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Introduction

1 This abstract introduces the introductory chapter of the C + + Standard. This chapter describes the purpose and
organization of the Standard.

1 Introduction

1 This Standard specifies requirements for processors of the C + + programming language. The first such
requirement is that they implement the language, and so this Standard also defines C + +. Other requirements
and relaxations of the first requirement appear at various places within the Standard.

2 C + + is a general purpose programming language based on the C programming language.1 In addition to
the facilities provided by C, C + + provides classes, templates, exceptions, inline functions, operator over-
loading, function name overloading, constant types, references, free store management operators, and func-
tion argument checking and type conversion. These extensions to C are summarized in 19.1. The differ-
ences between C + + and ISO C2 are summarized in 19.2. The extensions to C + + since the 1985 edition of
this manual are summarized in 19.1.2.

1.1 Overview

1 This manual is organized like this:

1. Introduction 10. Derived Classes
2. Lexical Conventions 11. Member Access Control
3. Basic Concepts 12. Special Member Functions
4. Standard Conversions 13. Overloading
5. Expressions 14. Templates
6. Statements 15. Exception Handling
7. Declarations 16. Preprocessing
8. Declarators Appendix A: Grammar Summary
9. Classes Appendix B: Compatibility

1.2 Syntax notation 

1 In the syntax notation used in this manual, syntactic categories are indicated byitalic type, and literal words
and characters inconstant width type. Alternatives are listed on separate lines except in a few cases
where a long set of alternatives is presented on one line, marked by the phrase“one of.” An optional termi-
nal or nonterminal symbol is indicated by the subscript“opt,” so
_ ____________________
1 “The C Programming Language” by Brian W. Kernighan and Dennis M. Ritchie, Prentice Hall, 1978 and 1988.
2 International Standards Organization IS9899-1990.
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{ expressionopt }

indicates an optional expression enclosed in braces.
2 Names for syntactic categories have generally been chosen according to the following rules:

• X-nameis a context dependent keyword (e.g. class-name, typedef-name).

• X-id is an identifier with no context-dependent meaning (e.g. qualified-id).

• X-seqis one or moreX’s without intervening delimiters.

• X-list is one or moreX’s separated by intervening commas (e.g.expression-listis a series of expres-
sions separated by commas).

3 Processors shall issue a diagnostic message for programs that are syntactically incorrect. 

1.3 The C + + memory model 

1 The fundamental storage unit in the C + + memory model is thebyte. A byte is at least large enough to con-
tain any member of the basic execution character set and is composed of a contiguous sequence of bits, the
number of which is implementation-defined. The least significant bit is called thelow-order bit; the most
significant bit is called thehigh-orderbit. The memory accessible to a C + + program is comprised of one or
more contiguous sequences of bytes. Each byte (except perhaps registers) has a unique address.

2 The constructs in a C + + program create, refer to, access, and manipulateobjectsin memory. Each object
(except bit-fields) occupies one or more contiguous bytes. Objects are created by definitions (3.1) and
new-expressions(5.3.3). Each object has atypedetermined by the construct that creates it. The type in
turn determines the number of bytes that the object occupies and the interpretation of their contents.
Objects may contain other objects, calledsub-objects(9.2, 10). An object that is not a sub-object of any
other object is called acomplete object. The complete object containing an object is called the complete
object of the object. (An object may be its own complete object),

3 C + + provides a variety of built-in types and several ways of composing new types from existing types.
4 Certain types havealignment restrictions. An object of one of those types may only appear at an

address that is divisible by a particular integer. 

1.4 Definitions of terms 

1 In this Standard,“shall” is to be interpreted as a requirement on C + + processors, and“shall not” is to be
interpreted as a prohibition.

2 The following terms are used in this document.

• Diagnostic message— a message belonging to an implementation-defined subset of the
implementation’s message output.

• Implementation-defined behavior— behavior, for a correct program construct and correct data, that
depends on the implementation and that each implementation shall document. The range of possible
behaviors is delineated by the standard.

• Implementation limits— restrictions imposed upon programs by the implementation.

• Locale-specific behavior— behavior that depends on local conventions of nationality, culture, and lan-
guage that each implementation shall document.

• Multibyte character— a sequence of one or more bytes representing a member of the extended charac-
ter set of either the source or the execution environment. The extended character set is a superset of the
basic character set.

• Undefined behavior— behavior, upon use of an erroneous program construct, of erroneous data, or of
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indeterminately valued objects, for which the standard imposes no requirements. Permissible undefined
behavior ranges from ignoring the situation completely with unpredictable results, to behaving during
translation or program execution in a documented manner characteristic of the environment (with or
without the issuance of a diagnostic message), to terminating a translation or execution (with the
issuance of a diagnostic message). Note that many erroneous program constructs do not engender unde-
fined behavior. They are required to be diagnosed.

• Unspecified behavior— behavior, for a correct program construct and correct data, that depends on the
implementation. The range of possible behaviors is delineated by the standard. The implementation is
not required to document which behavior occurs.

• Argument— an expression in the comma-separated list bounded by the parentheses in a function call
expression, a sequence of prepreocessing tokens in the comma-separated list bounded by the parenthe-
ses in a function-like macro invocation, the operand ofthrow , or an expression in the comma-
separated list bounded by the angle brackets in a template instantiation. Also known as an“actual argu-
ment” or “actual parameter.”

• Parameter— an object or reference declared as part of a function declaration or definition ir the catch
clause of an exception handler that acquires a value on entry to the function or handler, an identifier
from the comma-separated list bounded by the parentheses immediately following the macro name in a
function-like macro definition, or atemplate-parameter. A function may said to“take arguments” or to
“have parameters.” Parameters are also known as a“formal arguments” or “formal parameters.”

• Static type— Thestatic typeof an expression is the type (3.6) resulting from analysis of the program
without consideration of execution semantics. It depends only on the form of the program and does not
change.

• Dynamic type— Thedynamic typeof an expression is determined by its current value and may change
during the execution of a program. If a pointer (8.2.1) whose static type is“pointer to classB” is point-
ing to an object of classD, derived from B (10), the dynamic type of the pointer is“pointer toD.” Refer- 
ences (8.2.2) are treated similarly.

3 Other terms are defined at their first appearance, indicated byitalic type. Terms explicitly defined in
this standard are not to be presumed to refer implicitly to similar terms defined elsewhere. Terms not
defined in this standard are to be interpreted according to theAmerican National Dictionary for Information
Processing Systems,Information Processing Systems Technical ReportANSI X3/TR-1-82 (1982).
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Lexical Conventions

1 This chapter presents the lexical conventions of C + +. It lists the phases of translation and describes tokens in a
C + + program including comments, identifiers, keywords, and integer, character, floating point, and string literals.
Operators are discussed in 5. The C + + grammar based on these token is summarized in 18.

2 Lexical conventions 

1 A C + + program need not all be translated at the same time. The text of the program is kept in units called
source filesin this standard. A source file together with all the headers and source files included (16.2) via
the preprocessing directive#include , less any source lines skipped by any of the conditional inclusion
(16.1) preprocessing directives, is called atranslation unit. Previously translated translation units may be
preserved individually or in libraries. The separate translation units of a program communicate (3.3) by
(for example) calls to functions whose identifiers have external linkage, manipulation of objects whose
identifiers have external linkage, or manipulation of data files. Translation units may be separately trans-
lated and then later linked to produce an executable program. (3.3). 

2.1 Phases of translation 

1 The precedence among the syntax rules of translation is specified by the following phases.3

1 Physical source file characters are mapped to the source character set (introducing new-line charac-
ters for end-of-line indicators) if necessary. Trigraph sequences are replaced by corresponding
single-character internal representations.

2 Each instance of a new-line character and an immediately preceding backslash character is deleted,
splicing physical source lines to form logical source lines. A source file that is not empty shall end
in a new-line character, which shall not be immediately preceded by a backslash character.

3 The source file is decomposed into preprocessing tokens (2.3) and sequences of white-space charac-
ters (including comments). A source file shall not end in a partial preprocessing token or comment.
Each comment is replaced by one space character. New-line characters are retained. Whether each
nonempty sequence of white-space characters other than new-line is retained or replaced by one
space character is implementation-defined. The process of dividing a source file’s characters into
preprocessing tokens is context-dependent. For example, see the handling of< within a#include
preprocessing directive.

4 Preprocessing directives are executed and macro invocations are expanded. A#include
_ ____________________
3 Implementations must behave as if these separate phases occur, although in practice different phases may be folded together.
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preprocessing directive causes the named header or source file to be processed from phase 1 through
phase 4, recursively.

5 Each source character set member and escape sequence in character constants and string literals is
converted to a member of the execution character set.

6 Adjacent character string literal tokens are concatenated and adjacent wide string literal tokens are
concatenated.

7 White-space characters separating tokens are no longer significant. Each preprocessing token is
converted into a token. (See 2.4). The resulting tokens are syntactically and semantically analyzed
and translated. The result of this process starting from a single source file is called atranslation
unit.

8 The translation units that will form a program are combined. All external object and function refer-
ences are resolved.

What about shared libraries?_ ___________________________________
_ ___________________________________


Library components are linked to satisfy external references to functions and objects not defined in
the current translation. All such translator output is collected into a program image which contains
information needed for execution in its execution environment.

2.2 Trigraph sequences 

1 Before any other processing takes place, each occurrence of one of the following sequences of three charac-
ters (“trigraph sequences”) is replaced by the single character indicated in the table below.

_ __________________________________________________________________
trigraph replacement trigraph replacement trigraph replacement_ ___________________________________________________________________ __________________________________________________________________

??= # ??( [ ??< {_ __________________________________________________________________
??/ \ ??) ] ??> }_ __________________________________________________________________
??’ ^ ??! | ??- ~_ __________________________________________________________________ 
























2 For example,

??=define arraycheck(a,b) a??(b??) ??!??! b??(a??)

becomes

#define arraycheck(a,b) a[b] || b[a]

2.3 Preprocessing tokens 

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
operator
digraph
punctuator
each non-white-space character that cannot be one of the above

1 Each preprocessing token that is converted to a token (2.5) shall have the lexical form of a keyword, an
identifier, a constant, a string literal, an operator, a digraph, or a punctuator.
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2 A preprocessing tokenis the minimal lexical element of the language in translation phases 3 through 6.
The categories of preprocessing token are:header names, identifiers, preprocessing numbers, character
constants, string literals, operators, punctuators, digraphs, and single non-white-space characters that do
not lexically match the other preprocessing token categories. If a ´ or a " character matches the last cate-
gory, the behavior is undefined. Preprocessing tokens can be separated bywhite space; this consists of
comments (2.6), orwhite-space characters(space, horizontal tab, new-line, vertical tab, and form-feed), or
both. As described in 16, in certain circumstances during translation phase 4, white space (or the absence
thereof) serves as more than preprocessing token separation. White space may appear within a preprocess-
ing token only as part of a header name or between the quotation characters in a character constant or string
literal.

3 If the input stream has been parsed into preprocessing tokens up to a given character, the next prepro-
cessing token is the longest sequence of characters that could constitute a preprocessing token.

4 The program fragment1Ex is parsed as a preprocessing number token (one that is not a valid floating
or integer constant token), even though a parse as the pair of preprocessing tokens1 andEx might produce
a valid expression (for example, ifEx were a macro defined as+1). Similarly, the program fragment1E1
is parsed as a preprocessing number (one that is a valid floating constant token), whether or notE is a
macro name.

5 The program fragmentx+++++y is parsed asx ++ ++ + y , which violates a constraint on incre-
ment operators, even though the parsex ++ + ++ y might yield a correct expression. 

2.4 Digraph sequences 

1 Alternate representations are provided for the operators and punctuators whose primary representations use
the“national characters.” These include digraphs and additional reserved words.

digraph:
<%
%>
<:
:>
%%

2 In translation phase 3 (2.1) the digraphs are recognized as preprocessing tokens. Then in translation
phase 7 the digraphs and the additional identifiers listed below are converted into tokens identical to those
from the corresponding primary representations.

__________________________________________________________
alternate primary alternate primary alternate primary____________________________________________________________________________________________________________________

<% { and && and_eq &=__________________________________________________________
%> } bitor | or_eq |=__________________________________________________________
<: [ or || xor_eq ^=__________________________________________________________
:> ] xor ^ not !__________________________________________________________
%% # compl ~ not_eq !=__________________________________________________________

bitand &__________________________________________________________ 







































2.5 Tokens

token:
identifier
keyword
literal
operator
punctuator

1 There are five kinds of tokens: identifiers, keywords, literals (which include strings and character and
numeric constants), operators, and other separators. Blanks, horizontal and vertical tabs, newlines, form-
feeds, and comments (collectively,“white space”), as described below, are ignored except as they serve to
separate tokens. Some white space is required to separate otherwise adjacent identifiers, keywords, and
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literals.
2 If the input stream has been parsed into tokens up to a given character, the next token is taken to be the

longest string of characters that could possibly constitute a token.

2.6 Comments

1 The characters/* start a comment, which terminates with the characters*/ . These comments do not nest.
The characters// start a comment, which terminates at the end of the line on which they occur. The com-
ment characters// , /* , and*/ have no special meaning within a// comment and are treated just like
other characters. Similarly, the comment characters// and/* have no special meaning within a/* com-
ment.

2.7 Identifiers

identifier:
nondigit
identifier nondigit
identifier digit

nondigit: one of
_ a b c d e f g h i j k l m

n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

digit: one of
0 1 2 3 4 5 6 7 8 9

1 An identifier is an arbitrarily long sequence of letters and digits. The first character must be a letter; the
underscore_ counts as a letter. Upper- and lower-case letters are different. All characters are significant.

2.8 Keywords

1 The following identifiers are reserved for use as keywords, and may not be used otherwise in phases 7 and
8:

asm default friend protected switch void
auto delete goto public template volatile
break do if register this wchar_t
case double inline return throw while
catch else int short try
char enum long signed typedef
class extern new sizeof union
const float operator static unsigned
continue for private struct virtual

2 Furthermore, the following alternate representations for certain operators and punctuators (see 2.4) are
reserved and may not be used otherwise:

bitand and bitor or xor compl
and_eq or_eq xor_eq not not_eq

3 In addition, identifiers containing a double underscore (_ _ ) are reserved for use by C + + implementa-
tions and standard libraries and should be avoided by users.

4 The ASCII representation of C + + programs uses the following characters as operators or for punctua-
tion:
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! % ^ & * ( ) - +
_ __ _ { } | ~

[ ] \ ; ’ : " < > ? , . /

and the following character combinations are used as operators:

-> ++ -- .* ->* << >> <= >= == != &&
|| *= /= %= += -= <<= >>= &= ^= |= ::

Each is converted to a single token in translation phase 7 (2.1).
5 The following character combinations are used as alternative representations for certain operators and

punctuators (see 2.4):

<% %> <: :> %%

Each of these is also recognized as a single token in translation phases 3 and 7.
6 In addition, the following tokens are used by the preprocessor:

# ## %% %%%%

7 Certain implementation-dependent properties, such as the type of asizeof (5.3.2) and the ranges of
fundamental types (3.6.1), are defined in the standard header files (16.2)

<float.h> <limits.h> <stddef.h>

These headers are part of the ANSI C standard. In addition the headers

<new.h> <stdarg.h> <stdlib.h>

define the types of the most basic library functions. The last two headers are part of the ANSI C standard;
<new.h> is C + + specific.

2.9 Literals

1 There are several kinds of literals (often referred to as“constants”).

literal:
integer-literal
character-literal
floating-literal
string-literal

2.9.1 Integer literals 

integer-literal:
decimal-literal integer-suffixopt

octal-literal integer-suffixopt

hexadecimal-literal integer-suffixopt

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit
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hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit:one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix:
unsigned-suffix long-suffixopt

long-suffix unsigned-suffixopt

unsigned-suffix:one of
u U

long-suffix: one of
l L

1 An integer literal consisting of a sequence of digits is taken to be decimal (base ten) unless it begins with0
(digit zero). A sequence of digits starting with0 is taken to be an octal integer (base eight). The digits8
and9 are not octal digits. A sequence of digits preceded by0x or 0X is taken to be a hexadecimal integer
(base sixteen). The hexadecimal digits includea or A throughf or F with decimal values ten through fif-
teen. For example, the number twelve can be written12 , 014 , or0XC.

2 The type of an integer literal depends on its form, value, and suffix. If it is decimal and has no suffix, it
has the first of these types in which its value can be represented:int , long int , unsigned long int .
If it is octal or hexadecimal and has no suffix, it has the first of these types in which its value can be repre-
sented:int , unsigned int , long int , unsigned long int . If it is suffixed byu or U, its type is
the first of these types in which its value can be represented:unsigned int , unsigned long int . If
it is suffixed byl or L, its type is the first of these types in which its value can be represented:long int ,
unsigned long int . If it is suffixed byul , lu , uL , Lu , Ul , lU , UL, or LU, its type isunsigned
long int .

3 A program is ill-formed if it contains an integer literal that cannot be represented by any of the allowed
types. 

2.9.2 Character literals 

character-literal:
’ c-char-sequence’
L’ c-char-sequence’

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except

the single-quote’ , backslash\ , or new-line character
escape-sequence
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escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence:one of
\’ \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

1 A character literal is one or more characters enclosed in single quotes, as in’x’ . Single character literals
have typechar . The value of a single character literal is the numerical value of the character in the
machine’s character set. Multicharacter literals have typeint . The value of a multicharacter literal is
implementation dependent.

2 Certain nongraphic characters, the single quote’ , the double quote" , the question mark?, and the
backslash\ , may be represented according to the following table of escape sequences:

new-line NL (LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
alert BEL \a
backslash \ \\
question mark ? \?
single quote ’ \’
double quote " \"
octal number ooo \ ooo
hex number hhh \x hhh

If the character following a backslash is not one of those specified, the behavior is undefined. An escape
sequence specifies a single character.

3 The escape\ ooo consists of the backslash followed by one, two, or three octal digits that are taken to
specify the value of the desired character. The escape\x hhh consists of the backslash followed byx
followed by a sequence of hexadecimal digits that are taken to specify the value of the desired character.
There is no limit to the number of hexadecimal digits in the sequence. A sequence of octal or hexadecimal
digits is terminated by the first character that is not an octal digit or a hexadecimal digit, respectively. The
value of a character literal is implementation dependent if it exceeds that of the largestchar .

4 A character literal immediately preceded by the letterL, for example,L’ab’ , is a wide-character lit-
eral. A wide-character literal is of typewchar_t . Wide-characters are intended for character sets where a
character does not fit into a single byte. 

2.9.3 Floating literals 

floating-constant:
fractional-constant exponent-partopt floating-suffixopt

digit-sequence exponent-part floating-suffixopt
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fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence.

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
f l F L

1 A floating literal consists of an integer part, a decimal point, a fraction part, ane or E, an optionally signed
integer exponent, and an optional type suffix. The integer and fraction parts both consist of a sequence of
decimal (base ten) digits. Either the integer part or the fraction part (not both) may be missing; either the
decimal point or the lettere (or E) and the exponent (not both) may be missing. The type of a floating lit-
eral isdouble unless explicitly specified by a suffix. The suffixesf andF specifyfloat , the suffixesl
andL specifylong double . 

2.9.4 String literals 

string-literal:
" s-char-sequenceopt"
L" s-char-sequenceopt"

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote" , backslash\ , or new-line character
escape-sequence

1 A string literal is a sequence of characters (as defined in 2.9.2) surrounded by double quotes, as in"..." .
A string has type“array ofchar ” and storage classstatic (3.5), and is initialized with the given characters.
Whether all string literals are distinct (that is, are stored in nonoverlapping objects) is implementation
dependent. The effect of attempting to modify a string literal is undefined.

2 Adjacent string literals are concatenated. Characters in concatenated strings are kept distinct. For
example,

"\xA" "B"

contains the two characters’\xA’ and ’B’ after concatenation (and not the single hexadecimal character
’\xAB’ ).

3 After any necessary concatenation’\0’ is appended so that programs that scan a string can find its
end. The size of a string is the number of its characters including this terminator. Within a string, the dou-
ble quote character" must be preceded by a\ .

4 A string literal immediately preceded by the letterL, for example,L"asdf" , is a wide-character string.
A wide-character string is of type“array of wchar_t .” Concatenation of ordinary and wide-character
string literals is undefined.
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Basic Concepts

1 This chapter presents the basic concepts of the C + + language. It explains the difference between anobjectand a
nameand how they relate to the notion of anlvalue. It introduces the concepts of adeclarationand adefinition
and presents C + +’s notion oftype, scope, linkage, andstorage class. The mechanisms for starting and terminat-
ing a program are discussed. Finally, this chapter presents the fundamental types of the language and lists the
ways of constructing derived types from these.

2 This chapter does not cover concepts that affect only a single part of the language. Such concepts are discussed
in the relevant chapters.

3 Basic concepts 

1 A name denotes an object, a function, a set of functions, an enumerator, a type, a class member, a template,
a value, or a label. A name is introduced into a program by a declaration. A name can be used only within
a region of program text called itsscope. A name has a type, which determines its use. A name used in
more than one translation unit may (or may not) refer to the same object, function, type, template, or value
in these translation units depending on the linkage (3.3) specified in the translation units.

2 An object is a region of storage (3.7). A named object has a storage class (3.5) that determines its life-
time. The meaning of the values found in an object is determined by the type of the expression used to
access it. 

3.1 Declarations and definitions 

1 A declaration (7) introduces one or more names into a program. A declaration is a definition unless it
declares a function without specifying the body (8.3), it contains theextern specifier (7.1.1) and no ini-
tializer or function body, it is the declaration of a static data member in a class declaration (9.4), it is a class
name declaration (9.1), or it is a typedef declaration (7.1.3). The following, for example, are definitions:

int a;
extern const c = 1;
int f(int x) { return x+a; }
struct S { int a; int b; };
enum { up, down };

whereas these are just declarations:

extern int a;
extern const c;
int f(int);
struct S;
typedef int Int;
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2 There must be exactly one definition of each object, function, class, and enumerator used in a program.
If, however, a function is never called and its address is never taken, it need not be defined. Also, if a
declared object is unused, or is only used as the operand ofsizeof , it need not be defined. Similarly, if
the name of a class is used only in a way that does not require its definition to be known, it need not be
defined.

This needs to be made more precise._ ____________________________________
_ ____________________________________


3.2 Scopes

1 There are four kinds of scope: local, function, file, and class.

Local: A name declared in a block (6.3) is local to that block and can be used only in it and in blocks
enclosed by it after the point of declaration. Names of parameters for a function are treated as if
they were declared in the outermost block of that function. In a function declaration, names of
parameters (if supplied) havefunction prototype scope, which terminates at the end of the function
declarator.

Function: Labels (6.1) can be used anywhere in the function in which they are declared. Only labels
have function scope.

File: A name declared outside all blocks (6.3) and classes (9) has file scope and can be used in the
translation unit in which it is declared after the point of declaration. Names declared withfile scope
are said to beglobal.

Class: The name of a class member is local to its class and can be used only in a member function of
that class (9.3), after the. operator applied to an object of its class (5.2.4) or a class derived from
(10) its class, after the-> operator applied to a pointer to an object of its class (5.2.4) or a class
derived from its class, or after the:: scope resolution operator (5.1) applied to the name of its class
or a class derived from its class. A name first declared by afriend declaration belongs to either
the global scope or a function scope; see 11.4. The name of a class first declared in a return or
parameter type belongs to the global scope.

Special rules apply to names declared in function parameter declarations (8.2.5), and friend declarations
(11.4).

2 A name may be hidden by an explicit declaration of that same name in an enclosed block or in a class.
A hidden class member name can still be used when it is qualified by its class name using the:: operator
(5.1, 9.4, 10). A hidden name of an object, function, type, or enumerator with file scope can still be used
when it is qualified by the unary:: operator (5.1). In addition, a class name (9.1) may be hidden by the
name of an object, function, or enumerator declared in the same scope. If a class and an object, function, or
enumerator are declared in the same scope (in any order) with the same name the class name is hidden. A
class name hidden by a name of an object, function, or enumerator in local or class scope can still be used
when appropriately (7.1.6) prefixed withclass , struct , or union , or when followed by the:: opera-
tor. Similarly, a hidden enumeration name can be used when appropriately (7.1.6) prefixed with ‘enum.’
The scope rules are summarized in 10.4.

3 The point of declarationfor a name is immediately after its complete declarator (8) and before its ini-
tializer (if any). For example,

int x = 12;
{ int x = x; }

Here the secondx is initialized with its own (unspecified) value.
4 The point of declaration for an enumerator is immediately after the identifier that names it. For exam-

ple,
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enum { x = x };

Here, again, the enumeratorx is initialized to its own (uninitialized) value.
5 A nonlocal name remains visible up to the point of declaration of the local name that hides it. For

example,

const int i = 2;
{ int i[i]; }

declares a local array of two integers. 

3.3 Program and linkage 

1 A program consists of one or more files (2) linked together. A file consists of a sequence of declarations.
2 A name of file scope that is explicitly declaredstatic hasinternal linkage. Such names are local to

their translation units and can be used as names for other objects, functions, and so on, in other translation
units. A name of file scope that is explicitly declaredinline has internal linkage. A name of file scope
that is explicitly declaredconst and not explicitly declaredextern has internal linkage. So does the
name of a class that has not been used in the declaration of an object, function, or class that has external
linkage and has no static members (9.4) and no noninline member functions (9.3.2). Every declaration of a
particular name of file scope that is not declared to have internal linkage in one of these ways in a multifile
program refers to the same object (3.7), function (8.2.5), or class (9). Such names are said to haveexternal
linkage. In particular, since it is not possible to declare a class namestatic , every use of a particular file
scope class name that has been used in the declaration of an object or function with external linkage or has
a static member or a noninline member function refers to the same class.

3 Typedef names (7.1.3), enumerators (7.2), and template names (14) do not have external linkage.
4 Static class members (9.4) have external linkage.
5 Noninline class member functions have external linkage. Inline class member functions must have

exactly one definition in a program.
6 Local names (3.2) explicitly declaredextern have external linkage unless already declaredstatic

(7.1.1).
7 The types specified in all declarations of a particular external name must be identical except for the use

of typedef names (7.1.3) and unspecified array bounds (8.2.4).
8 A function may be defined only in file or class scope.
9 Linkage to non-C + + declarations can be achieved using alinkage-specification(7.4). 

3.4 Start and termination 

1 A program must contain a function calledmain . This function is the designated start of the program. This
function is not predefined by the compiler, it cannot be overloaded, and its type is implementation depen-
dent. The two examples below are allowed on any implementation. It is recommended that any further
(optional) parameters be added afterargv . The functionmain() may be defined as

int main() { /* ... */ }

or

int main(int argc, char* argv[]) { /* ... */ }

In the latter formargc shall be the number of arguments passed to the program from an environment in
which the program is run. Ifargc is nonzero these arguments shall be supplied as zero-terminated strings
in argv[0] throughargv[argc-1] andargv[0] shall be the name used to invoke the program or
"" . It is guaranteed thatargv[argc]==0 .

2 The functionmain() may not be called from within a program. The linkage (3.3) ofmain() is
implementation dependent. The address ofmain() cannot be taken andmain() may not be declared
inline or static .

3 Calling the function

void exit(int);
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declared in<stdlib.h> terminates the program without leaving the current block and hence without
destroying any local variables (12.4). The argument value is returned to the program’s environment as the
value of the program.

4 A return statement inmain() has the effect of leaving the main function (destroying any local vari-
ables) and callingexit() with the return value as the argument.

5 The initialization of nonlocal static objects (3.5) in a translation unit is done before the first use of any
function or object defined in that translation unit. Such initializations (8.4, 9.4, 12.1, 12.6.1) may be done
before the first statement ofmain() or deferred to any point in time before the first use of a function or
object defined in that translation unit. The default initialization of all static objects to zero (8.4) is per-
formed before any dynamic (that is, run-time) initialization. No further order is imposed on the initial-
ization of objects from different translation units. The initialization of local static objects is described in
6.7.

6 Destructors (12.4) for initialized static objects are called when returning frommain() and when call-
ing exit() . Destruction is done in reverse order of initialization. The functionatexit() from
<stdlib.h> can be used to specify that a function must be called at exit. Ifatexit() is to be called,
objects initialized before anatexit() call may not be destroyed until after the function specified in the
atexit() call has been called. Where a C + + implementation coexists with a C implementation, any
actions specified by the C implementation to take place after theatexit() functions have been called
take place after all destructors have been called.

7 Calling the function

void abort();

declared in<stdlib.h> terminates the program without executing destructors for static objects and with-
out calling the functions passed toatexit() . 

3.5 Storage classes 

1 There are two declarable storage classes: automatic and static.

Automaticobjects are associated with an invocation of a block.

Staticobjects exist and retain their values throughout the execution of the entire program.

2 Named automatic objects are initialized (12.1) each time the control flow reaches their definition and
destroyed (12.4) on exit from their block (6.6).

3 A named automatic object may not be destroyed before the end of its block nor may a automatic named
object of a class with a constructor or a destructor with side effects be eliminated even if it appears to be
unused.

4 Similarly, a defined global object of a class with a constructor or a destructor with side effects may not
be eliminated even if it appears to be unused.

5 Static objects are initialized and destroyed as described in 3.4 and 6.7. Some objects are not associated
with names; see 5.3.3 and 12.2. All global objects have storage classstatic. Local objects and class mem-
bers can be given static storage class by explicit use of thestatic storage class specifier (7.1.1).

3.6 Types

1 There are two kinds of types: fundamental types and derived types. Types may describe objects, arrays,
references, or functions.

2 Arrays of unknown size and classes which have been declared but not defined are calledincomplete
types because the size of an instance of the type is unknown. Also, thevoid type represents an empty set
of values; it is an incomplete type that cannot be completed.

3 A class type may be incomplete at one point in a compilation unit and complete later on. Also, the type
of an array may be incomplete at one point in a compilation unit and complete later on. However, the type
of a pointer to array of unknown size cannot be completed.
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4 Variables that have incomplete type may not be used in some contexts, for example:

class X; // X us an incomplete type
extern X* xp; // xp is a pointer to an incomplete type
extern int arr[]; // the type of arr is incomplete
typedef int UNKA[]; // UNKA is an incomplete type
UNKA* arrp; // arrp is a pointer to an incomplete type
UNKA** arrpp;

void foo()
{

xp++; // ill-formed: X is incomplete
arrp++; // ill-formed: incomplete type
arrpp++; // okay: sizeof UNKA* is known

}

struct X { int i; }; // now X is a complete type
int arr[10]; // now the type of arr is complete

void bar()
{

xp++; // okay: X is complete
arrp++; // ill-formed: UNKA can’t be completed

}

3.6.1 Fundamental types 

1 There are several fundamental types. The standard header<limits.h> specifies the largest and smallest
values of each for an implementation.

2 Objects declared as characters (char ) are large enough to store any member of the implementation’s
basic character set. If a character from this set is stored in a character variable, its value is equivalent to the
integer code of that character. Characters may be explicitly declaredunsigned or signed. Plain
char , signed char , andunsigned char are three distinct types. Achar , asigned char , and an
unsigned char consume the same amount of space.

3 An enumerationcomprises a set of named integer constant values. Each distinct enumeration consti-
tutes a differentenumerated type.

4 Up to three sizes of integer, declaredshort int , int , andlong int , are available. Longer integers
provide no less storage than shorter ones, but the implementation may make either short integers or long
integers, or both, equivalent to plain integers. Plain integers have the natural size suggested by the machine
architecture; the other sizes are provided to meet special needs.

5 Typewchar_t is a type whose range of values can represent distinct codes for all members of the larg-
est extended character set specified among the supported locales (17.4.4). Typewchar_t has the same
size, signedness, and alignment requirements as one of the other integral types, called itsunderlying type.

6 For each of the typessigned char , short , int , andlong , there exists a corresponding (but dif-
ferent)unsigned type, which occupies the same amount of storage and has the same alignment require-
ments. Analignment requirementis an implementation-dependent restriction on the value of a pointer to
an object of a given type (5.4).

7 Unsigned integers, declaredunsigned , obey the laws of arithmetic modulo 2n wheren is the number
of bits in the representation. This implies that unsigned arithmetic does not overflow.

8 There are threefloating types:float , double , andlong double . The typedouble provides no
less precision thanfloat , and the typelong double provides no less precision thandouble . An
implementation will define the characteristics of the fundamental floating point types in the standard header
<float.h> .

9 Typeschar , and the signed and unsigned integer types are collectively calledintegral types. Enumera-
tions (7.2) are not integral, but they can be promoted (4.1) to signed or unsignedint s. Integral and
floating types are collectively calledarithmetictypes.
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10 Thevoid type specifies an empty set of values. It is used as the return type for functions that do not
return a value. No object of typevoid may be declared. Any expression may be explicitly converted to
type void (5.4); the resulting expression may be used only as an expression statement (6.2), as the left
operand of a comma expression (5.18), or as a second or third operand of?: (5.16). 

3.6.2 Derived types 

1 There is a conceptually infinite number of derived types constructed from the fundamental types in the fol-
lowing ways:

arraysof objects of a given type, 8.2.4;

functions, which have parameters of given types and return objects of a given type, 8.2.5;

pointersto objects or functions (including static members of classes) of a given type, 8.2.1;

referencesto objects or functions of a given type, 8.2.2;

constants, which are values of a given type, 7.1.6;

classescontaining a sequence of objects of various types (9), a set of functions for manipulating
these objects (9.3), and a set of restrictions on the access to these objects and functions, 11;

structures, which are classes without default access restrictions, 11;

unions, which are classes capable of containing objects of different types at different times, 9.5;

pointers to non-static4 class members, which identify members of a given type within objects of a
given class, 8.2.3.

2 In general, these methods of constructing types can be applied recursively; restrictions are mentioned in
8.2.1, 8.2.4, 8.2.5, and 8.2.2.

3 Any type so far mentioned is anunqualified type. Each unqualified type has three corresponding
qualified versionsof its type:5 a const-qualifiedversion, avolatile-qualifiedversion, and a version having
both qualifications (see 7.1.6). The qualified or unqualified versions of a type are distinct types that belong
to the same type category and have the same representation and alignment requirements.6 A derived type is
not cv-qualified (3.6.3) by the cv-qualifiers (if any) of the type from which it is derived.

4 A pointer to objects of a typeT is referred to as a“pointer toT.” For example, a pointer to an object of
type int is referred to as“pointer toint ” and a pointer to an object of classX is called a“pointer toX.”
Pointers to incomplete types are allowed although there are restrictions on what can be done with them (see
3.6).

5 Objects of cv-qualified (3.6.3) or unqualified typevoid* (pointer to void), can be used to point to
objects of unknown type. Avoid* must have enough bits to hold any object pointer.

6 Except for pointers to static members, text referring to“pointers” does not apply to pointers to mem-
bers. 

3.6.3 CV-qualifiers 

1 There are twocv-qualifiers, const andvolatile . When applied to an object,const means the pro-
gram may not change the object, andvolatile has an implementation-defined meaning.7 An object may
_ ____________________
4 Static class members are objects or functions, and pointers to them are ordinary pointers to objects or functions.
5 See_xxx.yyy_ regarding qualified array and function types.
6 The same representation and alignment requirements are meant to imply interchangeability as arguments to functions, return values from functions,
and members of unions.
7 Roughly,volatile means the object may change of its own accord (that is, the processor may not assume that the object continues to hold a previ-
ously held value).
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have both cv-qualifiers.
2 There is a (non-total) ordering on cv-qualifiers, so that one object or pointer may be said to be more cv-

qualified than another. The following relations constitute this ordering.
_ _____________________________________
no cv-qualifier < const
no cv-qualifier < volatile
no cv-qualifier < const volatile

const < const volatile
volatile < const volatile_ _____________________________________ 














3 A pointer or reference to cv-qualified type (sometimes called a cv-qualified pointer or reference) need
not actually point to a cv-qualified object, but it is treated as if it does. For example, a pointer toconst
int may point to an unqualifiedint , but a well-formed program may not attempt to change the pointed-to
object through that pointer even though it may change the same object through some other access path.
CV-Qualifiers are supported by the type system so that a cv-qualified object or cv-qualified access path to
an object may not be subverted without casting (5.4). For example:

void f()
{

int i = 2; // not cv-qualified 
const int ci = 3; // cv-qualified (initialized as required)
ci = 4; // error: attempt to modify const
const int* cip; // pointer to const int
cip = &i; // okay: cv-qualified access path to unqualified
*cip = 4; // error: attempt to modify through ptr to const
int* ip;
ip = cip; // error: attempt to create unqualified access path

}

3.6.4 Type names 

1 Fundamental and derived types can be given names by thetypedef mechanism (7.1.3), and families of
types and functions can be specified and named by thetemplate mechanism (14).

3.7 Lvalues

1 An object is a region of storage; anlvalue is an expression referring to an object or function. An obvious
example of an lvalue expression is the name of an object. Some operators yield lvalues. For example, ifE
is an expression of pointer type, then*E is an lvalue expression referring to the object to whichE points.
The name“lvalue” comes from the assignment expressionE1 = E2 in which the left operandE1 must be
an lvalue expression. The discussion of each operator in 5 indicates whether it expects lvalue operands and
whether it yields an lvalue.

2 Whenever an lvalue that refers to a non-array8 object appears in a context where an lvalue is not
expected, the value contained in the referenced object is used. When this occurs, the value has the unquali-
fied type of the lvalue. For example:

const int* cip;
int i = *cip // "*cip" has type int

If this type is incomplete, the program is ill-formed.

In C this is undefined._ ________________________
_ ________________________


For example:

_ ____________________
8 An lvalue that refers to an array object is usually converted to a (non-lvalue) pointer to the first element of the array; see 4.6.
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struct X;
X* xp;
xp; // okay: pointer to incomplete type
*xp; // error: incomplete type

However, when an lvalue is used as the operand ofsizeof the value contained in the referenced object is
not accessed, since that operator does not evaluate its operand.

3 An lvalue can also be used to modify its referent under certain circumstances. Functions cannot be
modified, but pointers to functions may be modifiable. Objects of incomplete type cannot be modified, but
a pointer to such an object may be modifiable and the object itself may be modifiable at some point in the
program where its type is complete. Array objects cannot be modified, but their elements may be modifi-
able. The referent of aconst -qualified lvalue cannot be modified (through that lvalue). Class or union
objects cannot be modified if any of their elements is a reference or isconst or cannot be modified for
any of the foregoing reasons. If an lvalue can be used to modify its object, it is called amodifiable lvalue.
A program that attempts to modify a nonmodifiable lvalue is ill-formed.
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Standard Conversions

1 This chapter presents standard type conversions, including integral promotions, integral conversions, floating
point conversions, conversions between floating and integral types, and arithmetic conversions, as well as
pointer, reference, and pointer to member conversions.

4 Standard conversions 

1 Some operators may, depending on their operands, cause conversion of the value of an operand from one
type to another. This section summarizes the conversions demanded by most ordinary operators and
explains the result to be expected from such conversions; it will be supplemented as required by the discus-
sion of each operator. These conversions are also used in initialization (8.4, 8.4.3, 12.8, 12.1). 12.3 and
13.2 describe user-defined conversions and their interaction with standard conversions. The result of a con-
version is an lvalue only if the result is a reference (8.2.2). 

4.1 Integral promotions 

1 A char , wchar_t , ashort int , enumerator, object of enumeration type (7.2), or anint bit-field (9.6)
(in both their signed and unsigned varieties) may be used wherever an integer rvalue may be used. In con-
texts where a constant integer is required, thechar , wchar_t , short int , object of enumeration type
(7.2), or bit-field must be constant. (Enumerators are always constant). Except for enumerators, objects of
enumeration type, and typewchar_t , if an int can represent all the values of the original type, the value
is converted toint ; otherwise it is converted tounsigned int . For enumerators, objects of enumera-
tion type, and typewchar_t , if an int can represent all the values of the underlying type, the value is
converted to anint ; otherwise if anunsigned int can represent all the values, the value is converted to
an unsigned int ; otherwise, if along can represent all the values, the value is converted to along ;
otherwise it is converted tounsigned long . This process is calledintegral promotion. 

4.2 Integral conversions 

1 An integer rvalue may be converted to any integral type. If the target type isunsigned, the resulting value
is the least unsigned integer congruent to the source integer (modulo 2n wheren is the number of bits used
to represent the unsigned type). In a two’s complement representation, this conversion is conceptual and
there is no change in the bit pattern.

2 When an integer is converted to a signed type, the value is unchanged if it can be represented in the new
type; otherwise the value is implementation dependent. 
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4.3 Float and double 

1 Single-precision floating point arithmetic may be used forfloat expressions. When a less precise float-
ing value is converted to an equally or more precise floating type, the value is unchanged. When a more
precise floating value is converted to a less precise floating type and the value is within representable range,
the result may be either the next higher or the next lower representable value. If the result is out of range,
the behavior is undefined. 

4.4 Floating and integral 

1 Conversion of a floating value to an integral type truncates; that is, the fractional part is discarded. Such
conversions are machine dependent; for example, the direction of truncation of negative numbers varies
from machine to machine. The result is undefined if the value cannot be represented in the integral type.

2 Conversions of integral values to floating type are as mathematically correct as the hardware allows.
Loss of precision occurs if an integral value cannot be represented exactly as a value of the floating type.

4.5 Arithmetic conversions 

1 Many binary operators that expect operands of arithmetic type cause conversions and yield result types in a
similar way. The purpose is to yield a common type, which is also the type of the result. This pattern is
called the“usual arithmetic conversions.”

2
If either operand is of typelong double , the other is converted tolong double .

Otherwise, if either operand isdouble , the other is converted todouble .

Otherwise, if either operand isfloat , the other is converted tofloat .

Otherwise, the integral promotions (4.1) are performed on both operands.

Then, if either operand isunsigned long the other is converted tounsigned long .

Otherwise, if one operand is along int and the otherunsigned int , then if along int can
represent all the values of anunsigned int , theunsigned int is converted to along int ;
otherwise both operands are converted tounsigned long int .

Otherwise, if either operand islong , the other is converted tolong .

Otherwise, if either operand isunsigned , the other is converted tounsigned .

Otherwise, both operands areint .

4.6 Pointer conversions 

1 The following conversions may be performed wherever pointers (8.2.1) are assigned, initialized, compared,
or otherwise used:

A constant expression (5.19) that evaluates to zero (the null pointer constant) when assigned to,
compared with, alternated with (5.16), or used as an initializer of an operand of pointer type is con-
verted to a pointer of that type. It is guaranteed that this value will produce a pointer distinguishable
from a pointer to any object or function.

A pointer to a cv-qualified or unqualified object type may be converted to a pointer to the same type
with greater cv-qualifications (3.6.3). That is, for any unqualified typeT, aT* may be converted to
a const T* , a volatile T* , or aconst volatile T* ; a const T* may be converted to a
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const volatile T* ; or avolatile T* may be converted to aconst volatile T* .

A pointer to any object type may be converted to avoid* with the greater or equal cv-
qualifications. That is, for any unqualified typeT. a T* may be converted to avoid* , a const
void* , avolatile void* , or aconst volatile void* ; a const T* may be converted to
a const void* or aconst volatile void* ; avolatile T* may be converted to avola-
tile void* or aconst volatile void* ; and aconst volatile T* may be converted to
aconst volatile void* .

