y : private X {
public:
void f(int);
X::f; [l error: two declarations of f
I3
11.4 Friends
1 A friend of a class is a function that is not a member of the class but is permitted to use the private and pro-

tected member names from the class. The name of a friend is not in the scope of the class, and the friend is
not called with the member access operators (5.2.4) unless it is a member of another class. The following
example illustrates the differences between members and friends:

class X {

int a;

friend void friend_set(X*, int);
public:

void member_set(int);
2

void friend_set(X* p, inti) { p->a=1i; }
void X::member_set(inti) {a=i;}

void f()

{
X obj;
friend_set(&obj,10);
obj.member_set(10);

}

2 When afriend declaration refers to an overloaded name or operator, only the function specified by
the parameter types becomes a friend. A member function of aXctass be a friend of a cla¥s For
example,

class Y {
friend char* X::foo(int);
...

h

All the functions of a clasX can be made friends of a claédy a single declaration using ataborated-

11—6 Member Access Control DRAFT September 28, 1993 Chapter 11

type-speciﬁe%’0 (9.1):

class 'Y {
friend class X;
...

h

Declaring a class to be a friend also implies that private and protected nhames from the class granting friend-
ship can be used in the class receiving it. For example,

class X {
enum { a=100 };
friend class Y;

h

class 'Y {
intv[X::a]; // ok, Y is afriend of X
b

class Z {
int v[X::a]; // error: X::ais private
2

If a class or function mentioned as a friend has not been declared, its name is entered in the smallest
non-class scope that encloses the friend declaration.

A function first declared in a friend declaration is equivalent texaern declaration (3.3, 7.1.1).

A global (but not a membefjiend function may be defined in a class definition other than a local
class definition (9.8). The function is tharine and the rewriting rule specified for member functions
(9.3.2) is applied. Ariend function defined in a class is in the (lexical) scope of the class in which it is
defined. A friend function defined outside the class is not.

Friend declarations are not affecteddrgess-specifier®.2).

Friendship is neither inherited nor transitive. For example,

class A {
friend class B;
int a;
h
class B {
friend class C;
h
classC {
void f(A* p)
p->a++; [/ error: Cis not a friend of A
/I despite being a friend of a friend
}
b

class D : public B {
void f(A* p)
{

p->a++; [/ error: D is not a friend of A
/Il despite being derived from a friend

“UNote that theclass-keyof theelaborated-type-specifids required.

1

Section 11.5 DRAFT September 28, 1993 Protected member access —7T1

11.5 Protected member access a

A friend or a member function of a derived class can access a protected static member of a base class. A
friend or a member function of a derived class can access a protected nonstatic member of one of its base
classes only through a pointer to, reference to, or object of the derived class itself (or any class derived from
that class). When a protected member of a base class appeagsadilifiad-id in a friend or a member
function of a derived class timested-class-specifienust name the derived class. For example,

class B {
protected:
int i
3
class D1 : public B {
J5

class D2 : public B {
friend void fr(B*,D1*,D2*);
void mem(B*,D1*);

I3
void fr(B* pb, D1* p1, D2* p2)
{
pb->i=1; //illegal
pl->i=2; /lillegal
p2->i = 3; [/ ok (access through a D2)
intB:* pmi_B = &B::i; Il illegal
int D2::* pmi_D2 = &D2::i; // ok
}
void D2::mem(B* pb, D1* p1)
{
pb->i=1; //illegal
pl->i=2; /lillegal
i=3; /I ok (access through ‘this’)
}

void g(B* pb, D1* p1, D2* p2)
{

pb->i=1; //illegal
pl->i=2; /lillegal
p2->i=3; /lillegal

11.6 Access to virtual functions a

The access rules (11) for a virtual function are determined by its declaration and are not affected by the
rules for a function that later overrides it. For example,

class B {
public:
virtual f();

h

class D : public B {
private:

f0;
b

11—8 Member Access Control DRAFT September 28, 1993 Chapter 11

void f()

{
Dd;
B* pb = &d;
D* pd = &d;

pb->f(); // ok: B::f() is public,
/I D::A() is invoked
pd->f(); // error: D::f() is private
}

Access is checked at the call point using the type of the expression used to denote the object for which the
member function is called¢ in the example above). The access of the member function in the class in
which it was defined§in the example above) is in general not known. O

11.7 Multiple access O

If a name can be reached by several paths through a multiple inheritance graph, the access is that of the path
that gives most access. For example,

class W { public: void f(); };
class A : private virtual W { };
class B : public virtual W { };
class C : public A, public B {
void f() { W::f(); } // ok

)

SinceW::f() is available taC::f() along the public path throud®) access is allowed.

12

Special Member Functions

Some member functions have special meaning in the sense that they affect the way a compiler treats objects of
their class; that is, they affect the semantics even when they are not explicitly used.

This chapter describeonstructors destructors andconversionsand the free store management operators.
Constructors initialize class objects. Destructors are invoked when class objects are destroyed; they are useful
for cleaning up. A conversion function specifies a conversion between a class object and another type. The free
store management operators allocate and deallocate memory for dynamic objects.

Copying of class objects and the use of temporaries are also covered in this chapter.

12 Special member functions 0

Some member functions are special in that they affect the way objects of a class are created, copied, and
destroyed, and how values may be converted to values of other types. Often such special functions are
called implicitly. Also, the compiler may generate instances of these functions when the programmer does
not supply them. Compiler-generated special functions may be referred to in the same ways that
programmer-written functions are.

These member functions obey the usual access rules (11). For example, declaring a cqstructor
tected ensures that only derived classes and friends can create objects using it.

12.1 Constructors

A member function with the same name as its class is called a constructor; it is used to construct values of
its class type. If a class has a constructor, each object of that class will be initialized before any use is made
of the object; see 12.6.

A constructor can be invoked forcanst or volatile object. A constructor may not be declared
const orvolatile (9.3.1). A constructor may not betual . A constructor may not bstatic

Constructors are not inherited. Default constructors and copy constructors, however, are generated (by
the compiler) where needed (12.8). Generated constructqualzie

A default constructofor a classX is a constructor of claséthat can be called without an argument. A
default constructor will be generated for a cldsmly if no constructor has been declared for ckass

A copy constructofor a classX is a constructor whose first parameter is of t8eor const X& and
whose other parameters, if any, all have defaults, so that it can be called with a single argumeix of type
For exampleX::X(const X&) andX::X(X&, int=0) are copy constructors. A copy constructor is gen-
erated if and only if no copy constructor is declared in the class defifittion.

4L Thus the class definition

struct X {
X(const X&, int);
h

causes a copy constructor to be generated and the member function definition

10

11

12

12—2 Special Member Functions DRAFT September 28, 1993 Chapter 12

A constructor for a class whose first parameter is of typeor const X (notreference types), is not a
copy constructor, and must have other parameters. For exampleX) is ill formed.

Constructors for array elements are called in order of increasing addresses (8.2.4).

If a class has base classes or member objects with constructors, their constructors are called before the
constructor for the derived class. The constructors for base classes are called first. See 12.6.2 for an expla-
nation of how arguments can be specified for such constructors and how the order of constructor calls is
determined.

An object of a class with a constructor cannot be a member of a union.

No return type (not evevoid) can be specified for a constructor.réfurn statement in the body of
a constructor may not specify a return value. It is not possible to take the address of a constructor.

A constructor can be used explicitly to create new objects of its type, using the syntax

class-name(expression-ligf,)
For example,

complex zz = complex(1,2.3);
cprint(complex(7.8,1.2));

An object created in this way is unnamed (unless the constructor was used as an initializer for a named vari-
able as fozz above), with its lifetime limited to the expression in which it is created; see 12.2.
Member functions may be called from within a constructor; see 12.7. O

12.2 Temporary objects U

In some circumstances it may be necessary or convenient for the compiler to generate a temporarylobject.
Precisely when such temporaries are introduced is implementation dependent. When a compiler introduces
a temporary object of a class that has a constructor it must ensure that a constructor is called for the tempo-
rary object. Similarly, the destructor must be called for a temporary object of a class where a destructor is
declared. For example,

class X {
...

public:
...
X(int);
X(const X&);
~X(;

I3

X A(X);
void g()
{

X a(l1);
X b =1(X(2));
a=f(a);

}

Here, one might use a temporary in which to cons2j before passing it t) by X(X&) ; alterna-
tively, X(2) might be constructed in the space used to hold the argument for the firstf@all.oAlso, a
temporary might be used to hold the resulf(®¥{2)) before copying it tdd by X(X&) ; alternatively,
f() ’s result might be constructed in. On the other hand, for many functiof{} , the expression
a=f(a) requires a temporary for either the argunsent the result of(a) to avoid undesired aliasing of
a.

4
X::X(const X& x, inti=0) { ... }

is ill-formed because of ambiguity. o

Section 12.2 DRAFT September 28, 1993 Temporary objects 13

The compiler must ensure that every temporary object is destroyed. Ordinarily, temporary objeCts are
destroyed as the last step in evaluating the (unique) expression that (lexically) contains the point whére they
were created and is not a subexpression of another expression. This is true even if that evaulatiorilends in
throwing an exception. Temporaries created while evaluating default parameter expressions (8.2J6) are
considered to be created in the expression that calls the function, not the expression that defines thél default
parameter.

The only context in which temporaries are destroyed at a different point is when an expression appears
as a declarator initializer. In that context, the temporary that holds the result of the expression mustpersist
at least until the initialization implied by the declarator is complete. If the declarator declares a refdrence,
the temporary to which the reference is bound persists until the end of the scope in which the refefénce is
declared. Otherwise, the declarator defines an object that is initialized from a copy of the tempordry; the
temporary is destroyed as soon as it has been copied. In all cases, temporaries are destroyed ifl reverse
order of creation. O

Another form of temporaries is discussed in 8.4.3.

12.3 Conversions

Type conversions of class objects can be specified by constructors and by conversion functions.

Such conversions, often calleder-defined conversionare used implicitly in addition to standard con-
versions (4). For example, a function expecting an argument oktgpa be called not only with an argu-
ment of typeX but also with an argument of tyewhere a conversion fror to X exists. User-defined
conversions are used similarly for conversion of initializers (8.4), function arguments (5.2.2, 8.2.5), func-
tion return values (6.6.3, 8.2.5), expression operands (5), expressions controlling iteration and selection
statements (6.4, 6.5), and explicit type conversions (5.2.3, 5.4).

User-defined conversions are applied only where they are unambiguous (10.1.1, 12.3.2). Conversions
obey the access control rules (11). As ever access control is applied after ambiguity resolution (10.4).

See 13.2 for a discussion of the use of conversions in function calls as well as examples below. [

12.3.1 Conversion by constructor O

A constructor with a single parameter specifies a conversion from its parameter type to the type of its class.
For example,

class X {
...

public:
X(int);
X(const char*, int =0);

h

void f(X arg) {
Xa=1,; /la=X(1)
X b ="Jessie"; /I b=X("Jessie",0)
a=2; Il'a=X(2)
f(3); 11(X(3))

}

When no constructor for clagéaccepts the given type, no attempt is made to find other constructors or
conversion functions to convert the assigned value into a type acceptable to a constructor Xor Fetaiss
example,

class X { /* ... */ X(int); };

class Y {/*...* Y(X); };

Ya=1, /l'illegal: Y(X(1)) not tried

A~ W

12—4 Special Member Functions DRAFT September 28, 1993 Chapter 12

12.3.2 Conversion functions a

A member function of a clagéwith a name of the form

conversion-function-id:
operator conversion-type-id

conversion-type-id:
type-specifier-seq ptr-operatgy

specifies a conversion froMto the type specified by thepnversion-type-id Such member functions are

called conversion functions. Classes, enumerations}ygredief-nanm® may not be declared in thpe-

specifier-seq Neither parameter types nor return type may be specified. A conversion operator is never

used to convert a (possibly qualified) object (or reference to an object) to the (possibly qualified) same

object type (or a reference to it), or to a (possibly qualified) base class of that type (or a reference to it).
Here is an example:

class X {
...
public:
operator int();

h

void f(X a)

{
inti =int(a);
i = (int)a;
i=a;

}

In all three cases the value assigned will be converted:loperator int() . User-defined conver-
sions are not restricted to use in assignments and initializations. For example,

void g(X a, X b)
{

inti=(a)?1+a:0;
intj = (a&&b) ? at+b: i;
if @) {// ...

}

Conversion operators are inherited.

Conversion functions can be virtual.

At most one user-defined conversion (constructor or conversion function) is implicitly applied to a sin-
gle value. For example,

class X {
...
public:
operator int();

h

class Y {

...
public:

operator X();
I3

Y a;
inth =a; /l'illegal:

I/l a.operator X().operator int() not tried
int ¢ = X(a); // ok: a.operator X().operator int()

()]

Section 12.3.2 DRAFT September 28, 1993 Conversion functions -2

User-defined conversions are used implicitly only if they are unambiguous. A conversion function in a
derived class does not hide a conversion function in a base class unless the two functions convert to the
same type. For example,

class X {
public:
...
operator int();
I3
class Y : public X {
public:
...
operator void*();
2
void f(Y& a)
if (a) { /I error: ambiguous
1
}
}

12.4 Destructors

A member function of classl named-~cl is called a destructor; it is used to destroy values of ¢ype
immediately before the object containing them is destroyed. A destructor takes no parameters, and no
return type can be specified for it (not ewand). It is not possible to take the address of a destructor. A
destructor can be invoked forcanst or volatile object. A destructor may not be declaceshst or
volatile (9.3.1). A destructor may not lséatic

Destructors are not inherited. If a base or a member of a class has a destructor and no destructor is
declared for the class itself a default destructor is generated.

g A default destructor should be generated if the class has a deallocation fuBktion.

This generated destructor calls the destructors for bases and members of its class. Generated destructors are
public

The body of a destructor is executed before the destructors for member or base objects. Destructors for
nonstatic member objects are executed in reverse order of their declaration before the destructors for base
classes. Destructors for nonvirtual base classes are executed in reverse order of their declaration in the
derived class before destructors for virtual base classes. Destructors for virtual base classes are executed in
the reverse order of their appearance in a depth-first left-to-right traversal of the directed acyclic graph of
base classesjeft-to-right’ is the order of appearance of the base class names in the declaration of the
derived class. Destructors for elements of an array are called in reverse order of their construction.

A destructor may be declargdtual or purevirtual . In either case if any objects of that class or
any derived class are created in the program the destructor must be defined.

Member functions may be called from within a destructor; see 12.7.

An object of a class with a destructor cannot be a member of a union.

Destructors are invoked implicitly (1) when anto (3.5) or temporary (12.2, 8.4.3) object goes out of
scope, (2) for constructed static (3.5) objects at program termination (3.4), and (3) through dsletef a
expression(5.3.4) for objects allocated by reew-expressior{5.3.3). Destructors can also be invoked
explicitly. A delete-expressiomvokes the destructor for the referenced object and passes the address of its
memory to a dealloation function (5.3.4, 12.5). For example,

10

12—6 Special Member Functions DRAFT September 28, 1993 Chapter 12

class X {
...

public:
X(int);
~X();

void g(X*);

void f() /l common use:

{

X* p =new X(111); // allocate and initialize

9(p);
delete p; I/ cleanup and deallocate

}

Explicit calls of destructors are rarely needed. One use of such calls is for objects placed at specific
addresses using mew-expressiorwith the placement option. Such use of explicit placement and
destruction of objects can be necessary to cope with dedicated hardware resources and for writing memory
management facilities. For example,

void* operator new(size_t, void* p) { return p; }
void f(X* p);
static char buf[sizeof(X)];

void g() /I rare, specialized use:

X* p = new(buf) X(222); // use buf[]
Il and initialize

f(p);
p->X::~X(); Il cleanup

}

Invocation of destructors is subject to the usual rules for member functions, e.g., an object of the appro-
priate type is required (except invokidglete on a null pointer has no effect). When a destructor is
invoked for an object, the object no longer exists; if the destructor is explicitly invoked again for the same
object the behavior is undefined. For example, if the destructor for an automatic object is explicitly
invoked, and the block is subsequently left in a manner that would ordinarily invoke implicit destruction of
the object, the behavior is undefined.

The notation for explicit call of a destructor may be used for any simple type name. For example,

int* p;

...

p->int::~int();
Using the notation for a type that does not have a destructor has no effect. Allowing this enables people to
write code without having to know if a destructor exists for a given type. O
12.5 Free store O

When an object is created wittnaw-expressigranallocation function(loperator new() for non-array

objects oroperatornew[]() for arrays) is (implicitly) called to get the required storage. Allocation
functions may be static class member functions or global functions. They may be overloaded, but the
return type must always bgoid* and the first parameter type must always dire t , an
implementation-defined integral type defined in the standard heatigdef.n> . Overloading resolu-

tion is done by assembling an argument list from the amount of space requested (the first argument) and the
expressions in theew-placemenpart of thenew-expressignif used (the second and succeeding argu-
ments). When a non-array object or an array of class created by anew-expressignthe allocation

Section 12.5 DRAFT September 28, 1993 Free store 37

function is looked up in the scope of cldsgsing the usual rules.

The default:operator new(size_t) and::operator new[](size_t) are always declared
and definitions are provided in the library (17.1.1). If a program contains a definitioopefator
new(size_t) or ::operatornewf](size_t) , that definition is used in preference to the library
version.

When anew-expressiois executed, the selected allocation function will be called with the amount of
space requested (possibly zero) as its first argument. The function may return the address of a block of
available storage (suitably aligned) of the requested size or, if it is unable to allocate such a block, it may
throw an exception (15) of clagalloc (17.1.3.3.2) or a class derived fro@lloc . For a request for a
block of zero size, the pointer returned should be non-null and distinct from the address of any currently
allocated object or zero-sized block. If the allocation function returns the null pointer the result is imple-
mentation defined. Any other result is undefined.

g Can a user-supplied allocation function call the currently instabed handler 2 How? O

Any X::operator new() or X::operator new[]() for aclassXis a static member (even if not
explicitly declaredstatic). For example,

class Arena; class Array_arena;
struct B {

void* operator new(size_t, Arena*);
}.

truct D1 : B {
2

Arena* ap; Array_arena* aap;
void foo(int i)

{ new (ap) D1; // calls B::operator new(size_t, Arena*) O
new D1[i]; /I calls ::operator new[](size_t) g
new D1, /I ill-formed: ::operator new(size_t) hidden g
}
When an object is deleted witldalete-expressigra deallocation functioroperator delete() for
non-array objects ooperatordelete[]() for arrays) is (implicitly) called to reclaim the storage

occupied by the object. Like allocation functions, deallocation functions may be static class member func-
tions or global functions.

The return type of each deallocation function musvdie and its first parameter must beid*
For class member deallocation functions (only) a second parameter cfizgpé may be added but
deallocation functions may not be overloaded. When an object is deletedd&igta-expressigrnthe
deallocation function is looked up in the scope of class of the executed destructor (see 5.3.4) using the usual
rules.

Default versions of.operatordelete(void*) and ::operatordelete[](void*) , are
provided in the library (17.1.1). If a program contains a definitionoplerator delete(void*) or
;.operator delete[](void*) , that definition is used in preference to the library version. When a

delete-expressiois executed, the selected deallocation function will be called with the address of the block
of storage to be reclaimed as its first argument and (if the two-parameter style is used) the size of the
block?3 as its second argument.

An X::operatordelete() or X::operatordelete[]() for a classX is a static member
(even if not explicitly declarestatic). For example,

43t the static class in theelete-expressiois different from the dynamic class and the destructor is not virtual the size might be incorrect, but that case
is already undefined.

