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1 General [intro]
_ _____________________________________________________________________________________________________________________________________________________________________________ ___________________________________________

[intro.scope] 1.1 Scope

1 This International Standard specifies requirements for processors of the C + + programming language. The
first such requirement is that they implement the language, and so this Standard also defines C + +. Other
requirements and relaxations of the first requirement appear at various places within the Standard.

2 C + + is a general purpose programming language based on the C programming language as described in
ISO/IEC 9899 (1.2). In addition to the facilities provided by C, C + + provides additional data types, classes,
templates, exceptions, inline functions, operator overloading, function name overloading, references, free
store management operators, function argument checking and type conversion, and additional library facili-
ties. These extensions to C are summarized in C.1. The differences between C + + and ISO C1) are summa-
rized in C.2. The extensions to C + + since 1985 are summarized in C.1.2.

3 Clauses 17 through 27 (thelibrary clauses) describe the Standard C + + library, which provides definitions
for the following kinds of entities: macros (16.3), values (3), types (8.1, 8.3), templates (14), classes (9),
functions (8.3.5), and objects (7).

4 For classes and class templates, the library clauses specify partial definitions. Private members (11) are not
specified, but each implementation shall supply them to complete the definitions according to the descrip-
tion in the library clauses.

5 For functions, function templates, objects, and values, the library clauses specifiy declarations. Implemen-
tations shall supply definitions consistent with the descriptions in the library clauses.

6 The names defined in the library have namespace scope (7.3). A C + + translation unit (2.1) obtains access to
these names by including the appropriate standard library header (16.2).

7 The templates, classes, functions, and objects in the library have external linkage (3.5). An implementation
provides definitions for standard library entities, as necessary, while combining translation units to form a
complete C + + program (2.1).

[intro.refs] 1.2 Normative references

1 The following standards contain provisions which, through reference in this text, constitute provisions of
this International Standard. At the time of publication, the editions indicated were valid. All standards are
subject to revision, and parties to agreements based on this International Standard are encouraged to investi-
gate the possibility of applying the most recent editions of the standards indicated below. Members of IEC
and ISO maintain registers of currently valid International Standards.

— ANSI X3.172:1990,American National Dictionary for Information Processing Systems. 

— ISO/IEC 9899:1990,C Standard

— ISO/IEC 9899:1990/DAM 1,Amendment 1 to C Standard ∗

2 The library described in Clause 7 of the C Standard and Clause 4 of Amendment 1 to the C standard is
hereinafter called theStandard C Library.1)

__________________
1) With the qualifications noted in clauses 17 through 27, and in subclause C.4, the Standard C library is a subset of the Standard C + +
library.
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[intro.defs] 1.3 Definitions

1 For the purposes of this International Standard, the definitions given in ANSI X3/TR– 1– 82 and the follow-
ing definitions apply.

— argument: An expression in the comma-separated list bounded by the parentheses in a function call
expression, a sequence of preprocessing tokens in the comma-separated list bounded by the parentheses
in a function-like macro invocation, the operand ofthrow , or an expression in the comma-separated
list bounded by the angle brackets in a template instantiation. Also known as an“actual argument” or
“actual parameter.”

— diagnostic message: A message belonging to an implementation-defined subset of the
implementation’s message output.

— dynamic type: The dynamic typeof an expression is determined by its current value and can change
during the execution of a program. If a pointer (8.3.1) whose static type is“pointer to classB” is point-
ing to an object of classD, derived from B (10), the dynamic type of the pointer is“pointer toD.” Refer-
ences (8.3.2) are treated similarly.

— implementation-defined behavior: Behavior, for a correct program construct and correct data, that
depends on the implementation and that each implementation shall document. The range of possible
behaviors is delineated by the standard.

— implementation limits: Restrictions imposed upon programs by the implementation.

— locale-specific behavior:Behavior that depends on local conventions of nationality, culture, and lan-
guage that each implementation shall document.

— multibyte character: A sequence of one or more bytes representing a member of the extended charac-
ter set of either the source or the execution environment. The extended character set is a superset of the
basic character set.

— parameter: an object or reference declared as part of a function declaration or definition in the catch
clause of an exception handler that acquires a value on entry to the function or handler, an identifier
from the comma-separated list bounded by the parentheses immediately following the macro name in a
function-like macro definition, or atemplate-parameter. A function can be said to“take arguments” or 
to “have parameters.” Parameters are also known as a“formal arguments” or “formal parameters.”

— signature: The signature of a function is the information about that function that participates in over-
load resolution (13.2): the types of its parameters and, if the function is a non-static member of a class,
the CV-qualifiers (if any) on the function itself and whether the function is a direct member of its class
or inherited from a base class.

— static type: The static typeof an expression is the type (3.8) resulting from analysis of the program
without consideration of execution semantics. It depends only on the form of the program and does not
change.

— undefined behavior: Behavior, such as might arise upon use of an erroneous program construct or of
erroneous data, for which the standard imposes no requirements. Permissible undefined behavior
ranges from ignoring the situation completely with unpredictable results, to behaving during translation
or program execution in a documented manner characteristic of the environment (with or without the
issuance of a diagnostic message), to terminating a translation or execution (with the issuance of a diag-
nostic message). Note that many erroneous program constructs do not engender undefined behavior;
they are required to be diagnosed.

— unspecified behavior:Behavior, for a correct program construct and correct data, that depends on the
implementation. The range of possible behaviors is delineated by the standard. The implementation is
not required to document which behavior occurs.

__________________
2) Function signatures do not include return type, because that does not participate in overload resolution.
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Subclause 17.1 defines additional terms that are used only in the library clauses (17– 27).

[syntax] 1.4 Syntax notation

1 In the syntax notation used in this manual, syntactic categories are indicated byitalic type, and literal words
and characters inconstant width type. Alternatives are listed on separate lines except in a few cases
where a long set of alternatives is presented on one line, marked by the phrase“one of.” An optional termi-
nal or nonterminal symbol is indicated by the subscript“opt,” so

{ expressionopt }

indicates an optional expression enclosed in braces.

2 Names for syntactic categories have generally been chosen according to the following rules:

— X-nameis a use of an identifier in a context that determines its meaning (e.g.class-name, typedef-
name).

— X-id is an identifier with no context-dependent meaning (e.g.qualified-id).

— X-seqis one or moreX’s without intervening delimiters (e.g.declaration-seqis a sequence of declara-
tions).

— X-list is one or moreX’s separated by intervening commas (e.g.expression-listis a sequence of expres-
sions separated by commas).

[intro.memory] 1.5 The C + + memory model

1 The fundamental storage unit in the C + + memory model is thebyte. A byte is at least large enough to con-
tain any member of the basic execution character set and is composed of a contiguous sequence of bits, the
number of which is implementation-defined. The least significant bit is called thelow-order bit; the most
significant bit is called thehigh-orderbit. The memory accessible to a C + + program is one or more con-
tiguous sequences of bytes. Each byte (except perhaps registers) has a unique address. 

[intro.object]1.6 The C + + object model 

1 The constructs in a C + + program create, refer to, access, and manipulate objects. Anobject is a region of 
storage and, except for bit-fields (9.7), occupies one or more contiguous bytes of storage. An object is cre-
ated by adefinition (3.1), by anew-expression(5.3.4) or by the implementation (12.2) when needed. The
properties of an object are determined when the object is created. An object can have aname(3). An object 
has astorageduration which influences itslifetime (3.7). An object has a type (3.8). The termobject type 
refers to the type with which the object is created. The object’s type determines the number of bytes that
the object occupies and the interpretation of its content. Some objects arepolymorphic(10.3); the imple- 
mentation generates information carried in each such object that makes it possible to determine that object’s
type during program execution. For other objects, the meaning of the values found therein is determined by
the type of theexpressions (5) used to access them. 

2 Objects can contain other objects, calledsub-objects. A sub-object can be amember sub-object(9.2) or a 
base class sub-object(10). An object that is not a sub-object of any other object is called acomplete object.
For every objectx , there is some object calledthe complete object ofx , determined as follows:

— If x is a complete object, thenx is the complete object ofx .

— Otherwise, the complete object ofx is the complete object of the (unique) object that containsx .

3 C + + provides a variety of built-in types and several ways of composing new types from existing types.

4 Certain types havealignmentrestrictions. An object of one of those types shall appear only at an address
that is divisible by a particular integer.
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[intro.compliance] 1.7 Processor compliance

1 Every conforming C + + processor shall, within its resource limits, accept and correctly execute well-formed
C + + programs, and shall issue at least one diagnostic error message when presented with any ill-formed pro-
gram that contains a violation of any diagnosable semantic rule or of any syntax rule, except as noted
herein.

2 Well-formed C + + programs are those that are constructed according to the syntax rules, diagnosable seman-
tic rules, and the One Definition Rule (3.1). If a program is not well-formed but does not contain any diag-
nosable errors, this Standard places no requirement on processors with respect to that program. 

3 The set of“diagnosable semantic rules” consists of all semantic rules in this Standard except for those rules
containing an explicit notation that“no diagnostic is required.”

[intro.execution] 1.8 Program execution

1 The semantic descriptions in this Standard define a parameterized nondeterministic abstract machine. This
Standard places no requirement on the structure of conforming processors. In particular, they need not
copy or emulate the structure of the abstract machine. Rather, conforming processors are required to emu-
late (only) the observable behavior of the abstract machine as explained below.

2 Certain aspects and operations of the abstract machine are described in this Standard as implementation
defined (for example,sizeof(int) ). These constitute the parameters of the abstract machine. Each
implementation shall include documentation describing its characteristics and behavior in these respects,
which documentation defines the instance of the abstract machine that corresponds to that implementation
(referred to as the ‘‘corresponding instance’’ below).

3 Certain other aspects and operations of the abstract machine are described in this Standard as unspecified
(for example, order of evaluation of arguments to a function). In each case the Standard defines a set of
allowable behaviors. These define the nondeterministic aspects of the abstract machine. An instance of the
abstract machine can thus have more than one possible execution sequence for a given program and a given
input.

4 Certain other operations are described in this International Standard as undefined (for example, the effect of
dereferencing the null pointer).

5 A conforming processor executing a well-formed program shall produce the same observable behavior as
one of the possible execution sequences of the corresponding instance of the abstract machine with the
same program and the same input. However, if any such execution sequence contains an undefined opera-
tion, this Standard places no requirement on the processor executing that program with that input (not even
with regard to operations previous to the first undefined operation).

6 The observable behavior of the abstract machine is its sequence of reads and writes tovolatile data and
calls to library I/O functions.3)

7 Define afull-expressionas an expression that is not a subexpression of another expression.

8 It is important to note that certain contexts in C + + cause the evaluation of a full-expression that results from
a syntactic construct other thanexpression(5.18). For example, in 8.5 one syntax forinitializer is 

( expression-list)

but the resulting construct is a function-call upon a constructor function withexpression-listas an argument
list; such a function call is a full-expression. For another example in 8.5, another syntax forinitializer is

= initializer-clause

but again the resulting construct is a function-call upon a constructor function with oneassignment-
expressionas an argument; again, the function-call is a full-expression.
__________________
3) An implementation can offer additional library I/O functions as an extension. Implementations that do so should treat calls to those
functions as ‘‘observable behavior’’ as well.
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9 Also note that the evaluation of a full-expression can include the evaluation of subexpressions that are not
lexically part of the full-expression. For example, subexpressions involved in evaluating default argument
expressions (8.3.6) are considered to be created in the expression that calls the function, not the expression
that defines the default argument.

10 There is a sequence point at the completion of evaluation of each full-expression4).

11 When calling a function (whether or not the function is inline), there is a sequence point after the evaluation
of all function arguments (if any) which takes place before execution of any expressions or statements in
the function body. There is also a sequence point after the copying of a returned value and before the exe-
cution of any expressions outside the function5). Several contexts in C + + cause evaluation of a function
call, even though no corresponding function-call syntax appears in the translation unit. For example, evalu-
ation of a new expression invokes one or more allocation and constructor functions; see 5.3.4. For another
example, invocation of a conversion function (12.3.2) can arise in contexts in which no function-call syntax
appears. The sequence points at function-entry and function-exit (as described above) are features of the
function-calls as evaluated, whatever the syntax of the translation unit might be. 

12 In the evaluation of each of the expressions

a && b
a || b
a ? b : c
a , b

there is a sequence point after the evaluation of the first expression6).

Box 1

The contexts above all correspond to sequence points already specified in ISO C, although they can arise in
new syntactic contexts. The Working Group is still discussing whether there is a sequence point after the
operand of dynamic-cast is evaluated; this is a context from which an exception might be thrown, even
though no function-call is performed. This has not yet been voted upon by the Working Group, and it may
be redundant with the sequence point at function-exit._ ________________________________________________________________________________________








_ ________________________________________________________________________________________








__________________
4) As specified in 12.2, after the "end-of-full-expression" sequence point, a sequence of zero or more invocations of destructor func-
tions takes place, in reverse order of the construction of each temporary object.
5) The sequence point at the function return is not explicitly specified in ISO C, and can be considered redundant with sequence points
at full-expressions, but the extra clarity is important in C + +. In C + +, there are more ways in which a called function can terminate its
execution, such as the throw of an exception, as discussed below.
6) The operators indicated in this paragraph are the builtin operators, as described in Clause 5. When one of these operators is over-
loaded (13) in a valid context, thus designating a user-defined operator function, the expression designates a function invocation, and
the operands form an argument list, without an implied sequence point between them.





_ _____________________________________________________________________________________________________________________________________________________________________________ ___________________________________________

2 Lexical conventions [lex]
_ _____________________________________________________________________________________________________________________________________________________________________________ ___________________________________________

1 A C + + program need not all be translated at the same time. The text of the program is kept in units called
source filesin this standard. A source file together with all the headers (17.3.1.2) and source files included
(16.2) via the preprocessing directive#include , less any source lines skipped by any of the conditional
inclusion (16.1) preprocessing directives, is called atranslation unit. Previously translated translation units
can be preserved individually or in libraries. The separate translation units of a program communicate (3.5)
by (for example) calls to functions whose identifiers have external linkage, manipulation of objects whose
identifiers have external linkage, or manipulation of data files. Translation units can be separately trans-
lated and then later linked to produce an executable program. (3.5).

[lex.phases] 2.1 Phases of translation

1 The precedence among the syntax rules of translation is specified by the following phases.7)

1 Physical source file characters are mapped to the source character set (introducing new-line charac-
ters for end-of-line indicators) if necessary. Trigraph sequences (2.2) are replaced by corresponding
single-character internal representations.

2 Each instance of a new-line character and an immediately preceding backslash character is deleted,
splicing physical source lines to form logical source lines. A source file that is not empty shall end
in a new-line character, which shall not be immediately preceded by a backslash character.

3 The source file is decomposed into preprocessing tokens (2.3) and sequences of white-space charac-
ters (including comments). A source file shall not end in a partial preprocessing token or partial
comment8). Each comment is replaced by one space character. New-line characters are retained.
Whether each nonempty sequence of white-space characters other than new-line is retained or
replaced by one space character is implementation-defined. The process of dividing a source file’s
characters into preprocessing tokens is context-dependent. For example, see the handling of<
within a#include preprocessing directive.

4 Preprocessing directives are executed and macro invocations are expanded. A#include prepro-
cessing directive causes the named header or source file to be processed from phase 1 through phase
4, recursively.

5 Each source character set member and escape sequence in character constants and string literals is
converted to a member of the execution character set.

6 Adjacent character string literal tokens are concatenated and adjacent wide string literal tokens are
concatenated.

7 White-space characters separating tokens are no longer significant. Each preprocessing token is
converted into a token. (See 2.5). The resulting tokens are syntactically and semantically analyzed
and translated. The result of this process starting from a single source file is called atranslation
unit.

__________________
7) Implementations shall behave as if these separate phases occur, although in practice different phases might be folded together.
8) A partial preprocessing token would arise from a source file ending in one or more characters of a multi-character token followed by
a “line-splicing” backslash. A partial comment would arise from a source file ending with an unclosed/* comment, or a// comment
line that ends with a“line-splicing” backslash.
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8 The translation units that will form a program are combined. All external object and function refer-
ences are resolved.

Box 2

What about shared libraries?_ ___________________________



_ ___________________________




Library components are linked to satisfy external references to functions and objects not defined in the
current translation. All such translator output is collected into a program image which contains infor-
mation needed for execution in its execution environment.

[lex.trigraph] 2.2 Trigraph sequences

1 Before any other processing takes place, each occurrence of one of the following sequences of three charac-
ters (“trigraph sequences”) is replaced by the single character indicated in Table 1.

Table 1—trigraph sequences
_ __________________________________________________________________
trigraph replacement trigraph replacement trigraph replacement_ ___________________________________________________________________ __________________________________________________________________

??= # ??( [ ??< {_ __________________________________________________________________
??/ \ ??) ] ??> }_ __________________________________________________________________
??’ ^ ??! | ??- ~_ __________________________________________________________________ 
























2 For example,

??=define arraycheck(a,b) a??(b??) ??!??! b??(a??)

becomes

#define arraycheck(a,b) a[b] || b[a]

[lex.pptoken] 2.3 Preprocessing tokens

Box 3 
We have deleted the non-terminal for ’digraph’, because the alternate representations are just alternative
ways of expressing a "first-class" preprocessing token. In C, # and ## are grouped with operators, but that
would involve more work in clause 13, and wouldn’t fit the "spirit of C++". Instead, we simply list under
which they are actual tokens.  _ ________________________________________________________________________________________








_ ________________________________________________________________________________________






 

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
preprocessing-op-or-punc 
each non-white-space character that cannot be one of the above

1 Each preprocessing token that is converted to a token (2.5) shall have the lexical form of a keyword, an
identifier, a constant, a string literal, an operator, or a punctuator. ∗

2 A preprocessing tokenis the minimal lexical element of the language in translation phases 3 through 6.
The categories of preprocessing token are:header names, identifiers, preprocessing numbers, character
constants, string literals, preprocessing-op-or-punc, and single non-white-space characters that do not lexi-
cally match the other preprocessing token categories. If a’ or a" character matches the last category, the
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behavior is undefined. Preprocessing tokens can be separated bywhite space; this consists of comments
(2.6), orwhite-space characters(space, horizontal tab, new-line, vertical tab, and form-feed), or both. As
described in Clause 16, in certain circumstances during translation phase 4, white space (or the absence
thereof) serves as more than preprocessing token separation. White space can appear within a preprocess-
ing token only as part of a header name or between the quotation characters in a character constant or string
literal.

3 If the input stream has been parsed into preprocessing tokens up to a given character, the next preprocessing
token is the longest sequence of characters that could constitute a preprocessing token.

4 The program fragment1Ex is parsed as a preprocessing number token (one that is not a valid floating or
integer constant token), even though a parse as the pair of preprocessing tokens1 andEx might produce a
valid expression (for example, ifEx were a macro defined as+1). Similarly, the program fragment1E1 is
parsed as a preprocessing number (one that is a valid floating constant token), whether or notE is a macro
name.

5 The program fragmentx+++++y is parsed asx ++ ++ + y , which, if x andy are of built-in types, vio-
lates a constraint on increment operators, even though the parsex ++ + ++ y might yield a correct
expression. 

[lex.digraph]2.4 Alternate tokens 

1 Alternate token representations are provided for some operators and punctuators9).

2 In all respects of the language, each alternate token behaves the same, respectively, as its primary token,
except for its spelling10). The set of alternate tokens is defined in Table 2. 

Table 2—alternate tokens
__________________________________________________________
alternate primary alternate primary alternate primary____________________________________________________________________________________________________________________

<% { and && and_eq &=__________________________________________________________
%> } bitor | or_eq |=__________________________________________________________
<: [ or || xor_eq ^=__________________________________________________________
:> ] xor ^ not !__________________________________________________________
%: # compl ~ not_eq !=__________________________________________________________

%:%: ## bitand & __________________________________________________________ 











































[lex.token]2.5 Tokens 

token: 
identifier 
keyword 
literal 
operator 
punctuator 

1 There are five kinds of tokens: identifiers, keywords, literals (which include strings and character and
numeric constants), operators, and other separators. Blanks, horizontal and vertical tabs, newlines, form-
feeds, and comments (collectively,“white space”), as described below, are ignored except as they serve to
separate tokens. Some white space is required to separate otherwise adjacent identifiers, keywords, and lit-
erals. ∗
__________________ 
9) These include“digraphs” and additional reserved words. The term“digraph” (token consisting of two characters) is not perfectly
descriptive, since one of the alternate preprocessing-tokens is%:%: and of course several primary tokens contain two characters.
Nonetheless, those alternate tokens that aren’t lexical keywords are colloquially known as“digraphs”. 
10)Thus[ and<: behave differently when“stringized” (16.3.2_), but can otherwise be freely interchanged. 
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[lex.comment] 2.6 Comments

1 The characters/* start a comment, which terminates with the characters*/ . These comments do not nest.
The characters// start a comment, which terminates with the next new-line character. If there is a form-
feed or a vertical-tab character in such a comment, only white-space characters can appear between it and
the new-line that terminates the comment; no diagnostic is required. The comment characters// , /* , and
*/ have no special meaning within a// comment and are treated just like other characters. Similarly, the
comment characters// and/* have no special meaning within a/* comment.

[lex.name] 2.7 Identifiers

identifier:
nondigit
identifier nondigit
identifier digit

nondigit: one of
_ a b c d e f g h i j k l m

n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

digit: one of
0 1 2 3 4 5 6 7 8 9

1 An identifier is an arbitrarily long sequence of letters and digits. The first character is a letter; the under-
score_ counts as a letter. Upper- and lower-case letters are different. All characters are significant.

[lex.key] 2.8 Keywords

1 The identifiers shown in Table 3 are reserved for use as keywords, and shall not be used otherwise in
phases 7 and 8:

Table 3—keywords
_ _____________________________________________________________________________________
asm do inline short typeid 
auto double int signed union 
bool dynamic_cast long sizeof unsigned 
break else mutable static using 
case enum namespace static_cast virtual 
catch explicit new struct void 
char extern operator switch volatile 
class false private template wchar_t 
const float protected this while 
const_cast for public throw 
continue friend register true 
default goto reinterpret_cast try 
delete if return typedef _ _____________________________________________________________________________________ 


































2 Furthermore, the alternate representations shown in Table 4 for certain operators and punctuators (2.4) are
reserved and shall not be used otherwise:
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Table 4—alternate representations
_ ______________________________________________________
bitand and bitor or xor compl
and_eq or_eq xor_eq not not_eq_ ______________________________________________________ 





3 In addition, identifiers containing a double underscore (_ _ ) or beginning with an underscore and an
upper-case letter are reserved for use by C + + implementations and standard libraries and should be avoided
by users; no diagnostic is required.

4 The lexical representation of C + + programs includes a number of preprocessing tokens which are used in
the syntax of the preprocessor or are converted into tokens for operators and punctuators: 

preprocessing-op-or-punc: one of 
{ } [ ] # ## = ( ) , 
<: :> <% %> %: %:%: ; : ... 
new delete new[] delete[] ? 
+ - * / % ^ & | ~ 
! = < > += -= *= /= %= 
^= &= |= << >> >>= <<= == != 
<= >= && || ++ -- , ->* -> 
and bitand bitor compl new<%%> delete<%%> 
not or xor and_eq not_eq or_eq xor_eq 

After preprocessing, eachpreprocessing-op-or-puncis converted to a single token in translation phase 7
(2.1).

5 Certain implementation-dependent properties, such as the type of asizeof (5.3.3) expression, the ranges
of fundamental types (3.8.1), and the types of the most basic library functions are defined in the standard
header files (18)

<float.h> <limits.h> <stddef.h>

These headers are part of the ISO C standard. In addition the headers

<new.h> <stdarg.h> <stdlib.h>

define the types of the most basic library functions. The last two headers are part of the ISO C standard;
<new.h> is C + + specific.

[lex.literal] 2.9 Literals

1 There are several kinds of literals (often referred to as“constants”).

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal

[lex.icon] 2.9.1 Integer literals

integer-literal:
decimal-literal integer-suffixopt

octal-literal integer-suffixopt

hexadecimal-literal integer-suffixopt
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decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit:one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix:
unsigned-suffix long-suffixopt

long-suffix unsigned-suffixopt

unsigned-suffix:one of
u U

long-suffix: one of
l L

1 An integer literal consisting of a sequence of digits is taken to be decimal (base ten) unless it begins with0
(digit zero). A sequence of digits starting with0 is taken to be an octal integer (base eight). The digits8
and9 are not octal digits. A sequence of digits preceded by0x or 0X is taken to be a hexadecimal integer
(base sixteen). The hexadecimal digits includea or A throughf or F with decimal values ten through fif-
teen. For example, the number twelve can be written12 , 014 , or0XC.

2 The type of an integer literal depends on its form, value, and suffix. If it is decimal and has no suffix, it has
the first of these types in which its value can be represented:int , long int , unsigned long int . If
it is octal or hexadecimal and has no suffix, it has the first of these types in which its value can be repre-
sented:int , unsigned int , long int , unsigned long int . If it is suffixed byu or U, its type is
the first of these types in which its value can be represented:unsigned int , unsigned long int . If
it is suffixed byl or L, its type is the first of these types in which its value can be represented:long int ,
unsigned long int . If it is suffixed byul , lu , uL , Lu , Ul , lU , UL, or LU, its type isunsigned
long int .

3 A program is ill-formed if it contains an integer literal that cannot be represented by any of the allowed
types.

[lex.ccon] 2.9.2 Character literals

character-literal:
’ c-char-sequence’
L’ c-char-sequence’
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c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except

the single-quote’ , backslash\ , or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence:one of
\’ \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
octal-escape-sequence octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

1 A character literal is one or more characters enclosed in single quotes, as in’x’ , optionally preceded by
the letterL, as inL’x’ . Single character literals that do not begin withL have typechar , with value
equal to the numerical value of the character in the machine’s character set. Multicharacter literals that do
not begin withL have typeint and implementation-defined value.

2 A character literal that begins with the letterL, such asL’ab’ , is a wide-character literal. Wide-character
literals have typewchar_t . They are intended for character sets where a character does not fit into a sin-
gle byte. Wide-character literals have implementation-defined values, regardless of the number of charac-
ters in the literal.

3 Certain nongraphic characters, the single quote’ , the double quote" , ?, and the backslash\ , can be repre- 
sented according to Table 5.

Table 5—escape sequences
_ ______________________________
new-line NL (LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
alert BEL \a
backslash \ \\
question mark ? \?
single quote ’ \’
double quote " \"
octal number ooo \ooo
hex number hhh \xhhh_ ______________________________ 


































If the character following a backslash is not one of those specified, the behavior is undefined. An escape
sequence specifies a single character.
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4 The escape\ oooconsists of the backslash followed by one or more octal digits that are taken to specify the
value of the desired character. The escape\x hhhconsists of the backslash followed byx followed by one
or more hexadecimal digits that are taken to specify the value of the desired character. There is no limit to
the number of digits in either sequence. A sequence of octal or hexadecimal digits is terminated by the first
character that is not an octal digit or a hexadecimal digit, respectively. The value of a character literal is
implementation dependent if it exceeds that of the largestchar (for ordinary literals) orwchar_t (for
wide literals).

[lex.fcon] 2.9.3 Floating literals

floating-constant:
fractional-constant exponent-partopt floating-suffixopt

digit-sequence exponent-part floating-suffixopt

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence.

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
f l F L

1 A floating literal consists of an integer part, a decimal point, a fraction part, ane or E, an optionally signed
integer exponent, and an optional type suffix. The integer and fraction parts both consist of a sequence of
decimal (base ten) digits. Either the integer part or the fraction part (not both) can be missing; either the
decimal point or the lettere (or E) and the exponent (not both) can be missing. The type of a floating lit-
eral isdouble unless explicitly specified by a suffix. The suffixesf andF specifyfloat , the suffixesl
andL specifylong double .

[lex.string] 2.9.4 String literals

string-literal:
" s-char-sequenceopt"
L" s-char-sequenceopt"

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote" , backslash\ , or new-line character
escape-sequence

1 A string literal is a sequence of characters (as defined in 2.9.2) surrounded by double quotes, optionally
beginning with the letterL, as in"..." or L"..." . A string literal that does not begin withL has type
“array ofn char ” andstaticstorage duration (3.7), wheren is the size of the string as defined below, and is
initialized with the given characters. Whether all string literals are distinct (that is, are stored in nonover-
lapping objects) is implementation dependent. The effect of attempting to modify a string literal is



2.9.4 String literals DRAFT: 1 February 1995 Lexical conventions 2– 9

undefined.

2 A string literal that begins withL, such asL"asdf" , is a wide-character string. A wide-character string is
of type“array ofn wchar_t ,” wheren is the size of the string as defined below. Concatenation of ordi-
nary and wide-character string literals is undefined.

Box 4

Should this render the program ill-formed? Or is it deliberately undefined to encourage extensions?_ _________________________________________________________________________________



_ _________________________________________________________________________________




3 Adjacent string literals are concatenated. Characters in concatenated strings are kept distinct. For example,

"\xA" "B"

contains the two characters’\xA’ and ’B’ after concatenation (and not the single hexadecimal character
’\xAB’ ).

4 After any necessary concatenation’\0’ is appended so that programs that scan a string can find its end.
The size of a string is the number of its characters including this terminator. Within a string, the double
quote character" shall be preceded by a\ . 

5 Escape sequences in string literals have the same meaning as in character literals (2.9.2).

[lex.bool] 2.9.5 Boolean literals

boolean-literal:
false
true

1 The Boolean literals are the keywordsfalse andtrue . Such literals have typebool and the given val-
ues. They are not lvalues.





_ _____________________________________________________________________________________________________________________________________________________________________________ ___________________________________________

3 Basic concepts [basic]
_ _____________________________________________________________________________________________________________________________________________________________________________ ___________________________________________

1 This clause presents the basic concepts of the C + + language. It explains the difference between anobject
and anameand how they relate to the notion of anlvalue. It introduces the concepts of adeclarationand a
definition and presents C + +’s notion of type, scope, linkage, andstorage duration. The mechanisms for
starting and terminating a program are discussed. Finally, this clause presents the fundamental types of the
language and lists the ways of constructingcompoundtypes from these.

2 This clause does not cover concepts that affect only a single part of the language. Such concepts are dis-
cussed in the relevant clauses.

3 An entity is a value, object, subobject, base class subobject, array element, variable, function, set of func-
tions, instance of a function, enumerator, type, class member, template, or namespace.

4 A nameis a use of an identifier (2.7) that denotes an entity orlabel (6.6.4, 6.1).

5 Every name that denotes an entity is introduced by adeclaration. Every name that denotes a label is intro-
duced either by agoto statement (6.6.4) or alabeled-statement(6.1). Every name is introduced in some
contiguous portion of program text called adeclarative region(3.3), which is the largest part of the pro-
gram in which that name can possibly be valid. In general, each particular name is valid only within some
possibly discontiguous portion of program text called itsscope(3.3). To determine the scope of a declara-
tion, it is sometimes convenient to refer to thepotential scopeof a declaration. The scope of a declaration
is the same as its potential scope unless the potential scope contains another declaration of the same name.
In that case, the potential scope of the declaration in the inner (contained) declarative region is excluded
from the scope of the declaration in the outer (containing) declarative region.

6 For example, in

int j = 24;

main()
{

int i = j, j;

j = 42;
}

the identifierj is declared twice as a name (and used twice). The declarative region of the firstj includes
the entire example. The potential scope of the firstj begins immediately after thatj and extends to the end
of the program, but its (actual) scope excludes the text between the, and the} . The declarative region of
the second declaration ofj (the j immediately before the semicolon) includes all the text between{ and} ,
but its potential scope excludes the declaration ofi . The scope of the second declaration ofj is the same
as its potential scope.

7 Some names denote types, classes, enumerations, or templates. In general, it is necessary to determine
whether or not a name denotes one of these entities before parsing the program that contains it. The process
that determines this is calledname lookup.

8 Two names denote the same entity if

— they are identifiers composed of the same character sequence; or

— they are the names of overloaded operator functions formed with the same operator; or
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— they are the names of user-defined conversion functions formed with the same type. ∗

9 An identifier used in more than one translation unit can potentially refer to the same entity in these transla-
tion units depending on the linkage (3.5) specified in the translation units. ∗

[basic.def] 3.1 Declarations and definitions

1 A declaration (7) introduces one or more names into a program and gives each name a meaning.

2 A declaration is adefinition unless it declares a function without specifying the function’s body (8.4), it
contains theextern specifier (7.1.1) and neither aninitializer nor afunction-body, it declares a static data
member in a class declaration (9.5), it is a class name declaration (9.1), or it is atypedef declaration
(7.1.3), ausing declaration(7.3.3), or ausing directive(7.3.4).

3 The following, for example, are definitions:

int a; // definesa
extern const int c = 1; // definesc
int f(int x) { return x+a; } // definesf
struct S { int a; int b; }; // definesS
struct X { // definesX

int x; // defines nonstatic data memberx
static int y; // declares static data membery
X(): x(0) { } // defines a constructor ofX

};
int X::y = 1; // definesX::y
enum { up, down }; // definesup and down
namespace N { int d; } // definesN and N::d
namespace N1 = N; // definesN1
X anX; // definesanX

whereas these are just declarations:

extern int a; // declaresa
extern const int c; // declaresc
int f(int); // declaresf
struct S; // declaresS
typedef int Int; // declaresInt
extern X anotherX; // declaresanotherX
using N::d; // declaresN::d

4 In some circumstances, C + + implementations generate definitions automatically. These definitions include
default constructors, copy constructors, assignment operators, and destructors. For example, given

struct C {
string s; // string is the standard library class (21.1.2)

};

main()
{

C a;
C b=a;
b=a;

}

the implementation will generate functions to make the definition ofCequivalent to
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struct C {
string s;
C(): s() { }
C(const C& x): s(x.s) { }
C& operator=(const C& x) { s = x.s; return *this; }
~C() { }

};

5 A class name can also implicitly be declared by anelaborated-type-specifier(7.1.5.3).

[basic.def.odr] 3.2 One definition rule

Box 5

This is still very much under review by the Committee._ ______________________________________________



_ ______________________________________________




1 No translation unit shall contain more than one definition of any variable, function, class type, enumeration
type or template.