For any unqualified typeT, aT** may be converted to aconst T *const * , and similarly for
more levels of indirection, e.g, aT*** may be converted to aconst T *const *const * ,
and aT**** may be converted to aconst T *const *const *const * , etc. This rule
may be applied usingvolatile in place ofconst . 

A pointer to function may be converted to avoid* provided avoid* has sufficient bits to hold it.

A pointer to a class may be converted to a pointer to an accessible9 base class of that class (10) pro-
vided the conversion is unambiguous (10.1); a base class is accessible if its public members are
accessible (11.1). The result of the conversion is a pointer to the base class sub-object of the derived
class object. The null pointer (0) is converted into itself.

An expression with type“array ofT” may be converted to a pointer to the initial element of the array
(5).

An expression with type“function returningT” is converted to“pointer to function returningT”
except when used as the operand of the address-of operator& or the function call operator() or the
sizeof operator.

4.7 Reference conversions 

1 The following conversion may be performed wherever references (8.2.2) are initialized (including argument
passing (5.2.2) and function value return (6.6.3)):

A reference to a cv-qualified or unqualified object type may be converted to a reference to the same
type with increased cv-qualifications.

A reference to a class may be converted to a reference to an accessible base class (10, 11.1) of that
class (8.4.3) provided this conversion can be done unambiguously (10.1.1). The result of the con-
version is a reference to the base class sub-object of the derived class object.

4.8 Pointers to members 

1 The following conversion may be performed wherever pointers to members (8.2.3) are initialized, assigned,
compared, or otherwise used:

A constant expression (5.19) that evaluates to zero is converted to a pointer to member. It is guaran-
teed that this value will produce a pointer to member distinguishable from any other pointer to mem-
ber.

A pointer to a member of a class may be converted to a pointer to member of a class derived from
that class provided the (inverse) conversion from the derived class to the base class pointer is

_ ____________________
9 A pointer to a class may be explicitly converted to a pointer to a base class, regardless of accessibility, using a cast (5.2.3 or 5.4).



4—4 Standard Conversions DRAFT September 28, 1993 Chapter 4

accessible (11.1) and provided this conversion can be done unambiguously (10.1.1).

2 The rule for conversion of pointers to members (from pointer to member of base to pointer to member
of derived) appears inverted compared to the rule for pointers to objects (from pointer to derived to pointer
to base) (4.6, 10). This inversion is necessary to ensure type safety.

3 Note that a pointer to member is not a pointer to object or a pointer to function and the rules for conver-
sions of such pointers do not apply to pointers to members. In particular, a pointer to member cannot be
converted to avoid* .
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Expressions

1 This chapter discusses C + + expressions, the primary building blocks for computation. C + + provides the usual
arithmetic operators (+, - , * , and so on), bit manipulation operators (&, | , ^ , and so on), operators for pointer
manipulation (* , &, [] , -> ), storage management (new anddelete ), conditional evaluation (?: , || , &&), and
the pointer to member operators (.* and->* ).

2 This chapter also describes explicit type conversions (“casting”).

5 Expressions

1 This section defines the syntax, order of evaluation, and meaning of expressions. An expression is a
sequence of operators and operands that specifies a computation. An expression may result in a value and
may cause side effects.

2 Operators can be overloaded, that is, given meaning when applied to expressions of class type (9). Uses
of overloaded operators are transformed into function calls as described in 13.4. Overloaded operators obey
the rules for syntax specified in this section, but the requirements of operand type, lvalue, and evaluation
order are replaced by the rules for function call. Relations between operators, such as++a meaninga+=1 ,
are not guaranteed for overloaded operators (13.4).

3 This section defines the operators when applied to types for which they have not been overloaded.
Operator overloading cannot modify the rules for operators applied to types for which they are defined by
the language itself.

4 Operators may be regrouped according to the usual mathematical rules only where the operators really
are associative or commutative. Overloaded operators are never assumed to be associative or commutative.
Except where noted, the order of evaluation of operands of individual operators and subexpressions of indi-
vidual expressions is unspecified. In particular, if a value is modified twice in an expression, the result of
the expression is unspecified except where an ordering is guaranteed by the operators involved. For exam-
ple,

i = v[i++]; // the value of ‘i’ is undefined
i=7,i++,i++; // ‘i’ becomes 9

5 The handling of overflow and divide by zero in expression evaluation is implementation dependent.
Most existing implementations of C + + ignore integer overflows. Treatment of division by zero and all
floating point exceptions vary among machines, and is usually adjustable by a library function.

6 Except where noted, operands of typesconst T, volatile T, T&, const T&, andvolatile T&
can be used as if they were of the plain typeT. Similarly, except where noted, operands of typeT*const
andT*volatile can be used as if they were of the plain typeT* . Similarly, a plainT can be used where
a volatile T or aconst T is required. These rules apply in combination so that, except where noted, a
const T*volatile can be used where aT* is required. Such uses do not count as standard conversions
when considering overloading resolution (13.2).
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7 If an expression has the type“reference toT” (8.2.2, 8.4.3), the value of the expression is the object of
type“T” denoted by the reference. The expression is an lvalue. A reference can be thought of as a name of
an object.

8 User-defined conversions of class objects to and from fundamental types, pointers, and so on, can be
defined (12.3). If unambiguous (13.2), such conversions may be applied by the compiler wherever a class
object appears as an operand of an operator, as an initializer (8.4), as the controlling expression in a selec-
tion (6.4) or iteration (6.5) statement, as a function return value (6.6.3), or as a function argument (5.2.2).

5.1 Primary expressions 

1 Primary expressions are literals, names, and names qualified by the scope resolution operator:: .

primary-expression:
literal
this
:: identifier
:: operator-function-id
:: qualified-id
( expression)
id-expression

2 A literal is a primary expression. Its type depends on its form (2.9).
3 In the body of a nonstatic member function (9.3), the keywordthis names a pointer to the object for

which the function was invoked. The keywordthis cannot be used outside a class member function
body.

In a constructor it is common practice to allowthis in mem-initializers._ _________________________________________________________________
_ _________________________________________________________________


4 The operator:: followed by an identifier, a qualified-id, or an operator-function-idis a primary
expression. Its type is specified by the declaration of the identifier, name, oroperator-function-id. The
result is the identifier, name, oroperator-function-id. The result is an lvalue if the identifier is. The identi-
fier or operator-function-idmust be of file scope. Use of:: allows a type, an object, a function, or an enu-
merator to be referred to even if its identifier has been hidden (3.2).

5 A parenthesized expression is a primary expression whose type and value are identical to those of the
unadorned expression. The presence of parentheses does not affect whether the expression is an lvalue.

6 A id-expressionis a restricted form of aprimary-expressionthat can appear after. and-> (5.2.4):

id-expression:
identifier
operator-function-id
conversion-function-id
~ class-name
qualified-id

7 An identifier is anid-expressionprovided it has been suitably declared (7). Foroperator-function-ids,
see 13.4. Forconversion-function-ids, see 12.3.2. Aclass-nameprefixed by~ denotes a destructor; see
12.4.

qualified-id:
nested-class-specifier:: id-expression

8 A nested-class-specifier(9.1) followed by:: and the name of a member of that class (9.2), or a mem-
ber of a base of that class (10), is aqualified-id; its type is the type of the member. The result is the mem-
ber. The result is an lvalue if the member is. Theclass-namemay be hidden by a nontype name, in which
case theclass-nameis still found and used. Whereclass-name:: class-nameor class-name:: ~ class-
nameis used, the twoclass-names must refer to the same class; this notation names constructors (12.1) and
destructors (12.4), respectively. Multiply qualified names, such asN1::N2::N3::n , can be used to refer
to nested types (9.7). 
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5.2 Postfix expressions 

1 Postfix expressions group left-to-right.

postfix-expression:
primary-expression
postfix-expression[ expression]
postfix-expression( expression-listopt )
simple-type-specifier( expression-listopt )
postfix-expression. id-expression
postfix-expression-> id-expression
postfix-expression++
postfix-expression--
dynamic_cast < type-name> ( expression)
typeid ( expression)
typeid ( type-name)

expression-list:
assignment-expression
expression-list, assignment-expression

5.2.1 Subscripting

1 A postfix expression followed by an expression in square brackets is a postfix expression. The intuitive
meaning is that of a subscript. One of the expressions must have the type“pointer toT” and the other must
be of enumeration or integral type. The type of the result is“T.” The type“T” must be complete. The
expressionE1[E2] is identical (by definition) to*((E1)+(E2)) . See 5.3 and 5.7 for details of* and+
and 8.2.4 for details of arrays. 

5.2.2 Function call 

1 There are two kinds of function call: ordinary function call and member function10 (9.3) call. A function
call is a postfix expression followed by parentheses containing a possibly empty, comma-separated list of
expressions which constitute the arguments to the function. For ordinary function call, the postfix expres-
sion must be a function name, or a pointer or reference to function. For member function call, the postfix
expression must be a class member access (5.2.4) whoseid-expressionis a function member name, or a
pointer-to-member expression (5.5) selecting a function member. The first expression in the postfix expres-
sion is then called theobject expression, and the call is as a member of the object pointed to or referred to.
If a function or member function name is used, the name may be overloaded (13), in which case the appro-
priate function will be selected according to the rules in 13.2. The function called in a member function
call is normally selected according to the static type of the object expression (see 10), but if that function is
virtual the function actually called will be the final overrider (10.2) of the selected function in the
dynamic type of the object expression (i.e., the type of the object pointed or referred to by the current value
of the object expression).

2 The type of the function call expression is the return type of the statically chosen function (i.e., ignoring
the virtual keyword), even if the type of the function actually called is different. This type must be
complete or the typevoid .

3 When a function is called, each parameter (8.2.5) is initialized (8.4.3, 12.8, 12.1) with its corresponding
argument. Standard (4) and user-defined (12.3) conversions are performed. The value of a function call is
the value returned by the called function except in a virtual function call if the return type of the final over-
rider is different from the return type of the statically chosen function, the value returned from the final
overrider is converted to the return type of the statically chosen function. A function may change the val-
ues of its nonconstant parameters, but these changes cannot affect the values of the arguments except where
a parameter is of a non-const reference type (8.2.2). Where a parameter is of reference type a temporary
variable is introduced if needed (7.1.6, 2.9, 2.9.4, 8.2.4, 12.2). In addition, it is possible to modify the
_ ____________________
10A static member function (9.4) is an ordinary function.
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values of nonconstant objects through pointer parameters.
4 A function may be declared to accept fewer arguments (by declaring default parameters 8.2.6) or more

arguments (by using the ellipsis,... 8.2.5) than the number of parameters in the function definition (8.3).
5 If no declaration of the called function is accessible from the scope of the call the program is ill-formed.

This implies that, except where the ellipsis (... ) is used, a parameter is available for each argument.
6 Any argument of typefloat for which there is no parameter is converted todouble before the call;

any ofchar , short , enumeration, or a bit-field type for which there is no parameter are converted toint
or unsigned by integral promotion (4.1). An object of a class for which no parameter is declared is
passed as a data structure.

What does it mean to pass a parameter as a data structure?_ _____________________________________________________
_ _____________________________________________________


7 An object of a class for which a parameter is declared is passed by initializing the parameter with the
argument by a constructor call before the function is entered (12.2, 12.8).

8 The order of evaluation of arguments is unspecified; take note that compilers differ. All side effects of
argument expressions take effect before the function is entered. The order of evaluation of the postfix
expression and the argument expression list is unspecified.

9 Recursive calls are permitted.
10 A function call is an lvalue if and only if the result type is a reference. 

5.2.3 Explicit type conversion (functional notation) 

1 A simple-type-specifier(7.1.6) followed by a parenthesizedexpression-listconstructs a value of the speci-
fied type given the expression list. If the expression list specifies a single value, the expression is equiva-
lent (in definedness, and if defined in meaning) to the corresponding cast expression (5.4). If the expres-
sion list specifies more than a single value, the type must be a class with a suitably declared constructor
(8.4, 12.1).

2 A simple-type-specifier(7.1.6) followed by a (empty) pair of parentheses constructs a value of the speci-
fied type. If the type is a class, the class must have a default constructor (12.1) (otherwise the expression is
erroneous) and that constructor will be called; otherwise (the type is not a class) the result is an unspecified
value of the specified type. See also (5.4). 

5.2.4 Class member access 

1 A postfix expression followed by a dot (. ) or an arrow (-> ) followed by anid-expressionis a postfix
expression. For the first option (dot) the type of the first expression (theobject expression) must be“class
object” (of a complete type). For the second option (arrow) the type of the first expression (thepointer
expression) must be“pointer to class object” (of a complete type). Theid-expressionmust name a member
of that class, except that an imputed destructor may be explicitly invoked for a built-in type, see 12.4. If the
id-expressionis aqualified-id, thenested-class-specifierof thequalified-id is looked up as a type both in
the class of the object expression (or the class pointed to by the pointer expression) and the context in
which the entirepostfix-expressionoccurs. If thenested-class-specifiercontains atemplate-class-id(14.2),
its template-arguments are evaluated in the context in which the entirepostfix-expressionoccurs. For the
purpose of this type lookup, the name, if any, of each class is also considered a nested class member of that
class. These searches must yield a single type which may be found in either or both contexts. If theid-
expressionnames a nonstatic data member, the result is the named member of the object designated by the
value of the first expression, and it is an lvalue if the class object and the member are lvalues. If theid-
expressionnames a static data member, the result is the named member of the class. If theid-expression
names a (possibly overloaded) nonstatic function member, the expression can only be used as part of a
member function call (5.2.2). If theid-expressionnames a (possibly overloaded) static function member,
the result is the function.

2 Thus ifE1 is a pointer to a class object, the expressionE1->MOSis the same as(*E1).MOS .
3 Note that“class objects” can be structures (9.2) and unions (9.5). Classes are discussed in 9. 
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5.2.5 Increment and decrement 

1 The value obtained by applying a postfix++ is the value of the operand. The operand must be a modifiable
lvalue. The type of the operand must be an arithmetic type or a pointer to object type. After the result is
noted, the object is incremented by1. The type of the result is the same as the type of the operand, but it is
not an lvalue. See also 5.7 and 5.17.

2 The operand of postfix-- is decremented analogously to the postfix++ operator. 

5.2.6 Dynamic cast 

1 The result of the expressiondynamic_cast<T>(v) is of typeT, which must be a pointer or a reference
to a complete class orvoid* . The type ofv must be a complete pointer type ifT is a pointer, or a com-
plete reference type ifT is a reference.

2 If T is a pointer to classB andv is a pointer to classD such thatB is an unambiguous accessible direct
or indirect base class ofD, the result is a pointer to the uniqueB sub-object of theD object pointed to byv .
Similarly, if T is a reference to classB andv is a reference to classD such thatB is an unambiguous acces-
sible direct or indirect base class ofD, the result is a reference to the unique11 B sub-object of theD object
referred to byv . For example,

struct B {};
struct D : B {};
void foo(D* dp)
{

B* bp = dynamic_cast<B*>(dp); // equivalent to B* bp = dp;
}

Otherwisev must be a pointer or reference to a polymorphic type (10.2).
3 If T is void* then the result is a pointer to the complete object (12.6.2) pointed to byv . Otherwise, a

run-time check is applied to see if the object pointed or referred to byv can be converted to the type
pointed or referred to byT.

4 The run-time check logically executes like this: If, in the complete object pointed (referred) to byv , v
points (refers) to an umambiguous base class sub-object of aT object, the result is a pointer (reference) to
thatT object. Otherwise, if the type of the complete object has an unambiguous public base class of typeT,
the result is a pointer (reference) to theT sub-object of the complete object. Otherwise, the run-time check
fails.

5 The value of a failed cast to pointer type is the null pointer. A failed cast to reference type throws
Bad_cast (17.1.3.3.3). For example,

class A { virtual void f(); };
class B { virtual void g(); };
class D : public virtual A, private B {};
void g()
{

D d;
B* bp = (B*)&d; // cast needed to break protection
A* ap = &d; // public derivation, no cast needed
D& dr = dynamic_cast<D&>(*bp); // succeeds
ap = dynamic_cast<A*>(bp); // succeeds
bp = dynamic_cast<B*>(ap); // fails
ap = dynamic_cast<A*>(&dr); // succeeds
bp = dynamic_cast<B*>(&dr); // fails

}

_ ____________________
11The complete object pointed or refereed to byv may contain otherB objects as base classes, but these are ignored.
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class E : public D , public B {};
class F : public E, public D {}
void h()
{

F f;
A* ap = &f; // okay: finds unique A
D* dp = dynamic_cast<D*>(ap); // fails: ambiguous
E* ep = (E*)ap; // error: cast from virtual base
E* ep = dynamic_cast<E*>(ap); // succeeds

}

5.2.7 Type identification 

1 The result of atypeid expression is of typeconst Type_info& (17.1.2). The value is a reference to a
Type_info object that represents thetype-nameor the type of theexpressionrespectively.

2 If the expressionis a reference to a polymorphic type (10.2) theType-info for the complete object
(12.6.2) referred to is the result. Where theexpressionis a pointer to a polymorphic type dereferenced
using* or [ expression] the Type-info for the complete object pointed to is the result. Otherwise, the
result is theType-info representing the (static) type of theexpression. 

5.3 Unary operators 

1 Expressions with unary operators group right-to-left.

unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof ( type-id )
new-expression
delete-expression

unary-operator: one of
* & + - ! ~

The unary* operator meansindirection: the expression must be a pointer, and the result is an lvalue refer-
ring to the object to which the expression points. If the type of the expression is“pointer toT,” the type of
the result is“T.”

2 The result of the unary& operator is a pointer to its operand. The operand must be a function, an lvalue,
or aqualified-id. In the first two cases, if the type of the expression is“T,” the type of the result is“pointer
to T.” In particular, the address of an object of type“cv-qualifiedT” is “pointer to cv-qualifiedT,” with the
same cv-qualifiers. For example, the address of an object of typeconst T has typeconst T* ; vola-
tile is handled similarly. For aqualified-id, if the member is not static and of type“T” in class“C,” the
type of the result is“pointer to member ofC of type T.” For a static member of typeT, the type is plain
“pointer toT.”

3 The address of an object of incomplete type may be taken, but only if the complete type of that object
does not have the address-of operator (operator&() ) overloaded.

This is (probably) an example of an error of form that need not be diagnosed._ ____________________________________________________________________
_ ____________________________________________________________________


4 The address of an overloaded function (13) can be taken only in a context that uniquely determines
which version of the overloaded function is referred to (see 13.3).

5 The operand of the unary+ operator must have arithmetic or pointer type and the result is the value of
the argument. Integral promotion is performed on integral operands. The type of the result is the type of
the promoted operand.
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6 The operand of the unary- operator must have arithmetic type and the result is the negation of its
operand. Integral promotion is performed on integral operands. The negative of an unsigned quantity is
computed by subtracting its value from 2n, wheren is the number of bits in the promoted operand. The
type of the result is the type of the promoted operand.

7 The operand of the logical negation operator! must have arithmetic type or be a pointer or a pointer to
member; its value is1 if the value of its operand is zero (for arithmetic types) or null (for pointer and
pointer to member types), and zero otherwise. The type of the result isint .

8 The operand of~ must have integral type; the result is the one’s complement of its operand. Integral
promotions are performed. The type of the result is the type of the promoted operand. 

5.3.1 Increment and decrement 

1 The operand of prefix++ is incremented by1. The operand must be a modifiable lvalue. The type of the
operand must be an arithmetic type or a pointer to object type. The value is the new value of the operand; it
is an lvalue. The expression++x is equivalent tox+=1 . See the discussions of addition (5.7) and assign-
ment operators (5.17) for information on conversions.

2 The operand of prefix-- is decremented analogously to the prefix++ operator.

5.3.2 Sizeof

1 Thesizeof operator yields the size, in bytes, of its operand. The operand is either an expression, which
is not evaluated, or a parenthesized type name. Thesizeof operator may not be applied to a function, a
bit-field, an undefined class, the typevoid , or an array with an unspecified dimension. Abyteis unspeci-
fied by the language except in terms of the value ofsizeof ; sizeof(char) is 1.

2 When applied to a reference, the result is the size of the referenced object. When applied to a class, the
result is the number of bytes in an object of that class including any padding required for placing such
objects in an array. The size of any class or class object is greater than zero. When applied to an array, the
result is the total number of bytes in the array. This implies that the size of an array ofn elements isn times
the size of an element.

3 Thesizeof operator may be applied to a pointer to a function, but not to a function.
4 Types may not be defined in asizeof expression.
5 The result is a constant of typesize_t , an implementation-dependent unsigned integral type defined

in the standard header<stddef.h> .

5.3.3 New

1 Thenew-expressionattempts to create an object of thetype-id(8.1) to which it is applied. This type must
be a complete object type.

new-expression:
:: opt new new-placementopt new-type-id new-initializeropt

:: opt new new-placementopt ( type-id ) new-initializeropt

new-placement:
( expression-list)

new-type-id:
type-specifier-seq new-declaratoropt

new-declarator:
* cv-qualifier-seqopt new-declaratoropt

qualified-class-specifier:: * cv-qualifier-seqopt new-declaratoropt

direct-new-declarator

direct-new-declarator:
direct-new-declaratoropt [ expression]
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new-initializer:
( expression-listopt )

The lifetime of an object created by anew-expressionis not restricted to the scope in which it is created.
The new-expressionreturns a pointer to the object created. When that object is an array (that is, thenew-
declaratoropt[ expression] syntax is used), a pointer to its initial element (if any) is returned. For example,
bothnew int andnew int[10] return anint ∗ and the type ofnew int[i][10] is int (*)[10] .
Where an array type (8.2.4) is specified all array dimensions but the first must be constant integral expres-
sions (5.19) with positive values. The first array dimension can be a general integralexpressioneven when
the type-id is used (despite the general restriction of array dimensions intype-ids to constant-expressions
(5.19)). If the value of the first array dimension is negative the result is undefined.

2 When the value of the first array dimension is zero, an array with no elements is allocated. The pointer
returned by thenew-expressionwill be non-null and distinct from the pointer to any other object.

3 Thetype-specifier-seqmay not containconst , volatile , class declarations, or enumeration declara-
tions.

4 Storage for the object created by anew-expressionis obtained from the appropriateallocation function
(12.5) (operator new() for non-arrays oroperator new[]() for arrays). When the allocation func-
tion is called, the first argument will be amount of space requested (which may be larger than the size of the
object being created only if that object is an array). Thenew-placementsyntax can be used to supply addi-
tional arguments. For example,new T results in a call ofoperator new(sizeof(T)) , new(2,f) T
results in a call ofoperator new(sizeof(T),2,f) , new T[5] results in a call ofoperator
new[](x) , andnew(2,f) T[5] results in a call ofoperator new[](y,2,f) , wherex andy are
greater than or equal tosizeof(T[5]) .

5 The return value from the allocation function, if non-null, will be assumed to point to a block of appro-
priately aligned available storage of the requested size, and the object will be created in that block (but not
necessarily at the beginning of the block, if the object is an array). The allocation function may indicate
failure by throwing anxalloc exception (15, 17.1.3.3.2). In this case no initialization is done.

6 If a class has one or more constructors (12.1) anew-expressionfor that class calls one of them to initial-
ize the object. If the class does not have a default constructor, suitable arguments (13.2) must be provided
in a new-initializer. If there is no constructor and anew-initializer is used, it must be of the form(
expression) or () . If an expression is present it will be used to initialize the object; if not, or anew-
initializer is not used, the object will start out with an unspecified value.

7 Access and ambiguity control are done for both the allocation function and the constructor (12.1, 12.5).
8 No initializers can be specified for arrays. Arrays of objects of a class with constructors can be created

by anew-expressiononly if the class has a default constructor. In that case, the default constructor will be
called for each element of the array.

9 Whether the allocation function is called before evaluating the constructor arguments, after evaluating
the constructor arguments but before entering the constructor, or by the constructor itself is unspecified. It
is also unspecified whether the arguments to a constructor are evaluated if the allocation function returns
the null pointer or throws an exception.

10 In anew-type-idused as the operand fornew, parentheses may not be used. This implies that

new int(*[10])(); // error

is ill-formed because the binding is 

(new int) (*[10])(); // error

The explicitly parenthesized version of thenew operator can be used to create objects of derived types. For
example,

new (int (*[10])());

allocates an array of10 pointers to functions (taking no argument and returningint ).
11 The new-typein a new-expressionis the longest possible sequence ofnew-declarators. This prevents

ambiguities between declarator operators&, * , [] , and their expression counterparts. For example,
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new int*i; // syntax error: parsed as ‘(new int*) i’
// not as ‘(new int)*i’

The* is the pointer declarator and not the multiplication operator.

5.3.4 Delete

1 Thedelete-expressionoperator destroys a complete object (1.3) or array created by anew-expression.

delete-expression:
:: opt delete cast-expression
:: opt delete [ ] cast-expression

The first alternative is for non-array objects, and the second is for arrays. The result has typevoid . 
2 In either alternative, if the value of the operand ofdelete is the null pointer the operation has no

effect. Otherwise, in the first alternative (delete object), the value of the operand ofdelete must be a 
pointer to a non-array object created by anew-expressionwithout a new-placementspecification, or a
pointer to a sub-object representing a base class of such an object. In the second alternative (delete array),
the value of the operand ofdelete must be a pointer to an array created by anew-expressionwithout a
new-placementspecification. Otherwise, the result is undefined.

3 In the first alternative (delete object), if the static type of the operand is different from its dynamic type
and the class of the complete object has a destructor (12.4), the static type must have a virtual destructor or
the result is undefined. In the second alternative (delete array) if the dynamic type of the object to be
deleted is a class that has a destructor and its static type is different from its dynamic type, the result is
undefined.

4 The effect of attempting to access a deleted object is undefined and the deletion of an object may
change its value. Furthermore, if the expression denoting the object in adelete-expressionis a modifiable
lvalue, any attempt to access its value after the deletion is undefined.

5 A program that appliesdelete to a pointer to constant is ill formed.
6 If the class of the object being deleted is incomplete at the point of deletion and the class has a

destructor or an allocation function or a deallocation function, the result is undefined.
7 Thedelete-expressionwill invoke the destructor (if any) for the object or the elements of the array being

deleted.
8 To free the storage pointed to, thedelete-expressionwill call a deallocation function(operator

delete() for non-arrays oroperator delete[]() for arrays); see 12.5. 

5.4 Explicit type conversion (cast notation) 

1 An explicit type conversion can be expressed using either functional notation (5.2.3) or thecastnotation.

cast-expression:
unary-expression
( type-id ) cast-expression

Thecastnotation is needed to express conversion to a type that does not have asimple-type-specifier.
2 Types may not be defined in casts.
3 Any type conversion not mentioned below and not explicitly defined by the user (12.3) is ill-formed.
4 Any type that can be converted to another by a standard conversion (4) can also be converted by explicit

conversion and the meaning is the same.
5 A value of integral type may be explicitly converted to an enumeration type. If the integral value is not

equal to the value of one of the enumerators, the result is undefined.
6 A pointer may be explicitly converted to any integral type large enough to hold it. The mapping func-

tion is implementation dependent, but is intended to be unsurprising to those who know the addressing
structure of the underlying machine.

7 A value of integral type may be explicitly converted to a pointer. A pointer converted to an integer of
sufficient size (if any such exists on the implementation) and back to the same pointer type will have its
original value; mappings between pointers and integers are otherwise implementation dependent.
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8 A pointer to one object type may be explicitly converted to a pointer to another object type (subject to
the restrictions mentioned in this section). The resulting pointer may be invalid if the subject pointer does
not refer to an object suitably aligned in storage. It is guaranteed that a pointer to an object of a given
alignment may be converted to a pointer to an object of the same or less strict alignment and back again;
the result shall compare equal to the original pointer. (An object that has character type has the least strict
alignment). Different machines may differ in the number of bits in pointers and in alignment requirements
for objects. Aggregates are aligned on the strictest boundary required by any of their constituents. A
void* is considered a pointer to object type. A pointer to any object type may be converted tovoid* and
back again without change.

9 A pointer to a complete classB may be explicitly converted to a pointer to a complete classD that hasB
as a direct or indirect base class if an unambiguous conversion fromD to B exists (4.6, 10.1.1) and ifB is
not a virtual base class (10.1). Such a cast from a base to a derived class is only valid if the pointer points
to an object of the base class that is actually a sub-object of an object of the derived class; the resulting
pointer points to the enclosing object of the derived class. Otherwise (the object of the base class is not a
sub-object of an object of the derived class) the result of the cast is undefined.

10 A pointer to an object of a derived class (10) may be explicitly converted to a pointer to one of its base
classes regardless of accessibility restrictions (11.2), provided the conversion is unambiguous (10.1.1). The
resulting pointer will refer to the contained object of the base class.

11 The null pointer (0) is converted into itself.
12 An incomplete class may be used in a pointer cast. If there is any inheritance relationship between the

source and target classes, the behavior is undefined.
13 An object may be explicitly converted to a reference typeX& if a pointer to that object may be explicitly

converted to anX* . Constructors or conversion functions are not called as the result of a cast to a refer-
ence. Conversion of a reference to a base class to a reference to a derived class is handled similarly to the
conversion of a pointer to a base class to a pointer to a derived class with respect to ambiguity, virtual
classes, and so on.

14 The result of a cast to a reference type is an lvalue; the results of other casts are not. Operations per-
formed on the result of a pointer or reference cast refer to the same object as the original (uncast) expres-
sion.

15 A pointer to function may be explicitly converted to a pointer to an object type provided the object
pointer type has enough bits to hold the function pointer. A pointer to an object type may be explicitly con-
verted to a pointer to function provided the function pointer type has enough bits to hold the object pointer.
In both cases, use of the resulting pointer may cause addressing exceptions if the subject pointer does not
refer to suitable storage.

16 A pointer to a function may be explicitly converted to a pointer to a function of a different type. The
effect of calling a function through a pointer to a function type that differs from the type used in the defini-
tion of the function is undefined. See also 4.6.

17 An object or a value may be converted to a class object (only) if an appropriate constructor or conver-
sion operator has been declared (12.3).

18 A pointer to member may be explicitly converted into a different pointer to member type when the two
types are both pointers to members of the same class or when the two types are pointers to member of
classes one of which is unambiguously derived from the other (4.6).

19 A pointer toconst can be cast into a pointer to non-const with otherwise identical type. The result-
ing pointer will refer to the original object. Aconst object or a reference toconst can be cast into a ref-
erence to non-const with otherwise identical type. The resulting reference will refer to the original
object. Depending on the type of the referenced object, a write operation through the resulting pointer or
reference may be undefined; see 7.1.6.

20 A pointer tovolatile can be cast into a pointer to a non-volatile with otherwise identical type.
The resulting pointer will refer to the original object. An object of avolatile type or a reference to
volatile can be cast into a reference to a non-volatile with otherwise identical type.

21 Any expression may be explicitly converted to typevoid . 



Section 5.5 DRAFT September 28, 1993 Pointer-to-member operators 5—11

5.5 Pointer-to-member operators 

1 The pointer-to-member operators->* and.* group left-to-right.

pm-expression:
cast-expression
pm-expression.* cast-expression
pm-expression->* cast-expression

2 The binary operator.* binds its second operand, which must be of type“pointer to member ofT” to
its first operand, which must be of classT or of a class of whichT is an unambiguous and accessible base
class. The result is an object or a function of the type specified by the second operand.

3 The binary operator->* binds its second operand, which must be of type“pointer to member ofT” to
its first operand, which must be of type“pointer toT” or “pointer to a class of whichT is an unambiguous
and accessible base class.” The result is an object or a function of the type specified by the second operand.

4 If the result of.* or ->* is a function, then that result can be used only as the operand for the function
call operator() . For example,

(ptr_to_obj->*ptr_to_mfct)(10);

calls the member function denoted byptr_to_mfct for the object pointed to byptr_to_obj . The
result of an.* expression or a->* expression is an lvalue only if its first operand is an lvalue and its sec-
ond operand refers to an lvalue. 

5.6 Multiplicative operators 

1 The multiplicative operators* , / , and%group left-to-right.

multiplicative-expression:
pm-expression
multiplicative-expression* pm-expression
multiplicative-expression/ pm-expression
multiplicative-expression% pm-expression

2 The operands of* and / must have arithmetic type; the operands of%must have integral type. The
usual arithmetic conversions (4.5) are performed on the operands and determine the type of the result.

3 The binary* operator indicates multiplication.
4 The binary/ operator yields the quotient, and the binary%operator yields the remainder from the divi-

sion of the first expression by the second. If the second operand of/ or %is zero the result is undefined;
otherwise(a/b)*b + a%b is equal toa. If both operands are nonnegative then the remainder is nonneg-
ative; if not, the sign of the remainder is implementation dependent. 

5.7 Additive operators 

1 The additive operators+ and - group left-to-right. The usual arithmetic conversions (4.5) are performed
for operands of arithmetic type.

additive-expression:
multiplicative-expression
additive-expression+ multiplicative-expression
additive-expression- multiplicative-expression

For addition, either both operands shall have arithmetic type, or one operand shall be a pointer to a com-
pletely defined object type and the other shall have integral type.

2 For subtraction, one of the following shall hold:

• both operands have arithmetic type;

• both operands are pointers to qualified or unqualified versions of the same completely defined object
type; or

• the left operand is a pointer to a completely defined object type and the right operand has integral type.
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3 If both operands have arithmetic type, the usual arithmetic conversions are performed on them. The
result of the binary+ operator is the sum of the operands. The result of the binary- operator is the differ-
ence resulting from the subtraction of the second operand from the first.

4 For the purposes of these operators, a pointer to a nonarray object behaves the same as a pointer to the
first element of an array of length one with the type of the object as its element type.

5 When an expression that has integral type is added to or subtracted from a pointer, the result has the
type of the pointer operand. If the pointer operand points to an element of an array object, and the array is
large enough, the result points to an element offset from the original element such that the difference of the
subscripts of the resulting and original array elements equals the integral expression. In other words, if the
expressionP points to thei-th element of an array object, the expressions(P)+N (equivalently,N+(P) )
and (P)-N (whereN has the valuen) point to, respectively, thei+n-th andi– n-th elements of the array
object, provided they exist. Moreover, if the expressionP points to the last element of an array object, the
expression(P)+1 points one past the last element of the array object, and if the expressionQ points one
past the last element of an array object, the expression(Q)-1 points to the last element of the array object.
If both the pointer operand and the result point to elements of the same array object, or one past the last ele-
ment of the array object, the evaluation shall not produce an overflow; otherwise, the behavior is undefined.
If the result is used as an operand of the unary* operator, the behavior is undefined unless both the pointer
operand and the result point to elements of the same array object, or the pointer operand points one past the
last element of an array object and the result points to an element of the same array object.

6 When two pointers to elements of the same array object are subtracted, the result is the difference of the
subscripts of the two array elements. The type of the result is an implementation-defined signed integral
type,ptrdiff_t , defined in the<stddef.h> header.

Is this a typedef for some signed integral type or a different type?_ ___________________________________________________________
_ ___________________________________________________________


As with any other arithmetic overflow, if the result does not fit in the space provided, the behavior is unde-
fined. In other words, if the expressionsP and Q point to, respectively, thei-th andj-th elements of an
array object, the expression(P)-(Q) has the valuei– j provided the value fits in an object of type
ptrdiff_t . Moreover, if the expressionP points either to an element of an array object or one past the
last element of an array object, and the expressionQpoints to the last element of the same array object, the
expression((Q)+1)-(P) has the same value as((Q)-(P))+1 and as-((P)-((Q)+1)) , and has
the value zero if the expressionP points one past the last element of the array object, even though the
expression(Q)+1 does not point to an element of the array object. Unless both pointers point to elements
of the same array object, or one past the last element of the array object, the behavior is undefined.12 

5.8 Shift operators 

1 The shift operators<< and>> group left-to-right.

shift-expression:
additive-expression
shift-expression<< additive-expression
shift-expression>> additive-expression

The operands must be of integral type and integral promotions are performed. The type of the result is that
of the promoted left operand. The result is undefined if the right operand is negative, or greater than or
equal to the length in bits of the promoted left operand. The value ofE1 << E2 is E1 (interpreted as a bit
pattern) left-shiftedE2 bits; vacated bits are zero-filled. The value ofE1 >> E2 is E1 right-shiftedE2 bit
positions. The right shift is guaranteed to be logical (zero-fill) ifE1 has an unsigned type or if it has a non-
negative value; otherwise the result is implementation dependent. 
_ ____________________
12Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In this scheme the integral expression added to or
subtracted from the converted pointer is first multiplied by the size of the object originally pointed to, and the resulting pointer is converted back to the
original type. For pointer subtraction, the result of the difference between the character pointers is similarly divided by the size of the object originally
pointed to.

7 When viewed in this way, an implementation need only provide one extra byte (which may overlap another object in the program) just after the end
of the object in order to satisfy the“one past the last element” requirements.
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5.9 Relational operators 

1 The relational operators group left-to-right, but this fact is not very useful;a<b<c means(a<b)<c and
not (a<b)&&(b<c) .

relational-expression:
shift-expression
relational-expression< shift-expression
relational-expression> shift-expression
relational-expression<= shift-expression
relational-expression>= shift-expression

The operands must have arithmetic or pointer type. The operators< (less than),> (greater than),<= (less
than or equal to), and>= (greater than or equal to) all yield zero if the specified relation is false and1 if it
is true. The type of the result isint .

2 The usual arithmetic conversions are performed on arithmetic operands. Pointer conversions are per-
formed on pointer operands to bring them to the same type, which must be a qualified or unqualified ver-
sion of the type of one of the operands. This implies that any pointer may be compared to a constant
expression evaluating to zero and any pointer can be compared to a pointer of qualified or unqualified type
void* (in the latter case the pointer is first converted tovoid* ). Pointers to objects or functions of the
same type (after pointer conversions) may be compared; the result depends on the relative positions of the
pointed-to objects or functions in the address space.

3 If two pointers of the same type point to the same object or function, or both point one past the end of
the same array, or are both null, they compare equal. If two pointers of the same type point to different
objects or functions, or only one of them is null, they compare unequal. If two pointers point to nonstatic
data members of the same object, the pointer to the later declared member compares higher provided the
two members not separated by anaccess-specifierlabel (11.1) and provided their class is not a union. If
two pointers point to nonstatic members of the same object separated by anaccess-specifierlabel (11.1) the
result is unspecified. If two pointers point to data members of the same union, they compare equal (after
conversion tovoid* , if necessary). If two pointers point to elements of the same array or one beyond the
end of the array, the pointer to the object with the higher subscript compares higher. Other pointer compar-
isons are implementation dependent. 

5.10 Equality operators 

1 equality-expression:
relational-expression
equality-expression== relational-expression
equality-expression!= relational-expression

The == (equal to) and the!= (not equal to) operators are exactly analogous to the relational operators
except for their lower precedence. (Thusa<b == c<d is 1 whenevera<b andc<d have the same truth-
value.)

2 In addition, pointers to members of the same type may be compared. Pointer to member conversions
(4.8) are performed. A pointer to member may be compared to a constant expression that evaluates to zero.

5.11 BitwiseAND operator 

1 and-expression:
equality-expression
and-expression& equality-expression

The usual arithmetic conversions are performed; the result is the bitwiseAND function of the operands. The
operator applies only to integral operands. 
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5.12 Bitwise exclusiveOR operator 

1 exclusive-or-expression:
and-expression
exclusive-or-expression̂ and-expression

The usual arithmetic conversions are performed; the result is the bitwise exclusiveOR function of the
operands. The operator applies only to integral operands. 

5.13 Bitwise inclusiveOR operator 

1 inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression| exclusive-or-expression

The usual arithmetic conversions are performed; the result is the bitwise inclusiveOR function of its
operands. The operator applies only to integral operands. 

5.14 LogicalAND operator 

1 logical-and-expression:
inclusive-or-expression
logical-and-expression&& inclusive-or-expression

The&&operator groups left-to-right. The operands need not have the same type, but each must have arith-
metic type or be a pointer or pointer to member. It returns1 if both its operands are nonzero (for arithmetic
types) or non-null (for pointer or pointer to member types), zero otherwise. Unlike&, && guarantees left-
to-right evaluation; moreover the second operand is not evaluated if the first operand evaluates to zero or
the null pointer or the null pointer to member.

2 The result is anint . All side effects of the first expression happen before the second expression is
evaluated. 

5.15 LogicalOR operator 

1 logical-or-expression:
logical-and-expression
logical-or-expression|| logical-and-expression

The || operator groups left-to-right. The operands need not have the same type, but each must have arith-
metic type or be a pointer or a pointer to member. It returns1 if either of its operands is nonzero or non-
null, and zero otherwise. Unlike| , || guarantees left-to-right evaluation; moreover, the second operand is
not evaluated if the first operand evaluates to nonzero or non-null.

2 The result is anint . All side effects of the first expression happen before the second expression is
evaluated. 

5.16 Conditional operator 

1 conditional-expression:
logical-or-expression
logical-or-expression? expression: assignment-expression

Conditional expressions group right-to-left. The first expression must have arithmetic or pointer or pointer
to member type. It is evaluated and if it is nonzero or nonnull, the result of the conditional expression is the
value of the second expression, otherwise that of the third expression. All side effects of the first expres-
sion happen before the second or third expression is evaluated.

2 If either the second or third expression is athrow-expression(15.2), the result is of the type of the other.
3 If both the second and the third expressions are of arithmetic type, then if they are of the same type the

result is of that type; otherwise the usual arithmetic conversions are performed to bring them to a common
type. Otherwise, if both the second and the third expressions are either a pointer or a constant expression
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that evaluates to zero, pointer conversions (4.6) are performed to bring them to a common type which must
be a qualified or unqualified version of the type of either the second or the third expression. Otherwise, if
both the second and the third expressions are either a pointer to member or a constant expression that evalu-
ates to zero, pointer to member conversions (4.8) are performed to bring them to a common type13 which
must be a qualified or unqualified version of the type of either the second or the third expression. Other-
wise, if both the second and the third expressions are references, reference conversions (4.7) are performed
to bring them to a common type which must be a qualified or unqualified version of the type of either the
second or the third expression. Otherwise, if both the second and the third expressions arevoid , the com-
mon type isvoid . Otherwise, if both the second and the third expressions are of the same classT, the
common type isT. Otherwise the expression is ill formed. The result has the common type; only one of
the second and third expressions is evaluated. The result is an lvalue if the second and the third operands
are of the same type and both are lvalues. 

5.17 Assignment operators 

1 There are several assignment operators, all of which group right-to-left. All require a modifiable lvalue as
their left operand, and the type of an assignment expression is that of its left operand. The result of the
assignment operation is the value stored in the left operand after the assignment has taken place; the result
is an lvalue.

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression
throw-expression

assignment-operator:one of
= *= /= %= += -= >>= <<= &= ^= |=

2 In simple assignment (=), the value of the expression replaces that of the object referred to by the left
operand. If both operands have arithmetic type, the right operand is converted to the type of the left
preparatory to the assignment. There is no implicit conversion to an enumeration (7.2), so if the left
operand is of an enumeration type the right operand must be of the same type. If the left operand is of
pointer type, the right operand must be the null pointer (4.6) or of a type that can be converted to the type of
the left operand, which conversion takes place before the assignment.

3 A pointer of typeT*const can be assigned to a pointer of typeT* , but the reverse assignment is not
allowed (7.1.6). Objects of typesconst T andvolatile T can be assigned to plainT lvalues and to
lvalues of typevolatile T; see also (8.4).