12—8 Special Member Functions DRAFT September 28, 1993 Chapter 12

class X {
...
void operator delete(void*);
void operator delete[](void*, size_t);

I8

class Y {
...
void operator delete(void*, size_t);
void operator delete[](void*);

2

Since member allocation and deallocation functionstatic ~ they cannot be virtual. However, the
deallocation function actually called is determined by the destructor actually called, so if the destructor is
virtual the effect is the same. For example,

struct B {
virtual ~B();
void operator delete(void*, size_t);
2
struct D : B {
void operator delete(void*);
void operator delete[](void*, size_t);
2
void f(int i)
{
B* bp = new D;
delete bp; // uses D::operator delete(void*)
D* dp = new DIi];
delete dp; // uses D::operator delete[](void*, size_t)
}

Here, storage for the non-array object of class deallocated byD::operator delete() , due to the

virtual destructor. Access to the deallocation function is checked statically. Thus even though a different
one may actually be executed, the statically visible deallocation function must be accessible. In the exam-
ple above, ifB::operator delete() had beermrivate , the delete expression would have been ill
formed.

12.6 Initialization

An object of a class with no constructors, no private or protected members, no virtual functions, and no
base classes can be initialized using an initializer list; see 8.4.1. An object of a class with a constructor
must either be initialized or have a default constructor (12.1). The default constructor is used for objects
that are not explicitly initialized. a

12.6.1 Explicit initialization a

Objects of classes with constructors (12.1) can be initialized with a parenthesized expression list. This list
is taken as the argument list for a call of a constructor doing the initialization. Alternatively a single value
is specified as the initializer using theoperator. This value is used as the argument to a copy constructor.
Typically, that call of a copy constructor can be eliminated. For example,

Section 12.6.1 DRAFT September 28, 1993 Explicit initialization 29

class complex {
...

public:
complex();
complex(double);
complex(double,double);
...

h

complex sqgrt(complex,complex);

complex a(1); // initialize by a call of
/I complex(double)
complex b = a; /l initialize by a copy of ‘a’

complex ¢ = complex(1,2); // construct complex(1,2)
I/l using complex(double,double)
I/l copy itinto ‘c’

complex d = sqrt(b,c); /I call sgrt(complex,complex)

/I and copy the result into ‘d’
complex e; [l initialize by a call of

/I complex()
complex f = 3; /I construct complex(3) using

/I complex(double)
I/l copy itinto ‘f’

Overloading of the assignment operatdras no effect on initialization.
The initialization that occurs in argument passing and function return is equivalent to the form

Tx=a;

The initialization that occurs inew expressions (5.3.3) and in base and member initializers (12.6.2) is
equivalent to the form

T x(a);

Arrays of objects of a class with constructors use constructors in initialization (12.1) just like individual
objects. If there are fewer initializers in the list than elements in the array, the default constructor (12.1) is
used. If there is no default constructor ithigalizer-clausemust be complete. For example,

complex cc ={ 1, 2 }; // error; use constructor
complex v[6] = { 1,complex(1,2),complex(),2 };

Here,v[0] andv[3] are initialized withcomplex::complex(double) , V[1] is initialized with
complex::complex(double,double) , and v[2] , v[4] , and v[5] are initialized with
complex::complex()
An object of clasdMcan be a member of a classnly if (1) Mdoes not have a constructor, or 2Zhas
a default constructor, or (X has a constructor and if every constructor of ckasgecifies ator-initializer
(12.6.2) for that member. In case 2 the default constructor is called when the aggregate is created. If a
member of an aggregate has a destructor, then that destructor is called when the aggregate is destroyed.
Constructors for nonlocal static objects are called in the order they occur in a file; destructors are called
in reverse order. See also 3.4, 6.7, 9.4. O

12.6.2 Initializing bases and members O

Initializers for immediate base classes and for members not inherited from a base class may be specified in
the definition of a constructor. This is most useful for class objects, constants, and references where the
semantics of initialization and assignment differctér-initializer has the form
ctor-initializer:
meme-initializer-list

12—10 Special Member Functions DRAFT September 28, 1993 Chapter 12

mem-initializer-list:
mem-initializer
meme-initializer, meme-initializer-list

meme-initializer:
qualified-class-specifier{ expression-ligf,)
identifier (expression-ligf,)

The argument list is used to initialize the named nonstatic member or base class object. This (or for an
aggregate (8.4.1), initialization by a brace-enclosed list) is the only way to initialize nocstetic and
reference members. For example,

struct B1 { B1(int); /* ... */ };
struct B2 { B2(int); /* ... */ };

struct D : B1, B2 {

D(int);
Bl b;
const c;
h
D::D(int a) : B2(a+1), B1(a+2), c(a+3), b(a+4)
{rF..*}
D d(10);

First, the base classes are initialized in declaration order (independent of the arder-wfitializes), then

the members are initialized in declaration order (independent of the ordegzrofinitializes), then the

body ofD::D() is executed (12.1). The declaration order is used to ensure that sub-objects and members
are destroyed in the reverse order of initialization.

Virtual base classes constitute a special case. Virtual bases are constructed before any nonvirtual bases
and in the order they appear on a depth-first left-to-right traversal of the directed acyclic graph of base
classes; left-to-right’ is the order of appearance of the base class names in the declaration of the derived
class.

The class of @omplete objecfl.3) is said to be themost deriveatlass for the sub-objects representing
base classes of the object. All sub-objects for virtual base classes are initialized by the constructor of the
most derived class. If a constructor of the most derived class does not speeify-iaitializerfor a virtual
base class then that virtual base class must have a default constructor or no constructanremAny
initializers for virtual classes specified in a constructor for a class that is not the class of the complete object
are ignored. For example,

class V {

public:
VO0;
V(int);
...

2

class A : public virtual V {
public:

AQ;

A(int);

...

Section 12.6.2 DRAFT September 28, 1993 Initializing bases and members —11

class B : public virtual V {

public:
B()
B(int);
...

2

class C : public A, public B, private virtual V {

public:
CO;
C(int);
...

I3

ACAGNti) VG {7 .. ¥}
B:B(nti) { /* ... */ }
cc(inti) { /... */ }

V v(1); /] use V(int)
A a(2); /l use V(int)
B b(3); // use V()
C c(4); Il use V()

A mem-initializeris evaluated in the scope of the constructor in which it appears. For example,

class X {
int a;
public:
constint&r;
X0:r(@) {}

initializes X::r to refer toX:;:a for each object of clasé a

12.7 Constructors and destructors a

Member functions may be called in constructors and destructors. This implies that virtual functions may be
called (directly or indirectly). The function called will be the one defined in the constructor’'s (or
destructor’s) own class or its bases, hotany function overriding it in a derived class. This ensures that
unconstructed parts of objects will not be accessed during construction or destruction. For example,

class X {

public:
virtual void f();
XO){fO;} [calls X:f()
~X(0) {f();} 1 calls X::f()

class Y : public X {
int&r;

public:
void f()
{

r++; [/ disaster if ‘r' is uninitialized
}
Y (int& rr) :r(rr) {} // calls X::X() which calls X::f()
The effect of calling a pure virtual function directly or indirectly for the object being constructed from a
constructor, except using explicit qualification, is undefined (10.3). O

12—12 Special Member Functions DRAFT September 28, 1993 Chapter 12

12.8 Copying class objects O

A class object can be copied in two ways, by assignment (5.17) and by initialization (12.1, 8.4) including
function argument passing (5.2.2) and function value return (6.6.3). Conceptually, for 4 ttlase two
operations are implemented by an assignment operator and a copy constructor (12.1). If not declared by the
programmer, they will if possible be automatically defintsyfthesizet) as memberwise assignment and
memberwise initialization of the base classes and non-static data membBereggectively. An explicit
declaration of either of them will suppress the synthesized definition.

If all bases and members of a claskave copy constructors accepticonst parameters, the synthe-
sized copy constructor fof will have a single parameter of typenst X&, as follows:

X::X(const X&)
Otherwise it will have a single parameter of tyffe
X X(X&)

and programs that attempt initialization by copyingarfist X objects will be ill formed.
Similarly, if all bases and members of a clXssave assignment operators acceptingst parame-
ters, the synthesized assignment operataX feill have a single parameter of typenst X&, as follows:

X& X::operator=(const X&)
Otherwise it will have a single parameter of tyf#
X& X::operator=(X&)

and programs that attempt assignment by copyirgpe$t X objects will be ill formed. The synthesized
assignment operator will return a reference to the object for which is invoked.
Objects representing virtual base classes will be initialized only once by a generated copy constructor.
Objects representing virtual base classes will be assigned only once by a generated assignment operator.
Memberwise assignment and memberwise initialization implies that if aXlhas a member or base
of a classM Ms assignment operator amds copy constructor are used to implement assignment and
initialization of the member or base, respectively, in the synthesized operations. The default assignment
operation cannot be generated for a class if the class has:

a non-static data member that isomst or a reference,
a non-static data member or base class whose assignment operator is inaccessible to the class, or

a non-static data member or base class with no assignment operator for which a default assign-
ment operation cannot be generated.

Similarly, the default copy constructor cannot be generated for a class if a non-static data member or a
base of the class has an inaccessible copy constructor, or has no copy constructor and the default copy
constructor cannot be generated for it.

The default assignment and copy constructor will be declared, but they will not be defined (that is, a
function body generated) unless needed. ThaX:igperator=() will be generated only if no
assignment operation is explicitly declared and an object of Xl@sassigned an object of clas®r an
object of a class derived frokor if the address of::operator= is taken. Initialization is handled
similarly.

If implicitly declared, the assignment and the copy constructor will be public members and the
assignment operator for a classvill be defined to return a reference of ty)& referring to the object
assigned to.

If a classX has anyX::operator=() that has a parameter of clagshe default assignment will
not be generated. If a class has any copy constructor defined, the default copy constructor will not be
generated. For example,

10

Section 12.8

class X {

...

public:

k

X(int);

DRAFT September 28, 1993

X(const X&, int = 1);

X a(1);
X b(a, 0);
Xc=b;

Assignment of class objecd$ is defined in terms oK::.operator=(constX&)
(12.3) that objects of a derived class can be assigned to objects of a public base class. For example,

class X {
public:

h

int b;

/I calls X(int);

/I calls X(const X&, int);

/I calls X(const X&, int);

class Y : public X {
public:

h

int c;

void f()

{

}

X x1,;
Y yi;

x1=yl;
yl =x1;

/I ok
/Il error

Hereyl.b is assigned tal.b andyl.c is not copied.

Copying one object into another using the default copy constructor or the default assignment operator

does not change the structure of either object. For example,

/I really a.s::operator=(b)
Il error
/I calls s::f
/I calls ss::f
// assign to b’s s part
Il really ((s&)b).s::operator=(a)
/1 still calls ss::f

struct s {
virtual f();
...

I3

struct ss : public s {
f0;
...

I3

void f()

{
s a;
ss b;
a=b;
b=a;
a.f();
b.f();
(s&)b = a;
b.f();

}

The calla.f()

call ss::f()

will invoke s::f()
(as is suitable for an object of class).

Copying class objects —1B

. This implies

(as is suitable for an object of clas$10.2)) and the cab.f() will

13

Overloading

This chapter gives the syntax and semantics of operator and function overloading. Overloading allows multiple
functions with the same name to be defined provided their parameter lists differ sufficiently for calls to be
resolved. By overloading operators, the programmer can redefine the meaning ofHmays¢r@tors (including
function call() , subscriptind] , assignment, address-o&, and class member access) when at least one
operand is a class object.

13 Overloading

When several different function declarations are specified for a single name in the same scope, that name is
said to be overloaded. When that name is used, the correct function is selected by comparing the types of
the arguments with the types of the parameters. For example,

double abs(double);

int abs(int);
abs(1); /I call abs(int);
abs(1.0); /I call abs(double);

Since for any typd, aT and aT& accept the same set of initializer values, functions with parameter types
differing only in this respect may not have the same name. For example,

int f(int i)

...
}

int f(int& r) // error: function types
/I not sufficiently different
{

}

Similarly, since for any typ&, aT, aconst T, and avolatile T accept the same set of initializer val-
ues, functions with parameter types differing only in this respect may not have the same name. It is, how-
ever, possible to distinguish betwemmst T&, volatile T&, and plainT& so functions that differ only
in this respect may be defined. Similarly, it is possible to distinguish beteoesh T*, volatile T,
and plainT* so functions that differ only in this respect may be defined.

Functions that differ only in the return type may not have the same name.

Member functions that differ only in that one istatic member and the other isn’'t may not have the
same name (9.4).

...

13—2 Overloading DRAFT September 28, 1993 Chapter 13

A typedef is not a separate type, but only a synonym for another type (7.1.3). Therefore, functions
that differ by typedeftypes only may not have the same name. For example,

typedef int Int;
void f(inti) {/*...*/}
void f(Inti) { /* ... */ } /I error: redefinition of f

Enumerations, on the other hand, are distinct types and can be used to distinguish overloaded functions.
For example,

enumE{a};
void f(inti) {/*...*/}
void f(Ei) {/*..*}

Parameter types that differ only in a pointerersus an arraly are identical, that is, the array declara-
tion is adjusted to become a pointer declaration (8.2.5). Note that only the second and subsequent array
dimensions are significant in parameter types (8.2.4).

f(char*);

f(char[]); /I same as f(char*);
f(char[7]); /I same as f(char*);
f(char[9]); /I same as f(char*);
g(char(*)[10]);

g(char[5][10]); // same as g(char(*)[10]);
g(char[7][10]); // same as g(char(*)[10]);
g(char(*)[20]); // different from g(char(*)[10]);

13.1 Declaration matching O

Two function declarations of the same name refer to the same function if they are in the same scope and
have identical parameter types (13). A function member of a derived classimsthe same scope as a
function member of the same name in a base class. For example,

class B {
public:

int f(int);
I3

class D : public B {
public:
int f(char*);
I3
HereD::f(char*) hidesB::f(int) rather than overloading it.
void h(D* pd)
pd->f(1); I error:
/I D::f(char*) hides B::f(int)
pd->B::f(1); /I ok
pd->f("Ben"); /I ok, calls D::f
}

A locally declared function is not in the same scope as a function in file scope.

Section 13.1 DRAFT September 28, 1993 Declaration matching 43

int f(char*);
void g()
{

extern f(int);
f("asdf"); /I error: f(int) hides f(char*)
/I so there is no f(char*) in this scope

}
Different versions of an overloaded member function may be given different access rules. For example,

class buffer {

private:
char* p;
int size;

protected:
buffer(int s, char* store) { size = s; p = store; }
...

public:
buffer(int s) { p = new char[size = s]; }
...

13.2 Argument matching O

A call of a given function name chooses, from among all functions by that name that are in scope and for
which a set of conversions exists so that the function could possibly be called, the function whose parame-
ters best match the given arguments. The best-matching function is the intersection of sets of functions that
best match on each argument. Unless this intersection has exactly one member, the call is ill formed. The
function thus selected must be a better match to the call than any other candidate function. Otherwise, the
call is ill formed.

One function is a better match than another if for each argument in the call, the corresponding parameter
of the first function is at least as good a match as the corresponding parameter of the second function, and
for some argument the corresponding parameter of the first function is a better match.

For purposes of argument matching, a function widefault parameters (8.2.6) is considered to-k
functions with different numbers of parameters.

For purposes of argument matching, a nonstatic member function is considered to have an extra parame-
ter specifying the object for which it is called. This extra parameter requires a match either by the object or
pointer specified in the explicit member function call notation (5.2.4) or by the first operand of an over-
loaded operator (13.4). No temporaries will be introduced for this extra parameter and no user-defined con-
versions will be applied to achieve a type match.

Where a member funtion of a classs explicitly called for a pointer using the operator, this extra
parameter is assumed to have t){je cv-qualified by the cv-qualifiers of the member function, if any. For
example, the extra parameter is assumed to havectypt X* for aconst member function. Where
the member function is explicitly called for an object or reference using tpeerator, or the function is
invoked for the first operand of an overloaded operator (13.4), this extra parameter is assumed to have type
X& cv-qualified by the cv-qualifiers of the member function, if any. The first operareofand.* is
treated in the same way as the first operand adnd. , respectively.

An ellipsis in a parameter list (8.2.5) is a match for an argument of any type.

For a given argument, no sequence of conversions will be considered that contains more than one user-
defined conversion or that can be shortened by deleting one or more conversions into another sequence that
leads to the type of the corresponding parameter of any function in consideration. Such a sequence is called
abest-matchingequence.

For exampleint - float —double is a sequence of conversions frath to double , but it is not
a best-matching sequence because it contains the shorter sdgtiencdouble .

10

11
12

13

14

13—4 Overloading DRAFT September 28, 1993 Chapter 13

Except as mentioned below, the followitntyial conversiongnvolving a typeT do not affect which of
two conversion sequences is better:

from: to:
T T&
T& T
T T*
T(args) (*T)(args)
T constT
T volatile T
T const volatile T
T* const T*
T* volatile T*
T* const volatile T*

Sequences of trivial conversions that differ only in order are indistinguishable. Note that functions with
parameters of typ&, const T, volatile T, andconst volatile T accept exactly the same set of
values. Where necessacpnst andvolatile are used as tie-breakers as described in rule [1] below.

A temporary variable is needed for a parameter of Tpé the argument is not an lvalue, has a type
different fromT, or is avolatile andT isn’t. This does not affect argument matching. It may, however,
affect the correctness of the resulting match since a temporary may not be used to initialibersshon-
reference (8.4.3).

Sequences of conversions are considered according to these rules:

[1] Exact match: Sequences of zero or more trivial conversions are better than all other sequences.
Of these, those that do not convEttto const T*, T* to volatile T*, T&to const T&,
or T&to volatile T& are better than those that do.

[2] Match with promotions: Of sequences not mentioned in [1], those that contain only integral pro-
motions (4.1), conversions froffoat to double , and trivial conversions are better than all
others.

[3] Match with standard conversions: Of sequences not mentioned in [2], those with only standard
(4) and trivial conversions are better than all others. Of the&eisifderived directly or indi-
rectly fromA, converting 88* to A* is better than converting i@id* or const void* ; fur-
ther, if Cis publicly derived directly or indirectly frorB, converting e&C* to B* is better than
converting toA* and converting £&to B&is better than converting #& The class hierarchy
acts similarly as a selection mechanism for pointer to member conversions (4.8).

[4] Match with user-defined conversions: Of sequences not mentioned in [3], those that involve only
user-defined conversions (12.3), standard (4) and trivial conversions are better than all other
sequences.

[5] Match with ellipsis: Sequences that involve matches with the ellipsis are worse than all others.

User-defined conversions are selected based on the type of variable being initialized or assigned to.

class Y {
...

public:
operator int();
operator double();

2
void f(Y y)
inti=y; /I call Y::operator int()
double d;
d=y; /I call Y::operator double()
float f =y; // error: ambiguous
}

Standard conversions (4) may be applied to the argument for a user-defined conversion, and to the result
of a user-defined conversion.

15

Section 13.2 DRAFT September 28, 1993 Argument matching 45

struct S { S(long); operator int(); };

void f(long), f(char*);
void g(S), g(char*);
void h(const S&), h(char*);

void k(S& a)

{
f(a); I f(long(a.operator int()))
9(1); I1'9(S(long(1)))
h(1); 1/ h(S(long(1)))

}

Except when one conversion sequence is a subsequence of another, if user-defined coercions are needed for
an argument, no account is taken of any standard coercions that might also be involved. For example,

class X {
public:

X(int);
I3

class Y {
public:
Y(long);

c’lass Z{
public:
operator int();

h

void f(X);

void f(Y);

void g(int);
void g(double);

void g()

f(1); /I ambiguous
Z z
9(2); I okay -- g(int(z))

The call f(1) is ambiguous despit§y(long(1))) needing one more standard conversion than
f(x(1)) , and the calg(z) is unambiguous even thougj{double(int(z)) has only one user-
defined conversion. The difference is that the two conversion sequences fouifd faontain two
differentuser-defined conversions and neither sequence is a subsequence of the other, while the two con-
version sequences found fgf) contain the same user-defined conversion and one is subsequence of the
other.