2 A function is usedif it is called, its address is taken, or it is a virtual member function that is not pure
(10.4). Every program shall contain at least one definition of every function that is used in that program.
That definition can appear explicitly in the program, it can be found in the standard or a user-defined
library, or (when appropriate) the implementation can generate it. If a non-virtual function is not defined, a
diagnostic is required only if an attempt is actually made to call that function. If a virtual function is neither
called nor defined, no diagnostic is required.

Box 6

This says nothing about user-defined libraries. Probably it shouldn’t, but perhaps it should be more explicit
that it isn’t discussing it._ ________________________________________________________________________________________





_ ________________________________________________________________________________________





3 Exactly one definition in a program is required for a non-local variable with static storage duration, unless
it has a builtin type or is an aggregate and also is unused or used only as the operand of thesizeof opera-
tor.

Box 7

This is still uncertain._ ___________________



_ ___________________




4 At least one definition of a class is required in a translation unit if the class is used other than in the forma-
tion of a pointer or reference type.

Box 8

This is not quite right, because it is possible to declare a function that has an undefined class type as its
return type, that has arguments of undefined class type._ ________________________________________________________________________________________





_ ________________________________________________________________________________________





Box 9

There might be other situations that do not require a class to be defined: extern declarations (i.e. "extern X
x;"), declaration of static members, others???_ ________________________________________________________________________________________





_ ________________________________________________________________________________________





For example the following complete translation unit is well-formed, even though it never definesX:
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struct X; // declareX is a struct type
struct X* x1; // useX in pointer formation
X* x2; // useX in pointer formation

5 There can be more than one definition of a named enumeration type in a program provided that each defini-
tion appears in a different translation unit and the names and values of the enumerators are the same.

Box 10

This will need to be revisited when the ODR is made more precise_ _______________________________________________________



_ _______________________________________________________




6 There can be more than one definition of a class type in a program provided that each definition appears in
a different translation unit and the definitions describe the same type.

7 No diagnostic is required for a violation of the ODR rule.

Box 11

This will need to be revisited when the ODR is made more precise_ _______________________________________________________



_ _______________________________________________________




[basic.scope] 3.3 Declarative regions and scopes

1 The name look up rules are summarized in 3.4. 

[basic.scope.local] 3.3.1 Local scope

1 A name declared in a block (6.3) is local to that block. Its scope begins at its point of declaration (3.3.9)
and ends at the end of its declarative region.

2 A function parameter name in a function definition (8.4) is a local name in the scope of the outermost block
of the function and shall not be redeclared in that scope.

3 The name in acatch exception-declaration is local to the handler and shall not be redeclared in the outer-
most block of the handler.

4 Names declared in thefor-init-statement, condition, and controlling expression parts ofif , while , for ,
andswitch statments are local to theif , while , for , or switch statement (including the controlled
statement), and shall not be redeclared in a subsequent condition or controlling expression of that statement
nor in the outermost block of the controlled statement.

5 Names declared in the outermost block of the controlled statement of ado statement shall not be redeclared
in the controlling expression.

[basic.scope.proto] 3.3.2 Function prototype scope

1 In a function declaration, or in any of function declarator except the declarator of a function definition (8.4),
names of parameters (if supplied) have function prototype scope, which terminates at the end of the func-
tion declarator.

3.3.3 Function scope

1 Labels (6.1) can be used anywhere in the function in which they are declared. Only labels have function
scope.
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[basic.scope.namespace] 3.3.4 Namespace scope

1 A name declared in a named or unnamed namespace (7.3) has namespace scope. Its potential scope
includes its namespace from the name’s point of declaration (3.3.9) onwards, as well as the potential scope
of anyusing directive(7.3.4) that nominates its namespace. A namespace member can also be used after
the:: scope resolution operator (5.1) applied to the name of its namespace.

2 A name declared outside all named or unnamed namespaces (7.3), blocks (6.3) and classes (9) hasglobal
namespace scope(also calledglobal scope). The potential scope of such a name begins at its point of dec-
laration (3.3.9) and ends at the end of the translation unit that is its declarative region. Names declared in
the global namespace scope are said to beglobal.

[basic.scope.class] 3.3.5 Class scope

1 The name of a class member is local to its class and can be used only in: ∗

— the scope of that class (9.3) or a class derived (10) from that class,

— after the. operator applied to an expression of the type of its class (5.2.4) or a class derived from its
class,

— after the-> operator applied to a pointer to an object of its class (5.2.4) or a class derived from its class,

— after the:: scope resolution operator (5.1) applied to the name of its class or a class derived from its
class,

— or after ausing declaration(7.3.3). ∗

2 The scope of names introduced by friend declarations is described in 7.3.1.

3 The scope rules for classes are summarized in 9.3.

[basic.scope.hiding] 3.3.6 Name hiding

1 A name can be hidden by an explicit declaration of that same name in a nested declarative region or derived
class.

2 A class name (9.1) or enumeration name (7.2) can be hidden by the name of an object, function, or enumer-
ator declared in the same scope. If a class or enumeration name and an object, function, or enumerator are
declared in the same scope (in any order) with the same name, the class or enumeration name is hidden
wherever the object, function, or enumerator name is visible.

3 In a member function definition, the declaration of a local name hides the declaration of a member of the
class with the same name; see 9.3. The declaration of a member in a derived class (10) hides the declara-
tion of a member of a base class of the same name; see 10.2. 

4 If a name is in scope and is not hidden it is said to bevisible.

5 The region in which a name is visible is called thereachof the name.

Box 12

The term ’reach’ is defined here but never used. More work is needed with the "descriptive terminology"._ ______________________________________________________________________________________



_ ______________________________________________________________________________________




[basic.scope.exqual] 3.3.7 Explicit qualification

Box 13

The information in this section is very similar to the one provided in 7.3.1.1. The information in these two
sections (3.3.7 and 7.3.1.1) should be consolidated in one place._ ________________________________________________________________________________________





_ ________________________________________________________________________________________




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1 A name hidden by a nested declarative region or derived class can still be used when it is qualified by its
class or namespace name using the:: operator (5.1, 9.5, 10). A hidden global scope name can still be used
when it is qualified by the unary:: operator (5.1).

[basic.scope.elab] 3.3.8 Elaborated type specifier

1 A class name or enumeration name can be hidden by the name of an object, function, or enumerator in
local, class or namespace scope. A hidden class name can still be used when appropriately prefixed with
class , struct , or union (7.1.5), or when followed by the:: operator. A hidden enumeration name
can still be used when appropriately prefixed withenum (7.1.5). For example:

class A {
public:

static int n;
};

main()
{

int A;

A::n = 42; // OK
class A a; // OK
A b; // ill-formed: A does not name a type

}

The scope of class names first introduced inelaborated-type-specifiersis described in (7.1.5.3).

[basic.scope.pdecl] 3.3.9 Point of declaration

1 Thepoint of declarationfor a name is immediately after its complete declarator (8) and before itsinitializer
(if any), except as noted below. For example,

int x = 12;
{ int x = x; }

2 Here the secondx is initialized with its own (unspecified) value.

3 For the point of declaration for an enumerator, see 7.2.

4 For the point of declaration of a function first declared in afriend declaration, see 11.4. 

5 For the point of declaration of a class first declared in anelaborated-type-specifieror in afriend declara- 
tion, see 7.1.5.3.

6 A nonlocal name remains visible up to the point of declaration of the local name that hides it. For example,

const int i = 2;
{ int i[i]; }

declares a local array of two integers.

7 The point of instantiation of a template is described in 14.3. 

[class.scope]3.4 Name look up 

1 The name look up rules apply uniformly to all names (includingtypedef-names (7.1.3),namespace-names 
(7.3) andclass-names (9.1)) wherever the grammar allows such names in the context discussed by a partic-
ular rule. This section discusses name look up in lexical scope only; 3.5 discusses linkage issues. The
notions of name hiding and point of declaration are discussed in 3.3. 

2 Name look up associates the use of a name with a visible declaration (3.1) of that name. Name look up
shall find an unambiguous declaration for the name (see 10.2). Name look up may associate more than one
declaration with a name if it finds the name to be a function name; in this case, all the declarations shall be
found in the same scope (10.2); the declarations are said to form a set of overloaded functions (13.1).
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Overload resolution (13.2) takes place after name look up has succeeded. The access rules (11) are consid-
ered only once name look up and function overload resolution (if applicable) have succeeded. Only after
name look up, function overload resolution (if applicable) and access checking have succeeded are the
attributes introduced by the name’s declaration used further in expression processing (5). 

3 A name used in the global scope outside of any function, class or user-declared namespace, shall be
declared before it is used in global scope or be a name introduced by ausing directive (7.3.4) that appears
in global scope before the name is used. 

4 A name specified after anested-name-specifieris looked up in the scope of the class or namespace denoted
by thenested-name-specifier; see 5.1 and 7.3.1.1. A name prefixed by the unary scope operator:: (5.1) is 
looked up in global scope. A name specified after the. operator or-> operator of a class member access
is looked up as specified in 5.2.4. 

5 A name that is not qualified in any of the ways described above and that is used in a namespace outside of
the definition of any function or class shall be declared before its use in that namespace or in one of its
enclosing namespaces or, be introduced by ausing directive (7.3.4) visible at the point the name is used.

6 A name that is not qualified in any of the ways described above and that is used in a function that is not a
class member shall be declared before its use in the block in which it is used or in one of its enclosing
blocks (6.3) or, shall be declared before its use in the namespace enclosing the function definition or in one
of its enclosing namespaces or, shall be introduced by ausing directive (7.3.4) visible at the point the
name is used. 

7 A name that is not qualified in any of the ways described above and that is used in the definition of a class
X outside of any inline member function or nested class definition shall be declared before its use in classX 
(9.3) or be a member of a base class of classX (10) or, if X is a nested class of classY (9.8), shall be 
declared before the definition of classX in the enclosing classY or in Y’s enclosing classes or, ifX is a local 
class (9.9), shall be declared before the definition of classX in a block enclosing the definition of classX or, 
shall be declared before the definition of classX in a namespace enclosing the definition of classX or, be 
introduced by ausing directive (7.3.4) visible at the point the name is used. 9.3 further describes the
restrictions on the use of names in a class definition. 9.8 further describes the restrictions on the use of
names in nested class definitions. 9.9 further describes the restrictions on the use of names in local class
definitions. 

8 A name that is not qualified in any of the ways described above and that is used in a function that is a mem-
ber function (9.4) of classX shall be declared before its use in the block in which it is used or in an enclos-
ing block (6.3) or, shall be a member of classX (9.2) or a member of a base class of classX (10) or, ifX is a 
nested class of classY (9.8), shall be a member of the enclosing classY or a member ofY’s enclosing 
classes or, ifX is a local class (9.9), shall be declared before the definition of classX in a block enclosing 
the definition of classX or, shall be declared before the member function definition in a namespace enclos-
ing the member function definition or, be introduced by ausing directive (7.3.4) visible at the point the
name is used. 9.4 and 9.5 further describe the restrictions on the use of names in member function defini-
tions. 9.8 further describes the restrictions on the use of names in the scope of nested classes. 9.9 further
describes the restrictions on the use of names in local class definitions. 

9 For afriend function (11.4) defined inline in the definition of the class granting friendship, name look up
in the friend function definition for a name that is not qualified in any of the ways described above pro-
ceeds as described in member function definitions. If thefriend function is not defined in the class
granting friendship, name look up in thefriend function definition for a name that is not qualified in any
of the ways described above proceeds as described in nonmember function definitions. 

10 A name that is not qualified in any of the ways described above and that is used in a functionparameter- 
declaration-clauseas a default argument (8.3.6) or that is used in a functionctor-initializer (12.6.2) is 
looked up as if the name was used in the outermost block of the function definition. In particular, the func-
tion parameter names are visible for name look up in default arguments and inctor-initializers. 8.3.6 fur- 
ther describes the restrictions on the use of names in default arguments. 12.6.2further describes the restric-
tions on the use of names in actor-initializer. 



3– 8 Basic concepts DRAFT: 1 February 1995 3.4 Name look up

11 A name that is not qualified in any of the ways described above and that is used in theinitializer expression 
of a static member of classX (9.5.2) shall be a member of classX (9.2) or a member of a base class of
classX (10) or, if X is a nested class of classY (9.8), shall be a member of the enclosing classY or a mem- 
ber ofY’s enclosing classes or, be declared before the static member definition in the namespace enclosing
the static member definition or in one of its enclosing namespaces or, be introduced by ausing directive 
(7.3.4) visible at the point the name is used. 9.5.2 further describes the restrictions on the use of names in
the initializer expression for astatic data member. 9.8 further describes the restrictions on the use of
names in nested class definitions. 

12 In all cases, the scopes are searched for a declaration in the order listed in each of the respective category
above and name look up ends as soon as a declaration is found for the name. 

Box 14 
This subclause should probably say something about look up in template definitions.  _ _____________________________________________________________________




_ _____________________________________________________________________


 

[basic.link] 3.5 Program and linkage

1 A programconsists of one or moretranslation units(2) linked together. A translation unit consists of a
sequence of declarations.

translation unit:
declaration-seqopt

2 A name is said to havelinkagewhen it might denote the same object, function, type, template, or value as a
name introduced by a declaration in another scope: ∗

— When a name hasexternal linkage, the entity it denotes can be referred to by names from scopes of
other translation units or from other scopes of the same translation unit.

— When a name hasinternal linkage, the entity it denotes can be referred to by names from other scopes
of the same translation unit.

— When a name hasno linkage, the entity it denotes cannot be referred to by names from other scopes.∗

3 A name of namespace scope (3.3.4) has internal linkage if it is the name of

— a variable that is explicitly declaredstatic or is explicitly declaredconst and neither explicitly
declaredextern nor previously declared to have external linkage; or

— a function that is explicitly declaredstatic or is explicitly declaredinline and neither explicitly
declaredextern nor previously declared to have external linkage; or

— the name of a data member of an anonymous union. ∗

4 A name of namespace scope has external linkage if it is the name of ∗

— a variable, unless it has internal linkage; or

— a function, unless it has internal linkage; or

— a class (9) or enumeration (7.2) or an enumerator; or

— a template (14). In addition, a name of class scope has external linkage if the name of the class has∗
external linkage.

Box 15

What is the linkage of unnamed classes and their members? Unnamed enumeration and their enumerators?_ _______________________________________________________________________________________



_ _______________________________________________________________________________________



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5 The name of a function declared in a block scope or a variable declaredextern in a block scope has link-
age, either internal or external to match the linkage of prior visible declarations of the name in the same
translation unit, but if there is no prior visible declaration it has external linkage.

6 Names not covered by these rules have no linkage. Moreover, except as noted, a name declared in a local
scope (3.3.1) has no linkage. A name with no linkage (notably, the name of a class or enumeration declared
in a local scope (3.3.1)) shall not be used to declare an entity with linkage. For example:

void f()
{

struct A { int x; }; // no linkage
extern A a; // ill-formed

}

This implies that names with no linkage cannot be used as template arguments (14.7).

7 Two names that are the same and that are declared in different scopes shall denote the same object, func-
tion, type, enumerator, or template if ∗

— both names have external linkage or else both names have internal linkage and are declared in the same
translation unit; and

— both names refer to members of the same namespace or to members, not by inheritance, of the same
class; and

— when both names denote functions or function templates, the function types are identical for purposes of
overloading. ∗

8 After all adjustments of types (during which typedefs (7.1.3) are replaced by their definitions), the types
specified by all declarations of a particular external name shall be identical, except that such types can dif-
fer by the presence or absence of a major array bound (8.3.4). A violation of this rule does not require a
diagnostic.

Box 16

This needs to specified more precisely to deal with function name overloading._ _________________________________________________________________



_ _________________________________________________________________




9 Linkage to non-C + + declarations can be achieved using alinkage-specification(7.5).

[basic.start] 3.6 Start and termination

[basic.start.main] 3.6.1 Main function

1 A program shall contain global a function calledmain , which is the designated start of the program.

2 This function is not predefined by the compiler, it cannot be overloaded, and its type is implementation
dependent. The two examples below are allowed on any implementation. It is recommended that any fur-
ther (optional) parameters be added afterargv . The functionmain() can be defined as 

int main() { /* ... */ }

or

int main(int argc, char* argv[]) { /* ... */ }

In the latter formargc shall be the number of arguments passed to the program from an environment in
which the program is run. Ifargc is nonzero these arguments shall be supplied inargv[0] through
argv[argc-1] as pointers to the initial characters of zero-terminated strings; andargv[0] shall be the
pointer to the initial character of a zero-terminated string that represents the name used to invoke the pro-
gram or"" . It is guaranteed thatargv[argc]==0 .
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3 The functionmain() shall not be called from within a program. The linkage (3.5) ofmain() is imple-
mentation dependent. The address ofmain() shall not be taken andmain() shall not be declared
inline or static . The namemain is not otherwise reserved. For example, member functions, classes,
and enumerations can be calledmain , as can entities in other namespaces. 

4 Calling the function 

void exit(int);

declared in<cstdlib> (18.3) terminates the program without leaving the current block and hence with-
out destroying any local variables (12.4). The argument value is returned to the program’s environment as
the value of the program.

5 A return statement inmain() has the effect of leaving the main function (destroying any local variables)
and callingexit() with the return value as the argument. If control reaches the end ofmain without
encountering areturn statement, the effect is that of executing

return 0;

[basic.start.init] 3.6.2 Initialization of non-local objects

Box 17

This is still under active discussion by the committee._ ____________________________________________



_ ____________________________________________




1 The initialization of nonlocal static objects (3.7) in a translation unit is done before the first use of any func-
tion or object defined in that translation unit. Such initializations (8.5, 9.5, 12.1, 12.6.1) can be done before
the first statement ofmain() or deferred to any point in time before the first use of a function or object
defined in that translation unit. The default initialization of all static objects to zero (8.5) is performed
before any other initialization. Static objects initialized with constant expressions (5.19) are initialized
before any dynamic (that is, run-time) initialization takes place. The order of initialization of nonlocal
static objects defined in the same translation unit is the order in which their definition appears in the trans-
lation unit. No further order is imposed on the initialization of objects from different translation units. The
initialization of local static objects is described in 6.7.

2 If construction or destruction of a non-local static object ends in throwing an uncaught exception, the result
is to callterminate() (18.6.1.3). 

[basic.start.term] 3.6.3 Termination

1 Destructors (12.4) for initialized static objects are called when returning frommain() and when calling
exit() (18.3). Destruction is done in reverse order of initialization. The functionatexit() from 
<cstdlib> can be used to specify a function to be called at exit. Ifatexit() is to be called, the imple-
mentation shall not destroy objects initialized before anatexit() call until after the function specified in
theatexit() call has been called.

2 Where a C + + implementation coexists with a C implementation, any actions specified by the C implementa-
tion to take place after theatexit() functions have been called take place after all destructors have been
called.

3 Calling the function 

void abort();

declared in<cstdlib> terminates the program without executing destructors for static objects and with-
out calling the functions passed toatexit() . 
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[basic.stc]3.7 Storage duration and lifetime 

1 Storage duration is a property of an object that indicates the potential time extent the storage in which the
object resides might last. The storage duration is determined by the construct used to create the object and
is one of the following: 

— static storage duration 

— automatic storage duration 

— dynamic storage duration

2 Static and automatic storage durations are associated with objects introduced by declarations (3.1) and with
temporaries (12.2). The dynamic storage duration is associated with objects created withoperator new 
(5.3.4). 

3 The storage class specifiersstatic , auto , andmutable are related to storage duration as described
below. 

4 References (8.3.2) might or might not require storage; however, the storage duration categories apply to ref-
erences as well. 

5 The lifetime of an object is a runtime property of the object. The implementation controls the lifetime of
objects with static or automatic storage duration. Users control the lifetime of objects with dynamic storage
duration. 

Box 18 
What is the lifetime of an object? When is it well-formed and well-defined to access an object? When is it
ill-formed or undefined to access an object? Subclause 1.5 used to say: "The lifetime of an object starts
after any required initialization (8.5) has completed. For objects with destructor, it ends when destruction
starts." This description is being worked out by the Core Language WG. In particular, a better description
is needed to take into account what happens when users play tricks with objects’ lifetime.  _ ________________________________________________________________________________________








_ ________________________________________________________________________________________






 

6 The lifetime of temporaries is described in (12.2).

[basic.stc.static] 3.7.1 Static storage duration

1 All non-local objects havestatic storage duration. The storage for these objects can last for the entire dura-
tion of the program. These objects are initialized and destroyed as described in 3.6.2 and 3.6.3.

2 Note that if an object of static storage duration has initialization or a destructor with side effects, it shall not
be eliminated even if it appears to be unused.

Box 19

This awaits committee action on the ‘‘as-if’’ rule._ _________________________________________



_ _________________________________________




3 The keywordstatic can be used to declare a local variable with static storage duration; for a description
of initialization and destruction of localstatic variables, see 6.7.

4 The keywordstatic applied to a class data member in a class definition gives the data member static
storage duration. 

5 Temporaries created at global scope have static storage duration.



3– 12 Basic concepts DRAFT: 1 February 1995 3.7.2 Automatic storage duration

[basic.stc.auto] 3.7.2 Automatic storage duration

1 Local objects explicitly declaredauto or register or not explicitly declaredstatic haveautomatic 
storage duration. The storage for these objects lasts until the block in which they are created exits.

2 These objects are initialized and destroyed as described 6.7. 

3 If a named automatic object has initialization or a destructor with side effects, it shall not be destroyed
before the end of its block, nor shall it be eliminated as an optimization even if it appears to be unused.

4 Temporaries created in block scope have automatic storage duration.

[basic.stc.dynamic] 3.7.3 Dynamic storage duration

1 Objects can be created dynamically during program execution (1.8), usingnew-expressions (5.3.4), and
destroyed usingdelete-expressions (5.3.5). A C + + implementation provides access to, and management of,
dynamic storage via the globalallocation functionsoperator new and operator new[] and the ∗
globaldeallocation functionsoperator delete andoperator delete[] . 

2 These functions are always implicitly declared. The library provides default definitions for them (18.4.1).
A C + + program shall provide at most one definition of any of the functions::operator
new(size_t) , ::operator new[](size_t) , ::operator delete(void*) , and/or
::operator delete[](void*) . Any such function definitions replace the default versions. This
replacement is global and takes effect upon program startup (3.6). Allocation and/or deallocation functions
can also be declared and defined for any class (12.5).

3 Any allocation and/or deallocation functions defined in a C + + program shall conform to the semantics spec-
ified in this subclause.

[basic.stc.dynamic.allocation] 3.7.3.1 Allocation functions

1 Allocation functions can be static class member functions or global functions. They can be overloaded, but
the return type shall always bevoid* and the first parameter type shall always besize_t (5.3.3), an
implementation-defined integral type defined in the standard header<cstddef> (18).

2 The function shall return the address of a block of available storage at least as large as the requested size.
The order, contiguity, and initial value of storage allocated by successive calls to an allocation function is
unspecified. The pointer returned is suitably aligned so that it can be assigned to a pointer of any type and
then used to access such an object or an array of such objects in the storage allocated (until the storage is
explicitly deallocated by a call to a corresponding deallocation function). Each such allocation shall yield a
pointer to storage (1.5) disjoint from any other currently allocated storage. The pointer returned points to
the start (lowest byte address) of the allocated storage. If the size of the space requested is zero, the value
returned shall be nonzero and shall not pointer to or within any other currently allocated storage. The
results of dereferencing a pointer returned as a request for zero size are undefined.11)

3 If an allocation function is unable to obtain an appropriate block of storage, it can invoke the currently
installed new_handler 12) and/or throw an exception (15) of classbad_alloc (18.4.2.1) or a class
derived frombad_alloc .

4 If the allocation function returns the null pointer the result is implementation defined.

__________________ 
11) The intent is to haveoperator new() implementable by callingmalloc() or calloc() , so the rules are substantially the
same. C + + differs from C in requiring a zero request to return a non-null pointer. 
12) A program-supplied allocation function can obtain the address of the currently installednew_handler (18.4.2.2) using the 
set_new_handler() function (18.4.2.3).
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[basic.stc.dynamic.deallocation] 3.7.3.2 Deallocation functions

1 Like allocation functions, deallocation functions can be static class member functions or global functions.

2 Each deallocation function shall returnvoid and its first parameter shall bevoid* . For class member
deallocation functions, a second parameter of typesize_t can be added but deallocation functions shall
not be overloaded.

3 The value of the first parameter supplied to a deallocation function shall be zero, or refer to storage allo-
cated by the corresponding allocation function (even if that allocation function was called with a zero argu-
ment). If the value of the first argument is null, the call to the deallocation function has no effect. If the
value of the first argument refers to a pointer already deallocated, the effect is undefined.

4 A deallocation function can free the storage referenced by the pointer given as its argument and renders the
pointer invalid. The storage can be made available for further allocation. An invalid pointer contains an
unusable value: it cannot even be used in an expression.

5 If the argument is non-null, the value of a pointer that refers to deallocated space isindeterminate. The
effect of dereferencing an indeterminate pointer value is undefined.13)

[basic.stc.inherit] 3.7.4 Duration of sub-objects

1 The storage duration of member subobjects, base class subobjects and array elements is that of their com-
plete object (1.6).

[basic.stc.mutable] 3.7.5 Themutable keyword

1 The keywordmutable is grammatically a storage class specifier but is unrelated to the storage duration
(lifetime) of the class member it describes. The mutable keyword is described in 3.9, 5.2.4, 7.1.1 and
7.1.5.1. ∗

[basic.types] 3.8 Types

1 ∗There are two kinds of types: fundamental types and compound types. Types can describe objects (1.6),
references (8.3.2), or functions (8.3.5).

2 Object types havealignment requirements(3.8.1, 3.8.2). The alignment of an object type is an
implementation-dependent integer value representing a number of bytes; an object is allocated at an address
that is divisible by the alignment of its object type. 

3 Arrays of unknown size and classes that have been declared but not defined are calledincompletetypes 
because the size and layout of an instance of the type is unknown. Also, thevoid type is an incomplete 
type; it represents an empty set of values. No objects can be defined to have incomplete type. The term
incompletely-defined object typeis a synonym forincomplete type; the termcompletely-defined object type
is a synonym forcomplete type;

4 A class type (such as“class X ”) can be incomplete at one point in a translation unit and complete later
on; the type“class X ” is the same type at both points. The declared type of an array can be incomplete
at one point in a translation unit and complete later on; the array types at those two points (“array of
unknown bound ofT” and“array of NT”) are different types. However, the type of a pointer to array of
unknown size, or of a type defined by atypedef declaration to be an array of unknown size, cannot be
completed.

5 Expressions that have incomplete type are prohibited in some contexts. For example:

__________________
13)On some architectures, it causes a system-generated runtime fault.
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class X; // X is an incomplete type
extern X* xp; // xp is a pointer to an incomplete type
extern int arr[]; // the type of arr is incomplete
typedef int UNKA[]; // UNKA is an incomplete type
UNKA* arrp; // arrp is a pointer to an incomplete type
UNKA** arrpp;

void foo()
{

xp++; // ill-formed: X is incomplete
arrp++; // ill-formed: incomplete type
arrpp++; // okay: sizeof UNKA* is known

}

struct X { int i; }; // now X is a complete type
int arr[10]; // now the type of arr is complete

X x;
void bar()
{

xp = &x; // okay; type is ‘‘pointer to X’’
arrp = &arr; // ill-formed: different types
xp++; // okay: X is complete
arrp++; // ill-formed: UNKA can’t be completed

}

6 Clauses 5 and 6 indicate in more details in which contexts incomplete types are allowed or prohibited.

7 If two typesT1 andT2 are the same type, thenT1 andT2 arelayout-compatibletypes. Layout-compatible
enumerations are described in 7.2. Layout-compatible POD-structs and POD-unions are described in 9.2.

[basic.fundamental] 3.8.1 Fundamental types

1 There are several fundamental types. Specializations of the standard templatenumeric_limits (18.2) 
specify the largest and smallest values of each for an implementation. ∗

2 Objects declared as characters (char ) are large enough to store any member of the implementation’s basic
character set. If a character from this set is stored in a character variable, its value is equivalent to the inte-
ger code of that character. It is implementation-specified whether achar object can take on negative val-
ues. Characters can be explicitly declaredunsigned or signed . Plain char , signed char , and 
unsigned char are three distinct types. Achar , a signed char , and anunsigned char 
occupy the same amount of storage and have the same alignment requirements (3.8). In any particular
implementation, a plainchar object can take on either the same values as asigned char or an
unsigned char ; which one is implementation-defined.

3 An enumerationcomprises a set of named integer constant values, which form the basis for an integral sub-
range that includes those values. Each distinct enumeration constitutes a differentenumerated type. Each
constant has the type of its enumeration.

4 There are foursigned integer types: “signed char ”, “short int ”, “int ”, and“long int .” In this
list, each type provides at least as much storage as those preceding it in the list, but the implementation can
otherwise make any of them equal in storage size. Plainint s have the natural size suggested by the
machine architecture; the other signed integer types are provided to meet special needs.

5 For each of the signed integer types, there exists a corresponding (but different)unsigned integer type:
“unsigned char ”, “unsigned short int ”, “unsigned int ”, and “unsigned long
int, ” each of which occupies the same amount of storage and has the same alignment requirements (3.8)
as the corresponding signed integer type.14) The range of nonnegative values of asigned integertype is a 
__________________
14)See 7.1.5.2 regarding the correspondence between types and the sequences oftype-specifiers that designate them.
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subrange of the correspondingunsigned integertype, and the representation of the same value in each type
is the same.

6 Unsigned integers, declaredunsigned , obey the laws of arithmetic modulo 2n wheren is the number of
bits in the representation of that particular size of integer. This implies that unsigned arithmetic does not
overflow.

7 Typewchar_t is a distinct type whose values can represent distinct codes for all members of the largest
extended character set specified among the supported locales (22.1.1). Typewchar_t has the same size,
signedness, and alignment requirements (1.5) as one of the other integral types, called itsunderlying type.

8 Values of typebool can be eithertrue or false .15) There are nosigned , unsigned , short , or
long bool types or values. As described below,bool values behave as integral types. Thus, for exam-
ple, they participate in integral promotions (4.5, 5.2.3). Although values of typebool generally behave as
signed integers, for example by promoting (4.5) toint instead ofunsigned int , a bool value can
successfully be stored in a bit-field of any (nonzero) size.

9 Typesbool , char , wchar_t , and the signed and unsigned integer types are collectively calledintegral 
types. A synonym for integral type isinteger type. Enumerations (7.2) are not integral, but they can be
promoted (4.5) toint , unsigned int , long , or unsigned long . The representations of integral
types shall define values by use of a pure binary numeration system. 

Box 20 
Does this mean two’s complement? Is there a definition of“pure binary numeration system?”  _ _____________________________________________________________________________




_ _____________________________________________________________________________


 

10 There are threefloating pointtypes:float , double , andlong double . The typedouble provides
at least as much precision asfloat , and the typelong double provides at least as much precision as
double . Integralandfloating types are collectively calledarithmetictypes. ∗

11 Thevoid type specifies an empty set of values. It is used as the return type for functions that do not return
a value. Objects of typevoid shall not be declared. Any expression can be explicitly converted to type
void (5.4); the resulting expression can be used only as an expression statement (6.2), as the left operand
of a comma expression (5.18), or as a second or third operand of?: (5.16). 

12 Even if the implementation defines two or more basic types to have the same representation, they are never-
theless different types.

[basic.compound] 3.8.2 Compound types

1 There is a conceptually infinite number of compound types constructed from the fundamental types in the
following ways:

— arraysof objects of a given type, 8.3.4;

— functions, which have parameters of given types and return objects of a given type, 8.3.5;

— pointersto objects or functions (including static members of classes) of a given type, 8.3.1;

— referencesto objects or functions of a given type, 8.3.2;

— constants, which are values of a given type, 7.1.5;

— classescontaining a sequence of objects of various types (9), a set of functions for manipulating these
objects (9.4), and a set of restrictions on the access to these objects and functions, 11;

— unions, which are classes capable of containing objects of different types at different times, 9.6; ∗

— pointers to non-static16) class members, which identify members of a given type within objects of a
__________________
15) Using abool value in ways described by this International Standard as ‘‘undefined,’’ such as by examining the value of an unini-
tialized automatic variable, might cause it to behave as if is neithertrue nor false .
16)Static class members are objects or functions, and pointers to them are ordinary pointers to objects or functions.
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given class, 8.3.3.

2 In general, these methods of constructing types can be applied recursively; restrictions are mentioned in
8.3.1, 8.3.4, 8.3.5, and 8.3.2.

3 A pointer to objects of a typeT is referred to as a“pointer toT.” For example, a pointer to an object of type∗
int is referred to as“pointer toint ” and a pointer to an object of classX is called a“pointer toX.” Point- 
ers to incomplete types are allowed although there are restrictions on what can be done with them (3.8).
Pointers to qualified or unqualified versions (3.8.3) of layout-compatible types shall have the same repre-
sentation and alignment requirements (3.8).

4 Objects of cv-qualified (3.8.3) or unqualified typevoid* (pointer to void), can be used to point to objects
of unknown type. Avoid* has enough bits to hold any object pointer. A qualified or unqualified (3.8.3)
void* shall have the same representation and alignment requirements as a qualified or unqualified
char* .