4 If the left operand is of pointer to member type, the right operand must be of pointer to member type or
a constant expression that evaluates to zero; the right operand is converted to the type of the left before the
assignment.

5 Assignment to objects of a class (9)X is defined by the functionX::operator=() (13.4.3). Unless
the user defines anX::operator=() , the default version is used for assignment (12.8). This implies
that an object of a class derived fromX (directly or indirectly) by unambiguous public derivation (4.6) can
be assigned to anX.

6 A pointer to a member of classB may be assigned to a pointer to a member of classD of the same type
providedD is derived fromB (directly or indirectly) by unambiguous public derivation (10.1.1).

7 Assignment to an object of type“reference toT” assigns to the object of typeT denoted by the refer-
ence.

8 The behavior of an expression of the formE1 op= E2 is equivalent toE1 = E1 op (E2) ; except
that E1 is evaluated only once. In+= and -= , the left operand may be a pointer to completely defined
object type, in which case the (integral) right operand is converted as explained in 5.7; all right operands
and all nonpointer left operands must have arithmetic type.

_ ____________________
13This is one instance in which the“composite type”, as described in the C Standard, is still employed in C + +.
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9 For class objects, assignment is not in general the same as initialization (8.4, 12.1, 12.6, 12.8).
10 See 15.2 for throw expressions. 

5.18 Comma operator 

1 The comma operator groups left-to-right.

expression:
assignment-expression
expression, assignment-expression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left expression is
discarded. All side effects of the left expression are performed before the evaluation of the right expres-
sion. The type and value of the result are the type and value of the right operand; the result is an lvalue if
its right operand is.

2 In contexts where comma is given a special meaning, for example, in lists of arguments to functions
(5.2.2) and lists of initializers (8.4), the comma operator as described in this section can appear only in
parentheses; for example,

f(a, (t=3, t+2), c);

has three arguments, the second of which has the value5. 

5.19 Constant expressions 

1 In several places, C + + requires expressions that evaluate to an integral constant: as array bounds (8.2.4), as
case expressions (6.4.2), as bit-field lengths (9.6), and as enumerator initializers (7.2).

constant-expression:
conditional-expression

A constant-expressioncan involve only literals (2.9), enumerators,const values of integral types initial-
ized with constant expressions (8.4), andsizeof expressions. Floating constants (2.9.3) must be cast to
integral types. Only type conversions to integral types may be used. In particular, except insizeof
expressions, functions, class objects, pointers, and references cannot be used. The comma operator and
assignment-operators may not be used in a constant expression.
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Statements

1 This chapter discusses statements, which control the execution sequence of programs.
2 C + + provides statements for conditional execution (if andswitch ) and iteration (do , for , andwhile ). The

break , continue , return , andgoto statements transfer control in a C + + program. Other statements evalu-
ate an expression (the expression statement) or do nothing (the null statement). Statements may be grouped in
{} pairs to form compound statements.

3 A declaration is a statement in C + +; declarations are introduced in this chapter and discussed in detail in the fol-
lowing two chapters.

6 Statements

1 Except as indicated, statements are executed in sequence.

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block

6.1 Labeled statement 

1 A statement may be labeled.

labeled-statement:
identifier : statement
case constant-expression: statement
default : statement

An identifier label declares the identifier. The only use of an identifier label is as the target of agoto . The
scope of a label is the function in which it appears. Labels cannot be redeclared within a function. A label
can be used in agoto statement before its definition. Labels have their own name space and do not inter-
fere with other identifiers.

2 Case labels and default labels may occur only in switch statements. 
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6.2 Expression statement 

1 Most statements are expression statements, which have the form

expression-statement:
expressionopt ;

Usually expression statements are assignments or function calls. All side effects from an expression state-
ment are completed before the next statement is executed. An expression statement with the expression
missing is called a null statement; it is useful to carry a label just before the} of a compound statement and
to supply a null body to an iteration statement such aswhile (6.5.1). 

6.3 Compound statement or block 

1 So that several statements can be used where one is expected, the compound statement (also, and equiva-
lently, called“block”) is provided.

compound-statement:
{ statement-seqopt }

statement-seq:
statement
statement-seq statement

A compound statement defines a local scope (3.2).
2 Note that a declaration is astatement(6.7). 

6.4 Selection statements 

1 Selection statements choose one of several flows of control.

selection-statement:
if ( condition ) statement
if ( condition ) statementelse statement
switch ( condition ) statement

condition:
expression
type-specifier declarator= expression

Thestatementin a selection-statement(both statements, in theelse form of theif statement) implicitly
defines a local scope (3.2). This can be expressed as a rewriting rule in which the statement is replaced by a
compound statement containing the original statement. For example,

if (x)
for (int i;;) {

// ...
}

may be equivalently rewritten as

if (x) {
for (int i;;) {

// ...
}

}

Thus after theif statement,i is no longer in scope.
2 The rules forconditions appply both toselection-statements and to thefor and while statements

(6.5). Thedeclaratormay not specify a function or an array. Thetype-specifiermay not declare a new
class or enumeration.

3 A name introduced by a declaration in aconditionis in scope from its point of declaration until the end
of the statements controlled by the condition. The value of acondition that is an initialized declaration is
the value of the initialized variable.
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4 A variable, constant, etc. in the outermost block of a statement controlled by a condition may not have
the same name as a variable, constant, etc. declared in the condition.

5 If a conditioncan be syntactically resolved as either an expression or the declaration of a local name, it
is interpreted as a declaration. 

6.4.1 Theif statement 

1 The expression must be of arithmetic or pointer or pointer to member type or of a class type for which an
unambiguous conversion to arithmetic or pointer or pointer to member type exists (12.3).

2 The expression is evaluated and if it is nonzero (for arithmetic types) or non-null (for pointer or pointer
to member types), the first substatement is executed. Ifelse is used, the second substatement is executed
if the expression is zero or null. Theelse ambiguity is resolved by connecting anelse with the last
encounteredelse -lessif . 

6.4.2 Theswitch statement 

1 Theswitch statement causes control to be transferred to one of several statements depending on the value
of an expression.

2 The expression must be of integral type or of a class type for which an unambiguous conversion to inte-
gral type exists (12.3). Integral promotion is performed. Any statement within the statement may be
labeled with one or more case labels as follows:

case constant-expression:

where theconstant-expression(5.19) is converted to the promoted type of the switch expression. No two of
the case constants in the same switch may have the same value.

3 There may be at most one label of the form

default :

within aswitch statement.
4 Switch statements may be nested; acase or default label is associated with the smallest switch

enclosing it.
5 When theswitch statement is executed, its expression is evaluated and compared with each case con-

stant. If one of the case constants is equal to the value of the expression, control is passed to the statement
following the matched case label. If no case constant matches the expression, and if there is adefault
label, control passes to the statement labeled by the default label. If no case matches and if there is no
default then none of the statements in the switch is executed.

6 case anddefault labels in themselves do not alter the flow of control, which continues unimpeded
across such labels. To exit from a switch, seebreak , 6.6.1.

7 Usually, the statement that is the subject of a switch is compound. Declarations may appear in the
statementof a switch-statement. However, a program that jumps past a declaration with an explicit or
implicit initializer is ill formed unless the declaration is in an inner block that is not entered (that is, com-
pletely bypassed by the transfer of control; 6.7). This implies that declarations that contain explicit or
implicit initializers must be contained in an inner block. 

6.5 Iteration statements 

1 Iteration statements specify looping.

iteration-statement:
while ( condition ) statement
do statement while ( expression) ;
for ( for-init-statement conditionopt ; expressionopt ) statement

for-init-statement:
expression-statement
declaration-statement
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2 Note that afor-init-statementends with a semicolon.
3 Thestatementin aniteration-statementimplicitly defines a local scope (3.2) which is entered and exited

each time through the loop. This can be expressed as a rewriting rule in which the statement is replaced by
a compound statement containing the original statement. For example,

while (x)
for (int i;;) {

// ...
}

may be equivalently rewritten as

while (x) {
for (int i;;) {

// ...
}

}

Thus after thewhile statement,i is no longer in scope.
4 See 6.4 for the rules onconditions. 

6.5.1 Thewhile statement 

1 In thewhile statement the substatement is executed repeatedly until the value of the expression becomes
zero or null. The test takes place before each execution of the statement.

2 The expression must be of arithmetic or pointer or pointer to member type or of a class type for which
an unambiguous conversion to arithmetic or pointer or pointer to member type exists (12.3).

6.5.2 Thedo statement

1 In thedo statement the substatement is executed repeatedly until the value of the expression becomes zero
or null. The test takes place after each execution of the statement.

2 The expression must be of arithmetic or pointer or pointer to member type or of a class type for which
an unambiguous conversion to arithmetic or pointer or pointer to member type exists (12.3). 

6.5.3 Thefor statement 

1 Thefor statement

for ( for-init-statement expression-1opt ; expression-2opt ) statement

is equivalent to

for-init-statement
while ( expression-1) {

statement
expression-2;

}

except that acontinue in statement(not enclosed in another iteration statement) will execute
expression-2before re-evaluatingexpression-1. Thus the first statement specifies initialization for the loop;
the first expression specifies a test, made before each iteration, such that the loop is exited when the expres-
sion becomes zero or null; the second expression often specifies incrementing that is done after each itera-
tion. The first expression must be of arithmetic or pointer or pointer to member type or of a class type for
which an unambiguous conversion to arithmetic or pointer or pointer to member type exists (12.3).

2 Either or both of the expressions may be dropped. A missingexpression-1makes the impliedwhile
clause equivalent towhile(1) .

3 If the for-init-statementis a declaration, the scope of the names declared extends to the end of the block
enclosing thefor-statement. 
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6.6 Jump statements 

1 Jump statements unconditionally transfer control.

jump-statement:
break ;
continue ;
return expressionopt ;
goto identifier ;

2 On exit from a scope (however accomplished), destructors (12.4) are called for all constructed named
auto objects declared in that scope, in the reverse order of their declaration. Transfer out of a loop, out of
a block, or back past an initializedauto variable involves the destruction ofauto variables declared at
the point transferred from but not at the point transferred to. (See 6.7 for transfers into blocks). However,
the program may be terminated (by callingexit() or abort() , for example) without destroying auto-
matic class objects. 

6.6.1 Thebreak statement 

1 Thebreak statement may occur only in aniteration-statementor aswitch statement and causes termi-
nation of the smallest enclosingiteration-statementor switch statement; control passes to the statement
following the terminated statement, if any. 

6.6.2 Thecontinue statement 

1 Thecontinue statement may occur only in aniteration-statementand causes control to pass to the loop-
continuation portion of the smallest enclosingiteration-statement, that is, to the end of the loop. More pre-
cisely, in each of the statements

while (foo) { do { for (;;) {
// ... // ... // ...

contin: ; contin: ; contin: ;
} } while (foo); }

acontinue not contained in an enclosed iteration statement is equivalent togoto contin . 

6.6.3 Thereturn statement 

1 A function returns to its caller by thereturn statement.
2 A return statement without an expression can be used only in functions that do not return a value, that

is, a function with the return value typevoid , a constructor (12.1), or a destructor (12.4). A return state-
ment with an expression can be used only in functions returning a value; the value of the expression is
returned to the caller of the function. If required, the expression is converted, as in an initialization, to the
return type of the function in which it appears. This may involve the construction and copy of a temporary
object (12.2). Flowing off the end of a function is equivalent to areturn with no value; this results in
undefined behavior in a value-returning function. 

6.6.4 Thegoto statement 

1 Thegoto statement unconditionally transfers control to the statement labeled by the identifier. The identi-
fier must be a label (6.1) located in the current function. 

6.7 Declaration statement 

1 A declaration statement introduces one or more new identifiers into a block; it has the form

declaration-statement:
declaration

If an identifier introduced by a declaration was previously declared in an outer block, the outer declaration
is hidden for the remainder of the block, after which it resumes its force.
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2 Any initializations ofauto or register variables are done each time theirdeclaration-statementis
executed. Destruction of local variables declared in the block is done on exit from the block (6.6).

3 It is possible to transfer into a block, but not in a way that causes initializations not to be done. A pro-
gram that jumps past a declaration with an explicit or implicit initializer is ill formed unless the declaration
is in an inner block that is not entered (that is, completely bypassed by the transfer of control) or unless the
jump is from a point where the variable has already been initialized. For example,

void f()
{

// ...
goto lx; // error: jump past initializer
// ...

ly:
X a = 1;
// ...

lx:
goto ly; // ok, jump implies destructor

// call for ‘a’
}

4 Initialization of a local object with storage classstatic (7.1.1) is done the first time control passes
through its declaration (only). Where astatic variable is initialized with an expression that is not a
constant-expression, default initialization to zero of the appropriate type (8.4) happens before its block is
first entered.

5 The destructor for a localstatic object will be executed if and only if the variable was constructed.
The destructor must be called either immediately before or as part of the calls of theatexit() functions
(3.4). Exactly when is unspecified. 

6.8 Ambiguity resolution 

1 There is an ambiguity in the grammar involvingexpression-statements anddeclarations: An expression-
statementwith a function-style explicit type conversion (5.2.3) as its leftmost subexpression can be indis-
tinguishable from adeclarationwhere the firstdeclaratorstarts with a( . In those cases thestatementis a
declaration.

2 To disambiguate, the wholestatementmay have to be examined to determine if it is anexpression-
statementor a declaration. This disambiguates many examples. For example, assumingT is a simple-
type-specifier(7.1.6),

T(a)->m = 7; // expression-statement
T(a)++; // expression-statement
T(a,5)<<c; // expression-statement

T(*d)(int); // declaration
T(e)[]; // declaration
T(f) = { 1, 2 }; // declaration
T(*g)(double(3)); // declaration

In the last example above,g, which is a pointer toT, is initialized todouble(3) . This is of course ill- 
formed for semantic reasons, but that does not affect the syntactic analysis.

3 The remaining cases aredeclarations. For example,

T(a); // declaration
T(*b)(); // declaration
T(c)=7; // declaration
T(d),e,f=3; // declaration
T(g)(h,2); // declaration

4 The disambiguation is purely syntactic; that is, the meaning of the names, beyond whether they are
type-ids or not, is not used in the disambiguation.
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5 A slightly different ambiguity betweenexpression-statements anddeclarations is resolved by requiring
a type-idfor function declarations within a block (6.3). For example,

void g()
{

int f(); // declaration
int a; // declaration
f(); // expression-statement
a; // expression-statement

}
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Declarations

1 A declaration introduces one or more names into a program and specifies how those names are to be interpreted.
A declaration can specify a storage class, type, and linkage for an object or function. It can also provide the defi-
nition of a function or an initial value for an object. A declaration can give a name to a constant (enumeration
declaration), declare a new type, or specify a synonym for a type. Inline functions,const , volatile , and the
provision of type-safe linkage are discussed.

7 Declarations

1 Declarations specify the interpretation given to each identifier; they do not necessarily reserve storage asso-
ciated with the identifier (3.1). Declarations have the form

declaration:
decl-specifier-seqopt init-declarator-listopt ;
asm-definition
function-definition
template-declaration
linkage-specification

The declarators in theinit-declarator-list(8) contain the identifiers being declared. Only in function defini-
tions (8.3) and function declarations may thedecl-specifier-seqbe omitted. Only when declaring a class (9)
or enumeration (7.2), that is, when thedecl-specifieris a class-specifieror enum-specifier,may theinit-
declarator-listbe empty.asm-definitions are described in 7.3, andlinkage-specifications in 7.4. A declara-
tion occurs in a scope (3.2); the scope rules are summarized in 10.4.

7.1 Specifiers

1 The specifiers that can be used in a declaration are

decl-specifier:
storage-class-specifier
type-specifier
function-specifier
template-specifier
friend
typedef

decl-specifier-seq:
decl-specifier-seqopt decl-specifier

2 The longest sequence ofdecl-specifiers that could possibly be a type name is taken as thedecl-
specifier-seqof adeclaration. The sequence must be self-consistent as described below. For example,



7—2 Declarations DRAFT September 28, 1993 Chapter 7

typedef char* Pc;
static Pc; // error: name missing

Here, the declarationstatic Pc is undefined because no name was specified for the static variable of
type Pc. To get a variable of typeint calledPc, the type-specifierint must be present to indicate that
the typedef-namePc is the name being (re)declared, rather than being part of thedecl-specifiersequence.
For example,

void f(const Pc); // void f(char*const)
void g(const int Pc); // void g(const int)

3 Note that sincesigned , unsigned , long , and short by default imply int , a typedef-name
appearing after one of those specifiers must be the name being (re)declared. For example,

void h(unsigned Pc); // void h(unsigned int)
void k(unsigned int Pc); // void k(unsigned int)

7.1.1 Storage class specifiers 

1 The storage class specifiers are

storage-class-specifier:
auto
register
static
extern

2 The auto or register specifiers can be applied only to names of objects declared in a block (6.3)
and function parameters (8.3). Theauto declarator is almost always redundant and not often used; one
use ofauto is to distinguish adeclaration-statementfrom anexpression-statement(6.2) explicitly.

3 A register declaration is anauto declaration, together with a hint to the compiler that the variables
declared will be heavily used. The hint may be ignored and in most implementations it will be ignored if
the address of the variable is taken.

4 An object declaration is a definition unless it contains theextern specifier and has no initializer (3.1).
5 A definition causes the appropriate amount of storage to be reserved and any appropriate initialization

(8.4) to be done.
6 The extern specifier can be applied only to names of objects and functions. Thestatic specifier

can be applied only to names of objects and functions and to anonymous unions (9.5). There can be no
static function declarations within a block, nor anystatic or extern function parameters. Static
class members are described in (9.4);extern cannot be used for class members.

7 A name specifiedstatic has internal linkage. Objects declaredconst have internal linkage unless
they have previously been given external linkage. A name specifiedextern has external linkage unless it
has previously been given internal linkage. A file scope name without astorage-class-specifierhas exter-
nal linkage unless it has previously been given internal linkage and provided it is not declaredconst . For
a nonmember function aninline specifier is equivalent to astatic specifier for linkage purposes (3.3).
All linkage specifications for a name must agree. For example,

static char* f(); // f() has internal linkage
char* f() // f() still has internal linkage

{ /* ... */ }

char* g(); // g() has external linkage
static char* g() // error: inconsistent linkage

{ /* ... */ }

static int a; // ‘a’ has internal linkage
int a; // error: two definitions
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static int b; // ‘b’ has internal linkage
extern int b; // ‘b’ still has internal linkage

int c; // ‘c’ has external linkage
static int c; // error: inconsistent linkage

extern d; // ‘d’ has external linkage
static int d; // error: inconsistent linkage

8 The name of a declared but undefined class can be used in anextern declaration. Such a declaration,
however, cannot be used before the class has been defined. For example,

struct S;
extern S a;
extern S f();
extern void g(S);

void h()
{

g(a); // error: S undefined
f(); // error: S undefined

}

7.1.2 Function specifiers 

1 Some specifiers can be used only in function declarations.

function-specifier:
inline
virtual

2 The inline specifier is a hint to the compiler that inline substitution of the function body is to be pre-
ferred to the usual function call implementation. The hint may be ignored. For a nonmember function
inline specifier also gives the function default internal linkage (3.3). A function (5.2.2, 8.2.5) defined
within the declaration of a class isinline by default.

3 An inline member function must have exactly the same definition in every compilation in which it
appears.

4 A class member function need not be explicitly declaredinline in the class declaration to be inline.
When noinline specifier is used, linkage will be external unless aninline definition appears before
the first call.

class X {
public:

int f();
inline int g(); // X::g() has internal linkage
int h();

};

void k(X* p)
{

int i = p->f(); // now X::f() has external linkage
int j = p->g();
// ...

}

inline int X::f() // error: called before defined
// as inline

{
// ...

}
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inline int X::g()
{

// ...
}

inline int X::h() // now X::h() has internal linkage
{

// ...
}

5 Thevirtual specifier may be used only in declarations of nonstatic class member functions within a
class declaration; see 10.2. 

7.1.3 Thetypedef specifier 

1 Declarations containing thedecl-specifiertypedef declare identifiers that can be used later for naming
fundamental or derived types. Thetypedef specifier may not be used in afunction-definition(8.3).

typedef-name:
identifier

Within the scope (3.2) of atypedef declaration, each identifier appearing as part of any declarator therein
becomes syntactically equivalent to a keyword and names the type associated with the identifier in the way
described in 8. Atypedef-nameis thus a synonym for another type. Atypedef-namedoes not introduce a
new type the way a class declaration (9.1) does. For example, after

typedef int MILES, *KLICKSP;

the constructions

MILES distance;
extern KLICKSP metricp;

are all correct declarations; the type ofdistance is int ; that ofmetricp is “pointer toint .”
2 A typedef may be used to redefine a name to refer to the type to which it already refers– even in the

scope where the type was originally declared. For example,

typedef struct s { /* ... */ } s;
typedef int I;
typedef int I;
typedef I I;

3 A typedef may not redefine a name of a type declared in the same scope to refer to a different type.
For example,

class complex { /* ... */ };
typedef int complex; // error: redefinition

Similarly, a class may not be declared with the name of a type declared in the same scope to refer to a dif-
ferent type. For example,

typedef int complex;
class complex { /* ... */ }; // error: redefinition

4 A typedef-namethat names a class is aclass-name(9.1). The synonym may not be used after aclass ,
struct , or union prefix and not in the names for constructors and destructors within the class declara-
tion itself. For example,
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struct S {
S();
~S();

};

typedef struct S T;

S a = T(); // ok
struct T * p; // error

5 An unnamed class defined in a typedef gets a dummy name and the typedef name for linkage (3.3) and
as a synonym for its true name. Such a class cannot have constructors or destructors. For example,

typedef struct {
S(); // an ordinary member function, not a constructor

} S;

7.1.4 Thetemplate specifier 

1 Thetemplate specifier is used to specify families of types or functions; see 14. 

7.1.5 Thefriend specifier 

1 Thefriend specifier is used to specify access to class members; see 11.4. 

7.1.6 Type specifiers 

1 The type-specifiers are

type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
:: typedef-name
const
volatile

The wordsconst andvolatile may be added to anytype-specifierin the declaration of an object. Oth-
erwise, at most onetype-specifiermay be given in a declaration. Aconst object may be initialized, but
its value may not be changed thereafter without an explicit cast. Unless explicitly declaredextern , a
const object does not have external linkage and must be initialized (8.4; 12.1). An integerconst initial-
ized by a constant expression may be used in constant expressions (5.19). Each element of aconst array
is const and each nonfunction, nonstatic member of aconst class object isconst (9.3.1). A type
which has no user-defined constructors or destructor and no base classes or members with user-defined con-
structors or destructors is calledROMable(but no objects are ever required to be placed in read-only mem-
ory). The effect of a write operation on any part of aconst object of a non-ROMable type is the same as
if the object was notconst . The effect of a write operation on any part of aconst object of a ROMable
type (which is not a sub-object of an object of a non-ROMable type) is undefined. Such an object may be
placed in readonly memory.

2 There are no implementation-independent semantics forvolatile objects;volatile is a hint to the
compiler to avoid aggressive optimization involving the object because the value of the object may be
changed by means undetectable by a compiler. Each element of avolatile array isvolatile and
each nonfunction, nonstatic member of avolatile class object isvolatile (9.3.1). An object may be
bothconst andvolatile , with thetype-specifiers appearing in either order.

3 If the type-specifieris missing from a declaration, it is taken to beint .
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simple-type-specifier:
qualified-class-specifier
qualified-type-specifier
char
wchar_t
short
int
long
signed
unsigned
float
double
void

At most one of the wordslong or short may be specified together withint . Either may appear alone,
in which caseint is understood. The wordlong may appear together withdouble . At most one of the
wordssigned andunsigned may be specified together withchar , short , int , or long . Either may
appear alone, in which caseint is understood. Thesigned specifier forceschar objects and bit-fields
to be signed; it is redundant with other integral types.

4 class-specifiers andenum-specifiers are discussed in 9 and 7.2, respectively.
5 elaborated-type-specifier:

class-key identifier
class-key qualified-class-specifier:: identifier
enum identifier
enum qualified-class-specifier:: identifier

class-key:
class
struct
union

6 If an identifier is specified, theelaborated-type-specifierdeclares it to be aclass-name(9.1) orenum-
name(7.2).

7 If defined, a name declared using theunion specifier must be defined as a union. If defined, a name
declared using either theclass or struct specifier must be defined using either theclass or struct
specifier. When aqualified-class-specifieris used, theidentifier must already have been declared as a
class-name. Names of nested types (9.7) can be qualified by the name of their enclosing class:

qualified-type-specifier:
typedef-name
class-name:: qualified-type-specifier

qualified-class-specifier:
nested-class-specifier

:: nested-class-specifier

nested-class-specifier:
class-name
class-name:: nested-class-specifier

A name qualified by aclass-namemust be a type defined in that class or in a base class of that class. As
usual, a name declared in a derived class hides members of that name declared in base classes; see 3.2.

7.2 Enumeration declarations 

1 An enumeration is a distinct type (3.6.1) with named constants. Its name becomes anenum-name, that is, a
reserved word within its scope.

enum-name:
identifier
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enum-specifier:
enum identifieropt { enumerator-listopt }

enumerator-list:
enumerator
enumerator-list , enumerator

enumerator:
identifier
identifier = constant-expression

The identifiers in anenumerator-listare declared as constants, and may appear wherever constants are
required. If no enumerators with= appear, then the values of the corresponding constants begin at zero and
increase by one as the declaration is read from left to right. An enumerator with= gives the associated
identifier the value indicated by theconstant-expression; subsequent identifiers without initializers continue
the progression from the assigned value. Theconstant-expressionmust be of integral type.

2 The names of enumerators must be distinct from those of ordinary variables and other enumerators in
the same scope. The values of the enumerators need not be distinct. An enumerator is considered defined
immediately after it and its initializer, if any, has been seen. For example,

enum { a, b, c=0 };
enum { d, e, f=e+2 };

definesa, c , andd to be zero,b ande to be1, andf to be3.
3 Each enumeration defines a type that is different from all other types. The type of an enumerator is its

enumeration.
4 Theunderlying typeof an enumeration is an integral type, not gratuitously larger thanint ,14 that can

represent all enumberator values defined in the enumeration. If the enumerator list is empty, the underlying
type is as if the enumeration had a single enumerator with value 0. The value ofsizeof() applied to an 
enumeration type, an object of enumeration type, or an enumerator, is the value ofsizeof() applied to
the underlying type.

5 For an enumeration whereemin is the smallest enumerator andemax is the largest, the values of the enu-
meration are the values of the underlying type in the rangebmin to bmax, wherebmin andbmax are, respec-
tively, the smallest and largest values of the smallest bit-field that can storeemin andemax. On a two’s- 
complement machine,bmax is the smallest value greater than or equal to max (abs(emin ) ,abs(emax) ) of the 
form 2M − 1; bmin is zero ifemin is non-negative and− (bmax + 1 ) otherwise. It is possible to define an enu-
meration that has values not defined by any of its enumerators.

6 The value of an enumerator or an object of an enumeration type is converted to an integer by integral
promotion (4.1). For example,

enum color { red, yellow, green=20, blue };
color col = red;
color* cp = &col;
if (*cp == blue) // ...

makescolor a type describing various colors, and then declarescol as an object of that type, andcp as a
pointer to an object of that type. The possible values of an object of typecolor are red , yellow ,
green , blue ; these values can be converted to the integral values0, 1, 20 , and21 . Since enumerations
are distinct types, objects of typecolor may be assigned only values of typecolor . For example,

color c = 1; // error: type mismatch,
// no conversion from int to color

int i = yellow; // ok: yellow converted to integral value 1
// integral promotion

See also 19.3.
_ ____________________
14The type should be larger thanint only if the value of an enumerator won’t fit in anint .
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7 An expression of arithmetic type or of typewchar_t may be converted to an enumeration type explic-
itly. The value is unchanged if it is in the range of enumeration values of the enumeration type; otherwise
the resulting enumeration value is unspecified.

This means the program does not crash._ ______________________________________
_ ______________________________________


8 Enumerators defined in a class (9) are in the scope of that class and can be referred to outside member
functions of that class only by explicit qualification with the class name (5.1). The name of the enumera-
tion itself is also local to the class (9.7). For example,

class X {
public:

enum direction { left=’l’, right=’r’ };
int f(int i)

{ return i==left ? 0 : i==right ? 1 : 2; }
};

void g(X* p)
{

direction d; // error: ‘direction’ not in scope
int i;
i = p->f(left); // error: ‘left’ not in scope
i = p->f(X::right); // ok
// ...

}

7.3 Asm declarations 

1 An asm declaration has the form

asm-definition:
asm ( string-literal ) ;

The meaning of anasm declaration is implementation dependent. Typically it is used to pass information
through the compiler to an assembler. 

7.4 Linkage specifications 

1 Linkage (3.3) between C + + and non-C + + code fragments can be achieved using alinkage-specification:

linkage-specification:
extern string-literal { declaration-seqopt }
extern string-literal declaration

declaration-seq:
declaration
declaration-seq declaration

The string-literal indicates the required linkage. The meaning of thestring-literal is implementation
dependent. Linkage to a function written in the C programming language,"C" , and linkage to a C + + func-
tion, "C++" , must be provided by every implementation. Default linkage is"C++" . For example,

complex sqrt(complex); // C++ linkage by default
extern "C" {

double sqrt(double); // C linkage
}

2 Linkage specifications nest. A linkage specification does not establish a scope. Alinkage-specification
may occur only infile scope (3.2). Alinkage-specificationfor a class applies to nonmember functions and
objects declared within it. Alinkage-specificationfor a function also applies to functions and objects
declared within it. A linkage declaration with a string that is unknown to the implementation is ill-formed.
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3 If a function has more than onelinkage-specification, they must agree; that is, they must specify the
samestring-literal. A function declaration without a linkage specification may not precede the first linkage
specification for that function. A function may be declared without a linkage specification after an explicit
linkage specification has been seen; the linkage explicitly specified in the earlier declaration is not affected
by such a function declaration.

4 At most one of a set of overloaded functions (13) with a particular name can have C linkage. See 7.4.
5 Linkage can be specified for objects. For example,

extern "C" {
// ...
_iobuf _iob[_NFILE];
// ...
int _flsbuf(unsigned,_iobuf*);
// ...

}

Functions and objects may be declaredstatic within the {} of a linkage specification. The linkage
directive is ignored for such a function or object. Otherwise, a function declared in a linkage specification
behaves as if it was explicitly declaredextern . For example,

extern "C" double f();
static double f(); // error

is ill-formed (7.1.1). An object defined within an 

extern "C" { /* ... */ }

construct is still defined (and not just declared).
6 Linkage from C + + to objects defined in other languages and to objects defined in C + + from other lan-

guages is implementation and language dependent. Only where the object layout strategies of two language
implementations are similar enough can such linkage be achieved.

7 When the name of a programming language is used to name a style of linkage in thestring-literal in a
linkage-specification, it is recommended that the spelling be taken from the document defining that lan-
guage, for example,Ada (notADA) andFORTRAN(notFortran ).
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Declarators

1 A declarator declares a single object, function, or type, within a declaration. The syntax for declarators, includ-
ing pointers, references, pointers to members, arrays, functions, and types, is explained, as well as how to initial-
ize a declarator in a declaration.

8 Declarators

1 The init-declarator-list appearing in a declaration is a comma-separated sequence of declarators, each of
which may have an initializer.

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator initializeropt

2 The two components of adeclarationare the specifiers (decl-specifier-seq; 7.1) and the declarators
(init-declarator-list). The specifiers indicate the fundamental type, storage class, or other properties of the
objects and functions being declared. The declarators specify the names of these objects and functions and
(optionally) modify the type with operators such as* (pointer to) and() (function returning). Initial val-
ues can also be specified in a declarator; initializers are discussed in 8.4 and 12.6.

3 Eachinit-declarator in a declaration is analyzed separately as if it was in a declaration by itself.15

4 Declarators have the syntax

_ ____________________
15A declaration with several declarators is usually equivalent to the corresponding sequence of declarations each with a single declarator. That is

T D1, D2, ... Dn;

is usually equvalent to

T D1; T D2; ... T Dn;

whereT is adecl-specifier-seqand eachDi is a init-declarator. The exception occurs when one declarator modifies the name environment used by a
following declarator, as in

struct S { ... };
S S, T; // declare two instances of struct S

which is not equivalent to

struct S { ... };
S S;
S T; // error
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declarator:
direct-declarator
ptr-operator declarator

direct-declarator:
declarator-id
direct-declarator ( parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

direct-declarator [ constant-expressionopt ]
( declarator )

ptr-operator:
* cv-qualifier-seqopt

& cv-qualifier-seqopt

qualified-class-specifier:: * cv-qualifier-seqopt

cv-qualifier-seq:
cv-qualifier cv-qualifier-seqopt

cv-qualifier:
const
volatile

declarator-id:
id-expression
qualified-type-specifier

A class-namehas special meaning in a declaration of the class of that name and when qualified by that
name using the scope resolution operator:: (12.1, 12.4). 

8.1 Type names 

1 To specify type conversions explicitly, and as an argument ofsizeof or new, the name of a type must be
specified. This can be done with atype-id, which is syntactically a declaration for an object or function of
that type that omits the name of the object or function.

type-id:
type-specifier-seq abstract-declaratoropt

type-specifier-seq:
type-specifier type-specifier-seqopt

abstract-declarator:
ptr-operator abstract-declaratoropt

direct-abstract-declarator

direct-abstract-declarator:
direct-abstract-declaratoropt ( parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

direct-abstract-declaratoropt [ constant-expressionopt ]
( abstract-declarator)

It is possible to identify uniquely the location in theabstract-declaratorwhere the identifier would appear
if the construction were a declarator in a declaration. The named type is then the same as the type of the
hypothetical identifier. For example,

int // int i
int * // int *pi
int *[3] // int *p[3]
int (*)[3] // int (*p3i)[3]
int *() // int *f()
int (*)(double) // int (*pf)(double)

name respectively the types“integer,” “pointer to integer,” “array of 3 pointers to integers,” “pointer to
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array of 3 integers,” “function having no parameters and returning pointer to integer,” and“pointer to func-
tion of double returning an integer.”

2 A type can also be named (often more easily) by using atypedef(7.1.3).
3 Note that anexception-specificationdoes not affect the function type, so its appearance in anabstract-

declaratorwill have empty semantics. 

8.1.1 Ambiguity resolution 

1 The ambiguity arising from the similarity between a function-style cast and a declaration mentioned in 6.8
can also occur in the context of a declaration. In that context, it surfaces as a choice between a function
declaration with a redundant set of parentheses around a parameter name and an object declaration with a
function-style cast as the initializer. Just as for statements, the resolution is to consider any construct that
could possibly be a declaration a declaration. A declaration can be explicitly disambiguated by a
nonfunction-style cast or a= to indicate initialization. For example,

struct S {
S(int);

};

void foo(double a)
{

S x(int(a)); // function declaration
S y((int)a); // object declaration
S z = int(a); // object declaration

}

8.2 Meaning of declarators 

1 A list of declarators appears after an optional (7)decl-specifier-seq(7.1). Each declarator contains exactly
onedeclarator-id; it names the identifier that is declared. Except for the declarations of some special func-
tions (12.3, 13.4) adeclarator-idwill be a simpleidentifier. An auto , static , extern , register ,
friend , inline , virtual , or typedef specifier applies directly to eachdeclarator-id in a init-
declarator-list; the type specified for eachdeclarator-id depends on both thedecl-specifier-seqand its
declarator.

2 Thus, a declaration of a particular identifier has the form

T D

whereT is adecl-specifier-seqandD is a declarator. The following subsections give an inductive proce-
dure for determining the type specified for the containeddeclarator-idby such a declaration.

3 First, thedecl-specifier-seqdetermines a type. For example, in the declaration

int unsigned i;

the type specifiersint unsigned determine the type“unsigned int .” Or in general, in the declara-
tion

T D

thedecl-specifier-seqT determines the type“T.”
4 In a declarationT DwhereD is an unadorned identifier the type of this identifier is“T.”
5 In a declarationT DwhereDhas the form

( D1 )

the type of the containeddeclarator-idis the same as that of the containeddeclarator-idin the declaration

T D1

Parentheses do not alter the type of the embeddeddeclarator-id, but they may alter the binding of complex
declarators.
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8.2.1 Pointers

1 In a declarationT DwhereDhas the form

* cv-qualifier-seqopt D1

the type of the containeddeclarator-idis “... cv-qualifier-seqpointer toT1,” whereT1 is the type assigned
to the containeddeclarator-idin the declarationT D1. Thecv-qualifiers apply to the pointer and not to the
object pointed to.

2 For example, the declarations

const int ci = 10, *pc = &ci, *const cpc = pc, **ppc;
int i, *p, *const cp = &i;

declareci , a constant integer;pc , a pointer to a constant integer;cpc , a constant pointer to a constant
integer,ppc , a pointer to a pointer to a constant integer;i , an integer;p, a pointer to integer; andcp , a
constant pointer to integer. The value ofci , cpc , andcp cannot be changed after initialization. The value
of pc can be changed, and so can the object pointed to bycp . Examples of correct operations are

i = ci;
*cp = ci;
pc++;
pc = cpc;
pc = p;
ppc = &pc;

Examples of ill-formed operations are

ci = 1; // error
ci++; // error
*pc = 2; // error
cp = &ci; // error
cpc++; // error
p = pc; // error
ppc = &p; // error

Each is unacceptable because it would either change the value of an object declaredconst or allow it to be
changed through an unqualified pointer later, for example:

*ppc = &ci; // okay, but would make p point to ci ...
// ... because of previous error

*p = 5; // clobber ci

3 volatile specifiers are handled similarly.
4 See also 5.17 and 8.4.
5 There can be no pointers to references (8.2.2) or pointers to bit-fields (9.6).

8.2.2 References

1 In a declarationT DwhereDhas the form

& cv-qualifier-seqopt D1

the type of the containeddeclarator-id is “... cv-qualifier-seqreference toT1,” where T1 is the type
assigned to the containeddeclarator-idin the declarationT D1. The typevoid& is not permitted.

Should cv-qualifiers be allowed here? What does

int& const i=0;

mean?_ ______________________________________________




_ ______________________________________________





2 For example,
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void f(double& a) { a += 3.14; }
// ...

double d = 0;
f(d);

declaresa to be a reference parameter off so the callf(d) will add 3.14 to d.

int v[20];
// ...
int& g(int i) { return v[i]; }
// ...
g(3) = 7;

declares the functiong() to return a reference to an integer sog(3)=7 will assign7 to the fourth element
of the arrayv .

struct link {
link* next;

};

link* first;

void h(link*& p) // ‘p’ is a reference to pointer
{

p->next = first;
first = p;
p = 0;

}

void k()
{

link* q = new link;
h(q);

}

declaresp to be a reference to a pointer tolink soh(q) will leaveq with the value zero. See also 8.4.3.
3 There can be no references to references, no references to bit-fields (9.6), no arrays of references, and no

pointers to references. The declaration of a reference must contain aninitializer (8.4.3) except when the
declaration contains an explicitextern specifier (7.1.1), is a class member (9.2) declaration within a class
declaration, or is the declaration of an parameter or a return type (8.2.5); see 3.1. A reference must be ini-
tialized to refer to a valid object. In particular, null references are prohibited. 

8.2.3 Pointers to members 

1 In a declarationT DwhereDhas the form

qualified-class-specifier:: * cv-qualifier-seqopt D1

the type of the containeddeclarator-idis “... cv-qualifier-seqpointer to member of classclass-nameof type
T1,” whereT1 is the type assigned to the containeddeclarator-idin the declarationT D1.

2 For example,

class X {
public:

void f(int);
int a;

};

int X::* pmi = &X::a;
void (X::* pmf)(int) = &X::f;

declarespmi andpmf to be a pointer to a member ofX of typeint and a pointer to a member ofX of type
void(int) , respectively. They can be used like this:
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X obj;
//...
obj.*pmi = 7; // assign 7 to an integer

// member of obj
(obj.*pmf)(7); // call a function member of obj

// with the argument 7

3 Note that a pointer to member cannot point to a static member of a class (9.4). There are no references
to members. See also 5.5 and 5.3.

8.2.4 Arrays

1 In a declarationT DwhereDhas the form

D1 [ constant-expressionopt]

and the type of the identifier in the declarationT D1 is “type-modifierT,” then the type of the identifier ofD
is “type-modifierarray ofT.” If the constant-expression(5.19) is present, it must be of enumeration or inte-
gral type and have a value greater than zero. The constant expression specifies the number of elements in
the array. If the constant expression isN, the array hasNelements numbered zero toN-1 .

2 An array may be constructed from one of the fundamental types (exceptvoid ), from a pointer, from a
pointer to member, from a class, from an enumeration, or from another array.

3 When several“array of” specifications are adjacent, a multidimensional array is created; the constant
expressions that specify the bounds of the arrays may be omitted only for the first member of the sequence.
This elision is useful for function parameters of array types, and when the array is external and the defini-
tion, which allocates storage, is given elsewhere. The firstconstant-expressionmay also be omitted when
the declarator is followed by aninitializer-clause(8.4). In this case the size is calculated from the number
of initial elements supplied (8.4.1).

4 The declaration

float fa[17], *afp[17];

declares an array offloat numbers and an array of pointers tofloat numbers. The declaration

static int x3d[3][5][7];

declares a static three-dimensional array of integers, with rank 3×5×7. In complete detail,x3d is an array
of three items; each item is an array of five arrays; each of the latter arrays is an array of seven integers.
Any of the expressionsx3d , x3d[i] , x3d[i][j] , x3d[i][j][k] may reasonably appear in an
expression.

5 When an identifier of array type appears in an expression, except as the operand ofsizeof or & or
used to initialize a reference (8.4.3), it is converted into a pointer to the first member of the array. Because
of this conversion, arrays are not modifiable lvalues. Except where it has been declared for a class (13.4.5),
the subscript operator[] is interpreted in such a way thatE1[E2] is identical to*((E1)+(E2)) .
Because of the conversion rules that apply to+, if E1 is an array andE2 an integer, thenE1[E2] refers to
the E2-th member ofE1. Therefore, despite its asymmetric appearance, subscripting is a commutative
operation.

6 A consistent rule is followed for multidimensional arrays. IfE is an n-dimensional array of rank
i × j × . . . ×k, thenE appearing in an expression is converted to a pointer to an (n − 1 )-dimensional array
with rankj × . . . ×k. If the* operator, either explicitly or implicitly as a result of subscripting, is applied to
this pointer, the result is the pointed-to (n − 1 )-dimensional array, which itself is immediately converted
into a pointer.

7 For example, consider

int x[3][5];

Herex is a 3×5 array of integers. Whenx appears in an expression, it is converted to a pointer to (the first
of three) five-membered arrays of integers. In the expressionx[i] , which is equivalent to*(x+i) , x is
first converted to a pointer as described; thenx+i is converted to the type ofx , which involves multiplying
i by the length of the object to which the pointer points, namely five integer objects. The results are added
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and indirection applied to yield an array (of five integers), which in turn is converted to a pointer to the first
of the integers. If there is another subscript the same argument applies again; this time the result is an inte-
ger.