No preference is given to conversion by constructor (12.1) over conversion by conversion function
(12.3.2) or vice versa.

struct X {
operator int();
2

struct Y {
Y(X);
b

13—6 Overloading DRAFT September 28, 1993 Chapter 13

Y operator+(Y,Y);
void f(X a, X b)

atb; // error, ambiguous:
I operator+(Y(a), Y(b)) or
I a.operator int() + b.operator int()

13.3 Address of overloaded function a

A use of a function name without arguments selects, among all functions of that name that are in scope, the
(only) function that exactly matches the target. The target may be

an object being initialized (8.4)

the left side of an assignment (5.17)

a parameter of a function (5.2.2)

a parameter of a user-defined operator (13.4)
a function return type (8.2.5)

an explicit type conversion (5.2.3, 5.4)

Note that iff() andg() are both overloaded functions, the cross product of possibilities must be
considered to resolvié&g) , or the equivalent expressif(g)
For example,

int f(double);

int f(int);

(int (*)(int))&f /I cast expression as selector
int (*pfd)(double) = &f;

int (*pfi)(int) = &f;

int (*pfe)(...) = &f; /] error: type mismatch

The last initialization is ill-formed because f® with type int(...) has been defined, and nofl
because of any ambiguity.
Note also that there are no standard conversions (4) of one pointer to function type into another (4.6).
In particular, even iB is a public base dwe have
D* ();
B* (*p1)() = &f; /I error

void g(D*);
void (*p2)(B*) = &g; // error

13.4 Overloaded operators O

Most operators can be overloaded.

operator-function-id:
operator operator

Section 13.4 DRAFT September 28, 1993 Overloaded operators 13

operator: one of

new delete new(] delete[]

+ - * / % n & | ~

! = < > += = *= = 0=
N= &= [= << >> >>= <= == 1=
<= >= && || ++ - S>* >

0 0

The last two operators are function call (5.2.2) and subscripting (5.2.1).
Both the unary and binary forms of

+ - &

can be overloaded.
The following operators cannot be overloaded:

* . -

nor can the preprocessing symbiland## (16).
Operator functions are usually not called directly; instead they are invoked to implement operators
(13.4.1, 13.4.2). They can be explicitly called, though. For example,

complex z = a.operator+(b); // complex z = a+b;
void* p = operator new(sizeof(int)*n);

The operatorsnew, new[] , delete and delete][] are described in 12.5 and and the rules
described below in this section do not apply to them.

An operator function must either be a non-static member function or have at least one parameter of a
class, a reference to a class, an enumeration, or a reference to an enumeration. It is not possible to change
the precedence, grouping, or number of operands of operators. The predefined meaning of the=gperators
(unary)&, and, (comma) applied to class objects may be changed. Exceppéoator=() , operator
functions are inherited; see 12.8 for the rulefmerator=()

Identities among operators applied to basic types (for exampte= a+=1) need not hold for opera-
tors applied to class types. Some operators, for examplerequire an operand to be an Ivalue when
applied to basic types; this is not required when the operators are declared for class types.

An overloaded operator cannot have default parameters (8.2.6).

Operators not mentioned explicitly below in 13.4.3 to 13.4.7 act as ordinary unary and binary operators
obeying the rules of section 13.4.1 or 13.4.2. O

13.4.1 Unary operators U

A prefix unary operator may be declared by a nonstatic member function (9.3) with no parameters or a non-
member function with one parameter. Thus, for any prefix unary opé&@e@zcan be interpreted as either

x.operator@() or operator@(x) . If both forms of the operator function have been declared, argu-
ment matching (13.2) determines which, if any, interpretation is used. See 13.4.7 for an explanation of
postfix unary operators, that is+ and-- . O
13.4.2 Binary operators O

A binary operator may be declared either by a nonstatic member function (9.3) with one parameter or by a
nonmember function with two parameters. Thus, for any binary ope@ato®@y can be interpreted as

either x.operator@(y) or operator@(x,y) . If both forms of the operator function have been
declared, argument matching (13.2) determines which, if any, interpretation is used.

13.4.3 Assignment

The assignment functiooperator=() must be a nonstatic member function; it is not inherited (12.8).
Instead, unless the user defimgerator= for a classX, operator= is defined, by default, as member-
wise assignment of the members of cldss

13—8 Overloading DRAFT September 28, 1993 Chapter 13

X& X::operator=(const X& from)

{
/I copy members of X
}
13.4.4 Function call a
Function call

postfix-expression(expression-ligf;)
is considered a binary operator with thestfix-expressioms the first operand and the possibly empty
expression-listas the second. The name of the defining functioropsrator() . Thus, a call
x(argl,arg2,arg3) is interpreted as.operator()(argl,arg2,arg3) for a class objeck.
operator() must be a nonstatic member function.
13.4.5 Subscripting
Subscripting

postfix-expressior] expression]
is considered a binary operator. A subscripting expresdign is interpreted as.operator[](y)
for a class object. operatorf] must be a nonstatic member function. O
13.4.6 Class member access O

Class member access usixg

postfix-expression> primary-expression

is considered a unary operator. An expressionm is interpreted agx.operator->())->m for a
class objeck. It follows thatoperator->() must return either a pointer to a class that has a member
or an object of or a reference to a class for wiigérator->() is defined. operator-> must be a
nonstatic member function. O
13.4.7 Increment and decrement O

The prefix and postfix increment operators can be defined by a function cp#eator++ . If this func-

tion is a member function with no parameters, or a non-member function with one class parameter, it
defines the prefix increment operater for objects of that class. If the function is a member function with
one parameter (which must be of tyipé) or a non-member function with two parameters (the second
must be of typént), it defines the postfix increment operatar for objects of that class. When the post-

fix increment is called, thimt argument will have value zero. For example,

class X {

public:
const X& operator++(); /I prefix ++a
const X& operator++(int); // postfix a++

h

class Y {

public:

I3

const Y& operator++(Y&); /I prefix ++b
const Y& operator++(Y&, int); // postfix b++

Section 13.4.7 DRAFT September 28, 1993 Increment and decrement —3

void f(X a, Y b)

{
++a,; I/ a.operator++();
a++; /I a.operator++(0);
++Db; /I operator++(b);
b++; /I operator++(b, 0);
a.operator++(); Il explicit call: like ++a;
a.operator++(0); // explicit call: like a++;
operator++(b); I explicit call: like ++b;
operator++(b, 0); // explicit call: like b++;
}

The prefix and postfix decrement operatersare handled similarly.

14

Templates

A classtemplatedefines the layout and operations for an unbounded set of related types. For example, a single
class templatéist might provide a common definition for list @ft , list of float , and list of pointers to
Shapes. A functiontemplatedefines an unbounded set of related functions. For example, a single function
templatesort() might provide a common definition for sorting all the types defined by igte class tem-

plate.

14 Templates

The template design was first presented in Bjarne Strouftexpmeterized Types for-€, Proc. USENIX
C+ Conference, Denver, October 1988.

14.1 Templates

A templatedefines a family of types or functions.

template-declaration:
template < template-parameter-list- declaration

template-parameter-list:
template-parameter
template-parameter-list template-parameter

template-parameter:
type-parameter
parameter-declaration

type-parameter:
class identifier

Thedeclarationin atemplate-declaratiomust declare or define a function or a class or define a static data
member of a template class.

A type-parametedefines itsidentifier to be atype-idin the scope of the template declaration. A
template-parametethat could be interpreted as either parameter-declarationor a type-parameter
(because itientifieris the name of an already existing class) is takenygseaparameter

Template names obey the usual scope and access control rureplate-declaratioiis adeclaration
A template-declaratiomay appear only as a global declaration.

14—2 Templates DRAFT September 28, 1993 Chapter 14

14.2 Class Templates

1 A class template specifies how individual classes can be constructed much as a class declaration specifies
how individual objects can be constructed. A vector class template might be declared like this:

template<class T> class vector {
T*v;
int sz;

public:
vector(int);
T& operator[](int);
T& elem(int i) { return v[i]; }
...

h

The prefixtemplate <class T> specifies that a template is being declared and thateaid T will be
used in the declaration. In other wordsctor is a parameterized type wilhas its parameter.
2 A class can be specified byemplate-class-id

template-class-id:
template-name< template-argument-list-

template-name:
identifier

template-argument-list:
template-argument
template-argument-list template-argument

template-argument:

expression
type-id
3 A template-class-its aclass-namé&9).
4 A class generated from a class template is called a template class, as is a class specifically defined with
atemplate-class-i@s its name; see 14.5.
5 A template-class-ivhere thaemplate-namés not defined names an undefined class.
6 A class template name must be unique in a program and may not be declared to refer to any other tem-
plate, class, function, object, value, or type in the same scope.
7 The types of théemplate-argumestspecified in d&emplate-class-ignust match the types specified for
the template in ittemplate-parameter-list
8 Othertemplate-argumestmust beconstant-expressienaddresses of objects or functions with external
Iinkage,24or of static class members. An exact match (13.2) is required for nontype arguments.
9 For exampleyector s can be used like this:

vector<int> v1(20);
vector<complex> v2(30);

typedef vector<complex> cvec; // make cvec a synonym
/I for vector<complex>
cvec v3(40); //v2 and v3 are of the same type

v1[3] =7;
v2[3] = v3.elem(4) = complex(7,8);

10 Here, vector<int> and vector<complex> are template classes, and their definitions will by
default be generated from thiector template.

“*in particular, a string literal (2.9.4) i®tan acceptable template argument because a string literal is the address of an object with static linkage.

11

12

Section 14.2 DRAFT September 28, 1993 Class Templates —13

Since aemplate-class-iés aclass-nameit can be used whereveckss-namean be used. For exam-
ple,

class vector<Shape*>;
vector<Window>* current_window;

class svector : public vector<Shape*> { /* ... */ };

Definition of class template member functions is described in 14.6.

14.3 Type Equivalence

Two template-class-igl refer to the same class if theémplatenames are identical and their arguments
have identical values. For example,

template<class E, int size> class buffer;

buffer<char,2*512> x;
buffer<char,1024> vy;

declares< andy to be of the same type, and

template<class T, void(*err_fct)()>
classlist{/*...*/ };

list<int,&error_handlerl> x1;
list<int,&error_handler2> x2;
list<int,&error_handler2> x3;
list<char,&error_handler2> x4;

declare2 andx3 to be of the same type. Their type differs from the typed aindx4 .

14.4 Function Templates

A function template specifies how individual functions can be constructed. A family of sort functions, for
example, might be declared like this:

template<class T> void sort(vector<T>);

A function template specifies an unbounded set of (overloaded) functions. A function generated from a
function template is called a template function, as is a function defined with a type that matches a function
template; see 14.5.

Template arguments are not explicitly specified when calling a function template; instead, overloading
resolution is used. For example,

vector<complex> cv(100);
vector<int> ci(200);

void f(vector<complex>& cv, vector<int>& ci)

{
sort(cv); // invoke sort(vector<complex>)
sort(ci); // invoke sort(vector<int>)

}

A template function may be overloaded either by (other) functions of its name or by (other) template
functions of that same name. Overloading resolution for template functions and other functions of the same
name is done in three steps:

[1] Look for an exact match (13.2) on functions; if found, call it.
[2] Look for a function template from which a function that can be called with an exact match can
be generated; if found, call it.
[3] Try ordinary overloading resolution (13.2) for the functions; if a function is found, call it.
If no match is found the call is ill-formed. In each case, if there is more than one alternative in thg first
step that finds a match, the call is ambiguous and is ill-formed. a

14—4 Templates DRAFT September 28, 1993 Chapter 14

A match on a template (step [2]) implies that a specific template function with parameters that
exactly match the types of the arguments will be generated (14.5). Not even trivial conversions (13.2)
will be applied in this case.

The same process is used for type matching for pointers to functions (13.3).

Here is an example:

template<class T> T max(T a, T b) { return a>b?a:b; };

void f(int a, int b, char c, char d)

{
int m1 = max(a,b); // max(int a, int b)
char m2 = max(c,d); // max(char a, char b)
int m3 = max(a,c); // error: cannot generate
/I max(int,char)
}

For example, adding
int max(int,int);

to the example above would resolve the third call, by providing a function that could be called for
max(a,c) after using the standard conversiorcoér toint forc.

A function template definition is needed to generate specific versions of the template; only a function
template declaration is needed to generate calls to specific versions.

Everytemplate-parametespecified in theéemplate-parameter-lishust be used in the parameter list of
a function template. For example,

template<class T> T* create(); // error

template<class T>
void f() { // error
T a;
...
}

All template-parameterfor a function template must hge-parametes.

14.5 Declarations and Definitions

There must be exactly one definition for each template of a given name in a program. There can be many
declarations. The definition is used to generate specific template classes and template functions to match
the uses of the template.

Using atemplate-class-idonstitutes a declaration of a template class.

Calling a function template or taking its address constitutes a declaration of a template function. There
is no special syntax for calling or taking the address of a template function; the name of a function template
is used exactly as is a function name. Declaring a function with the same name as a function template with
a matching type constitutes a declaration of a specific template function.

If the definition of a specific template function or specific template class is needed to perform some
operation and if no explicit definition of that specific template function or class is found in the program, a
definition is generated.

The definition of a (nontemplate) function with a type that exactly matches the type of a function tem-
plate declaration is a definition of that specific function template. For example,

template<class T> void sort(vector<T>& v) { /* ... */ }

void sort(vector<char*>& v) {/*...*}

Here, the function definition will be used as the sort function for arguments of/égper<char*>
For othervector types the appropriate function definition is generated from the template.
A class can be defined as the definition of a template class. For example,

Section 14.5 DRAFT September 28, 1993 Declarations and Definitions -8

template<class T> class stream { /* ... */ };

class stream<char>{ /* ... */ };

Here, the class declaration will be used as the definition of streams of chasimara{char>). Other
streams will be handled by template classes generated from the class template.

No operation that requires a defined class can be performed on a template class until the class template
has been seen. After that, a specific template class is considered defined immediately before the first global
declaration that names it.

14.6 Member Function Templates

A member function of a template class is implicitly a template function with the template parameters of its
class as its template parameters. For example,

template<class T> class vector {
T*v;
int sz;

public:
vector(int);
T& operator[](int);
T& elem(int i) { return v[i]; }
...

I3
declares three function templates. The subscript function might be defined like this:

template<class T> T& vector<T>::operator[](int i)

if (i<0 || sz<=i) error("vector: range error");
return v[i];

}

The template argument feector<T>::operator[]() will be determined by the vector to which
the subscripting operation is applied.

vector<int> v1(20);
vector<complex> v2(30);

v1[3] =7; I vector<int>::operator[]()
v2[3] = complex(7,8); /I vector<complex>::operator[]()

14.7 Friends

A friend function of a template may or may not be a template function. For example,

template<class T> class task {
...
friend void next_time();
friend task<T>* preempt(task<T>*);
friend task* prmt(task*); I error
...

h

Here,next_time() becomes the friend of alisk classes, and eathsk has an appropriately typed
function calledoreempt() as a friend. Thereempt functions might be defined as a template.

template<class T>
task<T>* preempt(task<T>*t) { /* ... */ }

The declaration oprmt() is ill-formed because there is no tyfask , only specific template types,[J
task<int> ,task<record> , and so on.

14—6 Templates DRAFT September 28, 1993 Chapter 14

14.8 Static Members and Variables

Each template class or function generated from a template has its own copies of any static variables or
members. For example,

template<class T> class X {
static T s;
...

h

X<int> aa;
X<char*> bb;

HereX<int> has a static membsrof typeint andX<char*> has a static memberof typechar* .
Static class member templates are defined similarly to member function templates. For example,

template<class T> T X<T>:s = 0;

int X<int>::s = 3;

Similarly,
template<class T> f(T* p)
{
static T s;
...
h
void g(int a, char* b)
{
f(&a);
f(&b);
}
Here f(int*) has a static member of typeint and f(char**) has a static membexr of type

char* .

15

Exception Handling

Exception handling provides a way of transferring control and information to an unspecified caller that has
expressed willingness to handle exceptions of a given type. Exceptions of arbitrary typesttuamwiband
caughtand the set of exceptions a function may throw can be specified. The termination model of exception
handling is provided. Exception handling can be used to support notions of error handling and fault-tolerant
computing.

15 Exception handling 0

The exception handling design is a variant of the scheme presented in Andrew Koenig and Bjarne Strous-
trup: Exception Handling for € (revised) Proc. USENIX &+ Conference, San Francisco, April 1990.

15.1 Exception Handling

Exception handling provides a way of transferring control and information from a point in the execution of
a program to amxception handleassociated with a point previously passed by the execution. A handler
will be invoked only by ahrow-expressiofnvoked in code executed in the handlersblockor in func-

tions called from the handlerts/-block

try-block:

try compound-statement handler-seq
handler-seq:

handler handler-seg,
handler:

catch (exception-declaration) compound-statement

exception-declaration:
type-specifier-seq declarator
type-specifier-seq abstract-declarator
type-specifier-seq

throw-expression:
throw assignment-expressigp

A try-block is a statemen{6). A throw-expressions of typevoid . A throw-expressions sometimes
referred to as &hrow-point” Code that executestrow-expressiois said to*throw an exceptiofi;code
that subsequently gets control is calledhandler”

15—2 Exception Handling DRAFT September 28, 1993 Chapter 15

A goto statement may be used to transfer control out of a handler, but not into one.

15.2 Throwing an Exception

Throwing an exception transfers control to a handler. An object is passed and the type of that object deter-
mines which handlers can catch it. For example,

throw "Help!";
can be caught bylandlerof somechar* type:

try {
...
}

catch(const char* p) {
/l handle character string exceptions here
}

and

class Overflow {
...

public:
Overflow(char,double,double);

h

void f(double x)

{
...

throw Overflow('+',x,3.45e107);
}

can be caught by a handler

try {
...

f(1.2);
I..

catch(Overflow& 00) {
/I handle exceptions of type Overflow here
}

When an exception is thrown, control is transferred to the nearest handler with an appropriate type;
“nearest means the handler whosg-blockwas most recently entered by the thread of control and not yet
exited;"appropriate tygkis defined in 15.4.

A throw-expressiofinitializes a temporary object of the static type of the operartdrofv and uses
that temporary to initialize the appropriately-typed variable named in the handler. Except for the restric-
tions on type matching mentioned in 15.4 and the use of a temporary variable, the opé¢hama ofs
treated exactly as a function argument in a call (5.2.2) or the operanétofra statement.

If the use of the temporary object can be eliminated without changing the meaning of the program
except for the execution of constructors and destructors associated with the use of the temporary object
(12.2), then the exception in the handler may be initialized directly with the argument of the throw expres-
sion.

A throw-expressiomwith no operand rethrows the exception being handledhréw-expressiormwith
no operand may appear only in a handler or in a function directly or indirectly called from a handler. For
example, code that must be executed because of an exception yet cannot completely handle the exception
can be written like this:

Section 15.2 DRAFT September 28, 1993 Throwing an Exception 183

try {
...

catch (...) { // catch all exceptions
I/l respond (partially) to exception

throw; Il pass the exception to some
/I other handler

15.3 Constructors and Destructors

As control passes from a throw-point to a handler, destructors are invoked for all automatic objects con-
structed since thiey-blockwas entered.

An object that is partially constructed will have destructors executed only for its fully constructed sub-
objects. Also, should a constructor for an element of an automatic array throw an exception, only the con-
structed elements of that array will be destroyed.