5 Except for pointers to static members, text referring to“pointers” does not apply to pointers to members.

[basic.type.qualifier] 3.8.3 CV-qualifiers

1 ∗Any type so far mentioned is anunqualified type. Each unqualified fundamental type (3.8.1) has three cor-
responding qualified versions of its type: aconst-qualifiedversion, avolatile-qualified version, and a 
const-volatile-qualifiedversion. The termobject type(1.6) includes the cv-qualifiers specified when the
object is created. The presence of aconst specifier in adecl-specifier-seqdeclares an object ofconst- 
qualified object type; such object is called aconst object. The presence of avolatile specifier in a 
decl-specifier-seqdeclares an object ofvolatile-qualified object type; such object is called avolatile object. 
The presence of bothcv-qualifiers in a decl-specifier-seqdeclares an object ofconst-volatile-qualified 
object type; such object is called aconst volatile object. The cv-qualified or unqualified versions of a type
are distinct types; however, they have the same representation and alignment requirements (3.8).17) A com- 
pound type (3.8.2) is not cv-qualified by the cv-qualifiers (if any) of the type from which it is compounded.
However, an array type is considered to be cv-qualified by the cv-qualifiers of its element type. Moreover,
when an array type is cv-qualified, its element type is considered to have the same cv-qualifiers (8.3.4).

2 Each non-function, non-static, non-mutable member of a const-qualified class object is const-qualified,
each non-function, non-static member of a volatile-qualified class object is volatile-qualified and similarly
for members of a const-volatile class. See 8.3.5 and 9.4.2 regarding cv-qualified function types. 

3 There is a (partial) ordering on cv-qualifiers, so that a type can be said to bemore cv-qualifiedthan another. 
Table 6 shows the relations that constitute this ordering.

Table 6—relations onconst and volatile
_ _________________________________________

no cv-qualifier < const 
no cv-qualifier < volatile 

no cv-qualifier < const volatile 
const < const volatile 

volatile < const volatile _ _________________________________________ 













4 In this document, the notationcv (or cv1, cv2, etc.), used in the description of types, represents an arbitrary∗
set of cv-qualifiers, i.e., one of {const }, { volatile }, { const, volatile }, or the empty set. Cv-
qualifiers applied to an array type attach to the underlying element type, so the notation“cvT,” whereT is
an array type, refers to an array whose elements are so-qualified. Such array types can be said to be more
(or less) cv-qualified than other types based on the cv-qualification of the underlying element types.
__________________
17)The same representation and alignment requirements are meant to imply interchangeability as arguments to functions, return values
from functions, and members of unions.
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[basic.type.name] 3.8.4 Type names

1 Fundamental and compound types can be given names by thetypedef mechanism (7.1.3), and families of
types and functions can be specified and named by thetemplate mechanism (14).

[basic.lval] 3.9 Lvalues and rvalues

1 Every expression is either anlvalueor rvalue.

2 An lvalue refers to an object or function. Some rvalue expressions—those of class or cv-qualified class
type—also refer to objects.18)

3 Some builtin operators and function calls yield lvalues. For example, ifE is an expression of pointer type,
then*E is an lvalue expression referring to the object or function to whichE points. As another example,
the function

int& f();

yields an lvalue, so the callf() is an lvalue expression.

4 Some builtin operators expect lvalue operands, for example the builtin assignment operators all expect their
left hand operands to be lvalues. Other builtin operators yield rvalues, and some expect them. For example
the unary and binary+ operators expect rvalue arguments and yield rvalue results. The discussion of each
builtin operator in 5 indicates whether it expects lvalue operands and whether it yields an lvalue.

5 Constructor invocations and calls to functions that do not return references are always rvalues. User
defined operators are functions, and whether such operators expect or yield lvalues is determined by their
type.

6 Whenever an lvalue appears in a context where an lvalue is not expected, the lvalue is converted to an
rvalue; see 4.1, 4.2, and 4.3. 

7 The discussion of reference initialization in 8.5.3 and of temporaries in 12.2 indicates the behavior of lval-
ues and rvalues in other significant contexts.

8 Class rvalues can have qualified types; non-class rvalues always have unqualified types. Rvalues always
have complete types or thevoid type; lvalues may have incomplete types.

9 An lvalue for an object is generally necessary in order to modify the object. An rvalue of class type can
also be used to modify its referent under certain circumstances. For example, a member function called for
an object (9.4) can modify the object.

10 Functions cannot be modified, but pointers to functions can be modifiable. 

11 A pointer to an incomplete type can be modifiable. At some point in the program when this pointer type is
complete, the object at which the pointer points can also be modified. 

12 Array objects cannot be modified, but their elements can be modifiable. 

13 The referent of aconst -qualified expression shall not be modified (through that expression), except that if
it is of class type and has amutable component, that component can be modified. 

14 If an expression can be used to modify its object, it is calledmodifiable. A program that attempts to modify
an object through a nonmodifiable lvalue or rvalue expression is ill-formed.

__________________
18)Expressions such as invocations of constructors and of functions that return a class type do in some sense refer to an object, and the
implementation can invoke a member function upon such objects, but the expressions are not lvalues.





_ _____________________________________________________________________________________________________________________________________________________________________________ ___________________________________________

4 Standard conversions [conv]
_ _____________________________________________________________________________________________________________________________________________________________________________ ___________________________________________

1 Expressions with a given type will be implicitly converted to other types in several contexts:

— When used as operands of operators. The operator’s requirements for its operands dictate the destina-
tion type. See 5.

— When used in the condition of anif statement or iteration statement (6.4, 6.5). The destination type is
bool .

— When used in the expression of aswitch statement. The destination type is integral (6.4).

— When used as the source expression for an initialization (which includes use as an argument in a func-
tion call and use as the expression in areturn statement). The type of the entity being initialized is
(generally) the destination type. See 8.5, 8.5.3.

2 Standard conversions are implicit conversions defined for built-in types. For user-defined types, user-
defined conversions are considered as well; see 12.3. In general, an implicit conversion sequence (13.2.3.1)
consists of zero or more standard conversions and zero or one user-defined conversion. 

3 One or more of the following standard conversions will be applied to an expression if necessary to convert
it to a required destination type.

4 There are some contexts where certain conversions are suppressed. For example, the lvalue-to-rvalue con-
version is not done on the operand of the unary& operator. Such exceptions are given in the descriptions of
those operators and contexts.

[conv.lval] 4.1 Lvalue-to-rvalue conversion

1 An lvalue (3.9) of a non-array typeT can be converted to an rvalue. IfT is an incomplete type, a program
that necessitates this conversion is ill-formed. IfT is a non-class type, the type of the rvalue is the unquali-
fied version ofT. Otherwise (i.e.,T is a class type), the type of the rvalue isT. 19)

2 The value contained in the object indicated by the lvalue is the rvalue result. When an lvalue-to-rvalue con-
version is done within the operand ofsizeof (5.3.3) the value contained in the referenced object is not
accessed, since that operator does not evaluate its operand.

3 See also 3.9.

[conv.array] 4.2 Array-to-pointer conversion

1 An lvalue or rvalue of type“array ofN T” or “array of unknown bound ofT” can be converted to an rvalue
of type“pointer toT.” The result is a pointer to the first element of the array.

__________________
19) In C + + class rvalues can have qualified types (because they are objects). This differs from ISO C, in which non-lvalues never have
qualified types.
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[conv.func] 4.3 Function-to-pointer conversion

1 An lvalue of function typeT can be converted to an rvalue of type“pointer toT.” The result is a pointer to
the function.20)

2 See 13.3 for additional rules for the case where the function is overloaded.

[conv.qual] 4.4 Qualification conversions

1 An rvalue of type“pointer tocv1T” can be converted to an rvalue of type“pointer tocv2T” if “cv2T” is
more cv-qualified than“cv1T.” ∗

2 An rvalue of type“pointer to member ofX of typecv1T” can be converted to an rvalue of type“pointer to 
member ofX of typecv2T” if “cv2T” is more cv-qualified than“cv1T.” 

3 A conversion can add type qualifiers at levels other than the first in multi-level pointers, subject to the fol-
lowing rules:21)

Two pointer types T1 and T2 aresimilar if there exists a typeT and integerN > 0 such that:

T1 is Tcv1 ,n * . . . cv1 , 1 * cv1 , 0

and

T2 is Tcv2 ,n * . . . cv2 , 1 * cv2 , 0

where eachcvi , j is const , volatile , const volatile , or nothing. An expression of typeT1
can be converted to typeT2 if and only if the following conditions are satisfied:

— the pointer types are similar.

— for everyj > 0, if const is in cv1 ,j thenconst is in cv2 ,j , and similarly forvolatile .

— thecv1 ,j andcv2 ,j are different, thenconst is in everycv2 ,k for 0< k < j.

4 When a multi-level pointer is composed of data member pointers, or a mix of object and data member
pointers, the rules for adding type qualifiers are the same as those for object pointers. That is, the“mem- 
ber” aspect of the pointers is irrelevant in determining where type qualifiers can be added.

[conv.prom] 4.5 Integral promotions

1 An rvalue of typechar , signed char , unsigned char , short int , or unsigned short
int can be converted to an rvalue of typeint if int can represent all the values of the source type; other-
wise, the source rvalue can be converted to an rvalue of typeunsigned int .

2 An rvalue of typewchar_t (3.8.1) or an enumeration type (7.2) can be converted to an rvalue of the first
of the following types that can represent all the values of the source type:int , unsigned int , long ,
or unsigned long .

3 An rvalue for an integral bit-field (9.7) can be converted to an rvalue of typeint if int can represent all
the values of the bit-field; otherwise, it can be converted tounsigned int if unsigned int can rep-
resent all the values of the bit-field22).

4 An rvalue of typebool can be converted to an rvalue of typeint , with false becoming zero andtrue
becoming one.

5 These conversions are called integral promotions.

__________________
20) This conversion never applies to nonstatic member functions because there is no way to obtain an lvalue for a nonstatic member
function.
21)These rules ensure that const-safety is preserved by the conversion. ∗
22) If the bit-field is larger yet, it is not eligible for integral promotion. If the bit-field has an enumerated type, it is treated as any other
value of that type for promotion purposes.
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[conv.fpprom] 4.6 Floating point promotion

1 An rvalue of typefloat can be converted to an rvalue of typedouble . The value is unchanged.

2 This conversion is called floating point promotion.

[conv.integral] 4.7 Integral conversions

1 An rvalue of an integer type can be converted to an rvalue of another integer type.

2 If the destination type is unsigned, the resulting value is the least unsigned integer congruent to the source
integer (modulo 2n wheren is the number of bits used to represent the unsigned type). In a two’s comple-
ment representation, this conversion is conceptual and there is no change in the bit pattern (if there is no
truncation).

3 If the destination type is signed, the value is unchanged if it can be represented in the destination type; oth-
erwise, the value is implementation-defined.

4 If the destination type isbool , see 4.13. If the source type isbool , the source integer is taken to be zero
for false and one fortrue .

5 The conversions allowed as integral promotions are excluded from the set of integral conversions.

[conv.double] 4.8 Floating point conversions

1 An rvalue of floating point type can be converted to an rvalue of another floating point type. If the source
value can be exactly represented in the destination type, the result of the conversion is that exact representa-
tion. If the source value is between two adjacent destination values, the result of the conversion can be
either of those values. Otherwise, the behavior is undefined.

2 The conversions allowed as floating point promotions are excluded from the set of floating point conver-
sions.

[conv.fpint] 4.9 Floating-integral conversions

1 An rvalue of a floating point type can be converted to an rvalue of an integer type. The conversion trun-
cates; that is, the fractional part is discarded. The result is undefined if the truncated value cannot be repre-
sented in the destination type. If the destination type isbool , see 4.13.

2 An rvalue of an integer type can be converted to an rvalue of a floating point type. The result is exact if
possible. Otherwise, it can be either the next lower or higher representable value. Loss of precision occurs
if the integral value cannot be represented exactly as a value of the floating type. If the source type is
bool , the source integer is taken to be zero forfalse and one fortrue .

[conv.ptr] 4.10 Pointer conversions

1 A constant expression (5.19) rvalue of an integer type that evaluates to zero (called anull pointer constant)
can be converted to a pointer type. The result is a value (called thenull pointer valueof that type) distin-
guishable from every pointer to an object or function. Two null pointer values of a given type compare
equal.

2 An rvalue of type“pointer tocvT,” whereT is an object type, can be converted to an rvalue of type
“pointer tocvvoid .”

3 An rvalue of type“pointer tocvD,” whereD is a class type, can be converted to an rvalue of type“pointer
to cvB,” whereB is a base class (10) ofD. If B is an inaccessible (11) or ambiguous (10.2) base class ofD,
a program that necessitates this conversion is ill-formed. The result of the conversion is a pointer to the
base class sub-object of the derived class object. The null pointer value is converted to the null pointer
value of the destination type.
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[conv.mem] 4.11 Pointer to member conversions

1 A null pointer constant (4.10) can be converted to a pointer to member type. The result is a value (called
thenull member pointer valueof that type) distinguishable from a pointer to any member. Two null mem-
ber pointer values of a given type compare equal.

2 An rvalue of type“pointer to member ofB of typecvT,” whereB is a class type, can be converted to an
rvalue of type“pointer to member ofD of typecvT,” whereD is a derived class (10) ofB. If B is an inac-
cessible (11) or ambiguous (10.2) base class ofD, a program that necessitates this conversion is ill-formed.
The result of the conversion refers to the same member as the pointer to member before the conversion took
place, but it refers to the base class member as if it were a member of the derived class. The result refers to
the member inD’s instance ofB. Since the result has type“pointer to member ofD of typecvT,” it can be 
dereferenced with aD object. The result is the same as if the pointer to member ofB were dereferenced
with theB sub-object ofD. The null member pointer value is converted to the null member pointer value of
the destination type.23)

[conv.class] 4.12 Base class conversion

1 An rvalue of type“cvD,” whereD is a class type, can be converted to an rvalue of type“cvB,” whereB is a
base class (10) ofD. If B is an inaccessible (11) or ambiguous (10.2) base class ofD, or if the conversion is 
implemented by calling a constructor (12.3.1) and the constructor is not callable, a program that necessi-
tates this conversion is ill-formed. The result of the conversion is the value of the base class sub-object of
the derived class object.

[conv.bool] 4.13 Boolean conversions

1 An rvalue of arithmetic, enumeration, pointer, or pointer to member type can be converted to an rvalue of
type bool . A zero value, null pointer value, or null member pointer value is converted tofalse ; any
other value is converted totrue .

2 The conversions allowed as integral promotions are excluded from the set of boolean conversions.

__________________
23) The rule for conversion of pointers to members (from pointer to member of base to pointer to member of derived) appears inverted
compared to the rule for pointers to objects (from pointer to derived to pointer to base) (4.10, 10). This inversion is necessary to ensure
type safety. Note that a pointer to member is not a pointer to object or a pointer to function and the rules for conversions of such point-
ers do not apply to pointers to members. In particular, a pointer to member cannot be converted to avoid* .
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5 Expressions [expr]
_ _____________________________________________________________________________________________________________________________________________________________________________ ___________________________________________

1 This clause defines the syntax, order of evaluation, and meaning of expressions. An expression is a
sequence of operators and operands that specifies a computation. An expression can result in a value and
can cause side effects.

2 Operators can be overloaded, that is, given meaning when applied to expressions of class type (9). Uses of
overloaded operators are transformed into function calls as described in 13.4. Overloaded operators obey
the rules for syntax specified in this clause, but the requirements of operand type, lvalue, and evaluation
order are replaced by the rules for function call. Relations between operators, such as++a meaninga+=1 ,
are not guaranteed for overloaded operators (13.4).24)

3 This clause defines the operators when applied to types for which they have not been overloaded. Operator
overloading shall not modify the rules for thebuilt-in operators, that is, for operators applied to types for
which they are defined by the language itself. However, these built-in operators participate in overload res-
olution; see 13.2.1.2.

4 Operators can be regrouped according to the usual mathematical rules only where the operators really are
associative or commutative. Overloaded operators are never assumed to be associative or commutative.
Except where noted, the order of evaluation of operands of individual operators and subexpressions of indi-
vidual expressions is unspecified. In particular, if a value is modified twice in an expression, the result of
the expression is unspecified except where an ordering is guaranteed by the operators involved. For exam-
ple,

i = v[i++]; // the value of ‘i’ is undefined
i=7,i++,i++; // ‘i’ becomes 9

5 The handling of overflow and divide by zero in expression evaluation is implementation dependent. Most
existing implementations of C + + ignore integer overflows. Treatment of division by zero and all floating
point exceptions vary among machines, and is usually adjustable by a library function.

6 Except where noted, operands of typesconst T , volatile T , T&, const T& , andvolatile T&
can be used as if they were of the plain typeT. Similarly, except where noted, operands of type
T* const andT* volatile can be used as if they were of the plain typeT* . Similarly, a plainT can
be used where avolatile T or a const T is required. These rules apply in combination so that,
except where noted, aT* const volatile can be used where aT* is required. Such uses do not
count as standard conversions when considering overloading resolution (13.2). 

7 If an expression initially has the type“reference toT” (8.3.2, 8.5.3), the type is adjusted to“T” prior to any
further analysis, the expression designates the object or function denoted by the reference, and the expres-
sion is an lvalue. A reference can be thought of as a name of an object.

8 An expression designating an object is called anobject-expression. 

9 User-defined conversions of class or enum types to and from fundamental types, pointers, and so on, can be
defined (12.3). If unambiguous (13.2), such conversions will be applied by the compiler wherever a class
object appears as an operand of an operator or as a function argument (5.2.2).

__________________
24)Nor is it guaranteed for typebool ; the left operand of+= shall not have typebool . 
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10 Whenever an lvalue expression appears as an operand of an operator that expects an rvalue for that operand,
the lvalue-to-rvalue (4.1), array-to-pointer (4.2), or function-to-pointer (4.3) standard conversion will be
applied to convert the expression to an rvalue.

11 Many binary operators that expect operands of arithmetic type cause conversions and yield result types in a
similar way. The purpose is to yield a common type, which is also the type of the result. This pattern is
called the“usual arithmetic conversions.”

Box 21

Enumerations are handled correctly by the usual arithmetic conversions, and for any operator that invokes
the integral promotions. However, there may be other places in this Clause that fail to treat enumerations
appropriately. ∗ _ ________________________________________________________________________________________






_ ________________________________________________________________________________________






12
— If either operand is of typelong double , the other is converted tolong double .

— Otherwise, if either operand isdouble , the other is converted todouble .

— Otherwise, if either operand isfloat , the other is converted tofloat .

— Otherwise, the integral promotions (4.5) are performed on both operands.25) 

— Then, if either operand isunsigned long the other is converted tounsigned long .

— Otherwise, if one operand is along int and the otherunsigned int , then if along int can rep-
resent all the values of anunsigned int , theunsigned int is converted to along int ; other-
wise both operands are converted tounsigned long int .

— Otherwise, if either operand islong , the other is converted tolong .

— Otherwise, if either operand isunsigned , the other is converted tounsigned .

— Otherwise, both operands areint .

13 If the program attempts to access the stored value of an object through an lvalue of other than one of the
following types: 

— the dynamic type of the object, 

— a qualified version of the declared type of the object, 

— a type that is the signed or unsigned type corresponding to the declared type of the object, 

— a type that is the signed or unsigned type corresponding to a qualified version of the declared type of the
object, 

— an aggregate or union type that includes one of the aforementioned types among its members (includ-
ing, recursively, a member of a subaggregate or contained union), 

— a type that is a (possibly qualified) base class type of the declared type of the object, 

— a character type.26) the result is undefined.

__________________
25)As a consequence, operands of typebool , wchar_t , or an enumerated type are converted to some integral type.
26)The intent of this list is to specify those circumstances in which an object may or may not be aliased.
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[expr.prim] 5.1 Primary expressions

1 Primary expressions are literals, names, and names qualified by the scope resolution operator:: .

primary-expression:
literal
this
:: identifier
:: operator-function-id
:: qualified-id
( expression)
id-expression

2 A literal is a primary expression. Its type depends on its form (2.9).

3 In the body of a nonstatic member function (9.4), the keywordthis names a pointer to the object for
which the function was invoked. The keywordthis shall not be used outside a class member function
body.

Box 22

In a constructor it is common practice to allowthis in mem-initializers._ ____________________________________________________________



_ ____________________________________________________________




4 The operator:: followed by anidentifier, a qualified-id, or anoperator-function-idis a primary expres-
sion. Its type is specified by the declaration of the identifier, name, oroperator-function-id. The result is
the identifier, name, oroperator-function-id. The result is an lvalue if the identifier is. The identifier or
operator-function-idshall be of namespace scope. Use of:: allows a type, an object, a function, or an
enumerator to be referred to even if its identifier has been hidden (3.3).

5 A parenthesized expression is a primary expression whose type and value are identical to those of the
unadorned expression. The presence of parentheses does not affect whether the expression is an lvalue.

6 A id-expressionis a restricted form of aprimary-expressionthat can appear after. and-> (5.2.4):

id-expression:
unqualified-id
qualified-id

unqualified-id:
identifier
operator-function-id
conversion-function-id
˜ class-name

Box 23

Issue: now it’s allowed to invoke~int() , but~class-name doesn’t allow for that._ _______________________________________________________________________



_ _______________________________________________________________________




7 An identifier is anid-expressionprovided it has been suitably declared (7). Foroperator-function-ids, see
13.4. Forconversion-function-ids, see 12.3.2. Aclass-nameprefixed by~ denotes a destructor; see 12.4.

qualified-id:
nested-name-specifier unqualified-id

8 A nested-name-specifierthat names a class (7.1.5) followed by:: and the name of a member of that class
(9.2), or a member of a base of that class (10), is aqualified-id; its type is the data member type or function
member type; it is not an object type. The result is the member. The result is an lvalue if the member is.
Theclass-namemight be hidden by a nontype name, in which case theclass-nameis still found and used. 
Whereclass-name:: class-nameis used, and the twoclass-names refer to the same class, this notation
names the constructor (12.1). Whereclass-name:: ~ class-nameis used, the twoclass-names shall refer 
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to the same class; this notation names the destructor (12.4). Multiply qualified names, such as
N1::N2::N3::n , can be used to refer to nested types (9.8).

9 In a qualified-id, if the id-expressionis a conversion-function-id, its conversion-type-idshall denote the
same type in both the context in which the entirequalified-idoccurs and in the context of the class denoted
by thenested-name-specifier. For the purpose of this evaluation, the name, if any, of each class is also con-
sidered a nested class member of that class.

[expr.post] 5.2 Postfix expressions

1 Postfix expressions group left-to-right.

postfix-expression:
primary-expression
postfix-expression[ expression]
postfix-expression( expression-listopt )
simple-type-specifier( expression-listopt )
postfix-expression. id-expression
postfix-expression-> id-expression
postfix-expression++
postfix-expression--
dynamic_cast < type-id > ( expression)
static_cast < type-id > ( expression)
reinterpret_cast < type-id > ( expression)
const_cast < type-id > ( expression)
typeid ( expression)
typeid ( type-id )

expression-list:
assignment-expression
expression-list, assignment-expression

[expr.sub] 5.2.1 Subscripting

1 A postfix expression followed by an expression in square brackets is a postfix expression. The intuitive
meaning is that of a subscript. One of the expressions shall have the type“pointer toT” and the other shall 
be of enumeration or integral type. The result is an lvalue of type“T.” The type“T” shall be complete. 
The expressionE1[E2] is identical (by definition) to*((E1)+(E2)) . See 5.3 and 5.7 for details of*
and+ and 8.3.4 for details of arrays.

[expr.call] 5.2.2 Function call

1 There are two kinds of function call: ordinary function call and member function27) (9.4) call. A function
call is a postfix expression followed by parentheses containing a possibly empty, comma-separated list of
expressions which constitute the arguments to the function. For ordinary function call, the postfix expres-
sion shall be a function name, or a pointer or reference to function. For member function call, the postfix
expression shall be an implicit (9.4) or explicit class member access (5.2.4) whoseid-expressionis a func-
tion member name, or a pointer-to-member expression (5.5) selecting a function member. The first expres-
sion in the postfix expression is then called theobject expression, and the call is as a member of the object
pointed to or referred to. In the case of an implicit class member access, the implied object is the one
pointed to bythis . That is, a member function call of the formf() is interpreted asthis->f() (see 
9.4.2). If a function or member function name is used, the name can be overloaded (13), in which case the
appropriate function will be selected according to the rules in 13.2. The function called in a member func-
tion call is normally selected according to the static type of the object expression (see 10), but if that func-
tion is virtual the function actually called will be the final overrider (10.3) of the selected function in
the dynamic type of the object expression (i.e., the type of the object pointed or referred to by the current
__________________
27)A static member function (9.5) is an ordinary function.
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value of the object expression). 12.7 describes the behavior of virtual function calls when the object-
expression refers to an object under construction or destruction.

2 The type of the function call expression is the return type of the statically chosen function (i.e., ignoring the
virtual keyword), even if the type of the function actually called is different. This type shall be com-
plete or the typevoid .

3 When a function is called, each parameter (8.3.5) is initialized (8.5.3, 12.8, 12.1) with its corresponding
argument. Standard (4) and user-defined (12.3) conversions are performed. The value of a function call is
the value returned by the called function except in a virtual function call if the return type of the final over-
rider is different from the return type of the statically chosen function, the value returned from the final
overrider is converted to the return type of the statically chosen function. A function can change the values
of its nonconstant parameters, but these changes cannot affect the values of the arguments except where a
parameter is of a non-const reference type (8.3.2). Where a parameter is of reference type a temporary
variable is introduced if needed (7.1.5, 2.9, 2.9.4, 8.3.4, 12.2). In addition, it is possible to modify the val-
ues of nonconstant objects through pointer parameters.

4 A function can be declared to accept fewer arguments (by declaring default arguments (8.3.6)) or more
arguments (by using the ellipsis,... 8.3.5) than the number of parameters in the function definition (8.4).

5 If no declaration of the called function is accessible from the scope of the call the program is ill-formed.
This implies that, except where the ellipsis (... ) is used, a parameter is available for each argument.

6 Any argument of typefloat for which there is no parameter is converted todouble before the call; any
of char , short , or a bit-field type for which there is no parameter are converted toint or unsigned
by integral promotion (4.5). Any argument of enumeration type is converted toint , unsigned , long ,
or unsigned long by integral promotion. An object of a class for which no parameter is declared is
passed as a data structure.

Box 24

To ‘‘pass a parameter as a data structure’’ means, roughly, that the parameter must be a PODS, and that
otherwise the behavior is undefined. This must be made more precise._ ________________________________________________________________________________________





_ ________________________________________________________________________________________





7 An object of a class for which a parameter is declared is passed by initializing the parameter with the argu-
ment by a constructor call before the function is entered (12.2, 12.8).

8 The order of evaluation of arguments is unspecified; take note that compilers differ. All side effects of
argument expressions take effect before the function is entered. The order of evaluation of the postfix
expression and the argument expression list is unspecified.

9 The function-to-pointer standard conversion (4.3) is suppressed on the postfix expression of a function call.

10 Recursive calls are permitted.

11 A function call is an lvalue if and only if the result type is a reference.

[expr.type.conv] 5.2.3 Explicit type conversion (functional notation)

1 A simple-type-specifier(7.1.5) followed by a parenthesizedexpression-listconstructs a value of the speci-
fied type given the expression list. If the expression list specifies a single value, the expression is equiva-
lent (in definedness, and if defined in meaning) to the corresponding cast expression (5.4). If the expres-
sion list specifies more than a single value, the type shall be a class with a suitably declared constructor
(8.5, 12.1), and the expressionT(x1, x2, ...) is equivalent in effect to the declarationT t(x1, 
x2, ...); for some invented temporary variablet , with the result being the value oft as an rvalue.

2 A simple-type-specifier(7.1.5) followed by a (empty) pair of parentheses constructs a value of the specified
type. If the type is a class with a default constructor (12.1), that constructor will be called; otherwise the
result is the default value given to a static object of the specified type. See also (5.4).
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[expr.ref] 5.2.4 Class member access

1 A postfix expression followed by a dot (. ) or an arrow (-> ) followed by anid-expressionis a postfix
expression. The postfix expression before the dot or arrow is evaluated;28) the result of that evaluation,
together with theid-expression, determine the result of the entire postfix expression.

2 For the first option (dot) the type of the first expression (theobject expression) shall be“class object” (of a
complete type). For the second option (arrow) the type of the first expression (thepointer expression) shall
be “pointer to class object” (of a complete type). Theid-expressionshall name a member of that class,
except that an imputed destructor can be explicitly invoked for a built-in type (12.4). Therefore, ifE1 has
the type “pointer to classX,” then the expressionE1->E2 is converted to the equivalent form
(*(E1)).E2 ; the remainder of this subclause will address only the first option (dot)29).

3 If the id-expressionis aqualified-id, thenested-name-specifierof thequalified-idcan specify a namespace
name or a class name. If thenested-name-specifierof the qualified-id specifies a namespace name, the
name is looked up in the context in which the entirepostfix-expressionoccurs. Ifnested-name-specifierof
thequalified-idspecifies a class name, the class name is looked up as a type both in the class of the object
expression (or the class pointed to by the pointer expression) and the context in which the entirepostfix-
expressionoccurs. For the purpose of this type lookup, the name, if any, of each class is also considered a
nested class member of that class. These searches shall yield a single type which might be found in either
or both contexts. If thenested-name-specifiercontains a classtemplate-id(14.1), itstemplate-arguments
are evaluated in the context in which the entirepostfix-expressionoccurs.

4 Similarly, if the id-expressionis aconversion-function-id, its conversion-type-idshall denote the same type
in both the context in which the entirepostfix-expressionoccurs and in the context of the class of the object
expression (or the class pointed to by the pointer expression). For the purpose of this evaluation, the name,
if any, of each class is also considered a nested class member of that class.

5 Abbreviatingobject-expression.id-expressionasE1.E2 , then the type and lvalue properties of this expres-
sion are determined as follows. In the remainder of this subclause,cq represents eitherconst or the
absence ofconst ; vq represents eithervolatile or the absence ofvolatile . cv represents an arbi-
trary set of cv-qualifiers, as defined in 3.8.3.

6 If E2 is declared to have type“reference toT”, thenE1.E2 is an lvalue; the type ofE1.E2 is T. Other- 
wise, one of the following rules applies.

— If E2 is a static data member, and the type ofE2 is T, thenE1.E2 is an lvalue; the expression desig-
nates the named member of the class. The type ofE1.E2 is T. 

— If E2 is a (possibly overloaded) static member function, and the type ofE2 is “cv function of (parameter 
type list) returningT”, thenE1.E2 is an lvalue; the expression designates the static member function.
The type ofE1.E2 is the same type as that ofE2, namely“cv function of (parameter type list) returning
T”.

— If E2 is a non-static data member, and the type ofE1 is “cq1 vq1X”, and the type ofE2 is “cq2 vq2T”,
the expression designates the named member of the object designated by the first expression. IfE1 is
an lvalue, thenE1.E2 is an lvalue. Let the notationvq12stand for the“union” of vq1andvq2 ; that is,
if vq1 or vq2 is volatile , thenvq12 is volatile . Similarly, let the notationcq12stand for the
“union” of cq1andcq2; that is, ifcq1or cq2 is const , thencq12is const . If E2 is declared to be a
mutable member, then the type ofE1.E2 is “vq12T”. If E2 is not declared to be amutable mem-
ber, then the type ofE1.E2 is “cq12 vq12T”.

— If E2 is a (possibly overloaded) non-static member function, and the type ofE2 is “cv function of 
(parameter type list) returningT”, thenE1.E2 is not an lvalue. The expression designates a member
function (of some classX). The expression can be used only as the left-hand operand of a member

__________________
28) This evaluation happens even if the result is unnecessary to determine the value of the entire postfix expression, for example if the
id-expressiondenotes a static member.
29)Note that ifE1 has the type“pointer to classX”, then(*(E1)) is an lvalue.
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function call (9.4). The member function shall be at least as cv-qualified as the left-hand operand. The
type ofE1.E2 is “classX’s cvmember function of (parameter type list) returningT”. 

— If E2 is a nested type, the expressionE1.E2 is ill-formed.

— If E2 is a member constant, and the type ofE2 is T, the expressionE1.E2 is not an lvalue. The type of
E1.E2 is T. 

7 Note that“class objects” can be structures (9.2) and unions (9.6). Classes are discussed in 9.

[expr.post.incr] 5.2.5 Increment and decrement

1 The value obtained by applying a postfix++ is (a copy of) the value that the operand had before applying
the operator. The operand shall be a modifiable lvalue. The type of the operand shall be an arithmetic type
or a pointer to object type. After the result is noted, the value of the object is modified by adding1 to it,
unless the object is of typebool , in which case it is set totrue (this use is deprecated). The type of the
result is the same as the type of the operand, but it is not an lvalue. See also 5.7 and 5.17.

2 The operand of postfix-- is decremented analogously to the postfix++ operator, except that the operand
shall not be of typebool .

[expr.dynamic.cast] 5.2.6 Dynamic cast

1 The result of the expressiondynamic_cast<T>(v) is the result of converting the expressionv to type 
T. T shall be a pointer or reference to a complete class type, or“pointer tocv void ”. Types shall not be ∗
defined in adynamic_cast . Thedynamic_cast operator shall not cast away constness (5.2.10). 

2 If T is a pointer type,v shall be an rvalue of a pointer to complete class type, and the result is an rvalue of
typeT. If T is a reference type,v shall be an lvalue of a complete class type, and the result is an lvalue of
the type referred to byT. 

3 If the type ofv is the same as the required result type (which, for convenience, will be calledR in this 
description), or it can be converted toR via a qualification conversion (4.4) in the pointer case, the result is
v (converted if necessary). 