8 It follows from all this that arrays in C + + are stored row-wise (last subscript varies fastest) and that the
first subscript in the declaration helps determine the amount of storage consumed by an array but plays no
other part in subscript calculations.

8.2.5 Functions

1 In a declarationT DwhereDhas the form

D1 ( parameter-declaration-clause) cv-qualifier-seqopt

and the type of the containeddeclarator-id in the declarationT D1 is “type-modifierT1,” the type of the
declarator-id in D is “type-modifier cv-qualifier-seqopt function with parameters of typeparameter-
declaration-clauseand returningT1.”

parameter-declaration-clause:
parameter-declaration-listopt ... opt

parameter-declaration-list, ...

parameter-declaration-list:
parameter-declaration
parameter-declaration-list, parameter-declaration

parameter-declaration:
decl-specifier-seq declarator
decl-specifier-seq declarator= expression
decl-specifier-seq abstract-declaratoropt

decl-specifier-seq abstract-declaratoropt = expression

2 Theparameter-declaration-clausedetermines the arguments that can be specified, and their processing,∗
when the function is called. If theparameter-declaration-clauseterminates with an ellipsis, the number of
arguments is known only to be equal to or greater than the number of parameters specified; if it is empty,
the function takes no arguments. The parameter list(void) is equivalent to the empty parameter list.
Except for this special casevoid may not be a parameter type (though types derived fromvoid , such as
void* , may). Where syntactically correct,“, ... ” is synonymous with“... ”. The standard header
<stdarg.h> contains a mechanism for accessing arguments passed using the ellipsis, see 17.4.8. See
12.1 for the treatment of array arguments.

3 A single name may be used for several different functions in a single scope; this is function overloading
(13). All declarations for a function with a given parameter list must agree exactly both in the type of the
value returned and in the number and type of parameters; the presence or absence of the ellipsis is consid-
ered part of the function type. Parameter types that differ only in the use of typedef (7.1.3) names, the
register storage-class-specifier, or unspecified array bounds agree exactly.

This needs to be made more precise._ ____________________________________
_ ____________________________________


A parameter that is declared as“array oftype” or “function returningtype” is adjusted to“pointer totype”
or “pointer to function returningtype,” respectively. The return type and the parameter types, but not the
default parameters (8.2.6), are part of the function type. Acv-qualifier-seqcan only be part of a declaration
or definition of a nonstatic member function, and of a pointer to a member function; see 9.3.1. It is part of
the function type.

4 Functions cannot return arrays or functions, although they can return pointers and references to such
things. There are no arrays of functions, although there may be arrays of pointers to functions.

5 Types may not be defined in return or parameter types.
6 The parameter-declaration-clauseis used to check and convert arguments in calls and to check

pointer-to-function and reference-to-function assignments and initializations.
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7 An identifier can optionally be provided as a parameter name; if present in a function declaration, it can-
not be used since it goes out of scope at the end of the function declarator (3.2); if present in a function def-
inition (8.3), it names a parameter (sometimes called“formal argument”). In particular, parameter names
are also optional in function definitions and names used for a parameter in different declarations and the
definition of a function need not be the same.

8 The declaration

int i,
*pi,
f(),
*fpi(int),
(*pif)(const char*, const char*);
(*fpif(int))(int);

declares an integeri , a pointerpi to an integer, a functionf taking no arguments and returning an integer,
a functionfpi taking an integer argument and returning a pointer to an integer, a pointerpif to a function
which takes two pointers to constant characters and returns an integer, a functionfpif taking an integer
argument and returning a pointer to a function that takes an integer argument and returns an integer. It is
especially useful to comparefpi andpif . The binding of*fpi(int) is *(fpi(int)) , so the decla-
ration suggests, and the same construction in an expression requires, the calling of a functionfpi , and then
using indirection through the (pointer) result to yield an integer. In the declarator(*pif)(const
char*, const char*) , the extra parentheses are necessary to indicate that indirection through a pointer
to a function yields a function, which is then called.

9 Typedefs are sometimes convenient when the return type of a function is complex. For example, the
functionfpif above could have been declared

typedef int IFUNC(int);
IFUNC* fpif(int);

10 The declaration

fseek(FILE*, long, int);

declares a function taking three arguments of the specified types. Since no return value type is specified it
is taken to beint (7.1.6). The declaration

printf(const char* ...);

declares a function that can be called with varying numbers and types of arguments. For example,

printf("hello world");
printf("a=%d b=%d", a, b);

It must always have a value, however, that can be converted to aconst char* as its first argument. 

8.2.6 Default parameters 

1 If an expression is specified in a parameter declaration this expression is used as a default parameter. All
subsequent parameters must have default parameters supplied in this or previous declarations of this func-
tion. Default parameters will be used in calls where trailing arguments are missing. A default parameter
cannot be redefined by a later declaration (not even to the same value). A declaration may add default
parameters, however, not given in previous declarations.

2 The declaration

point(int = 3, int = 4);

declares a function that can be called with zero, one, or two arguments of typeint . It may be called in any
of these ways:

point(1,2); point(1); point();

The last two calls are equivalent topoint(1,4) andpoint(3,4) , respectively.
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3 Default parameter expressions in non-member functions have their names bound and their types
checked at the point of declaration, and are evaluated at each point of call. In member functions, names in
default parameter expressions are bound at the end of the class declaration, like names in inline member
function bodies (9.3.2). In the following example,g will be called with the valuef(2) :

int a = 1;
int f(int);
int g(int x = f(a)); // default parameter: f(::a)

void h() {
a = 2;
{

int a = 3;
g(); // g(f(::a))

}
}

Local variables may not be used in default parameter expressions. For example,

void f()
{

int i;
extern void g(int x = i); // error
// ...

}

4 Note that default parameters are evaluated before entry into a function and that the order of evaluation
of function arguments is implementation dependent. Consequently, parameters of a function may not be
used in default parameter expressions. Paramaters of a function declared before a default parameter expres-
sion are in scope and may hide global and class member names. For example,

int a;
int f(int a, int b = a); // error: parameter ‘a’

// used as default parameter
typedef int I;
int g(float I, int b = I(2)); // error: ‘float’ called

5 Similarly, the declaration ofX::mem1() in the following example is undefined because no object is
supplied for the nonstatic memberX::a used as an initializer.

int b;
class X {

int a;
mem1(int i = a); // error: nonstatic member ‘a’

// used as default parameter
mem2(int i = b); // ok; use X::b
static b;

};

The declaration ofX::mem2() is meaningful, however, since no object is needed to access the static
memberX::b . Classes, objects, and members are described in 9.

6 A default parameter is not part of the type of a function.

int f(int = 0);

void h()
{

int j = f(1);
int k = f(); // fine, means f(0)

}

int (*p1)(int) = &f;
int (*p2)() = &f; // error: type mismatch
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7 An overloaded operator (13.4) cannot have default parameters. 

8.3 Function definitions 

1 Function definitions have the form

function-definition:
decl-specifier-seqopt declarator ctor-initializeropt function-body

function-body:
compound-statement

Thedeclaratorin a function-definitionmust contain a declarator with the form

D1 ( parameter-declaration-clause) cv-qualifier-seqopt

as described in 8.2.5.
2 The parameters are in the scope of the outermost block of thefunction-body.
3 A simple example of a complete function definition is

int max(int a, int b, int c)
{

int m = (a > b) ? a : b;
return (m > c) ? m : c;

}

Hereint is thedecl-specifier-seq; max(int a, int b, int c) is thedeclarator; { /* ... */ } is
thefunction-body.

4 A ctor-initializer is used only in a constructor; see 12.1 and 12.6.
5 A cv-qualifier-seqcan be part of a non-static member function declaration, non-static member function

definition, or pointer to member function only; see 9.3.1. It is part of the function type.
6 Note that unused parameters need not be named. For example,

void print(int a, int)
{

printf("a = %d\n",a);
}

8.4 Initializers

1 A declarator may specify an initial value for the identifier being declared.

initializer:
= initializer-clause
( expression-list)

initializer-clause:
assignment-expression
{ initializer-list , opt }

initializer-list:
initializer-clause
initializer-list , initializer-clause

2 Automatic, register, static, and external variables at file scope may be initialized by arbitrary expres-
sions involving constants and previously declared variables and functions.

int f(int);
int a = 2;
int b = f(a);
int c(b);
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3 A pointer of typeconst T* or volatile T* , or const volatile T* , that is, a pointer to con-
stant, volatile, or constant volatileT, can be initialized with a pointer of typeT* , but none of the reverse
initializations are allowed. Objects of typeT can be initialized with objects of typeT independently of
const andvolatile modifiers on both the initialized variable and on the initializer. For example,

int a;
const int b = a;
int c = b;

const int* p0 = &a;
const int* p1 = &b;
int* p2 = &b; // error: makes a pointer to

// nonconst point to a const

int *const p3 = p2;
int *const p4 = p1; // error: makes a pointer to

// nonconst point to a const
const int* p5 = p1;

The declarations ofp2 andp4 are ill-formed for the same reason: had those initializations been allowed,
they would have allowed the value of something declaredconst to be changed through an unqualified
pointer.

4 Default parameter expressions are more restricted; see 8.2.6.
5 Initialization of objects of classes with constructors is described in 12.6.1. Copying of class objects is

described in 12.8. The order of initialization of static objects is described in 3.4 and 6.7.
6 Variables with storage class static (3.5) that are not initialized and do not have a constructor are guaran-

teed to start off as zero converted to the appropriate type. If the object is aclass or struct , its data
members start off as zero converted to the appropriate type. If the object is aunion , its first data member
starts off as zero converted to the appropriate type. The initial values of automatic and register variables
that are not initialized are indeterminate.

7 When an initializer applies to a pointer or an object of enumeration or arithmetic type, it consists of a
single expression, perhaps in braces. The initial value of the object is taken from the expression; the same
conversions as for assignment are performed.

8 Note that since() is not an initializer,

X a();

is not the declaration of an object of classX, but the declaration of a function taking no argument and
returning anX.

9 An initializer for a static member is in the scope of the member’s class. For example,

int a;

struct X {
static int a;
static int b;

};

int X::a = 1;
int X::b = a; // X::b = X::a

See 8.2.6 for initializers used as default parameters.

8.4.1 Aggregates

1 An aggregateis an array or an object of a class (9) with no constructors (12.1), no private or protected
members (11), no base classes (10), and no virtual functions (10.2). When an aggregate is initialized the
initializer may be aninitializer-clauseconsisting of a brace-enclosed, comma-separated list of initializers
for the members of the aggregate, written in increasing subscript or member order. If the aggregate con-
tains subaggregates, this rule applies recursively to the members of the subaggregate. If there are fewer ini-
tializers in the list than there are members of the aggregate, then the aggregate is padded with zeros of the
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appropriate types.
2 For example,

struct S { int a; char* b; int c; };
S ss = { 1, "asdf" };

initializesss.a with 1, ss.b with "asdf" , andss.c with zero.
3 An aggregate that is a class may also be initialized with an object of its class or of a class publicly

derived from it (12.8).
4 Braces may be elided as follows. If theinitializer-clausebegins with a left brace, then the succeeding

comma-separated list of initializers initializes the members of the aggregate; it is erroneous for there to be
more initializers than members. If, however, theinitializer-clauseor a subaggregate does not begin with a
left brace, then only enough elements from the list are taken to account for the members of the aggregate;
any remaining members are left to initialize the next member of the aggregate of which the current aggre-
gate is a part.

5 For example,

int x[] = { 1, 3, 5 };

declares and initializesx as a one-dimensional array that has three members, since no size was specified
and there are three initializers.

float y[4][3] = {
{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },

};

is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the arrayy[0] , namely
y[0][0] , y[0][1] , andy[0][2] . Likewise the next two lines initializey[1] andy[2] . The initial-
izer ends early and thereforey[3] is initialized with zeros. Precisely the same effect could have been
achieved by

float y[4][3] = {
1, 3, 5, 2, 4, 6, 3, 5, 7

};

The last (rightmost) index varies fastest (8.2.4).
6 The initializer fory begins with a left brace, but the one fory[0] does not, therefore three elements

from the list are used. Likewise the next three are taken successively fory[1] andy[2] . Also,

float y[4][3] = {
{ 1 }, { 2 }, { 3 }, { 4 }

};

initializes the first column ofy (regarded as a two-dimensional array) and leaves the rest zero.
7 Initialization of arrays of objects of a class with constructors is described in 12.6.1.
8 The initializer for a union with no constructor is either a single expression of the same type, or a brace-

enclosed initializer for the first member of the union. For example,

union u { int a; char* b; };

u a = { 1 };
u b = a;
u c = 1; // error
u d = { 0, "asdf" }; // error
u e = { "asdf" }; // error

9 There may not be more initializers than there are members or elements to initialize. For example,

char cv[4] = { ’a’, ’s’, ’d’, ’f’, 0 }; // error

is ill-formed. 
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10 A POD-struct16 is an aggregate structure that contains neither references nor pointers to members.
Similarly, aPOD-unionis an aggregate union that contains neither references nor pointers to members.

8.4.2 Character arrays 

1 A char array (whether signed or unsigned) may be initialized by astring-literal; successive characters of
the string initialize the members of the array. For example,

char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string. Note that because’\n’ is a single
character and because a trailing’\0’ is appended,sizeof(msg) is 25 .

2 There may not be more initializers than there are array elements. For example,

char cv[4] = "asdf"; // error

is ill-formed since there is no space for the implied trailing’\0’ . 

8.4.3 References

1 A variable declared to be aT&, that is“reference to typeT” (8.2.2), must be initialized by an object of type
T or by an object that can be converted into aT. For example,

void f()
{

int i;
int& r = i; // ‘r’ refers to ‘i’
r = 1; // the value of ‘i’ becomes 1
int* p = &r; // ‘p’ points to ‘i’
int& rr = r; // ‘rr’ refers to what ‘r’ refers to,

// that is, to ‘i’
}

2 A reference cannot be changed to refer to another object after initialization. Note that initialization of a
reference is treated very differently from assignment to it. Argument passing (5.2.2) and function value
return (6.6.3) are initializations.

3 The initializer may be omitted for a reference only in a parameter declaration (8.2.5), in the declaration
of a function return type, in the declaration of a class member within its class declaration (9.2), and where
theextern specifier is explicitly used. For example,

int& r1; // error: initializer missing
extern int& r2; // ok

4 If the initializer for a reference to typeT is an lvalue of typeT or of a type derived (10) fromT for
which T is an unambiguous accessible base (4.6), the reference will refer to the (T part of the) initializer;
otherwise, if and only if the reference is to aconst and an object of typeT can be created from the initial-
izer, such an object will be created. The reference then becomes a name for that object. For example,

double d = 2.0;

double& rd = d; // rd refers to ‘d’
const double& rcd = d; // rcd refers to ‘d’

double& rd2 = 2.0; // error: not an lvalue
int i = 2;
double& rd3 = i; // error: type mismatch
const double& rcd2 = 2; // rcd2 refers to temporary

// with value ‘2’

_ ____________________
16The acronym POD stands for“plain ol’ data.”
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5 A reference to aconst object is required to beconst . Similarly a reference to avolatile or
const volatile object is required to bevolatile or const volatile (respectively). However, a
const , volatile , orconst volatile reference can refer to a plain object. For example,

const double d = 2.0;
double& rd = d; // error: non-const reference to const
const volatile double& rcvd = d; // okay: rcvd refers to ‘d’
const double& rcd = rcvd; // error: non-volatile reference to volatile

6 The lifetime of a temporary object created in this way is the scope in which it is created (3.5). Note that
a reference to a classB can be initialized by an object of a classD providedB is an accessible and unam-
biguous base class ofD (in that case aD is aB); see 4.7.



_ _____________________________________________________________________________________________________________________________________________________________________________ ___________________________________________

9
_ _____________________________________________________________________________________________________________________________________________________________________________ ___________________________________________

Classes

1 A classis a user-defined type. A class definition specifies the representation of objects of the class and the set of
operations that can be applied to such objects. This chapter presents the syntax and semantics for simple classes.

2 The definition of bothstatic and non-static members is discussed, and the scope rules involving classes
and functions– including local and nested classes containing member functions– are described. The mecha-
nisms for controlling the layout of class objects, for conforming to externally imposed formats, and for maintain-
ing compatibility with C layouts (struct s,union s and bit-fields) are presented.

3 Derived classes (that is, inheritance), access control, and special member functions are discussed in the next three
chapters.

9 Classes

1 A class is a type. Its name becomes aclass-name(9.1), that is, a reserved word within its scope.

class-name:
identifier
template-class-id

Class-specifiers andelaborated-type-specifiers (7.1.6) are used to makeclass-names. An object of a class
consists of a (possibly empty) sequence of members.

class-specifier:
class-head{ member-specificationopt }

class-head:
class-key identifieropt base-clauseopt

class-key nested-class-specifier base-clauseopt

class-key:
class
struct
union

2 The name of a class can be used as aclass-nameeven within themember-specificationof the class spec-
ifier itself. A class-specifieris commonly referred to as a class definition. A class is considered defined
when itsclass-specifierhas been seen even though its member functions are in general not yet defined.

3 Objects of an empty class have a nonzero size.
4 Class objects may be assigned, passed as arguments to functions, and returned by functions (except

objects of classes for which copying has been restricted; see 12.8). Other plausible operators, such as
equality comparison, can be defined by the user; see 13.4.

5 A structureis a class declared with theclass-keystruct ; its members and base classes (10) are public
by default (11). Aunion is a class declared with theclass-keyunion ; its members are public by default
and it holds only one member at a time (9.5). 
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9.1 Class names 

1 A class definition introduces a new type. For example,

struct X { int a; };
struct Y { int a; };
X a1;
Y a2;
int a3;

declares three variables of three different types. This implies that

a1 = a2; // error: Y assigned to X
a1 = a3; // error: int assigned to X

are type mismatches, and that

int f(X);
int f(Y);

declare an overloaded (13) functionf() and not simply a single functionf() twice. For the same reason,

struct S { int a; };
struct S { int a; }; // error, double definition

is ill-formed because it definesS twice. 
2 A class definition introduces the class name into the scope where it is defined and hides any class,

object, function, or other declaration of that name in an enclosing scope (3.2). If a class name is declared in
a scope where an object, function, or enumerator of the same name is also declared the class can be referred
to only using anelaborated-type-specifier(7.1.6). For example,

struct stat {
// ...

};

stat gstat; // use plain ‘stat’ to
// define variable

int stat(struct stat*); // redefine ‘stat’ as function

void f()
{

struct stat* ps; // ‘struct’ prefix needed
// to name struct stat

// ...
stat(ps); // call stat()
// ...

}

An elaborated-type-specifierwith a class-keyused without declaring an object or function introduces a
class name exactly like a class definition but without defining a class. For example,

struct s { int a; };

void g()
{

struct s; // hide global struct ‘s’
s* p; // refer to local struct ‘s’
struct s { char* p; }; // declare local struct ‘s’

}

Such declarations allow definition of classes that refer to each other. For example,
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class vector;

class matrix {
// ...
friend vector operator*(matrix&, vector&);

};

class vector {
// ...
friend vector operator*(matrix&, vector&);

};

Declaration offriend s is described in 11.4, operator functions in 13.4.
3 An elaborated-type-specifier(7.1.6) can also be used in the declarations of objects and functions. It dif-

fers from a class declaration in that if a class of the elaborated name is in scope the elaborated name will
refer to it. For example,

struct s { int a; };

void g(int s)
{

struct s* p = new struct s; // global ‘s’
p->a = s; // local ‘s’

}

4 A name declaration takes effect immediately after theidentifier is seen. For example,

class A * A;

first specifiesA to be the name of a class and then redefines it as the name of a pointer to an object of that
class. This means that the elaborated formclass A must be used to refer to the class. Such artistry with
names can be confusing and is best avoided.

5 A typedef-name(7.1.3) that names a class is aclass-name; see also 7.1.3. 

9.2 Class members 

member-specification:
member-declaration member-specificationopt

access-specifier: member-specificationopt

member-declaration:
decl-specifier-seqopt member-declarator-listopt ;
function-definition ; opt

qualified-id ;

member-declarator-list:
member-declarator
member-declarator-list, member-declarator

member-declarator:
declarator pure-specifieropt

identifieropt : constant-expression

pure-specifier:
= 0

1 Themember-specificationin a class definition declares the full set of members of the class; no member
can be added elsewhere. Members of a class are data members, member functions (9.3), nested types, and
member constants. Data members and member functions are static or nonstatic; see 9.4. Nested types are
classes (9.1, 9.7) and enumerations (7.2) defined in the class, and arbitrary types declared as members by
use of a typedef declaration (7.1.3). The enumerators of an enumeration (7.2) defined in the class are
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member constants of the class. Except when used to declare friends (11.4) or to adjust the access to a mem-
ber of a base class (11.3),member-declarations declare members of the class, and each suchmember-
declarationmust declare at least one member name of the class. A member may not be declared twice in
themember-specification, except that a nested class may be declared and then later defined.

2 Note that a single name can denote several function members provided their types are sufficiently dif-
ferent (13). Note that amember-declaratorcannot contain aninitializer (8.4). A member can be initialized
using a constructor; see 12.1.

3 A member may not beauto , extern , or register .
4 Thedecl-specifier-seqcan be omitted in function declarations only. Themember-declarator-listcan be

omitted only after aclass-specifier, an enum-specifier, or a decl-specifier-seqof the form friend
elaborated-type-specifier. A pure-specifiermay be used only in the declaration of a virtual function (10.2).

5 Non-static (9.4) members that are class objects must be objects of previously declared classes. In
particular, a classcl may not contain an object of classcl , but it may contain a pointer or reference to an
object of classcl . When an array is used as the type of a nonstatic member all dimensions must be speci-
fied.

6 A simple example of a class definition is

struct tnode {
char tword[20];
int count;
tnode *left;
tnode *right;

};

which contains an array of twenty characters, an integer, and two pointers to similar structures. Once this
definition has been given, the declaration

tnode s, *sp;

declaress to be atnode andsp to be a pointer to atnode . With these declarations,sp->count refers
to thecount member of the structure to whichsp points;s.left refers to theleft subtree pointer of
the structures ; ands.right->tword[0] refers to the initial character of thetword member of the
right subtree ofs .

7 Nonstatic data members of a class declared without an interveningaccess-specifierare allocated so that
later members have higher addresses within a class object. The order of allocation of nonstatic data mem-
bers separated by anaccess-specifieris implementation dependent (11.1). Implementation alignment
requirements may cause two adjacent members not to be allocated immediately after each other; so may
requirements for space for managing virtual functions (10.2) and virtual base classes (10.1); see also 5.4.

8 If two typesT1 andT2 are the same type, thenT1 andT2 arelayout-compatibletypes.
9 Two POD-struct (8.4.1) types are layout-compatible if they have the same number of members, and cor-

responding members (in order) have layout-compatible types.
10 Two POD-union (8.4.1) types are layout-compatible if they have the same number of members, and cor-

responding members (in any order) have layout-compatible types.

Shouldn’t this be the samesetof types?_ ______________________________________
_ ______________________________________


11 Two enumeration types are layout-compatible if they have the same sets of enumerator values.

Shouldn’t this be the sameunderlying type?_ __________________________________________
_ __________________________________________


12 If a POD-union contains several POD-structs that share a common initial sequence, and if the POD-
union object currently contains one of these POD-structs, it is permitted to inspect the common initial part
of any of them. Two POD-structs share a common initial sequence if corresponding members have layout-
compatible types (and, for bit-fields, the same widths) for a sequence of one or more initial members.

13 A pointer to a POD-struct object, suitably converted, points to its initial member (or if that member is a
bit-field, then to the unit in which it resides) and vice versa. There may therefore be unnamed padding
within a POD-struct object, but not at its beginning, as necessary to achieve appropriate alignment.
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14 The range of nonnegative values of a signed integral type is a subrange of the corresponding unsigned
integral type, and the representation of the same value in each type is the same.

15 Even if the implementation defines two or more basic types to have the same representation, they are
nevertheless different types.

16 The representations of integral types shall define values by use of a pure binary numeration system.

Does this mean two’s complement? Is there a definition of“pure binary numeration system?”_ __________________________________________________________________________________
_ __________________________________________________________________________________


17 The qualified or unqualified versions of a type are distinct types that have the same representation and
alignment requirements.

18 A qualified or unqualifiedvoid* shall have the same representation and alignment requirements as a
qualified or unqualifiedchar* .

19 Similarly, pointers to qualified or unqualified versions of layout-compatible types shall have the same
representation and alignment requirements.

20 If the program attempts to access the stored value of an object other than through an lvalue of one of the
following types:

• the declared type of the object,

• a qualified version of the declared type of the object,

• a type that is the signed or unsigned type corresponding to the declared type of the object,

• a type that is the signed or unsigned type corresponding to a qualified version of the declared type of
the object,

• an aggregate or union type that includes one of the aforementioned types among its members (includ-
ing, recursively, a member of a subaggregate or contained union), or

• a character type.17

the result is undefined.
21 A function member (9.3) with the same name as its class is a constructor (12.1). A static data member,

enumerator, member of an anonymous union, or nested type may not have the same name as its class.

9.2.1 Scope rules for classes 

1 The following rules describe the scope of names declared in classes.

1. The scope of a name declared in a class consists not only of the text following the name’s declarator,
but also of all function bodies, default parameters, and constructor initializers in that class (including
such things in nested classes).

2. A nameN used in a classS must refer to the same declaration when re-evaluated in its context and
in the completed scope of S.

3. If reordering member declarations in a class yields an alternate valid program under (1) and (2), the
program’s meaning is undefined.

4. A declaration in a nested declarative region hides a declaration whose declarative region contains
the nested declarative region.

_ ____________________
17The intent of this list is to specify those circumstances in which an object may or may not be aliased.
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5. A declaration within a member function hides a declaration whose scope extends to or past the end
of the member function’s class.

6. The scope of a declaration that extends to or past the end of a class definition also extends to the
regions defined by its member definitions, even if defined lexically outside the class (this includes
both function member bodies and static data member initializations).

2 For example:

typedef int c;
enum { i = 1 };

class X {
char v[i]; // error: ’i’ refers to ::i

// but when reevaluated is X::i
int f() { return sizeof(c); } // okay: X::c
char c;
enum { i = 2 };

};

typedef char* T;
struct Y {

T a; // error: ’T’ refers to ::T
// but when reevaluated is Y::T

typedef long T;
T b;

};

struct Z {
int f(const R); // error: ’R’ is parameter name

// but swapping the two declarations
// changes it to a type

typedef int R;
};

9.3 Member functions 

1 A function declared as a member (without thefriend specifier; 11.4) is called a member function, and is
called for an object using the class member syntax (5.2.4). For example,

struct tnode {
char tword[20];
int count;
tnode *left;
tnode *right;
void set(char*, tnode* l, tnode* r);

};

Hereset is a member function and can be called like this:

void f(tnode n1, tnode n2)
{

n1.set("abc",&n2,0);
n2.set("def",0,0);

}

2 The definition of a member function is considered to be within the scope of its class. This means that
(provided it is nonstatic 9.4) it can use names of members of its class directly. Such names then refer to the
members of the object for which the function was called.

3 A static local variable in a member function always refers to the same object. A static member function
can use only the names of static members, enumerators, and nested types directly. If the definition of a
member function is lexically outside the class definition, the member function name must be qualified by
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the class name using the:: operator. For example,

void tnode::set(char* w, tnode* l, tnode* r)
{

count = strlen(w+1);
if (sizeof(tword)<=count)

error("tnode string too long");
strcpy(tword,w);
left = l;
right = r;

}

The notationtnode::set specifies that the functionset is a member of and in the scope of class
tnode . The member namestword , count , left , andright refer to members of the object for which
the function was called. Thus, in the calln1.set("abc",&n2,0) , tword refers ton1.tword, and
in the calln2.set("def",0,0) it refers ton2.tword . The functionsstrlen , error , andstrcpy
must be declared elsewhere.

4 Members may be defined (3.1) outside their class definition if they have already been declared but not
defined in the class definition; they may not be redeclared. See also 3.3. Function members may be men-
tioned in friend declarations after their class has been defined. Each member function that is called must
have exactly one definition in a program.

5 The effect of calling a nonstatic member function (9.4) of a classX for something that is not an object of
classX is undefined. 

9.3.1 Thethis pointer 

1 In a nonstatic (9.3) member function, the keywordthis is a non-lvalue expression whose value is the
address of the object for which the function is called. The type ofthis in a member function of a classX
is X* unless the member function is declaredconst or volatile ; in those cases, the type ofthis is
const X* or volatile X* , respectively. A function declaredconst andvolatile has athis with
the typeconst volatile X* . See also 19.3.3. For example,

struct s {
int a;
int f() const;
int g() { return a++; }
int h() const { return a++; } // error

};

int s::f() const { return a; }

The a++ in the body ofs::h is ill-formed because it tries to modify (a part of) the object for which
s::h() is called. This is not allowed in aconst member function wherethis is a pointer toconst ,
that is,*this is aconst .

2 A const member function (that is, a member function declared with theconst qualifier) may be
called forconst and non-const objects, whereas a non-const member function may be called only for
a non-const object. For example,

void k(s& x, const s& y)
{

x.f();
x.g();
y.f();
y.g(); // error

}

The cally.g() is ill-formed becausey is const and s::g() is a non-const member function that 
could (and does) modify the object for which it was called.

3 Similarly, onlyvolatile member functions (that is, a member function declared with thevolatile
specifier) may be invoked forvolatile objects. A member function can be bothconst andvola-
tile .
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4 Constructors (12.1) and destructors (12.4) may be invoked for aconst or volatile object. Con-
structors (12.1) and destructors (12.4) cannot be declaredconst or volatile . 

9.3.2 Inline member functions 

1 A member function may be defined (8.3) in the class definition, in which case it isinline (7.1.2). Defin-
ing a function within a class definition is equivalent to declaring itinline and defining it immediately
after the class definition; this rewriting is considered to be done after preprocessing but before syntax analy-
sis and type checking of the function definition. Thus

int b;
struct x {

char* f() { return b; }
char* b;

};

is equivalent to

int b;
struct x {

char* f();
char* b;

};

inline char* x::f() { return b; } // moved

Thus theb used inx::f() is X::b and not the globalb. See also_class.local.type_.
2 Member functions can be defined even in local or nested class definitions where this rewriting would be

syntactically incorrect. See 9.8 for a discussion of local classes and 9.7 for a discussion of nested classes.

9.4 Static members 

1 A data or function member of a class may be declaredstatic in the class definition. There is only one
copy of a static data member, shared by all objects of the class and any derived classes in a program. A
static member is not part of objects of a class. Static members of a global class have external linkage (3.3).
The declaration of a static data member in its class definition isnot a definition and may be of an incom-
plete type. A definition is required elsewhere; see also 19.3.

2 A static member function does not have athis pointer so it can access nonstatic members of its class
only by using. or -> . A static member function cannot bevirtual . There cannot be a static and a non-
static member function with the same name and the same parameter types.

3 Static members of a local class (9.8) have no linkage and cannot be defined outside the class definition.
It follows that a local class cannot have static data members.

4 A static membermemof classcl can be referred to ascl::mem (5.1), that is, independently of any
object. It can also be referred to using the. and-> member access operators (5.2.4). When a static mem-
ber is accessed through a member access operator, the expression on the left side of the. or -> is not eval-
uated. The static membermemexists even if no objects of classcl have been created. For example, in the
following, run_chain , idle , and so on exist even if noprocess objects have been created:

class process {
static int no_of_processes;
static process* run_chain;
static process* running;
static process* idle;
// ...

public:
// ...
int state();
static void reschedule();
// ...

};
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andreschedule can be used without reference to aprocess object, as follows:

void f()
{

process::reschedule();
}

5 Static members of a global class are initialized exactly like global objects and only in file scope. For
example,

void process::reschedule() { /* ... */ };
int process::no_of_processes = 1;
process* process::running = get_main();
process* process::run_chain = process::running;

Static members obey the usual class member access rules (11) except that they can be initialized (in file
scope). The initializer of a static member of a class has the same access rights as a member function, as in
process::run_chain above.

6 The type of a static member does not involve its class name; thus the type ofprocess ::
no_of_processes is int and the type of&process :: reschedule is void(*)() .

9.5 Unions

1 A union may be thought of as a class whose member objects all begin at offset zero and whose size is suffi-
cient to contain any of its member objects. At most one of the member objects can be stored in a union at
any time. A union may have member functions (including constructors and destructors), but not virtual
(10.2) functions. A union may not have base classes. A union may not be used as a base class. An object
of a class with a constructor or a destructor or a user-defined assignment operator (13.4.3) cannot be a
member of a union. A union can have nostatic data members.

Shouldn’t we prohibit references in unions?__________________________________________
__________________________________________


2 A union of the form

union { member-specification} ;

is called an anonymous union; it defines an unnamed object (and not a type). The names of the members of
an anonymous union must be distinct from other names in the scope in which the union is declared; they are
used directly in that scope without the usual member access syntax (5.2.4). For example,

void f()
{

union { int a; char* p; };
a = 1;
// ...
p = "Jennifer";
// ...

}

Herea andp are used like ordinary (nonmember) variables, but since they are union members they have
the same address.

3 A global anonymous union must be declaredstatic . An anonymous union may not haveprivate
or protected members (11). An anonymous union may not have function members.

4 A union for which objects or pointers are declared is not an anonymous union. For example,

union { int aa; char* p; } obj, *ptr = &obj;
aa = 1; // error
ptr->aa = 1; // ok

The assignment to plainaa is ill formed since the member name is not associated with any particular
object.
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5 Initialization of unions that do not have constructors is described in 8.4.1. 

9.6 Bit-fields 

1 A member-declaratorof the form

identifieropt : constant-expression

specifies a bit-field; its length is set off from the bit-field name by a colon. Allocation of bit-fields within a
class object is implementation dependent. Fields are packed into some addressable allocation unit. Fields
straddle allocation units on some machines and not on others. Alignment of bit-fields is implementation
dependent. Fields are assigned right-to-left on some machines, left-to-right on others.

2 An unnamed bit-field is useful for padding to conform to externally-imposed layouts. Unnamed fields
are not members and cannot be initialized. As a special case, an unnamed bit-field with a width of zero
specifies alignment of the next bit-field at an allocation unit boundary.

3 A bit-field may not be a static member. A bit-field must have integral or enumeration type (3.6.1). It is
implementation dependent whether a plain (neither explicitly signed nor unsigned)int field is signed or
unsigned. The address-of operator& may not be applied to a bit-field, so there are no pointers to bit-fields.
Nor are there references to bit-fields. 

9.7 Nested class declarations 

1 A class may be defined within another class. A class defined within another is called anestedclass. The
name of a nested class is local to its enclosing class. The nested class is in the scope of its enclosing class.
Except by using explicit pointers, references, and object names, declarations in a nested class can use only
type names, static members, and enumerators from the enclosing class.

int x;
int y;

class enclose {
public:

int x;
static int s;

class inner {

void f(int i)
{

x = i; // error: assign to enclose::x
s = i; // ok: assign to enclose::s
::x = i; // ok: assign to global x
y = i; // ok: assign to global y

}

void g(enclose* p, int i)
{

p->x = i; // ok: assign to enclose::x
}

};
};

inner* p = 0; // error ‘inner’ not in scope

Member functions of a nested class have no special access to members of an enclosing class; they obey the
usual access rules (11). Member functions of an enclosing class have no special access to members of a
nested class; they obey the usual access rules. For example,
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class E {
int x;

class I {
int y;
void f(E* p, int i)
{

p->x = i; // error: E::x is private
}

};

int g(I* p)
{

return p->y; // error: I::y is private
}

};

Member functions and static data members of a nested class can be defined in the global scope. For exam-
ple,

class enclose {
class inner {

static int x;
void f(int i);

};
};

typedef enclose::inner ei;
int ei::x = 1;

void enclose::inner::f(int i) { /* ... */ }

A nested class may be declared in a class and later defined in the same or an enclosing scope. For example:

class E {
class I1; // forward declaration of nested class
class I2;
class I1 {}; // definition of nested class

};
class E::I2 {}; // definition of nested class

Like a member function, a friend function defined within a class is in the lexical scope of that class; it
obeys the same rules for name binding as the member functions (described above and in 10.4) and like
them has no special access rights to members of an enclosing class or local variables of an enclosing func-
tion (11). 

9.8 Local class declarations 

1 A class can be defined within a function definition; such a class is called alocal class. The name of a local
class is local to its enclosing scope. The local class is in the scope of the enclosing scope. Declarations in a
local class can use only type names, static variables,extern variables and functions, and enumerators
from the enclosing scope. For example,

int x;
void f()
{

static int s ;
int x;
extern int g();
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struct local {
int g() { return x; } // error: ‘x’ is auto
int h() { return s; } // ok
int k() { return ::x; } // ok
int l() { return g(); } // ok

};
// ...

}

local* p = 0; // error: ‘local’ not in scope

2 An enclosing function has no special access to members of the local class; it obeys the usual access
rules (11). Member functions of a local class must be defined within their class definition. A local class
may not have static data members. 

9.9 Nested type names 

1 Type names obey exactly the same scope rules as other names. In particular, type names defined within a
class definition cannot be used outside their class without qualification. For example,

class X {
public:

typedef int I;
class Y { /* ... */ };
I a;

};

I b; // error
Y c; // error
X::Y d; // ok
X::I e; // ok
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Derived Classes

1 This chapter explainsinheritance. A class can bederivedfrom one or more other classes, which are then called
baseclasses of the derived class. The derived class inherits the properties of its base classes, including its data
members and member functions. In addition, the derived class can overridevirtual functions of its bases and
declare additional data members, functions, and so on. Access to class members is checked for ambiguity.

2 Sharing among the (base) classes that make up a class can be expressed usingvirtual base classes. Classes can
be declaredabstractto ensure that they are used only as base classes.

3 The final section of this chapter (10.4) is a summary of the C + + scope rules.

10 Derived classes 

1 A list of base classes may be specified in a class declaration using the notation:

base-clause:
: base-specifier-list

base-specifier-list:
base-specifier
base-specifier-list, base-specifier

base-specifier:
qualified-class-specifier
virtual access-specifieropt qualified-class-specifier
access-specifiervirtual opt qualified-class-specifier

access-specifier:
private
protected
public

Theclass-namein abase-specifiermust denote a previously declared class (9), which is called adirect base
classfor the class being declared. A classB is a base class of a classD if it is a direct base class ofD or a
direct base class of one ofD’s base classes. A class is anindirect base class of another if it is a base class
but not a direct base class. A class is said to be (directly or indirectly)derivedfrom its (direct or indirect)
base classes. For the meaning ofaccess-specifiersee 11. Unless redefined in the derived class, members
of a base class can be referred to as if they were members of the derived class. The base class members are
said to beinheritedby the derived class. The scope resolution operator:: (5.1) may be used to refer to a
base member explicitly. This allows access to a name that has been redefined in the derived class. A
derived class can itself serve as a base class subject to access control; see 11.2. A pointer to a derived class
may be implicitly converted to a pointer to an accessible unambiguous base class (4.6). A reference to a
derived class may be implicitly converted to a reference to an accessible unambiguous base class (4.7).
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2 For example,

class Base {
public:

int a, b, c;
};

class Derived : public Base {
public:

int b;
};

class Derived2 : public Derived {
public:

int c;
};

3 Here, an object of classDerived2 will have a sub-object of classDerived which in turn will have a
sub-object of classBase . A derived class and its base classes can be represented by a directed acyclic
graph (DAG) where an arrow means“directly derived from.” A DAG of classes is often referred to as a
“class lattice.” For example,

Base

Derived

Derived2

Note that the arrows need not have a physical representation in memory and the order in which the sub-
objects appear in memory is unspecified.

4 Name lookup proceeds from the original class (the named class in the case of aqualified-id) along the
edges of the lattice until the name is found. If a name is found in more than one class in the lattice, the
access is ambiguous (see 10.1.1) unless one occurrence of the name hides18 all the others. A nameB::f
hidesa nameA::f if its classB hasA as a base and the instance ofB containingB::f has the instance of
A containingA::f as a sub-object. The second part of this definition is trivially satisfied when multiple
inheritance is not used. For example,

void f()
{

Derived2 x;
x.a = 1; // Base::a
x.b = 2; // Derived::b
x.c = 3; // Derived2::c
x.Base::b = 4; // Base::b
x.Derived::c = 5; // Base::c
Base* bp = &x; // standard conversion:

// Derived2* to Base*
}

assigns to the five members ofx and makesbp point tox .
5 Note that in theclass-name:: id-expressionnotation,id-expressionneed not be a member ofclass-

name; the notation simply specifies a class in which to start looking forid-expression.
6 Initialization of objects representing base classes can be specified in constructors; see 12.6.2. 

_ ____________________
18This criterion is called“dominance” in the ARM.
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10.1 Multiple base classes 

1 A class may be derived from any number of base classes. For example,

class A { /* ... */ };
class B { /* ... */ };
class C { /* ... */ };
class D : public A, public B, public C { /* ... */ };

The use of more than one direct base class is often called multiple inheritance.
2 The order of derivation is not significant except possibly for default initialization by constructor (12.1),

for cleanup (12.4), and for storage layout (5.4, 9.2, 11.1).
3 A class may not be specified as a direct base class of a derived class more than once but it may be an

indirect base class more than once.

class B { /* ... */ };
class D : public B, public B { /* ... */ }; // illegal

class L { /* ... */ };
class A : public L { /* ... */ };
class B : public L { /* ... */ };
class C : public A, public B { /* ... */ }; // legal

Here, an object of classCwill have two sub-objects of classL as shown below.

L L

A B

C

4 The keywordvirtual may be added to a base class specifier. A single sub-object of the virtual base
class is shared by every base class that specified the base class to be virtual. For example,

class V { /* ... */ };
class A : virtual public V { /* ... */ };
class B : virtual public V { /* ... */ };
class C : public A, public B { /* ... */ };

Here classChas only one sub-object of classV, as shown below.

V

A B

C

5 A class may have both virtual and nonvirtual base classes of a given type.

class B { /* ... */ };
class X : virtual public B { /* ... */ };
class Y : virtual public B { /* ... */ };
class Z : public B { /* ... */ };
class AA : public X, public Y, public Z { /* ... */ };

Here classAAhas two sub-objects of classB: Z’s B and the virtualB shared byX andY, as shown below.