The process of calling destructors for automatic objects constructed on the pathtifysfoak to a
throw-expressiois called”stack unwinding

15.4 Handling an Exception

A handlerwith typeT, const T, T&, orconst T&is a match for ahrow-expressiomwith an object of
typeE if
[1] T andE are the same type, or
[2] T is an accessible (4.6) base clask af the throw point, or
[3] T is a pointer type ank is a pointer type that can be converted toy a standard pointer con-
version (4.6) at the throw point.
For example,

class Matherr { /* ... */ virtual vf(); };

class Overflow: public Matherr { /* ... */ };
class Underflow: public Matherr { /* ... */ };
class Zerodivide: public Matherr { /* ... */ };

void f()

{
try {
a()s
}

catch (Overflow 00) {
...
}

catch (Matherr mm) {
...
}

}

Here, theOverflow handler will catch exceptions of tyg@verflow and theMatherr handler will
catch exceptions of typdatherr and all types publicly derived frodatherr including Underflow
andZerodivide

The handlers for &ry-blockare tried in order of appearance. A program is ill-formed if it places a Han-
dler for a base class ahead of a handler for its derived class (or a handler for a pointer or reference to base
ahead of a handler for a pointer or reference to derived) since that would ensure that the handler for the
derived class would never be invoked. The processor shall diagnose this error if the classes are defined at
the beginning of the try block.

15—4 Exception Handling DRAFT September 28, 1993 Chapter 15

A ... in a handler'sxception-declaratiofunctions similarly to.. in a function parameter declara-
tion; it specifies a match for any exception. If present, a handler must be the last handler fortris
block

If no match is found among the handlers fonyablock the search for a matching handler continues in a
dynamically surroundingtry-block If no matching handler is found in a program, the function
terminate() (15.6.1) is called.

An exception is considered handled upon entry to a handler. The stack will have been unwound at that
point.

15.5 Exception Specifications

Raising or catching an exception affects the way a function relates to other functions. It is possible to list
the set of exceptions that a function may directly or indirectly throw as part of a function declaration. An
exception-specificatiooan be used as a suffix of a function declarator.
exception-specification:
throw (type-id-lis,)

type-id-list:
type-id
type-id-list , type-id

For example,
void f() throw (X,Y)

...
}

If any declaration or the definition of a function haseameption-specificatiqrall declarations and the
definition of that function must have amception-specificatiocontaining the same settype-ids.

An attempt by a function to throw an exception not in its exception list will cause a call of the function
unexpected() ; see 15.6.2.

An implementation may not reject an expression simply becausightthrow an exception not speci{]
fied in anexception-specificatioaf the function containing the expression; the handling of violations of an
exception-specificatiois done at run-time.

A function with noexception-specificatiomay throw any exception.

A function with an emptyexception-specificatigrthrow() , may not throw any exception (unless
unexpected() itself throws an exception).

If a classX is in thetype-id-listof the exception-specificationf a function, the function may throw an
exception object of any class publicly derived frdmSimilarly, if a pointer to clasg* is in thetype-id-
list of theexception-specificatioaf a function, the function may throw a pointer to object of any class pub-
licly derived fromY.

An exception-specificatiois not considered part of a function’s type.

15.6 Special Functions

The exception handling mechanism relies on two functimrsjinate() and unexpected() , for
coping with errors related to the exception handling mechanism itself.

15.6.1 Theterminate() Function

Occasionally, exception handling must be abandoned for less subtle error handling techniques. For exam-
ple,
— when the exception handling mechanism cannot find a handler for a thrown exception,
— when the exception handling mechanism finds the stack corrupted, or
— when a destructor called during stack unwinding caused by an exception tries to exit using an
exception.
In such cases,

Section 15.6.1 DRAFT September 28, 1993 Therminate() Function 155

void terminate();

is called;terminate() calls the function given on the most recent caliedf terminate()

typedef void(*PFV)();
PFV set_terminate(PFV);

The previous function given teet_terminate() will be the return value; this enables users to
implement a stack strategy for usitggminate() . The default function called grminate()
is abort()

Selecting a terminate function that does not in fact terminate but tries to return to its caller either
with return or by throwing an exception is an error.

15.6.2 Theunexpected() Function

If a function with anexception-specificatiothrows an exception that is not listed in #veception-
specification the function

void unexpected();

is called;unexpected() calls the function given on the most recent calieif unexpected()

typedef void(*PFV)();
PFV set_unexpected(PFV);

The previous function given &et_unexpected() will be the return value; this enables users to imple-
ment a stack strategy for usingexpected() . The default function called bynexpected() is
terminate() . Since the default function called rminate() is abort() , this leads to immedi-
ate and precise detection of the error.

Theunexpected() function may not return, but it may throw an exception. Handlers for this excep-
tion will be looked for starting at the call of the function whegeeption-specificatiowas violated. Thus
anexception-specificatiodoes not guarantee that only the listed classes will be thrown. For example,

void pass_through() { throw; }
void f(PFV pf) throw() /I f claims to throw no exceptions

*pNO; // but the argument function might
}
void g(PFV pf)
{

set_unexpected(&pass_through);
f(pf);
}

After the call ing() to set_unexpected() ,f() behaves as if it had rexception-specificatioat all. [

15.7 Exceptions and Access

The parameter of a catch clause obeys the same access rules as a parameter of the function in which the
catch clause occurs.

An object may be thrown if it can be copied and destroyed in the context of the function in which the
throw occurs.

16

Preprocessing Directives

This chapter describes preprocessing-a. GCH preprocessing, which is based on ANSI C preprocessing, pro-
vides macro substitution, conditional compilation, and source file inclusion. In addition, directives are provided
to control line numbering in diagnostics and for symbolic debugging, to generate a diagnostic message with a
given token sequence, and to perform implementation-dependent actio#iprébma directive). Certain pre-

defined names are available. These facilities are conceptually handled by a preprocessor, which may or may not
actually be implemented as a separate process.

16 Preprocessing directives 0

A preprocessing directive consists of a sequence of preprocessing tokens that begi#sprefirecessing

token that is either the first character in the source file (optionally after white space containing no new-line
characters) or that follows white space containing at least one new-line character, and is ended by the next
new-line charactef®

preprocessing-file:

groupy,,
group:

group-part

group group-part
group-part:

pp-tokeng,, new-line

if-section

control-line
if-section:

if-group elif-groupg,, else-group,, endif-line
if-group:

#if constant-expression new-line grgyp

ifdef identifier new-line groug,

ifndef identifier new-line groug,
elif-groups:

elif-group

elif-groups elif-group

42 Thus, preprocessing directives are commonly cdilegts” These“lines’ have no other syntactic significance, as all white space is equivalent
except in certain situations during preprocessing (se# theracter string literal creation operator in 16.3.2, for example).

16—2 Preprocessing Directives DRAFT September 28, 1993 Chapter 16

elif-group:
elif constant-expression new-line grgyp
else-group:
else new-line group,
endif-line:
endif new-line
control-line:
include pp-tokens new-line
define identifier replacement-list new-line
define identifier Iparen identifier-list,) replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokeng,, new-line
#pragma pp-tokeng, new-line
new-line
Iparen:

the left-parenthesis character without preceding white-space

replacement-list:
pp-tokeng,,

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

The only white-space characters that shall appear between preprocessing tokens within a preprocessing
directive (from just after the introducisgpreprocessing token through just before the terminating new-line
character) are space and horizontal-tab (including spaces that have replaced comments or possibly other
white-space characters in translation phase 3).

The implementation can process and skip sections of source files conditionally, include other source
files, and replace macros. These capabilities are cphegrocessingbecause conceptually they occur
before translation of the resulting translation unit.

The preprocessing tokens within a preprocessing directive are not subject to macro expansion unless
otherwise stated. O

16.1 Conditional inclusion a

The expression that controls conditional inclusion shall be an integral constant expression except that: it
shall not contain a cast; identifiers (including those lexically identical to keywords) are interpreted as
described belov%,6 and it may contain unary operator expressions of the form

defined identifier
or
defined (identifier)

which evaluate td if the identifier is currently defined as a macro name (that is, if it is predefined or if it
has been the subject oftdefine preprocessing directive without an interveniigndef directive with
the same subject identifier), zero if it is not.

“OBecause the controlling constant expression is evaluated during translation phase 4, all identifiers either are or are not mactioenarsiesply
are no keywords, enumeration constants, and so on.

Section 16.1 DRAFT September 28, 1993 Conditional inclusion 1&

Each preprocessing token that remains after all macro replacements have occurred shall be in the lexical
form of a token (2.5).
Preprocessing directives of the forms

if constant-expression new-line groyp
elif constant-expression new-line grgyp

check whether the controlling constant expression evaluates to nonzero.
Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the control-
ling constant expression are replaced (except for those macro names modifieddfindde unary oper-
ator), just as in normal text. If the tokdefined is generated as a result of this replacement process or
use of thadefined unary operator does not match one of the two specified forms prior to macro replace-
ment, the behavior is undefined. After all replacements due to macro expansion definde unary
operator have been performed, all remaining identifiers are replaced with the pp-@urabdrthen each
preprocessing token is converted into a token. The resulting tokens comprise the controlling constant
expression which is evaluated according to the rules of 5.19 using arithmetic that has at least the ranges
specified in<<<<<<???>>>>> except thaint andunsigned int act as if they have the same repre-
sentation as, respectivellgng andunsignedlong . This includes interpreting character constants,
which may involve converting escape sequences into execution character set members. Whether the
numeric value for these character constants matches the value obtained when an identical character constant
occurs in an expression (other than withittifa or #elif directive) is impIementation—defin@&.AIso,
whether a single-character character constant may have a negative value is implementation-defined.
Preprocessing directives of the forms

ifdef identifier new-line groug,
ifndef identifier new-line groug,

check whether the identifier is or is not currently defined as a macro name. Their conditions are equivalent
to#if defined identifierand#if !defined identifierrespectively.

Each directive’s condition is checked in order. If it evaluates to false (zero), the group that it controls is
skipped: directives are processed only through the name that determines the directive in order to keep track
of the level of nested conditionals; the rest of the directives’ preprocessing tokens are ignored, as are the
other preprocessing tokens in the group. Only the first group whose control condition evaluates to true
(nonzero) is processed. If none of the conditions evaluates to true, and thételse adirective, the
group controlled by théelse is processed; lacking#else directive, all the groups until théendif
are skipped. O

16.2 Source file inclusion a

A #include directive shall identify a header or source file that can be processed by the implementation.
A preprocessing directive of the form

#include < h-char-sequence new-line

searches a sequence of implementation-defined places for a header identified uniquely by the specified
sequence between thkeand> delimiters, and causes the replacement of that directive by the entire contents
of the header. How the places are specified or the header identified is implementation-defined.

A preprocessing directive of the form

#include " g-char-sequence new-line

causes the replacement of that directive by the entire contents of the source file identified by the specified
sequence between thedelimiters. The named source file is searched for in an implementation-defined

4" Thus, the constant expression in the followdiifiy directive andf statement is not guaranteed to evaluate to the same value in these two contexts.
= =25
= =25)

28 As indicated by the syntax, a preprocessing token shall not folléelsa or #endif directive before the terminating new-line character. How-
ever, comments may appear anywhere in a source file, including within a preprocessing directive.

16—4 Preprocessing Directives DRAFT September 28, 1993 Chapter 16

manner. If this search is not supported, or if the search fails, the directive is reprocessed as if it read
#include < h-char-sequence new-line

with the identical contained sequence (includingharacters, if any) from the original directive.
A preprocessing directive of the form

include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokarduafeer

in the directive are processed just as in normal text. (Each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens.) The directive resulting after all replacements
shall match one of the two previous forMisThe method by which a sequence of preprocessing tokens
between & and a> preprocessing token pair or a pair'otharacters is combined into a single header
name preprocessing token is implementation-defined.

There shall be an implementation-defined mapping between the delimited sequence and the external
source file name. The implementation shall provide unique mappings for sequences consisting of one or
more letters (as defined kx<<character set section>>) followed by a period.() and a single letter.

The implementation may ignore the distinctions of alphabetical case and restrict the mapping to six signifi-
cant characters before the period.

A #include preprocessing directive may appear in a source file that has been read because of a
#include directive in another file, up to an implementation-defined nesting limit{se€??2>>>).

The most common uses#ihclude preprocessing directives are as in the following:

#include <stdio.h>
#include "myprog.h"

This example illustrates a macro-repla¢éttiude directive:

#if VERSION= =1

#define INCFILE "versl.h"
#elif VERSION= =2

#define INCFILE "vers2.h" [* and so on*/
#else

#define INCFILE "versN.h"
#endif
#include INCFILE

16.3 Macro replacement g

Two replacement lists are identical if and only if the preprocessing tokens in both have the same num-
ber, ordering, spelling, and white-space separation, where all white-space separations are considered identi-
cal.

An identifier currently defined as a macro without use of Iparemlfgrct-likemacro) may be redefined
by anothertdefine preprocessing directive provided that the second definition is an object-like macro
definition and the two replacement lists are identical.

An identifier currently defined as a macro using Iparefu(etion-like macro) may be redefined by
anothertdefine preprocessing directive provided that the second definition is a function-like macro defi-
nition that has the same number and spelling of parameters, and the two replacement lists are identical.

The number of arguments in an invocation of a function-like macro shall agree with the number of
parameters in the macro definition, and there shall ejigbr@processing token that terminates the invoca-
tion.

A parameter identifier in a function-like macro shall be uniquely declared within its scope.

The identifier immediately following théefine is called themacro name There is one name space
for macro names. Any white-space characters preceding or following the replacement list of preprocessing
tokens are not considered part of the replacement list for either form of macro.

“INote that adjacent string literals are not concatenated into a single string literal (see the translation phases in 2.1); thus, an expansion that results in
two string literals is an invalid directive.

10

Section 16.3 DRAFT September 28, 1993 Macro replacement 16

If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a preprocess-
ing directive could begin, the identifier is not subject to macro replacement.
A preprocessing directive of the form

define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the ma%%onhmeeplaced by
the replacement list of preprocessing tokens that constitute the remainder of the directive. The replacement
list is then rescanned for more macro names as specified below.

A preprocessing directive of the form

define identifier Iparen identifier-lis,,) replacement-list new-line

defines a function-like macro with parameters, similar syntactically to a function call. The parameters are
specified by the optional list of identifiers, whose scope extends from their declaration in the identifier list
until the new-line character that terminates #taefine preprocessing directive. Each subsequent
instance of the function-like macro name followed by as the next preprocessing token introduces the
sequence of preprocessing tokens that is replaced by the replacement list in the definition (an invocation of
the macro). The replaced sequence of preprocessing tokens is terminated by the natiepngcessing

token, skipping intervening matched pairs of left and right parenthesis preprocessing tokens. Within the
sequence of preprocessing tokens making up an invocation of a function-like macro, new-line is considered
a normal white-space character.

The sequence of preprocessing tokens bounded by the outside-most matching parentheses forms the list
of arguments for the function-like macro. The individual arguments within the list are separated by comma
preprocessing tokens, but comma preprocessing tokens between matching inner parentheses do not separate
arguments. If (before argument substitution) any argument consists of no preprocessing tokens, the behav-
ior is undefined. If there are sequences of preprocessing tokens within the list of arguments that would oth-
erwise act as preprocessing directives, the behavior is undefined. O

16.3.1 Argument substitution O

After the arguments for the invocation of a function-like macro have been identified, argument substitution
takes place. A parameter in the replacement list, unless precedetidné preprocessing token or fol-

lowed by a## preprocessing token (see below), is replaced by the corresponding argument after all macros
contained therein have been expanded. Before being substituted, each argument’s preprocessing tokens are
completely macro replaced as if they formed the rest of the translation unit; no other preprocessing tokens
are available. O

16.3.2 The #operator O

Each# preprocessing token in the replacement list for a function-like macro shall be followed by a parame-
ter as the next preprocessing token in the replacement list.

If, in the replacement list, a parameter is immediately preceded#bgraprocessing token, both are
replaced by a single character string literal preprocessing token that contains the spelling of the preprocess-
ing token sequence for the corresponding argument. Each occurrence of white space between the
argument’s preprocessing tokens becomes a single space character in the character string literal. White
space before the first preprocessing token and after the last preprocessing token comprising the argument is
deleted. Otherwise, the original spelling of each preprocessing token in the argument is retained in the
character string literal, except for special handling for producing the spelling of string literals and character
constants: & character is inserted before edctand\ character of a character constant or string literal
(including the delimitind' characters). If the replacement that results is not a valid character string literal,
the behavior is undefined. The order of evaluatiot ahd## operators is unspecified. O

Ysince, by macro-replacement time, all character constants and string literals are preprocessing tokens, not sequences possibly containing identifier-
like subsequences (see 2.1.1.2, translation phases), they are never scanned for macro names or parameters.

16—6 Preprocessing Directives DRAFT September 28, 1993 Chapter 16

16.3.3 The ##bperator O

A ## preprocessing token shall not occur at the beginning or at the end of a replacement list for either form
of macro definition.

If, in the replacement list, a parameter is immediately preceded or followed#ypaeprocessing
token, the parameter is replaced by the corresponding argument’s preprocessing token sequence.

For both object-like and function-like macro invocations, before the replacement list is reexamined for
more macro names to replace, each instance##f greprocessing token in the replacement list (not from
an argument) is deleted and the preceding preprocessing token is concatenated with the following prepro-
cessing token. If the result is not a valid preprocessing token, the behavior is undefined. The resulting
token is available for further macro replacement. The order of evaluatighagerators is unspecified. 0O

16.3.4 Rescanning and further replacement O

After all parameters in the replacement list have been substituted, the resulting preprocessing token
sequence is rescanned with all subsequent preprocessing tokens of the source file for more macro names to
replace.

If the name of the macro being replaced is found during this scan of the replacement list (not including
the rest of the source file’s preprocessing tokens), it is not replaced. Further, if any nested replacements
encounter the name of the macro being replaced, it is not replaced. These nonreplaced macro name prepro-
cessing tokens are no longer available for further replacement even if they are later (re)examined in con-
texts in which that macro name preprocessing token would otherwise have been replaced.

The resulting completely macro-replaced preprocessing token sequence is not processed as a prepro-
cessing directive even if it resembles one. O

16.3.5 Scope of macro definitions O

A macro definition lasts (independent of block structure) until a corresporflindef directive is
encountered or (if none is encountered) until the end of the translation unit.
A preprocessing directive of the form

#undef identifier new-line
causes the specified identifier no longer to be defined as a macro name. It is ignored if the specified identi-

fier is not currently defined as a macro name.
The simplest use of this facility is to definéraanifest constaritas in

#define TABSIZE 100
int table[TABSIZE];
The following defines a function-like macro whose value is the maximum of its arguments. It has the
advantages of working for any compatible types of the arguments and of generating in-line code without the
overhead of function calling. It has the disadvantages of evaluating one or the other of its arguments a sec-

ond time (including side effects) and generating more code than a function if invoked several times. It also
cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.
To illustrate the rules for redefinition and reexamination, the sequence

Section 16.3.5 DRAFT September 28, 1993 Scope of macro definitions —I6

#define x 3
#define f(a) f(x * (a))
#undef x

#define x 2
#define g f
#define z z[0]
#define h o(~

#define m(a) a(w)
#define w 0,1
#define t(a) a

fly+1) + f(f(2)) % t(t(g)(0) + t)(1);
g(x+(3,4)-w) | h5) & m

(H*m(m);
results in
f2* (y+1)) + (2 * (2 * (z[0])))) % #(2 * (0)) + t(2);
f(2* (2+(3,4)-0,1)) [f(2 * (~5)) & f(2*(0,1))"m(0,1);
To illustrate the rules for creating character string literals and concatenating tokens, the sequence
#define str(s) #s
#define xstr(s) str(s)
#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \
X ## s, X #i# 1)
#define INCFILE(n) vers##n [* from previoustinclude example*/

#define glue(a, b) a##b
#define xglue(a, b) glue(a, b)

#define HIGHLOW "hello"
#define LOW LOW ", world"
debug(1, 2);

fputs(str(strncmp("abc\0d”, "abc", \4’) /* this goes away */
==0) str(: @\n), s);

#include xstr(INCFILE(2).h)

glue(HIGH, LOW);

xglue(HIGH, LOW)

results in
printf("x" "1" "= %d, x" "2" "= %s", x1, x2);
fputs("strncmp(\"abc\0d\", \"abc\", '\\4') = =0"" @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello";

"hello" ", world"

or, after concatenation of the character string literals,
printf("x1= %d, x2= %s", x1, x2);

fputs("strncmp(\"abc\0d\", \"abc\", '\\4’) = =0: @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello”;

"hello, world"

Space around théand## tokens in the macro definition is optional.
And finally, to demonstrate the redefinition rules, the following sequence is valid.