4 If the value ofv is a null pointer value in the pointer case, the result is the null pointer value of typeR. 

5 If T is “pointer tocv1B” andv has type“pointer tocv2D” such thatB is a base class ofD, the result is a 
pointer to the uniqueB sub-object of theD object pointed to byv . Similarly, if T is “reference tocv1 B” 
andv has type“cv2D” such thatB is a base class ofD, the result is an lvalue for the unique30) B sub-object 
of the D object referred to byv . In both the pointer and reference cases,cv1 shall be the same cv-
qualification as, or greater cv-qualification than,cv2, andB shall be an accessible nonambiguous base class
of D. For example,

struct B {};
struct D : B {};
void foo(D* dp)
{

B* bp = dynamic_cast<B*>(dp); // equivalent to B* bp = dp;
}

6 Otherwise,v shall be a pointer to or an lvalue of a polymorphic type (10.3). 

7 If T is “pointer tocv void ,” then the result is a pointer to the complete object (12.6.2) pointed to byv . 
Otherwise, a run-time check is applied to see if the object pointed or referred to byv can be converted to
the type pointed or referred to byT.

__________________
30)The complete object pointed or referred to byv can contain otherB objects as base classes, but these are ignored. 
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8 The run-time check logically executes like this: If, in the complete object pointed (referred) to byv , v
points (refers) to an unambiguous base class sub-object of aT object, the result is a pointer (an lvalue refer-
ring) to thatT object. Otherwise, if the type of the complete object has an unambiguous public base class
of typeT, the result is a pointer (reference) to theT sub-object of the complete object. Otherwise, the run-
time checkfails.

Box 25

Comment from Bill Gibbons: the original papers allowed all strict downcasts from accessible bases. This
wording does not. The paragraph can be fixed by changing the first instance of ‘‘an unambiguous’’ to ‘‘a
public.’’_ ________________________________________________________________________________________






_ ________________________________________________________________________________________






9 The value of a failed cast to pointer type is the null pointer value of the required result type. A failed cast to
reference type throwsbad_cast (18.5.2.1). For example, 

class A { virtual void f(); };
class B { virtual void g(); };
class D : public virtual A, private B {};
void g()
{

D d;
B* bp = (B*)&d; // cast needed to break protection
A* ap = &d; // public derivation, no cast needed
D& dr = dynamic_cast<D&>(*bp); // succeeds
ap = dynamic_cast<A*>(bp); // succeeds
bp = dynamic_cast<B*>(ap); // fails
ap = dynamic_cast<A*>(&dr); // succeeds
bp = dynamic_cast<B*>(&dr); // fails

}

class E : public D , public B {};
class F : public E, public D {}
void h()
{

F f;
A* ap = &f; // okay: finds unique A
D* dp = dynamic_cast<D*>(ap); // fails: ambiguous
E* ep = (E*)ap; // error: cast from virtual base
E* ep = dynamic_cast<E*>(ap); // succeeds

}

12.7 describes the behavior of adynamic_cast applied to an object under construction or destruction.

[expr.typeid] 5.2.7 Type identification

1 The result of atypeid expression is of typeconst type_info& . The value is a reference to a
type_info object (18.5.1.1) that represents thetype-idor the type of theexpressionrespectively. 

2 If the expressionis a reference to a polymorphic type (10.3), thetype_info for the complete object 
(12.6.2) referred to is the result. 

3 If the expressionis the result of applying unary* to a pointer to a polymorphic type,31) then the pointer 
shall either be zero or point to a valid object. If the pointer is zero, thetypeid expression throws the
bad_typeid exception (18.5.2.2). Otherwise, the result of thetypeid expression is the value that rep-
resents the type of the complete object to which the pointer points.

__________________
31) If p is a pointer, then*p , (*p) , ((*p)) , and so on all meet this requirement.
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4 If the expressionis the result of subscripting (5.2.1) a pointer, sayp, that points to a polymorphic type,32) 
then the result of thetypeid expression is that oftypeid(*p) . The subscript is not evaluated. 

5 If the expression is neither a pointer nor a reference to a polymorphic type, the result is thetype_info
representing the (static) type of theexpression. Theexpressionis not evaluated. 

6 In all casestypeid ignores the top-level cv-qualifiers of its operand’s type. For example: 

class D { ... }; 
D d1; 
const D d2; 

typeid(d1) == typeid(d2); // yields true 
typeid(D) == typeid(const D); // yields true 
typeid(D) == typeid(d2); // yields true 

12.7 describes the behavior oftypeid applied to an object under construction or destrcution.

[expr.static.cast] 5.2.8 Static cast

1 The result of the expressionstatic_cast<T>(v) is the result of converting the expressionv to typeT. 
If T is a reference type, the result is an lvalue; otherwise, the result is an rvalue. Types shall not be defined
in astatic_cast . Thestatic_cast operator shall not cast away constness. See 5.2.10. 

2 Any implicit conversion (including standard conversions and/or user-defined conversions; see 4 and
13.2.3.1) can be performed explicitly usingstatic_cast . More precisely, ifT t(v); is a well- 
formed declaration, for some invented temporary variablet , then the result ofstatic_cast<T>(v) is 
defined to be the temporaryt , and is an lvalue ifT is a reference type, and an rvalue otherwise. The
expressionv shall be an lvalue if the equivalent declaration requires an lvalue forv . 

3 If the static_cast does not correspond to an implicit conversion by the above definition, it shall per-
form one of the conversions listed below. No other conversion can be performed explicitly using a
static_cast .

4 Any expression can be explicitly converted to type“cvvoid .” The expression value is discarded. 

5 An lvalue expression of typeT1 can be cast to the type“reference toT2” if an expression of type“pointer 
to T1” can be explicitly converted to the type“pointer toT2” using astatic_cast . That is, a reference
cast static_cast<T&>x has the same effect as the conversion*static_cast<T*>&x with the 
built-in & and * operators. The result is an lvalue. This interpretation is used only if the original
static_cast is not well-formed as an implicit conversion under the rules given above. This form of
reference cast creates an lvalue that refers to the same object as the source lvalue, but with a different type.
Consequently, it does not create a temporary or copy the object, and constructors (12.1) or conversion func-
tions (12.3) are not called. For example, 

struct B {}; 
struct D : public B {}; 
D d; 
// creating a temporary for the B sub-object not allowed 
... (const B&) d ... 

6 The inverse of any standard conversion (4) can be performed explicitly usingstatic_cast subject to 
the restriction that the explicit conversion does not cast away constness (5.2.10), and the following addi-
tional rules for specific cases:

7 A value of integral type can be explicitly converted to an enumeration type. The value is unchanged if the
integral value is within the range of the enumeration values (7.2). Otherwise, the resulting enumeration
value is unspecified.
__________________
32) If p is a pointer to a polymorphic type andi has integral or enumerated type, thenp[i] , (p[i]) , (p)[i] ,
((((p))[((i))])) , i[p] , (i[p]) , and so on all meet this requirement.
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8 An rvalue of type“pointer tocv1B”, whereB is a class type, can be converted to an rvalue of type“pointer 
to cv2D”, whereD is a class derived (10) fromB, if a valid standard conversion from“pointer tocv2D” to 
“pointer tocv2 B” exists (4.10),cv2 is the same cv-qualification as, or greater cv-qualification than,cv1, 
andB is not a virtual base class ofD. The null pointer value (4.10) is converted to the null pointer value of
the destination type. If the rvalue of type“pointer tocv1B” points to aB that is actually a sub-object of an
object of typeD, the resulting pointer points to the enclosing object of typeD. Otherwise, the result of the
cast is undefined.

9 An rvalue of type“pointer to member ofD of typecv1T” can be converted to an rvalue of type“pointer to 
member ofB of typecv2T”, whereB is a base class (10) ofD, if a valid standard conversion from“pointer 
to member ofB of typecv2T” to “pointer to member ofD of typecv2T” exists (4.11), andcv2 is the same 
cv-qualification as, or greater cv-qualification than,cv1. The null member pointer value (4.11) is converted
to the null member pointer value of the destination type. If classB contains or inherits the original member,
the resulting pointer to member points to the member in classB. Otherwise, the result of the cast is unde-
fined.

[expr.reinterpret.cast] 5.2.9 Reinterpret cast

1 The result of the expressionreinterpret_cast<T>(v) is the result of converting the expressionv to 
typeT. If T is a reference type, the result is an lvalue; otherwise, the result is an rvalue. Types shall not be
defined in a reinterpret_cast . Conversions that can be performed explicitly using
reinterpret_cast are listed below. No other conversion can be performed explicitly using
reinterpret_cast .

2 Thereinterpret_cast operator shall not cast away constness; see 5.2.10. 

3 The mapping performed byreinterpret_cast is implementation-defined; it might, or might not, pro-
duce a representation different from the original value.

4 A pointer can be explicitly converted to any integral type large enough to hold it. The mapping function is
implementation-defined, but is intended to be unsurprising to those who know the addressing structure of
the underlying machine.

5 A value of integral type can be explicitly converted to a pointer. A pointer converted to an integer of suffi-
cient size (if any such exists on the implementation) and back to the same pointer type will have its original
value; mappings between pointers and integers are otherwise implementation-defined.

6 The operand of a pointer cast can be an rvalue of type“pointer to incomplete class type”. The destination 
type of a pointer cast can be“pointer to incomplete class type”. In such cases, if there is any inheritance
relationship between the source and destination classes, the behavior is undefined. 

7 A pointer to a function can be explicitly converted to a pointer to a function of a different type. The effect
of calling a function through a pointer to a function type that differs from the type used in the definition of
the function is undefined. See also 4.10.

8 A pointer to an object can be explicitly converted to a pointer to an object of different type. In general, the
results of this are unspecified; except that converting an rvalue of type“pointer toT1” to the type“pointer
to T2” (whereT1 andT2 are object types and where the alignment requirements ofT2 are no stricter than
those ofT1) and back to its original type yields the original pointer value.

Box 26

This does not allow conversion of function pointers to other function pointer types and back. Should it?_ _____________________________________________________________________________________



_ _____________________________________________________________________________________




9 The null pointer value (4.10) is converted to the null pointer value of the destination type.

10 An rvalue of type“pointer to member ofX of type T1”, can be explicitly converted to an rvalue of type
“pointer to member ofY of typeT2”, if T1 andT2 are both member function types or both data member
types. The null member pointer value (4.11) is converted to the null member pointer value of the destina-
tion type. In general, the result of this conversion is unspecified, except that:
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— converting an rvalue of type“pointer to member function” to a different pointer to member function
type and back to its original type yields the original pointer to member value.

— converting an rvalue of type“pointer to data member ofX of typeT1” to the type“pointer to data mem-
ber ofY of typeT2” (where the alignment requirements ofT2 are no stricter than those ofT1) and back
to its original type yields the original pointer to member value.

11 Calling a member function through a pointer to member that represents a function type that differs from the
function type specified on the member function declaration results in undefined behavior.

12 An lvalue expression of typeT1 can be cast to the type“reference toT2” if an expression of type“pointer 
to T1” can be explicitly converted to the type“pointer toT2” using areinterpret_cast . That is, a 
reference cast reinterpret_cast<T&>x has the same effect as the conversion
*reinterpret_cast<T*>&x with the built-in& and* operators. The result is an lvalue that refers to
the same object as the source lvalue, but with a different type. No temporary is created, no copy is made,
and constructors (12.1) or conversion functions (12.3) are not called.

[expr.const.cast] 5.2.10 Const cast

1
Box 27 
Editorial change from previous edition: it is permitted to useconst_cast as a no-op.  _ ________________________________________________________________________




_ ________________________________________________________________________


 

The result of the expressionconst_cast<T>(v) is of type “T.” Types shall not be defined in a
const_cast . Conversions that can be performed explicitly usingconst_cast are listed below. No 
other conversion shall be performed explicitly usingconst_cast .

2 An rvalue of type“pointer tocv1T” can be explicitly converted to the type“pointer tocv2T”, whereT is 
any object type and wherecv1andcv2are cv-qualifications , using the castconst_cast< cv2 T*> . An 
lvalue of typecv1T can be explicitly converted to an lvalue of typecv2T, whereT is any object type and
wherecv1andcv2are cv-qualifications, using the castconst_cast< cv2 T&>. The result of a pointer or
referenceconst_cast refers to the original object.

3 An rvalue of type“pointer to member ofX of typecv1T” can be explicitly converted to the type“pointer to 
member ofX of typecv2T”, whereT is a data member type and wherecv1andcv2are cv-qualifiers, using 
the castconst_cast< cv2 T X::*> . The result of a pointer to memberconst_cast will refer to the
same member as the original (uncast) pointer to data member.

4 The following rules define casting away constness. In these rulesTn and Xn represent types. For two
pointer types:

X 1 is T 1cv1 , 1 * . . . cv1 ,N * where T 1 is not a pointer type

X 2 is T 2cv2 , 1 * . . . cv2 ,N * where T 2 is not a pointer type

K is min(N,M)

casting fromX1 to X2 casts away constness if, for a non-pointer typeT (e.g.,int ), there does not exist an
implicit conversion from:

Tcv1 , (N − K + 1 ) * cv1 , (N − K + 2 ) * . . . cv1 ,N *

to

Tcv2 , (N − K + 1 ) * cv2 , (M − K + 2 ) * . . . cv2 ,M *

5 Casting from an lvalue of typeT1 to an lvalue of typeT2 using a reference cast casts away constness if a
cast from an rvalue of type“pointer toT1” to the type“pointer toT2” casts away constness.
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6 Casting from an rvalue of type "pointer to data member ofX of type“T1” to the type“pointer to data mem-
ber of Y of type T2” casts away constness if a cast from an rvalue of type“pointer toT1” to the type
“pointer toT2” casts away constness.

7 Note that these rules are not intended to protect constness in all cases. For instance, conversions between
pointers to functions are not covered because such conversions lead to values whose use causes undefined
behavior. For the same reasons, conversions between pointers to member functions, and in particular, the
conversion from a pointer to a const member function to a pointer to a non-const member function, are not
covered. For multi-level pointers to data members, or multi-level mixed object and member pointers, the
same rules apply as for multi-level object pointers. That is, the“member of” attribute is ignored for pur- 
poses of determining whetherconst has been cast away.

8 Depending on the type of the object, a write operation through the pointer, lvalue or pointer to data member
resulting from aconst_cast that casts away constness may produce undefined behavior (7.1.5.1). 

Box 28

This will need to be reworked once the memory model and object model are ironed out._ ________________________________________________________________________



_ ________________________________________________________________________




9 A null pointer value (4.10) is converted to the null pointer value of the destination type. The null member
pointer value (4.11) is converted to the null member pointer value of the destination type.

[expr.unary] 5.3 Unary expressions

1 Expressions with unary operators group right-to-left.

unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof ( type-id )
new-expression
delete-expression

unary-operator: one of
* & + - ! ~

[expr.unary.op] 5.3.1 Unary operators

1 The unary* operator meansindirection: the expression shall be a pointer, and the result is an lvalue refer-
ring to the object to which the expression points. If the type of the expression is“pointer toT,” the type of
the result is“T.”

2 The result of the unary& operator is a pointer to its operand. The operand shall be an lvalue or aqualified- 
id. In the first case, if the type of the expression is“T,” the type of the result is“pointer toT.” In particular, 
the address of an object of type“cv T” is “pointer tocv T,” with the same cv-qualifiers. For example, the
address of an object of type“const int ” has type“pointer toconst int .” For aqualified-id, if the 
member is a nonstatic member of classC of typeT, the type of the result is“pointer to member ofclass
Cof typeT.” For example: 

struct A { int i; }; 
struct B : A { }; 
... &B::i ... // has type "int A::*" 

For a static member of type“T”, the type is plain“pointer toT.” Note that a pointer to member is only
formed when an explicit& is used and its operand is aqualified-idnot enclosed in parentheses. For exam-
ple, the expression&(qualified-id) , where thequalified-id is enclosed in parentheses, does not form
an expression of type“pointer to member.” Neither doesqualified-id , and there is no implicit 



5.3.1 Unary operators DRAFT: 1 February 1995 Expressions 5– 13

conversion from the type“nonstatic member function” to the type“pointer to member function”, as there is
from an lvalue of function type to the type“pointer to function” (4.3). Nor is&unqualified-id a
pointer to member, even within the scope ofunqualified-id’s class.

Box 29

This section probably needs to take into accountconst and its relationship tomutable._ __________________________________________________________________________



_ __________________________________________________________________________




3 The address of an object of incomplete type can be taken, but only if the complete type of that object does
not have the address-of operator (operator&() ) overloaded; no diagnostic is required.

4 The address of an overloaded function (13) can be taken only in a context that uniquely determines which
version of the overloaded function is referred to (see 13.3). Note that since the context might determine
whether the operand is a static or nonstatic member function, the context can also affect whether the expres-
sion has type“pointer to function” or “pointer to member function.”

5 The operand of the unary+ operator shal have arithmetic, enumeration, or pointer type and the result is the
value of the argument. Integral promotion is performed on integral or enumeration operands. The type of
the result is the type of the promoted operand.

6 The operand of the unary- operator shall have arithmetic or enumeration type and the result is the negation
of its operand. Integral promotion is performed on integral or enumeration operands. The negative of an
unsigned quantity is computed by subtracting its value from 2n, wheren is the number of bits in the pro-
moted operand. The type of the result is the type of the promoted operand.

7 The operand of the logical negation operator! is converted tobool (4.13); its value istrue if the con-
verted operand isfalse andfalse otherwise. The type of the result isbool .

8 The operand of~ shall have integral or enumeration type; the result is the one’s complement of its operand.
Integral promotions are performed. The type of the result is the type of the promoted operand.

[expr.pre.incr] 5.3.2 Increment and decrement

1 The operand of prefix++ is modified by adding1, or set totrue if it is bool (this use is deprecated).
The operand shall be a modifiable lvalue. The type of the operand shall be an arithmetic type or a pointer
to a completely-defined object type. The value is the new value of the operand; it is an lvalue. Ifx is not
of typebool , the expression++x is equivalent tox+=1 . See the discussions of addition (5.7) and assign-
ment operators (5.17) for information on conversions.

2 The operand of prefix-- is decremented analogously to the prefix++ operator, except that the operand
shall not be of typebool .

[expr.sizeof] 5.3.3 Sizeof

1 Thesizeof operator yields the size, in bytes, of its operand. The operand is either an expression, which
is not evaluated, or a parenthesizedtype-id. Thesizeof operator shall not be applied to an expression
that has function or incomplete type, or to the parenthesized name of such a type, or to an lvalue that desig-
nates a bit-field. Abyte is unspecified by the language except in terms of the value ofsizeof ;
sizeof(char) is 1, butsizeof(bool) andsizeof(wchar_t) are implementation-defined.33)

2 When applied to a reference, the result is the size of the referenced object. When applied to a class, the
result is the number of bytes in an object of that class including any padding required for placing such
objects in an array. The size of any class or class object is greater than zero. When applied to an array, the
result is the total number of bytes in the array. This implies that the size of an array ofn elements isn times
the size of an element.

__________________
33)sizeof(bool) is not required to be1.
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3 Thesizeof operator can be applied to a pointer to a function, but shall not be applied directly to a func-
tion.

4 The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are
suppressed on the operand ofsizeof .

5 Types shall not be defined in asizeof expression. 

6 The result is a constant of typesize_t , an implementation-dependent unsigned integral type defined in
the standard header<cstddef> (18.1). 

[expr.new] 5.3.4 New

1 Thenew-expressionattempts to create an object of thetype-id(8.1) to which it is applied. This type shall
be a complete object or array type (1.5, 3.8).

new-expression:
:: opt new new-placementopt new-type-id new-initializeropt

:: opt new new-placementopt ( type-id ) new-initializeropt

new-placement:
( expression-list)

new-type-id:
type-specifier-seq new-declaratoropt

new-declarator:
* cv-qualifier-seqopt new-declaratoropt

:: opt nested-name-specifier* cv-qualifier-seqopt new-declaratoropt

direct-new-declarator

direct-new-declarator:
[ expression]
direct-new-declarator[ constant-expression]

new-initializer:
( expression-listopt )

Entities created by anew-expressionhave dynamic storage duration (3.7.3). That is, the lifetime of such an
entity is not restricted to the scope in which it is created. If the entity is an object, thenew-expression
returns a pointer to the object created. If it is an array, thenew-expressionreturns a pointer to the initial
element of the array.

2 Thenew-typein anew-expressionis the longest possible sequence ofnew-declarators. This prevents ambi-
guities between declarator operators&, * , [] , and their expression counterparts. For example,

new int*i; // syntax error: parsed as ‘(new int*) i’
// not as ‘(new int)*i’

The* is the pointer declarator and not the multiplication operator.

3 Parentheses shall not appear in anew-type-idused as the operand fornew. For example, 

4 new int(*[10])(); // error

is ill-formed because the binding is

(new int) (*[10])(); // error

The explicitly parenthesized version of thenew operator can be used to create objects of compound types
(3.8.2). For example,

new (int (*[10])());

allocates an array of10 pointers to functions (taking no argument and returningint ).
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5 Thetype-specifier-seqshall not contain class declarations, or enumeration declarations. 

6 When the allocated object is an array (that is, thedirect-new-declaratorsyntax is used or thenew-type-idor
type-id denotes an array type), thenew-expressionyields a pointer to the initial element (if any) of the
array. Thus, bothnew int andnew int[10] return anint* and the type ofnew int[i][10] is
int (*)[10] .

7 Everyconstant-expressionin a direct-new-declaratorshall be an integral constant expression (5.19) with a
strictly positive value. Theexpressionin a direct-new-declaratorshall be of integral type (3.8.1) with a
non-negative value. For example, ifn is a variable of typeint , thennew float[n][5] is well-formed
(becausen is theexpressionof a direct-new-declarator), but new float[5][n] is ill-formed (because
n is not aconstant-expression). If n is negative, the effect ofnew float[n][5] is undefined.

8 When the value of theexpressionin adirect-new-declaratoris zero, an array with no elements is allocated.
The pointer returned by thenew-expressionwill be non-null and distinct from the pointer to any other
object.

9 Storage for the object created by anew-expressionis obtained from the appropriateallocation function
(3.7.3.1). When the allocation function is called, the first argument will be amount of space requested
(which might be larger than the size of the object being created only if that object is an array).

10 An implementation provides default definitions of the global allocation functionsoperator new() for 
non-arrays (18.4.1.1) andoperator new[]() for arrays (18.4.1.2). A C + + program can provide alter-
native definitions of these functions (17.3.3.4), and/or class-specific versions (12.5).

11 Thenew-placementsyntax can be used to supply additional arguments to an allocation function. Overload-
ing resolution is done by assembling an argument list from the amount of space requested (the first argu-
ment) and the expressions in thenew-placementpart of thenew-expression, if used (the second and suc-
ceeding arguments).

12 For example:

— new T results in a call ofoperator new(sizeof(T)) ,

— new(2,f) T results in a call ofoperator new(sizeof(T),2,f) ,

— new T[5] results in a call ofoperator new[](sizeof(T)*5+x) , and 

— new(2,f) T[5] results in a call ofoperator new[](sizeof(T)*5+y,2,f) . Here,x andy 
are non-negative, implementation-defined values representing array allocation overhead. They might
vary from one use ofnew to another.

13 The return value from the allocation function, if non-null, will be assumed to point to a block of appropri-
ately aligned available storage of the requested size, and the object will be created in that block (but not
necessarily at the beginning of the block, if the object is an array).

14 A new-expressionfor a class calls one of the class constructors (12.1) to initialize i the object. An object of
a class can be created bynew only if suitable arguments are provided for the class’ constructors by the
new-initializer, or if the class has a default constructor.34) If no user-declared constructor is used and a
new-initializer is provided, the new-initializer shall be of the form(expression)or (); if the expression is 
present, it shall be of class type and is used to initialize the object.

15 No initializers can be specified for arrays. Arrays of objects of a class can be created by anew-expression
only if the class has a default constructor.35) In that case, the default constructor will be called for each ele-
ment of the array, in order of increasing address.

__________________
34)This means thatstruct s{}; s* ps = new s; is allowed on the grounds thatclass s has an implicitly-declared default 
constructor.
35)PODS structs have an implicitly-declared default constructor.
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16 Access and ambiguity control are done for both the allocation function and the constructor (12.1, 12.5).

17 The allocation function can indicate failure by throwing abad_alloc exception (15, 18.4.2.1). In this
case no initialization is done.

18 If the constructor throws an exception and thenew-expressiondoes not contain anew-placement, then the
deallocation function (3.7.3.2, 12.5) is used to free the memory in which the object was being constructed,
after which the exception continues to propagate in the context of thenew-expression.

19 The way the object was allocated determines how it is freed: if it is allocated by::new , then it is freed by
::delete , and if it is an array, it is freed bydelete[] or ::delete[] as appropriate.

Box 30

This is a correction to San Diego resolution 3.5, which on its face seems to require that whether to use
delete or delete[] must be decided purely on syntactic grounds. I believe the intent of the committee
was to make the form ofdelete correspond to the form of the correspondingnew._ ________________________________________________________________________________________






_ ________________________________________________________________________________________






20 Whether the allocation function is called before evaluating the constructor arguments, after evaluating the
constructor arguments but before entering the constructor, or by the constructor itself is unspecified. It is
also unspecified whether the arguments to a constructor are evaluated if the allocation function returns the
null pointer or throws an exception.

[expr.delete] 5.3.5 Delete

1 Thedelete-expressionoperator destroys a complete object (1.5) or array created by anew-expression.

delete-expression:
:: opt delete cast-expression
:: opt delete [ ] cast-expression

The first alternative is for non-array objects, and the second is for arrays. The result has typevoid .

2 In either alternative, if the value of the operand ofdelete is the null pointer the operation has no effect.
Otherwise, in the first alternative (delete object), the value of the operand ofdelete shall be a pointer to a
non-array object created by anew-expressionwithout anew-placementspecification, or a pointer to a sub-
object (1.5) representing a base class of such an object (10).

Box 31

Issue: ... or a class with an unambiguous conversion to such a pointer type ..._ _______________________________________________________________



_ _______________________________________________________________




In the second alternative (delete array), the value of the operand ofdelete shall be a pointer to an array
created by anew-expressionwithout anew-placementspecification.

3 In the first alternative (delete object), if the static type of the operand is different from its dynamic type, the
static type shall have a virtual destructor or the result is undefined. In the second alternative (delete array)
if the dynamic type of the object to be deleted is a class that has a destructor and its static type is different
from its dynamic type, the result is undefined.

Box 32

This should probably be tightened to require that the static and dynamic types match, period._ ____________________________________________________________________________



_ ____________________________________________________________________________




4 The deletion of an object might change its value. If the expression denoting the object in adelete- 
expressionis a modifiable lvalue, any attempt to access its value after the deletion is undefined (3.7.3.2).

5 If the class of the object being deleted is incomplete at the point of deletion and the class has a destructor or∗
an allocation function or a deallocation function, the result is undefined.
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6 The delete-expressionwill invoke the destructor (if any) for the object or the elements of the array being
deleted. In the case of an array, the elements will be destroyed in order of decreasing address (that is, in
reverse order of construction).

7 To free the storage pointed to, thedelete-expressionwill call a deallocation function(3.7.3.2).

8 An implementation provides default definitions of the global deallocation functions
operator delete() for non-arrays (18.4.1.1) andoperator delete[]() for arrays (18.4.1.2). 
A C + + program can provide alternative definitions of these functions (17.3.3.4), and/or class-specific ver-
sions (12.5).

9 Access and ambiguity control are done for both the deallocation function and the destructor (12.4, 12.5).

[expr.cast] 5.4 Explicit type conversion (cast notation)

1 The result of the expression(T) cast-expressionis of type T. An explicit type conversion can be
expressed using functional notation (5.2.3), a type conversion operator (dynamic_cast,
static_cast, reinterpret_cast, const_cast ), or thecastnotation.

cast-expression:
unary-expression
( type-id ) cast-expression

2 Types shall not be defined in casts. 

3 Any type conversion not mentioned below and not explicitly defined by the user (12.3) is ill-formed.

4 The conversions performed bystatic_cast (5.2.8), reinterpret_cast (5.2.9), const_cast
(5.2.10), or any sequence thereof, can be performed using the cast notation of explicit type conversion. The
same semantic restrictions and behaviors apply. If a given conversion can be performed using either
static_cast or reinterpret_cast , thestatic_cast interpretation is used.

5 In addition to those conversions, a pointer to an object of a derived class (10) can be explicitly converted to
a pointer to any of its base classes regardless of accessibility restrictions (11.2), provided the conversion is
unambiguous (10.2). The resulting pointer will refer to the contained object of the base class.

[expr.mptr.oper] 5.5 Pointer-to-member operators

1 The pointer-to-member operators->* and.* group left-to-right.

pm-expression:
cast-expression
pm-expression.* cast-expression
pm-expression->* cast-expression

2 The binary operator.* binds its second operand, which shall be of type“pointer to member ofT” to its 
first operand, which shall be of classT or of a class of whichT is an unambiguous and accessible base
class. The result is an object or a function of the type specified by the second operand.

3 The binary operator->* binds its second operand, which shall be of type“pointer to member ofT” to its 
first operand, which shall be of type“pointer toT” or “pointer to a class of whichT is an unambiguous and
accessible base class.” The result is an object or a function of the type specified by the second operand.

4 If the result of.* or ->* is a function, then that result can be used only as the operand for the function
call operator() . For example,

(ptr_to_obj->*ptr_to_mfct)(10);

calls the member function denoted byptr_to_mfct for the object pointed to byptr_to_obj . The
result of a.* expression is an lvalue only if its first operand is an lvalue and its second operand is a
pointer to data member. The result of an->* expression is an lvalue only if its second operand is a pointer
to data member. If the second operand is the null pointer to member value (4.11), the result is undefined.
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[expr.mul] 5.6 Multiplicative operators

1 The multiplicative operators* , / , and%group left-to-right.

multiplicative-expression:
pm-expression
multiplicative-expression* pm-expression
multiplicative-expression/ pm-expression
multiplicative-expression% pm-expression

2 The operands of* and/ shall have arithmetic type; the operands of%shall have integral type. The usual
arithmetic conversions are performed on the operands and determine the type of the result.

3 The binary* operator indicates multiplication.

4 The binary/ operator yields the quotient, and the binary%operator yields the remainder from the division
of the first expression by the second. If the second operand of/ or %is zero the result is undefined; other-
wise(a/b)*b + a%b is equal toa. If both operands are nonnegative then the remainder is nonnegative;
if not, the sign of the remainder is implementation dependent.

[expr.add] 5.7 Additive operators

1 The additive operators+ and - group left-to-right. The usual arithmetic conversions are performed for
operands of arithmetic type.

additive-expression:
multiplicative-expression
additive-expression+ multiplicative-expression
additive-expression- multiplicative-expression

For addition, either both operands shall have arithmetic type, or one operand shall be a pointer to a com-
pletely defined object type and the other shall have integral type.

2 For subtraction, one of the following shall hold:

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of the same completely defined object
type; or

— the left operand is a pointer to a completely defined object type and the right operand has integral type.

3 If both operands have arithmetic type, the usual arithmetic conversions are performed on them. The result
of the binary+ operator is the sum of the operands. The result of the binary- operator is the difference
resulting from the subtraction of the second operand from the first.

4 For the purposes of these operators, a pointer to a nonarray object behaves the same as a pointer to the first
element of an array of length one with the type of the object as its element type.

5 When an expression that has integral type is added to or subtracted from a pointer, the result has the type of
the pointer operand. If the pointer operand points to an element of an array object, and the array is large
enough, the result points to an element offset from the original element such that the difference of the sub-
scripts of the resulting and original array elements equals the integral expression. In other words, if the
expressionP points to thei-th element of an array object, the expressions(P)+N (equivalently,N+(P) )
and (P)-N (whereN has the valuen) point to, respectively, thei+n-th andi– n-th elements of the array
object, provided they exist. Moreover, if the expressionP points to the last element of an array object, the
expression(P)+1 points one past the last element of the array object, and if the expressionQ points one
past the last element of an array object, the expression(Q)-1 points to the last element of the array object.
If both the pointer operand and the result point to elements of the same array object, or one past the last ele-
ment of the array object, the evaluation shall not produce an overflow; otherwise, the behavior is undefined.
If the result is used as an operand of the unary* operator, the behavior is undefined unless both the pointer
operand and the result point to elements of the same array object, or the pointer operand points one past the
last element of an array object and the result points to an element of the same array object.
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6 When two pointers to elements of the same array object are subtracted, the result is the difference of the
subscripts of the two array elements. The type of the result is an implementation-defined signed integral
type; this type shall be the same type that is defined asptrdiff_t in the<cstddef> header (18.1). As 
with any other arithmetic overflow, if the result does not fit in the space provided, the behavior is unde-
fined. In other words, if the expressionsP and Q point to, respectively, thei-th andj-th elements of an
array object, the expression(P)-(Q) has the valuei– j provided the value fits in an object of type
ptrdiff_t . Moreover, if the expressionP points either to an element of an array object or one past the
last element of an array object, and the expressionQpoints to the last element of the same array object, the
expression((Q)+1)-(P) has the same value as((Q)-(P))+1 and as-((P)-((Q)+1)) , and has
the value zero if the expressionP points one past the last element of the array object, even though the
expression(Q)+1 does not point to an element of the array object. Unless both pointers point to elements
of the same array object, or one past the last element of the array object, the behavior is undefined.36)

[expr.shift] 5.8 Shift operators

1 The shift operators<< and>> group left-to-right.

shift-expression:
additive-expression
shift-expression<< additive-expression
shift-expression>> additive-expression

The operands shall be of integral type and integral promotions are performed. The type of the result is that
of the promoted left operand. The result is undefined if the right operand is negative, or greater than or
equal to the length in bits of the promoted left operand. The value ofE1 << E2 is E1 (interpreted as a bit
pattern) left-shiftedE2 bits; vacated bits are zero-filled. The value ofE1 >> E2 is E1 right-shiftedE2 bit
positions. The right shift is guaranteed to be logical (zero-fill) ifE1 has an unsigned type or if it has a non-
negative value; otherwise the result is implementation dependent.