B B

X Y Z

AA
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10.1.1 Ambiguities

1 Access to base class members must be unambiguous. Access to a base class member is ambiguous if the
id-expressionor qualified-id used does not refer to a unique function, object, type, or enumerator. The
check for ambiguity takes place before access control (11). For example,

class A {
public:

int a;
int (*b)();
int f();
int f(int);
int g();

};

class B {
int a;
int b();

public:
int f();
int g;
int h();
int h(int);

};

class C : public A, public B {};

void g(C* pc)
{

pc->a = 1; // error: ambiguous: A::a or B::a
pc->b(); // error: ambiguous: A::b or B::b
pc->f(); // error: ambiguous: A::f or B::f
pc->f(1); // error: ambiguous: A::f or B::f
pc->g(); // error: ambiguous: A::g or B::g
pc->g = 1; // error: ambiguous: A::g or B::g
pc->h(); // ok
pc->h(1); // ok

}

If the name of an overloaded function is unambiguously found overloading resolution also takes place
before access control. Ambiguities can be resolved by qualifying a name with its class name. For example,

class A {
public:

int f();
};

class B {
public:

int f();
};

class C : public A, public B {
int f() { return A::f() + B::f(); }

};

A single function, object, type, or enumerator may be reached through more than one path through the
directed acyclic graph of base classes. This is not an ambiguity. For example,
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class V { public: int v; };
class A {
public:

int a;
static int s;
enum { e };

};
class B : public A, public virtual V {};
class C : public A, public virtual V {};

class D : public B, public C { };

void f(D* pd)
{

pd->v++; // ok: only one ‘v’ (virtual)
pd->s++; // ok: only one ‘s’ (static)
int i = pd->e; // ok: only one ‘e’ (enumerator)
pd->a++; // error, ambiguous: two ‘a’s in ‘D’

}

When virtual base classes are used, a hidden function, object, or enumerator may be reached along a path
through the inheritance DAG that does not pass through the hiding function, object, or enumerator. This is
not an ambiguity. The identical use with nonvirtual base classes is an ambiguity; in that case there is no
unique instance of the name that hides all the others. For example,

class V { public: int f(); int x; };
class W { public: int g(); int y; };
class B : public virtual V, public W
{
public:

int f(); int x;
int g(); int y;

};
class C : public virtual V, public W { };

class D : public B, public C { void g(); };

V W W

B C

D

The names defined inV and the left hand instance ofWare hidden by those inB, but the names defined in
the right hand instance ofWare not hidden at all.

void D::g()
{

x++; // ok: B::x hides V::x
f(); // ok: B::f() hides V::f()
y++; // error: B::y and C’s W::y
g(); // error: B::g() and C’s W::g()

}

An explicit or implicit conversion from a pointer or reference to a derived class to a pointer or reference to
one of its base classes must unambiguously refer to a unique object representing the base class. For exam-
ple,
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class V { };
class A { };
class B : public A, public virtual V { };
class C : public A, public virtual V { };
class D : public B, public C { };

void g()
{

D d;
B* pb = &d;
A* pa = &d; // error, ambiguous: C’s A or B’s A ?
V* pv = &d; // fine: only one V sub-object

}

10.2 Virtual functions 

1 Virtual functions support dynamic binding and object-oriented programming. A class that declares or
inherits a virtual function is called apolymorphic class.

2 If a virtual member functionvf is declared in a classBase and in a classDerived , derived directly
or indirectly from Base , a member functionvf with the same name and same parameter list as
Base::vf is declared, thenDerived::vf is also virtual (whether or not it is so declared) and it
overrides19 Base::vf . For convenience we say that any virtual function overrides itself. Then in any
well-formed class, for each virtual function declared in that class or any of its direct or indirect base classes
there is a uniquefinal overriderthat overrides that function and every other overrider of that function.

3 A program is ill-formed if the return type of any overriding function differs from the return type of the
overridden function unless the return type of the latter is pointer or reference (possibly cv-qualified) to a
classB, and the return type of the former is pointer or reference (respectively) to a classD such thatB is an 
unambiguous direct or indirect base class ofD, accessible in the class of the overriding function, and the
cv-qualification in the return type of the overriding function is less than or equal to the cv-qualification in
the return type of the overridden function. In that case when the overriding function is called as the final
overrider of the overridden function, its result is converted to the type returned by the (statically chosen)
overridden function. See 5.2.2. For example,

class B {};
class D : private B { friend class Derived; };
struct Base {

virtual void vf1();
virtual void vf2();
virtual void vf3();
virtual B* vf4();
void f();

};

struct No_good : public Base {
D* vf4(); // error: B (base class of D) inaccessible

};

_ ____________________
19A function with the same name but a different parameter list (see 13) as a virtual function is not necessarily virtual and does not override. The use of
thevirtual specifier in the declaration of an overriding function is legal but redundant (has empty semantics). Access control (11) is not considered
in determining overriding.
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struct Derived : public Base {
void vf1(); // virtual and overrides Base::vf1()
void vf2(int); // not virtual, hides Base::vf2()
char vf3(); // error: invalid difference in return type only
D* vf4(); // okay: returns pointer to derived class
void f();

};

void g()
{

Derived d;
Base* bp = &d; // standard conversion:

// Derived* to Base*
bp->vf1(); // calls Derived::vf1()
bp->vf2(); // calls Base::vf2()
bp->f(); // calls Base::f() (not virtual)
B* p = bp->vf4(); // calls Derived::pf() and converts the

// result to B*
Derived* dp = &d;
D* q = dp->vf4(); // calls Derived::pf() and does not

// convert the result to B*
dp->vf2(); // ill formed: argument mismatch

}

4 That is, the interpretation of the call of a virtual function depends on the type of the object for which it
is called (the dynamic type), whereas the interpretation of a call of a nonvirtual member function depends
only on the type of the pointer or reference denoting that object (the static type). See 5.2.2.

5 The virtual specifier implies membership, so a virtual function cannot be a global (nonmember)
(7.1.2) function. Nor can a virtual function be a static member, since a virtual function call relies on a spe-
cific object for determining which function to invoke. A virtual function can be declared afriend in
another class. A virtual function declared in a class must be defined or declared pure (10.3) in that class.

6 Following are some examples of virtual functions used with multiple base classes:

struct A {
virtual void f();

};

struct B1 : A { // note non-virtual derivation
void f();

};

struct B2 : A {
void f();

};

struct D : B1, B2 { // D has two separate A sub-objects
};

void foo()
{

D d;
// A* ap = &d; // would be ill formed: ambiguous
B1* b1p = &d;
A* ap = b1p;
ap->f(); // calls D::B1::f
dp->f(); // ill formed: ambiguous

}

In classD above there are two occurrences of classA and hence two occurrences of the virtual member
function A::f . The final overrider ofB1::A::f is B1::f and the final overrider ofB2::A::f is
B2::f .
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7 The following example shows a function that does not have a unique final overrider:

struct A {
virtual void f();

};

struct VB1 : virtual A { // note virtual derivation
void f();

};

struct VB2 : virtual A {
void f();

};

struct Error : VB1, VB2 { // ill-formed
};

struct Okay : VB1, VB2 {
void f();

};

Both VB1::f andVB2::f overrideA::f but there is no overrider of both of them in classError . This 
example is therefore ill-formed. ClassOkay is well formed, however, becauseOkay::f is a final over-
rider.

8 The following example uses the well-formed classes from above.

struct VB1a : virtual A { // does not declare f
};

struct Da : VB1a, VB2 {
};

void foe()
{

VB1a* vb1ap = new Da;
vb1ap->f(); // calls VB2:f

}

9 Explicit qualification with the scope operator (5.1) suppresses the virtual call mechanism. For example,

class B { public: virtual void f(); };
class D : public B { public: void f(); };

void D::f() { /* ... */ B::f(); }

Here, the function call inD::f really does callB::f and notD::f . 

10.3 Abstract classes 

1 The abstract class mechanism supports the notion of a general concept, such as ashape , of which only
more concrete variants, such ascircle andsquare , can actually be used. An abstract class can also be
used to define an interface for which derived classes provide a variety of implementations.

2 An abstract classis a class that can be used only as a base class of some other class; no objects of an
abstract class may be created except as sub-objects of a class derived from it. A class is abstract if it has at
least onepure virtual function(which may be inherited: see below). A virtual function is specifiedpureby
using apure-specifier(9.2) in the function declaration in the class declaration. A pure virtual function need
be defined only if explicitly called with thequalified-idsyntax (5.1). For example,
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class point { /* ... */ };
class shape { // abstract class

point center;
// ...

public:
point where() { return center; }
void move(point p) { center=p; draw(); }
virtual void rotate(int) = 0; // pure virtual
virtual void draw() = 0; // pure virtual
// ...

};

An abstract class may not be used as an parameter type, as a function return type, or as the type of an
explicit conversion. Pointers and references to an abstract class may be declared. For example,

shape x; // error: object of abstract class
shape* p; // ok
shape f(); // error
void g(shape); // error
shape& h(shape&); // ok

3 Pure virtual functions are inherited as pure virtual functions. For example,

class ab_circle : public shape {
int radius;

public:
void rotate(int) {}
// ab_circle::draw() is a pure virtual

};

Sinceshape::draw() is a pure virtual functionab_circle::draw() is a pure virtual by default.
The alternative declaration,

class circle : public shape {
int radius;

public:
void rotate(int) {}
void draw(); // must be defined somewhere

};

would make classcircle nonabstract and a definition ofcircle::draw() must be provided.
4 An abstract class may be derived from a class that is not abstract, and a pure virtual function may over-

ride a virtual function which is not pure.
5 Member functions can be called from a constructor of an abstract class; the effect of calling a pure vir-

tual function directly or indirectly for the object being created from such a constructor is undefined. 

10.4 Summary of scope rules 

1 The scope rules for C + + programs can now be summarized. These rules apply uniformly for all names
(including typedef-names(7.1.3) andclass-names(9.1)) wherever the grammar allows such names in the
context discussed by a particular rule. This section discusses lexical scope only; see 3.3 for an explanation
of linkage issues. The notion of point of declaration is discussed in (3.2).

2 Any use of a name must be unambiguous (up to overloading) in its scope (10.1.1). Only if the name is
found to be unambiguous in its scope are access rules considered (11). Only if no access control errors are
found is the type of the object, function, or enumerator named considered.

3 A name used outside any function and class or prefixed by the unary scope operator:: (andnot quali-
fied by the binary:: operator or the-> or . operators) must be the name of a global object, function, or
enumerator.

4 A name specified afterX:: , afterobj. , whereobj is anX or a reference toX, or afterptr-> , where
ptr is a pointer toX must be the name of a member of classX or be a member of a base class ofX. In
addition, ptr in ptr-> may be an object of a classY that has operator->() declared so
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ptr->operator->() eventually resolves to a pointer toX (13.4.6).
5 A name that is not qualified in any of the ways described above and that is used in a function that is not

a class member must be declared before its use in the block in which it occurs or in an enclosing block or
globally. The declaration of a local name hides previous declarations of the same name in enclosing blocks
and at file scope. In particular, no overloading occurs of names in different scopes (13.4).

6 A name that is not qualified in any of the ways described above and that is used in a function that is a
nonstatic member of classX must be declared in the block in which it occurs or in an enclosing block, be a
member of classX or a base class of classX, or be a global name. The declaration of a local name hides
declarations of the same name in enclosing blocks, members of the function’s class, and global names. The
declaration of a member name hides declarations of the same name in base classes and global names.

7 A name that is not qualified in one of the ways described above and is used in a static member function
of a classX must be declared in the block in which it occurs, in an enclosing block, be a static member of
classX, or a base class of classX, or be a global name.

8 A function parameter name in a function definition (8.3) is in the scope of the outermost block of the
function (in particular, it is a local name). A function parameter name in a function declaration (8.2.5) that
is not a function definition is in a local scope that disappears immediately after the function declaration. A
default parameter is in the scope determined by the point of declaration (3.2) of its parameter, but may not
access local variables or nonstatic class members; it is evaluated at each point of call (8.2.6).

9 A ctor-initializer (12.6.2) is evaluated in the scope of the outermost block of the constructor it is speci-
fied for. In particular, it can refer to the constructor’s parameter names.
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Member Access Control

1 This chapter explains mechanisms for control of access to class members. Access control is based on the use of
the keywordspublic , private , andprotected to control access to individual members of a class and on
the use ofprivate , protected , andpublic specifiers to control access to base class members in a derived
class object. Thefriend mechanism provides a way of granting individual functions and classes access to
members of a class.

2 Access control applies uniformly to function members, data members, member constants, and nested types.

11 Member access control 

1 A member of a class can be

private ; that is, its name can be used only by member functions and friends of the class in
which it is declared.

protected ; that is, its name can be used only by member functions and friends of the class in
which it is declared and by member functions and friends of classes derived from this class (see
11.5).

public ; that is, its name can be used by any function.

2 Members of a class declared with the keywordclass are private by default. Members of a
class declared with the keywordsstruct or union arepublic by default. For example,

class X {
int a; // X::a is private by default

};

struct S {
int a; // S::a is public by default

};

11.1 Access specifiers 

1 Member declarations may be labeled by anaccess-specifier(10):

access-specifier: member-specificationopt

An access-specifierspecifies the access rules for members following it until the end of the class or until
anotheraccess-specifieris encountered. For example,



11—2 Member Access Control DRAFT September 28, 1993 Chapter 11

class X {
int a; // X::a is private by default: ‘class’ used

public:
int b; // X::b is public
int c; // X::c is public

};

Any number of access specifiers is allowed and no particular order is required. For example,

struct S {
int a; // S::a is public by default: ‘struct’ used

protected:
int b; // S::b is protected

private:
int c; // S::c is private

public:
int d; // S::d is public

};

2 The order of allocation of data members with separateaccess-specifierlabels is implementation depen-
dent (9.2). 

11.2 Access specifiers for base classes 

1 If a class is declared to be a base class (10) for another class using thepublic access specifier, thepub-
lic members of the base class are accessible aspublic members of the derived class andprotected
members of the base class are accessible asprotected members of the derived class (but see 13.1). If a
class is declared to be a base class for another class using theprotected access specifier, thepublic
andprotected members of the base class are accessible asprotected members of the derived class.
If a class is declared to be a base class for another class using theprivate access specifier, thepublic
andprotected members of the base class are accessible asprivate members of the derived class. Pri-
vate members of a base class remain inaccessible even to derived classes unlessfriend declarations
within the base class declaration are used to grant access explicitly.

2 In the absence of anaccess-specifierfor a base class,public is assumed when the derived class is
declaredstruct andprivate is assumed when the class is declaredclass . For example,

class B { /* ... */ };
class D1 : private B { /* ... */ };
class D2 : public B { /* ... */ };
class D3 : B { /* ... */ }; // ‘B’ private by default
struct D4 : public B { /* ... */ };
struct D5 : private B { /* ... */ };
struct D6 : B { /* ... */ }; // ‘B’ public by default
class D7 : protected B { /* ... */ };
struct D8 : protected B { /* ... */ };

HereB is a public base ofD2, D4, andD6, a private base ofD1, D3, andD5, and a protected base ofD7
andD8.

3 Because of the rules on pointer conversion (4.6), a static member of a private base class may be inacces-
sible as an inherited name, but accessible directly. For example,
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class B {
public:

int mi; // nonstatic member
static int si; // static member

};
class D : private B {
};
class DD : public D {

void f();
};

void DD::f() {
mi = 3; // error: mi is private in D
si = 3; // error: si is private in D
B b;
b.mi = 3; // okay (b.mi is different from this->mi)
b.si = 3; // okay (b.si is the same as this->si)
B::si = 3; // okay
B* bp1 = this; // error: B is a private base class
B* bp2 = (B*)this; // okay with cast
bp2->mi = 3; // okay and bp2->mi is the same as this->mi

}

4 Members and friends of a classX can implicitly convert anX* to a pointer to a private or protected
immediate base class ofX. 

11.3 Access declarations 

1 The access of public or protected member of a private or protected base class can be restored to the same
level in the derived class by mentioning itsqualified-id in the public (for public members of the base
class) orprotected (for protected members of the base class) part of a derived class declaration. Such
mention is called anaccess declaration.

2 For example,

class A {
public:

int z;
int z1;

};

class B : public A {
int a;

public:
int b, c;
int bf();

protected:
int x;
int y;

};
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class D : private B {
int d;

public:
B::c; // adjust access to ‘B::c’
B::z; // adjust access to ‘A::z’
A::z1; // adjust access to ‘A::z1’
int e;
int df();

protected:
B::x; // adjust access to ‘B::x’
int g;

};

class X : public D {
int xf();

};

int ef(D&);
int ff(X&);

The external functionef can use only the namesc , z , z1 , e, anddf . Being a member ofD, the function
df can use the namesb, c , z , z1 , bf , x , y , d, e, df , andg, but nota. Being a member ofB, the function
bf can use the membersa, b, c , z , z1 , bf , x , andy . The functionxf can use the public and protected
names fromD, that is,c , z , z1 , e, anddf (public), andx , andg (protected). Thus the external function
ff has access only toc , z , z1 , e, anddf . If D were a protected or private base class ofX, xf would have
the same privileges as before, butff would have no access at all.

3 An access declaration may not be used to restrict access to a member that is accessible in the base class,
nor may it be used to enable access to a member that is not accessible in the base class. For example,

class A {
public:

int z;
};

class B : private A {
public:

int a;
int x;

private:
int b;

protected:
int c;

};

class D : private B {
public:

B::a; // make ‘a’ a public member of D
B::b; // error: attempt to grant access

// can’t make ‘b’ a public member of D
A::z; // error: attempt to grant access

protected:
B::c; // make ‘c’ a protected member of D
B::x; // error: attempt to reduce access

// can’t make ‘x’ a protected member of D
};

class E : protected B {
public:

B::a; // make ‘a’ a public member of E
};
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The namesc andx are protected members ofE by virtue of its protected derivation fromB. An access dec-
laration for the name of an overloaded function adjusts the access to all functions of that name in the base
class. For example,

class X {
public:

f();
f(int);

};

class Y : private X {
public:

X::f; // makes X::f() and X::f(int) public in Y
};

4 The access to a base class member cannot be adjusted in a derived class that also defines a member of
that name. For example,

class X {
public:

void f();
};

class Y : private X {
public:

void f(int);
X::f; // error: two declarations of f

};

11.4 Friends

1 A friend of a class is a function that is not a member of the class but is permitted to use the private and pro-
tected member names from the class. The name of a friend is not in the scope of the class, and the friend is
not called with the member access operators (5.2.4) unless it is a member of another class. The following
example illustrates the differences between members and friends:

class X {
int a;
friend void friend_set(X*, int);

public:
void member_set(int);

};

void friend_set(X* p, int i) { p->a = i; }
void X::member_set(int i) { a = i; }

void f()
{

X obj;
friend_set(&obj,10);
obj.member_set(10);

}

2 When afriend declaration refers to an overloaded name or operator, only the function specified by
the parameter types becomes a friend. A member function of a classX can be a friend of a classY. For
example,

class Y {
friend char* X::foo(int);
// ...

};

All the functions of a classX can be made friends of a classY by a single declaration using anelaborated-
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type-specifier20 (9.1):

class Y {
friend class X;
// ...

};

Declaring a class to be a friend also implies that private and protected names from the class granting friend-
ship can be used in the class receiving it. For example,

class X {
enum { a=100 };
friend class Y;

};

class Y {
int v[X::a]; // ok, Y is a friend of X

};

class Z {
int v[X::a]; // error: X::a is private

};

3 If a class or function mentioned as a friend has not been declared, its name is entered in the smallest
non-class scope that encloses the friend declaration.

4 A function first declared in a friend declaration is equivalent to anextern declaration (3.3, 7.1.1).
5 A global (but not a member)friend function may be defined in a class definition other than a local

class definition (9.8). The function is theninline and the rewriting rule specified for member functions
(9.3.2) is applied. Afriend function defined in a class is in the (lexical) scope of the class in which it is
defined. A friend function defined outside the class is not.

6 Friend declarations are not affected byaccess-specifiers(9.2).
7 Friendship is neither inherited nor transitive. For example,

class A {
friend class B;
int a;

};

class B {
friend class C;

};

class C {
void f(A* p)
{

p->a++; // error: C is not a friend of A
// despite being a friend of a friend

}
};

class D : public B {
void f(A* p)
{

p->a++; // error: D is not a friend of A
// despite being derived from a friend

}
};

_ ____________________
20Note that theclass-keyof theelaborated-type-specifieris required.
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11.5 Protected member access 

1 A friend or a member function of a derived class can access a protected static member of a base class. A
friend or a member function of a derived class can access a protected nonstatic member of one of its base
classes only through a pointer to, reference to, or object of the derived class itself (or any class derived from
that class). When a protected member of a base class appears in aqualified-id in a friend or a member
function of a derived class thenested-class-specifiermust name the derived class. For example,

class B {
protected:

int i;
};

class D1 : public B {
};

class D2 : public B {
friend void fr(B*,D1*,D2*);
void mem(B*,D1*);

};

void fr(B* pb, D1* p1, D2* p2)
{

pb->i = 1; // illegal
p1->i = 2; // illegal
p2->i = 3; // ok (access through a D2)
int B::* pmi_B = &B::i; // illegal
int D2::* pmi_D2 = &D2::i; // ok

}

void D2::mem(B* pb, D1* p1)
{

pb->i = 1; // illegal
p1->i = 2; // illegal
i = 3; // ok (access through ‘this’)

}

void g(B* pb, D1* p1, D2* p2)
{

pb->i = 1; // illegal
p1->i = 2; // illegal
p2->i = 3; // illegal

}

11.6 Access to virtual functions 

1 The access rules (11) for a virtual function are determined by its declaration and are not affected by the
rules for a function that later overrides it. For example,

class B {
public:

virtual f();
};

class D : public B {
private:

f();
};
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void f()
{

D d;
B* pb = &d;
D* pd = &d;

pb->f(); // ok: B::f() is public,
// D::f() is invoked

pd->f(); // error: D::f() is private
}

Access is checked at the call point using the type of the expression used to denote the object for which the
member function is called (B* in the example above). The access of the member function in the class in
which it was defined (D in the example above) is in general not known. 

11.7 Multiple access 

1 If a name can be reached by several paths through a multiple inheritance graph, the access is that of the path
that gives most access. For example,

class W { public: void f(); };
class A : private virtual W { };
class B : public virtual W { };
class C : public A, public B {

void f() { W::f(); } // ok
};

SinceW::f() is available toC::f() along the public path throughB, access is allowed.
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Special Member Functions

1 Some member functions have special meaning in the sense that they affect the way a compiler treats objects of
their class; that is, they affect the semantics even when they are not explicitly used.

2 This chapter describesconstructors, destructors, andconversions, and the free store management operators.
Constructors initialize class objects. Destructors are invoked when class objects are destroyed; they are useful
for cleaning up. A conversion function specifies a conversion between a class object and another type. The free
store management operators allocate and deallocate memory for dynamic objects.

3 Copying of class objects and the use of temporaries are also covered in this chapter.

12 Special member functions 

1 Some member functions are special in that they affect the way objects of a class are created, copied, and
destroyed, and how values may be converted to values of other types. Often such special functions are
called implicitly. Also, the compiler may generate instances of these functions when the programmer does
not supply them. Compiler-generated special functions may be referred to in the same ways that
programmer-written functions are.

2 These member functions obey the usual access rules (11). For example, declaring a constructorpro-
tected ensures that only derived classes and friends can create objects using it.

12.1 Constructors

1 A member function with the same name as its class is called a constructor; it is used to construct values of
its class type. If a class has a constructor, each object of that class will be initialized before any use is made
of the object; see 12.6.

2 A constructor can be invoked for aconst or volatile object. A constructor may not be declared
const or volatile (9.3.1). A constructor may not bevirtual . A constructor may not bestatic .

3 Constructors are not inherited. Default constructors and copy constructors, however, are generated (by
the compiler) where needed (12.8). Generated constructors arepublic .

4 A default constructorfor a classX is a constructor of classX that can be called without an argument. A
default constructor will be generated for a classX only if no constructor has been declared for classX.

5 A copy constructorfor a classX is a constructor whose first parameter is of typeX&or const X& and
whose other parameters, if any, all have defaults, so that it can be called with a single argument of typeX.
For example,X::X(const X&) andX::X(X&, int=0) are copy constructors. A copy constructor is gen-
erated if and only if no copy constructor is declared in the class definition.21

_ ____________________
21Thus the class definition

struct X {
X(const X&, int);

};

causes a copy constructor to be generated and the member function definition
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6 A constructor for a classX whose first parameter is of typeX or const X (not reference types), is not a
copy constructor, and must have other parameters. For example,X::X(X) is ill formed.

7 Constructors for array elements are called in order of increasing addresses (8.2.4).
8 If a class has base classes or member objects with constructors, their constructors are called before the

constructor for the derived class. The constructors for base classes are called first. See 12.6.2 for an expla-
nation of how arguments can be specified for such constructors and how the order of constructor calls is
determined.

9 An object of a class with a constructor cannot be a member of a union.
10 No return type (not evenvoid ) can be specified for a constructor. Areturn statement in the body of

a constructor may not specify a return value. It is not possible to take the address of a constructor.
11 A constructor can be used explicitly to create new objects of its type, using the syntax

class-name( expression-listopt )

For example,

complex zz = complex(1,2.3);
cprint( complex(7.8,1.2) );

An object created in this way is unnamed (unless the constructor was used as an initializer for a named vari-
able as forzz above), with its lifetime limited to the expression in which it is created; see 12.2.

12 Member functions may be called from within a constructor; see 12.7. 

12.2 Temporary objects 

1 In some circumstances it may be necessary or convenient for the compiler to generate a temporary object.
Precisely when such temporaries are introduced is implementation dependent. When a compiler introduces
a temporary object of a class that has a constructor it must ensure that a constructor is called for the tempo-
rary object. Similarly, the destructor must be called for a temporary object of a class where a destructor is
declared. For example,

class X {
// ...

public:
// ...
X(int);
X(const X&);
~X();

};

X f(X);

void g()
{

X a(1);
X b = f(X(2));
a = f(a);

}

Here, one might use a temporary in which to constructX(2) before passing it tof() by X(X&) ; alterna-
tively, X(2) might be constructed in the space used to hold the argument for the first call off() . Also, a
temporary might be used to hold the result off(X(2)) before copying it tob by X(X&) ; alternatively,
f() ’s result might be constructed inb. On the other hand, for many functionsf() , the expression
a=f(a) requires a temporary for either the argumenta or the result off(a) to avoid undesired aliasing of
a.

_ ____________________
22

X::X(const X& x, int i =0) { ... }

is ill-formed because of ambiguity. 
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2 The compiler must ensure that every temporary object is destroyed. Ordinarily, temporary objects are
destroyed as the last step in evaluating the (unique) expression that (lexically) contains the point where they
were created and is not a subexpression of another expression. This is true even if that evaulation ends in
throwing an exception. Temporaries created while evaluating default parameter expressions (8.2.6) are
considered to be created in the expression that calls the function, not the expression that defines the default
parameter.

3 The only context in which temporaries are destroyed at a different point is when an expression appears
as a declarator initializer. In that context, the temporary that holds the result of the expression must persist
at least until the initialization implied by the declarator is complete. If the declarator declares a reference,
the temporary to which the reference is bound persists until the end of the scope in which the reference is
declared. Otherwise, the declarator defines an object that is initialized from a copy of the temporary; the
temporary is destroyed as soon as it has been copied. In all cases, temporaries are destroyed in reverse
order of creation. 

Another form of temporaries is discussed in 8.4.3.

12.3 Conversions

1 Type conversions of class objects can be specified by constructors and by conversion functions.
2 Such conversions, often calleduser-defined conversions, are used implicitly in addition to standard con-

versions (4). For example, a function expecting an argument of typeX can be called not only with an argu-
ment of typeX but also with an argument of typeT where a conversion fromT to X exists. User-defined
conversions are used similarly for conversion of initializers (8.4), function arguments (5.2.2, 8.2.5), func-
tion return values (6.6.3, 8.2.5), expression operands (5), expressions controlling iteration and selection
statements (6.4, 6.5), and explicit type conversions (5.2.3, 5.4).

3 User-defined conversions are applied only where they are unambiguous (10.1.1, 12.3.2). Conversions
obey the access control rules (11). As ever access control is applied after ambiguity resolution (10.4).

4 See 13.2 for a discussion of the use of conversions in function calls as well as examples below. 

12.3.1 Conversion by constructor 

1 A constructor with a single parameter specifies a conversion from its parameter type to the type of its class.
For example,

class X {
// ...

public:
X(int);
X(const char*, int =0);

};

void f(X arg) {
X a = 1; // a = X(1)
X b = "Jessie"; // b = X("Jessie",0)
a = 2; // a = X(2)
f(3); // f(X(3))

}

When no constructor for classX accepts the given type, no attempt is made to find other constructors or
conversion functions to convert the assigned value into a type acceptable to a constructor for classX. For
example,

class X { /* ... */ X(int); };
class Y { /* ... */ Y(X); };
Y a = 1; // illegal: Y(X(1)) not tried
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12.3.2 Conversion functions 

1 A member function of a classX with a name of the form

conversion-function-id:
operator conversion-type-id

conversion-type-id:
type-specifier-seq ptr-operatoropt

specifies a conversion fromX to the type specified by theconversion-type-id. Such member functions are
called conversion functions. Classes, enumerations, andtypedef-names may not be declared in thetype-
specifier-seq. Neither parameter types nor return type may be specified. A conversion operator is never
used to convert a (possibly qualified) object (or reference to an object) to the (possibly qualified) same
object type (or a reference to it), or to a (possibly qualified) base class of that type (or a reference to it).

2 Here is an example:

class X {
// ...

public:
operator int();

};

void f(X a)
{

int i = int(a);
i = (int)a;
i = a;

}

In all three cases the value assigned will be converted byX::operator int() . User-defined conver-
sions are not restricted to use in assignments and initializations. For example,

void g(X a, X b)
{

int i = (a) ? 1+a : 0;
int j = (a&&b) ? a+b : i;
if (a) { // ...
}

}

3 Conversion operators are inherited.
4 Conversion functions can be virtual.
5 At most one user-defined conversion (constructor or conversion function) is implicitly applied to a sin-

gle value. For example,

class X {
// ...

public:
operator int();

};

class Y {
// ...

public:
operator X();

};

Y a;
int b = a; // illegal:

// a.operator X().operator int() not tried
int c = X(a); // ok: a.operator X().operator int()
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6 User-defined conversions are used implicitly only if they are unambiguous. A conversion function in a
derived class does not hide a conversion function in a base class unless the two functions convert to the
same type. For example,

class X {
public:

// ...
operator int();

};

class Y : public X {
public:

// ...
operator void*();

};

void f(Y& a)
{

if (a) { // error: ambiguous
// ...

}
}

12.4 Destructors

1 A member function of classcl named~cl is called a destructor; it is used to destroy values of typecl
immediately before the object containing them is destroyed. A destructor takes no parameters, and no
return type can be specified for it (not evenvoid ). It is not possible to take the address of a destructor. A
destructor can be invoked for aconst or volatile object. A destructor may not be declaredconst or
volatile (9.3.1). A destructor may not bestatic .

2 Destructors are not inherited. If a base or a member of a class has a destructor and no destructor is
declared for the class itself a default destructor is generated.

A default destructor should be generated if the class has a deallocation function._ ______________________________________________________________________
_ ______________________________________________________________________


This generated destructor calls the destructors for bases and members of its class. Generated destructors are
public .

3 The body of a destructor is executed before the destructors for member or base objects. Destructors for
nonstatic member objects are executed in reverse order of their declaration before the destructors for base
classes. Destructors for nonvirtual base classes are executed in reverse order of their declaration in the
derived class before destructors for virtual base classes. Destructors for virtual base classes are executed in
the reverse order of their appearance in a depth-first left-to-right traversal of the directed acyclic graph of
base classes;“left-to-right” is the order of appearance of the base class names in the declaration of the
derived class. Destructors for elements of an array are called in reverse order of their construction.

4 A destructor may be declaredvirtual or purevirtual . In either case if any objects of that class or
any derived class are created in the program the destructor must be defined.

5 Member functions may be called from within a destructor; see 12.7.
6 An object of a class with a destructor cannot be a member of a union.
7 Destructors are invoked implicitly (1) when anauto (3.5) or temporary (12.2, 8.4.3) object goes out of

scope, (2) for constructed static (3.5) objects at program termination (3.4), and (3) through use of adelete-
expression(5.3.4) for objects allocated by anew-expression(5.3.3). Destructors can also be invoked
explicitly. A delete-expressioninvokes the destructor for the referenced object and passes the address of its
memory to a dealloation function (5.3.4, 12.5). For example,
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class X {
// ...

public:
X(int);
~X();

};

void g(X*);

void f() // common use:
{

X* p = new X(111); // allocate and initialize
g(p);
delete p; // cleanup and deallocate

}

8 Explicit calls of destructors are rarely needed. One use of such calls is for objects placed at specific
addresses using anew-expressionwith the placement option. Such use of explicit placement and
destruction of objects can be necessary to cope with dedicated hardware resources and for writing memory
management facilities. For example,

void* operator new(size_t, void* p) { return p; }

void f(X* p);

static char buf[sizeof(X)];

void g() // rare, specialized use:
{

X* p = new(buf) X(222); // use buf[]
// and initialize

f(p);
p->X::~X(); // cleanup

}

9 Invocation of destructors is subject to the usual rules for member functions, e.g., an object of the appro-
priate type is required (except invokingdelete on a null pointer has no effect). When a destructor is
invoked for an object, the object no longer exists; if the destructor is explicitly invoked again for the same
object the behavior is undefined. For example, if the destructor for an automatic object is explicitly
invoked, and the block is subsequently left in a manner that would ordinarily invoke implicit destruction of
the object, the behavior is undefined.

10 The notation for explicit call of a destructor may be used for any simple type name. For example,

int* p;
// ...
p->int::~int();

Using the notation for a type that does not have a destructor has no effect. Allowing this enables people to
write code without having to know if a destructor exists for a given type. 

12.5 Free store 

1 When an object is created with anew-expression, anallocation function(operator new() for non-array
objects oroperator new[]() for arrays) is (implicitly) called to get the required storage. Allocation
functions may be static class member functions or global functions. They may be overloaded, but the
return type must always bevoid* and the first parameter type must always besize_t , an
implementation-defined integral type defined in the standard header<stddef.h> . Overloading resolu-
tion is done by assembling an argument list from the amount of space requested (the first argument) and the
expressions in thenew-placementpart of thenew-expression, if used (the second and succeeding argu-
ments). When a non-array object or an array of classT is created by anew-expression, the allocation
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function is looked up in the scope of classT using the usual rules.
2 The default::operator new(size_t) and::operator new[](size_t) are always declared

and definitions are provided in the library (17.1.1). If a program contains a definition of::operator
new(size_t) or ::operator new[](size_t) , that definition is used in preference to the library
version.

3 When anew-expressionis executed, the selected allocation function will be called with the amount of
space requested (possibly zero) as its first argument. The function may return the address of a block of
available storage (suitably aligned) of the requested size or, if it is unable to allocate such a block, it may
throw an exception (15) of classxalloc (17.1.3.3.2) or a class derived fromxalloc . For a request for a
block of zero size, the pointer returned should be non-null and distinct from the address of any currently
allocated object or zero-sized block. If the allocation function returns the null pointer the result is imple-
mentation defined. Any other result is undefined.

Can a user-supplied allocation function call the currently installednew_handler ? How?_ ________________________________________________________________________________
_ ________________________________________________________________________________


4 Any X::operator new() or X::operator new[]() for a classX is a static member (even if not
explicitly declaredstatic ). For example,

class Arena; class Array_arena;
struct B {

void* operator new(size_t, Arena*);
};
struct D1 : B {
};

Arena* ap; Array_arena* aap;
void foo(int i)
{

new (ap) D1; // calls B::operator new(size_t, Arena*) 
new D1[i]; // calls ::operator new[](size_t) 
new D1; // ill-formed: ::operator new(size_t) hidden 

}

5 When an object is deleted with adelete-expression, a deallocation function (operator delete() for
non-array objects oroperator delete[]() for arrays) is (implicitly) called to reclaim the storage
occupied by the object. Like allocation functions, deallocation functions may be static class member func-
tions or global functions.

6 The return type of each deallocation function must bevoid and its first parameter must bevoid* .
For class member deallocation functions (only) a second parameter of typesize_t may be added but
deallocation functions may not be overloaded. When an object is deleted by adelete-expression, the
deallocation function is looked up in the scope of class of the executed destructor (see 5.3.4) using the usual
rules.

7 Default versions of::operator delete(void*) and ::operator delete[](void*) , are
provided in the library (17.1.1). If a program contains a definition of::operator delete(void*) or
::operator delete[](void*) , that definition is used in preference to the library version. When a
delete-expressionis executed, the selected deallocation function will be called with the address of the block
of storage to be reclaimed as its first argument and (if the two-parameter style is used) the size of the
block23 as its second argument.

8 An X::operator delete() or X::operator delete[]() for a classX is a static member
(even if not explicitly declaredstatic ). For example,

_ ____________________
23If the static class in thedelete-expressionis different from the dynamic class and the destructor is not virtual the size might be incorrect, but that case
is already undefined.
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class X {
// ...
void operator delete(void*);
void operator delete[](void*, size_t);

};

class Y {
// ...
void operator delete(void*, size_t);
void operator delete[](void*);

};

9 Since member allocation and deallocation functions arestatic they cannot be virtual. However, the
deallocation function actually called is determined by the destructor actually called, so if the destructor is
virtual the effect is the same. For example,

struct B {
virtual ~B();
void operator delete(void*, size_t);

};

struct D : B {
void operator delete(void*);
void operator delete[](void*, size_t);

};

void f(int i)
{

B* bp = new D;
delete bp; // uses D::operator delete(void*)
D* dp = new D[i];
delete dp; // uses D::operator delete[](void*, size_t)

}

Here, storage for the non-array object of classD is deallocated byD::operator delete() , due to the
virtual destructor. Access to the deallocation function is checked statically. Thus even though a different
one may actually be executed, the statically visible deallocation function must be accessible. In the exam-
ple above, ifB::operator delete() had beenprivate , the delete expression would have been ill
formed.

12.6 Initialization

1 An object of a class with no constructors, no private or protected members, no virtual functions, and no
base classes can be initialized using an initializer list; see 8.4.1. An object of a class with a constructor
must either be initialized or have a default constructor (12.1). The default constructor is used for objects
that are not explicitly initialized. 

12.6.1 Explicit initialization 

1 Objects of classes with constructors (12.1) can be initialized with a parenthesized expression list. This list
is taken as the argument list for a call of a constructor doing the initialization. Alternatively a single value
is specified as the initializer using the= operator. This value is used as the argument to a copy constructor.
Typically, that call of a copy constructor can be eliminated. For example,
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class complex {
// ...

public:
complex();
complex(double);
complex(double,double);
// ...

};

complex sqrt(complex,complex);

complex a(1); // initialize by a call of
// complex(double)

complex b = a; // initialize by a copy of ‘a’
complex c = complex(1,2); // construct complex(1,2)

// using complex(double,double)
// copy it into ‘c’

complex d = sqrt(b,c); // call sqrt(complex,complex)
// and copy the result into ‘d’

complex e; // initialize by a call of
// complex()

complex f = 3; // construct complex(3) using
// complex(double)
// copy it into ‘f’

Overloading of the assignment operator= has no effect on initialization.
2 The initialization that occurs in argument passing and function return is equivalent to the form

T x = a;

The initialization that occurs innew expressions (5.3.3) and in base and member initializers (12.6.2) is
equivalent to the form

T x(a);

3 Arrays of objects of a class with constructors use constructors in initialization (12.1) just like individual
objects. If there are fewer initializers in the list than elements in the array, the default constructor (12.1) is
used. If there is no default constructor theinitializer-clausemust be complete. For example,

complex cc = { 1, 2 }; // error; use constructor
complex v[6] = { 1,complex(1,2),complex(),2 };

Here,v[0] and v[3] are initialized withcomplex::complex(double) , v[1] is initialized with
complex::complex(double,double) , and v[2] , v[4] , and v[5] are initialized with
complex::complex() .

4 An object of classMcan be a member of a classX only if (1) Mdoes not have a constructor, or (2)Mhas
a default constructor, or (3)X has a constructor and if every constructor of classX specifies actor-initializer
(12.6.2) for that member. In case 2 the default constructor is called when the aggregate is created. If a
member of an aggregate has a destructor, then that destructor is called when the aggregate is destroyed.

5 Constructors for nonlocal static objects are called in the order they occur in a file; destructors are called
in reverse order. See also 3.4, 6.7, 9.4. 

12.6.2 Initializing bases and members 

1 Initializers for immediate base classes and for members not inherited from a base class may be specified in
the definition of a constructor. This is most useful for class objects, constants, and references where the
semantics of initialization and assignment differ. Actor-initializer has the form

ctor-initializer:
: mem-initializer-list
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mem-initializer-list:
mem-initializer
mem-initializer , mem-initializer-list

mem-initializer:
qualified-class-specifier( expression-listopt )
identifier ( expression-listopt )

The argument list is used to initialize the named nonstatic member or base class object. This (or for an
aggregate (8.4.1), initialization by a brace-enclosed list) is the only way to initialize nonstaticconst and
reference members. For example,

struct B1 { B1(int); /* ... */ };
struct B2 { B2(int); /* ... */ };

struct D : B1, B2 {
D(int);
B1 b;
const c;

};

D::D(int a) : B2(a+1), B1(a+2), c(a+3), b(a+4)
{ /* ... */ }

D d(10);

First, the base classes are initialized in declaration order (independent of the order ofmem-initializers), then
the members are initialized in declaration order (independent of the order ofmem-initializers), then the
body ofD::D() is executed (12.1). The declaration order is used to ensure that sub-objects and members
are destroyed in the reverse order of initialization.

2 Virtual base classes constitute a special case. Virtual bases are constructed before any nonvirtual bases
and in the order they appear on a depth-first left-to-right traversal of the directed acyclic graph of base
classes;“left-to-right” is the order of appearance of the base class names in the declaration of the derived
class.

3 The class of acomplete object(1.3) is said to be themost derivedclass for the sub-objects representing
base classes of the object. All sub-objects for virtual base classes are initialized by the constructor of the
most derived class. If a constructor of the most derived class does not specify amem-initializerfor a virtual
base class then that virtual base class must have a default constructor or no constructors. Anymem-
initializers for virtual classes specified in a constructor for a class that is not the class of the complete object
are ignored. For example,

class V {
public:

V();
V(int);
// ...

};

class A : public virtual V {
public:

A();
A(int);
// ...

};
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class B : public virtual V {
public:

B();
B(int);
// ...

};

class C : public A, public B, private virtual V {
public:

C();
C(int);
// ...

};

A::A(int i) : V(i) { /* ... */ }
B::B(int i) { /* ... */ }
C::C(int i) { /* ... */ }

V v(1); // use V(int)
A a(2); // use V(int)
B b(3); // use V()
C c(4); // use V()

4 A mem-initializeris evaluated in the scope of the constructor in which it appears. For example,

class X {
int a;

public:
const int& r;
X(): r(a) {}

};

initializesX::r to refer toX::a for each object of classX. 

12.7 Constructors and destructors 

1 Member functions may be called in constructors and destructors. This implies that virtual functions may be
called (directly or indirectly). The function called will be the one defined in the constructor’s (or
destructor’s) own class or its bases, butnot any function overriding it in a derived class. This ensures that
unconstructed parts of objects will not be accessed during construction or destruction. For example,

class X {
public:

virtual void f();
X() { f(); } // calls X::f()
~X() { f(); } // calls X::f()

};

class Y : public X {
int& r;

public:
void f()
{

r++; // disaster if ‘r’ is uninitialized
}
Y(int& rr) :r(rr) {} // calls X::X() which calls X::f()

};

2 The effect of calling a pure virtual function directly or indirectly for the object being constructed from a
constructor, except using explicit qualification, is undefined (10.3). 
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12.8 Copying class objects 

1 A class object can be copied in two ways, by assignment (5.17) and by initialization (12.1, 8.4) including
function argument passing (5.2.2) and function value return (6.6.3). Conceptually, for a classX these two
operations are implemented by an assignment operator and a copy constructor (12.1). If not declared by the
programmer, they will if possible be automatically defined (“synthesized”) as memberwise assignment and
memberwise initialization of the base classes and non-static data members ofX, respectively. An explicit
declaration of either of them will suppress the synthesized definition.