#define OBJ_LIKE (1-1)
#define OBJ_LIKE [* white space */ (1-1) /* other */
#define FTN_LIKE(@) (a)
#define FTN_LIKE(a)(* note the white space */\
a /* other stuff on this line
*/)

But the following redefinitions are invalid:

16—8 Preprocessing Directives DRAFT September 28, 1993 Chapter 16

#define OBJ_LIKE (0) I* different token sequenct
#define OBJ_LIKE @a-1-r~ different white space/
#define FTN_LIKE(b) (a) /* different parameter usagé&/
#define FTN_LIKE(b) (b) /* different parameter spelling/
16.4 Line control O

The string literal of &line directive, if present, shall be a character string literal.

Theline numberof the current source line is one greater than the number of new-line characters read or
introduced in translation phase 1 (2.1) while processing the source file to the current token.

A preprocessing directive of the form

line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a source line
that has a line number as specified by the digit sequence (interpreted as a decimal integer). The digit
sequence shall not specify zero, nor a number greater than 32767.

A preprocessing directive of the form

line digit-sequence” s-char-sequengg’ new-line

sets the line number similarly and changes the presumed name of the source file to be the contents of the
character string literal.
A preprocessing directive of the form

line pp-tokens new-line
(that does not match one of the two previous forms) is permitted. The preprocessing tokdins aftar
the directive are processed just as in normal text (each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens). The directive resulting after all replacements
shall match one of the two previous forms and is then processed as appropriate. O
16.5 Error directive 0
A preprocessing directive of the form

error pp-tokeng,, new-line
causes the implementation to produce a diagnostic message that includes the specified sequence of prepro-
cessing tokens. O
16.6 Pragma directive O
A preprocessing directive of the form

pragma pp-tokeng, new-line
causes the implementation to behave in an implementation-defined manner. Any pragma that is not recog-
nized by the implementation is ignored. a
16.7 Null directive O

A preprocessing directive of the form

new-line
has no effect. a
16.8 Predefined macro names a

The following macro names shall be defined by the implementation:

___LINE__ The line number of the current source line (a decimal constant).

Section 16.8 DRAFT September 28, 1993 Predefined macro names —I%

__FILE__ The presumed name of the source file (a character string literal).

__DATE__ The date of translation of the source file (a character string literal of the form
"Mmm dd yyyy" , where the names of the months are the same as those generatedday the
time function, and the first character @fl is a space character if the value is less than 10). If the
date of translation is not available, an implementation-defined valid date shall be supplied.

__TIME__ The time of translation of the source file (a character string literal of the form
"hh:mm:ss" as in the time generated by thectime function). If the time of translation is not
available, an implementation-defined valid time shall be supplied.

__STDC__ Whether__STDC__is defined and if so, what its value is, are implementation dependent.

The values of the predefined macros (except folINE__ and __FILE_) remain constant
throughout the translation unit.

None of these macro names, nor the identifiefined , shall be the subject of #define or a
#undef preprocessing directive. All predefined macro names shall begin with a leading underscore fol-
lowed by an uppercase letter or a second underscore.

17

17

Library

The G+ Standard Library consists of classes designedifoa€well as functions and macros inherited from C.

Library

1 The signatures defined in the standard library are reserved to the implementation. The behavier of a C
program that defines functions with signatures matching any of the reserved signatures is undefined.

Reentrancy: The intent is to allow the library to be reentrant, despite the implied existéAce of
single, global state information (such as cin, cout, cerr, new-handler, unexpected-functipn, and
terminate-function). Multi-threaded implementations will need to provide the appropriate con-
currency interlocks if they support a single, global state. Alternatively, they may providersepa-
rate copies for each thread. O

Oooooog

17.1 Language support

1 The classes and functions in this section are required to support certain aspectstofathguage. a

17.1.1 Free store<new> O

1 These functions support the free store management described in 5.3 and 12. The implementation calls
::operator new() or ::operator new[]() to allocate storage for objects created rmw-
expressiong5.3.3), and calls:operatordelete() or ::operatordelete[]() to deallocate
the storage for objects @elete-expressian(5.3.4).

The signatures:operator new(size_t) , .operator new[](size_t) , ..operator

delete(void*) , and::operator delete[](void*) are not reserved. AHE program may pro-
vide at most one definition of each of these functions. Any such functions will replace the default versions.

This

replacement is global and takes effect upon program startup (3.4). Any parts of the implementation

(including other portions of the standard library) that directly or indirectly invoke these functions for free
store management will use the supplied replacements. The versiapparhtornew(size _t) ,
:.operator new[](size_t) , ..operator delete(void*) , and :operator
delete[](void*) described here are the default versions supplied by an implementation. +Any C
program that replaces any of them with functions having different result semantics causes that program to
have undefined behavior.

loc()

The relationship between these memory management functions and the funatimtg) |, cal-

, realloc() , andfree() (17.4.10.3) is unspecified.

17—2 Library DRAFT September 28, 1993 Chapter 17

17.1.1.1 operator new() and operator new[]()

void* operator new(size_t) throw(xalloc);
void* operator new[](size_t) throw(xalloc);

When a non-array object or an array is created withvaexpressiothe implementation usespera-
tor new() or:.operator new[]() (respectively) to obtain the store needed.

For array allocation, the implementation calculates the storage required to hold the array and calls
;:operator new[]() with the resulting size or a larger size.

Result semantics:

If successful, returns a pointer to allocated storage. Otherwise, throvadl@an exception (17.1.3.3).
Any other action is undefined.

Since the exception will be propagated through a new-expression, it changes the seméahtics of
such expressions. Error handling now relies on a catch clause, not a null pointer—esult.
Returning a null pointer is undefined, but allowed to ease transition from earlier language
implementations. O

OoOoood

The order and contiguity of storage allocated by successive catipévator new() or:.oper-
atornew[]() is unspecified. The initial value of this storage is unspecified. The pointer returned is
suitably aligned so that it may be assigned to a pointer of any type and then used to initialize and access
such an object or an array of such objects in the storage allocated (until the storage is explicitly deallocated
by a call to the corresponding deallocation functia@xpr.free, 17.1.1.2). Each such allocation shall yield
a pointer to storage disjoint from any other allocated storage. The pointer returned points to the start (low-
est byte address) of the allocated storage. If the size of the space is requested is zero, the value returned
shall be a pointer differerent from the address of any other currently allocated storage. Repeated such calls
return distinct non-null pointers (5.3.3). The result of dereferencing a pointer returned from a request for
zero size is undefined.

E The wording for the above 8 sentences was adapted from §17.4.10.3. The intent is tothave
0 ;:operator new() implementable by callinghalloc() orcalloc() , so the rules ar

0 substantially the same.+Cdiffers from C in requiring a zero request to return a non-Aull
O pointer. O

Description of default implementation:

1. Attempts to allocate storage to hold at least the amount of storage requested.

Note that the actual size may be larger than the requested size, due to alignmentr other
requirements. Some implementations convert a request for zero bytes into a reqpest for
1 byte.

[

If successful, returns the address of storage allocated.

2. If unsuccessful, checks the curreetv-handler(17.1.1.4): If there is naew-handleiinstalled, the
result is implementation defined. Otherwise, calls the new-handler.

Section 17.1.1.1 DRAFT Sepbperiaeo28eWP903 and operator new[]() 17—3

g The installed new-handler may throw an xalloc exceptian.

3. If the call to thenew-handlereturns, repeats the attempt to allocate memory (go to step 1 above).

The defaultoperator new[]() callsoperator new() . Thus ifoperator new() is replaced
without replacingoperatornewf[]() , the replacement function will be used for both non-array and
array allocations.

17.1.1.2 operator delete() and operator delete[]()

void operator delete(void*);
void operator delete[](void*);

The delete-expressio(b.3.4) destroys an object created by iegv-expressignand (implicitly) calls the
deallocation functionpperatordelete() for non-arrays, ooperatordelete[]() for arrays

(12.5). A null pointer is a valid argument but has no effect. Otherwise, the effect of the deallocation func-
tion is to reclaim the storage pointed to by its argument. The argument then becomes invalid.

H An invalid pointer contains an unusable validt cannot even be used in an expression. Fhis
O still needs work.

Result semantics:

If the argument is a non-null pointer
The value of a pointer that refers to deallocated space is indeterminate.
The effect of dereferencing a pointer already deleted is undefined.

The effect of applying the deallocation function to a pointer already deleted is undefined.

5 An implementation could (should) throw an exception if it can detect these condflons.

Description of default implementation:

Deallocates the storage referenced by the pointer. The storage may be available for further allocation. The
argument to the defaultoperator delete() must be a pointer returned by the defaupera-
tor new() and the argument to the defautiperator delete[]() must be a pointer returned by
the default::operator new(]() (17.12.1.1). Applying the defaultoperator delete() or
;:operator delete[]() to a null pointer has no effect.

The default:operator delete[]() calls ::operator delete() so that if just:opera-
tor delete() is replaced, the replacement will be used for both array and non-array deletion.

17.1.1.3 placementoperator new()

void* operator new(size_t, void*);

17—4

Library DRAFT September 28, 1993 Chapter 17

This function is reserved.

H

O

This second form of.operatornew() is one of an unbounded set of overloaded fudc-
tions for use with placement expressions.

The placement version of operator new() returns its second argument as its result:

void* operator new(size_t, void* p) { return p; }

17.1.1.4 new-handlerfunction

typedef void (*new_handler)() throw(xalloc);

When ::operatornew() (17.1.1.1) cannot allocate storage to satisfy a request, it calls the currently
installed new-handler function. A G+ program may installnew-handler functions via calls to
set_new_handler() (17.1.1.5).

Result semantics:

A new-handler function shall either

1. return after deallocating some currently-allocated storage, or

2 throw arxalloc exception or an exception derived fremdloc (17.1.3.3), or

3. callabort() (17.4.10.4.1) oexit() (17.4.10.4.3).

Any CH program that installs aew-handlerhaving different result semantics causes that program to
have undefined behavior.

H

0

In particular, anew-handletthat returns to the defautbperator new() (17.1.1.1) with-U
out freeing any storage will cause an infinite loop.

Description of default implementation:

The defaulhew-handlerfunction throws axalloc exception (17.1.3.3):

void new_handler() { throw xalloc; }

Oooooooooo

Earlier implementations provided no default new-handler, causing new expressions td-return
null when the memory request could not be mett @ograms that used the result of n
expressions without checking the result were erroneous, while those that checked were€orrect.
Providing a default new-handler that throws an exceftixes’ the erroneous programs (byy
detecting all memory exhaustion conditions), but breaks the previously correct ones (by(fequir-
ing them to do the checking with a catch-clause). The old behavior can be restored byt€alling
set new handler(0).

Section 17.1.1.5 DRAFT September 28, 1993 set_new_handler() 17—5

17.1.1.5set_new_handler()

new_handler set_new_handler(new_handler);

Installs the function given as argument as the curmewthandler(17.1.1.4). Returns the previous function
given toset_new_handler()

g This enables callers to implement a stack strategy for m&nghandles. Note that thaew- U

E handler function is anonymous— it cannot be called directly. To obtain the current ney-

5 handler, callset_new_handler() with a known argument (for example, zero), save the

0 result, and calset_new_handler() again with the result to re-set the new-handler back to

O what it was. O
17.1.2 Type identification<type_info> a

ClassType_info is declared ikType_info.h> like this:

class Type_info {
/I implementation dependent representation

private:
Type_info(const Type_info&); /I objects cannot
Type_info& operator=(const Type_info&); // be copied by users
public:
virtual ~Type_info(); /'is polymorphic

int operator==(const Type_info&) const; // can be compared
int operator!=(const Type_info&) const;
int before(const Type_info&); /I define order among
/I Type_info objects

const char* name() const; /I get the type name

h

,P The ordering defined Hdyefore is complete and valid only for the duration of the execution of pro-
gram. There is no guaranteed relation between the ordering defiegfdsg and inheritance relation-
ships.

17.1.3 Exceptions

These functions support the Exception Handling described in Chapter 15.

17.1.3.1 Abnormal termination

These functions allow+ programs to control how the implementation responds to faults in the exception
handling mechanism.

17.1.3.1.1terminate()

void terminate();

This function is called when exception handling must be abandoned (15.6). For example,
when the exception handling mechanism cannot find a handler for a thrown exception,
when the exception handling mechanism finds the stack corrupted, or

when a destructor called during stack unwinding caused by an exception tries to exit using an excep-
tion.

17—6 Library DRAFT September 28, 1993 Chapter 17

terminate() calls the currenterminate-functior{17.1.3.1.2).

17.1.3.1.2terminate-function

typedef void (*terminate_function)();

A C+ program may instaterminate-functioa via calls taset_terminate() (17.1.3.1.3).

Result semantics:

This function shall not return. It may call (17.4.10.4.1) or (17.4.10.4.3). Any other action is undefined.

H It may re-start the application process, invoke some other last-chance disaster-recovenj-mecha-
O nism, or take some other action that cannot be specified in the standard.

Description of default implementation:

The default terminate-functionabort() (17.4.10.4.1).
17.1.3.1.3set_terminate()

terminate_function set_terminate(terminate_function);

Installs the function given as an argument as the cueaninate-functior{17.1.3.1.2). Returns the previ-
ous function given tset_terminate()

5 This enables callers to implement a stack strateqy for tsiminate-functions &

17.1.3.2 Violatingexception-specificatios

These functions allow € programs to control how the implementation responds to inconsistencies
between declareelxception-specificatianand actual exceptions detected at runtime.

17.1.3.2.1unexpected()

void unexpected()

The implementation callsnexpected() if a function with anexception-specificatiothrows an excep-
tion that is not listed in thexception-specification
unexpected() calls the curreninexpected-functiofl7.1.3.2.2).

17.1.3.2.2unexpected-function

typedef void (*unexpected_function)();

A G+ program may instalinexpected-functianvia calls teset_unexpected() (17.1.3.2.3).

Result semantics:

This function shall not return. It may cédirminate() (17.1.3.1.1)abort() (17.4.10.4.1), oexit(
(_lib.exot). Any other action is undefined.

Section 17.1.3.2.2 DRAFT September 28, 1993 unexpected-function 17—7

H Since these kinds of errors usually indicate design problems that need to be fixed, the Idtent is
0 to make them easy to detect.

Description of default implementation:

The defaulunexpected-functiois terminate() (17.1.3.1.1).
17.1.3.2.3set_unexpected()

unexpected_function set_unexpected(unexpected_function);

Installs the function given as an argument as the cunrexpected-functiof17.1.3.2.2). Returns the pre-
vious function given teet_unexpected()

g This enables callers to implement a stack strateqy for usiexpected-functian B

17.1.3.3 Predefined exceptions
These classes define the exceptions reported by various functions in the standard library.

17.1.3.3.1xmsg exception

class xmsg {
public:
xmsg(const string& msg);

string why() const;

void raise() throw(xmsg);
private:

/I implementation-defined

h
H The intent of the xmsg exception class was to allow programs to catch all exceptionsdin the
O library:
For example,

#include <stdlib.h>
#include <iostream>

int main(int argc, char** argv)
{
try {
real_main(argc,argv);
return EXIT_SUCCESS;
} catch(xmsg& m) {
cerr << "exiting because of exception: " << m.why() << end|;
return EXIT_FAILURE;

}
x.why() is the string used to constructdansg x. That is:xxmsg(s).why()~==~s

H The absence of a default constructor means that every xmsg must contain a meanin%ul ¢-)
O message.

17—8 Library DRAFT September 28, 1993 Chapter 17

xmsg::raise() is defined by:

void xmsg::raise() throw(xmsg) { throw *this; }

H xmsg::raise() adds no functionality but is included as a convenient hook for debugging.
O Shouldn't it be virtual?

17.1.3.3.2xalloc exception

class xalloc : public xmsg {
public:
xalloc(const string& msg, size_t requested_size);

size_t requested() const;

void raise() throw(xalloc);
private:

/I implementation-defined

h
An xalloc exception can be thrown by thew-handlel(17.1.1.4) when it cannot find storage to allocate.
H The standard does not define the form of an xalloc error message. The following might be
O plausible (subject to locale settingsisg + ": Insufficient space to allo- 0
g cate " + int_to_string(size) + " bytes" . However, since the xalloc excepy
E tion is going to be thrown when the system runs out of space, the space for constructing and
0 throwing the exception must exist. This implies the error message cannot rely on a stririg) cate-
0 nation operation that attempts to allocate storage. A plausible implementation wouldthe an
O allocator that holds back enough storage, such as a static instance of an xalloc object.
17.1.3.3.3bad_cast exception O
class Bad_cast : public xmsg {
public:
Bad_cast(const string& msg, /* ??7? */);
1] ?227?
private:
/I implementation-defined
h
A Bad_cast exception can be thrown bydgnamic_cast expression (5.2.6). O
17.2 The string class O
17.3 Input/output O
17.4 C library O

17.4.1 Introduction

17.4.1.1 Definitions of terms a

A null-terminated character sequen(meTcs)?’1 is a contiguous sequence of characters terminated by and

31in the 1SO C Standard,nacsis called d'string” This Standard usésitcs’ to avoid confusion with the String class (17.2).

Section 17.4.1.1 DRAFT September 28, 1993 Definitions of terms 49

including the first null character. Ppointer td aNTCSis a pointer to its initial (lowest addressed) charac-
ter. The“lengthi of aNTCsis the number of characters preceding the null character ahdhlts is the
sequence of the values of the contained characters, in order.

A letter is a printing character in the execution character set corresponding to any of the 52 required
lowercase and uppercase letters (17.4.3) in the source character set, listed in ?2?7?.

Thedecimal-point characteis the character used by functions that convert floating-point numbers to or
from character sequences to denote the beginning of the fractional part of such character ssgqudmces.
represented in the text and examples by a period, but may be changed deyldbale function
(17.4.4).

17.4.1.2 Standard headers

Each library function is declared irhaader33 whose contents are made available by#inelude pre-
processing directive. The header declares a set of related functions, plus any necessary types and additional
macros needed to facilitate their use.

The standard headers are

<assert.h> <locale.h> <stddef.h>
<ctype.h> <math.h> <stdio.h>
<errno.h> <setjmp.h> <stdlib.h>
<float.h> <signal.h> <string.h>
<limits.h> <stdarg.h> <time.h>

If a file with the same name as one of the abownd> delimited sequences, not provided as part of
the implementation, is placed in any of the standard places for a source file to be included, the behavior is
undefined.

Headers may be included in any order; each may be included more than once in a given scope, with no
effect different from being included only once, except that the effect of inclug@isgert.h> depends
on the definition oNDEBUG A header shall be includ&toutside of any external declaration or defini-
tion, and it shall first be included before the first reference to any of the functions or objects it declares, or
to any of the types or macros it defines. However, if the identifier is declared or defined in more than one
header, the second and subsequent associated headers may be included after the initial reference to the iden-
tifier. The program shall not have any macros with names lexically identical to keywords currently defined
prior to the inclusion. a

17.4.1.2.1 Reserved identifiers a

Each header declares or defines all identifiers listed in its associated section, and optionally declares or
defines identifiers listed in its associated future library directions section and identifiers which are always
reserved either for any use or for use as file scope identifiers.

All identifiers that begin with an underscore and either an uppercase letter or another underscore are
always reserved for any use.

All identifiers having two consecutive underscores are always reserved for use as identifiers with
bothextern "C+" andextern "C" linkages.