[expr.rel] 5.9 Relational operators

1 The relational operators group left-to-right, but this fact is not very useful;a<b<c means(a<b)<c and
not (a<b)&&(b<c) .

relational-expression:
shift-expression
relational-expression< shift-expression
relational-expression> shift-expression
relational-expression<= shift-expression
relational-expression>= shift-expression

The operands shall have arithmetic or pointer type. The operators< (less than),> (greater than),<= (less 
than or equal to), and>= (greater than or equal to) all yieldfalse or true . The type of the result is
bool .

2 The usual arithmetic conversions are performed on arithmetic operands. Pointer conversions are performed
on pointer operands to bring them to the same type, which shall be a qualified or unqualified version of the
type of one of the operands. This implies that any pointer can be compared to an integral constant expres-
sion evaluating to zero and any pointer can be compared to a pointer of qualified or unqualified type
void* (in the latter case the pointer is first converted tovoid* ). Pointers to objects or functions of the
same type (after pointer conversions) can be compared; the result depends on the relative positions of the
pointed-to objects or functions in the address space.
__________________
36) Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In this scheme the integral
expression added to or subtracted from the converted pointer is first multiplied by the size of the object originally pointed to, and the
resulting pointer is converted back to the original type. For pointer subtraction, the result of the difference between the character point-
ers is similarly divided by the size of the object originally pointed to.

7 When viewed in this way, an implementation need only provide one extra byte (which might overlap another object in the program)
just after the end of the object in order to satisfy the“one past the last element” requirements.
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3 If two pointers of the same type point to the same object or function, or both point one past the end of the
same array, or are both null, they compare equal. If two pointers of the same type point to different objects
or functions, or only one of them is null, they compare unequal. If two pointers point to nonstatic data
members of the same object, the pointer to the later declared member compares higher provided the two
members not separated by anaccess-specifierlabel (11.1) and provided their class is not a union. If two
pointers point to nonstatic members of the same object separated by anaccess-specifierlabel (11.1) the
result is unspecified. If two pointers point to data members of the same union, they compare equal (after
conversion tovoid* , if necessary). If two pointers point to elements of the same array or one beyond the
end of the array, the pointer to the object with the higher subscript compares higher. Other pointer compar-
isons are implementation-defined.

[expr.eq] 5.10 Equality operators

1 equality-expression:
relational-expression
equality-expression== relational-expression
equality-expression!= relational-expression

The== (equal to) and the!= (not equal to) operators have the same semantic restrictions, conversions, and
result type as the relational operators except for their lower precedence and truth-value result. (Thusa<b
== c<d is true whenevera<b andc<d have the same truth-value.)

2 In addition, pointers to members of the same type can be compared. Pointer to member conversions (4.11)
are performed. A pointer to member can be compared to an integral constant expression that evaluates to
zero. If one operand is a pointer to a virtual member function and the other is not the null pointer to mem-
ber value, the result is unspecified.

[expr.bit.and] 5.11 BitwiseAND operator

1 and-expression:
equality-expression
and-expression& equality-expression

The usual arithmetic conversions are performed; the result is the bitwiseAND function of the operands. The
operator applies only to integral operands.

[expr.xor] 5.12 Bitwise exclusiveOR operator

1 exclusive-or-expression:
and-expression
exclusive-or-expression̂ and-expression

The usual arithmetic conversions are performed; the result is the bitwise exclusiveOR function of the
operands. The operator applies only to integral operands.

[expr.or] 5.13 Bitwise inclusiveOR operator

1 inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression| exclusive-or-expression

The usual arithmetic conversions are performed; the result is the bitwise inclusiveOR function of its
operands. The operator applies only to integral operands.
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[expr.log.and] 5.14 LogicalAND operator

1 logical-and-expression:
inclusive-or-expression
logical-and-expression&& inclusive-or-expression

The&& operator groups left-to-right. The operands are both converted to typebool (4.13). The result is
true if both operands aretrue andfalse otherwise. Unlike&, && guarantees left-to-right evaluation:
the second operand is not evaluated if the first operand isfalse .

2 The result is abool . All side effects of the first expression except for destruction of temporaries (12.2)
happen before the second expression is evaluated.

[expr.log.or] 5.15 LogicalOR operator

1 logical-or-expression:
logical-and-expression
logical-or-expression|| logical-and-expression

The || operator groups left-to-right. The operands are both converted tobool (4.13). It returnstrue if
either of its operands istrue , and false otherwise. Unlike| , || guarantees left-to-right evaluation;
moreover, the second operand is not evaluated if the first operand evaluates totrue .

2 The result is abool . All side effects of the first expression except for destruction of temporaries (12.2)
happen before the second expression is evaluated.

[expr.cond] 5.16 Conditional operator

1 conditional-expression:
logical-or-expression
logical-or-expression? expression: assignment-expression

Conditional expressions group right-to-left. The first expression is converted tobool (4.13). It is evalu-
ated and if it istrue , the result of the conditional expression is the value of the second expression, other-
wise that of the third expression. All side effects of the first expression except for destruction of tempo-
raries (12.2) happen before the second or third expression is evaluated.

2 If either the second or third expression is athrow-expression(15.1), the result is of the type of the other.

3 If both the second and the third expressions are of arithmetic type, then if they are of the same type the
result is of that type; otherwise the usual arithmetic conversions are performed to bring them to a common
type. Otherwise, if both the second and the third expressions are either a pointer or an integral constant
expression that evaluates to zero, pointer conversions (4.10) are performed to bring them to a common type,
which shall be a qualified or unqualified version of the type of either the second or the third expression.
Otherwise, if both the second and the third expressions are either a pointer to member or an integral con-
stant expression that evaluates to zero, pointer to member conversions (4.11) are performed to bring them to
a common type37) which shall be a qualified or unqualified version of the type of either the second or the
third expression. Otherwise, if both the second and the third expressions are lvalues of related class types,
they are converted to a common type as if by a cast to a reference to the common type (5.2.8). Otherwise,
if both the second and the third expressions are of the same classT, the common type isT. Otherwise, if
both the second and the third expressions have type“cv void ”, the common type is“cv void .” Otherwise
the expression is ill formed. The result has the common type; only one of the second and third expressions
is evaluated. The result is an lvalue if the second and the third operands are of the same type and both are
lvalues.

__________________
37)This is one instance in which the“composite type”, as described in the C Standard, is still employed in C + +.
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[expr.ass] 5.17 Assignment operators

1 There are several assignment operators, all of which group right-to-left. All require a modifiable lvalue as
their left operand, and the type of an assignment expression is that of its left operand. The result of the
assignment operation is the value stored in the left operand after the assignment has taken place; the result
is an lvalue.

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression
throw-expression

assignment-operator:one of
= *= /= %= += -= >>= <<= &= ^= |=

2 In simple assignment (=), the value of the expression replaces that of the object referred to by the left
operand.

3 If the left operand is not of class type, the expression is converted to the unqualified type of the left operand
using standard conversions (4) and/or user-defined conversions (12.3), as necessary.

4 Assignment to objects of a class (9)X is defined by the functionX::operator=() (13.4.3). Unless the
user defines anX::operator=() , the default version is used for assignment (12.8). This implies that an
object of a class derived fromX (directly or indirectly) by unambiguous public derivation (10) can be
assigned to anX.

5 For class objects, assignment is not in general the same as initialization (8.5, 12.1, 12.6, 12.8).

6 When the left operand of an assignment operator denotes a reference toT, the operation assigns to the
object of typeT denoted by the reference.

7 The behavior of an expression of the formE1 op= E2 is equivalent toE1 = E1 op E2 except thatE1 is
evaluated only once.E1 shall not havebool type. In += and -= , E1 can be a pointer to a possibly-
qualified completely defined object type, in which caseE2 shall have integral type and is converted as
explained in 5.7; In all other cases,E1 andE2 shall have arithmetic type.

8 See 15.1 for throw expressions.

[expr.comma] 5.18 Comma operator

1 The comma operator groups left-to-right.

expression:
assignment-expression
expression, assignment-expression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left expression is
discarded. All side effects of the left expression are performed before the evaluation of the right expres-
sion. The type and value of the result are the type and value of the right operand; the result is an lvalue if
its right operand is.

2 In contexts where comma is given a special meaning, for example, in lists of arguments to functions (5.2.2)
and lists of initializers (8.5), the comma operator as described in this clause can appear only in parentheses;
for example,

f(a, (t=3, t+2), c);

has three arguments, the second of which has the value5.
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[expr.const] 5.19 Constant expressions

1 In several places, C + + requires expressions that evaluate to an integral constant: as array bounds (8.3.4), as
case expressions (6.4.2), as bit-field lengths (9.7), and as enumerator initializers (7.2).

constant-expression:
conditional-expression

An integral constant-expressioncan involve only literals (2.9), enumerators,const values of integral
types initialized with constant expressions (8.5), andsizeof expressions. Floating constants (2.9.3) can
appear only if they are cast to integral types. Only type conversions to integral types can be used. In par-
ticular, except insizeof expressions, functions, class objects, pointers, or references shall not be used,
and assignment, increment, decrement, function-call, or comma operators shall not be used. 

2 Other expressions are consideredconstant-expressions only for the purpose of non-local static object
initialization (3.6.2). Such constant expressions shall evaluate to one of the following: 

— a null pointer constant (4.10), 

— a null member pointer value (4.11), 

— an arithmetic constant expression, 

— an address constant, 

— an address constant for an object type plus or minus an integral constant expression, or 

— a pointer to member constant expression.

3 An arithmetic constant expressionshall have arithmetic type and shall only have operands that are integer
constants (2.9.1), floating constants (2.9.3), enumerators, character constants (2.9.2) andsizeof expres-
sions (5.3.3). Casts operators in an arithmetic constant expression shall only convert arithmetic types to
arithmetic types, except as part of an operand to thesizeof operator.

4 An address constantis a pointer to an lvalue designating an object of static storage duration or a function.
The pointer shall be created explicitly, using the unary& operator, or implicitly using an expression of array
(4.2) or function (4.3) type. The subscripting operator[] and the class member access. and -> opera-
tors, the& and * unary operators, and pointer casts (exceptdynamic_cast s, 5.2.6) can be used in the
creation of an address constant, but the value of an object shall not be accessed by the use of these opera-
tors. An expression that designates the address of a member or base class of a non-POD class object (9) is
never an address constant expression (12.7). Function calls shall not be used in an address constant expres-
sion, even if the function isinline and has a reference return type.

5 A pointer to member constant expressionshall be created using the unary& operator applied to aqualified-
id operand (5.3.1).
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6 Statements [stmt.stmt]
_ _____________________________________________________________________________________________________________________________________________________________________________ ___________________________________________

1 Except as indicated, statements are executed in sequence.

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block

[stmt.label] 6.1 Labeled statement

1 A statement can be labeled.

labeled-statement:
identifier : statement
case constant-expression: statement
default : statement

An identifier label declares the identifier. The only use of an identifier label is as the target of agoto . The
scope of a label is the function in which it appears. Labels cannot be redeclared within a function. A label
can be used in agoto statement before its definition. Labels have their own name space and do not inter-
fere with other identifiers.

2 Case labels and default labels can occur only in switch statements.

[stmt.expr] 6.2 Expression statement

1 Most statements are expression statements, which have the form

expression-statement:
expressionopt ;

Usually expression statements are assignments or function calls. All side effects from an expression state-
ment are completed before the next statement is executed. An expression statement with the expression
missing is called a null statement; it is useful to carry a label just before the} of a compound statement and
to supply a null body to an iteration statement such aswhile (6.5.1).

[stmt.block] 6.3 Compound statement or block

1 So that several statements can be used where one is expected, the compound statement (also, and equiva-
lently, called“block”) is provided.

compound-statement:
{ statement-seqopt }
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statement-seq:
statement
statement-seq statement

A compound statement defines a local scope (3.3).

2 Note that a declaration is astatement(6.7).

[stmt.select] 6.4 Selection statements

1 Selection statements choose one of several flows of control.

selection-statement:
if ( condition ) statement
if ( condition ) statementelse statement
switch ( condition ) statement

condition:
expression
type-specifier-seq declarator= assignment-expression

Thestatementin a selection-statement(both statements, in theelse form of theif statement) implicitly
defines a local scope (3.3). That is, if the statement in a selection-statement is a single statement and not a
compound-statement,it is as if it was rewritten to be a compound-statement containing the original state-
ment. For example,

if (x)
int i;

can be equivalently rewritten as 

if (x) {
int i;

}

Thus after theif statement,i is no longer in scope.

2 The rules forconditions apply both toselection-statements and to thefor and while statements (6.5).
Thedeclaratorshall not specify a function or an array. Thetype-specifiershall not containtypedef and 
shall not declare a new class or enumeration.

3 A name introduced by a declaration in acondition is in scope from its point of declaration until the end of
the statements controlled by the condition. The value of aconditionthat is an initialized declaration is the
value of the initialized variable; the value of aconditionthat is an expression is the value of the expression.
The value of the condition will be referred to as simply“the condition” where the usage is unambiguous.

4 A variable, constant, etc. in the outermost block of a statement controlled by a condition shall not have the
same name as a variable, constant, etc. declared in the condition.

5 If a conditioncan be syntactically resolved as either an expression or the declaration of a local name, it is
interpreted as a declaration.

[stmt.if] 6.4.1 Theif statement

1 The condition is converted to typebool ; if that is not possible, the program is ill-formed. If it yields
true the first substatement is executed. Ifelse is used and the condition yieldsfalse , the second sub-
statement is executed. Theelse ambiguity is resolved by connecting anelse with the last encountered
else -lessif .
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[stmt.switch] 6.4.2 Theswitch statement

1 Theswitch statement causes control to be transferred to one of several statements depending on the value
of a condition.

2 The condition shall be of integral type or of a class type for which an unambiguous conversion to integral
type exists (12.3). Integral promotion is performed. Any statement within the statement can be labeled
with one or more case labels as follows:

case constant-expression:

where theconstant-expression(5.19) is converted to the promoted type of the switch condition. No two of
the case constants in the same switch shall have the same value. 

3 There shall be at most one label of the form 

default :

within aswitch statement.

4 Switch statements can be nested; acase or default label is associated with the smallest switch enclos-
ing it.

5 When theswitch statement is executed, its condition is evaluated and compared with each case constant.
If one of the case constants is equal to the value of the condition, control is passed to the statement follow-
ing the matched case label. If no case constant matches the condition, and if there is adefault label,
control passes to the statement labeled by the default label. If no case matches and if there is nodefault
then none of the statements in the switch is executed.

6 case and default labels in themselves do not alter the flow of control, which continues unimpeded
across such labels. To exit from a switch, seebreak , 6.6.1.

7 Usually, the statement that is the subject of a switch is compound. Declarations can appear in thestatement 
of a switch-statement.

[stmt.iter] 6.5 Iteration statements

1 Iteration statements specify looping.

iteration-statement:
while ( condition ) statement
do statement while ( expression) ;
for ( for-init-statement conditionopt ; expressionopt ) statement

for-init-statement:
expression-statement
declaration-statement

2 Note that afor-init-statementends with a semicolon.

3 The statementin an iteration-statementimplicitly defines a local scope (3.3) which is entered and exited
each time through the loop. That is, if the statement in an iteration-statement is a single statement and not a
compound-statement,it is as if it was rewritten to be a compound-statement containing the original state-
ment. For example,

while (--x >= 0)
int i;

can be equivalently rewritten as 

while (--x >= 0) {
int i;

}

Thus after thewhile statement,i is no longer in scope.
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4 See 6.4 for the rules onconditions.

[stmt.while] 6.5.1 Thewhile statement

1 In thewhile statement the substatement is executed repeatedly until the value of the condition becomes
false . The test takes place before each execution of the statement.

2 The condition is converted tobool (4.13).

[stmt.do] 6.5.2 Thedo statement

1 In the do statement the substatement is executed repeatedly until the value of the condition becomes
false . The test takes place after each execution of the statement.

2 The condition is converted tobool (4.13).

[stmt.for] 6.5.3 Thefor statement

1 Thefor statement

for ( for-init-statement conditionopt ; expressionopt ) statement

is equivalent to

for-init-statement
while ( condition ) {

statement
expression;

}

except that acontinue in statement(not enclosed in another iteration statement) will executeexpression
before re-evaluatingcondition. Thus the first statement specifies initialization for the loop; the condition
specifies a test, made before each iteration, such that the loop is exited when the condition becomes
false ; the expression often specifies incrementing that is done after each iteration. The condition is con-
verted tobool (4.13).

2 Either or both of the condition and the expression can be dropped. A missingconditionmakes the implied 
while clause equivalent towhile(true) .

3 If the for-init-statementis a declaration, the scope of the name(s) declared extends to the end of thefor-
statement. For example:

int i = 42;
int a[10];

for (int i = 0; i < 10; i++)
a[i] = i;

int j = i; // j = 42

[stmt.jump] 6.6 Jump statements

1 Jump statements unconditionally transfer control.

jump-statement:
break ;
continue ;
return expressionopt ;
goto identifier ;

2 On exit from a scope (however accomplished), destructors (12.4) are called for all constructed objects with
automatic storage duration (3.7.2) (named objects or temporaries) that are declared in that scope, in the
reverse order of their declaration. Transfer out of a loop, out of a block, or back past an initialized variable
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with automatic storage duration involves the destruction of variables with automatic storage duration that
are in scope at the point transferred from but not at the point transferred to. (See 6.7 for transfers into
blocks). However, the program can be terminated (by callingexit() or abort() (18.3), for example) 
without destroying class objects with automatic storage duration.

[stmt.break] 6.6.1 Thebreak statement

1 Thebreak statement shall occur only in aniteration-statementor aswitch statement and causes termi-
nation of the smallest enclosingiteration-statementor switch statement; control passes to the statement
following the terminated statement, if any.

[stmt.cont] 6.6.2 Thecontinue statement

1 Thecontinue statement shall occur only in aniteration-statementand causes control to pass to the loop-
continuation portion of the smallest enclosingiteration-statement, that is, to the end of the loop. More pre-
cisely, in each of the statements

while (foo) { do { for (;;) {
// ... // ... // ...

contin: ; contin: ; contin: ;
} } while (foo); }

acontinue not contained in an enclosed iteration statement is equivalent togoto contin .

[stmt.return] 6.6.3 Thereturn statement

1 A function returns to its caller by thereturn statement.

2 A return statement without an expression can be used only in functions that do not return a value, that is, a
function with the return value typevoid , a constructor (12.1), or a destructor (12.4). A return statement
with an expression can be used only in functions returning a value; the value of the expression is returned to
the caller of the function. If required, the expression is converted, as in an initialization (8.5), to the return
type of the function in which it appears. A return statement can involve the construction and copy of a tem-
porary object (12.2). Flowing off the end of a function is equivalent to areturn with no value; this
results in undefined behavior in a value-returning function.

[stmt.goto] 6.6.4 Thegoto statement

1 Thegoto statement unconditionally transfers control to the statement labeled by the identifier. The identi-
fier shall be a label (6.1) located in the current function.

[stmt.dcl] 6.7 Declaration statement

1 A declaration statement introduces one or more new identifiers into a block; it has the form

declaration-statement:
declaration

If an identifier introduced by a declaration was previously declared in an outer block, the outer declaration
is hidden for the remainder of the block, after which it resumes its force.

2 Variables with automatic storage duration (3.7.2) are initialized each time theirdeclaration-statementis
executed. Variables with automatic storage duration declared in the block are destroyed on exit from the
block (6.6).

3 It is possible to transfer into a block, but not in a way that bypasses declarations with initialization. A pro-
gram that jumps from a point where a local variable with automatic storage duration is not in scope to a
point where it is in scope is ill-formed unless the variable has pointer or arithmetic type or is an aggregate
(8.5.1), and is declared without aninitializer (8.5). For example,
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void f()
{

// ...
goto lx; // ill-formed: jump into scope of ‘a’
// ...

ly:
X a = 1;
// ...

lx:
goto ly; // ok, jump implies destructor

// call for ‘a’ followed by construction
// again immediately following label ly

}

4 The default initialization to zero (8.5) of all local objects with static storage duration (3.7.1) is performed
before any other initialization takes place. A local object with static storage duration (3.7.1) initialized with
a constant-expressionis initialized before its block is first entered. A local object with static storage dura-
tion not initialized with aconstant-expressionis initialized the first time control passes completely through
its declaration. If the initialization exits by throwing an exception, the initialization is not complete, so it
will be tried again the next time the function is called.

5 The destructor for a local object with static storage duration will be executed if and only if the variable was
constructed. The destructor is called either immediately before or as part of the calls of theatexit() 
functions (18.3). Exactly when is unspecified.

[stmt.ambig] 6.8 Ambiguity resolution

1 There is an ambiguity in the grammar involvingexpression-statements anddeclarations: An expression-
statementwith a function-style explicit type conversion (5.2.3) as its leftmost subexpression can be indis-
tinguishable from adeclarationwhere the firstdeclaratorstarts with a( . In those cases thestatementis a
declaration.

2 To disambiguate, the wholestatementmight have to be examined to determine if it is anexpression- 
statementor a declaration. This disambiguates many examples. For example, assumingT is a simple-
type-specifier(7.1.5),

T(a)->m = 7; // expression-statement
T(a)++; // expression-statement
T(a,5)<<c; // expression-statement

T(*d)(int); // declaration
T(e)[]; // declaration
T(f) = { 1, 2 }; // declaration
T(*g)(double(3)); // declaration

In the last example above,g, which is a pointer toT, is initialized todouble(3) . This is of course ill-
formed for semantic reasons, but that does not affect the syntactic analysis.

3 The remaining cases aredeclarations. For example,

T(a); // declaration
T(*b)(); // declaration
T(c)=7; // declaration
T(d),e,f=3; // declaration
T(g)(h,2); // declaration

4 The disambiguation is purely syntactic; that is, the meaning of the names, beyond whether they aretype-ids
or not, is not used in the disambiguation.
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5 A slightly different ambiguity betweenexpression-statements anddeclarations is resolved by requiring a
type-idfor function declarations within a block (6.3). For example,

void g()
{

int f(); // declaration
int a; // declaration
f(); // expression-statement
a; // expression-statement

}
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7 Declarations [dcl.dcl]
_ _____________________________________________________________________________________________________________________________________________________________________________ ___________________________________________

1 A declaration introduces one or more names into a program and specifies how those names are to be inter-
preted. Declarations have the form

declaration:
decl-specifier-seqopt init-declarator-listopt ;
function-definition
template-declaration
asm-definition
linkage-specification
namespace-definition
namespace-alias-definition
using-declaration
using-directive

asm-definitions are described in 7.4, andlinkage-specifications are described in 7.5.Function-definitions
are described in 8.4 andtemplate-declarations are described in_temp.dcls_. Namespace-definitions are
described in 7.3.1,using-declarations are described in 7.3.3 andusing-directives are described in 7.3.4.
The description of the general form of declaration

decl-specifier-seqopt init-declarator-listopt ;

is divided into two parts:decl-specifiers, the components of adecl-specifier-seq, are described in 7.1 and
declarators, the components of aninit-declarator-list, are described in 8.

2 A declaration occurs in a scope (3.3); the scope rules are summarized in 3.4. A declaration that declares a
function or defines a class, namespace, template, or function also has one or more scopes nested within it.
These nested scopes, in turn, can have declarations nested within them. Unless otherwise stated, utterances
in this chapter about components in, of, or contained by a declaration or subcomponent thereof refer only to
those components of the declaration that arenot nested within scopes nested within the declaration.

3 In the general form of declaration, the optionalinit-declarator-list can be omitted only when declaring a
class (9), enumeration (7.2) or namespace (7.3.1), that is, when thedecl-specifier-seqcontains either a
class-specifier, an elaborated-type-specifierwith a class-key(9.1), anenum-specifier, or a namespace-
definition. In these cases and whenever aclass-specifier, enum-specifier, or namespace-definitionis pre-
sent in thedecl-specifier-seq, the identifiers in these specifiers are among the names being declared by the
declaration (asclass-names, enum-names, enumerators, ornamespace-name, depending on the syntax).

4 Each init-declarator in the init-declarator-list contains exactly onedeclarator-id, which is the name
declared by thatinit-declaratorand hence one of the names declared by the declaration. Thetype-specifiers
(7.1.5) in thedecl-specifier-seqand the recursivedeclaratorstructure of theinit-declaratordescribe a type
(8.3), which is then associated with the name being declared by theinit-declarator.

5 If the decl-specifier-seqcontains thetypedef specifier, the declaration is called atypedef declarationand
the name of eachinit-declarator is declared to be atypedef-name, synonymous with its associated type
(7.1.3). If thedecl-specifier-seqcontains notypedef specifier, the declaration is called afunction
declarationif the type associated with the name is a function type (8.3.5) and anobject declarationother-
wise.



7– 2 Declarations DRAFT: 1 February 1995 7 Declarations

6 Syntactic components beyond those found in the general form of declaration are added to a function decla-
ration to make afunction-definition. An object declaration, however, is also a definition unless it contains
theextern specifier and has no initializer (3.1). A definition causes the appropriate amount of storage to
be reserved and any appropriate initialization (8.5) to be done.

7 Only in function-definitions(8.4) and in function declarations for constructors, destructors, and type con-
versions can thedecl-specifier-seqbe omitted.

8 Generally speaking, the names declared by a declaration are introduced into the scope in which the declara-
tion occurs. The presence of afriend specifier, certain uses of theelaborated-type-specifier,andusing-
directives alter this general behavior, however (see 11.4, 9.1 and 7.3.4)

[dcl.spec] 7.1 Specifiers

1 The specifiers that can be used in a declaration are

decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend
typedef

decl-specifier-seq:
decl-specifier-seqopt decl-specifier

2 The longest sequence ofdecl-specifiers that could possibly be a type name is taken as thedecl-specifier-seq
of adeclaration. The sequence shall be self-consistent as described below. For example, 

typedef char* Pc;
static Pc; // error: name missing

Here, the declarationstatic Pc is ill-formed because no name was specified for the static variable of
type Pc. To get a variable of typeint calledPc, the type-specifierint shall be present to indicate that
the typedef-namePc is the name being (re)declared, rather than being part of thedecl-specifiersequence.
For example,

void f(const Pc); // void f(char* const) ( not const char*)
void g(const int Pc); // void g(const int)

3 Note that sincesigned , unsigned , long , andshort by default implyint , a type-nameappearing
after one of those specifiers is treated as the name being (re)declared. For example,

void h(unsigned Pc); // void h(unsigned int)
void k(unsigned int Pc); // void k(unsigned int)

[dcl.stc] 7.1.1 Storage class specifiers

1 The storage class specifiers are

storage-class-specifier:
auto
register
static
extern
mutable

At most onestorage-class-specifiershall appear in a givendecl-specifier-seq. If a storage-class-specifier
appears in adecl-specifier-seq, there can be notypedef specifier in the samedecl-specifier-seqand the
init-declarator-list of the declaration shall not be empty. Thestorage-class-specifierapplies to the name
declared by eachinit-declarator in the list and not to any names declared by other specifiers.



7.1.1 Storage class specifiers DRAFT: 1 February 1995 Declarations 7– 3

2 Theauto or register specifiers can be applied only to names of objects declared in a block (6.3) or to
function parameters (8.4). They specify that the named object has automatic storage duration (3.7.2). An
object declared without astorage-class-specifierat block scope or declared as a function parameter has
automatic storage duration by default. Hence, theauto specifier is almost always redundant and not often
used; one use ofauto is to distinguish adeclaration-statementfrom anexpression-statement(6.2) explic-
itly.

3 A register specifier has the same semantics as anauto specifier together with a hint to the compiler
that the object so declared will be heavily used. The hint can be ignored and in most implementations it
will be ignored if the address of the object is taken.

4 The static specifier can be applied only to names of objects and functions and to anonymous unions
(9.6). There can be nostatic function declarations within a block, nor anystatic function parame-
ters. A static specifier used in the declaration of an object declares the object to have static storage
duration (3.7.1). Astatic specifier can be used in the declaration of class members and its effect is
described in 9.5. A name declared with astatic specifier in a scope other than class scope (3.3.5) has
internal linkage. For a nonmember function, aninline specifier is equivalent to astatic specifier for
linkage purposes (3.5) unless the inline declaration matches a previous declaration of the function, in which
case the function name retains the linkage of the previous declaration.

5 The extern specifier can be applied only to the names of objects and functions. Theextern specifier
cannot be used in the declaration of class members or function parameters. A name declared in namespace
scope with theextern specifier has external linkage unless the declaration matches a previous declara-
tion, in which case the name retains the linkage of the previous declaration. An object or function declared
at block scope with theextern specifier has external linkage unless the declaration matches a visible dec-
laration of namespace scope that has internal linkage, in which case the object or function has internal link-
age and refers to the same object or function denoted by the declaration of namespace scope.38)

6 A name declared in a namespace scope without astorage-class-specifierhas external linkage unless it has
internal linkage because of a previous declaration and provided it is not declaredconst . Objects declared
const and not explicitly declaredextern have internal linkage.

7 The linkages implied by successive declarations for a given entity shall agree. That is, within a given
scope, each declaration declaring the same object name or the same overloading of a function name shall
imply the same linkage. Each function in a given set of overloaded functions can have a different linkage,
however. For example,

static char* f(); // f() has internal linkage
char* f() // f() still has internal linkage

{ /* ... */ }

char* g(); // g() has external linkage
static char* g() // error: inconsistent linkage

{ /* ... */ }

void h();
inline void h(); // external linkage

inline void l();
void l(); // internal linkage

inline void m();
extern void m(); // internal linkage

__________________
38) Here, ‘‘previously’’ includes enclosing scopes. This implies that a name specifiedstatic and then specifiedextern in an
inner scope still has internal linkage.
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static void n();
inline void n(); // internal linkage

static int a; // ‘a’ has internal linkage
int a; // error: two definitions

static int b; // ‘b’ has internal linkage
extern int b; // ‘b’ still has internal linkage

int c; // ‘c’ has external linkage
static int c; // error: inconsistent linkage

extern int d; // ‘d’ has external linkage 
static int d; // error: inconsistent linkage

8 The name of a declared but undefined class can be used in anextern declaration. Such a declaration,
however, cannot be used before the class has been defined. For example,

struct S;
extern S a;
extern S f();
extern void g(S);

void h()
{

g(a); // error: S undefined
f(); // error: S undefined

}

Themutable specifier can be applied only to names of class data members (9.2) and can not be applied to
names declaredconst or static . For example

class X {
mutable const int* p; // ok
mutable int* const q; // ill-formed

};

9 Themutable specifier on a class data member nullifies aconst specifier applied to the containing class
object and permits modification of the mutable class member even though the rest of the object isconst
(7.1.5.1).

[dcl.fct.spec] 7.1.2 Function specifiers

1 Function-specifierscan be used only in function declarations.

function-specifier:
inline
virtual
explicit 

2 The inline specifier is a hint to the compiler that inline substitution of the function body is to be pre-
ferred to the usual function call implementation. The hint can be ignored. Theinline specifier shall not 
appear on a block scope function declaration. For the linkage of inline functions, see 3.5 and 7.1.1. A
function (8.3.5, 9.4, 11.4) defined within the class definition is inline by default.

3 An inline function shall be defined in every translation unit in which it is used (3.2), and shall have exactly
the same definition in every case (see one definition rule, 3.2). If a function with external linkage is
declared inline in one translation unit, it shall be declared inline in all translation units in which it appears.
A call to an inline function shall not precede its definition. For example:
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class X {
public:

int f();
inline int g();

};

void k(X* p)
{

int i = p->f();
int j = p->g(); // A call appears before X::g is defined

// ill-formed
// ...

}

inline int X::f() // Declares X::f as an inline function
// A call appears before X::f is defined
// ill-formed

{
// ...

}

inline int X::g()
{

// ...
}

4 The virtual specifier shall be used only in declarations of nonstatic class member functions within a
class declaration; see 10.3. 

5 Theexplicit specifier shall be used only in declarations of constructors within a class declaration; see
12.3.1.

[dcl.typedef] 7.1.3 Thetypedef specifier

1 Declarations containing thedecl-specifiertypedef declare identifiers that can be used later for naming
fundamental (3.8.1) or compound (3.8.2) types. Thetypedef specifier shall not be used in afunction- 
definition (8.4), and it shall not be combined in adecl-specifier-seqwith any other kind of specifier except
a type-specifier.

typedef-name:
identifier

A name declared with thetypedef specifier becomes atypedef-name. Within the scope of its declaration,
a typedef-nameis syntactically equivalent to a keyword and names the type associated with the identifier in∗
the way described in 8. If, in adecl-specifier-seqcontaining thedecl-specifiertypedef , there is notype-
specifier, or the onlytype-specifiers arecv-qualifiers, thetypedef declaration is ill-formed. Atypedef- 
nameis thus a synonym for another type. Atypedef-namedoes not introduce a new type the way a class
declaration (9.1) or enum declaration does. For example, after

typedef int MILES, *KLICKSP;

the constructions

MILES distance;
extern KLICKSP metricp;

are all correct declarations; the type ofdistance is int ; that ofmetricp is “pointer toint .”