2 If all bases and members of a classX have copy constructors acceptingconst parameters, the synthe-
sized copy constructor forX will have a single parameter of typeconst X&, as follows:

X::X(const X&)

Otherwise it will have a single parameter of typeX&:

X::X(X&)

and programs that attempt initialization by copying ofconst X objects will be ill formed.
3 Similarly, if all bases and members of a classX have assignment operators acceptingconst parame-

ters, the synthesized assignment operator forX will have a single parameter of typeconst X&, as follows:

X& X::operator=(const X&)

Otherwise it will have a single parameter of typeX&:

X& X::operator=(X&)

and programs that attempt assignment by copying ofconst X objects will be ill formed. The synthesized
assignment operator will return a reference to the object for which is invoked.

4 Objects representing virtual base classes will be initialized only once by a generated copy constructor.
Objects representing virtual base classes will be assigned only once by a generated assignment operator.

5 Memberwise assignment and memberwise initialization implies that if a classX has a member or base
of a classM, M’s assignment operator andM’s copy constructor are used to implement assignment and
initialization of the member or base, respectively, in the synthesized operations. The default assignment
operation cannot be generated for a class if the class has:

a non-static data member that is aconst or a reference,

a non-static data member or base class whose assignment operator is inaccessible to the class, or

a non-static data member or base class with no assignment operator for which a default assign-
ment operation cannot be generated.

Similarly, the default copy constructor cannot be generated for a class if a non-static data member or a
base of the class has an inaccessible copy constructor, or has no copy constructor and the default copy
constructor cannot be generated for it.

6 The default assignment and copy constructor will be declared, but they will not be defined (that is, a
function body generated) unless needed. That is,X::operator=() will be generated only if no
assignment operation is explicitly declared and an object of classX is assigned an object of classX or an
object of a class derived fromX or if the address ofX::operator= is taken. Initialization is handled
similarly.

7 If implicitly declared, the assignment and the copy constructor will be public members and the
assignment operator for a classX will be defined to return a reference of typeX& referring to the object
assigned to.

8 If a classX has anyX::operator=() that has a parameter of classX, the default assignment will
not be generated. If a class has any copy constructor defined, the default copy constructor will not be
generated. For example,
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class X {
// ...

public:
X(int);
X(const X&, int = 1);

};

X a(1); // calls X(int);
X b(a, 0); // calls X(const X&, int);
X c = b; // calls X(const X&, int);

9 Assignment of class objectsX is defined in terms ofX::operator=(const X&) . This implies
(12.3) that objects of a derived class can be assigned to objects of a public base class. For example,

class X {
public:

int b;
};

class Y : public X {
public:

int c;
};

void f()
{

X x1;
Y y1;

x1 = y1; // ok
y1 = x1; // error

}

Herey1.b is assigned tox1.b andy1.c is not copied.
10 Copying one object into another using the default copy constructor or the default assignment operator

does not change the structure of either object. For example,

struct s {
virtual f();
// ...

};

struct ss : public s {
f();
// ...

};

void f()
{

s a;
ss b;
a = b; // really a.s::operator=(b)
b = a; // error
a.f(); // calls s::f
b.f(); // calls ss::f
(s&)b = a; // assign to b’s s part

// really ((s&)b).s::operator=(a)
b.f(); // still calls ss::f

}

The calla.f() will invoke s::f() (as is suitable for an object of classs (10.2)) and the callb.f() will
call ss::f() (as is suitable for an object of classss ).
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Overloading

1 This chapter gives the syntax and semantics of operator and function overloading. Overloading allows multiple
functions with the same name to be defined provided their parameter lists differ sufficiently for calls to be
resolved. By overloading operators, the programmer can redefine the meaning of most C + + operators (including
function call() , subscripting[] , assignment=, address-of&, and class member access-> ) when at least one
operand is a class object.

13 Overloading

1 When several different function declarations are specified for a single name in the same scope, that name is
said to be overloaded. When that name is used, the correct function is selected by comparing the types of
the arguments with the types of the parameters. For example,

double abs(double);
int abs(int);

abs(1); // call abs(int);
abs(1.0); // call abs(double);

Since for any typeT, aT and aT& accept the same set of initializer values, functions with parameter types
differing only in this respect may not have the same name. For example,

int f(int i)
{

// ...
}

int f(int& r) // error: function types
// not sufficiently different

{
// ...

}

Similarly, since for any typeT, aT, aconst T, and avolatile T accept the same set of initializer val-
ues, functions with parameter types differing only in this respect may not have the same name. It is, how-
ever, possible to distinguish betweenconst T&, volatile T&, and plainT& so functions that differ only
in this respect may be defined. Similarly, it is possible to distinguish betweenconst T* , volatile T* ,
and plainT* so functions that differ only in this respect may be defined.

2 Functions that differ only in the return type may not have the same name.
3 Member functions that differ only in that one is astatic member and the other isn’t may not have the

same name (9.4).
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4 A typedef is not a separate type, but only a synonym for another type (7.1.3). Therefore, functions
that differ by typedef“types” only may not have the same name. For example,

typedef int Int;

void f(int i) { /* ... */ }
void f(Int i) { /* ... */ } // error: redefinition of f

Enumerations, on the other hand, are distinct types and can be used to distinguish overloaded functions.
For example,

enum E { a };

void f(int i) { /* ... */ }
void f(E i) { /* ... */ }

5 Parameter types that differ only in a pointer* versus an array[] are identical, that is, the array declara-
tion is adjusted to become a pointer declaration (8.2.5). Note that only the second and subsequent array
dimensions are significant in parameter types (8.2.4).

f(char*);
f(char[]); // same as f(char*);
f(char[7]); // same as f(char*);
f(char[9]); // same as f(char*);

g(char(*)[10]);
g(char[5][10]); // same as g(char(*)[10]);
g(char[7][10]); // same as g(char(*)[10]);
g(char(*)[20]); // different from g(char(*)[10]);

13.1 Declaration matching 

1 Two function declarations of the same name refer to the same function if they are in the same scope and
have identical parameter types (13). A function member of a derived class isnot in the same scope as a
function member of the same name in a base class. For example,

class B {
public:

int f(int);
};

class D : public B {
public:

int f(char*);
};

HereD::f(char*) hidesB::f(int) rather than overloading it.

void h(D* pd)
{

pd->f(1); // error:
// D::f(char*) hides B::f(int)

pd->B::f(1); // ok
pd->f("Ben"); // ok, calls D::f

}

A locally declared function is not in the same scope as a function in file scope.
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int f(char*);
void g()
{

extern f(int);
f("asdf"); // error: f(int) hides f(char*)

// so there is no f(char*) in this scope
}

2 Different versions of an overloaded member function may be given different access rules. For example,

class buffer {
private:

char* p;
int size;

protected:
buffer(int s, char* store) { size = s; p = store; }
// ...

public:
buffer(int s) { p = new char[size = s]; }
// ...

};

13.2 Argument matching 

1 A call of a given function name chooses, from among all functions by that name that are in scope and for
which a set of conversions exists so that the function could possibly be called, the function whose parame-
ters best match the given arguments. The best-matching function is the intersection of sets of functions that
best match on each argument. Unless this intersection has exactly one member, the call is ill formed. The
function thus selected must be a better match to the call than any other candidate function. Otherwise, the
call is ill formed.

2 One function is a better match than another if for each argument in the call, the corresponding parameter
of the first function is at least as good a match as the corresponding parameter of the second function, and
for some argument the corresponding parameter of the first function is a better match.

3 For purposes of argument matching, a function withn default parameters (8.2.6) is considered to ben+1
functions with different numbers of parameters.

4 For purposes of argument matching, a nonstatic member function is considered to have an extra parame-
ter specifying the object for which it is called. This extra parameter requires a match either by the object or
pointer specified in the explicit member function call notation (5.2.4) or by the first operand of an over-
loaded operator (13.4). No temporaries will be introduced for this extra parameter and no user-defined con-
versions will be applied to achieve a type match.

5 Where a member funtion of a classX is explicitly called for a pointer using the-> operator, this extra
parameter is assumed to have typeX* , cv-qualified by the cv-qualifiers of the member function, if any. For
example, the extra parameter is assumed to have typeconst X* for a const member function. Where
the member function is explicitly called for an object or reference using the. operator, or the function is
invoked for the first operand of an overloaded operator (13.4), this extra parameter is assumed to have type
X& cv-qualified by the cv-qualifiers of the member function, if any. The first operand of->* and .* is
treated in the same way as the first operand of-> and. , respectively.

6 An ellipsis in a parameter list (8.2.5) is a match for an argument of any type.
7 For a given argument, no sequence of conversions will be considered that contains more than one user-

defined conversion or that can be shortened by deleting one or more conversions into another sequence that
leads to the type of the corresponding parameter of any function in consideration. Such a sequence is called
abest-matchingsequence.

8 For example,int →float →double is a sequence of conversions fromint to double , but it is not
a best-matching sequence because it contains the shorter sequenceint →double .
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9 Except as mentioned below, the followingtrivial conversionsinvolving a typeT do not affect which of
two conversion sequences is better:

from: to:
T T&
T& T
T[] T*
T(args) (*T)(args)
T const T
T volatile T
T const volatile T
T* const T*
T* volatile T*
T* const volatile T*

Sequences of trivial conversions that differ only in order are indistinguishable. Note that functions with
parameters of typeT, const T, volatile T, andconst volatile T accept exactly the same set of
values. Where necessary,const andvolatile are used as tie-breakers as described in rule [1] below.

10 A temporary variable is needed for a parameter of typeT& if the argument is not an lvalue, has a type
different fromT, or is avolatile andT isn’t. This does not affect argument matching. It may, however,
affect the correctness of the resulting match since a temporary may not be used to initialize a non-const
reference (8.4.3).

11 Sequences of conversions are considered according to these rules:
12 [1] Exact match: Sequences of zero or more trivial conversions are better than all other sequences.

Of these, those that do not convertT* to const T* , T* to volatile T* , T& to const T&,
or T& to volatile T& are better than those that do.

[2] Match with promotions: Of sequences not mentioned in [1], those that contain only integral pro-
motions (4.1), conversions fromfloat to double , and trivial conversions are better than all
others.

[3] Match with standard conversions: Of sequences not mentioned in [2], those with only standard
(4) and trivial conversions are better than all others. Of these, ifB is derived directly or indi-
rectly fromA, converting aB* to A* is better than converting tovoid* or const void* ; fur-
ther, if C is publicly derived directly or indirectly fromB, converting aC* to B* is better than
converting toA* and converting aC&to B& is better than converting toA&. The class hierarchy
acts similarly as a selection mechanism for pointer to member conversions (4.8).

[4] Match with user-defined conversions: Of sequences not mentioned in [3], those that involve only
user-defined conversions (12.3), standard (4) and trivial conversions are better than all other
sequences.

[5] Match with ellipsis: Sequences that involve matches with the ellipsis are worse than all others.
13 User-defined conversions are selected based on the type of variable being initialized or assigned to.

class Y {
// ...

public:
operator int();
operator double();

};

void f(Y y)
{

int i = y; // call Y::operator int()
double d;
d = y; // call Y::operator double()
float f = y; // error: ambiguous

}

14 Standard conversions (4) may be applied to the argument for a user-defined conversion, and to the result
of a user-defined conversion.
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struct S { S(long); operator int(); };

void f(long), f(char*);
void g(S), g(char*);
void h(const S&), h(char*);

void k(S& a)
{

f(a); // f(long(a.operator int()))
g(1); // g(S(long(1)))
h(1); // h(S(long(1)))

}

Except when one conversion sequence is a subsequence of another, if user-defined coercions are needed for
an argument, no account is taken of any standard coercions that might also be involved. For example,

class X {
public:

X(int);
};

class Y {
public:

Y(long);
};
class Z {
public:

operator int();
};

void f(X);
void f(Y);
void g(int);
void g(double);

void g()
{

f(1); // ambiguous
Z z;
g(z); // okay -- g(int(z))

}

The call f(1) is ambiguous despitef(y(long(1))) needing one more standard conversion than
f(x(1)) , and the callg(z) is unambiguous even thoughg(double(int(z)) has only one user-
defined conversion. The difference is that the two conversion sequences found forf() contain two
differentuser-defined conversions and neither sequence is a subsequence of the other, while the two con-
version sequences found forg() contain the same user-defined conversion and one is subsequence of the
other.

15 No preference is given to conversion by constructor (12.1) over conversion by conversion function
(12.3.2) or vice versa.

struct X {
operator int();

};

struct Y {
Y(X);

};
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Y operator+(Y,Y);

void f(X a, X b)
{

a+b; // error, ambiguous:
// operator+(Y(a), Y(b)) or
// a.operator int() + b.operator int()

}

13.3 Address of overloaded function 

1 A use of a function name without arguments selects, among all functions of that name that are in scope, the
(only) function that exactly matches the target. The target may be

an object being initialized (8.4)

the left side of an assignment (5.17)

a parameter of a function (5.2.2)

a parameter of a user-defined operator (13.4)

a function return type (8.2.5)

an explicit type conversion (5.2.3, 5.4)

2 Note that iff() andg() are both overloaded functions, the cross product of possibilities must be
considered to resolvef(&g) , or the equivalent expressionf(g) .

3 For example,

int f(double);
int f(int);
(int (*)(int))&f // cast expression as selector
int (*pfd)(double) = &f;
int (*pfi)(int) = &f;
int (*pfe)(...) = &f; // error: type mismatch

The last initialization is ill-formed because nof() with type int(...) has been defined, and not
because of any ambiguity.

4 Note also that there are no standard conversions (4) of one pointer to function type into another (4.6).
In particular, even ifB is a public base ofDwe have

D* f();
B* (*p1)() = &f; // error

void g(D*);
void (*p2)(B*) = &g; // error

13.4 Overloaded operators 

1 Most operators can be overloaded.

operator-function-id:
operator operator
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operator: one of
new delete new[] delete[]
+ - * / % ^ & | ~
! = < > += -= *= /= %=
^= &= |= << >> >>= <<= == !=
<= >= && || ++ -- , ->* ->
() []

The last two operators are function call (5.2.2) and subscripting (5.2.1).
2 Both the unary and binary forms of

+ - * &

can be overloaded.
3 The following operators cannot be overloaded:

. .* :: ?:

nor can the preprocessing symbols# and## (16).
4 Operator functions are usually not called directly; instead they are invoked to implement operators

(13.4.1, 13.4.2). They can be explicitly called, though. For example,

complex z = a.operator+(b); // complex z = a+b;
void* p = operator new(sizeof(int)*n);

5 The operatorsnew, new[] , delete and delete[] are described in 12.5 and and the rules
described below in this section do not apply to them.

6 An operator function must either be a non-static member function or have at least one parameter of a
class, a reference to a class, an enumeration, or a reference to an enumeration. It is not possible to change
the precedence, grouping, or number of operands of operators. The predefined meaning of the operators=,
(unary)&, and, (comma) applied to class objects may be changed. Except foroperator=() , operator
functions are inherited; see 12.8 for the rules foroperator=() .

7 Identities among operators applied to basic types (for example,++a ≡ a+=1 ) need not hold for opera-
tors applied to class types. Some operators, for example,+=, require an operand to be an lvalue when
applied to basic types; this is not required when the operators are declared for class types.

8 An overloaded operator cannot have default parameters (8.2.6).
9 Operators not mentioned explicitly below in 13.4.3 to 13.4.7 act as ordinary unary and binary operators

obeying the rules of section 13.4.1 or 13.4.2. 

13.4.1 Unary operators 

1 A prefix unary operator may be declared by a nonstatic member function (9.3) with no parameters or a non-
member function with one parameter. Thus, for any prefix unary operator@, @xcan be interpreted as either
x.operator@() or operator@(x) . If both forms of the operator function have been declared, argu-
ment matching (13.2) determines which, if any, interpretation is used. See 13.4.7 for an explanation of
postfix unary operators, that is,++ and-- . 

13.4.2 Binary operators 

1 A binary operator may be declared either by a nonstatic member function (9.3) with one parameter or by a
nonmember function with two parameters. Thus, for any binary operator@, x@y can be interpreted as
either x.operator@(y) or operator@(x,y) . If both forms of the operator function have been
declared, argument matching (13.2) determines which, if any, interpretation is used.

13.4.3 Assignment

1 The assignment functionoperator=() must be a nonstatic member function; it is not inherited (12.8).
Instead, unless the user definesoperator= for a classX, operator= is defined, by default, as member-
wise assignment of the members of classX.
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X& X::operator=(const X& from)
{

// copy members of X
}

13.4.4 Function call 

1 Function call

postfix-expression( expression-listopt )

is considered a binary operator with thepostfix-expressionas the first operand and the possibly empty
expression-listas the second. The name of the defining function isoperator() . Thus, a call
x(arg1,arg2,arg3) is interpreted asx.operator()(arg1,arg2,arg3) for a class objectx .
operator() must be a nonstatic member function.

13.4.5 Subscripting

1 Subscripting

postfix-expression[ expression]

is considered a binary operator. A subscripting expressionx[y] is interpreted asx.operator[](y)
for a class objectx . operator[] must be a nonstatic member function. 

13.4.6 Class member access 

1 Class member access using->

postfix-expression-> primary-expression

is considered a unary operator. An expressionx->m is interpreted as(x.operator->())->m for a
class objectx . It follows thatoperator->() must return either a pointer to a class that has a memberm
or an object of or a reference to a class for whichoperator->() is defined. operator-> must be a
nonstatic member function. 

13.4.7 Increment and decrement 

1 The prefix and postfix increment operators can be defined by a function calledoperator++ . If this func-
tion is a member function with no parameters, or a non-member function with one class parameter, it
defines the prefix increment operator++ for objects of that class. If the function is a member function with
one parameter (which must be of typeint ) or a non-member function with two parameters (the second
must be of typeint ), it defines the postfix increment operator++ for objects of that class. When the post-
fix increment is called, theint argument will have value zero. For example,

class X {
public:

const X& operator++(); // prefix ++a
const X& operator++(int); // postfix a++

};

class Y {
public:
};
const Y& operator++(Y&); // prefix ++b
const Y& operator++(Y&, int); // postfix b++
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void f(X a, Y b)
{

++a; // a.operator++();
a++; // a.operator++(0);
++b; // operator++(b);
b++; // operator++(b, 0);

a.operator++(); // explicit call: like ++a;
a.operator++(0); // explicit call: like a++;
operator++(b); // explicit call: like ++b;
operator++(b, 0); // explicit call: like b++;

}

2 The prefix and postfix decrement operators-- are handled similarly.
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Templates

1 A classtemplatedefines the layout and operations for an unbounded set of related types. For example, a single
class templateList might provide a common definition for list ofint , list of float , and list of pointers to
Shapes. A functiontemplatedefines an unbounded set of related functions. For example, a single function
templatesort() might provide a common definition for sorting all the types defined by theList class tem-
plate.

14 Templates

1 The template design was first presented in Bjarne Stroustrup:Parameterized Types for C + + , Proc. USENIX
C + + Conference, Denver, October 1988.

14.1 Templates

1 A templatedefines a family of types or functions.

template-declaration:
template < template-parameter-list> declaration

template-parameter-list:
template-parameter
template-parameter-list, template-parameter

template-parameter:
type-parameter
parameter-declaration

type-parameter:
class identifier

Thedeclarationin a template-declarationmust declare or define a function or a class or define a static data
member of a template class.

2 A type-parameterdefines itsidentifier to be atype-id in the scope of the template declaration. A
template-parameterthat could be interpreted as either anparameter-declarationor a type-parameter
(because itsidentifier is the name of an already existing class) is taken as atype-parameter.

3 Template names obey the usual scope and access control rules. Atemplate-declarationis adeclaration.
A template-declarationmay appear only as a global declaration.
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14.2 Class Templates

1 A class template specifies how individual classes can be constructed much as a class declaration specifies
how individual objects can be constructed. A vector class template might be declared like this:

template<class T> class vector {
T* v;
int sz;

public:
vector(int);
T& operator[](int);
T& elem(int i) { return v[i]; }
// ...

};

The prefixtemplate <class T> specifies that a template is being declared and that atype-idT will be
used in the declaration. In other words,vector is a parameterized type withT as its parameter.

2 A class can be specified by atemplate-class-id:

template-class-id:
template-name< template-argument-list>

template-name:
identifier

template-argument-list:
template-argument
template-argument-list, template-argument

template-argument:
expression
type-id

3 A template-class-idis aclass-name(9).
4 A class generated from a class template is called a template class, as is a class specifically defined with

a template-class-idas its name; see 14.5.
5 A template-class-idwhere thetemplate-nameis not defined names an undefined class.
6 A class template name must be unique in a program and may not be declared to refer to any other tem-

plate, class, function, object, value, or type in the same scope.
7 The types of thetemplate-arguments specified in atemplate-class-idmust match the types specified for

the template in itstemplate-parameter-list.
8 Othertemplate-arguments must beconstant-expressions, addresses of objects or functions with external

linkage,24 or of static class members. An exact match (13.2) is required for nontype arguments.
9 For example,vector s can be used like this:

vector<int> v1(20);
vector<complex> v2(30);

typedef vector<complex> cvec; // make cvec a synonym
// for vector<complex>

cvec v3(40); // v2 and v3 are of the same type

v1[3] = 7;
v2[3] = v3.elem(4) = complex(7,8);

10 Here, vector<int> and vector<complex> are template classes, and their definitions will by
default be generated from thevector template.

_ ____________________
24In particular, a string literal (2.9.4) isnot an acceptable template argument because a string literal is the address of an object with static linkage.
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11 Since atemplate-class-idis aclass-name, it can be used wherever aclass-namecan be used. For exam-
ple,

class vector<Shape*>;

vector<Window>* current_window;

class svector : public vector<Shape*> { /* ... */ };

12 Definition of class template member functions is described in 14.6.

14.3 Type Equivalence

1 Two template-class-ids refer to the same class if theirtemplatenames are identical and their arguments
have identical values. For example,

template<class E, int size> class buffer;

buffer<char,2*512> x;
buffer<char,1024> y;

declaresx andy to be of the same type, and

template<class T, void(*err_fct)()>
class list { /* ... */ };

list<int,&error_handler1> x1;
list<int,&error_handler2> x2;
list<int,&error_handler2> x3;
list<char,&error_handler2> x4;

declaresx2 andx3 to be of the same type. Their type differs from the types ofx1 andx4 .

14.4 Function Templates

1 A function template specifies how individual functions can be constructed. A family of sort functions, for
example, might be declared like this:

template<class T> void sort(vector<T>);

A function template specifies an unbounded set of (overloaded) functions. A function generated from a
function template is called a template function, as is a function defined with a type that matches a function
template; see 14.5.

2 Template arguments are not explicitly specified when calling a function template; instead, overloading
resolution is used. For example,

vector<complex> cv(100);
vector<int> ci(200);

void f(vector<complex>& cv, vector<int>& ci)
{

sort(cv); // invoke sort(vector<complex>)
sort(ci); // invoke sort(vector<int>)

}

3 A template function may be overloaded either by (other) functions of its name or by (other) template
functions of that same name. Overloading resolution for template functions and other functions of the same
name is done in three steps:

[1] Look for an exact match (13.2) on functions; if found, call it.
[2] Look for a function template from which a function that can be called with an exact match can

be generated; if found, call it.
[3] Try ordinary overloading resolution (13.2) for the functions; if a function is found, call it.

If no match is found the call is ill-formed. In each case, if there is more than one alternative in the first
step that finds a match, the call is ambiguous and is ill-formed. 
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4 A match on a template (step [2]) implies that a specific template function with parameters that
exactly match the types of the arguments will be generated (14.5). Not even trivial conversions (13.2)
will be applied in this case.

5 The same process is used for type matching for pointers to functions (13.3).
6 Here is an example:

template<class T> T max(T a, T b) { return a>b?a:b; };

void f(int a, int b, char c, char d)
{

int m1 = max(a,b); // max(int a, int b)
char m2 = max(c,d); // max(char a, char b)
int m3 = max(a,c); // error: cannot generate

// max(int,char)
}

7 For example, adding

int max(int,int);

to the example above would resolve the third call, by providing a function that could be called for
max(a,c) after using the standard conversion ofchar to int for c .

8 A function template definition is needed to generate specific versions of the template; only a function
template declaration is needed to generate calls to specific versions.

9 Every template-parameterspecified in thetemplate-parameter-listmust be used in the parameter list of
a function template. For example,

template<class T> T* create(); // error

template<class T>
void f() { // error

T a;
// ...

}

All template-parameters for a function template must betype-parameters.

14.5 Declarations and Definitions

1 There must be exactly one definition for each template of a given name in a program. There can be many
declarations. The definition is used to generate specific template classes and template functions to match
the uses of the template.

2 Using atemplate-class-idconstitutes a declaration of a template class.
3 Calling a function template or taking its address constitutes a declaration of a template function. There

is no special syntax for calling or taking the address of a template function; the name of a function template
is used exactly as is a function name. Declaring a function with the same name as a function template with
a matching type constitutes a declaration of a specific template function.

4 If the definition of a specific template function or specific template class is needed to perform some
operation and if no explicit definition of that specific template function or class is found in the program, a
definition is generated.

5 The definition of a (nontemplate) function with a type that exactly matches the type of a function tem-
plate declaration is a definition of that specific function template. For example,

template<class T> void sort(vector<T>& v) { /* ... */ }

void sort(vector<char*>& v) { /* ... */ }

Here, the function definition will be used as the sort function for arguments of typevector<char*> .
For othervector types the appropriate function definition is generated from the template.

6 A class can be defined as the definition of a template class. For example,
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template<class T> class stream { /* ... */ };

class stream<char> { /* ... */ };

Here, the class declaration will be used as the definition of streams of characters (stream<char> ). Other
streams will be handled by template classes generated from the class template.

7 No operation that requires a defined class can be performed on a template class until the class template
has been seen. After that, a specific template class is considered defined immediately before the first global
declaration that names it.

14.6 Member Function Templates

1 A member function of a template class is implicitly a template function with the template parameters of its
class as its template parameters. For example,

template<class T> class vector {
T* v;
int sz;

public:
vector(int);
T& operator[](int);
T& elem(int i) { return v[i]; }
// ...

};

declares three function templates. The subscript function might be defined like this:

template<class T> T& vector<T>::operator[](int i)
{

if (i<0 || sz<=i) error("vector: range error");
return v[i];

}

2 The template argument forvector<T>::operator[]() will be determined by the vector to which
the subscripting operation is applied.

vector<int> v1(20);
vector<complex> v2(30);

v1[3] = 7; // vector<int>::operator[]()
v2[3] = complex(7,8); // vector<complex>::operator[]()

14.7 Friends

1 A friend function of a template may or may not be a template function. For example,

template<class T> class task {
// ...
friend void next_time();
friend task<T>* preempt(task<T>*);
friend task* prmt(task*); // error
// ...

};

Here,next_time() becomes the friend of alltask classes, and eachtask has an appropriately typed
function calledpreempt() as a friend. Thepreempt functions might be defined as a template.

template<class T>
task<T>* preempt(task<T>* t) { /* ... */ }

2 The declaration ofprmt() is ill-formed because there is no typetask , only specific template types,
task<int> , task<record> , and so on.
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14.8 Static Members and Variables

1 Each template class or function generated from a template has its own copies of any static variables or
members. For example,

template<class T> class X {
static T s;
// ...

};

X<int> aa;
X<char*> bb;

HereX<int> has a static members of typeint andX<char*> has a static members of typechar* .
2 Static class member templates are defined similarly to member function templates. For example,

template<class T> T X<T>::s = 0;

int X<int>::s = 3;

3 Similarly,

template<class T> f(T* p)
{

static T s;
// ...

};

void g(int a, char* b)
{

f(&a);
f(&b);

}

Here f(int*) has a static members of type int and f(char**) has a static members of type
char* .
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Exception Handling

1 Exception handling provides a way of transferring control and information to an unspecified caller that has
expressed willingness to handle exceptions of a given type. Exceptions of arbitrary types can bethrown and
caughtand the set of exceptions a function may throw can be specified. The termination model of exception
handling is provided. Exception handling can be used to support notions of error handling and fault-tolerant
computing.

15 Exception handling 

1 The exception handling design is a variant of the scheme presented in Andrew Koenig and Bjarne Strous-
trup: Exception Handling for C + + (revised), Proc. USENIX C + + Conference, San Francisco, April 1990.

15.1 Exception Handling

1 Exception handling provides a way of transferring control and information from a point in the execution of
a program to anexception handlerassociated with a point previously passed by the execution. A handler
will be invoked only by athrow-expressioninvoked in code executed in the handler’stry-blockor in func-
tions called from the handler’stry-block.

try-block:
try compound-statement handler-seq

handler-seq:
handler handler-seqopt

handler:
catch ( exception-declaration) compound-statement

exception-declaration:
type-specifier-seq declarator
type-specifier-seq abstract-declarator
type-specifier-seq
...

throw-expression:
throw assignment-expressionopt

A try-block is a statement(6). A throw-expressionis of typevoid . A throw-expressionis sometimes
referred to as a“throw-point.” Code that executes athrow-expressionis said to“throw an exception;” code
that subsequently gets control is called a“handler.”
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2 A goto statement may be used to transfer control out of a handler, but not into one.

15.2 Throwing an Exception

1 Throwing an exception transfers control to a handler. An object is passed and the type of that object deter-
mines which handlers can catch it. For example,

throw "Help!";

can be caught by ahandlerof somechar* type:

try {
// ...

}
catch(const char* p) {

// handle character string exceptions here
}

and

class Overflow {
// ...

public:
Overflow(char,double,double);

};

void f(double x)
{

// ...
throw Overflow(’+’,x,3.45e107);

}

can be caught by a handler

try {
// ...
f(1.2);
// ...

}
catch(Overflow& oo) {

// handle exceptions of type Overflow here
}

2 When an exception is thrown, control is transferred to the nearest handler with an appropriate type;
“nearest” means the handler whosetry-blockwas most recently entered by the thread of control and not yet
exited;“appropriate type” is defined in 15.4.

3 A throw-expressioninitializes a temporary object of the static type of the operand ofthrow and uses
that temporary to initialize the appropriately-typed variable named in the handler. Except for the restric-
tions on type matching mentioned in 15.4 and the use of a temporary variable, the operand ofthrow is
treated exactly as a function argument in a call (5.2.2) or the operand of areturn statement.

4 If the use of the temporary object can be eliminated without changing the meaning of the program
except for the execution of constructors and destructors associated with the use of the temporary object
(12.2), then the exception in the handler may be initialized directly with the argument of the throw expres-
sion.

5 A throw-expressionwith no operand rethrows the exception being handled. Athrow-expressionwith
no operand may appear only in a handler or in a function directly or indirectly called from a handler. For
example, code that must be executed because of an exception yet cannot completely handle the exception
can be written like this:
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try {
// ...

}
catch (...) { // catch all exceptions

// respond (partially) to exception

throw; // pass the exception to some
// other handler

}

15.3 Constructors and Destructors

1 As control passes from a throw-point to a handler, destructors are invoked for all automatic objects con-
structed since thetry-blockwas entered.

2 An object that is partially constructed will have destructors executed only for its fully constructed sub-
objects. Also, should a constructor for an element of an automatic array throw an exception, only the con-
structed elements of that array will be destroyed.

3 The process of calling destructors for automatic objects constructed on the path from atry-block to a
throw-expressionis called“stack unwinding.”

15.4 Handling an Exception

1 A handlerwith typeT, const T, T&, or const T& is a match for athrow-expressionwith an object of
typeE if

[1] T andE are the same type, or
[2] T is an accessible (4.6) base class ofE at the throw point, or
[3] T is a pointer type andE is a pointer type that can be converted toT by a standard pointer con-

version (4.6) at the throw point.
2 For example,

class Matherr { /* ... */ virtual vf(); };
class Overflow: public Matherr { /* ... */ };
class Underflow: public Matherr { /* ... */ };
class Zerodivide: public Matherr { /* ... */ };

void f()
{

try {
g();

}

catch (Overflow oo) {
// ...

}
catch (Matherr mm) {

// ...
}

}

Here, theOverflow handler will catch exceptions of typeOverflow and theMatherr handler will
catch exceptions of typeMatherr and all types publicly derived fromMatherr includingUnderflow
andZerodivide .

3 The handlers for atry-blockare tried in order of appearance. A program is ill-formed if it places a han-
dler for a base class ahead of a handler for its derived class (or a handler for a pointer or reference to base
ahead of a handler for a pointer or reference to derived) since that would ensure that the handler for the
derived class would never be invoked. The processor shall diagnose this error if the classes are defined at
the beginning of the try block.
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4 A ... in a handler’sexception-declarationfunctions similarly to... in a function parameter declara-
tion; it specifies a match for any exception. If present, a... handler must be the last handler for itstry-
block.

5 If no match is found among the handlers for atry-block, the search for a matching handler continues in a
dynamically surroundingtry-block. If no matching handler is found in a program, the function
terminate() (15.6.1) is called.

6 An exception is considered handled upon entry to a handler. The stack will have been unwound at that
point.

15.5 Exception Specifications

1 Raising or catching an exception affects the way a function relates to other functions. It is possible to list
the set of exceptions that a function may directly or indirectly throw as part of a function declaration. An
exception-specificationcan be used as a suffix of a function declarator.

exception-specification:
throw ( type-id-listopt )

type-id-list:
type-id
type-id-list , type-id

For example,

void f() throw (X,Y)
{

// ...
}

2 If any declaration or the definition of a function has anexception-specification, all declarations and the
definition of that function must have anexception-specificationcontaining the same set oftype-id’s.

3 An attempt by a function to throw an exception not in its exception list will cause a call of the function
unexpected() ; see 15.6.2.

4 An implementation may not reject an expression simply because itmight throw an exception not speci-
fied in anexception-specificationof the function containing the expression; the handling of violations of an
exception-specificationis done at run-time.

5 A function with noexception-specificationmay throw any exception.
6 A function with an emptyexception-specification, throw() , may not throw any exception (unless

unexpected() itself throws an exception).
7 If a classX is in thetype-id-listof theexception-specificationof a function, the function may throw an

exception object of any class publicly derived fromX. Similarly, if a pointer to classY* is in thetype-id-
list of theexception-specificationof a function, the function may throw a pointer to object of any class pub-
licly derived fromY.

8 An exception-specificationis not considered part of a function’s type.

15.6 Special Functions

1 The exception handling mechanism relies on two functions,terminate() and unexpected() , for
coping with errors related to the exception handling mechanism itself.

15.6.1 Theterminate() Function

1 Occasionally, exception handling must be abandoned for less subtle error handling techniques. For exam-
ple,

– when the exception handling mechanism cannot find a handler for a thrown exception,
– when the exception handling mechanism finds the stack corrupted, or
– when a destructor called during stack unwinding caused by an exception tries to exit using an

exception.
In such cases,
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void terminate();

is called;terminate() calls the function given on the most recent call ofset_terminate() :

typedef void(*PFV)();
PFV set_terminate(PFV);

The previous function given toset_terminate() will be the return value; this enables users to
implement a stack strategy for usingterminate() . The default function called byterminate()
is abort() .

2 Selecting a terminate function that does not in fact terminate but tries to return to its caller either
with return or by throwing an exception is an error.

15.6.2 Theunexpected() Function

1 If a function with anexception-specificationthrows an exception that is not listed in theexception-
specification, the function

void unexpected();

is called;unexpected() calls the function given on the most recent call ofset_unexpected() :

typedef void(*PFV)();
PFV set_unexpected(PFV);

The previous function given toset_unexpected() will be the return value; this enables users to imple-
ment a stack strategy for usingunexpected() . The default function called byunexpected() is
terminate() . Since the default function called byterminate() is abort() , this leads to immedi-
ate and precise detection of the error.

2 Theunexpected() function may not return, but it may throw an exception. Handlers for this excep-
tion will be looked for starting at the call of the function whoseexception-specificationwas violated. Thus
anexception-specificationdoes not guarantee that only the listed classes will be thrown. For example,

void pass_through() { throw; }
void f(PFV pf) throw() // f claims to throw no exceptions
{

(*pf)(); // but the argument function might
}
void g(PFV pf)
{

set_unexpected(&pass_through);
f(pf);

}

After the call ing() to set_unexpected() , f() behaves as if it had noexception-specificationat all. 

15.7 Exceptions and Access

1 The parameter of a catch clause obeys the same access rules as a parameter of the function in which the
catch clause occurs.

2 An object may be thrown if it can be copied and destroyed in the context of the function in which the
throw occurs.
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Preprocessing Directives

1 This chapter describes preprocessing in C + +. C + + preprocessing, which is based on ANSI C preprocessing, pro-
vides macro substitution, conditional compilation, and source file inclusion. In addition, directives are provided
to control line numbering in diagnostics and for symbolic debugging, to generate a diagnostic message with a
given token sequence, and to perform implementation-dependent actions (the#pragma directive). Certain pre-
defined names are available. These facilities are conceptually handled by a preprocessor, which may or may not
actually be implemented as a separate process.

16 Preprocessing directives 

1 A preprocessing directive consists of a sequence of preprocessing tokens that begins with a# preprocessing
token that is either the first character in the source file (optionally after white space containing no new-line
characters) or that follows white space containing at least one new-line character, and is ended by the next
new-line character.25

preprocessing-file:
groupopt

group:
group-part
group group-part

group-part:
pp-tokensopt new-line
if-section
control-line

if-section:
if-group elif-groupsopt else-groupopt endif-line

if-group:
# if constant-expression new-line groupopt

# ifdef identifier new-line groupopt

# ifndef identifier new-line groupopt

elif-groups:
elif-group
elif-groups elif-group

_ ____________________
25 Thus, preprocessing directives are commonly called“lines.” These“lines” have no other syntactic significance, as all white space is equivalent
except in certain situations during preprocessing (see the# character string literal creation operator in 16.3.2, for example).
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elif-group:
# elif constant-expression new-line groupopt

else-group:
# else new-line groupopt

endif-line:
# endif new-line

control-line:
# include pp-tokens new-line
# define identifier replacement-list new-line
# define identifier lparen identifier-listopt ) replacement-list new-line
# undef identifier new-line
# line pp-tokens new-line
# error pp-tokensopt new-line
# pragma pp-tokensopt new-line
# new-line

lparen:
the left-parenthesis character without preceding white-space

replacement-list:
pp-tokensopt

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

2 The only white-space characters that shall appear between preprocessing tokens within a preprocessing
directive (from just after the introducing# preprocessing token through just before the terminating new-line
character) are space and horizontal-tab (including spaces that have replaced comments or possibly other
white-space characters in translation phase 3).

3 The implementation can process and skip sections of source files conditionally, include other source
files, and replace macros. These capabilities are calledpreprocessing, because conceptually they occur
before translation of the resulting translation unit.

4 The preprocessing tokens within a preprocessing directive are not subject to macro expansion unless
otherwise stated. 

16.1 Conditional inclusion 

1 The expression that controls conditional inclusion shall be an integral constant expression except that: it
shall not contain a cast; identifiers (including those lexically identical to keywords) are interpreted as
described below;26 and it may contain unary operator expressions of the form

defined identifier
or

defined ( identifier )

which evaluate to1 if the identifier is currently defined as a macro name (that is, if it is predefined or if it
has been the subject of a#define preprocessing directive without an intervening#undef directive with
the same subject identifier), zero if it is not.

_ ____________________
26 Because the controlling constant expression is evaluated during translation phase 4, all identifiers either are or are not macro names— there simply
are no keywords, enumeration constants, and so on.
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2 Each preprocessing token that remains after all macro replacements have occurred shall be in the lexical
form of a token (2.5).

3 Preprocessing directives of the forms

# if constant-expression new-line groupopt

# elif constant-expression new-line groupopt

check whether the controlling constant expression evaluates to nonzero.
4 Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the control-

ling constant expression are replaced (except for those macro names modified by thedefined unary oper-
ator), just as in normal text. If the tokendefined is generated as a result of this replacement process or
use of thedefined unary operator does not match one of the two specified forms prior to macro replace-
ment, the behavior is undefined. After all replacements due to macro expansion and thedefined unary
operator have been performed, all remaining identifiers are replaced with the pp-number0, and then each
preprocessing token is converted into a token. The resulting tokens comprise the controlling constant
expression which is evaluated according to the rules of 5.19 using arithmetic that has at least the ranges
specified in<<<<<<???>>>>>>, except thatint andunsigned int act as if they have the same repre-
sentation as, respectively,long and unsigned long . This includes interpreting character constants,
which may involve converting escape sequences into execution character set members. Whether the
numeric value for these character constants matches the value obtained when an identical character constant
occurs in an expression (other than within a#if or #elif directive) is implementation-defined.27 Also,
whether a single-character character constant may have a negative value is implementation-defined.

5 Preprocessing directives of the forms

# ifdef identifier new-line groupopt

# ifndef identifier new-line groupopt

check whether the identifier is or is not currently defined as a macro name. Their conditions are equivalent
to #if defined identifier and#if !defined identifier respectively.

6 Each directive’s condition is checked in order. If it evaluates to false (zero), the group that it controls is
skipped: directives are processed only through the name that determines the directive in order to keep track
of the level of nested conditionals; the rest of the directives’ preprocessing tokens are ignored, as are the
other preprocessing tokens in the group. Only the first group whose control condition evaluates to true
(nonzero) is processed. If none of the conditions evaluates to true, and there is a#else directive, the
group controlled by the#else is processed; lacking a#else directive, all the groups until the#endif
are skipped.28 

16.2 Source file inclusion 

1 A #include directive shall identify a header or source file that can be processed by the implementation.
2 A preprocessing directive of the form

# include < h-char-sequence> new-line

searches a sequence of implementation-defined places for a header identified uniquely by the specified
sequence between the< and> delimiters, and causes the replacement of that directive by the entire contents
of the header. How the places are specified or the header identified is implementation-defined.

3 A preprocessing directive of the form

# include " q-char-sequence" new-line

causes the replacement of that directive by the entire contents of the source file identified by the specified
sequence between the" delimiters. The named source file is searched for in an implementation-defined
_ ____________________
27Thus, the constant expression in the following#if directive andif statement is not guaranteed to evaluate to the same value in these two contexts.

#if ’z’ - ’a’ = = 25

if (’z’ - ’a’ = = 25)

28 As indicated by the syntax, a preprocessing token shall not follow a#else or #endif directive before the terminating new-line character. How-
ever, comments may appear anywhere in a source file, including within a preprocessing directive.
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manner. If this search is not supported, or if the search fails, the directive is reprocessed as if it read

# include < h-char-sequence> new-line

with the identical contained sequence (including> characters, if any) from the original directive.
4 A preprocessing directive of the form

# include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens afterinclude
in the directive are processed just as in normal text. (Each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens.) The directive resulting after all replacements
shall match one of the two previous forms.29 The method by which a sequence of preprocessing tokens
between a< and a> preprocessing token pair or a pair of" characters is combined into a single header
name preprocessing token is implementation-defined.

5 There shall be an implementation-defined mapping between the delimited sequence and the external
source file name. The implementation shall provide unique mappings for sequences consisting of one or
more letters (as defined in<<<<character set section>>>>) followed by a period (. ) and a single letter.
The implementation may ignore the distinctions of alphabetical case and restrict the mapping to six signifi-
cant characters before the period.