All identifiers that begin with an underscore are always reserved for use as identifiers with file
scope in both the ordinary identifier and tag name spaces.

Each macro name listed in any of the following sections (including the future library directions) is
reserved for any use if any of its associated headers is included.

32 The functions that make use of the decimal-point charactetoeadeconv , fprintf , fscanf , printf , scanf , sprintf , sscanf ,
‘ygf rintf ,vprintf | vsprintf | atof , andstrtod

A header is not necessarily a source file, nor are #ed> delimited sequences in header names necessarily valid source file names.
34ISO C Standard say#f used, a header shall b&.This standard requires a header to be included if any of its contents are used.

17—10 Library DRAFT September 28, 1993 Chapter 17

All identifiers with external linkage in any of the following sections (including the future library
Ry o : P 35
directions) are always reserved for use as identifiers eitern "C" linkage:

Each identifier with file scope listed in any of the following sections (including the future library
directions) is reserved for use as an identifier with file scope.

Each function signature listed in any of the following sections (including the future library direc-
tions) is reserved for use with bagktern "C+" andextern "C" linkages as a function signa-
ture with file scope in the same name space if any of its associated headers is ffcluded.

No other identifiers are reserved. If the program declares or defines an identifier with the same name as
an identifier reserved in that context (other than as allowed by 17.4.1.6), the behavior is unidefined.
17.4.1.3 Errors<errno.h>

The headexerrno.h> defines several macros, all relating to the reporting of error conditions.
[This section is the same as \(sc7.1.3 of the ISO C Standard.]

17.4.1.4 Limits<float.h> and <limits.h>

The headersfloat.h> and <limits.h> define several macros that expand to various limits and
parameters.

[This section is the same as \(sc2.2.4.2 (??? this is the ANSI paragraph) of the ISO C Standard.] O
17.4.1.5 Common definitions<stddef.h> O

The following types and macros are defined in the standard hesidelef.h> . Some are also defined
in other headers, as noted in their respective sections.
The types are

ptrdiff_t

which is the signed integral type of the result of subtracting two pointers;
size_t

which is the unsigned integral type of the result ofsikeof operator; and
wchar_t

which is an integral type whose range of values can represent distinct codes for all members of the largest
extended character set specified among the supported locales (17.4.4); the null character shall have the code
value zero and each member of the basic character set defin2@ it> shall have a code value equal to

its value when used as the lone character in an integer character constant.

5 Is this obsolete now thatchar t is a type on its own and a reserved wokd?

The macros are
NULL
which expands to an implementation-definedl Qull pointer constant; and
offsetof(type member-designatdr

which expands to an integral constant expression that hasigée , the value of which is the offset in
bytes, to the structure member (designated by from the beginning of its C-style structure (designated by

39 The list of reserved identifiers with external linkage inclueleso , setjmp , andva_end .
36 Class member functions may duplicate signatures of listed functions because they have class scope.

Since macro names are replaced whenever found, independent of scope and name space, macro names matching any of the reserved identifier names
must not be defined if an associated header, if any, is included.

Section 17.4.1.5 DRAFT September 28CtH@8310n definitions <stddef.h> 17—11

g Is a C-style structure the same as a POD-strfict?

Themember-designatahall be such that given

static type t;

then the expressiofi(t. member-designatdrevaluates to an address constant. (If the specified member
is a bit-field, the behavior is undefined.)
By C-style structurés meant a structure defined with eitlstiuct or union and whose definition is
legal in Standard C. That is, it has no base classes, no member functions, and no access modifiers. The
result of applyingffsetof to a structure with € features is undefined.

g This is an issue of form, not behavids.

17.4.1.6 Use of library functions a

Each of the following statements applies unless explicitly stated otherwise in the detailed descriptions that
follow. If an argument to a function has an invalid value (such as a value outside the domain of the func-
tion, or a pointer outside the address space of the program, or a null pointer), the behavior is undefined. If a
function parameter is described as being an array, the pointer actually passed to the function shall have a
value such that all address computations and accesses to objects (that would be valid if the pointer did point
to the first element of such an array) are in fact valid. Any function declared in a header must be declared
so as to allow it to be overloaded by use of another signgaatmrmse function-like macros described in the
following sections may be invoked in an expression anywhere a function with a compatible return type
could be called. All object-like macros listed as expanding to integral constant expressions shall addition-
ally be suitable for use iif preprocessing directives.

No library function shall be declared explicitly in a user program, but instead its associated header shall
be included if it is to be usé@.Furthermore, proper prototypes shall be supplied in the appropriate header
for each library function.

17.4.2 Diagnosticsassert.h>

The headekassert.h> defines theassert macro and refers to another macro,
NDEBUG

which isnot defined by<assert.h> . Theassert macro need not be implemented as a function, and
need not be overloadable if it is implemented as a function.
[The remainder of this section is the same as section 7.2 of the ISO C Standard.] O

17.4.3 Character handling<ctype.h> O

[This section is the same as section 7.3 of the ISO C Standard.]

17.4.4 Localization<locale.h>

[This section is the same as section 7.4 of the ISO C Standard.]

17.4.5 Mathematics<math.h>

[This section is the same as section 7.5 of the ISO C Standard.] O

17.4.6 Nonlocal jumps<setjmp.h> O

;gThis means that the library functions must not be implemented as macros, although they may be implemented as inline functions.
This allows the implementation to supply a function with either Cteri6kage.

17—12 Library DRAFT September 28, 1993 Chapter 17

The headexsetjmp.h> defines the macrsetjimp , and declares one function and one type, for bypass-
ing the normal function call and return discipline.
The type declared is

jmp_buf

which is an array type suitable for holding the information needed to restore a calling environment.
It is unspecified whethesetjimp is a macro or an identifier declared with external linkage. If a macro
definition is suppressed in order to access an actual function, or a program defines an external identifier

with the namesetjmp , the behavior is undefined. a
17.4.6.1 Save calling environment a
17.4.6.1.1 Thesetjimp macro a

#include <setjmp.h>
int setimp(jmp_buf env);

The setimp macro saves its calling environment in jisp_buf argument for later use by the
longjmp function.

If the return is from a direct invocation, teetjmp macro returns the value zero. If the return is from
a call to thdongjmp function, thesetjimp macro returns a nonzero value.

An invocation of thesetimp macro shall appear only in one of the following contexts:

the entire controlling expression of a selection or iteration statement;

one operand of a relational or equality operator with the other operand an integral constant expres-
sion, with the resulting expression being the entire controlling expression of a selection or iteration
statement;

the operand of a unaty operator with the resulting expression being the entire controlling expres-
sion of a selection or iteration statement; or

the entire expression of an expression statement (possibly vagd td.

17.4.6.2 Restore calling environment O

17.4.6.2.1 Thdongjmp function O

#include <setjmp.h>
void longjmp(jmp_buf env, int val);

Thelongjmp function restores the environment, saved by the most recent invocationsetjthp
macro in the same invocation of the program, with the correspojdimgouf argument. If there has
been no such invocation, or if the function containing the invocation afetirap macro has terminated
executiorf* in the interim, the behavior is undefined.
All accessible objects have values as of the tangjmp was called, except that the values of objects
of automatic storage duration that are local to the function containing the invocation of the corresponding
setimp macro that do not have volatile-qualified type and have been changed betwsetjintpe invo-
cation andongjmp call are indeterminate.
As it bypasses the usual function call and return mechanismsntjenp function shall execute cor-
rectly in contexts of interrupts, signals and any of their associated functions. Howevelpifgjnep
function is invoked from a nested signal handler (that is, from a function invoked as a result of a signal

“#YThese functions are useful for dealing with unusual conditions encountered in a low-level function of a program.
For example, by executingraturn statement or because anotlwrgjmp call has caused a transfer teegjmp invocation in a function earlier
in the set of nested calls.

Section 17.4.6.2.1 DRAFT September 28, 1993 Tlagjmp function 17—13

raised during the handling of another signal), the behavior is undefined.

If any automatic objects would have been destroyed due to an exception transferring control to the same
function as théongjmp, the results of theongjmp are undefined.

After longjmp is completed, program execution continues as if the corresponding invocation of the
setjimp macro had just returned the value specifiedv@ly. Thelongjmp function cannot cause the
setjimp macro to return the value zeroydl is zero, thesetimp macro returns the value 1. O
17.4.7 Signal handling<signal.h>

[This section is the same as section 7.7 of the ISO C Standard.]

17.4.8 Variable arguments<stdarg.h>

[This section is the same as section 7.8 of the ISO C Standard.]

17.4.9 Input/output <stdio.h>

[This section is the same as section 7.9 of the ISO C Standard.]

17.4.10 General utilities<stdlib.h> a

The headexstdlib.h> declares three types and several functions of general utility, and defines several
macros’?
The types declared aseze_t (described in 17.4.1.5),

div_t
which is a structure type that is the type of the value returned ljvth&unction, and
Idiv_t

which is a structure type that is the type of the value returned tgithefunction.
The macros defined aMULL (described in 17.4.1.5);

EXIT_FAILURE
and
EXIT_SUCCESS

which expand to integral expressions that may be used as the argumenexit th&unction to return
unsuccessful or successful termination status, respectively, to the host environment;

RAND_MAX

which expands to an integral constant expression, the value of which is the maximum value returned by the
rand function; and

MB_CUR_MAX

which expands to a positive integer expression whose value is the maximum number of bytes in a multibyte
character for the extended character set specified by the current locale (categomyyPH, and whose
value is never greater thidB_LEN_MAX

17.4.10.1NTCs conversion functions
[This section is the same as section 7.10.1 of the ISO C Standard.]

17.4.10.2 Pseudo-random sequence generation functions

o 0o o o O

[This section is the same as section 7.10.2 of the ISO C Standard.]

%2 See future library directions (17.4.13).

17—14 Library DRAFT September 28, 1993 Chapter 17

17.4.10.3 Memory management functions O

The order and contiguity of storage allocated by successive calls¢albe , malloc , andrealloc
functions is unspecified. The pointer returned if the allocation succeeds is suitably aligned so that it may be
assigned to a pointer to any type of object and then used to access such an object or an array of such objects
in the space allocated (until the space is explicitly freed or reallocated). Each such allocation shall yield a
pointer to an object disjoint from any other object. The pointer returned points to the start (lowest byte
address) of the allocated space. If the space cannot be allocated, a null pointer is returned. If the size of the
space requested is zero, the behavior is implementation-defined; the value returned shall be either a null
pointer or a unique pointer. The value of a pointer that refers to freed space is indeterminate.

The relationship between these memory management functions and+tlopetator new and
operator delete is unspecifiecf.3

[The remainder of this section is the same as section 7.10.3 of the ISO C Standard.]

O d

17.4.10.4 Communication with the environment

17.4.10.4.1 Thabort Function

[This section is the sarfitas section 7.10.4.1 of the ISO C Standard.]
17.4.10.4.2 Theatexit function

[This section is the same as section 7.10.4.2 of the ISO C Standard.]
17.4.10.4.3 Thexit function

o o o o o

#include <stdlib.h>
void exit(int status);

Theexit function causes normal program termination to occur. If more than one call éxithe
function is executed by a program, the behavior is undefined.

F4igst, all functions registered by tlagexit function are called, in the reverse order of their registra-
tion.

Next, all static objects are destroyed in the reverse order of their construction. (Non-static local objects
are not destroyed as a result of callxit .)46

Next, all open C stdio streams (in the sense of ISO Standard section 7.9.2) with unwritten buffered data
are flushed, all open C stdio streams are closed, and all files created twgpfiie function are
removed:.

Finally, control is returned to the host environment. If the valuestatus is zero or
EXIT_SUCCESS an implementation-defined form of the stasuscessful terminatiois returned. If the
value of status is EXIT_FAILURE, an implementation-defined form of the statussuccessful
terminationis returned. Otherwise the status returned is implementation-defined.

Theexit function cannot return to its caller.

17.4.10.4.4 Theetenv function
[This section is the same as section 7.10.4.4 of the ISO C Standard.]
17.4.10.4.5 Thesystem function
[This section is the same as section 7.10.4.5 of the ISO C Standard.]

o 0o o o O

%S For example, either adperator new andmalloc might be written in terms of the other. On the other hand, they need not have anything in
i%nmon or even maintain storage in the same address space.

No destructors are invoked as a result of a cabtmrt . In particular, constructed local and static objects remain undestroyed.
Each function is called as many times as it was registered.
46 To achieve the effect of destroying automatic objects (other than those declared at the outermosheéng| tifrow an exception which is caught
ii\fnain . The stack will unwind, destroying automatic objects. At the place where the exception is caugkit, call

The standard € iostreams will have already been flushed and closed by the previous step.

Section 17.4.10.5 DRAFT September 28, 1993 Searching and sorting utilities —175

17.4.10.5 Searching and sorting utilities

[This section is the same as section 7.10.5 of the ISO C Standard.]
17.4.10.6 Integer arithmetic functions

[This section is the same as section 7.10.6 of the ISO C Standard.]
17.4.10.7 Multibyte character functions

[This section is the same as section 7.10.7 of the ISO C Standard.]
17.4.10.8 MultibytenTcs functions

I A A

[This section is the same as section 7.10.8 of the ISO C Standard.]

O

17.4.11N7cs handling <string.h>

17.4.11.1NTcs function conventions a

The headekstring.h> declares one type and several functions, and defines one macro useful for
manipulating arrays of character type and other objects treated as arrays of charaé?eThyptype is

size_t and the macro iSIULL (both described in 17.4.1.5). Various methods are used for determining

the lengths of the arrays, but in all caseshar* or void* argument points to the initial (lowest
addressed) character of the array. If an array is accessed beyond the end of an object, the behavior is unde-
fined. O

17.4.11.2 Copying functions O

[This section is the same as section 7.11.2 of the ISO C Standard, containimgrttapy, memmove
strcpy , andstrncpy functions.]

17.4.11.3 Concatenation functions

[This section is the same as section 7.11.3 of the ISO C Standard, containgtigcdhe and strncat

functions.] O
17.4.11.4 Comparison functions O
[This section is the same as section 7.11.4 of the ISO C Standard.] O
17.4.11.5 Search functions O
17.4.11.5.1 Thememchr functions O

#include <string.h>
const void *memchr(const void *s, int c, size_t n);
void *memchr(void *s, int c, size_t n);

Thememchr functiong® locate the first occurrence of(converted to annsigned char) in the ini-
tial n characters (each interpretedumsigned char) of the object pointed to L.

The memchr functions return a pointer to the located character, or a null pointer if the character does
not occur in the object.

17.4.11.5.2 Thestrchr functions

#include <string.h>
const char *strchr(const char *s, int c);
char *strchr(char *s, int ¢);

zg See future library directions (17.4.13).
The ISO C library contains a single function which returns acemst pointer into itsconst first parameter.

17—16 Library DRAFT September 28, 1993 Chapter 17

Thestrchr functions® locate the first occurrence of(converted to @har) in theNTCs pointed to
by s. The terminating null character is considered to be part ofthe

Thestrchr functions return a pointer to the located character, or a null pointer if the character does
not occur in theitcs.

17.4.11.5.3 Thestrcspn function
[This section is the same as section 7.11.5.3 of the ISO C Standard.]
17.4.11.5.4 Thestrpbrk functions

o 0o o o

#include <string.h>
const char *strpbrk(const char *s1, const char *s2);
char *strpbrk(char *s1, const char *s2);

The strpbrk functions?! locate the first occurrence in thacs pointed to bysl of any character
from thenTcs pointed to bys2.

The strpbrk functions return a pointer to the character, or a null pointer if no charactersfom
occurs insl. O

17.4.11.5.5 Thestrrchr function O

#include <string.h>
const char *strrchr(const char *s, int c);
char *strrchr(char *s, int c);

Thestrrchr function$? locate the last occurrence @fconverted to @har) in thenTcs pointed to
by s. The terminating null character is considered to be part ofttbe

Thestrrchr functions return a pointer to the character, or a null pointerdbes not occur in the
NTCS.

17.4.11.5.6 Thestrspn function
[This section is the same as section 7.11.5.6 of the ISO C Standard.]
17.4.11.5.7 Thestrstr functions

o 0o o O

#include <string.h>
const char *strstr(const char *s1, const char *s2);
char *strstr(char *s1, const char *s2);

Thestrstr functions” locate the first occurrence in thecs pointed to bysl of the sequence of
characters (excluding the terminating null character) intios pointed to bys2

Thestrstr functions return a pointer to the locaterts, or a null pointer if thesTcsis not found. If
s2 points to anTcswith zero length, the function retures.

17.4.11.5.8 Thestrtok function
[This section is the same as section 7.11.5.8 of the ISO C Standard.]

17.4.11.6 Miscellaneous functions

O o o o O

[This section is the same as section 7.11.6 of the ISO C Standard.]

17.4.12 Date and timetime.h>

O

gkl)The ISO C library contains a single function which returns acemst pointer into itsconst first parameter.
The ISO C library contains a single function which returns acemst pointer into itsconst first parameter.
The I1SO C library contains a single function which returns agomst pointer into itsconst first parameter.

53The ISO C library contains a single function which returns acemst pointer into itsconst first parameter.

Section 17.4.12 DRAFT September 28, 1993

[This section is the same as section 7.12 of the ISO C Standard.]

17.4.13 Future c library directions

[This section is the same as section 7.13 of the ISO C Standard.]

17.5 Future library directions

Date and tirsgme.h>

17—17

18

Grammar Summary

This chapter provides a summary of the Grammar.

18 Appendix A: Grammar summary 0

This appendix is not part of the+reference manual proper and does not defimdaDguage features.

This summary of & syntax is intended to be an aid to comprehension. It is not an exact statement of
the language. In particular, the grammar described here accepts a superset ef \@itstbucts. Disam-
biguation rules (6.8, 7.1, 10.1.1) must be applied to distinguish expressions from declarations. Further,
access control, ambiguity, and type rules must be used to weed out syntactically valid but meaningless con-
structs.

18.1 Keywords

New context-dependent keywords are introduced into a prograypéglef (7.1.3), class (9), enumera-
tion (7.2), andemplate (14) declarations.
class-name:
identifier
template-class-id

enum-name:
identifier

typedef-name:
identifier

Note that aypedef-nameaming a class is alscclass-namé9.1).