2 In a given scope, atypedef specifier can be used to redefine the name of any type declared in that scope
to refer to the type to which it already refers. For example,
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typedef struct s { /* ... */ } s;
typedef int I;
typedef int I;
typedef I I;

3 In a given scope, atypedef specifier shall not be used to redefine the name of any type declared in that
scope to refer to a different type. For example,

class complex { /* ... */ };
typedef int complex; // error: redefinition

Similarly, in a given scope, a class shall not be declared with the same name as atypedef-namethat is 
declared in that scope and refers to a type other than the class itself. For example,

typedef int complex;
class complex { /* ... */ }; // error: redefinition

4 A typedef-namethat names a class is aclass-name(9.1). The typedef-nameshall not be used after a
class , struct , or union prefix and not in the names for constructors and destructors within the class
declaration itself. For example,

struct S {
S();
~S();

};

typedef struct S T;

S a = T(); // ok
struct T * p; // error

5 An unnamed class defined in a declaration with atypedef specifier gets a dummy name. For linkage
purposes only (3.5), the firsttypedef-namedeclared by the declaration is used to denote the class type in
place of the dummy name. For example, 

typedef struct { } S, R; // ’S’ is the class name for linkage purposes 

The typedef-nameis still only a synonym for the dummy name and shall not be used where a true class
name is required. Such a class cannot have explicit constructors or destructors because they cannot be
named by the user. For example,

typedef struct {
S(); // error: requires a return type since S is

// an ordinary member function, not a constructor
} S;

If an unnamed class is defined in atypedef declaration but the declaration does not declare a class type,
the name of the class for linkage purposes is a dummy name. For example, 

typedef struct { }* ps; // ’ps’ is not the linkage name of the class 

6 A typedef-namethat names an enumeration is anenum-name(7.2). Thetypedef-nameshall not be used 
after anenum prefix.

[dcl.friend] 7.1.4 Thefriend specifier

1 Thefriend specifier is used to specify access to class members; see 11.4.
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[dcl.type] 7.1.5 Type specifiers

1 The type-specifiers are

type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
cv-qualifier

As a general rule, at most onetype-specifieris allowed in the completedecl-specifier-seqof a declaration.
The only exceptions to this rule are the following:

2
— const or volatile can be combined with any othertype-specifier. However, redundant cv-

qualifiers are prohibited except when introduced through the use of typedefs (7.1.3) or template type
arguments (14.7), in which case the redundant cv-qualifiers are ignored.

— signed or unsigned can be combined withchar , long , short , or int . 

— short or long can be combined withint . 

— long can be combined withdouble . 

3 At least onetype-specifieris required in a typedef declaration. At least onetype-specifieris required in a
function declaration unless it declares a constructor, destructor or type conversion operator. If there is no
type-specifieror if the only type-specifiers present in adecl-specifier-seqarecv-qualifiers, then theint 
specifier is assumed as default. Regarding the prohibition of the defaultint specifier intypedef decla-
rations, see 7.1.3; in all other instances, the use ofdecl-specifier-seqs which contain nosimple-type-
specifiers (and thus default to plainint ) is deprecated.

4 class-specifiers andenum-specifiers are discussed in 9 and 7.2, respectively. The remainingtype-specifiers
are discussed in the rest of this section.

[dcl.type.cv] 7.1.5.1 Thecv-qualifiers

1 ∗There are twocv-qualifiers, const andvolatile . 3.8.3 describes how cv-qualifiers affect object and
function types.

2 Unless explicitly declaredextern , aconst object does not have external linkage and shall be initialized
(8.5; 12.1). An integralconst object initialized by an integral constant expression can be used in integral
constant expressions (5.19). 

3 CV-qualifiers are supported by the type system so that they cannot be subverted without casting (5.2.10). A
pointer or reference to a cv-qualified type need not actually point or refer to a cv-qualified object, but it is
treated as if it does; a const-qualified access path cannot be used to modify an object even if the object ref-
erenced is a non-const object and can be modified through some other access path. 

4 Except that any class member declaremutable (7.1.1) can be modified, any attempt to modify aconst 
object during its lifetime (3.7) results in undefined behavior.

5 Example 

const int ci = 3; // cv-qualified (initialized as required) 
ci = 4; // ill-formed: attempt to modify const 

int i = 2; // not cv-qualified 
const int* cip; // pointer to const int 
cip = &i; // okay: cv-qualified access path to unqualified 
*cip = 4; // ill-formed: attempt to modify through ptr to const 
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int* ip; 
ip = const_cast<int*> cip; // cast needed to convert const int* to int* 
*ip = 4; // defined: *ip points to i, a non-const object 

const int* ciq = new const int (3); // initialized as required 
int* iq = const_cast<int*> ciq; // cast required 
iq = 4; // undefined: modifies a const object 

6 Example 

class X { 
public: 

mutable int i; 
int j; 

}; 
class Y { public: X x; } 

const Y y; 
y.x.i++; // well-formed: mutable member can be modified 
y.x.j++; // ill-formed: const-qualified member modified 
Y* p = const_cast<Y*>(&y); // cast away const-ness of y 
p->x.i = 99; // well-formed: mutable member can be modified 
p->x.j = 99; // undefined: modifies a const member 

7 There are no implementation-independent semantics forvolatile objects;volatile is a hint to the 
compiler to avoid aggressive optimization involving the object because the value of the object might be
changed by means undetectable by a compiler.

Box 33

Notwithstanding the description above, the semantics ofvolatile are intended to be the same in C + + as
they are in C. However, it’s not possible simply to copy the wording from the C standard until we under-
stand the ramifications of sequence points, etc._ ________________________________________________________________________________________






_ ________________________________________________________________________________________






[dcl.type.simple] 7.1.5.2 Simple type specifiers

1 The simple type specifiers are

simple-type-specifier:
:: opt nested-name-specifieropt type-name
char
wchar_t
bool
short
int
long
signed
unsigned
float
double
void

type-name:
class-name
enum-name
typedef-name

Thesimple-type-specifiers specify either a previously-declared user-defined type or one of the fundamental
types (3.8.1). Table 7 summarizes the valid combinations ofsimple-type-specifiers and the types they spec-
ify.
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Table 7—simple-type-specifiers and the types they specify
__________________________________________________
Specifier(s) Type____________________________________________________________________________________________________
type-name the type named
char “char ”
unsigned char “unsigned char ”
signed char “signed char ”
bool “bool ”
unsigned “unsigned int ”
unsigned int “unsigned int ”
signed “int ”
signed int “int ”
int “int ”
unsigned short int “unsigned short int ”
unsigned short “unsigned short int ”
unsigned long int “unsigned long int ”
unsigned long “unsigned long int ”
signed long int “long int ”
signed long “long int ”
long int “long int ”
long “long int ”
signed short int “short int ”
signed short “short int ”
short int “short int ”
short “short int ”
wchar_t “wchar_t ”
float “float ”
double “double ”
long double “long double ”
void “void ”__________________________________________________ 









































































































When multiplesimple-type-specifiersare allowed, they can be freely intermixed with otherdecl-specifiers 
in any order. It is implementation-defined whether bit-fields and objects ofchar type are represented as
signed or unsigned quantities. Thesigned specifier forceschar objects and bit-fields to be signed; it is
redundant with other integral types.

[dcl.type.elab] 7.1.5.3 Elaborated type specifiers

1 Generally speaking, theelaborated-type-specifieris used to refer to a previously declaredclass-nameor
enum-nameeven though the name can be hidden by an intervening object, function, or enumerator declara-
tion (3.3), but in some cases it also can be used to declare aclass-name.

elaborated-type-specifier:
class-key :: opt nested-name-specifieropt identifier
enum :: opt nested-name-specifieropt identifier

class-key:
class
struct
union

2 If an elaborated-type-specifieris the sole constituent of a declaration, the declaration is ill-formed unless it
has one of the following forms:

— class-key identifier; 
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in which case theelaborated-type-specifierdeclares theidentifier to be a class-name in the scope that
contains the declaration (9.1); 

3 — friend class-key identifier; 

in which case theelaborated-type-specifierdeclares theidentifier to be a class-name in the smallest
enclosing non-class, non-function prototype scope that contains the declaration; 

4 — friend class-key ::identifier; 
friend class-key nested-name-specifier identifier; 

in which case theidentifier is resolved as when theelaborated-type-specifieris not the sole constituent
of a declaration. 

5 If the elaborated-type-specifieris not the sole constituent of the declaration, theidentifier following the
class-keyor enum keyword is resolved as described in 3.4 according to its qualifications, if any, but ignor-
ing any objects, functions, or enumerators that have been declared. If theidentifier resolves to aclass-name
or enum-name, theelaborated-type-specifierintroduces it into the declaration the same way asimple-type-
specifierintroduces itstype-name. If the identifier resolves to atypedef-name, theelaborated-type-specifier
is ill-formed. If the resolution is unsuccessful, theelaborated-type-specifieris ill-formed unless it is of the
simple formclass-key identifier. In this case, theidentifier is declared in the smallest non-class, non-
function prototype scope that contains the declaration.

6 Theclass-keyor enum keyword present in theelaborated-type-specifiershall agree in kind with the decla-
ration to which the name in theelaborated-type-specifierrefers. This rule also applies to the form of
elaborated-type-specifierthat declares aclass-nameor friend class since it can be construed as referring
to the definition of the class. Thus, in anyelaborated-type-specifier, theenum keyword shall be used to
refer to an enumeration (7.2), theunion class-keyshall be used to refer to a union (9), and either the
class or struct class-keyshall be used to refer to a structure (9) or to a class declared using theclass 
class-key. For example:
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struct Node {
struct Node* Next; // ok: Refers to Node at global scope
struct Data* Data; // ok: Declares type Data

// at global scope and member Data
};

struct Data {
struct Node* Node; // ok: Refers to Node at global scope
friend struct ::Glob; // error: Glob is not declared 

// cannot introduce a qualified type 
friend struct Glob; // ok: Declares Glob in global scope 
/* ... */

};

struct Base {
struct Data; // ok: Declares nested Data
struct ::Data* thatData; // ok: Refers to ::Data
struct Base::Data* thisData; // ok: Refers to nested Data

friend class ::Data; // ok: global Data is a friend 
struct Data { /* ... */ }; // Defines nested Data

struct Data; // ok: Redeclares nested Data
};

struct Data; // ok: Redeclares Data at global scope

struct ::Data; // error: cannot introduce a qualified type 
struct Base::Data; // error: cannot introduce a qualified type 
struct Base::Datum; // error: Datum undefined

struct Base::Data* pBase; // ok: refers to nested Data

[dcl.enum] 7.2 Enumeration declarations

1 An enumeration is a distinct type (3.8.1) with named constants. Its name becomes anenum-name, that is, a
reserved word within its scope.

enum-name:
identifier

enum-specifier:
enum identifieropt { enumerator-listopt }

enumerator-list:
enumerator-definition
enumerator-list , enumerator-definition

enumerator-definition:
enumerator
enumerator = constant-expression

enumerator:
identifier

The identifiers in anenumerator-listare declared as constants, and can appear wherever constants are
required. If noenumerator-definitions with = appear, then the values of the corresponding constants begin
at zero and increase by one as theenumerator-listis read from left to right. Anenumerator-definitionwith
= gives the associatedenumeratorthe value indicated by theconstant-expression; subsequentenumerators
without initializers continue the progression from the assigned value. Theconstant-expressionshall be of 
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integral type.

2 For example,

enum { a, b, c=0 };
enum { d, e, f=e+2 };

definesa, c , andd to be zero,b ande to be1, andf to be3.

3 The point of declaration for an enumerator is immediately after itsenumerator-definition. For example: ∗

const int x = 12;
{ enum { x = x }; }

Here, the enumeratorx is initialized with the value of the constantx , namely 12.

4 Each enumeration defines a type that is different from all other types. The type of an enumerator is its enu-
meration.

5 Theunderlying typeof an enumeration is an integral type, not gratuitously larger thanint ,39) that can rep-
resent all enumerator values defined in the enumeration. If theenumerator-listis empty, the underlying
type is as if the enumeration had a single enumerator with value 0. The value ofsizeof() applied to an
enumeration type, an object of enumeration type, or an enumerator, is the value ofsizeof() applied to
the underlying type.

6 For an enumeration whereemin is the smallest enumerator andemax is the largest, the values of the enumer-
ation are the values of the underlying type in the rangebmin to bmax, wherebmin andbmax are, respectively,
the smallest and largest values of the smallest bit-field that can storeemin and emax. On a two’s-
complement machine,bmax is the smallest value greater than or equal to max (abs(emin ) ,abs(emax) ) of the
form 2M − 1; bmin is zero ifemin is non-negative and− (bmax + 1 ) otherwise. It is possible to define an enu-
meration that has values not defined by any of its enumerators.

7 Two enumeration types are layout-compatible if they have the same sets of enumerator values. 

Box 34 
Shouldn’t this be the sameunderlying type?  _ _____________________________________




_ _____________________________________


 

8 The value of an enumerator or an object of an enumeration type is converted to an integer by integral pro-
motion (4.5). For example,

enum color { red, yellow, green=20, blue };
color col = red;
color* cp = &col;
if (*cp == blue) // ...

makescolor a type describing various colors, and then declarescol as an object of that type, andcp as a
pointer to an object of that type. The possible values of an object of typecolor are red , yellow ,
green , blue ; these values can be converted to the integral values0, 1, 20 , and21 . Since enumerations
are distinct types, objects of typecolor can be assigned only values of typecolor . For example, 

color c = 1; // error: type mismatch,
// no conversion from int to color

int i = yellow; // ok: yellow converted to integral value 1
// integral promotion

See also C.3.

__________________
39)The type should be larger thanint only if the value of an enumerator won’t fit in anint .
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9 An expression of arithmetic type or of typewchar_t can be converted to an enumeration type explicitly.
The value is unchanged if it is in the range of enumeration values of the enumeration type; otherwise the
resulting enumeration value is unspecified.

Box 35

This means the program does not crash._ _________________________________



_ _________________________________




10 The enum-name and each enumerator declared by an enum-specifier is declared in the scope that immedi-∗
ately contains the enum-specifier. These names obey the scope rules defined for all names in (3.3) and
(3.4). An enumerator declared in class scope can be referred to using the class member access operators (
:: , . (dot) and-> (arrow)), see 5.2.4. For example,

class X {
public:

enum direction { left=’l’, right=’r’ };
int f(int i)

{ return i==left ? 0 : i==right ? 1 : 2; }
};

void g(X* p)
{

direction d; // error: ‘direction’ not in scope
int i;
i = p->f(left); // error: ‘left’ not in scope
i = p->f(X::right); // ok
i = p->f(p->left); // ok
// ...

}

[basic.namespace] 7.3 Namespaces

1 A namespace is an optionally-named declarative region. The name of a namespace can be used to access
entities declared in that namespace; that is, the members of the namespace. Unlike other declarative
regions, the definition of a namespace can be split over several parts of one or more translation units.

2 A name declared outside all named namespaces, blocks (6.3) and classes (9) has global namespace scope
(3.3.4).

[namespace.def] 7.3.1 Namespace definition

1 The grammar for anamespace-definitionis



7– 14 Declarations DRAFT: 1 February 1995 7.3.1 Namespace definition

original-namespace-name:
identifier

namespace-definition:
named-namespace-definition 
unnamed-namespace-definition 

named-namespace-definition: 
original-namespace-definition
extension-namespace-definition

original-namespace-definition: ∗
namespace identifier { namespace-body}

extension-namespace-definition:
namespace original-namespace-name{ namespace-body}

unnamed-namespace-definition:
namespace { namespace-body}

namespace-body:
declaration-seqopt

2 The identifier in anoriginal-namespace-definitionshall not have been previously defined in the declarative
region in which theoriginal-namespace-definitionappears. Theidentifier in an original-namespace-
definition is the name of the namespace. Subsequently in that declarative region, it is treated as an
original-namespace-name.

3 Theoriginal-namespace-namein anextension-namespace-definitionshall have previously been defined in
anoriginal-namespace-definitionin the same declarative region.

4 Everynamespace-definitionshall appear in the global scope or in a namespace scope (3.3.4). 

[namespace.qual] 7.3.1.1 Explict qualification

Box 36

The information in this section is very similar to the information provided in section 3.3.7. The information
should probably be consolidated in one place._ ________________________________________________________________________________________





_ ________________________________________________________________________________________





1 A name in a class or namespace can be accessed using qualification according to the grammar:

id-expression:
unqualified-id
qualified-id

nested-name-specifier:
class-or-namespace-name:: nested-name-specifieropt

class-or-namespace-name:
class-name
namespace-name

namespace-name:
original-namespace-name
namespace-alias

2 The namespace-names in a nested-name-specifiershall have been previously defined by anamed-
namespace-definitionor anamespace-alias-definition. ∗
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3 The search for the initial qualifier preceding any:: operator locates only the names of types or name-
spaces. The search for a name after a:: locates only names members of a namespace or class. In particu-
lar, using-directives (7.3.4) are ignored, as is any enclosing declarative region.

[namespace.unnamed] 7.3.1.2 Unnamed namespaces

1 An unnamed-namespace-definitionbehaves as if it were replaced by

namespace unique { namespace-body}
using namespace unique;

where, for each translation unit, all occurrences ofunique in that translation unit are replaced by an identi-
fier that differs from all other identifiers in the entire program.40) For example:

namespace { int i; } // unique::i
void f() { i++; } // unique::i++

namespace A {
namespace {

int i; // A:: unique::i
int j; // A:: unique::j

}
void g() { i++; } // A:: unique::i++

}

using namespace A;
void h() {

i++; // error: unique::i or A:: unique::i
A::i++; // error: A::i undefined
j++; // A:: unique::j

}

[namespace.scope] 7.3.1.3 Namespace scope

1 The declarative region of anamespace-definitionis itsnamespace-body. The potential scope denoted by an
original-namespace-nameis the concatenation of the declarative regions established by each of the
namespace-definitions in the same declarative region with thatoriginal-namespace-name. Entities declared
in a namespace-bodyare said to bemembers of the namespace, and names introduced by these declarations
into the declarative region of the namespace are said to bemember namesof the namespace. For example

namespace N {
int i;
int g(int a) { return a; }
void k();
void q();

}

namespace { int k=1; }

namespace N {
int g(char a) // overloads N::g(int)
{

return k+a; // k is from unnamed namespace
}

__________________
40) Although entities in an unnamed namespace might have external linkage, they are effectively qualified by a name unique to their
translation unit and therefore can never be seen from any other translation unit.
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int i; // error: duplicate definition

void k(); // ok: duplicate function declaration

void k() // ok: definition of N::k()
{

return g(a); // calls N::g(int)
}

int q(); // error: different return type
}

2 Because anamespace-definitioncontainsdeclarations in itsnamespace-bodyand anamespace-definitionis
itself adeclaration, it follows thatnamespace-definitions can be nested. For example:

namespace Outer {
int i;
namespace Inner {

void f() { i++; } // Outer::i
int i;
void g() { i++; } // Inner::i

}
}

3 The use of thestatic keyword is deprecated when declaring objects in a namespace scope (see D); the
unnamed-namespaceprovides a superior alternative.

[namespace.memdef] 7.3.1.4 Namespace member definitions

1 Members of a namespace can be defined within that namespace. For example:

namespace X {
void f() { /* ... */ }

}

2 Members of a named namespace can also be defined outside that namespace by explicit qualification
(7.3.1.1) of the name being defined, provided that the entity being defined was already declared in the
namespace and the definition appears after the point of declaration in a namespace that encloses the
declaration’s namespace. For example:

namespace Q {
namespace V {

void f();
}
void V::f() { /* ... */ } // fine
void V::g() { /* ... */ } // error: g() is not yet a member of V
namespace V {

void g();
}

}

namespace R {
void Q::V::g() { /* ... */ } // error: R doesn’t enclose Q

}

3 Every name first declared in a namespace is a member of that namespace. Afriend function first
declared within a class is a member of the innermost enclosing namespace. For example:
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// Assume f and g have not yet been defined.
namespace A {

class X {
friend void f(X); // declaration of f
class Y {

friend void g();
};

};

void f(X) { /* ... */} // definition of f declared above
X x;
void g() { f(x); } // f and g are members of A

}

using A::x;

void h()
{

A::f(x);
A::X::f(x); // error: f is not a member of A::X
A::X::Y::g(); // error: g is not a member of A::X::Y

}

The scope of class names first introduced inelaborated-type-specifiersis described in (7.1.5.3).

4 When an entity declared with theextern specifier is not found to refer to some other declaration, then
that entity is a member of the innermost enclosing namespace. However such a declaration does not intro-
duce the member name in its namespace scope. For example:

namespace X {
void p()
{

q(); // error: q not yet declared
extern void q(); // q is a member of namespace X

}

void middle()
{

q(); // error: q not yet declared
}

void q() { /* ... */ } // definition of X::q
}

void q() { /* ... */ } // some other, unrelated q

[namespace.alias] 7.3.2 Namespace or class alias

1 A namespace-alias-definitiondeclares an alternate name for a namespace according to the following gram-
mar:

namespace-alias:
identifier

namespace-alias-definition:
namespace identifier = qualified-namespace-specifier ;

qualified-namespace-specifier:
:: opt nested-name-specifieropt class-or-namespace-name
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2 The identifier in a namespace-alias-definitionis a synonym for the name of the namespace denoted by the
qualified-namespace-specifierand becomes anamespace-alias.

3 In a declarative region, anamespace-alias-definitioncan be used to redefine anamespace-aliasdeclared in
that declarative region to refer to the namespace to which it already refers. For example, the following dec-
larations are well-formed:

namespace Company_with_very_long_name { /* ... */ }
namespace CWVLN = Company_with_very_long_name;
namespace CWVLN = Company_with_very_long_name; // ok: duplicate
namespace CWVLN = CWVLN;

4 A namespace-nameshall not be declared as the name of any other entity in the same declarative region. A
namespace-namedefined at global scope shall not be declared as the name of any other entity in any global
scope of the program. No diagnostic is required for a violation of this rule by declarations in different
translation units.

[namespace.udecl] 7.3.3 Theusing declaration

1 A using-declarationintroduces a name into the declarative region in which theusing-declarationappears.
That name is a synonym for the name of some entity declared elsewhere.

using-declaration:
using :: opt nested-name-specifier unqualified-id;
using :: unqualified-id;

Box 37

There is still an open issue regarding the "opt" on the nested-name-specifier._ _______________________________________________________________



_ _______________________________________________________________




2 The member names specified in ausing-declarationare declared in the declarative region in which the
using-declarationappears.

3 Everyusing-declarationis adeclarationand amember-declarationand so can be used in a class definition.
For example:

struct B {
void f(char);
void g(char);

};

struct D : B {
using B::f;
void f(int) { f(’c’); } // calls B::f(char)
void g(int) { g(’c’); } // recursively calls D::g(int)

};

4 A using-declarationused as amember-declarationshall refer to a member of a base class of the class being
defined. For example:

class C {
int g();

};

class D2 : public B {
using B::f; // ok: B is a base of D
using C::g; // error: C isn’t a base of D2

};



7.3.3 Theusing declaration DRAFT: 1 February 1995 Declarations 7– 19

5 A using-declarationfor a member shall be amember-declaration. For example: 

struct X {
int i;
static int s;

};

void f()
{

using X::i; // error: X::i is a class member
// and this is not a member declaration. 

using X::s; // error: X::s is a class member
// and this is not a member declaration. 

}

6 ∗Members declared by ausing-declarationcan be referred to by explicit qualification just like other member
names (7.3.1.1). In ausing-declaration, a prefix:: refers to the global namespace (as ever). For example:

void f();

namespace A {
void g();

}

namespace X {
using ::f; // global f
using A::g; // A’s g

}

void h()
{

X::f(); // calls ::f
X::g(); // calls A::g

}

7 A using-declarationis adeclarationand can therefore be used repeatedly where (and only where) multiple
declarations are allowed. For example:

namespace A {
int i;

}

void f()
{

using A::i;
using A::i; // ok: double declaration

}

class B {
int i;

};

class X : public B {
using B::i;
using B::i; // error: double member declaration

};

8 ∗The entity declared by anusing-declarationshall be known in the context using it according to its defini-
tion at the point of theusing-declaration. Definitions added to the namespace after theusing-declaration
are not considered when a use of the name is made. For example:
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namespace A {
void f(int);

}

using A::f; // f is a synonym for A::f;
// that is, for A::f(int).

namespace A {
void f(char);

}

void foo()
{

f(’a’); // calls f(int),
} // even though f(char) exists.

void bar()
{

using A::f; // f is a synonym for A::f;
// that is, for A::f(int) and A::f(char).

f(’a’); // calls f(char)
}

9 A name defined by ausing-declarationis an alias for its original declarations so that theusing-declaration
does not affect the type, linkage or other attributes of the members referred to.

10 If the set of local declarations andusing-declarations for a single name are given in a declarative region,
they shall all refer to the same entity, or all refer to functions. For example

namespace B {
int i;
void f(int);
void f(double);

}

void g()
{

int i;
using B::i; // error: i declared twice
void f(char);
using B::f; // fine: each f is a function

}

11 If a local function declaration has the same name and type as a function introduced by ausing-declaration,
the program is ill-formed. For example:

namespace C {
void f(int);
void f(double);
void f(char);

}

void h()
{

using B::f; // B::f(int) and B::f(double)
using C::f; // C::f(int), C::f(double), and C::f(char)
f(’h’); // calls C::f(char)
f(1); // error: ambiguous: B::f(int) or C::f(int) ?
void f(int); // error: f(int) conflicts with C::f(int)

}
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12 When ausing-declarationbrings names from a base class into a derived class scope, member functions in
the derived class override virtual member functions with the same name and argument types in a base class
(rather than conflicting). For example:

struct B {
virtual void f(int);
virtual void f(char);
void g(int);
void h(int);

};

struct D : B {
using B::f;
void f(int); // ok: D::f(int) overrides B::f(int);

using B::g;
void g(char); // ok

using B::h;
void h(int); // error: D::h(int) conflicts with B::h(int)

};

void k(D* p)
{

p->f(1); // calls D::f(int)
p->f(’a’); // calls B::f(char)
p->g(1); // calls B::g(int)
p->g(’a’); // calls D::g(char)

}

Box 38

For p->g(1) to be unambiguous, theD::g(int) synonym forB::g(int) must take part in the over-
load resolution as if it was a member ofD, though its type must be ‘‘member ofB.’’ A proper phrasing for 
this is being prepared for a vote._ ________________________________________________________________________________________






_ ________________________________________________________________________________________






13 All instances of the name mentioned in ausing-declarationshall be accessible. In particular, if a derived
class uses ausing-declarationto access a member of a base class, the member name shall be accessible. If
the name is that of an overloaded member function, then all functions named shall be accessible. 

14 The alias created by theusing-declarationhas the usual accessibility for amember-declaration. For exam-
ple:

class A {
private:

void f(char);
public:

void f(int);
protected:

void g();
};

class B : public A {
using A::f; // error: A::f(char) is inaccessible

public:
using A::g; // B::g is a public synonym for A::g

};
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15 Use ofaccess-declarations (11.3) is deprecated; memberusing-declarations provide a better alternative.

[namespace.udir] 7.3.4 Using directive

1 using-directive:
using namespace :: opt nested-name-specifieropt namespace-name ;

2 A using-directivespecifies that the names in the namespace with the givennamespace-name, including
those specified by anyusing-directives in that namespace, can be used in the scope in which theusing-
directiveappears after the using directive, exactly as if the names from the namespace had been declared
outside a namespace at the points where the namespace was defined. Ausing-directivedoes not add any
members to the declarative region in which it appears. If a namespace is extended by anextended-
namespace-definitionafter ausing-directiveis given, the additional members of the extended namespace
can be used after theextended-namespace-definition.

3 The using-directiveis transitive: if a namespace contains ausing-directivethat nominates a second name-
space that itself containsusing-directives, the effect is as if theusing-directives from the second namespace
also appeared in the first. In particular, a name in a namespace does not hide names in a second namespace
which is the subject of ausing-directivein the first namespace. For example:

namespace M {
int i;

}

namespace N {
int i;
using namespace M;

}

void f()
{

N::i = 7; // well-formed: M::i is not a member of N 
using namespace N; 
i = 7; // error: both M::i and N::i are accessible 

}

4 During overload resolution, all functions from the transitive search are considered for argument matching.
An ambiguity exists if the best match finds two functions with the same signature, even if one might seem
to ‘‘hide’’ the other in theusing-directivelattice. For example:

namespace D {
int d1;
void f(char); ∗

}
using namespace D;

int d1; // ok: no conflict with D::d1

namespace E {
int e;
void f(int);

}

namespace D { // namespace extension
int d2;
using namespace E;
void f(int);

}



7.3.4 Using directive DRAFT: 1 February 1995 Declarations 7– 23

void f()
{

d1++; // error: ambiguous ::d1 or D::d1?
::d1++; // ok
D::d1++; // ok
d2++; // ok: D::d2
e++; // ok: E::e
f(1); // error: ambiguous: D::f(int) or E::f(int)?
f(’a’); // ok: D::f(char)

}

[dcl.asm] 7.4 Theasm declaration

1 An asm declaration has the form

asm-definition:
asm ( string-literal ) ;

The meaning of anasm declaration is implementation dependent. Typically it is used to pass information
through the compiler to an assembler.

[dcl.link] 7.5 Linkage specifications

1 Linkage (3.5) between C + + and non-C + + code fragments can be achieved using alinkage-specification:

linkage-specification:
extern string-literal { declaration-seqopt }
extern string-literal declaration

declaration-seq:
declaration
declaration-seq declaration

The string-literal indicates the required linkage. The meaning of thestring-literal is implementation
dependent. Every implementation shall provide for linkage to functions written in the C programming lan-
guage,"C" , and linkage to C + + functions,"C++" . Default linkage is"C++" . For example,

complex sqrt(complex); // C++ linkage by default
extern "C" {

double sqrt(double); // C linkage
}

Box 39

This example might need to be revisited depending on what the rules ultimately are concerning C + + linkage 
to standard library functions from the C library._ ________________________________________________________________________________________





_ ________________________________________________________________________________________





2 Linkage specifications nest. A linkage specification does not establish a scope. Alinkage-specificationcan 
occur only in namespace scope (3.3). Alinkage-specificationfor a class applies to nonmember functions
and objects declared within it. Alinkage-specificationfor a function also applies to functions and objects
declared within it. A linkage declaration with a string that is unknown to the implementation is ill-formed.

3 If a function has more than onelinkage-specification, they shall agree; that is, they shall specify the same
string-literal. Except for functions with C + + linkage, a function declaration without a linkage specification
shall not precede the first linkage specification for that function. A function can be declared without a link-
age specification after an explicit linkage specification has been seen; the linkage explicitly specified in the
earlier declaration is not affected by such a function declaration.
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4 At most one of a set of overloaded functions (13) with a particular name can have C linkage.

5 Linkage can be specified for objects. For example,

extern "C" {
// ...
_iobuf _iob[_NFILE];
// ...
int _flsbuf(unsigned,_iobuf*);
// ...

}

Functions and objects can be declaredstatic or inline within the {} of a linkage specification. The
linkage directive is ignored for a function or object with internal linkage (3.5). A function first declared in
a linkage specification behaves as a function with external linkage. For example,

extern "C" double f();
static double f(); // error

is ill-formed (7.1.1). An object defined within an

extern "C" { /* ... */ }

construct is still defined (and not just declared).

6 Linkage from C + + to objects defined in other languages and to objects defined in C + + from other languages
is implementation and language dependent. Only where the object layout strategies of two language imple-
mentations are similar enough can such linkage be achieved. Taking the address of a function whose link-
age is other than C + + or C produces undefined behavior.

7 When the name of a programming language is used to name a style of linkage in thestring-literal in a
linkage-specification, it is recommended that the spelling be taken from the document defining that lan-
guage, for example,Ada (notADA) andFORTRAN(notFortran ).



_ _____________________________________________________________________________________________________________________________________________________________________________ ___________________________________________

8 Declarators [dcl.decl]
_ _____________________________________________________________________________________________________________________________________________________________________________ ___________________________________________

1 A declarator declares a single object, function, or type, within a declaration. Theinit-declarator-list
appearing in a declaration is a comma-separated sequence of declarators, each of which can have an initial-
izer.

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator initializeropt

2 The two components of adeclarationare the specifiers (decl-specifier-seq; 7.1) and the declarators (init-
declarator-list). The specifiers indicate the fundamental type, storage class, or other properties of the
objects and functions being declared. The declarators specify the names of these objects and functions and
(optionally) modify the type with operators such as* (pointer to) and() (function returning). Initial val-
ues can also be specified in a declarator; initializers are discussed in 8.5 and 12.6.

3 Eachinit-declarator in a declaration is analyzed separately as if it was in a declaration by itself.41)

4 Declarators have the syntax

declarator:
direct-declarator
ptr-operator declarator

direct-declarator:
declarator-id
direct-declarator ( parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

direct-declarator [ constant-expressionopt ]
( declarator )

__________________
41) A declaration with several declarators is usually equivalent to the corresponding sequence of declarations each with a single
declarator. That is

T D1, D2, ... Dn;

is usually equvalent to

T D1; T D2; ... T Dn;

whereT is adecl-specifier-seqand eachDi is a init-declarator. The exception occurs when one declarator modifies the name environ-
ment used by a following declarator, as in

struct S { ... };
S S, T; // declare two instances of struct S

which is not equivalent to

struct S { ... };
S S;
S T; // error
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ptr-operator:
* cv-qualifier-seqopt

&
:: opt nested-name-specifier* cv-qualifier-seqopt

cv-qualifier-seq:
cv-qualifier cv-qualifier-seqopt

cv-qualifier:
const
volatile

declarator-id:
id-expression
nested-name-specifieropt type-name

A class-namehas special meaning in a declaration of the class of that name and when qualified by that
name using the scope resolution operator:: (5.1, 12.1, 12.4).

[dcl.name] 8.1 Type names

1 To specify type conversions explicitly, and as an argument ofsizeof or new, the name of a type shall be
specified. This can be done with atype-id, which is syntactically a declaration for an object or function of
that type that omits the name of the object or function.

type-id:
type-specifier-seq abstract-declaratoropt

type-specifier-seq:
type-specifier type-specifier-seqopt

abstract-declarator:
ptr-operator abstract-declaratoropt

direct-abstract-declarator

direct-abstract-declarator:
direct-abstract-declaratoropt ( parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

direct-abstract-declaratoropt [ constant-expressionopt ]
( abstract-declarator)

It is possible to identify uniquely the location in theabstract-declaratorwhere the identifier would appear
if the construction were a declarator in a declaration. The named type is then the same as the type of the
hypothetical identifier. For example,

int // int i
int * // int *pi
int *[3] // int *p[3]
int (*)[3] // int (*p3i)[3]
int *() // int *f()
int (*)(double) // int (*pf)(double)

name respectively the types“integer,” “pointer to integer,” “array of 3 pointers to integers,” “pointer to
array of 3 integers,” “function having no parameters and returning pointer to integer,” and“pointer to func-
tion of double returning an integer.”