6 A #include preprocessing directive may appear in a source file that has been read because of a
#include directive in another file, up to an implementation-defined nesting limit (see<<<<???>>>>).

7 The most common uses of#include preprocessing directives are as in the following:

#include <stdio.h>
#include "myprog.h"

8 This example illustrates a macro-replaced#include directive:

#if VERSION = = 1
#define INCFILE "vers1.h"

#elif VERSION = = 2
#define INCFILE "vers2.h" /* and so on*/

#else
#define INCFILE "versN.h"

#endif
#include INCFILE

16.3 Macro replacement 

1 Two replacement lists are identical if and only if the preprocessing tokens in both have the same num-
ber, ordering, spelling, and white-space separation, where all white-space separations are considered identi-
cal.

2 An identifier currently defined as a macro without use of lparen (anobject-likemacro) may be redefined
by another#define preprocessing directive provided that the second definition is an object-like macro
definition and the two replacement lists are identical.

3 An identifier currently defined as a macro using lparen (afunction-likemacro) may be redefined by
another#define preprocessing directive provided that the second definition is a function-like macro defi-
nition that has the same number and spelling of parameters, and the two replacement lists are identical.

4 The number of arguments in an invocation of a function-like macro shall agree with the number of
parameters in the macro definition, and there shall exist a) preprocessing token that terminates the invoca-
tion.

5 A parameter identifier in a function-like macro shall be uniquely declared within its scope.
6 The identifier immediately following thedefine is called themacro name. There is one name space

for macro names. Any white-space characters preceding or following the replacement list of preprocessing
tokens are not considered part of the replacement list for either form of macro.
_ ____________________
29 Note that adjacent string literals are not concatenated into a single string literal (see the translation phases in 2.1); thus, an expansion that results in
two string literals is an invalid directive.
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7 If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a preprocess-
ing directive could begin, the identifier is not subject to macro replacement.

8 A preprocessing directive of the form

# define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name30 to be replaced by
the replacement list of preprocessing tokens that constitute the remainder of the directive. The replacement
list is then rescanned for more macro names as specified below.

9 A preprocessing directive of the form

# define identifier lparen identifier-listopt ) replacement-list new-line

defines a function-like macro with parameters, similar syntactically to a function call. The parameters are
specified by the optional list of identifiers, whose scope extends from their declaration in the identifier list
until the new-line character that terminates the#define preprocessing directive. Each subsequent
instance of the function-like macro name followed by a( as the next preprocessing token introduces the
sequence of preprocessing tokens that is replaced by the replacement list in the definition (an invocation of
the macro). The replaced sequence of preprocessing tokens is terminated by the matching) preprocessing
token, skipping intervening matched pairs of left and right parenthesis preprocessing tokens. Within the
sequence of preprocessing tokens making up an invocation of a function-like macro, new-line is considered
a normal white-space character.

10 The sequence of preprocessing tokens bounded by the outside-most matching parentheses forms the list
of arguments for the function-like macro. The individual arguments within the list are separated by comma
preprocessing tokens, but comma preprocessing tokens between matching inner parentheses do not separate
arguments. If (before argument substitution) any argument consists of no preprocessing tokens, the behav-
ior is undefined. If there are sequences of preprocessing tokens within the list of arguments that would oth-
erwise act as preprocessing directives, the behavior is undefined. 

16.3.1 Argument substitution 

1 After the arguments for the invocation of a function-like macro have been identified, argument substitution
takes place. A parameter in the replacement list, unless preceded by a# or ## preprocessing token or fol-
lowed by a## preprocessing token (see below), is replaced by the corresponding argument after all macros
contained therein have been expanded. Before being substituted, each argument’s preprocessing tokens are
completely macro replaced as if they formed the rest of the translation unit; no other preprocessing tokens
are available. 

16.3.2 The #operator 

1 Each# preprocessing token in the replacement list for a function-like macro shall be followed by a parame-
ter as the next preprocessing token in the replacement list.

2 If, in the replacement list, a parameter is immediately preceded by a# preprocessing token, both are
replaced by a single character string literal preprocessing token that contains the spelling of the preprocess-
ing token sequence for the corresponding argument. Each occurrence of white space between the
argument’s preprocessing tokens becomes a single space character in the character string literal. White
space before the first preprocessing token and after the last preprocessing token comprising the argument is
deleted. Otherwise, the original spelling of each preprocessing token in the argument is retained in the
character string literal, except for special handling for producing the spelling of string literals and character
constants: a\ character is inserted before each" and \ character of a character constant or string literal
(including the delimiting" characters). If the replacement that results is not a valid character string literal,
the behavior is undefined. The order of evaluation of# and## operators is unspecified. 

_ ____________________
30 Since, by macro-replacement time, all character constants and string literals are preprocessing tokens, not sequences possibly containing identifier-
like subsequences (see 2.1.1.2, translation phases), they are never scanned for macro names or parameters.
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16.3.3 The ##operator 

1 A ## preprocessing token shall not occur at the beginning or at the end of a replacement list for either form
of macro definition.

2 If, in the replacement list, a parameter is immediately preceded or followed by a## preprocessing
token, the parameter is replaced by the corresponding argument’s preprocessing token sequence.

3 For both object-like and function-like macro invocations, before the replacement list is reexamined for
more macro names to replace, each instance of a## preprocessing token in the replacement list (not from
an argument) is deleted and the preceding preprocessing token is concatenated with the following prepro-
cessing token. If the result is not a valid preprocessing token, the behavior is undefined. The resulting
token is available for further macro replacement. The order of evaluation of## operators is unspecified. 

16.3.4 Rescanning and further replacement 

1 After all parameters in the replacement list have been substituted, the resulting preprocessing token
sequence is rescanned with all subsequent preprocessing tokens of the source file for more macro names to
replace.

2 If the name of the macro being replaced is found during this scan of the replacement list (not including
the rest of the source file’s preprocessing tokens), it is not replaced. Further, if any nested replacements
encounter the name of the macro being replaced, it is not replaced. These nonreplaced macro name prepro-
cessing tokens are no longer available for further replacement even if they are later (re)examined in con-
texts in which that macro name preprocessing token would otherwise have been replaced.

3 The resulting completely macro-replaced preprocessing token sequence is not processed as a prepro-
cessing directive even if it resembles one. 

16.3.5 Scope of macro definitions 

1 A macro definition lasts (independent of block structure) until a corresponding#undef directive is
encountered or (if none is encountered) until the end of the translation unit.

2 A preprocessing directive of the form

# undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. It is ignored if the specified identi-
fier is not currently defined as a macro name.

3 The simplest use of this facility is to define a“manifest constant,” as in

#define TABSIZE 100

int table[TABSIZE];

4 The following defines a function-like macro whose value is the maximum of its arguments. It has the
advantages of working for any compatible types of the arguments and of generating in-line code without the
overhead of function calling. It has the disadvantages of evaluating one or the other of its arguments a sec-
ond time (including side effects) and generating more code than a function if invoked several times. It also
cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.
5 To illustrate the rules for redefinition and reexamination, the sequence
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#define x 3
#define f(a) f(x * (a))
#undef x
#define x 2
#define g f
#define z z[0]
#define h g( ~
#define m(a) a(w)
#define w 0,1
#define t(a) a

f(y+1) + f(f(z)) % t(t(g)(0) + t)(1);
g(x+(3,4)-w) | h 5) & m

(f)^m(m);

results in

f(2 * (y+1)) + f(2 * (f(2 * (z[0])))) % f(2 * (0)) + t(1);
f(2 * (2+(3,4)-0,1)) | f(2 * ( ~ 5)) & f(2 * (0,1))^m(0,1);

6 To illustrate the rules for creating character string literals and concatenating tokens, the sequence

#define str(s) # s
#define xstr(s) str(s)
#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \

x ## s, x ## t)
#define INCFILE(n) vers ## n /* from previous#include example */
#define glue(a, b) a ## b
#define xglue(a, b) glue(a, b)
#define HIGHLOW "hello"
#define LOW LOW ", world"

debug(1, 2);
fputs(str(strncmp("abc\0d", "abc", ’\4’) /* this goes away */

= = 0) str(: @\n), s);
#include xstr(INCFILE(2).h)
glue(HIGH, LOW);
xglue(HIGH, LOW)

results in

printf("x" "1" "= %d, x" "2" "= %s", x1, x2);
fputs("strncmp(\"abc\\0d\", \"abc\", ’\\4’) = = 0" ": @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello" ", world"

or, after concatenation of the character string literals,

printf("x1= %d, x2= %s", x1, x2);
fputs("strncmp(\"abc\\0d\", \"abc\", ’\\4’) = = 0: @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello, world"

Space around the# and## tokens in the macro definition is optional.
7 And finally, to demonstrate the redefinition rules, the following sequence is valid.

#define OBJ_LIKE (1-1)
#define OBJ_LIKE /* white space */ (1-1) /* other */
#define FTN_LIKE(a) ( a )
#define FTN_LIKE( a )( /* note the white space */ \

a /* other stuff on this line
*/ )

But the following redefinitions are invalid:
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#define OBJ_LIKE (0) /* different token sequence*/
#define OBJ_LIKE (1 - 1) /* different white space*/
#define FTN_LIKE(b) ( a ) /* different parameter usage*/
#define FTN_LIKE(b) ( b ) /* different parameter spelling*/

16.4 Line control 

1 The string literal of a#line directive, if present, shall be a character string literal.
2 The line numberof the current source line is one greater than the number of new-line characters read or

introduced in translation phase 1 (2.1) while processing the source file to the current token.
3 A preprocessing directive of the form

# line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a source line
that has a line number as specified by the digit sequence (interpreted as a decimal integer). The digit
sequence shall not specify zero, nor a number greater than 32767.

4 A preprocessing directive of the form

# line digit-sequence" s-char-sequenceopt" new-line

sets the line number similarly and changes the presumed name of the source file to be the contents of the
character string literal.

5 A preprocessing directive of the form

# line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens afterline on
the directive are processed just as in normal text (each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens). The directive resulting after all replacements
shall match one of the two previous forms and is then processed as appropriate. 

16.5 Error directive 

1 A preprocessing directive of the form

# error pp-tokensopt new-line

causes the implementation to produce a diagnostic message that includes the specified sequence of prepro-
cessing tokens. 

16.6 Pragma directive 

1 A preprocessing directive of the form

# pragma pp-tokensopt new-line

causes the implementation to behave in an implementation-defined manner. Any pragma that is not recog-
nized by the implementation is ignored. 

16.7 Null directive 

1 A preprocessing directive of the form

# new-line

has no effect. 

16.8 Predefined macro names 

1 The following macro names shall be defined by the implementation:

_ _LINE_ _ The line number of the current source line (a decimal constant).
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_ _FILE_ _ The presumed name of the source file (a character string literal).

_ _DATE_ _ The date of translation of the source file (a character string literal of the form
"Mmm dd yyyy" , where the names of the months are the same as those generated by theasc-
time function, and the first character ofdd is a space character if the value is less than 10). If the
date of translation is not available, an implementation-defined valid date shall be supplied.

_ _TIME_ _ The time of translation of the source file (a character string literal of the form
"hh:mm:ss" as in the time generated by theasctime function). If the time of translation is not
available, an implementation-defined valid time shall be supplied.

_ _STDC_ _ Whether_ _STDC_ _ is defined and if so, what its value is, are implementation dependent.

2 The values of the predefined macros (except for_ _LINE_ _ and _ _FILE_ _) remain constant
throughout the translation unit.

3 None of these macro names, nor the identifierdefined , shall be the subject of a#define or a
#undef preprocessing directive. All predefined macro names shall begin with a leading underscore fol-
lowed by an uppercase letter or a second underscore.
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Library

1 The C + + Standard Library consists of classes designed for C + + as well as functions and macros inherited from C.

17 Library

1 The signatures defined in the standard library are reserved to the implementation. The behavior of a C + +
program that defines functions with signatures matching any of the reserved signatures is undefined.

Reentrancy: The intent is to allow the library to be reentrant, despite the implied existence of
single, global state information (such as cin, cout, cerr, new-handler, unexpected-function, and
terminate-function). Multi-threaded implementations will need to provide the appropriate con-
currency interlocks if they support a single, global state. Alternatively, they may provide sepa-
rate copies for each thread._ ___________________________________________________________________________________







_ ___________________________________________________________________________________







17.1 Language support 

1 The classes and functions in this section are required to support certain aspects of the C + + language. 

17.1.1 Free store<new> 

1 These functions support the free store management described in 5.3 and 12. The implementation calls
::operator new() or ::operator new[]() to allocate storage for objects created bynew-
expressions(5.3.3), and calls::operator delete() or ::operator delete[]() to deallocate
the storage for objects indelete-expressions (5.3.4).

2 The signatures::operator new(size_t) , ::operator new[](size_t) , ::operator
delete(void*) , and::operator delete[](void*) are not reserved. A C + + program may pro-
vide at most one definition of each of these functions. Any such functions will replace the default versions.
This replacement is global and takes effect upon program startup (3.4). Any parts of the implementation
(including other portions of the standard library) that directly or indirectly invoke these functions for free
store management will use the supplied replacements. The versions of::operator new(size_t) ,
::operator new[](size_t) , ::operator delete(void*) , and ::operator
delete[](void*) described here are the default versions supplied by an implementation. Any C + +
program that replaces any of them with functions having different result semantics causes that program to
have undefined behavior.

3 The relationship between these memory management functions and the functionsmalloc() , cal-
loc() , realloc() , andfree() (17.4.10.3) is unspecified.
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17.1.1.1operator new() and operator new[]()

void* operator new(size_t) throw(xalloc);
void* operator new[](size_t) throw(xalloc);

1 When a non-array object or an array is created with anew-expressionthe implementation uses::opera-
tor new() or ::operator new[]() (respectively) to obtain the store needed.

2 For array allocation, the implementation calculates the storage required to hold the array and calls
::operator new[]() with the resulting size or a larger size.

Result semantics:

3 If successful, returns a pointer to allocated storage. Otherwise, throws anxalloc exception (17.1.3.3).
Any other action is undefined.

Since the exception will be propagated through a new-expression, it changes the semantics of
such expressions. Error handling now relies on a catch clause, not a null pointer result.
Returning a null pointer is undefined, but allowed to ease transition from earlier language
implementations._ ___________________________________________________________________________________






_ ___________________________________________________________________________________






4 The order and contiguity of storage allocated by successive calls to::operator new() or ::oper-
ator new[]() is unspecified. The initial value of this storage is unspecified. The pointer returned is
suitably aligned so that it may be assigned to a pointer of any type and then used to initialize and access
such an object or an array of such objects in the storage allocated (until the storage is explicitly deallocated
by a call to the corresponding deallocation function (_expr.free_, 17.1.1.2). Each such allocation shall yield
a pointer to storage disjoint from any other allocated storage. The pointer returned points to the start (low-
est byte address) of the allocated storage. If the size of the space is requested is zero, the value returned
shall be a pointer differerent from the address of any other currently allocated storage. Repeated such calls
return distinct non-null pointers (5.3.3). The result of dereferencing a pointer returned from a request for
zero size is undefined.

The wording for the above 8 sentences was adapted from §17.4.10.3. The intent is to have
::operator new() implementable by callingmalloc() or calloc() , so the rules are
substantially the same. C + + differs from C in requiring a zero request to return a non-null
pointer._ ___________________________________________________________________________________






_ ___________________________________________________________________________________






Description of default implementation:

5
1. Attempts to allocate storage to hold at least the amount of storage requested.

Note that the actual size may be larger than the requested size, due to alignment or other
requirements. Some implementations convert a request for zero bytes into a request for
1 byte._ ___________________________________________________________________________________




_ ___________________________________________________________________________________




If successful, returns the address of storage allocated.

2. If unsuccessful, checks the currentnew-handler(17.1.1.4): If there is nonew-handlerinstalled, the
result is implementation defined. Otherwise, calls the new-handler.
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The installed new-handler may throw an xalloc exception._ ___________________________________________________________
_ ___________________________________________________________


3. If the call to thenew-handlerreturns, repeats the attempt to allocate memory (go to step 1 above).

6 The defaultoperator new[]() calls operator new() . Thus ifoperator new() is replaced
without replacingoperator new[]() , the replacement function will be used for both non-array and
array allocations.

17.1.1.2operator delete() and operator delete[]()

void operator delete(void*);
void operator delete[](void*);

1 The delete-expression(5.3.4) destroys an object created by thenew-expression, and (implicitly) calls the
deallocation function,operator delete() for non-arrays, oroperator delete[]() for arrays
(12.5). A null pointer is a valid argument but has no effect. Otherwise, the effect of the deallocation func-
tion is to reclaim the storage pointed to by its argument. The argument then becomes invalid.

An invalid pointer contains an unusable value— it cannot even be used in an expression. This
still needs work._ ___________________________________________________________________________________


_ ___________________________________________________________________________________



Result semantics:

2 If the argument is a non-null pointer

• The value of a pointer that refers to deallocated space is indeterminate.

• The effect of dereferencing a pointer already deleted is undefined.

• The effect of applying the deallocation function to a pointer already deleted is undefined.

An implementation could (should) throw an exception if it can detect these conditions._ ____________________________________________________________________________
_ ____________________________________________________________________________


Description of default implementation:

3 Deallocates the storage referenced by the pointer. The storage may be available for further allocation. The
argument to the default::operator delete() must be a pointer returned by the default::opera-
tor new() and the argument to the default::operator delete[]() must be a pointer returned by
the default ::operator new[]() (17.1.1.1). Applying the default::operator delete() or
::operator delete[]() to a null pointer has no effect.

4 The default::operator delete[]() calls ::operator delete() so that if just::opera-
tor delete() is replaced, the replacement will be used for both array and non-array deletion.

17.1.1.3placementoperator new()

void* operator new(size_t, void*);
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1 This function is reserved.

This second form of::operator new() is one of an unbounded set of overloaded func-
tions for use with placement expressions._ ___________________________________________________________________________________


_ ___________________________________________________________________________________



The placement version of operator new() returns its second argument as its result:

void* operator new(size_t, void* p) { return p; }

17.1.1.4new-handlerfunction

typedef void (*new_handler)() throw(xalloc);

1 When ::operator new() (17.1.1.1) cannot allocate storage to satisfy a request, it calls the currently
installed new-handler function. A C + + program may installnew-handler functions via calls to
set_new_handler() (17.1.1.5).

Result semantics:

2 A new-handler function shall either

1. return after deallocating some currently-allocated storage, or

2 throw anxalloc exception or an exception derived fromxalloc (17.1.3.3), or

3. callabort() (17.4.10.4.1) orexit() (17.4.10.4.3).

3 Any C + + program that installs anew-handlerhaving different result semantics causes that program to
have undefined behavior.

In particular, anew-handlerthat returns to the default::operator new() (17.1.1.1) with-
out freeing any storage will cause an infinite loop._ ___________________________________________________________________________________


_ ___________________________________________________________________________________



Description of default implementation:

4 The defaultnew-handlerfunction throws anxalloc exception (17.1.3.3):

void new_handler() { throw xalloc; }

Earlier implementations provided no default new-handler, causing new expressions to return
null when the memory request could not be met. C + + programs that used the result of new
expressions without checking the result were erroneous, while those that checked were correct.
Providing a default new-handler that throws an exception“fixes” the erroneous programs (by
detecting all memory exhaustion conditions), but breaks the previously correct ones (by requir-
ing them to do the checking with a catch-clause). The old behavior can be restored by calling
set_new_handler(0)._ ___________________________________________________________________________________









_ ___________________________________________________________________________________








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17.1.1.5set_new_handler()

new_handler set_new_handler(new_handler);

1 Installs the function given as argument as the currentnew-handler(17.1.1.4). Returns the previous function
given toset_new_handler() .

This enables callers to implement a stack strategy for usingnew-handlers. Note that thenew-
handler function is anonymous— it cannot be called directly. To obtain the current new-
handler, callset_new_handler() with a known argument (for example, zero), save the
result, and callset_new_handler() again with the result to re-set the new-handler back to
what it was._ ___________________________________________________________________________________







_ ___________________________________________________________________________________







17.1.2 Type identification<type_info> 

1 ClassType_info is declared in<Type_info.h> like this:

class Type_info {
// implementation dependent representation

private:
Type_info(const Type_info&); // objects cannot
Type_info& operator=(const Type_info&); // be copied by users

public:
virtual ~Type_info(); // is polymorphic

int operator==(const Type_info&) const; // can be compared
int operator!=(const Type_info&) const;
int before(const Type_info&); // define order among

// Type_info objects

const char* name() const; // get the type name
};

,P The ordering defined bybefore is complete and valid only for the duration of the execution of pro-
gram. There is no guaranteed relation between the ordering defined bybefore and inheritance relation-
ships.

17.1.3 Exceptions

1 These functions support the Exception Handling described in Chapter 15.

17.1.3.1 Abnormal termination

1 These functions allow C + + programs to control how the implementation responds to faults in the exception
handling mechanism.

17.1.3.1.1terminate()

void terminate();

1 This function is called when exception handling must be abandoned (15.6). For example,

• when the exception handling mechanism cannot find a handler for a thrown exception,

• when the exception handling mechanism finds the stack corrupted, or

• when a destructor called during stack unwinding caused by an exception tries to exit using an excep-
tion.
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2 terminate() calls the currentterminate-function(17.1.3.1.2).

17.1.3.1.2terminate-function

typedef void (*terminate_function)();

1 A C + + program may installterminate-functions via calls toset_terminate() (17.1.3.1.3).

Result semantics:

2 This function shall not return. It may call (17.4.10.4.1) or (17.4.10.4.3). Any other action is undefined.

It may re-start the application process, invoke some other last-chance disaster-recovery mecha-
nism, or take some other action that cannot be specified in the standard._ ___________________________________________________________________________________


_ ___________________________________________________________________________________



Description of default implementation:

3 The default terminate-function isabort() (17.4.10.4.1).

17.1.3.1.3set_terminate()

terminate_function set_terminate( terminate_function );

1 Installs the function given as an argument as the currentterminate-function(17.1.3.1.2). Returns the previ-
ous function given toset_terminate() .

This enables callers to implement a stack strategy for usingterminate-functions._______________________________________________________________________
_______________________________________________________________________


17.1.3.2 Violatingexception-specifications

1 These functions allow C + + programs to control how the implementation responds to inconsistencies
between declaredexception-specifications and actual exceptions detected at runtime.

17.1.3.2.1unexpected()

void unexpected()

The implementation callsunexpected() if a function with anexception-specificationthrows an excep-
tion that is not listed in theexception-specification.

1 unexpected() calls the currentunexpected-function(17.1.3.2.2).

17.1.3.2.2unexpected-function

typedef void (*unexpected_function)();

A C + + program may installunexpected-functions via calls toset_unexpected() (17.1.3.2.3).

Result semantics:

1 This function shall not return. It may callterminate() (17.1.3.1.1),abort() (17.4.10.4.1), orexit(
(_lib.exot_). Any other action is undefined.
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Since these kinds of errors usually indicate design problems that need to be fixed, the intent is
to make them easy to detect._ ___________________________________________________________________________________


_ ___________________________________________________________________________________



Description of default implementation:

2 The defaultunexpected-functionis terminate() (17.1.3.1.1).

17.1.3.2.3set_unexpected()

unexpected_function set_unexpected( unexpected_function );

1 Installs the function given as an argument as the currentunexpected-function(17.1.3.2.2). Returns the pre-
vious function given toset_unexpected() .

This enables callers to implement a stack strategy for usingunexpected-functions._ ________________________________________________________________________
_ ________________________________________________________________________


17.1.3.3 Predefined exceptions

1 These classes define the exceptions reported by various functions in the standard library.

17.1.3.3.1xmsg exception

class xmsg {
public:

xmsg(const string& msg);

string why() const;
void raise() throw(xmsg);

private:
// implementation-defined

};

The intent of the xmsg exception class was to allow programs to catch all exceptions in the
library:_ ___________________________________________________________________________________


_ ___________________________________________________________________________________



1 For example,

#include <stdlib.h>
#include <iostream>

int main(int argc, char** argv)
{

try {
real_main(argc,argv);
return EXIT_SUCCESS;

} catch(xmsg& m) {
cerr << "exiting because of exception: " << m.why() << endl;
return EXIT_FAILURE;

}
}

x.why() is the string used to construct anxmsg x . That is:xmsg(s).why()~==~s .

The absence of a default constructor means that every xmsg must contain a meaningful (:-))
message._ ___________________________________________________________________________________


_ ___________________________________________________________________________________


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xmsg::raise() is defined by:

void xmsg::raise() throw(xmsg) { throw *this; }

xmsg::raise() adds no functionality but is included as a convenient hook for debugging.
Shouldn’t it be virtual?_ ___________________________________________________________________________________


_ ___________________________________________________________________________________



17.1.3.3.2xalloc exception

class xalloc : public xmsg {
public:

xalloc(const string& msg, size_t requested_size);

size_t requested() const;
void raise() throw(xalloc);

private:
// implementation-defined

};

1 An xalloc exception can be thrown by thenew-handler(17.1.1.4) when it cannot find storage to allocate.

The standard does not define the form of an xalloc error message. The following might be
plausible (subject to locale settings):msg + ": Insufficient space to allo-
cate " + int_to_string(size) + " bytes" . However, since the xalloc excep-
tion is going to be thrown when the system runs out of space, the space for constructing and
throwing the exception must exist. This implies the error message cannot rely on a string cate-
nation operation that attempts to allocate storage. A plausible implementation would be an
allocator that holds back enough storage, such as a static instance of an xalloc object._ ___________________________________________________________________________________









_ ___________________________________________________________________________________









17.1.3.3.3bad_cast exception 

class Bad_cast : public xmsg {
public:

Bad_cast(const string& msg, /* ??? */);

// ???
private:

// implementation-defined
};

1 A Bad_cast exception can be thrown by adynamic_cast expression (5.2.6). 

17.2 The string class 

17.3 Input/output 

17.4 C library 

17.4.1 Introduction

17.4.1.1 Definitions of terms 

1 A null-terminated character sequence(NTCS)31 is a contiguous sequence of characters terminated by and
_ ____________________
31In the ISO C Standard, aNTCS is called a“string.” This Standard uses“NTCS” to avoid confusion with the String class (17.2).
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including the first null character. A“pointer to” a NTCS is a pointer to its initial (lowest addressed) charac-
ter. The“length” of a NTCS is the number of characters preceding the null character and its“value” is the
sequence of the values of the contained characters, in order.

2 A letter is a printing character in the execution character set corresponding to any of the 52 required
lowercase and uppercase letters (17.4.3) in the source character set, listed in ???.

3 Thedecimal-point characteris the character used by functions that convert floating-point numbers to or
from character sequences to denote the beginning of the fractional part of such character sequences.32 It is
represented in the text and examples by a period, but may be changed by thesetlocale function
(17.4.4). 

17.4.1.2 Standard headers 

1 Each library function is declared in aheader,33 whose contents are made available by the#include pre-
processing directive. The header declares a set of related functions, plus any necessary types and additional
macros needed to facilitate their use.

2 The standard headers are

<assert.h> <locale.h> <stddef.h>
<ctype.h> <math.h> <stdio.h>
<errno.h> <setjmp.h> <stdlib.h>
<float.h> <signal.h> <string.h>
<limits.h> <stdarg.h> <time.h>

3 If a file with the same name as one of the above< and> delimited sequences, not provided as part of
the implementation, is placed in any of the standard places for a source file to be included, the behavior is
undefined.

4 Headers may be included in any order; each may be included more than once in a given scope, with no
effect different from being included only once, except that the effect of including<assert.h> depends
on the definition ofNDEBUG. A header shall be included34 outside of any external declaration or defini-
tion, and it shall first be included before the first reference to any of the functions or objects it declares, or
to any of the types or macros it defines. However, if the identifier is declared or defined in more than one
header, the second and subsequent associated headers may be included after the initial reference to the iden-
tifier. The program shall not have any macros with names lexically identical to keywords currently defined
prior to the inclusion. 

17.4.1.2.1 Reserved identifiers 

1 Each header declares or defines all identifiers listed in its associated section, and optionally declares or
defines identifiers listed in its associated future library directions section and identifiers which are always
reserved either for any use or for use as file scope identifiers.

• All identifiers that begin with an underscore and either an uppercase letter or another underscore are
always reserved for any use.

• All identifiers having two consecutive underscores are always reserved for use as identifiers with
bothextern "C + +" andextern "C" linkages.

• All identifiers that begin with an underscore are always reserved for use as identifiers with file
scope in both the ordinary identifier and tag name spaces.

• Each macro name listed in any of the following sections (including the future library directions) is
reserved for any use if any of its associated headers is included.

_ ____________________
32 The functions that make use of the decimal-point character arelocaleconv , fprintf , fscanf , printf , scanf , sprintf , sscanf ,
vfprintf , vprintf , vsprintf , atof , andstrtod .
33A header is not necessarily a source file, nor are the< and> delimited sequences in header names necessarily valid source file names.
34ISO C Standard says“If used, a header shall be...” This standard requires a header to be included if any of its contents are used.



17—10 Library DRAFT September 28, 1993 Chapter 17

• All identifiers with external linkage in any of the following sections (including the future library
directions) are always reserved for use as identifiers withextern "C" linkage.35

• Each identifier with file scope listed in any of the following sections (including the future library
directions) is reserved for use as an identifier with file scope.

• Each function signature listed in any of the following sections (including the future library direc-
tions) is reserved for use with bothextern "C + +" andextern "C" linkages as a function signa-
ture with file scope in the same name space if any of its associated headers is included.36

2 No other identifiers are reserved. If the program declares or defines an identifier with the same name as
an identifier reserved in that context (other than as allowed by 17.4.1.6), the behavior is undefined.37

17.4.1.3 Errors<errno.h>

1 The header<errno.h> defines several macros, all relating to the reporting of error conditions.
2 [This section is the same as \(sc7.1.3 of the ISO C Standard.]

17.4.1.4 Limits<float.h> and <limits.h>

1 The headers<float.h> and <limits.h> define several macros that expand to various limits and
parameters.

2 [This section is the same as \(sc2.2.4.2 (??? this is the ANSI paragraph) of the ISO C Standard.] 

17.4.1.5 Common definitions<stddef.h> 

1 The following types and macros are defined in the standard header<stddef.h> . Some are also defined
in other headers, as noted in their respective sections.

2 The types are

ptrdiff_t

which is the signed integral type of the result of subtracting two pointers;

size_t

which is the unsigned integral type of the result of thesizeof operator; and

wchar_t

which is an integral type whose range of values can represent distinct codes for all members of the largest
extended character set specified among the supported locales (17.4.4); the null character shall have the code
value zero and each member of the basic character set defined in<2.2.1> shall have a code value equal to
its value when used as the lone character in an integer character constant.

Is this obsolete now thatwchar_t is a type on its own and a reserved word?_ ____________________________________________________________________
_ ____________________________________________________________________


3 The macros are

NULL

which expands to an implementation-defined C + + null pointer constant; and

offsetof( type, member-designator)

which expands to an integral constant expression that has typesize_t , the value of which is the offset in
bytes, to the structure member (designated by from the beginning of its C-style structure (designated by

_ ____________________
35The list of reserved identifiers with external linkage includeserrno , setjmp , andva_end .
36Class member functions may duplicate signatures of listed functions because they have class scope.
37 Since macro names are replaced whenever found, independent of scope and name space, macro names matching any of the reserved identifier names
must not be defined if an associated header, if any, is included.
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Is a C-style structure the same as a POD-struct?_ _____________________________________________
_ _____________________________________________


Themember-designatorshall be such that given

static type t;

then the expression&(t. member-designator) evaluates to an address constant. (If the specified member
is a bit-field, the behavior is undefined.)

4 By C-style structureis meant a structure defined with eitherstruct or union and whose definition is
legal in Standard C. That is, it has no base classes, no member functions, and no access modifiers. The
result of applyingoffsetof to a structure with C + + features is undefined.

This is an issue of form, not behavior._ _____________________________________
_ _____________________________________


17.4.1.6 Use of library functions 

1 Each of the following statements applies unless explicitly stated otherwise in the detailed descriptions that
follow. If an argument to a function has an invalid value (such as a value outside the domain of the func-
tion, or a pointer outside the address space of the program, or a null pointer), the behavior is undefined. If a
function parameter is described as being an array, the pointer actually passed to the function shall have a
value such that all address computations and accesses to objects (that would be valid if the pointer did point
to the first element of such an array) are in fact valid. Any function declared in a header must be declared
so as to allow it to be overloaded by use of another signature.38 Those function-like macros described in the
following sections may be invoked in an expression anywhere a function with a compatible return type
could be called. All object-like macros listed as expanding to integral constant expressions shall addition-
ally be suitable for use in#if preprocessing directives.

2 No library function shall be declared explicitly in a user program, but instead its associated header shall
be included if it is to be used.39 Furthermore, proper prototypes shall be supplied in the appropriate header
for each library function.

17.4.2 Diagnostics<assert.h>

1 The header<assert.h> defines theassert macro and refers to another macro,

NDEBUG

which isnot defined by<assert.h> . Theassert macro need not be implemented as a function, and
need not be overloadable if it is implemented as a function.

2 [The remainder of this section is the same as section 7.2 of the ISO C Standard.] 

17.4.3 Character handling<ctype.h> 

1 [This section is the same as section 7.3 of the ISO C Standard.]

17.4.4 Localization<locale.h>

1 [This section is the same as section 7.4 of the ISO C Standard.]

17.4.5 Mathematics<math.h>

1 [This section is the same as section 7.5 of the ISO C Standard.] 

17.4.6 Nonlocal jumps<setjmp.h> 

_ ____________________
38This means that the library functions must not be implemented as macros, although they may be implemented as inline functions.
39This allows the implementation to supply a function with either C or C + + linkage.
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1 The header<setjmp.h> defines the macrosetjmp , and declares one function and one type, for bypass-
ing the normal function call and return discipline.40

2 The type declared is

jmp_buf

which is an array type suitable for holding the information needed to restore a calling environment.
3 It is unspecified whethersetjmp is a macro or an identifier declared with external linkage. If a macro

definition is suppressed in order to access an actual function, or a program defines an external identifier
with the namesetjmp , the behavior is undefined. 

17.4.6.1 Save calling environment 

17.4.6.1.1 Thesetjmp macro 

#include <setjmp.h>
int setjmp(jmp_buf env);

1 The setjmp macro saves its calling environment in itsjmp_buf argument for later use by the
longjmp function.

2 If the return is from a direct invocation, thesetjmp macro returns the value zero. If the return is from
a call to thelongjmp function, thesetjmp macro returns a nonzero value.

3 An invocation of thesetjmp macro shall appear only in one of the following contexts:

• the entire controlling expression of a selection or iteration statement;

• one operand of a relational or equality operator with the other operand an integral constant expres-
sion, with the resulting expression being the entire controlling expression of a selection or iteration
statement;

• the operand of a unary! operator with the resulting expression being the entire controlling expres-
sion of a selection or iteration statement; or

• the entire expression of an expression statement (possibly cast tovoid ).

17.4.6.2 Restore calling environment 

17.4.6.2.1 Thelongjmp function 

#include <setjmp.h>
void longjmp(jmp_buf env, int val);

1 The longjmp function restores the environment, saved by the most recent invocation of thesetjmp
macro in the same invocation of the program, with the correspondingjmp_buf argument. If there has
been no such invocation, or if the function containing the invocation of thesetjmp macro has terminated
execution41 in the interim, the behavior is undefined.

2 All accessible objects have values as of the timelongjmp was called, except that the values of objects
of automatic storage duration that are local to the function containing the invocation of the corresponding
setjmp macro that do not have volatile-qualified type and have been changed between thesetjmp invo-
cation andlongjmp call are indeterminate.

3 As it bypasses the usual function call and return mechanisms, thelongjmp function shall execute cor-
rectly in contexts of interrupts, signals and any of their associated functions. However, if thelongjmp
function is invoked from a nested signal handler (that is, from a function invoked as a result of a signal
_ ____________________
40These functions are useful for dealing with unusual conditions encountered in a low-level function of a program.
41For example, by executing areturn statement or because anotherlongjmp call has caused a transfer to asetjmp invocation in a function earlier
in the set of nested calls.
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raised during the handling of another signal), the behavior is undefined.
4 If any automatic objects would have been destroyed due to an exception transferring control to the same

function as thelongjmp, the results of thelongjmp are undefined.
5 After longjmp is completed, program execution continues as if the corresponding invocation of the

setjmp macro had just returned the value specified byval . The longjmp function cannot cause the
setjmp macro to return the value zero; ifval is zero, thesetjmp macro returns the value 1. 

17.4.7 Signal handling<signal.h> 

1 [This section is the same as section 7.7 of the ISO C Standard.] 

17.4.8 Variable arguments<stdarg.h> 

1 [This section is the same as section 7.8 of the ISO C Standard.] 

17.4.9 Input/output <stdio.h> 

1 [This section is the same as section 7.9 of the ISO C Standard.] 

17.4.10 General utilities<stdlib.h> 

1 The header<stdlib.h> declares three types and several functions of general utility, and defines several
macros.42

2 The types declared aresize_t (described in 17.4.1.5),

div_t

which is a structure type that is the type of the value returned by thediv function, and

ldiv_t

which is a structure type that is the type of the value returned by theldiv function.
3 The macros defined areNULL(described in 17.4.1.5);

EXIT_FAILURE

and

EXIT_SUCCESS

which expand to integral expressions that may be used as the argument to theexit function to return
unsuccessful or successful termination status, respectively, to the host environment;

RAND_MAX

which expands to an integral constant expression, the value of which is the maximum value returned by the
rand function; and

MB_CUR_MAX

which expands to a positive integer expression whose value is the maximum number of bytes in a multibyte
character for the extended character set specified by the current locale (categoryLC_CTYPE), and whose
value is never greater thanMB_LEN_MAX. 

17.4.10.1NTCS conversion functions 

1 [This section is the same as section 7.10.1 of the ISO C Standard.] 

17.4.10.2 Pseudo-random sequence generation functions 

1 [This section is the same as section 7.10.2 of the ISO C Standard.] 

_ ____________________
42See future library directions (17.4.13).
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17.4.10.3 Memory management functions 

1 The order and contiguity of storage allocated by successive calls to thecalloc , malloc , andrealloc
functions is unspecified. The pointer returned if the allocation succeeds is suitably aligned so that it may be
assigned to a pointer to any type of object and then used to access such an object or an array of such objects
in the space allocated (until the space is explicitly freed or reallocated). Each such allocation shall yield a
pointer to an object disjoint from any other object. The pointer returned points to the start (lowest byte
address) of the allocated space. If the space cannot be allocated, a null pointer is returned. If the size of the
space requested is zero, the behavior is implementation-defined; the value returned shall be either a null
pointer or a unique pointer. The value of a pointer that refers to freed space is indeterminate.

2 The relationship between these memory management functions and the C + + operator new and
operator delete is unspecified.43

3 [The remainder of this section is the same as section 7.10.3 of the ISO C Standard.] 

17.4.10.4 Communication with the environment 

17.4.10.4.1 Theabort Function 

1 [This section is the same44 as section 7.10.4.1 of the ISO C Standard.] 

17.4.10.4.2 Theatexit function 

1 [This section is the same as section 7.10.4.2 of the ISO C Standard.] 

17.4.10.4.3 Theexit function 

#include <stdlib.h>
void exit(int status);

1 The exit function causes normal program termination to occur. If more than one call to theexit
function is executed by a program, the behavior is undefined.

2 First, all functions registered by theatexit function are called, in the reverse order of their registra-
tion.45

3 Next, all static objects are destroyed in the reverse order of their construction. (Non-static local objects
are not destroyed as a result of callingexit .)46

4 Next, all open C stdio streams (in the sense of ISO Standard section 7.9.2) with unwritten buffered data
are flushed, all open C stdio streams are closed, and all files created by thetmpfile function are
removed.47

5 Finally, control is returned to the host environment. If the value ofstatus is zero or
EXIT_SUCCESS, an implementation-defined form of the statussuccessful terminationis returned. If the
value of status is EXIT_FAILURE , an implementation-defined form of the statusunsuccessful
terminationis returned. Otherwise the status returned is implementation-defined.

6 Theexit function cannot return to its caller. 

17.4.10.4.4 Thegetenv function 

1 [This section is the same as section 7.10.4.4 of the ISO C Standard.] 

17.4.10.4.5 Thesystem function 

1 [This section is the same as section 7.10.4.5 of the ISO C Standard.] 

_ ____________________
43 For example, either ofoperator new andmalloc might be written in terms of the other. On the other hand, they need not have anything in
common or even maintain storage in the same address space.
44No destructors are invoked as a result of a call toabort . In particular, constructed local and static objects remain undestroyed.
45Each function is called as many times as it was registered.
46 To achieve the effect of destroying automatic objects (other than those declared at the outermost level ofmain ), throw an exception which is caught
in main . The stack will unwind, destroying automatic objects. At the place where the exception is caught, callexit .
47The standard C + + iostreams will have already been flushed and closed by the previous step.
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17.4.10.5 Searching and sorting utilities 

1 [This section is the same as section 7.10.5 of the ISO C Standard.] 

17.4.10.6 Integer arithmetic functions 

1 [This section is the same as section 7.10.6 of the ISO C Standard.] 

17.4.10.7 Multibyte character functions 

1 [This section is the same as section 7.10.7 of the ISO C Standard.] 

17.4.10.8 MultibyteNTCS functions 

1 [This section is the same as section 7.10.8 of the ISO C Standard.] 

17.4.11 NTCS handling <string.h> 

17.4.11.1NTCS function conventions 

1 The header<string.h> declares one type and several functions, and defines one macro useful for
manipulating arrays of character type and other objects treated as arrays of character type.48 The type is
size_t and the macro isNULL (both described in 17.4.1.5). Various methods are used for determining
the lengths of the arrays, but in all cases achar * or void * argument points to the initial (lowest
addressed) character of the array. If an array is accessed beyond the end of an object, the behavior is unde-
fined. 

17.4.11.2 Copying functions 

1 [This section is the same as section 7.11.2 of the ISO C Standard, containing thememcpy, memmove,
strcpy , andstrncpy functions.] 

17.4.11.3 Concatenation functions 

1 [This section is the same as section 7.11.3 of the ISO C Standard, containing thestrcat and strncat
functions.] 

17.4.11.4 Comparison functions 

1 [This section is the same as section 7.11.4 of the ISO C Standard.] 

17.4.11.5 Search functions 

17.4.11.5.1 Thememchr functions 

#include <string.h>
const void *memchr(const void *s, int c, size_t n);

void *memchr( void *s, int c, size_t n);

1 Thememchr functions49 locate the first occurrence ofc (converted to anunsigned char ) in the ini-
tial n characters (each interpreted asunsigned char ) of the object pointed to bys .

2 The memchr functions return a pointer to the located character, or a null pointer if the character does
not occur in the object. 

17.4.11.5.2 Thestrchr functions 

#include <string.h>
const char *strchr(const char *s, int c);

char *strchr( char *s, int c);

_ ____________________
48See future library directions (17.4.13).
49The ISO C library contains a single function which returns a non-const pointer into itsconst first parameter.
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1 Thestrchr functions50 locate the first occurrence ofc (converted to achar ) in theNTCS pointed to
by s . The terminating null character is considered to be part of theNTCS.