18.2 Expressions

expression:
assignment-expression
expression, assignment-expression

18—2

Grammar Summary DRAFT September 28, 1993

assignment-expression:
conditional-expression

unary-expression assignment-operator assignment-expression

throw-expression

assignment-operatorone of

= *= [= Op= += = >>= <<= &= = |=

conditional-expression:
logical-or-expression

logical-or-expression? expression: assignment-expression

logical-or-expression:
logical-and-expression
logical-or-expression|| logical-and-expression

logical-and-expression:
inclusive-or-expression
logical-and-expression&& inclusive-or-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expressior] exclusive-or-expression

exclusive-or-expression:
and-expression
exclusive-or-expressiort and-expression

and-expression:
equality-expression
and-expression& equality-expression

equality-expression:
relational-expression
equality-expression==relational-expression
equality-expression= relational-expression

relational-expression:
shift-expression
relational-expression< shift-expression
relational-expression> shift-expression
relational-expression<=shift-expression
relational-expression>= shift-expression

shift-expression:
additive-expression
shift-expression<< additive-expression
shift-expression>> additive-expression

additive-expression:
multiplicative-expression
additive-expression+ multiplicative-expression
additive-expression multiplicative-expression

multiplicative-expression:
pm-expression
multiplicative-expressior* pm-expression
multiplicative-expression’ pm-expression
multiplicative-expressiorf pm-expression

Chapter 18

Section 18.2 DRAFT September 28, 1993 Expressions —18

pm-expression:
cast-expression
pm-expression.* cast-expression
pm-expression>* cast-expression

cast-expression:
unary-expression
(type-id) cast-expression

unary-expression:
postfix-expression
++ unary-expression
-~ unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-id)
new-expression
delete-expression

unary-operator: one of
* & + - | ~

new-expression:
T opt NEW new-placemegy; new-type-id new-initializg,
T opt NEW new-placemegy; (type-id) new-initializeg,

new-placement:
(expression-list)

new-type-id:
type-specifier-seq new-declaraggr

new-declarator:
* cv-qualifier-seg, new-declaratog,
qyalified-class-specifien: * cv-qualifier-seg, new-declaratog,
direct-new-declarator

direct-new-declarator:
direct-new-declaratqy, [expression]

new-initializer:
(expression-ligf,)

delete-expression:
I ot delete cast-expression
i opt delete [] cast-expression

postfix-expression:
primary-expression
postfix-expressior] expression]
postfix-expression(expression-ligf,)
simple-type-specifie expression-ligf;)
postfix-expression id-expression
postfix-expression> id-expression
postfix-expressiont++
postfix-expression-
dynamic_cast < type-name> (expression)
typeid (expression)
typeid (type-name)

18—4 Grammar Summary DRAFT September 28, 1993 Chapter 18

expression-list:
assignment-expression
expression-list, assignment-expression

primary-expression:

literal

this
identifier
operator-function-id
qualified-id

(expression)

id-expression

id-expression:
identifier
operator-function-id
conversion-function-id
~ class-name
qualified-id

qualified-id:
nested-class-specifier. id-expression

literal:
integer-literal
character-literal
floating-literal
string-literal

integer-literal:
decimal-literal integer-suffiy,
octal-literal integer-suffix,
hexadecimal-literal integer-suffjx

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
123456789

octal-digit: one of
012345867

hexadecimal-digit: one of
0123456789
abcdef

A B CDEF

Section 18.2 DRAFT September 28, 1993

integer-suffix:
unsigned-suffix long-suffjx
long-suffix unsigned-suffjx

unsigned-suffix:one of
u u

long-suffix: one of
I L

character-literal:
' c-char-sequence
L’ c-char-sequence

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except
the single-quoté, backslash , or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequencene of
LS S VAR
\a \b \ff \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

floating-constant:
fractional-constant exponent-pggtfloating-suffix,
digit-sequence exponent-part floating-siffix

fractional-constant:
digit-sequencg, . digit-sequence
digit-sequence.

exponent-part:
e sign,, digit-sequence
E sign,, digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

Expressions 18

186 Grammar Summary DRAFT September 28, 1993 Chapter 18

floating-suffix: one of
fl FL

string-literal:
" s-char-sequengg’
L" s-char-sequengg’

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except
the double-quoté, backslash , or new-line character
escape-sequence
declaration:

decl-specifier-seg, init-declarator-list,; ;
asm-definition

function-definition

template-declaration
linkage-specification

decl-specifier:
storage-class-specifier
type-specifier
function-specifier
template-specifier
friend
typedef

decl-specifier-seq;:
decl-specifier-seg, decl-specifier

storage-class-specifier:
auto
register
static
extern

function-specifier:
inline
virtual

type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier

typedef-name

const
volatile

Section 18.2 DRAFT September 28, 1993 Expressions —18

simple-type-specifier:
qualified-class-specifier
qualified-type-specifier
char
wchar_t
short
int
long
signed
unsigned
float
double
void

elaborated-type-specifier:
class-key identifier
class-key qualified-class-specifier identifier
enum identifier
enum qualified-class-specifier.: identifier

class-key:
class
struct
union

qualified-type-specifier:
typedef-name
class-name:: qualified-type-specifier

qualified-class-specifier:
nested-class-specifier
nested-class-specifier

nested-class-specifier:
class-name
class-name:: nested-class-specifier

enum-specifier:
enum identifier,,, { enumerator-lisf, }

enumerator-list:
enumerator
enumerator-list, enumerator

enumerator:
identifier
identifier = constant-expression

constant-expression:
conditional-expression

linkage-specification:
extern string-literal { declaration-seg, }
extern string-literal declaration

declaration-seq:
declaration
declaration-seq declaration

18—8 Grammar Summary DRAFT September 28, 1993 Chapter 18

asm-definition:
asm (string-literal) ;

18.3 Declarators

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator initializeg,,

declarator:
direct-declarator
ptr-operator declarator

direct-declarator:
declarator-id
direct-declarator (parameter-declaration-clausg¢ cv-qualifier-seg, exception-specificatiop
direct-declarator [constant-expressigg]
(declarator)

ptr-operator:
* cv-qualifier-segy
& cv-qualifier-seg,
qualified-class-specifier: * cv-qualifier-segy,

cv-qualifier-seq:
cv-qualifier cv-qualifier-segy

cv-qualifier:
const
volatile

declarator-id:
id-expression
qualified-type-specifier

type-id:
type-specifier-seq abstract-declaragr

type-specifier-seq:
type-specifier type-specifier-sgg

abstract-declarator:
ptr-operator abstract-declaratgg;
direct-abstract-declarator

direct-abstract-declarator:
direct-abstract-declaratqy, (parameter-declaration-clausg¢ cv-qualifier-seg, exception-specificatiqp
direct-abstract-declaratqy, [constant-expressigy]
(abstract-declarator)

parameter-declaration-clause:
parameter-declarat?on-I?g;t o opt
parameter-declaration-list, ...

Section 18.3 DRAFT September 28, 1993 Declarators

parameter-declaration-list:
parameter-declaration
parameter-declaration-list, parameter-declaration

parameter-declaration:
decl-specifier-seq declarator
decl-specifier-seq declarator expression
decl-specifier-seq abstract-declaraggr
decl-specifier-seq abstract-declaraggr=expression

function-definition:
decl-specifier-seg, declarator ctor-initializeg,, function-body

function-body:
compound-statement

initializer:
= initializer-clause
(expression-list)

initializer-clause:
assignment-expression
{ initializer-list , o }

initializer-list:
initializer-clause
initializer-list , initializer-clause

18.4 Class declarations

class-specifier:
class-head{ member-specificatiqp, }

class-head:
class-key identifiey, base-clausg,
class-key nested-class-specifier base-clayise

member-specification:
member-declaration member-specificatjgn
access-specifier member-specificatiqp,

member-declaration:
decl-specifier-seg, member-declarator-ligf; ;
function-definition
qualified-id ;

7 opt

member-declarator-list:
member-declarator
member-declarator-list, member-declarator

member-declarator:
declarator pure-specifigy,
identifier,, : constant-expression

pure-specifier:
=0

18—10

Grammar Summary DRAFT September 28, 1993

base-clause:
base-specifier-list

base-specifier-list:
base-specifier
base-specifier-list, base-specifier

base-specifier:
qualified-class-specifier
virtual access-specifigy, qualified-class-specifier
access-specifievirtual ,; qualified-class-specifier

access-specifier:
private
protected
public

conversion-function-id:
operator conversion-type-id

conversion-type-id:
type-specifier-seq ptr-operatgy

ctor-initializer:
meme-initializer-list

meme-initializer-list:
mem-initializer
meme-initializer, mem-initializer-list

mem-initializer:
qualified-class-specifierl expression-ligf,)
identifier (expression-ligf,)

operator-function-id:
operator operator

operator: one of

18.5 Statements

new delete new(] delete[]
+ - * / % n & | ~
| = < > += = *= /= %=
A= &= = << >> >>= <<= == I=
<= >= && || ++ - SF >
0 0

statement:

labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block

Chapter 18

Section 18.5 DRAFT September 28, 1993 Statements —381

labeled-statement:
identifier : statement
case constant-expression statement
default : statement

expression-statement:
expressiog), ;

compound-statement:
{ statement-seg }

statement-seq:
statement
statement-seq statement

selection-statement:
if (condition) statement
if (condition) statementelse statement
switch (condition) statement

condition:
expression
type-specifier declarator= expression

iteration-statement:
while (condition) statement
do statement while (expression) ;
for (for-init-statement conditiq, ; expressiog,) statement

for-init-statement:
expression-statement
declaration-statement

jump-statement:
break ;
continue ;
return expressiog), ;
goto identifier ;

declaration-statement:
declaration

18.6 Preprocessor

#define identifier token-string
#define identifien identifier , ... , identifier) token-string

#include " filenamée
#include < filename

#line constant" filenamée
#undef identifier

opt

conditional:
if-part elif-parts,, else-parg, endif-line

if-part:
if-line text

18—12

Grammar Summary DRAFT September 28, 1993

if-line:
#if constant-expression
ifdef identifier
ifndef identifier

elif-parts:
elif-line text
elif-parts elif-line text

elif-line:
elif constant-expression

else-part:
else-line text

else-line:
else

endif-line:
endif

18.7 Templates

template-declaration:
template < template-parameter-list- declaration

template-parameter-list:
template-parameter
template-parameter-list template-parameter

template-parameter:
type-parameter
parameter-declaration

type-parameter:
class identifier

template-class-id:
template-name< template-argument-list-

template-name:
identifier

template-argument-list:
template-argument
template-argument-list template-argument

template-argument:
expression
type-id

18.8 Exception handling

try-block:
try compound-statement handler-seq

Chapter 18

Section 18.8 DRAFT September 28, 1993 Exception handling 343

handler-seq:
handler handler-seg)

handler:
catch (exception-declaration) compound-statement

exception-declaration:
type-specifier-seq declarator
type-specifier-seq abstract-declarator
type-specifier-seq

throw-expression:
throw assignment-expressigp

exception-specification:
throw (type-id-list,)

type-id-list:
type-id
type-id-list , type-id

w

19

Compatibility

This chapter summarizes the evolution e+ Gince the first edition oThe G+ Programming Languagand
explains in detail the differences betwees &nd C. Because the C language as described by the ANSI C Stan-
dard differs from the dialects of Classic C used up till now, we discuss the differences betward SNSI C

as well as the differences betweert @nd Classic C.

19 Appendix B: Compatibility

This appendix is not part of the#reference manual proper and does not defimdaDguage features.

CH is based on C (K&R78) and adopts most of the changes specified by the ANSI C standard. Con-
verting programs among+t€ K&R C, and ANSI C may be subject to vicissitudes of expression evaluation.
All differences between+ and ANSI C can be diagnosed by a compiler. With the following three excep-
tions, programs that are botk+Gnd ANSI C have the same meaning in both languages:

In C, sizeof(’'a’) equalssizeof(int) ; in CH, it equalssizeof(char)
In C, given
enume {A};
sizeof(A) equals sizeof(int) ; in CH, it equals sizeof(e) , which need not equal
sizeof(int)

A class name declared in an inner scope can hide the name of an object, function, enumerator, or type in
an outer scope. For example,
int x[99];
void ()
{

struct x { int a; };
sizeof(x); /* size of the array in C */

/* size of the structin C + */
}
19.1 Extensions
This section summarizes the major extensions to C provideetby C O
19.1.1 G+ features available in 1985 O

This subsection summarizes the extensions to C providedHin @e 1985 version of this manual:
The types of function parameters can be specified (8.2.5) and will be checked (5.2.2). Type conversions
will be performed (5.2.2). This is also in ANSI C.

© 0o ~NOoO 01 b

11
12

13
14
15

a b wWwNBE

19—2 Compatibility DRAFT September 28, 1993 Chapter 19

Single-precision floating point arithmetic may be usedfffmat expressions; 3.6.1 and 4.3. This is
also in ANSI C.

Function names can be overloaded; 13.

Operators can be overloaded; 13.4.

Functions can be inline substituted; 7.1.2.

Data objects can bmnst ; 7.1.6. This is also in ANSI C.

Objects of reference type can be declared; 8.2.2 and 8.4.3.

A free store is provided by tmew anddelete operators; 5.3.3, 5.3.4.

Classes can provide data hiding (11), guaranteed initialization (12.1), user-defined conversions (12.3),
and dynamic typing through use of virtual functions (10.2).

The name of a class or enumeration is a type name; 9.

A pointer to any norconst and nonvolatile object type can be assigned tecdd* ; 4.6. This is
also in ANSI C.

A pointer to function can be assigned teo&d* ; 4.6.

A declaration within a block is a statement; 6.7.

Anonymous unions can be declared; 9.5. O

19.1.2 G+ features added since 1985 a

This subsection summarizes the major extensionsto$§i@ce the 1985 version of this manual:

A class can have more than one direct base class (multiple inheritance); 10.1.

Class members can peotected ; 11.

Pointers to class members can be declared and used; 8.2.3, 5.5.

Operatorsiew anddelete can be overloaded and declared for a class; 5.3.3, 5.3.4, 12.5. This allows
the “assignment tohis " technique for class specific storage management to be removed to the anachro-
nism section; 19.3.3.

Objects can be explicitly destroyed; 12.4.

Assignment and initialization are defined as memberwise assignment and initialization; 12.8.

Theoverload keyword was made redundant and moved to the anachronism section; 19.3.

General expressions are allowed as initializers for static objects; 8.4.

Data objects can belatile ; 7.1.6. Also in ANSI C.

Initializers are allowed fostatic class members; 9.4.

Member functions can Istatic ; 9.4.

Member functions can eonst andvolatile ; 9.3.1.

Linkage to non-& program fragments can be explicitly declared; 7.4.

Operators> , ->* | and, can be overloaded; 13.4.

Classes can be abstract; 10.3.

Prefix and postfix application af+ and-- on a user-defined type can be distinguished.

Templates; 14.

Exception handling; 15.

19.2 G+and ISO C

The subsections of this section list the differences betweerati ISO C, by the chapters of this docu-

ment. g
19.2.1 Chapter 2: Lexical conventions O
Section 2.2

CHANGE CH style commentd/() are added

A pair of slashes now introduce a one-line comment.

RATIONALE This style of comments is a useful addition to the language.

EFFECT ON ORIGINAL FEATURE hange to semantics of well-defined feature. A valid ISO C expres-
sion containing a division operator followed immediately by a C-style comment will now be treated as a

Section 19.2.1 DRAFT September 28, 1993 Chapter 2: Lexical conventions —3

Ct style comment. For example:

{
inta=4;
int b = 8 //* divide by a*/ a;
+a;

}

DIFFICULTY OF CONVERTINGSyntactic transformation. Just add white space after the division opera-
tor.
HOW WIDELY USEDThe token sequen¢& probably occurs very seldom.

Section 2.4

CHANGE New Keywords
The following keywords are added te+C

asm catch class delete friend
inline new operator private protected
public template try this virtual
throw

and and_eq bitand bitor or
or_eq Xor_eq xor not not_eq
compl

RATIONALE These keywords were added in order to implement the new semantigs of C

EFFECT ON ORIGINAL FEATUREChange to semantics of well-defined feature. Any ISO C programs
that used any of these keywords as identifiers are not valigrGgrams.

DIFFICULTY OF CONVERTINGSyntactic transformation. Converting one specific program is easy.
Converting a large collection of related programs takes more work.

HOW WIDELY USEDNot uncommon.

Section 2.5.2

CHANGE Type of character literal is changed frath to char
RATIONALE This is needed for improved overloaded function argument type matching. For example:

int function(inti);
int function(char ¢);

function('x’);

It is preferable that this call match the second version of function rather than the first.
EFFECT ON ORIGINAL FEATUREhange to semantics of well-defined feature. ISO C programs which
depend on

sizeof('x’) == sizeof(int)

will not work the same as+€ programs.
DIFFICULTY OF CONVERTINGSimple.
HOW WIDELY USEDPrograms which depend upon sizeof(’x’) are probably rare. O

19.2.2 Chapter 3: Basic concepts O

Section 3.1/1

CHANGE G+ does not hav&entative definitionsas in C
E.g., at file scope,

19—4 Compatibility DRAFT September 28, 1993 Chapter 19

inti;

int i
is valid in C, invalid in €. This makes it impossible to define mutually referential file-local static objects,
if initializers are restricted to the syntactic forms of C. For example,

struct X { int i; struct X *next; };

static struct X a;
static struct X b ={0, &a };
static struct Xa={1, &b };

RATIONALE This avoids having different initialization rules for built-in types and user-defined types.
EFFECT ON ORIGINAL FEATURDeletion of semantically well-defined feature.

DIFFICULTY OF CONVERTINGSemantic transformation. In+& the initializer for one of a set of
mutually-referential file-local static objects must invoke a function call to achieve the initialization.
HOW WIDELY USEDSeldom.

Section 3.2

CHANGE A 5structis a scope in €, notin C

RATIONALE Class scope is crucial ta+; and a struct is a class.

EFFECT ON ORIGINAL FEATUREhange to semantics of well-defined feature.

DIFFICULTY OF CONVERTINGSemantic transformation.

HOW WIDELY USEDC programs usstruct extremely frequently, but the change is only noticeable
when struct , enumeration, or enumerator names are referred to outside the struct .

Section .3.3/2 [also 7.1.6/1]

CHANGE A name of file scope that is explicitly declarednst , and not explicitly declaredxtern
has internal linkage, while in C it would have external linkage

RATIONALE Becauseconst objects can be used as compile-time valuesHn this feature urges pro-
grammers to provide explicit initializer values for eaomst . This feature allows the user to mainst
objects in header files that are included in many compilation units.

EFFECT ON ORIGINAL FEATUREhange to semantics of well-defined feature.

DIFFICULTY OF CONVERTINGSemantic transformation

HOW WIDELY USEDSeldom

Section 3.4/2

CHANGE Main cannot be called recursively and cannot have its address taken

RATIONALE The main function may require special actions.

EFFECT ON ORIGINAL FEATURBDeletion of semantically well-defined feature

DIFFICULTY OF CONVERTINGTrivial: create an intermediary function such as mymain(argc, argv) .
HOW WIDELY USEDSeldom

Section 3.6
CHANGE C allows"compatible typésin several places#€ does not

[Note: It is hoped that future revisions of the-@Vorking Paper will resolve some of the incompatibility.]
For example, C has thaitial member rulé, by which the following is valid:

structa {inti, j; } Xa;
int *pi = (int*)&xa;
n = *pi;

RATIONALE Stricter type checking is essential farC[Some of theé compatibile typ& implications are
still being discussed by WG21 and X3J16.]

Section 19.2.2 DRAFT September 28, 1993 Chapter 3: Basic concepts —B

EFFECT ON ORIGINAL FEATURBDeletion of semantically well-defined feature
DIFFICULTY OF CONVERTINGSemantic transformation
HOW WIDELY USEbCommon

Section 3.6.2/4

CHANGE There is no guarantee thettar* andvoid* have the same representation and alignment
requirements

RATIONALE [It is not yet determined whether this difference is intentional.] [Note: It is hoped that future
revisions of the & Working Paper will resolve some of the incompatibility.]

EFFECT ON ORIGINAL FEATURBDeletion of semantically well-defined feature

DIFFICULTY OF CONVERTINGSemantic transformation

HOW WIDELY USEDSeldom O
19.2.3 Chapter 4: Standard conversions O
Section 4.6

CHANGE Conversion rules of C involvintincomplete typ&are not guaranteed irHC

[Note: It is hoped that future revisions of the-@Vorking Paper will resolve some of the incompatibility.]
The current draft [June 92] lacks a definition for th&ili@omplete typ¥, and therefore does not precisely
define the behavior of examples such as this (file-scope) code:

extern char a[J;

void *b=a;

char a[10];
RATIONALE [To be determined.]
EFFECT ON ORIGINAL FEATURETo be determined.]
DIFFICULTY OF CONVERTINGTo be determined.]
HOW WIDELY USEDIncomplete types are used frequently. Often a header contains the incomplete type
and the type is completed in a different header or source file. [This technique is used ints@oe-C
structs, so a proper treatment of "incomplete type" is expected to be achieved.]

Section 4.6

CHANGE Convertingvoid* to a pointer-to-object type requires casting

char a[10];
void *b=a;
void foo() {
char *c=b;

}

ISO C will accept this usage of pointer to void being assigned to a pointer to objectypdl Got.
RATIONALE G+ tries harder than C to enforce compile-time type safety.

EFFECT ON ORIGINAL FEATURBDeletion of semantically well-defined feature.