2 A type can also be named (often more easily) by using atypedef(7.1.3).

3 Note that anexception-specificationdoes not affect the function type, so its appearance in anabstract-
declaratorwill have empty semantics.
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[dcl.ambig.res] 8.2 Ambiguity resolution

1 The ambiguity arising from the similarity between a function-style cast and a declaration mentioned in 6.8
can also occur in the context of a declaration. In that context, it surfaces as a choice between a function
declaration with a redundant set of parentheses around a parameter name and an object declaration with a
function-style cast as the initializer. Just as for statements, the resolution is to consider any construct that
could possibly be a declaration a declaration. A declaration can be explicitly disambiguated by a
nonfunction-style cast or a= to indicate initialization. For example,

struct S {
S(int);

};

void foo(double a)
{

S x(int(a)); // function declaration
S y((int)a); // object declaration
S z = int(a); // object declaration

}

2 The ambiguity arising from the similarity between a function-style cast and atype-idcan occur in many dif-
ferent contexts. The ambiguity surfaces as a choice between a function-style cast expression and a declara-
tion of a type. The resolution is that any construct that could possibly be atype-id in its syntactic context
shall be considered atype-id.

3 For example,

#include <stddef.h>
char *p;
void *operator new(size_t, int);
void foo(int x) {

new (int(*p)) int; // new-placement expression
new (int(*[x])); // new type-id

}

4 For example,

template <class T>
struct S {
T *p;
};
S<int()> x; // type-id
S<int(1)> y; // expression (ill-formed)

5 For example,

void foo()
{

sizeof(int(1)); // expression
sizeof(int()); // type-id (ill-formed)

}

6 For example,

void foo()
{

(int(1)); // expression
(int())1; // type-id (ill-formed)

}
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[dcl.meaning] 8.3 Meaning of declarators

1 A list of declarators appears after an optional (7)decl-specifier-seq(7.1). Each declarator contains exactly
one declarator-id; it names the identifier that is declared. Adeclarator-id shall be a simpleidentifier,
except for the following cases: the declaration of some special functions (12.3, 12.4, 13.4), the definition of
a member function (9.4), the definition of a static data member (9.5), the declaration of a friend function
that is a member of another class (11.4). Anauto , static , extern , register , friend , inline ,
virtual , or typedef specifier applies directly to eachdeclarator-id in a init-declarator-list; the type
specified for eachdeclarator-iddepends on both thedecl-specifier-seqand itsdeclarator.

2 Thus, a declaration of a particular identifier has the form

T D

whereT is adecl-specifier-seqandD is a declarator. The following subsections give an inductive proce-
dure for determining the type specified for the containeddeclarator-idby such a declaration.

3 First, thedecl-specifier-seqdetermines a type. For example, in the declaration

int unsigned i;

the type specifiersint unsigned determine the type“unsigned int ” (7.1.5.2). Or in general, in the
declaration

T D

thedecl-specifier-seqT determines the type“T.”

4 In a declarationT DwhereD is an unadorned identifier the type of this identifier is“T.”

5 In a declarationT DwhereDhas the form

( D1 )

the type of the containeddeclarator-idis the same as that of the containeddeclarator-idin the declaration

T D1

Parentheses do not alter the type of the embeddeddeclarator-id, but they can alter the binding of complex
declarators.

[dcl.ptr] 8.3.1 Pointers

1 In a declarationT DwhereDhas the form

* cv-qualifier-seqopt D1

and the type of the identifier in the declarationT D1 is “type-modifierT,” then the type of the identifier ofD
is “type-modifier cv-qualifier-seqpointer toT.” Thecv-qualifiers apply to the pointer and not to the object
pointed to.

2 For example, the declarations

const int ci = 10, *pc = &ci, *const cpc = pc, **ppc;
int i, *p, *const cp = &i;

declareci , a constant integer;pc , a pointer to a constant integer;cpc , a constant pointer to a constant
integer,ppc , a pointer to a pointer to a constant integer;i , an integer;p, a pointer to integer; andcp , a
constant pointer to integer. The value ofci , cpc , andcp cannot be changed after initialization. The value
of pc can be changed, and so can the object pointed to bycp . Examples of correct operations are
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i = ci;
*cp = ci;
pc++;
pc = cpc;
pc = p;
ppc = &pc;

Examples of ill-formed operations are

ci = 1; // error
ci++; // error
*pc = 2; // error
cp = &ci; // error
cpc++; // error
p = pc; // error
ppc = &p; // error

Each is unacceptable because it would either change the value of an object declaredconst or allow it to be
changed through an unqualified pointer later, for example:

*ppc = &ci; // okay, but would make p point to ci ...
// ... because of previous error

*p = 5; // clobber ci

3 volatile specifiers are handled similarly.

4 See also 5.17 and 8.5.

5 There can be no pointers to references (8.3.2) or pointers to bit-fields (9.7).

[dcl.ref] 8.3.2 References

1 In a declarationT DwhereDhas the form

& D1

and the type of the identifier in the declarationT D1 is “type-modifierT,” then the type of the identifier ofD
is “type-modifierreference toT.” At all times during the determination of a type, types of the form“cv-
qualifiedreference toT” is adjusted to be“reference toT”. For example, in

typedef int& A;
const A aref = 3;

the type ofaref is “reference toint ”, not “const reference toint ”. A declarator that specifies the
type“reference tocvvoid” is ill-formed.

2 For example,

void f(double& a) { a += 3.14; }
// ...

double d = 0;
f(d);

declaresa to be a reference parameter off so the callf(d) will add 3.14 to d.

int v[20];
// ...
int& g(int i) { return v[i]; }
// ...
g(3) = 7;

declares the functiong() to return a reference to an integer sog(3)=7 will assign7 to the fourth element
of the arrayv .
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struct link {
link* next;

};

link* first;

void h(link*& p) // ‘p’ is a reference to pointer
{

p->next = first;
first = p;
p = 0;

}

void k()
{

link* q = new link;
h(q);

}

declaresp to be a reference to a pointer tolink soh(q) will leaveq with the value zero. See also 8.5.3.

3 A reference may or may not require storage (3.7). 

4 There can be no references to references, no references to bit-fields (9.7), no arrays of references, and no
pointers to references. The declaration of a reference shall contain aninitializer (8.5.3) except when the
declaration contains an explicitextern specifier (7.1.1), is a class member (9.2) declaration within a class
declaration, or is the declaration of an parameter or a return type (8.3.5); see 3.1. A reference shall be ini-
tialized to refer to a valid object or function. In particular, null references are prohibited; no diagnostic is
required.

[dcl.mptr] 8.3.3 Pointers to members

1 In a declarationT DwhereDhas the form

:: opt nested-name-specifier:: * cv-qualifier-seqopt D1

and thenested-name-specifiernames a class, and the type of the identifier in the declarationT D1 is “type-
modifier T,” then the type of the identifier ofD is “type-modifier cv-qualifier-seqpointer to member of
class nested-name-specifier of typeT.”

2 For example,

class X {
public:

void f(int);
int a;

};
class Y;

int X::* pmi = &X::a;
void (X::* pmf)(int) = &X::f;
double X::* pmd;
char Y::* pmc;

declarespmi , pmf , pmdandpmc to be a pointer to a member ofX of typeint , a pointer to a member ofX
of typevoid(int) , a pointer to a member ofX of typedouble and a pointer to a member ofY of type
char respectively. The declaration ofpmd is well-formed even thoughX has no members of type
double . Similarly, the declaration ofpmc is well-formed even thoughY is an incomplete type.pmi and
pmf can be used like this:
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X obj;
//...
obj.*pmi = 7; // assign 7 to an integer

// member of obj
(obj.*pmf)(7); // call a function member of obj

// with the argument 7

3 Note that a pointer to member cannot point to a static member of a class (9.5), a member with reference
type, or“cvvoid .” There are no references to members. See also 5.5 and 5.3.

[dcl.array] 8.3.4 Arrays

1 In a declarationT DwhereDhas the form

D1 [ constant-expressionopt]

and the type of the identifier in the declarationT D1 is “type-modifierT,” then the type of the identifier ofD
is an array type.T shall not be a reference type, an incomplete type, or an abstract class type. If the
constant-expression(5.19) is present, its value shall be greater than zero. The constant expression specifies
theboundof (number of elements in) the array. If the value of the constant expression isN, the array hasN
elements numbered0 to N-1 , and the type of the identifier ofD is “type-modifierarray ofN T.” If the con-
stant expression is omitted, the type of the identifier ofD is “type-modifierarray of unknown bound ofT,”
an incomplete object type. The type“type-modifierarray ofN T” is a different type from the type“type-
modifierarray of unknown bound ofT,” see 3.8. Any cv-qualifiers that appear intype-modifierare applied
to the typeT and not to the array type, as in this example:

typedef int A[5], AA[2][3];
const A x; // type is ‘‘array of 5 const int’’
const AA y; // type is ‘‘array of 2 array of 3 const int’’

2 An array can be constructed from one of the fundamental types42) (exceptvoid ), from a pointer, from a 
pointer to member, from a class, or from another array.

3 When several“array of” specifications are adjacent, a multidimensional array is created; the constant
expressions that specify the bounds of the arrays can be omitted only for the first member of the sequence.
This elision is useful for function parameters of array types, and when the array is external and the defini-
tion, which allocates storage, is given elsewhere. The firstconstant-expressioncan also be omitted when
the declarator is followed by aninitializer (8.5). In this case the bound is calculated from the number of
initial elements (say,N) supplied (8.5.1), and the type of the identifier ofD is “array ofN T.”

4 The declaration

float fa[17], *afp[17];

declares an array offloat numbers and an array of pointers tofloat numbers. The declaration

static int x3d[3][5][7];

declares a static three-dimensional array of integers, with rank 3×5×7. In complete detail,x3d is an array
of three items; each item is an array of five arrays; each of the latter arrays is an array of seven integers.
Any of the expressionsx3d , x3d[i] , x3d[i][j] , x3d[i][j][k] can reasonably appear in an
expression.

5 Conversions affecting lvalues of array type are described in 4.2. Objects of array types cannot be modified,
see 3.9.

6 Except where it has been declared for a class (13.4.5), the subscript operator[] is interpreted in such a way
thatE1[E2] is identical to*((E1)+(E2)) . Because of the conversion rules that apply to+, if E1 is an
array andE2 an integer, thenE1[E2] refers to theE2-th member ofE1. Therefore, despite its asymmetric
__________________
42)The enumeration types are included in the fundamental types.



8– 8 Declarators DRAFT: 1 February 1995 8.3.4 Arrays

appearance, subscripting is a commutative operation.

7 A consistent rule is followed for multidimensional arrays. IfE is an n-dimensional array of rank
i × j × . . . ×k, thenE appearing in an expression is converted to a pointer to an (n − 1 )-dimensional array
with rankj × . . . ×k. If the* operator, either explicitly or implicitly as a result of subscripting, is applied to
this pointer, the result is the pointed-to (n − 1 )-dimensional array, which itself is immediately converted
into a pointer.

8 For example, consider

int x[3][5];

Herex is a 3×5 array of integers. Whenx appears in an expression, it is converted to a pointer to (the first
of three) five-membered arrays of integers. In the expressionx[i] , which is equivalent to*(x+i) , x is
first converted to a pointer as described; thenx+i is converted to the type ofx , which involves multiplying
i by the length of the object to which the pointer points, namely five integer objects. The results are added
and indirection applied to yield an array (of five integers), which in turn is converted to a pointer to the first
of the integers. If there is another subscript the same argument applies again; this time the result is an inte-
ger.

9 It follows from all this that arrays in C + + are stored row-wise (last subscript varies fastest) and that the first
subscript in the declaration helps determine the amount of storage consumed by an array but plays no other
part in subscript calculations.

[dcl.fct] 8.3.5 Functions

1 In a declarationT DwhereDhas the form

D1 ( parameter-declaration-clause) cv-qualifier-seqopt

and the type of the containeddeclarator-id in the declarationT D1 is “type-modifierT1,” the type of the
declarator-id in D is “type-modifier cv-qualifier-seqopt function with parameters of typeparameter-
declaration-clauseand returningT1”; a type of this form is afunction type43).

parameter-declaration-clause:
parameter-declaration-listopt ... opt

parameter-declaration-list, ...

parameter-declaration-list:
parameter-declaration
parameter-declaration-list, parameter-declaration

parameter-declaration:
decl-specifier-seq declarator
decl-specifier-seq declarator= assignment-expression
decl-specifier-seq abstract-declaratoropt

decl-specifier-seq abstract-declaratoropt = assignment-expression

2 The parameter-declaration-clausedetermines the arguments that can be specified, and their processing,
when the function is called. If theparameter-declaration-clauseterminates with an ellipsis, the number of
arguments is known only to be equal to or greater than the number of parameters specified; if it is empty,
the function takes no arguments. The parameter list(void) is equivalent to the empty parameter list.
Except for this special case,void shall not be a parameter type (though types derived fromvoid , such as 
void* , can). Where syntactically correct,“, ... ” is synonymous with“... ”. The standard header
<cstdarg> contains a mechanism for accessing arguments passed using the ellipsis (see 5.2.2 and 18.7).

__________________
43)As indicated by the syntax, cv-qualifiers are a significant component in function return types.
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3 A single name can be used for several different functions in a single scope; this is function overloading
(13). All declarations for a function with a given parameter list shall agree exactly both in the type of the
value returned and in the number and type of parameters; the presence or absence of the ellipsis is consid-
ered part of the function type. The type of each parameter is determined from its owndecl-specifier-seq
anddeclarator. After determining the type of each parameter, any parameter of type“array ofT” or “func-
tion returningT” is adjusted to be“pointer toT” or “pointer to function returningT,” respectively. After
producing the list of parameter types, several transformations take place upon the types. Anycv-qualifier
modifying a parameter type is deleted; e.g., the typevoid(const int) becomesvoid(int) . Such
cv-qualifiers affect only the definition of the parameter within the body of the function. If thestorage-
class-specifierregister modifies a parameter type, the specifier is deleted; e.g.,register char*
becomeschar* . Suchstorage-class-qualifiers affect only the definition of the parameter within the body
of the function. The resulting list of transformed parameter types is the function’sparameter type list.

Box 40

Issue: a definition for“signature” will be added as soon as the semantics are made precise._ __________________________________________________________________________



_ __________________________________________________________________________




The return type and the parameter type list, but not the default arguments (8.3.6), are part of the function
type. If the type of a parameter includes a type of the form“pointer to array of unknown bound ofT” or
“reference to array of unknown bound ofT,” the program is ill-formed.44) A cv-qualifier-seqcan only be
part of a declaration or definition of a nonstatic member function, and of a pointer to a member function;
see 9.4.2. It is part of the function type.

4 Functions cannot return arrays or functions, although they can return pointers and references to such things.
There are no arrays of functions, although there can be arrays of pointers to functions.

5 Types shall not be defined in return or parameter types. 

6 Theparameter-declaration-clauseis used to check and convert arguments in calls and to check pointer-to-
function and reference-to-function assignments and initializations.

7 An identifier can optionally be provided as a parameter name; if present in a function declaration, it cannot
be used since it goes out of scope at the end of the function declarator (3.3); if present in a function defini-
tion (8.4), it names a parameter (sometimes called“formal argument”). In particular, parameter names are
also optional in function definitions and names used for a parameter in different declarations and the defini-
tion of a function need not be the same.

8 The declaration

int i,
*pi,
f(),
*fpi(int),
(*pif)(const char*, const char*);
(*fpif(int))(int);

declares an integeri , a pointerpi to an integer, a functionf taking no arguments and returning an integer,
a functionfpi taking an integer argument and returning a pointer to an integer, a pointerpif to a function
which takes two pointers to constant characters and returns an integer, a functionfpif taking an integer
argument and returning a pointer to a function that takes an integer argument and returns an integer. It is
especially useful to comparefpi andpif . The binding of*fpi(int) is *(fpi(int)) , so the decla-
ration suggests, and the same construction in an expression requires, the calling of a functionfpi , and then
using indirection through the (pointer) result to yield an integer. In the declarator(*pif)(const
char*, const char*) , the extra parentheses are necessary to indicate that indirection through a pointer
to a function yields a function, which is then called.
__________________
44) This excludes parameters of type“ptr-arr-seq T2” whereT2 is “pointer to array of unknown bound ofT” and whereptr-arr-seq
means any sequence of“pointer to” and“array of” modifiers. This exclusion applies to the parameters of the function, and if a parame-
ter is a pointer to function then to its parameters also, etc.
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9 Typedefs are sometimes convenient when the return type of a function is complex. For example, the func-
tion fpif above could have been declared

typedef int IFUNC(int);
IFUNC* fpif(int);

10 The declaration

fseek(FILE*, long, int);

declares a function taking three arguments of the specified types. Since no return value type is specified it
is taken to beint (7.1.5). The declaration

printf(const char* ...);

declares a function that can be called with varying numbers and types of arguments. For example,

printf("hello world");
printf("a=%d b=%d", a, b);

It shall always have a value, however, that can be converted to aconst char* as its first argument. 

[dcl.fct.default] 8.3.6 Default arguments

1 If an expression is specified in a parameter declaration this expression is used as a default argument.∗
Default arguments will be used in calls where trailing arguments are missing. ∗

2 The declaration

point(int = 3, int = 4);

declares a function that can be called with zero, one, or two arguments of typeint . It can be called in any
of these ways:

point(1,2); point(1); point();

The last two calls are equivalent topoint(1,4) andpoint(3,4) , respectively.

3 A default argument expression shall be specified only in theparameter-declaration-clauseof a function 
declaration or in atemplate-parameter(14.6). If it is specified in aparameter-declaration-clause, it shall 
not occur within adeclaratoror abstract-declaratorof aparameter-declaration.45) 

Box 41 
This restriction, voted in at the Valley Forge meeting, is expected to be reviewed at the Austin meeting.
Mike Miller has promised a paper.  _ ________________________________________________________________________________________





_ ________________________________________________________________________________________



 

4 Default arguments can be added in later declarations of a function, but only in the same scope. Declara-
tions in different scopes have completely distinct sets of default arguments. That is, declarations in inner
scopes do not acquire default arguments from declarations in outer scopes, and vice versa. In a given func-
tion declaration, all parameters subsequent to a parameter with a default argument shall have default argu-
ments supplied in this or previous declarations. A default argument shall not be redefined by a later decla-
ration (not even to the same value). For example: 

__________________
45) This means that default arguments cannot appear, for example, in declarations of pointers to functions, references to functions, or
typedef declarations.
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void f(int, int); 
void f(int, int = 7); 
void h() 
{ 

f(3); // ok, calls f(3, 7) 
void f(int = 1, int); // error: does not use default 

// from surrounding scope 
} 
void m() 
{ 

void f(int, int); // has no defaults 
f(4); // error: wrong number of arguments 
void f(int, int = 5); // ok 
f(4); // ok, calls f(4, 5); 
void f(int, int = 5); // error: cannot redefine, even to 

// same value 
} 
void n() 
{ 

f(6); // ok, calls f(6, 7) 
} 

Declarations of a given nonmember function in different translation units need not specify the same default
arguments. Declarations of a given member function in different translation units, however, shall specify
the same default arguments (the accumulated sets of default arguments at the end of the translation units
shall be the same). 

Box 42 
This was decided on the basis of guesses regarding the One Definition Rule and should be reviewed once
that section is finished.  _ ________________________________________________________________________________________





_ ________________________________________________________________________________________



 

5 Default argument expressions in non-member functions have their names bound and their types checked at
the point of declaration, and are evaluated at each point of call. In member functions, names in default
argument expressions are bound at the end of the class declaration, like names in inline member function
bodies (_class.inline_). In the following example,g will be called with the valuef(1) : 

int a = 1;
int f(int);
int g(int x = f(a)); // default argument: f(::a)

void h() {
a = 2;
{

int a = 3;
g(); // g(f(::a))

}
}

Local variables shall not be used in default argument expressions. For example,

void f()
{

int i;
extern void g(int x = i); // error
// ...

}

this shall not be used in a default argument of a member function. For example, 
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class A { 
void f(A* p = this); // error 

}; 

6 Note that default arguments are evaluated before entry into a function and that the order of evaluation of
function arguments is implementation dependent. Consequently, parameters of a function shall not be used
in default argument expressions, even if they are not evaluated. Parameters of a function declared before a
default argument expression are in scope and can hide namespace and class member names. For example,

int a;
int f(int a, int b = a); // error: parameter ‘a’

// used as default argument
typedef int I;
int g(float I, int b = I(2)); // error: ‘float’ called
int h(int a, int b = sizeof(a)); // error, parameter ‘a’ used 

// in default argument 

7 Similarly, a nonstatic member shall not be used in a default argument expression, even if it is not evaluated,
unless it appears as the id-expression of a class member access expression (5.2.4). For example, the decla-
ration ofX::mem1() in the following example is ill-formed because no object is supplied for the nonstatic
memberX::a used as an initializer.

int b;
class X {

int a;
mem1(int i = a); // error: nonstatic member ‘a’

// used as default argument
mem2(int i = b); // ok; use X::b
static b;

};

The declaration ofX::mem2() is meaningful, however, since no object is needed to access the static
memberX::b . Classes, objects, and members are described in 9.

8 A default argument is not part of the type of a function.

int f(int = 0);

void h()
{

int j = f(1);
int k = f(); // fine, means f(0) 

}

int (*p1)(int) = &f;
int (*p2)() = &f; // error: type mismatch

When a declaration of a function is introduced by way of ausing declaration (7.3.3), any default argu-
ment information associated with the declaration is imported as well. 

Box 43 
Can additional default arguments be added to the function thereafter by way of redeclarations of the func-
tion? Can the function be redeclared in the namespace with added default arguments, and if so, are those
added arguments visible to those who have imported the function via using?  _ ________________________________________________________________________________________






_ ________________________________________________________________________________________




 

9 An overloaded operator (13.4) shall not have default arguments. 

10 A virtual function call (10.3) uses the default arguments in the declaration of the virtual function deter-
mined by the static type of the pointer or reference denoting the object. An overriding function in a derived
class does not acquire default arguments from the function it overrides. For example, 
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struct A { 
virtual void f(int a = 7); 

}; 
struct B : public A { 

void f(int a); 
}; 
void m() 
{ 

B* pb = new B; 
A* pa = pb; 
pa->f(); // ok, calls pa->A::f(7) 
pb->f(); // error: wrong number of arguments for B::f() 

} 

[dcl.fct.def] 8.4 Function definitions

1 Function definitions have the form

function-definition:
decl-specifier-seqopt declarator ctor-initializeropt function-body

function-body:
compound-statement

Thedeclaratorin a function-definitionshall have the form

D1 ( parameter-declaration-clause) cv-qualifier-seqopt

as described in 8.3.5. A function can be defined only in namespace or class scope. 

2 The parameters are in the scope of the outermost block of thefunction-body.

3 A simple example of a complete function definition is

int max(int a, int b, int c)
{

int m = (a > b) ? a : b;
return (m > c) ? m : c;

}

Hereint is thedecl-specifier-seq; max(int a, int b, int c) is thedeclarator; { /* ... */ } is
thefunction-body.

4 A ctor-initializer is used only in a constructor; see 12.1 and 12.6.

5 A cv-qualifier-seqcan be part of a non-static member function declaration, non-static member function def-
inition, or pointer to member function only; see 9.4.2. It is part of the function type.

6 Note that unused parameters need not be named. For example,

void print(int a, int)
{

printf("a = %d\n",a);
}

[dcl.init] 8.5 Initializers

1 A declarator can specify an initial value for the identifier being declared. The identifier designates an
object or reference being initialized. The process of initialization described in the remainder of this sub-
clause (8.5) applies also to initializations specified by other syntactic contexts, such as the initialization of
function parameters with argument expressions (5.2.2) or the initialization of return values (6.6.3).
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initializer:
= initializer-clause
( expression-list)

initializer-clause:
assignment-expression
{ initializer-list , opt }
{ }

initializer-list:
initializer-clause
initializer-list , initializer-clause

2 Automatic, register, static, and external variables of namespace scope can be initialized by arbitrary expres-
sions involving constants and previously declared variables and functions.

int f(int);
int a = 2;
int b = f(a);
int c(b);

3 Default argument expressions are more restricted; see 8.3.6. ∗

4 The order of initialization of static objects is described in 3.6 and 6.7.

5 Variables with static storage duration (3.7) that are not initialized and do not have a user-declared construc-
tor are guaranteed to start off as zero converted to the appropriate type. If the object is aclass or
struct , its nonstatic data members start off as zero converted to the appropriate type. If the object is a
union , its first nonstatic data member starts off as zero converted to the appropriate type. The initial val-
ues of automatic and register variables that are not initialized are indeterminate.

6 An initializer for a static member is in the scope of the member’s class. For example, ∗

int a;

struct X {
static int a;
static int b;

};

int X::a = 1;
int X::b = a; // X::b = X::a

7 ∗The form of initialization (using parentheses or=) is generally insignificant, but does matter when the
entity being initialized has a class type; see below. A parenthesized initializer can be a list of expressions
only when the entity being initialized has a class type. 

8 Note that since() is not aninitializer, 

X a(); 

is not the declaration of an object of classX, but the declaration of a function taking no argument and
returning anX. 

9 The initialization that occurs in argument passing and function return is equivalent to the form 

T x = a; 

The initialization that occurs innew expressions (5.3.4),static_cast expressions (5.2.8), functional
notation type conversions (5.2.3), and base and member initializers (12.6.2) is equivalent to the form

T x(a); 
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10 The semantics of initializers are as follows. Thedestination typeis the type of the object or reference being
initialized and thesource typeis the type of the initializer expression. The source type is not defined when
the initializer is brace-enclosed or when it is a parenthesized list of expressions.

— If the destination type is a reference type, see 8.5.3.

— If the destination type is an array of characters or an array ofwchar_t , and the initializer is a string lit-
eral, see 8.5.2. 

— Otherwise, if the destination type is an array, see 8.5.1. 

— If the destination type is a (possibly cv-qualified) class type that is an aggregate (8.5.1), and the initial-
izer is a brace-enclosed list, see 8.5.1.

— Otherwise, if the destination type is a (possibly cv-qualified) class type and the initializer has the paren-
thesized form, constructors are considered. The applicable constructors are enumerated (13.2.1.4), and
the best one is chosen through overload resolution (13.2). The constructor so selected is called to ini-
tialize the object, with the initializer expression(s) as its argument(s). If no constructor applies, or the
overload resolution is ambiguous, the initialization is ill-formed. 

— Otherwise, if the destination type or the source type is a (possibly cv-qualified) class type, user-defined
conversions are considered. The applicable user-defined conversions are enumerated (13.2.1.3), and the
best one is chosen through overload resolution (13.2). The user-defined conversion so selected is called
to copy or convert the initializer expression into the object being initialized. If the conversion cannot be
done or is ambiguous, the initialization is ill-formed. ∗

— Otherwise, the initial value of the object being initialized is the (possibly converted) value of the initial-
izer expression. Standard conversions (clause 4) will be used, if necessary, to convert the initializer
expression to the unqualified version of the destination type; no user-defined conversions are consid-
ered. If the conversion cannot be done, the initialization is ill-formed. Note that an expression of type
“cv1 T” can initialize an object of type“cv2 T” independently of the cv-qualifierscv1 andcv2. For 
example, 

int a; 
const int b = a; 
int c = b; 

[dcl.init.aggr] 8.5.1 Aggregates

1 An aggregateis an array or an object of a class (9) with no user-declared constructors (12.1), no private or
protected members (11), no base classes (10), and no virtual functions (10.3). When an aggregate is initial-
ized theinitializer can be aninitializer-clauseconsisting of a brace-enclosed, comma-separated list of ini-
tializers for the members of the aggregate, written in increasing subscript or member order. If the aggregate
contains subaggregates, this rule applies recursively to the members of the subaggregate. If there are fewer
initializers in the list than there are members of the aggregate, then the aggregate is padded with zeros of
the appropriate types.46)

2 For example,

struct S { int a; char* b; int c; };
S ss = { 1, "asdf" };

initializesss.a with 1, ss.b with "asdf" , andss.c with zero.

3 An aggregate that is a class can also be initialized with a single non-brace-enclosed expression, as described
in 8.5.

__________________
46)The syntax provides for empty initializer clauses, but nonetheless C + + does not have zero length arrays.
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4 Braces can be elided as follows. If theinitializer-clausebegins with a left brace, then the succeeding
comma-separated list of initializers initializes the members of the aggregate; it is erroneous for there to be
more initializers than members. If, however, theinitializer-clauseor a subaggregate does not begin with a
left brace, then only enough elements from the list are taken to account for the members of the aggregate;
any remaining elements are left to initialize the next member of the aggregate of which the current aggre-
gate is a part.

5 For example,

int x[] = { 1, 3, 5 };

declares and initializesx as a one-dimensional array that has three members, since no size was specified
and there are three initializers.

float y[4][3] = {
{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },

};

is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the arrayy[0] , namely
y[0][0] , y[0][1] , andy[0][2] . Likewise the next two lines initializey[1] andy[2] . The initial-
izer ends early and thereforey[3] is initialized with zeros. Precisely the same effect could have been
achieved by

float y[4][3] = {
1, 3, 5, 2, 4, 6, 3, 5, 7

};

The last (rightmost) index varies fastest (8.3.4).

6 The initializer fory begins with a left brace, but the one fory[0] does not, therefore three elements from
the list are used. Likewise the next three are taken successively fory[1] andy[2] . Also,

float y[4][3] = {
{ 1 }, { 2 }, { 3 }, { 4 }

};

initializes the first column ofy (regarded as a two-dimensional array) and leaves the rest zero.

7 Initialization of arrays of objects of a class with non-trivial constructors (12.1) is described in 12.6.1. 

8 The initializer for a union with no user-declared constructor is either a single expression of the same type,
or a brace-enclosed initializer for the first member of the union. For example,

union u { int a; char* b; };

u a = { 1 };
u b = a;
u c = 1; // error
u d = { 0, "asdf" }; // error
u e = { "asdf" }; // error

9 There shall not be more initializers than there are members or elements to initialize. For example, 

char cv[4] = { ’a’, ’s’, ’d’, ’f’, 0 }; // error

is ill-formed. ∗

[dcl.init.string] 8.5.2 Character arrays

1 A char array (whether plainchar , signed , or unsigned ) can be initialized by a string; awchar_t 
array can be initialized by a wide-character string; successive characters of the string initialize the members
of the array. For example,
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char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string. Note that because’\n’ is a single
character and because a trailing’\0’ is appended,sizeof(msg) is 25 .

2 There shall not be more initializers than there are array elements. For example, 

char cv[4] = "asdf"; // error

is ill-formed since there is no space for the implied trailing’\0’ .

[dcl.init.ref] 8.5.3 References

1 A variable declared to be aT&, that is“reference to typeT” (8.3.2), shall be initialized by an object, or
function, of typeT or by an object that can be converted into aT. For example,

int g(int);
void f()
{

int i;
int& r = i; // ‘r’ refers to ‘i’
r = 1; // the value of ‘i’ becomes 1
int* p = &r; // ‘p’ points to ‘i’
int& rr = r; // ‘rr’ refers to what ‘r’ refers to,

// that is, to ‘i’
int (&rg)(int) = g; // ‘rg’ refers to the function ‘g’
rg(i); // calls function ‘g’
int a[3];
int (&ra)[3] = a; // ‘ra’ refers to the array ‘a’
ra[1] = i; // modifies ‘a[1]’

}

2 A reference cannot be changed to refer to another object after initialization. Note that initialization of a ref-
erence is treated very differently from assignment to it. Argument passing (5.2.2) and function value return
(6.6.3) are initializations.

3 The initializer can be omitted for a reference only in a parameter declaration (8.3.5), in the declaration of a
function return type, in the declaration of a class member within its class declaration (9.2), and where the
extern specifier is explicitly used. For example,

int& r1; // error: initializer missing
extern int& r2; // ok

4 Given types“cv1T1” and“cv2T2,” “cv1T1” is reference-relatedto “cv2T2” if T1 is the same type as
T2, or T1 is a base class ofT2. “cv1T1” is reference-compatiblewith “cv2T2” if T1 is reference-related
to T2 andcv1 is the same cv-qualification as, or greater cv-qualification than,cv2. For purposes of over-
load resolution, cases for whichcv1 is greater cv-qualification thancv2 are identified asreference-
compatible with added qualification(see 13.2.3.2). In all cases where the reference-related or reference-
compatible relationship of two types is used to establish the validity of a reference binding, andT1 is a base 
class ofT2, a program that necessitates such a binding is ill-formed ifT1 is an inaccessible (11) or ambigu-
ous (10.2) base class ofT2.

5 A reference to type“cv1T1” is initialized by an expression of type“cv2T2” as follows:

— If the initializer expression is an lvalue (but not an lvalue for a bit-field), and

6 
— “cv1T1” is reference-compatible with“cv2T2,” or

— the initializer expression can be implicitly converted to an lvalue of type“cv3T1,” wherecv3 is the
same cv-qualification as, or lesser cv-qualification than,cv1, 47) then

__________________
47)This requires a conversion function (12.3.2) returning a reference type, and therefore applies only whenT2 is a class type.
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7 the reference is bound directly to the initializer expression lvalue. Note that the usual lvalue-to-rvalue
(4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are not needed, and
therefore are suppressed, when such direct bindings to lvalues are done.

double d = 2.0;
double& rd = d; // rd refers to ‘d’
const double& rcd = d; // rcd refers to ‘d’

struct A { };
struct B : public A { } b;
A& ra = b; // ra refers to A sub-object in ‘b’
const A& rca = b; // rca refers to A sub-object in ‘b’

8 
— Otherwise, the reference shall be to a non-volatile const type (i.e.,cv1shall beconst ). 

double& rd2 = 2.0; // error: not an lvalue and reference 
// not const 

int i = 2; 
double& rd3 = i; // error: type mismatch and reference 

// not const 

— If the initializer expression is an rvalue, withT2 a class type, and“cv1T1” is reference-compatible
with “cv2T2,” the reference is bound in one of the following ways (the choice is implementation-
defined):

— The reference is bound directly to the object represented by the rvalue (see 3.9) or to a sub-object
within that object.