2 The strchr functions return a pointer to the located character, or a null pointer if the character does
not occur in theNTCS. 

17.4.11.5.3 Thestrcspn function 

1 [This section is the same as section 7.11.5.3 of the ISO C Standard.] 

17.4.11.5.4 Thestrpbrk functions 

#include <string.h>
const char *strpbrk(const char *s1, const char *s2);

char *strpbrk( char *s1, const char *s2);

1 The strpbrk functions51 locate the first occurrence in theNTCS pointed to bys1 of any character
from theNTCS pointed to bys2 .

2 The strpbrk functions return a pointer to the character, or a null pointer if no character froms2
occurs ins1 . 

17.4.11.5.5 Thestrrchr function 

#include <string.h>
const char *strrchr(const char *s, int c);

char *strrchr( char *s, int c);

1 Thestrrchr functions52 locate the last occurrence ofc (converted to achar ) in theNTCS pointed to
by s . The terminating null character is considered to be part of theNTCS.

2 The strrchr functions return a pointer to the character, or a null pointer ifc does not occur in the
NTCS. 

17.4.11.5.6 Thestrspn function 

[This section is the same as section 7.11.5.6 of the ISO C Standard.] 

17.4.11.5.7 Thestrstr functions 

#include <string.h>
const char *strstr(const char *s1, const char *s2);

char *strstr( char *s1, const char *s2);

1 The strstr functions53 locate the first occurrence in theNTCS pointed to bys1 of the sequence of
characters (excluding the terminating null character) in theNTCS pointed to bys2

2 Thestrstr functions return a pointer to the locatedNTCS, or a null pointer if theNTCS is not found. If
s2 points to aNTCS with zero length, the function returnss1 . 

17.4.11.5.8 Thestrtok function 

1 [This section is the same as section 7.11.5.8 of the ISO C Standard.] 

17.4.11.6 Miscellaneous functions 

1 [This section is the same as section 7.11.6 of the ISO C Standard.] 

17.4.12 Date and time<time.h> 

_ ____________________
50The ISO C library contains a single function which returns a non-const pointer into itsconst first parameter.
51The ISO C library contains a single function which returns a non-const pointer into itsconst first parameter.
52The ISO C library contains a single function which returns a non-const pointer into itsconst first parameter.
53The ISO C library contains a single function which returns a non-const pointer into itsconst first parameter.
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1 [This section is the same as section 7.12 of the ISO C Standard.] 

17.4.13 Future c library directions 

1 [This section is the same as section 7.13 of the ISO C Standard.] 

17.5 Future library directions 
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Grammar Summary

1 This chapter provides a summary of the C + + grammar.

18 Appendix A: Grammar summary 

1 This appendix is not part of the C + + reference manual proper and does not define C + + language features.
2 This summary of C + + syntax is intended to be an aid to comprehension. It is not an exact statement of

the language. In particular, the grammar described here accepts a superset of valid C + + constructs. Disam-
biguation rules (6.8, 7.1, 10.1.1) must be applied to distinguish expressions from declarations. Further,
access control, ambiguity, and type rules must be used to weed out syntactically valid but meaningless con-
structs.

18.1 Keywords

1 New context-dependent keywords are introduced into a program bytypedef (7.1.3), class (9), enumera-
tion (7.2), andtemplate (14) declarations.

class-name:
identifier
template-class-id

enum-name:
identifier

typedef-name:
identifier

Note that atypedef-namenaming a class is also aclass-name(9.1).

18.2 Expressions

1 expression:
assignment-expression
expression, assignment-expression
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assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression
throw-expression

assignment-operator:one of
= *= /= %= += -= >>= <<= &= ^= |=

conditional-expression:
logical-or-expression
logical-or-expression? expression: assignment-expression

logical-or-expression:
logical-and-expression
logical-or-expression|| logical-and-expression

logical-and-expression:
inclusive-or-expression
logical-and-expression&& inclusive-or-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression| exclusive-or-expression

exclusive-or-expression:
and-expression
exclusive-or-expression̂ and-expression

and-expression:
equality-expression
and-expression& equality-expression

equality-expression:
relational-expression
equality-expression== relational-expression
equality-expression!= relational-expression

relational-expression:
shift-expression
relational-expression< shift-expression
relational-expression> shift-expression
relational-expression<= shift-expression
relational-expression>= shift-expression

shift-expression:
additive-expression
shift-expression<< additive-expression
shift-expression>> additive-expression

additive-expression:
multiplicative-expression
additive-expression+ multiplicative-expression
additive-expression- multiplicative-expression

multiplicative-expression:
pm-expression
multiplicative-expression* pm-expression
multiplicative-expression/ pm-expression
multiplicative-expression% pm-expression
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pm-expression:
cast-expression
pm-expression.* cast-expression
pm-expression->* cast-expression

cast-expression:
unary-expression
( type-id ) cast-expression

unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof ( type-id )
new-expression
delete-expression

unary-operator: one of
* & + - ! ~

new-expression:
:: opt new new-placementopt new-type-id new-initializeropt

:: opt new new-placementopt ( type-id ) new-initializeropt

new-placement:
( expression-list)

new-type-id:
type-specifier-seq new-declaratoropt

new-declarator:
* cv-qualifier-seqopt new-declaratoropt

qualified-class-specifier:: * cv-qualifier-seqopt new-declaratoropt

direct-new-declarator

direct-new-declarator:
direct-new-declaratoropt [ expression]

new-initializer:
( expression-listopt )

delete-expression:
:: opt delete cast-expression
:: opt delete [ ] cast-expression

postfix-expression:
primary-expression
postfix-expression[ expression]
postfix-expression( expression-listopt )
simple-type-specifier( expression-listopt )
postfix-expression. id-expression
postfix-expression-> id-expression
postfix-expression++
postfix-expression--
dynamic_cast < type-name> ( expression)
typeid ( expression)
typeid ( type-name)
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expression-list:
assignment-expression
expression-list, assignment-expression

primary-expression:
literal
this
:: identifier
:: operator-function-id
:: qualified-id
( expression)
id-expression

id-expression:
identifier
operator-function-id
conversion-function-id
~ class-name
qualified-id

qualified-id:
nested-class-specifier:: id-expression

literal:
integer-literal
character-literal
floating-literal
string-literal

integer-literal:
decimal-literal integer-suffixopt

octal-literal integer-suffixopt

hexadecimal-literal integer-suffixopt

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit:one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F



Section 18.2 DRAFT September 28, 1993 Expressions 18—5

integer-suffix:
unsigned-suffix long-suffixopt

long-suffix unsigned-suffixopt

unsigned-suffix:one of
u U

long-suffix: one of
l L

character-literal:
’ c-char-sequence’
L’ c-char-sequence’

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except

the single-quote’ , backslash\ , or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence:one of
\’ \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

floating-constant:
fractional-constant exponent-partopt floating-suffixopt

digit-sequence exponent-part floating-suffixopt

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence.

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit
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floating-suffix: one of
f l F L

string-literal:
" s-char-sequenceopt"
L" s-char-sequenceopt"

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote" , backslash\ , or new-line character
escape-sequence

2 declaration:
decl-specifier-seqopt init-declarator-listopt ;
asm-definition
function-definition
template-declaration
linkage-specification

decl-specifier:
storage-class-specifier
type-specifier
function-specifier
template-specifier
friend
typedef

decl-specifier-seq:
decl-specifier-seqopt decl-specifier

storage-class-specifier:
auto
register
static
extern

function-specifier:
inline
virtual

type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
:: typedef-name
const
volatile
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simple-type-specifier:
qualified-class-specifier
qualified-type-specifier
char
wchar_t
short
int
long
signed
unsigned
float
double
void

elaborated-type-specifier:
class-key identifier
class-key qualified-class-specifier:: identifier
enum identifier
enum qualified-class-specifier:: identifier

class-key:
class
struct
union

qualified-type-specifier:
typedef-name
class-name:: qualified-type-specifier

qualified-class-specifier:
nested-class-specifier

:: nested-class-specifier

nested-class-specifier:
class-name
class-name:: nested-class-specifier

enum-specifier:
enum identifieropt { enumerator-listopt }

enumerator-list:
enumerator
enumerator-list , enumerator

enumerator:
identifier
identifier = constant-expression

constant-expression:
conditional-expression

linkage-specification:
extern string-literal { declaration-seqopt }
extern string-literal declaration

declaration-seq:
declaration
declaration-seq declaration
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asm-definition:
asm ( string-literal ) ;

18.3 Declarators

1 init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator initializeropt

declarator:
direct-declarator
ptr-operator declarator

direct-declarator:
declarator-id
direct-declarator ( parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

direct-declarator [ constant-expressionopt ]
( declarator )

ptr-operator:
* cv-qualifier-seqopt

& cv-qualifier-seqopt

qualified-class-specifier:: * cv-qualifier-seqopt

cv-qualifier-seq:
cv-qualifier cv-qualifier-seqopt

cv-qualifier:
const
volatile

declarator-id:
id-expression
qualified-type-specifier

type-id:
type-specifier-seq abstract-declaratoropt

type-specifier-seq:
type-specifier type-specifier-seqopt

abstract-declarator:
ptr-operator abstract-declaratoropt

direct-abstract-declarator

direct-abstract-declarator:
direct-abstract-declaratoropt ( parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

direct-abstract-declaratoropt [ constant-expressionopt ]
( abstract-declarator)

parameter-declaration-clause:
parameter-declaration-listopt ... opt

parameter-declaration-list, ...
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parameter-declaration-list:
parameter-declaration
parameter-declaration-list, parameter-declaration

parameter-declaration:
decl-specifier-seq declarator
decl-specifier-seq declarator= expression
decl-specifier-seq abstract-declaratoropt

decl-specifier-seq abstract-declaratoropt = expression

function-definition:
decl-specifier-seqopt declarator ctor-initializeropt function-body

function-body:
compound-statement

initializer:
= initializer-clause
( expression-list)

initializer-clause:
assignment-expression
{ initializer-list , opt }

initializer-list:
initializer-clause
initializer-list , initializer-clause

18.4 Class declarations 

1 class-specifier:
class-head{ member-specificationopt }

class-head:
class-key identifieropt base-clauseopt

class-key nested-class-specifier base-clauseopt

member-specification:
member-declaration member-specificationopt

access-specifier: member-specificationopt

member-declaration:
decl-specifier-seqopt member-declarator-listopt ;
function-definition ; opt

qualified-id ;

member-declarator-list:
member-declarator
member-declarator-list, member-declarator

member-declarator:
declarator pure-specifieropt

identifieropt : constant-expression

pure-specifier:
= 0
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base-clause:
: base-specifier-list

base-specifier-list:
base-specifier
base-specifier-list, base-specifier

base-specifier:
qualified-class-specifier
virtual access-specifieropt qualified-class-specifier
access-specifiervirtual opt qualified-class-specifier

access-specifier:
private
protected
public

conversion-function-id:
operator conversion-type-id

conversion-type-id:
type-specifier-seq ptr-operatoropt

ctor-initializer:
: mem-initializer-list

mem-initializer-list:
mem-initializer
mem-initializer , mem-initializer-list

mem-initializer:
qualified-class-specifier( expression-listopt )
identifier ( expression-listopt )

operator-function-id:
operator operator

operator: one of
new delete new[] delete[]
+ - * / % ^ & | ~
! = < > += -= *= /= %=
^= &= |= << >> >>= <<= == !=
<= >= && || ++ -- , ->* ->
() []

18.5 Statements

1 statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block
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labeled-statement:
identifier : statement
case constant-expression: statement
default : statement

expression-statement:
expressionopt ;

compound-statement:
{ statement-seqopt }

statement-seq:
statement
statement-seq statement

selection-statement:
if ( condition ) statement
if ( condition ) statementelse statement
switch ( condition ) statement

condition:
expression
type-specifier declarator= expression

iteration-statement:
while ( condition ) statement
do statement while ( expression) ;
for ( for-init-statement conditionopt ; expressionopt ) statement

for-init-statement:
expression-statement
declaration-statement

jump-statement:
break ;
continue ;
return expressionopt ;
goto identifier ;

declaration-statement:
declaration

18.6 Preprocessor

1 #define identifier token-string
#define identifier( identifier , ... , identifier ) token-string

#include " filename"
#include < filename>

#line constant " filename" opt

#undef identifier

conditional:
if-part elif-partsopt else-partopt endif-line

if-part:
if-line text
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if-line:
# if constant-expression
# ifdef identifier
# ifndef identifier

elif-parts:
elif-line text
elif-parts elif-line text

elif-line:
# elif constant-expression

else-part:
else-line text

else-line:
# else

endif-line:
# endif

18.7 Templates

1 template-declaration:
template < template-parameter-list> declaration

template-parameter-list:
template-parameter
template-parameter-list, template-parameter

template-parameter:
type-parameter
parameter-declaration

type-parameter:
class identifier

template-class-id:
template-name< template-argument-list>

template-name:
identifier

template-argument-list:
template-argument
template-argument-list, template-argument

template-argument:
expression
type-id

18.8 Exception handling 

1 try-block:
try compound-statement handler-seq
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handler-seq:
handler handler-seqopt

handler:
catch ( exception-declaration) compound-statement

exception-declaration:
type-specifier-seq declarator
type-specifier-seq abstract-declarator
type-specifier-seq
...

throw-expression:
throw assignment-expressionopt

exception-specification:
throw ( type-id-listopt )

type-id-list:
type-id
type-id-list , type-id
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Compatibility

1 This chapter summarizes the evolution of C + + since the first edition ofThe C + + Programming Languageand
explains in detail the differences between C + + and C. Because the C language as described by the ANSI C Stan-
dard differs from the dialects of Classic C used up till now, we discuss the differences between C + + and ANSI C
as well as the differences between C + + and Classic C.

19 Appendix B: Compatibility

1 This appendix is not part of the C + + reference manual proper and does not define C + + language features.
2 C + + is based on C (K&R78) and adopts most of the changes specified by the ANSI C standard. Con-

verting programs among C + +, K&R C, and ANSI C may be subject to vicissitudes of expression evaluation.
All differences between C + + and ANSI C can be diagnosed by a compiler. With the following three excep-
tions, programs that are both C + + and ANSI C have the same meaning in both languages:

3 In C,sizeof(’a’) equalssizeof(int) ; in C + +, it equalssizeof(char) .
4 In C, given

enum e { A };

sizeof(A) equals sizeof(int) ; in C + +, it equals sizeof(e) , which need not equal
sizeof(int) .

5 A class name declared in an inner scope can hide the name of an object, function, enumerator, or type in
an outer scope. For example,

int x[99];
void f()
{

struct x { int a; };
sizeof(x); /* size of the array in C */

/* size of the struct in C + + */
}

19.1 Extensions

1 This section summarizes the major extensions to C provided by C + +. 

19.1.1 C + + features available in 1985 

1 This subsection summarizes the extensions to C provided by C + + in the 1985 version of this manual:
2 The types of function parameters can be specified (8.2.5) and will be checked (5.2.2). Type conversions

will be performed (5.2.2). This is also in ANSI C.
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3 Single-precision floating point arithmetic may be used forfloat expressions; 3.6.1 and 4.3. This is
also in ANSI C.

4 Function names can be overloaded; 13.
5 Operators can be overloaded; 13.4.
6 Functions can be inline substituted; 7.1.2.
7 Data objects can beconst ; 7.1.6. This is also in ANSI C.
8 Objects of reference type can be declared; 8.2.2 and 8.4.3.
9 A free store is provided by thenew anddelete operators; 5.3.3, 5.3.4.
10 Classes can provide data hiding (11), guaranteed initialization (12.1), user-defined conversions (12.3),

and dynamic typing through use of virtual functions (10.2).
11 The name of a class or enumeration is a type name; 9.
12 A pointer to any non-const and non-volatile object type can be assigned to avoid* ; 4.6. This is

also in ANSI C.
13 A pointer to function can be assigned to avoid* ; 4.6.
14 A declaration within a block is a statement; 6.7.
15 Anonymous unions can be declared; 9.5. 

19.1.2 C + + features added since 1985 

1 This subsection summarizes the major extensions of C + + since the 1985 version of this manual:
2 A class can have more than one direct base class (multiple inheritance); 10.1.
3 Class members can beprotected ; 11 .
4 Pointers to class members can be declared and used; 8.2.3, 5.5.
5 Operatorsnew anddelete can be overloaded and declared for a class; 5.3.3, 5.3.4, 12.5. This allows

the “assignment tothis ” technique for class specific storage management to be removed to the anachro-
nism section; 19.3.3.

6 Objects can be explicitly destroyed; 12.4.
7 Assignment and initialization are defined as memberwise assignment and initialization; 12.8.
8 Theoverload keyword was made redundant and moved to the anachronism section; 19.3.
9 General expressions are allowed as initializers for static objects; 8.4.
10 Data objects can bevolatile ; 7.1.6. Also in ANSI C.
11 Initializers are allowed forstatic class members; 9.4.
12 Member functions can bestatic ; 9.4.
13 Member functions can beconst andvolatile ; 9.3.1.
14 Linkage to non-C + + program fragments can be explicitly declared; 7.4.
15 Operators-> , ->* , and, can be overloaded; 13.4.
16 Classes can be abstract; 10.3.
17 Prefix and postfix application of++ and-- on a user-defined type can be distinguished.
18 Templates; 14.
19 Exception handling; 15.

19.2 C + + and ISO C

1 The subsections of this section list the differences between C + + and ISO C, by the chapters of this docu-
ment. 

19.2.1 Chapter 2: Lexical conventions 

Section 2.2

1 CHANGE: C + + style comments (// ) are added
A pair of slashes now introduce a one-line comment.
RATIONALE: This style of comments is a useful addition to the language.
EFFECT ON ORIGINAL FEATURE: Change to semantics of well-defined feature. A valid ISO C expres-
sion containing a division operator followed immediately by a C-style comment will now be treated as a
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C + + style comment. For example:

{
int a = 4;
int b = 8 //* divide by a*/ a;
+a;

}

DIFFICULTY OF CONVERTING: Syntactic transformation. Just add white space after the division opera-
tor.
HOW WIDELY USED: The token sequence//* probably occurs very seldom.

Section 2.4

2 CHANGE: New Keywords
The following keywords are added to C + +:

asm catch class delete friend
inline new operator private protected
public template try this virtual
throw

and and_eq bitand bitor or
or_eq xor_eq xor not not_eq
compl

RATIONALE: These keywords were added in order to implement the new semantics of C + +.
EFFECT ON ORIGINAL FEATURE: Change to semantics of well-defined feature. Any ISO C programs
that used any of these keywords as identifiers are not valid C + + programs.
DIFFICULTY OF CONVERTING: Syntactic transformation. Converting one specific program is easy.
Converting a large collection of related programs takes more work.
HOW WIDELY USED: Not uncommon.

Section 2.5.2

3 CHANGE: Type of character literal is changed fromint to char
RATIONALE: This is needed for improved overloaded function argument type matching. For example:

int function( int i );
int function( char c );

function( ’x’ );

It is preferable that this call match the second version of function rather than the first.
EFFECT ON ORIGINAL FEATURE: Change to semantics of well-defined feature. ISO C programs which
depend on

sizeof(’x’) == sizeof(int)

will not work the same as C + + programs.
DIFFICULTY OF CONVERTING: Simple.
HOW WIDELY USED: Programs which depend upon sizeof(’x’) are probably rare. 

19.2.2 Chapter 3: Basic concepts 

Section 3.1/1

1 CHANGE: C + + does not have“tentative definitions” as in C
E.g., at file scope,
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int i;
int i;

is valid in C, invalid in C + +. This makes it impossible to define mutually referential file-local static objects,
if initializers are restricted to the syntactic forms of C. For example,

struct X { int i; struct X *next; };

static struct X a;
static struct X b = { 0, &a };
static struct X a = { 1, &b };

RATIONALE: This avoids having different initialization rules for built-in types and user-defined types.
EFFECT ON ORIGINAL FEATURE: Deletion of semantically well-defined feature.
DIFFICULTY OF CONVERTING: Semantic transformation. In C + +, the initializer for one of a set of
mutually-referential file-local static objects must invoke a function call to achieve the initialization.
HOW WIDELY USED: Seldom.

Section 3.2

2 CHANGE: A 5structis a scope in C + +, not in C
RATIONALE: Class scope is crucial to C + +, and a struct is a class.
EFFECT ON ORIGINAL FEATURE: Change to semantics of well-defined feature.
DIFFICULTY OF CONVERTING: Semantic transformation.
HOW WIDELY USED: C programs usestruct extremely frequently, but the change is only noticeable
when struct , enumeration, or enumerator names are referred to outside the struct .

Section .3.3/2 [also 7.1.6/1]

3 CHANGE: A name of file scope that is explicitly declaredconst , and not explicitly declaredextern ,
has internal linkage, while in C it would have external linkage
RATIONALE: Becauseconst objects can be used as compile-time values in C + +, this feature urges pro-
grammers to provide explicit initializer values for eachconst . This feature allows the user to putconst
objects in header files that are included in many compilation units.
EFFECT ON ORIGINAL FEATURE: Change to semantics of well-defined feature.
DIFFICULTY OF CONVERTING: Semantic transformation
HOW WIDELY USED: Seldom

Section 3.4/2

4 CHANGE: Main cannot be called recursively and cannot have its address taken
RATIONALE: The main function may require special actions.
EFFECT ON ORIGINAL FEATURE: Deletion of semantically well-defined feature
DIFFICULTY OF CONVERTING: Trivial: create an intermediary function such as mymain(argc, argv) .
HOW WIDELY USED: Seldom

Section 3.6

5 CHANGE: C allows“compatible types” in several places, C + + does not
[Note: It is hoped that future revisions of the C + + Working Paper will resolve some of the incompatibility.]
For example, C has the“initial member rule,” by which the following is valid:

struct a { int i, j; } xa;
int *pi = (int*)&xa;
n = *pi;

RATIONALE: Stricter type checking is essential for C + +. [Some of the“compatibile type” implications are
still being discussed by WG21 and X3J16.]
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EFFECT ON ORIGINAL FEATURE: Deletion of semantically well-defined feature
DIFFICULTY OF CONVERTING: Semantic transformation
HOW WIDELY USED: Common

Section 3.6.2/4

6 CHANGE: There is no guarantee thatchar* and void* have the same representation and alignment
requirements
RATIONALE: [It is not yet determined whether this difference is intentional.] [Note: It is hoped that future
revisions of the C + + Working Paper will resolve some of the incompatibility.]
EFFECT ON ORIGINAL FEATURE: Deletion of semantically well-defined feature
DIFFICULTY OF CONVERTING: Semantic transformation
HOW WIDELY USED: Seldom 

19.2.3 Chapter 4: Standard conversions 

Section 4.6

1 CHANGE: Conversion rules of C involving“incomplete type” are not guaranteed in C + +
[Note: It is hoped that future revisions of the C + + Working Paper will resolve some of the incompatibility.]
The current draft [June 92] lacks a definition for the C“incomplete type”, and therefore does not precisely
define the behavior of examples such as this (file-scope) code:

extern char a[];
void *b=a;
char a[10];

RATIONALE: [To be determined.]
EFFECT ON ORIGINAL FEATURE: [To be determined.]
DIFFICULTY OF CONVERTING: [To be determined.]
HOW WIDELY USED: Incomplete types are used frequently. Often a header contains the incomplete type
and the type is completed in a different header or source file. [This technique is used in some C + + con-
structs, so a proper treatment of "incomplete type" is expected to be achieved.]

Section 4.6

2 CHANGE: Convertingvoid* to a pointer-to-object type requires casting

char a[10];
void *b=a;
void foo() {
char *c=b;
}

ISO C will accept this usage of pointer to void being assigned to a pointer to object type. C + + will not.
RATIONALE: C + + tries harder than C to enforce compile-time type safety.
EFFECT ON ORIGINAL FEATURE: Deletion of semantically well-defined feature.
DIFFICULTY OF CONVERTING: Could be automated. Violations will be diagnosed by the C + + translator.
The fix is to add a cast. For example:

char *c = (char *) b;

HOW WIDELY USED: This is fairly widely used but it is good programming practice to add the cast when
assigning pointer-to-void to pointer-to-object. Some ISO C translators will give a warning if the cast is not
used.

Section 4.6
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3 CHANGE: Only pointers to non-const and non-volatile objects may be implicitly converted tovoid*
RATIONALE: This improves type safety.
EFFECT ON ORIGINAL FEATURE: Deletion of semantically well-defined feature.
DIFFICULTY OF CONVERTING: Could be automated. A C program containing such an implicit conver-
sion from (e.g.) pointer-to-const-object to void* will receive a diagnostic message. The correction is to
add an explicit cast.
HOW WIDELY USED: Infrequent.

19.2.4 Chapter 5: Expressions

Section 5

1 CHANGE: The C language effectively permits read-only type-punning between certain types
That is to say, an object may have its stored value accessed by an lvalue that has a (slightly) differing type.
Lvalue types may differ in qualification:

char c = ’x’;
const char *pcc = (const char *)&c;
f(*pcc); /* ok to access via lvalue of type ‘‘const char’’ */

Lvalue types may differ in signedness (the source code for the library function strcmp typically requires
this behavior):

char c = 0x12;
unsigned char *puc = (unsigned char *)*puc;
f(*puc); /* ok to access via lvalue of type ‘‘unsigned char’’ */

One type may be a member of the other (aggregate or union) type:

struct x { int i; } xo = [0];
int* i = (int*)&x;
f(*pi); /* ok to access via lvalue of member type */

union x { int i; short j; } xo = [0];
int* pi = (int *)&x;
f(*pi); /* ok to access via lvalue of member type */

One type may be a character type, where the other is any other type:

union arena { align_t a; char buf[N]; } my_arena;
size_t *p = (size_t *)&arena.buf[0];
f(*p); /* ok to access chars (bytes) via lvalue of other type */

Currently, the C + + language permits no such looseness.
2 For example, the memcpy function can be written in portable C, but it is not [yet] certain whether this

is true for C + +.
3 [Note: It is hoped that future revisions of the C + + Working Paper will resolve some of the incompatibil-

ity.]
RATIONALE: The type-safe nature of C + + [or oversight].
EFFECT ON ORIGINAL FEATURE: Deletion of semantically well-defined feature.
DIFFICULTY OF CONVERTING: [Uncertain.]
HOW WIDELY USED:
Not common.

Section 5.2.2

4 CHANGE: Implicit declaration of functions is not allowed
RATIONALE: The type-safe nature of C + +.
EFFECT ON ORIGINAL FEATURE: Deletion of semantically well-defined feature. Note: the original fea-
ture was labeled as“obsolescent” in ISO C.
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DIFFICULTY OF CONVERTING: Syntactic transformation. Facilities for producing explicit function dec-
larations are fairly widespread commercially.
HOW WIDELY USED: Very common.

Section 5.2.4

5 CHANGE: The“common initial sequence rule” is not guaranteed
The C language effectively permits any degree of type-punning between“common initial sequences” of
members of structs that appear in a union. Currently, the C + + working paper is not clear regarding such
“layout compatibility” rules. [Note: It is hoped that future revisions of the C + + Working Paper will resolve
some of the incompatibility.]

6 For example, the following is valid in C:

struct a { int i, j; } xa;
struct b { int i; char j; } xb;

union ab { struct a ma; struct b mb; } xab;
xab = xa;
n = xab.mb.i;

RATIONALE: The type-safe nature of C + + [or oversight].
EFFECT ON ORIGINAL FEATURE: Deletion of semantically well-defined feature.
DIFFICULTY OF CONVERTING: Semantic transformation.
HOW WIDELY USED: Not uncommon.

Section 5.3.2/4, 5.4/2

7 CHANGE: Types must be declared in declarations, not in expressions
In C, a sizeof expression or cast expression may create a new type. For example,

p = (void*)(struct x {int i;} *)0;

declares a new type, struct x .
RATIONALE: This prohibition helps to clarify the location of declarations in the source code.
EFFECT ON ORIGINAL FEATURE: Deletion of a semantically well-defined feature.
DIFFICULTY OF CONVERTING: Syntactic transformation.
HOW WIDELY USED: Very rare.

Section 5.4/5

8 CHANGE: Converting an integral value to an enumeration type, when the value converted does not equal
the value of any enumerator of the enumeration type, gives undefined results
[Note: this is still somewhat uncertain.]
RATIONALE: The type-safe nature of C + +.
EFFECT ON ORIGINAL FEATURE: Deletion of a semantically well-defined feature.
DIFFICULTY OF CONVERTING: Semantic transformation.
HOW WIDELY USED: Not uncommon.

19.2.5 Chapter 6: Statements

Section 6.4.2/7.3, 6.7/3.1 (switch and goto statements

1 CHANGE: It is now invalid to jump past a declaration with explicit or implicit initializer (except across
entire block not entered)
RATIONALE: Constructors used in initializers may allocate resources which need to be de-allocated upon
leaving the block. Allowing jump past initializers would require complicated run-time determination of
allocation. Furthermore, any use of the uninitialized object could be a disaster. With this simple compile-
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time rule, C + + assures that if an initialized variable is in scope, then it has assuredly been initialized.
EFFECT ON ORIGINAL FEATURE: Deletion of semantically well-defined feature.
DIFFICULTY OF CONVERTING: Semantic transformation.
HOW WIDELY USED: Seldom.

Section 6.6.3/2.1,6.6.3/2.5

2 CHANGE: It is now invalid to return (explicitly or implicitly) from a function which is declared to return a
value without actually returning a value
RATIONALE: The caller and callee may assume fairly elaborate return-value mechanisms for the return of
class objects. If some flow paths execute a return without specifying any value, the compiler must embody
many more complications. Besides, promising to return a value of a given type, and then not returning such
a value, has always been recognized to be a questionable practice, tolerated only because very-old C had no
distinction between void functions and int functions.
EFFECT ON ORIGINAL FEATURE: Deletion of semantically well-defined feature.
DIFFICULTY OF CONVERTING: Semantic transformation. Add an appropriate return value to the source
code, e.g. zero.
HOW WIDELY USED: Seldom. For several years, many existing C compilers have produced warnings in
this case.

19.2.6 Chapter 7: Declarations

Section 7.1.1/6

1 CHANGE: In C + +, thestatic or extern specifiers can only be applied to names of objects or functions
Using these specifiers with type declarations is illegal in C + +. In C, these specifiers are ignored when used
on type declarations. Example:

static struct S { // valid C, invalid in C + +
int i;
// ...
};

RATIONALE: Storage class specifiers don’t have any meaning when associated with a type. In C + +, class
members can be defined with thestatic storage class specifier. Allowing storage class specifiers on
type declarations could render the code confusing for users.
EFFECT ON ORIGINAL FEATURE: Deletion of semantically well-defined feature.
DIFFICULTY OF CONVERTING: Syntactic transformation.
HOW WIDELY USED: Seldom.

Section 7.1.3/3

2 CHANGE: A C + + typedef name must be different from any class type name declared in the same scope
(except if the typedef is a synonym of the class name with the same name). In C, a typedef name and a
struct tag name declared in the same scope can have the same name (because they have different name
spaces)
Example:

typedef struct name1 { /*...*/ } name1; // valid C and C + +
struct name { /*...*/ };
typedef int name; // valid C, invalid C + +

RATIONALE: For ease of use, C + + doesn’t require that a type name be prefixed with the keywordsclass ,
struct or union when used in object declarations or type casts. Example:

class name { /*...*/ };
name i; // i has type ’class name’
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EFFECT ON ORIGINAL FEATURE: Deletion of semantically well-defined feature.
DIFFICULTY OF CONVERTING: Semantic transformation. One of the 2 types has to be renamed.
HOW WIDELY USED: Rare.

Section 7.1.6/1 [See also 3.3/2]

3 CHANGE: const objects must be initialized in C + + but can be left uninitialized in C
RATIONALE: A const object cannot be assigned to so it must be initialized to hold a useful value.
EFFECT ON ORIGINAL FEATURE: Deletion of semantically well-defined feature.
DIFFICULTY OF CONVERTING: Semantic transformation.
HOW WIDELY USED: Seldom.

Section 7.2/3

4 CHANGE: C + + objects of enumeration type can only be assigned values of the same enumeration type. In
C, objects of enumeration type can be assigned values of any integral type
Example:

enum color { red, blue, green };
color c = 1; // valid C, invalid C + +

RATIONALE: There is no guarantee that the integral value assigned to the object of enumeration type can
be represented by one of the enumerators of the enumeration.
EFFECT ON ORIGINAL FEATURE: Deletion of semantically well-defined feature.
DIFFICULTY OF CONVERTING: Syntactic transformation. (The type error produced by the assignment
can be automatically corrected by applying an explicit cast. But see the earlier note about 5.4/5 regarding
conversions to enumeration type.)
HOW WIDELY USED: Common.

Section 7.2/3

5 CHANGE: In C + +, the type of an enumerator is its enumeration. In C, the type of an enumerator is int
Example:

enum e { A };
sizeof(A) == sizeof(int) // in C
sizeof(A) == sizeof(e) // in C + +
/* and sizeof(int) is not necessary equal to sizeof(e) */

RATIONALE: In C + +, an enumeration is a distinct type.
EFFECT ON ORIGINAL FEATURE: Change to semantics of well-defined feature.
DIFFICULTY OF CONVERTING: Semantic transformation.
HOW WIDELY USED: Seldom. The only time this affects existing C code is when the size of an enumera-
tor is taken. Taking the size of an enumerator is not a common C coding practice.

19.2.7 Chapter 8: Declarators

Section 8.2.5/2

1 CHANGE: In C + +, a function declared with an empty parameter list takes no arguments.
In C, an empty parameter list means that the number and type of the function arguments are unknown"
Example:

int f(); // means int f(void) in C + +
// int f(unknown) in C

RATIONALE: This is to avoid erroneous function calls (i.e. function calls with the wrong number or type of
arguments).
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EFFECT ON ORIGINAL FEATURE: Change to semantics of well-defined feature. This feature was
marked as“obsolescent” in C.
DIFFICULTY OF CONVERTING: Syntactic transformation. The function declarations using C incomplete
declaration style must be completed to become full prototype declarations. A program may need to be
updated further if different calls to the same (non-prototype) function have different numbers of arguments
or if the type of corresponding arguments differed.
HOW WIDELY USED: Common.

Section 8.2.5/5 [See 5.3.2/4]

2 CHANGE: In C + +, types may not be defined in return or parameter types. In C, these type definitions are
allowed
Example:

void f( struct S { int a; } arg ) {} // valid C, invalid C + +
enum E { A, B, C } f() {} // valid C, invalid C + +

RATIONALE: When comparing types in different compilation units, C + + relies on name equivalence when
C relies on structural equivalence. Regarding parameter types: since the type defined in an parameter list
would be in the scope of the function, the only legal calls in C + + would be from within the function itself.
EFFECT ON ORIGINAL FEATURE: Deletion of semantically well-defined feature.
DIFFICULTY OF CONVERTING: Semantic transformation. The type definitions must be moved to file
scope, or in header files.
HOW WIDELY USED: Seldom. This style of type definitions is seen as poor coding style.

Section 8.3/1

3 CHANGE: In C + +, the syntax for function definition excludes the“old-style” C function. In C,“old-style”
syntax is allowed, but deprecated as“obsolescent.”
RATIONALE: Prototypes are essential to type safety.
EFFECT ON ORIGINAL FEATURE: Deletion of semantically well-defined feature.
DIFFICULTY OF CONVERTING: Syntactic transformation.
HOW WIDELY USED: Frequent in old programs, but already known to be obsolescent.

Section 8.4.2/2

4 CHANGE: In C + +, when initializing an array of character with a string, the number of characters in the
string (including the terminating’\0’ ) must not exceed the number of elements in the array. In C, an array
can be initialized with a string even if the array is not large enough to contain the string terminating’\0’
Example:

char array[4] = "abcd"; // valid C, invalid C + +

RATIONALE: When these non-terminated arrays are manipulated by standard string routines, there is
potential for major catastrophe.
EFFECT ON ORIGINAL FEATURE: Deletion of semantically well-defined feature.
DIFFICULTY OF CONVERTING: Semantic transformation. The arrays must be declared one element big-
ger to contain the string terminating’\0’ .
HOW WIDELY USED: Seldom. This style of array initialization is seen as poor coding style.

19.2.8 Chapter 9: Classes

Section 9.1/2 [See also 7.1.3/3]
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1 CHANGE: In C + +, a class declaration introduces the class name into the scope where it is declared and
hides any object, function or other declaration of that name in an enclosing scope. In C, an inner scope dec-
laration of a struct tag name never hides the name of an object or function in an outer scope
Example:

int x[99];
void f()
{

struct x { int a; };
sizeof(x); /* size of the array in C */
/* size of the struct in C + + */

}

RATIONALE: This is one of the few incompatibilities between C and C + + that can be attributed to the new
C + + name space definition where a name can be declared as a type and as a nontype in a single scope caus-
ing the nontype name to hide the type name and requiring that the keywordsclass , struct , union or
enum be used to refer to the type name. This new name space definition provides important notational
conveniences to C + + programmers and helps making the use of the user-defined types as similar as possible
to the use of built-in types. The advantages of the new name space definition were judged to outweigh by
far the incompatibility with C described above.
EFFECT ON ORIGINAL FEATURE: Change to semantics of well-defined feature.
DIFFICULTY OF CONVERTING: Semantic transformation. If the hidden name that needs to be accessed
is at global scope, the:: C + + operator can be used. If the hidden name is at block scope, either the type or
the struct tag has to be renamed.
HOW WIDELY USED: Seldom.

Section 9.7/1

2 CHANGE: In C + +, the name of a nested class is local to its enclosing class. In C the name of the nested
class belongs to the same scope as the name of the outermost enclosing class
Example:

struct X {
struct Y { /* ... */ } y;

};
struct Y yy; // valid C, invalid C + +

RATIONALE: C + + classes have member functions which require that classes establish scopes. The C rule
would leave classes as an incomplete scope mechanism which would prevent C + + programmers from main-
taining locality within a class. A coherent set of scope rules for C + + based on the C rule would be very
complicated and C + + programmers would be unable to predict reliably the meanings of nontrivial examples
involving nested or local functions.
EFFECT ON ORIGINAL FEATURE: Change of semantics of well-defined feature.
DIFFICULTY OF CONVERTING: Semantic transformation. To make the struct type name visible in the
scope of the enclosing struct, the struct tag could be declared in the scope of the enclosing struct, before the
enclosing struct is defined. Example:

struct Y; // struct Y and struct X are at the same scope
struct X {

struct Y { /* ... */ } y;
};

All the definitions of C struct types enclosed in other struct definitions and accessed outside the scope of
the enclosing struct could be exported to the scope of the enclosing struct.
HOW WIDELY USED: Not common. NOTE: This is a consequence of the difference in scope rules, which
is documented at section 3.2 above.

Section 9.9/2
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3 CHANGE: In C + +, a typedef name may not be redefined in a class declaration after being used in the decla-
ration
Example:

typedef int I;
struct S {

I i;
int I; // valid C, invalid C + +

};

RATIONALE: When classes become complicated, allowing such a redefinition after the type has been used
can create confusion for C + + programmers as to what the meaning of ’I’ really is.
EFFECT ON ORIGINAL FEATURE: Deletion of semantically well-defined feature.
DIFFICULTY OF CONVERTING: Semantic transformation. Either the type or the struct member has to be
renamed.
HOW WIDELY USED: Seldom. 

19.2.9 Chapter 16: Preprocessing directives 

Section 16.10/5 (Predefined names)

1 CHANGE: Whether_ _STDC_ _ is defined and if so, what its value is,
are implementation-defined"
RATIONALE: C + + is not identical to ISO C. Mandating that__STDC__ be defined would require that trans-
lators make an incorrect claim. Each implementation must choose the behavior that will be most useful to
its marketplace.
EFFECT ON ORIGINAL FEATURE: Change to semantics of well-defined feature.
DIFFICULTY OF CONVERTING: Semantic transformation.
HOW WIDELY USED: Programs and headers that reference__STDC__ are quite common.

19.3 Anachronisms

1 The extensions presented here may be provided by an implementation to ease the use of C programs as C + +
programs or to provide continuity from earlier C + + implementations. Note that each of these features has
undesirable aspects. An implementation providing them should also provide a way for the user to ensure
that they do not occur in a source file. A C + + implementation is not obliged to provide these features.

2 The wordoverload may be used as adecl-specifier(7) in a function declaration or a function defini-
tion. When used as adecl-specifier, overload is a reserved word and cannot also be used as an identi-
fier.

3 The definition of a static data member of a class for which initialization by default to all zeros applies
(8.4, 9.4) may be omitted.

4 An old style (that is, pre-ANSI C) C preprocessor may be used.
5 An int may be assigned to an object of enumeration type.
6 The number of elements in an array may be specified when deleting an array of a type for which there is

no destructor; 5.3.4.
7 A single functionoperator++() may be used to overload both prefix and postfix++ and a single

functionoperator--() may be used to overload both prefix and postfix-- ; 13.4.6.
8

19.3.1 Old style function definitions 

1 The C function definition syntax

old-function-definition:
decl-specifiersopt old-function-declarator declaration-seqopt function-body

old-function-declarator:
declarator ( parameter-listopt )
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parameter-list:
identifier
parameter-list , identifier

For example,

max(a,b) int b; { return (a<b) ? b : a; }

may be used. If a function defined like this has not been previously declared its parameter type will be
taken to be(...) , that is, unchecked. If it has been declared its type must agree with that of the declara-
tion.

2 Class member functions may not be defined with this syntax. 

19.3.2 Old style base class initializer 

1 In a mem-initializer(12.6.2), theclass-namenaming a base class may be left out provided there is exactly
one immediate base class. For example,

class B {
// ...

public:
B (int);

};

class D : public B {
// ...
D(int i) : (i) { /* ... */ }

};

causes theB constructor to be called with the argumenti .

19.3.3 Assignment tothis

1 Memory management for objects of a specific class can be controlled by the user by suitable assignments to
the this pointer. By assigning to thethis pointer before any use of a member, a constructor can imple-
ment its own storage allocation. By assigning the null pointer tothis , a destructor can avoid the standard
deallocation operation for objects of its class. Assigning the null pointer tothis in a destructor also sup-
pressed the implicit calls of destructors for bases and members. For example,

class Z {
int z[10];
Z() { this = my_allocator( sizeof(Z) ); }
~Z() { my_deallocator( this ); this = 0; }

};

2 On entry into a constructor,this is nonnull if allocation has already taken place (as it will have for
auto , static , and member objects) and null otherwise.

3 Calls to constructors for a base class and for member objects will take place (only) after an assignment
to this . If a base class’s constructor assigns tothis , the new value will also be used by the derived
class’s constructor (if any).

4 Note that if this anachronism exists either the type of thethis pointer cannot be a*const or the
enforcement of the rules for assignment to a constant pointer must be subverted for thethis pointer. 

19.3.4 Cast of bound pointer 

1 A pointer to member function for a particular object may be cast into a pointer to function, for example,
(int(*)())p->f . The result is a pointer to the function that would have been called using that member
function for that particular object. Any use of the resulting pointer is– as ever– undefined. 
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19.3.5 Nonnested classes 

1 Where a class is declared within another class and no other class of that name is declared in the program
that class can be used as if it was declared outside its enclosing class (exactly as a Cstruct ). For exam-
ple,

struct S {
struct T {

int a;
};
int b;

};

struct T x; // meaning ‘S::T x;’