DIFFICULTY OF CONVERTINGCould be automated. Violations will be diagnosed by thet@nslator.
The fix is to add a cast. For example:

char *c = (char *) b;

HOW WIDELY USEDThis is fairly widely used but it is good programming practice to add the cast when
assigning pointer-to-void to pointer-to-object. Some ISO C translators will give a warning if the cast is not
used.

Section 4.6

196 Compatibility DRAFT September 28, 1993 Chapter 19

CHANGE Only pointers to non-const and non-volatile objects may be implicitly converteitito

RATIONALE This improves type safety.

EFFECT ON ORIGINAL FEATURBDeletion of semantically well-defined feature.

DIFFICULTY OF CONVERTINGCould be automated. A C program containing such an implicit conver-
sion from (e.g.) pointer-to-const-object to void* will receive a diagnostic message. The correction is to
add an explicit cast.

HOW WIDELY USEDInfrequent.

19.2.4 Chapter 5: Expressions

Section 5

CHANGE The C language effectively permits read-only type-punning between certain types
That is to say, an object may have its stored value accessed by an Ivalue that has a (slightly) differing type.
Lvalue types may differ in qualification:

charc ='Xx’;
const char *pcc = (const char *)&c;
f(*pcc); /* ok to access via Ivalue of type “const char” */

Lvalue types may differ in signedness (the source code for the library function strcmp typically requires
this behavior):

char ¢ = 0x12;
unsigned char *puc = (unsigned char *)*puc;
f(*puc); /* ok to access via Ivalue of type “unsigned char” */

One type may be a member of the other (aggregate or union) type:
struct x { inti; } xo = [0];
int* i = (int*)&x;
f(*pi); /* ok to access via Ivalue of member type */

union x { int i; short j; } xo = [0];
int* pi = (int *)&x;
f(*pi); /* ok to access via Ivalue of member type */

One type may be a character type, where the other is any other type:

union arena { align_t a; char buf[N]; } my_arena;
size_t *p = (size_t *)&arena.buf[0];
f(*p); /* ok to access chars (bytes) via Ivalue of other type */

Currently, the €+ language permits no such looseness.
For example, the memcpy function can be written in portable C, but it is not [yet] certain whether this
is true for G+.
[Note: It is hoped that future revisions of the@Vorking Paper will resolve some of the incompatibil-
ity.]
RATIONALE The type-safe nature of-C[or oversight].
EFFECT ON ORIGINAL FEATURBDeletion of semantically well-defined feature.
DIFFICULTY OF CONVERTINGUncertain.]
HOW WIDELY USED
Not common.

Section 5.2.2

CHANGE Implicit declaration of functions is not allowed

RATIONALE The type-safe nature of-€

EFFECT ON ORIGINAL FEATURBeletion of semantically well-defined feature. Note: the original fea-
ture was labeled d®bsolescefitin ISO C.

Section 19.2.4 DRAFT September 28, 1993 Chapter 5: Expressions —B

DIFFICULTY OF CONVERTINGSyntactic transformation. Facilities for producing explicit function dec-
larations are fairly widespread commercially.
HOW WIDELY USEBbVery common.

Section 5.2.4

CHANGE The“common initial sequence rulés not guaranteed
The C language effectively permits any degree of type-punning betweermmon initial sequencéf
members of structs that appear in a union. Currently, #hen@rking paper is not clear regarding such
“layout compatibility rules. [Note: It is hoped that future revisions of the @Working Paper will resolve
some of the incompatibility.]
For example, the following is valid in C:
structa {inti, j; } Xa;
struct b {inti; charj;} xb;

union ab { struct a ma; struct b mb; } xab;
xab = xa;
n = xab.mb.i;

RATIONALE The type-safe nature ofC[or oversight].

EFFECT ON ORIGINAL FEATURBDeletion of semantically well-defined feature.
DIFFICULTY OF CONVERTINGSemantic transformation.

HOW WIDELY USEDNot uncommon.

Section 5.3.2/4, 5.4/2

CHANGE Types must be declared in declarations, not in expressions
In C, a sizeof expression or cast expression may create a new type. For example,

p = (void*)(struct x {int i;} *)0;

declares a new type, struct x .

RATIONALE This prohibition helps to clarify the location of declarations in the source code.
EFFECT ON ORIGINAL FEATURBDeletion of a semantically well-defined feature.
DIFFICULTY OF CONVERTINGSyntactic transformation.

HOW WIDELY USEDVery rare.

Section 5.4/5

CHANGE Converting an integral value to an enumeration type, when the value converted does not equal
the value of any enumerator of the enumeration type, gives undefined results

[Note: this is still somewhat uncertain.]

RATIONALE The type-safe nature of-€

EFFECT ON ORIGINAL FEATURBDeletion of a semantically well-defined feature.

DIFFICULTY OF CONVERTINGSemantic transformation.

HOW WIDELY USEDNot uncommon.

19.2.5 Chapter 6: Statements

Section 6.4.2/7.3, 6.7/3.5Witch and goto statements

CHANGE It is now invalid to jump past a declaration with explicit or implicit initializer (except across
entire block not entered)

RATIONALE Constructors used in initializers may allocate resources which need to be de-allocated upon
leaving the block. Allowing jump past initializers would require complicated run-time determination of
allocation. Furthermore, any use of the uninitialized object could be a disaster. With this simple compile-

19—8 Compatibility DRAFT September 28, 1993 Chapter 19

time rule, G+ assures that if an initialized variable is in scope, then it has assuredly been initialized.
EFFECT ON ORIGINAL FEATURBDeletion of semantically well-defined feature.

DIFFICULTY OF CONVERTINGSemantic transformation.

HOW WIDELY USEDSeldom.

Section 6.6.3/2.1,6.6.3/2.5

CHANGE It is now invalid to return (explicitly or implicitly) from a function which is declared to return a
value without actually returning a value

RATIONALE The caller and callee may assume fairly elaborate return-value mechanisms for the return of
class objects. If some flow paths execute a return without specifying any value, the compiler must embody
many more complications. Besides, promising to return a value of a given type, and then not returning such
a value, has always been recognized to be a questionable practice, tolerated only because very-old C had no
distinction between void functions and int functions.

EFFECT ON ORIGINAL FEATURBDeletion of semantically well-defined feature.

DIFFICULTY OF CONVERTINGSemantic transformation. Add an appropriate return value to the source
code, e.g. zero.

HOW WIDELY USEDSeldom. For several years, many existing C compilers have produced warnings in
this case.

19.2.6 Chapter 7: Declarations

Section 7.1.1/6

CHANGE In G+, thestatic orextern specifiers can only be applied to names of objects or functions
Using these specifiers with type declarations is illegatih @n C, these specifiers are ignored when used
on type declarations. Example:

static struct S { // valid C, invalid in C +
inti;
...
5

RATIONALE Storage class specifiers don’t have any meaning when associated with a type, dass
members can be defined with thatic storage class specifier. Allowing storage class specifiers on
type declarations could render the code confusing for users.

EFFECT ON ORIGINAL FEATURBDeletion of semantically well-defined feature.

DIFFICULTY OF CONVERTINGSyntactic transformation.

HOW WIDELY USEDSeldom.

Section 7.1.3/3
CHANGE A CH+ typedef name must be different from any class type name declared in the same scope

(except if the typedef is a synonym of the class hame with the same name). In C, a typedef name and a
struct tag name declared in the same scope can have the same name (because they have different name

spaces)

Example:
typedef struct namel { /*...*/ } namel; // valid C and C +
struct name { /*...*/ };
typedef int name; // valid C, invalid C +

RATIONALE For ease of use;#€doesn’t require that a type name be prefixed with the keyvoteds ,
struct orunion when used in object declarations or type casts. Example:

class name { /*..*/ };
name i; Il i has type 'class name’

Section 19.2.6 DRAFT September 28, 1993 Chapter 7: Declarations -9

EFFECT ON ORIGINAL FEATURBDeletion of semantically well-defined feature.
DIFFICULTY OF CONVERTINGSemantic transformation. One of the 2 types has to be renamed.
HOW WIDELY USEDRare.

Section 7.1.6/1 [See also 3.3/2]

CHANGE const objects must be initialized irtbut can be left uninitialized in C

RATIONALE A const object cannot be assigned to so it must be initialized to hold a useful value.
EFFECT ON ORIGINAL FEATURBDeletion of semantically well-defined feature.

DIFFICULTY OF CONVERTINGSemantic transformation.

HOW WIDELY USEDSeldom.

Section 7.2/3

CHANGE G+ objects of enumeration type can only be assigned values of the same enumeration type. In
C, objects of enumeration type can be assigned values of any integral type
Example:

enum color { red, blue, green };
colorc=1; //validC,invalidC +

RATIONALE There is no guarantee that the integral value assigned to the object of enumeration type can
be represented by one of the enumerators of the enumeration.

EFFECT ON ORIGINAL FEATURBDeletion of semantically well-defined feature.

DIFFICULTY OF CONVERTINGSyntactic transformation. (The type error produced by the assignment
can be automatically corrected by applying an explicit cast. But see the earlier note about 5.4/5 regarding
conversions to enumeration type.)

HOW WIDELY USEBCommon.

Section 7.2/3

CHANGE In G+, the type of an enumerator is its enumeration. In C, the type of an enumerator is int
Example:

enume{A};
sizeof(A) == sizeof(int) //inC
sizeof(A) == sizeof(e) /lin C +

/* and sizeof(int) is not necessary equal to sizeof(e) */

RATIONALE In CH, an enumeration is a distinct type.

EFFECT ON ORIGINAL FEATUREhange to semantics of well-defined feature.

DIFFICULTY OF CONVERTINGSemantic transformation.

HOW WIDELY USEDSeldom. The only time this affects existing C code is when the size of an enumera-
tor is taken. Taking the size of an enumerator is not a common C coding practice.

19.2.7 Chapter 8: Declarators

Section 8.2.5/2

CHANGE In G+, a function declared with an empty parameter list takes no arguments.
In C, an empty parameter list means that the number and type of the function arguments are unknown
Example:

intf(); // means int f(void) inC +
I int flunknown) inC

RATIONALE This is to avoid erroneous function calls (i.e. function calls with the wrong number or type of
arguments).

19—10 Compatibility DRAFT September 28, 1993 Chapter 19

EFFECT ON ORIGINAL FEATUREChange to semantics of well-defined feature. This feature was
marked a$obsolesceritin C.

DIFFICULTY OF CONVERTINGSyntactic transformation. The function declarations using C incomplete
declaration style must be completed to become full prototype declarations. A program may need to be
updated further if different calls to the same (non-prototype) function have different numbers of arguments
or if the type of corresponding arguments differed.

HOW WIDELY USEbCommon.

Section 8.2.5/5 [See 5.3.2/4]

CHANGE In CH, types may not be defined in return or parameter types. In C, these type definitions are
allowed
Example:

void f(struct S{inta; } arg) {} /l valid C, invalid C +
enumE{A,B,C}f(){} I valid C, invalid C +

RATIONALE When comparing types in different compilation unitst €lies on name equivalence when

C relies on structural equivalence. Regarding parameter types: since the type defined in an parameter list
would be in the scope of the function, the only legal callsHw®uld be from within the function itself.

EFFECT ON ORIGINAL FEATURBDeletion of semantically well-defined feature.

DIFFICULTY OF CONVERTINGSemantic transformation. The type definitions must be moved to file
scope, or in header files.

HOW WIDELY USEDSeldom. This style of type definitions is seen as poor coding style.

Section 8.3/1

CHANGE In CH, the syntax for function definition excludes thad-style’ C function. In C,*old-styl€’
syntax is allowed, but deprecated absolescerit.

RATIONALE Prototypes are essential to type safety.

EFFECT ON ORIGINAL FEATURBDeletion of semantically well-defined feature.

DIFFICULTY OF CONVERTINGSyntactic transformation.

HOW WIDELY USEDFrequent in old programs, but already known to be obsolescent.

Section 8.4.2/2

CHANGE In CH, when initializing an array of character with a string, the number of characters in the
string (including the terminatind0’) must not exceed the number of elements in the array. In C, an array
can be initialized with a string even if the array is not large enough to contain the string termibiating
Example:

char array[4] = "abcd"; // valid C, invalid C +

RATIONALE When these non-terminated arrays are manipulated by standard string routines, there is
potential for major catastrophe.

EFFECT ON ORIGINAL FEATURDeletion of semantically well-defined feature.

DIFFICULTY OF CONVERTINGSemantic transformation. The arrays must be declared one element big-
ger to contain the string terminatiing’

HOW WIDELY USEDSeldom. This style of array initialization is seen as poor coding style.

19.2.8 Chapter 9: Classes

Section 9.1/2 [See also 7.1.3/3]

Section 19.2.8 DRAFT September 28, 1993 Chapter 9: Classes —119

CHANGE In G+, a class declaration introduces the class name into the scope where it is declared and
hides any object, function or other declaration of that name in an enclosing scope. In C, an inner scope dec-
laration of a struct tag name never hides the name of an object or function in an outer scope

Example:

int x[99];
void f()
{
struct x {int a; };
sizeof(x); /* size of the array in C */
/* size of the structin C + ¥
}

RATIONALE This is one of the few incompatibilities between C amelt@at can be attributed to the new

CH name space definition where a name can be declared as a type and as a nontype in a single scope caus-
ing the nontype name to hide the type name and requiring that the keyhassls, struct , union or

enum be used to refer to the type name. This new name space definition provides important notational
conveniences to#€ programmers and helps making the use of the user-defined types as similar as possible
to the use of built-in types. The advantages of the new name space definition were judged to outweigh by
far the incompatibility with C described above.

EFFECT ON ORIGINAL FEATUREhange to semantics of well-defined feature.

DIFFICULTY OF CONVERTINGSemantic transformation. If the hidden name that needs to be accessed
is at global scope, the G+ operator can be used. If the hidden name is at block scope, either the type or
the struct tag has to be renamed.

HOW WIDELY USEDSeldom.

Section 9.7/1

CHANGE In CH, the name of a nested class is local to its enclosing class. In C the name of the nested
class belongs to the same scope as the name of the outermost enclosing class

Example:
struct X {
struct Y {/* ... */ }vy;
2
struct Y yy; /[valid C, invalid C +

RATIONALE CH classes have member functions which require that classes establish scopes. The C rule
would leave classes as an incomplete scope mechanism which would preverdggtammers from main-

taining locality within a class. A coherent set of scope rules forb@sed on the C rule would be very
complicated and€ programmers would be unable to predict reliably the meanings of nontrivial examples
involving nested or local functions.

EFFECT ON ORIGINAL FEATUREhange of semantics of well-defined feature.

DIFFICULTY OF CONVERTINGSemantic transformation. To make the struct type name visible in the
scope of the enclosing struct, the struct tag could be declared in the scope of the enclosing struct, before the
enclosing struct is defined. Example:

struct Y; // struct Y and struct X are at the same scope
struct X {
struct Y {/*...*/ }vy;

b
All the definitions of C struct types enclosed in other struct definitions and accessed outside the scope of
the enclosing struct could be exported to the scope of the enclosing struct.
HOW WIDELY USEDNot common. NOTE: This is a consequence of the difference in scope rules, which
is documented at section 3.2 above.

Section 9.9/2

19—12 Compatibility DRAFT September 28, 1993 Chapter 19

CHANGE In CH, a typedef name may not be redefined in a class declaration after being used in the decla-
ration
Example:

typedef int [;
struct S {

li;

intl; // valid C, invalid C +
h

RATIONALE When classes become complicated, allowing such a redefinition after the type has been used
can create confusion forCprogrammers as to what the meaning of 'I’ really is.

EFFECT ON ORIGINAL FEATURBDeletion of semantically well-defined feature.

DIFFICULTY OF CONVERTINGSemantic transformation. Either the type or the struct member has to be
renamed.

HOW WIDELY USEDSeldom. O

19.2.9 Chapter 16: Preprocessing directives a

Section 16.10/5 (Predefined names)

CHANGE Whether__STDC__is defined and if so, what its value is,

are implementation-defined"

RATIONALE G+ is not identical to ISO C. Mandating thatSTDC _ be defined would require that trans-
lators make an incorrect claim. Each implementation must choose the behavior that will be most useful to
its marketplace.

EFFECT ON ORIGINAL FEATUREhange to semantics of well-defined feature.

DIFFICULTY OF CONVERTINGSemantic transformation.

HOW WIDELY USEDPrograms and headers that referenc&TDC __are quite common.

19.3 Anachronisms

The extensions presented here may be provided by an implementation to ease the use of C programs as C
programs or to provide continuity from earlierGmplementations. Note that each of these features has
undesirable aspects. An implementation providing them should also provide a way for the user to ensure
that they do not occur in a source file. A-@mplementation is not obliged to provide these features.

The wordoverload may be used asdecl-specifiel(7) in a function declaration or a function defini-
tion. When used as @ecl-specifieroverload is a reserved word and cannot also be used as an identi-
fier.

The definition of a static data member of a class for which initialization by default to all zeros applies
(8.4, 9.4) may be omitted.

An old style (that is, pre-ANSI C) C preprocessor may be used.

Anint may be assigned to an object of enumeration type.

The number of elements in an array may be specified when deleting an array of a type for which there is
no destructor; 5.3.4.

A single functionoperator++() may be used to overload both prefix and postfixand a single
functionoperator--() may be used to overload both prefix and postfix 13.4.6.

19.3.1 Old style function definitions a

The C function definition syntax
old-function-definition:
decl-specifiers, old-function-declarator declaration-sgg function-body

old-function-declarator:
declarator (parameter-lisf,)

Section 19.3.1 DRAFT September 28, 1993 Old style function definitions 393

parameter-list:
identifier
parameter-list, identifier

For example,
max(a,b) int b; { return (a<b) ? b : a; }

may be used. If a function defined like this has not been previously declared its parameter type will be
taken to be...) , that is, unchecked. If it has been declared its type must agree with that of the declara-
tion.

Class member functions may not be defined with this syntax. O

19.3.2 Old style base class initializer O

In amem-initializef12.6.2), theclass-namaiaming a base class may be left out provided there is exactly
one immediate base class. For example,

class B {
...
public:
B (int);
I3

class D : public B {
...
D(inti): (i)y{/*..*}

causes th8 constructor to be called with the argument

19.3.3 Assignment tdhis

Memory management for objects of a specific class can be controlled by the user by suitable assignments to
thethis pointer. By assigning to thiis pointer before any use of a member, a constructor can imple-
ment its own storage allocation. By assigning the null pointthigo , a destructor can avoid the standard
deallocation operation for objects of its class. Assigning the null pointhisto in a destructor also sup-
pressed the implicit calls of destructors for bases and members. For example,

class Z {
int z[10];
Z() {this = my_allocator(sizeof(Z)); }
~Z() { my_deallocator(this); this = 0; }

On entry into a constructothis is nonnull if allocation has already taken place (as it will have for
auto , static , and member objects) and null otherwise.

Calls to constructors for a base class and for member objects will take place (only) after an assignment
to this . If a base class’s constructor assignshie , the new value will also be used by the derived
class’s constructor (if any).

Note that if this anachronism exists either the type oftttikee pointer cannot be &onst or the
enforcement of the rules for assignment to a constant pointer must be subvertethfer tipeinter. O

19.3.4 Cast of bound pointer O

A pointer to member function for a particular object may be cast into a pointer to function, for example,
(int(*)())p->f . The result is a pointer to the function that would have been called using that member
function for that particular object. Any use of the resulting pointeras ever undefined. O

19—14 Compatibility DRAFT September 28, 1993 Chapter 19

19.3.5 Nonnested classes a

Where a class is declared within another class and no other class of that name is declared in the program
that class can be used as if it was declared outside its enclosing class (exactstast Q. For exam-

ple,

struct S {
struct T {
int a;
3
int b;
h

struct T x; /l meaning ‘S::T x;’