— A temporary of type“cv1T2” [sic] is created, and a copy constructor is called to copy the entire
rvalue object into the temporary. The reference is bound to the temporary or to a sub-object
within the temporary.48)

9 The appropriate copy constructor must be callable whether or not the copy is actually done.

struct A { };
struct B : public A { } b;
extern B f();
const A& rca = f(); // Either bound directly or

// the entire B object is copied and
// the reference is bound to the
// A sub-object of the copy

10 
— Otherwise, a temporary of type“cv1T1” is created and initialized from the initializer expression

using the rules for a non-reference initialization (8.5). The reference is then bound to the temporary.
If T1 is reference-related toT2, cv1must be the same cv-qualification as, or greater cv-qualification
than,cv2; otherwise, the program is ill-formed.

const double& rcd2 = 2; // rcd2 refers to temporary
// with value ‘2.0’

const volatile int cvi = 1; ∗
const int& r = cvi; // error: type qualifiers dropped

11 12.2 describes the lifetime of temporaries bound to references. 

__________________
48) Clearly, if the reference initialization being processed is one for the first argument of a copy constructor call, an implementation
must eventually choose the direct-binding alternative to avoid infinite recursion.
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9 Classes [class]
_ _____________________________________________________________________________________________________________________________________________________________________________ ___________________________________________

1 A class is a type. Its name becomes aclass-name(9.1) within its scope. 

class-name:
identifier
template-id

Class-specifiers andelaborated-type-specifiers (7.1.5.3) are used to makeclass-names. An object of a class
consists of a (possibly empty) sequence of members and base class objects.

class-specifier:
class-head{ member-specificationopt }

class-head:
class-key identifieropt base-clauseopt

class-key nested-name-specifier identifier base-clauseopt

class-key:
class
struct
union

2 The name of a class can be used as aclass-nameeven within thebase-clauseandmember-specificationof
the class specifier itself. Aclass-specifieris commonly referred to as a class definition. A class is consid-
ered defined after the closing brace of itsclass-specifierhas been seen even though its member functions
are in general not yet defined.

3 Objects of an empty class have a nonzero size.

Box 44

Bill Gibbons suggest that a base class subobject should be allowed to occupy zero bytes of the complete
object. This would permit two base class subobjects to have the same address, for example._ ________________________________________________________________________________________





_ ________________________________________________________________________________________





4 Class objects can be assigned, passed as arguments to functions, and returned by functions (except objects
of classes for which copying has been restricted; see 12.8). Other plausible operators, such as equality
comparison, can be defined by the user; see 13.4.

5 A structureis a class declared with theclass-keystruct ; its members and base classes (10) are public by
default (11). Aunion is a class declared with theclass-keyunion ; its members are public by default and it
holds only one member at a time (9.6). 

6 Aggregates of class type are described in 8.5.1. APOD-struct49) is an aggregate class that has no members
of type reference, pointer to member, non-POD-struct or non-POD-union. Similarly, aPOD-union is an 
aggregate union that has no members of type reference, pointer to member, non-POD-struct or non-POD-
union.

__________________
49)The acronym POD stands for“plain ol’ data.”
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[class.name] 9.1 Class names

1 A class definition introduces a new type. For example,

struct X { int a; };
struct Y { int a; };
X a1;
Y a2;
int a3;

declares three variables of three different types. This implies that

a1 = a2; // error: Y assigned to X
a1 = a3; // error: int assigned to X

are type mismatches, and that

int f(X);
int f(Y);

declare an overloaded (13) functionf() and not simply a single functionf() twice. For the same reason,

struct S { int a; };
struct S { int a; }; // error, double definition

is ill-formed because it definesS twice.

2 A class definition introduces the class name into the scope where it is defined and hides any class, object,
function, or other declaration of that name in an enclosing scope (3.3). If a class name is declared in a
scope where an object, function, or enumerator of the same name is also declared, then when both declara-
tions are in scope, the class can be referred to only using anelaborated-type-specifier(7.1.5.3). For exam-
ple,

struct stat {
// ...

};

stat gstat; // use plain ‘stat’ to
// define variable

int stat(struct stat*); // redefine ‘stat’ as function

void f()
{

struct stat* ps; // ‘struct’ prefix needed
// to name struct stat

// ...
stat(ps); // call stat()
// ...

}

A declarationconsisting solely ofclass-key identifier ;is either a redeclaration of the name in the current
scope or a forward declaration of the identifier as a class name. It introduces the class name into the current
scope. For example,

struct s { int a; };

void g()
{

struct s; // hide global struct ‘s’
s* p; // refer to local struct ‘s’
struct s { char* p; }; // declare local struct ‘s’
struct s; // receclaration, has no effect

}

Such declarations allow definition of classes that refer to each other. For example,
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class vector;

class matrix {
// ...
friend vector operator*(matrix&, vector&);

};

class vector {
// ...
friend vector operator*(matrix&, vector&);

};

Declaration offriend s is described in 11.4, operator functions in 13.4.

3 An elaborated-type-specifier(7.1.5.3) can also be used in the declarations of objects and functions. It dif-
fers from a class declaration in that if a class of the elaborated name is in scope the elaborated name will
refer to it. For example,

struct s { int a; };

void g(int s)
{

struct s* p = new struct s; // global ‘s’
p->a = s; // local ‘s’

}

4 A name declaration takes effect immediately after theidentifier is seen. For example,

class A * A;

first specifiesA to be the name of a class and then redefines it as the name of a pointer to an object of that
class. This means that the elaborated formclass A must be used to refer to the class. Such artistry with
names can be confusing and is best avoided.

5 A typedef-name(7.1.3) that names a class is aclass-name, but shall not be used in anelaborated-type-
specifier; see also 7.1.3.

[class.mem] 9.2 Class members

member-specification:
member-declaration member-specificationopt

access-specifier: member-specificationopt

member-declaration:
decl-specifier-seqopt member-declarator-listopt ;
function-definition ; opt

qualified-id ;
using-declaration

member-declarator-list:
member-declarator
member-declarator-list, member-declarator

member-declarator:
declarator pure-specifieropt

declarator constant-initializeropt

identifieropt : constant-expression

pure-specifier:
= 0
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constant-initializer:
= constant-expression

1 Themember-specificationin a class definition declares the full set of members of the class; no member can
be added elsewhere. Members of a class are data members, member functions (9.4), nested types, and
member constants. Data members and member functions are static or nonstatic; see 9.5. Nested types are
classes (9.1, 9.8) and enumerations (7.2) defined in the class, and arbitrary types declared as members by
use of a typedef declaration (7.1.3). The enumerators of an enumeration (7.2) defined in the class are mem-
ber constants of the class. Except when used to declare friends (11.4) or to adjust the access to a member of
a base class (11.3),member-declarations declare members of the class, and each suchmember-declaration
must declare at least one member name of the class. A member shall not be declared twice in themember- 
specification, except that a nested class can be declared and then later defined. 

2 Note that a single name can denote several function members provided their types are sufficiently different
(13).

3 A member-declaratorcan contain aconstant-initializeronly if it declares astatic member (9.5) of inte- 
gral or enumeration type, see 9.5.2.

4 A member can be initialized using a constructor; see 12.1.

5 A member shall not beauto , extern , or register . 

6 Thedecl-specifier-seqcan be omitted in constructor, destructor, and conversion function declarations only.
The member-declarator-listcan be omitted only after aclass-specifier, an enum-specifier, or a decl-
specifier-seqof the form friend elaborated-type-specifier. A pure-specifiershall be used only in the
declaration of a virtual function (10.3).

7 Non-static (9.5) members that are class objects shall be objects of previously defined classes. In partic-
ular, a classcl shall not contain an object of classcl , but it can contain a pointer or reference to an object
of classcl . When an array is used as the type of a nonstatic member all dimensions shall be specified.

8 A simple example of a class definition is

struct tnode {
char tword[20];
int count;
tnode *left;
tnode *right;

};

which contains an array of twenty characters, an integer, and two pointers to similar structures. Once this
definition has been given, the declaration

tnode s, *sp;

declaress to be atnode andsp to be a pointer to atnode . With these declarations,sp->count refers
to thecount member of the structure to whichsp points;s.left refers to theleft subtree pointer of
the structures ; ands.right->tword[0] refers to the initial character of thetword member of the
right subtree ofs .

9 Nonstatic data members of a class declared without an interveningaccess-specifierare allocated so that
later members have higher addresses within a class object. The order of allocation of nonstatic data mem-
bers separated by anaccess-specifieris implementation dependent (11.1). Implementation alignment
requirements might cause two adjacent members not to be allocated immediately after each other; so might
requirements for space for managing virtual functions (10.3) and virtual base classes (10.1); see also 5.4.

10 A function member (9.4) with the same name as its class is a constructor (12.1). A static data member, enu-
merator, member of an anonymous union, or nested type shall not have the same name as its class.



9.2 Class members DRAFT: 1 February 1995 Classes 9– 5

11 Two POD-struct (9) types are layout-compatible if they have the same number of members, and corre-
sponding members (in order) have layout-compatible types (3.8).

12 Two POD-union (9) types are layout-compatible if they have the same number of members, and corre-
sponding members (in any order) have layout-compatible types (3.8).

Box 45

Shouldn’t this be the samesetof types?_ _________________________________



_ _________________________________




13 If a POD-union contains several POD-structs that share a common initial sequence, and if the POD-union
object currently contains one of these POD-structs, it is permitted to inspect the common initial part of any
of them. Two POD-structs share a common initial sequence if corresponding members have layout-
compatible types (and, for bit-fields, the same widths) for a sequence of one or more initial members.

14 A pointer to a POD-struct object, suitably converted, points to its initial member (or if that member is a
bit-field, then to the unit in which it resides) and vice versa. There might therefore be unnamed padding
within a POD-struct object, but not at its beginning, as necessary to achieve appropriate alignment.

[class.scope0] 9.3 Scope rules for classes

1 The following rules describe the scope of names declared in classes.

1) The scope of a name declared in a class consists not only of the text following the name’s declarator,
but also of all function bodies, default arguments, and constructor initializers in that class (including
such things in nested classes).

2) A nameNused in a classS shal refer to the same declaration when re-evaluated in its context and in
the completed scope of S.

3) If reordering member declarations in a class yields an alternate valid program under (1) and (2), the
program’s meaning is undefined.

4) A declaration in a nested declarative region hides a declaration whose declarative region contains
the nested declarative region.

5) A declaration within a member function hides a declaration whose scope extends to or past the end
of the member function’s class.

6) The scope of a declaration that extends to or past the end of a class definition also extends to the
regions defined by its member definitions, even if defined lexically outside the class (this includes
static data member initializations, nested class definitions and member function definitions (that is,
the parameter-declaration-clauseincluding default arguments (8.3.6), the member function body
and, for constructor functions (12.1), the ctor-initializer (12.6.2)).

2 For example:

typedef int c;
enum { i = 1 };

class X {
char v[i]; // error: ’i’ refers to ::i

// but when reevaluated is X::i
int f() { return sizeof(c); } // okay: X::c
char c;
enum { i = 2 };

};
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typedef char* T;
struct Y {

T a; // error: ’T’ refers to ::T
// but when reevaluated is Y::T

typedef long T;
T b;

};

struct Z {
int f(const R); // error: ’R’ is parameter name

// but swapping the two declarations
// changes it to a type

typedef int R;
};

[class.mfct] 9.4 Member functions

1 
Box 46 
This subclause does not take into account inheritance. Should it?  _ _____________________________________________________




_ _____________________________________________________


 

2 Functions declared in the definition of a class (excluding those declared with afriend specifier; 11.4) are 
called member functions of that class. A member function may be declaredstatic in which case it is a 
static member function of its class (9.5); otherwise it is anonstaticmember function of its class (9.4.1,
9.4.2). 

3 A member function may be defined (8.4) in its class definition, in which case it is aninline member func- 
tion, or it may be defined outside of its class definition if it has already been declared but not defined in its
class definition. Thisout-of-linedefinition shall appear in a namespace scope containing the definition of
the member function’s class. 

4 An inline member function (whether static or nonstatic) may also be defined outside of its class defini-
tion provided either its declaration in the class definition or its definition outside of the class definition
declares the function asinline , see 7.1.2. 

5 Member functions of a class in namespace scope have external linkage. Member functions of a local class
(9.9) have no linkage. See 3.5. 

6 There shall be exactly one definition of a non-inline member function in a program; no diagnostic is
required. There may be more than oneinline member function definition in a program. See 3.2 and
7.1.2. 

7 If the definition of a member function is lexically outside its class definition, the member function name
shall be qualified by its class name using the:: operator. A member function definition (that is, the
parameter-declaration-clauseincluding the default arguments (8.3.6), the member function body and, for a
constructor function (12.1), the ctor-initializer (12.6.2)) is in the scope of the member function’s class
(_class.scope0). For example, 

struct X { 
typedef int T; 
static T count; 
void f(T); 

}; 
void X::f(T t = count) { } 

The member functionf of classX is defined in global scope; the notationX::f specifies that the function
f is a member of classX and in the scope of classX. In the function definition, the parameter typeT refers 
to the typedef member CW T declared in classX and the default argumentcount refers to the static data
membercount declared in classX. 
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8 A static local variable in a member function always refers to the same object, whether or not the mem-
ber function isinline . 

9 Member functions may be mentioned infriend declarations after their class has been defined. 

10 Member functions of a local class shall be defined inline in their class definition. 

[class.mfct.nonstatic]9.4.1 Nonstatic member functions 

1 A nonstaticmember function may be called for an object of its class type using the class member access
syntax (5.2.4, 13.2.1.1). A nonstatic member function may also be called directly from within the body of
the member functions of its class using the function call syntax (5.2.2, 13.2.1.1). The effect of calling a
nonstatic member function of a classX for something that is not an object of classX is undefined. 

2 The names of a member of classX may be used directly in the body of a nonstatic member function ofX. 
During name lookup, when anid-expression(5.1) used in a nonstatic member function body resolves to a
nonstatic member of the member function’s class, theid-expressionis transformed into a class member
access expression (5.2.4) using(*this) (9.4.2) as thepostfix-expressionto the left of the. operator. 
The member name then refers to the member of the object for which the function is called. Similarly dur-
ing name look up, when anunqualified-id(5.1) used in the definition of a member function resolves to a
static member, an enumerator or a nested type of member function’s class, theunqualified-idis trans- 
formed into aqualified-id(5.1) in which thenested-name-specifiernames the class of the member function.
For example,

struct tnode {
char tword[20]; 
int count; 
tnode *left; 
tnode *right; 
void set(char*, tnode* l, tnode* r); 

};

void tnode::set(char* w, tnode* l, tnode* r) 
{

count = strlen(w)+1; 
if (sizeof(tword)<=count) 

error("tnode string too long"); 
strcpy(tword,w); 
left = l; 
right = r; 

}

void f(tnode n1, tnode n2) 
{

n1.set("abc",&n2,0); 
n2.set("def",0,0); 

}

The member namestword , count , left , andright refer to members of the object for which the func-
tion is called. Thus, in the call ,n1.set( abc",&n2,0)" tword refers ton1.tword , and in the call 
,n2.set( def",0,0)" it refers ton2.tword . The functionsstrlen , error , andstrcpy are not mem- 
bers of the classtnode and shall be declared elsewhere.50)

3 The type of a nonstatic member function involves its class name; thus the type of thequalified-id expres- 
sion tnode::set is member function and the type of&tnode::set is pointer to member function
(that is,void (tnode::*)(char*,tnote*,tnode*) , see 5.3.1).

__________________
50)See, for example,<cstring> (21.2).
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4 A nonstatic member function may be declaredconst , volatile , or const volatile . Thesecv- 
qualifiersaffect the type of thethis pointer, see 9.4.2. They also affect the type of the member function;
a member function declaredconst is aconstmember function, a member function declaredvolatile is 
a volatile member function and a member function declaredconst volatile is aconst volatilemember 
function. For example, 

struct X { 
void g() const; 
void h() const volatile; 

}; 

X::g is aconst member function andX::h is aconst volatile member function. 

5 A nonstatic member function may be declaredvirtual (10.3) orpure virtual(10.4).

[class.this] 9.4.2 Thethis pointer

1 In the body of a nonstatic (9.4) member function, the keywordthis is a non-lvalue expression whose
value is the address of the object for which the function is called. The type ofthis in a member function
of a classX is X* . If the member function is declaredconst , the type ofthis is const X* , if the mem- 
ber function is declaredvolatile , the type ofthis is volatile X* , and if the member function is
declaredconst volatile , the type ofthis is const volatile X* . 

2 In a const member function, the object for which the function is called is accessed through aconst 
access path; therefore, aconst member function shall not modify the object and its non-static members.
For example,

struct s {
int a;
int f() const;
int g() { return a++; }
int h() const { return a++; } // error

};

int s::f() const { return a; }

The a++ in the body ofs::h is ill-formed because it tries to modify (a part of) the object for which
s::h() is called. This is not allowed in aconst member function wherethis is a pointer toconst ,
that is,*this is aconst .

3 Similarly, volatile semantics (7.1.5.1) apply involatile member functions when accessing the
object and its non-static members. 

4 A cv-qualifiedmember function can be called on an object-expression (5.2.4) only if the object-expression
is as qualified or less-qualified than the member function. For example,

void k(s& x, const s& y)
{

x.f();
x.g();
y.f();
y.g(); // error

}

The cally.g() is ill-formed becausey is const ands::g() is a non-const member function, that is,
s::g() is less-qualified than the object-expression y.

5 Constructors (12.1) and destructors (12.4) cannot be declaredconst , volatile or const volatile ; 
however, these functions can be invoked to create and destroy objects with cv-qualified types, see 12.1 and
12.4.
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[class.static] 9.5 Static members

1 A data or function member of a class may be declaredstatic in a class definition, in which case it is a
static memberof the class.

2 A static members of classX may be referred to using thequalified-idexpressionX::s ; it is not neces- 
sary to use the class member access syntax (_class.ref_) to refer to astatic member. Astatic mem- 
ber may be referred to using the class member access syntax, in which case theobject-expressionis always 
evaluated. For example,

class process {
public: ∗

static void reschedule(); 
};
process& g(); 

void f() ∗
{

process::reschedule(); // ok: no object necessary 
g().reschedule(); // g() is called 

}

A static member may be referred to directly in the scope of its class; in this case, thestatic member 
is referred to as if aqualified-idexpression was used in which thenested-name-specifiernames the class of
the static member. For example, 

class X { 
public: 

static int i; 
static int g(); 

}; 
int X::i = g(); // equivalent to X::g(); 

3 The definition of astatic member function or theinitializer expression of astatic data member defi- 
nition may use the names of thestatic members, enumerators, and nested types of the member’s class
directly. During name lookup, when anunqualified-id (5.1) used in the definition of a static member
resolves to astatic member, enumerator or nested type of its class, theunqualified-idis transformed into 
a qualified-idexpression in which thenested-name-specifiernames the class of thestatic member. The 
definition of astatic member shall not use directly the names of the nonstatic members of its class
(including as operands of thesizeof operator). The definition of astatic member may only refer to
the nonstatic members of its class by using the class member access syntax (5.2.4) with anobject- 
expressionof its class type. 

4 Static members obey the usual class member access rules (11). 

5 The type of astatic member does not involve its class name; thus, in the example above, the type of the
qualified-id expressionX::g is a function type and the type of&X::g is pointer to function type (that is,
void(*)() , see 5.3.1). 

[class.static.mfct]9.5.1 Static member functions 

1 The rules described in 9.4 apply tostatic member functions. 

2 A static member function does not have athis pointer (9.4.2). Astatic member function shall not
bevirtual . There shall not be astatic and a nonstatic member function with the same name and the
same parameter types (13.1). A nonstatic member function shall not be declaredconst , orvolatile , 
const volatile . 
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[class.static.data]9.5.2 Static data members 

1 A static data member is not part of the subobjects of a class. There is only one copy of astatic data 
member shared by all the objects of the class. 

2 The declaration of astatic data member in its class definition is not a definition and may be of an
incomplete type. A definition shall be provided for thestatic data member in a namespace scope
enclosing the member’s class definition. In the definition at namespace scope, the name of thestatic 
data member shall be qualified by its class name using the:: operator. Theinitializer expression in the 
definition of astatic data member is in the scope of its class (9.3). For example,

class process { 
static process* run_chain; 
static process* running; 

}; 

process* process::running = get_main();
process* process::run_chain = running; 

The static data memberrun_chain of classprocess is defined in global scope; the notation
process::run_chain specifies that the memberrun_chain is a member of classprocess and in 
the scope of classprocess . In thestatic data member definition, theinitializer expression refers to
thestatic data memberrunning of classprocess .

3 Once thestatic data member has been defined, it exists even if no objects of its class have i been cre-
ated. For example, in the example above,run_chain and running exist even if no objects of class
process are been created by the program. 

4 If a static data member is of integral or enumeration type, its declaration in the class definition may
specify aconstant-initializer. In that case, the member can appear in integral constant expressions (5.19)
within its declarative region after its declaration. The member shall still be defined in a namespace scope
and the definition of the member in namespace scope shall not contain aninitializer. 

5 There shall be exactly one definition of astatic data member in a program; no diagnostic is required; see
3.2. 

6 Static data members of a class in namespace scope have external linkage (3.5). A local class cannot
havestatic data members. 

7 Static data members are initialized and destroyed exactly like global objects; see 3.6.2 and 3.6.3. 

8 A static data member cannot bemutable (7.1.1).

[class.union] 9.6 Unions

1 A union can be thought of as a class whose member objects all begin at offset zero and whose size is suffi-
cient to contain any of its member objects. At most one of the member objects can be stored in a union at
any time. A union can have member functions (including constructors and destructors), but not virtual
(10.3) functions. A union shall not have base classes. A union shall not be used as a base class. An object
of a class with a non-trivial constructor (12.1) or a non-trivial destructor (12.4) or with a user-defined copy
assignment operator (13.4.3) cannot be a member of a union. A union can have nostatic data members.

Box 47

Shouldn’t we prohibit references in unions?_____________________________________



_____________________________________




2 A union of the form

union { member-specification} ;

is called an anonymous union; it defines an unnamed object (and not a type). The names of the members of
an anonymous union shall be distinct from other names in the scope in which the union is declared; they are



9.6 Unions DRAFT: 1 February 1995 Classes 9– 11

used directly in that scope without the usual member access syntax (5.2.4). For example,

void f()
{

union { int a; char* p; };
a = 1;
// ...
p = "Jennifer";
// ...

}

Herea andp are used like ordinary (nonmember) variables, but since they are union members they have
the same address.

3 A global anonymous union shall be declaredstatic . An anonymous union shall not haveprivate or 
protected members (11). An anonymous union shall not have function members. 

4 A union for which objects or pointers are declared is not an anonymous union. For example,

union { int aa; char* p; } obj, *ptr = &obj;
aa = 1; // error
ptr->aa = 1; // ok

The assignment to plainaa is ill formed since the member name is not associated with any particular
object.

5 Initialization of unions with no user-declared constructors is described in 8.5.1. 

[class.bit] 9.7 Bit-fields

1 A member-declaratorof the form

identifieropt : constant-expression

specifies a bit-field; its length is set off from the bit-field name by a colon. Allocation of bit-fields within a
class object is implementation dependent. Fields are packed into some addressable allocation unit. Fields
straddle allocation units on some machines and not on others. Alignment of bit-fields is implementation
dependent. Fields are assigned right-to-left on some machines, left-to-right on others.

2 An unnamed bit-field is useful for padding to conform to externally-imposed layouts. Unnamed fields are
not members and cannot be initialized. As a special case, an unnamed bit-field with a width of zero speci-
fies alignment of the next bit-field at an allocation unit boundary.

3 A bit-field shall not be a static member. A bit-field shall have integral or enumeration type (3.8.1). It is
implementation dependent whether a plain (neither explicitly signed nor unsigned)int field is signed or
unsigned. The address-of operator& shall not be applied to a bit-field, so there are no pointers to bit-fields.
Nor are there references to bit-fields.

[class.nest] 9.8 Nested class declarations

1 A class can be defined within another class. A class defined within another is called anestedclass. The 
name of a nested class is local to its enclosing class. The nested class is in the scope of its enclosing class.
Except by using explicit pointers, references, and object names, declarations in a nested class can use only
type names, static members, and enumerators from the enclosing class.

int x;
int y;

class enclose {
public:

int x;
static int s;
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class inner {

void f(int i)
{

x = i; // error: assign to enclose::x
s = i; // ok: assign to enclose::s
::x = i; // ok: assign to global x
y = i; // ok: assign to global y

}

void g(enclose* p, int i)
{

p->x = i; // ok: assign to enclose::x
}

};
};

inner* p = 0; // error ‘inner’ not in scope

Member functions of a nested class have no special access to members of an enclosing class; they obey the
usual access rules (11). Member functions of an enclosing class have no special access to members of a
nested class; they obey the usual access rules. For example,

class E {
int x;

class I {
int y;
void f(E* p, int i)
{

p->x = i; // error: E::x is private
}

};

int g(I* p)
{

return p->y; // error: I::y is private
}

};

Member functions and static data members of a nested class can be defined in a namespace scope contain-
ing the definition of their class. For example,

class enclose {
public: 

class inner {
static int x;
void f(int i);

};
};

int enclose::inner::x = 1; 

void enclose::inner::f(int i) { /* ... */ }

A nested classY may be declared in a classX and later defined in the definition of classX or be later 
defined in a namespace scope containing the definition of classX. For example:
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class E {
class I1; // forward declaration of nested class
class I2;
class I1 {}; // definition of nested class

};
class E::I2 {}; // definition of nested class

Like a member function, a friend function (11.4) defined within a nested class is in the lexical scope of that
class; it obeys the same rules for name binding as a static member function of that class (described in 9.5)
and has no special access rights to members of an enclosing class.

[class.local] 9.9 Local class declarations

1 A class can be defined within a function definition; such a class is called alocal class. The name of a local
class is local to its enclosing scope. The local class is in the scope of the enclosing scope. Declarations in a
local class can use only type names, static variables,extern variables and functions, and enumerators
from the enclosing scope. For example,

int x;
void f()
{

static int s ;
int x;
extern int g();

struct local {
int g() { return x; } // error: ‘x’ is auto
int h() { return s; } // ok
int k() { return ::x; } // ok
int l() { return g(); } // ok

};
// ...

}

local* p = 0; // error: ‘local’ not in scope

2 An enclosing function has no special access to members of the local class; it obeys the usual access rules
(11). Member functions of a local class shall be defined within their class definition. A local class shall
not have static data members.

[class.nested.type] 9.10 Nested type names

1 Type names obey exactly the same scope rules as other names. In particular, type names defined within a
class definition cannot be used outside their class without qualification. For example,

class X {
public:

typedef int I;
class Y { /* ... */ };
I a;

};

I b; // error
Y c; // error
X::Y d; // ok
X::I e; // ok





_ _____________________________________________________________________________________________________________________________________________________________________________ ___________________________________________ ∗

10 Derived classes [class.derived]
_ _____________________________________________________________________________________________________________________________________________________________________________ ___________________________________________

1 A list of base classes can be specified in a class declaration using the notation: 

base-clause:
: base-specifier-list

base-specifier-list:
base-specifier
base-specifier-list, base-specifier

base-specifier:
:: opt nested-name-specifieropt class-name
virtual access-specifieropt :: opt nested-name-specifieropt class-name
access-specifier virtualopt :: opt nested-name-specifieropt class-name

access-specifier:
private
protected
public

Theclass-namein abase-specifiershall denote a previously declared class (9), which is called adirect base 
classfor the class being declared. A classB is a base class of a classD if it is a direct base class ofD or a
direct base class of one ofD’s base classes. A class is anindirect base class of another if it is a base class
but not a direct base class. A class is said to be (directly or indirectly)derivedfrom its (direct or indirect)
base classes. For the meaning ofaccess-specifiersee 11. Unless redefined in the derived class, members
of a base class can be referred to in expressions as if they were members of the derived class. The base
class members are said to beinheritedby the derived class. The scope resolution operator:: (5.1) can be 
used to refer to a base member explicitly. This allows access to a name that has been redefined in the
derived class. A derived class can itself serve as a base class subject to access control; see 11.2. A pointer
to a derived class can be implicitly converted to a pointer to an accessible unambiguous base class (4.10).
An lvalue of a derived class type can be bound to a reference to an accessible unambiguous base class
(8.5.3).

2 For example,

class Base {
public:

int a, b, c;
};

class Derived : public Base {
public:

int b;
};

class Derived2 : public Derived {
public:

int c;
};
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3 Here, an object of classDerived2 will have a sub-object of classDerived which in turn will have a
sub-object of classBase . A derived class and its base class sub-objects can be represented by a directed
acyclic graph (DAG) where an arrow means“directly derived from.” A DAG of sub-objects is often referred
to as a“sub-object lattice.” For example,

Base

Derived

Derived2

Note that the arrows need not have a physical representation in memory and the order in which the sub-
objects appear in memory is unspecified.

4 Initialization of objects representing base classes can be specified in constructors; see 12.6.2.

[class.mi] 10.1 Multiple base classes

1 A class can be derived from any number of base classes. For example, 

class A { /* ... */ };
class B { /* ... */ };
class C { /* ... */ };
class D : public A, public B, public C { /* ... */ };

The use of more than one direct base class is often called multiple inheritance.

2 The order of derivation is not significant except possibly for initialization by constructor (12.6.2), for
cleanup (12.4), and for storage layout (5.4, 9.2, 11.1).

3 A class shall not be specified as a direct base class of a derived class more than once but it can be an indi-
rect base class more than once.

class B { /* ... */ };
class D : public B, public B { /* ... */ }; // ill-formed 

class L { public: int next; /* ... */ }; 
class A : public L { /* ... */ };
class B : public L { /* ... */ };
class C : public A, public B { void f(); /* ... */ }; // well-formed 

For an object of classC, each distinct occurrence of a (non-virtual) base classL in the class lattice ofC cor- 
responds one-to-one with a distinctL subobject within the object of typeC. Given the classC defined 
above, an object of classCwill have two sub-objects of classL as shown below.

L L

A B

C

In such lattices, explicit qualification can be used to specify which subobject is meant. For example, the
body of functionC::f could refer to a membernext of eachl subobject: 

void C::f() { A::next = B::next; } // well-formed 

Without theA:: or B:: qualifiers, the definition ofC::f above would be ill-formed because of ambigu-
ity.

4 The keywordvirtual can be added to a base class specifier. A single sub-object of the virtual base class
is shared by every base class that specified the base class to be virtual. For example,
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class V { /* ... */ };
class A : virtual public V { /* ... */ };
class B : virtual public V { /* ... */ };
class C : public A, public B { /* ... */ };

Here classChas only one sub-object of classV, as shown below.

V

A B

C

5 A class can have both virtual and nonvirtual base classes of a given type. 

class B { /* ... */ };
class X : virtual public B { /* ... */ };
class Y : virtual public B { /* ... */ };
class Z : public B { /* ... */ };
class AA : public X, public Y, public Z { /* ... */ };

For an object of classAA, all virtual occurrences of base classB in the class lattice ofAA correspond to 
a singleB subobject within the object of typeAA, and every other occurrence of a (non-virtual) base classB 
in the class lattice ofAA corresponds one-to-one with a distinctB subject within the object of typeAA. 
Given the classAA defined above, classAA has two sub-objects of classB: Z’s B and the virtualB shared
by X andY, as shown below.

B B

X Y Z

AA

[class.member.lookup] 10.2 Member Name Lookup

1 Member name lookup determines the meaning of a name (id-expression) in a class scope. Name lookup
can result in anambiguity, in which case the program is ill-formed. For anid-expression, name lookup
begins in the class scope ofthis ; for aqualified-id, name lookup begins in the scope of thenested-name-
specifier. Name lookup takes place before access control (11).

2 The following steps define the result of name lookup in a class scope. First, we consider every declaration
for the name in the class and in each of its base class sub-objects. A member namef in one sub-objectB
hidesa member namef in a sub-objectA if A is a base class sub-object ofB. We eliminate from considera-
tion any declarations that are so hidden. If the resulting set of declarations are not all from sub-objects of
the same type, or the set has a nonstatic member and includes members from distinct sub-objects, there is
an ambiguity and the program is ill-formed. Otherwise that set is the result of the lookup.

3 For example,

class A {
public:

int a;
int (*b)();
int f();
int f(int);
int g();

};
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class B {
int a;
int b();

public:
int f();
int g;
int h();
int h(int);

};

class C : public A, public B {};

void g(C* pc)
{

pc->a = 1; // error: ambiguous: A::a or B::a
pc->b(); // error: ambiguous: A::b or B::b
pc->f(); // error: ambiguous: A::f or B::f
pc->f(1); // error: ambiguous: A::f or B::f
pc->g(); // error: ambiguous: A::g or B::g
pc->g = 1; // error: ambiguous: A::g or B::g
pc->h(); // ok
pc->h(1); // ok

}

4 If the name of an overloaded function is unambiguously found, overloading resolution also takes place
before access control. Ambiguities can often be resolved by qualifying a name with its class name. For
example,

class A {
public:

int f();
};

class B {
public:

int f();
};

class C : public A, public B {
int f() { return A::f() + B::f(); }

};

5 The definition of ambiguity allows a nonstatic object to be found in more than one sub-object. When vir-
tual base classes are used, two base classes can share a common sub-object. For example,

class V { public: int v; };
class A {
public:

int a;
static int s;
enum { e };

};
class B : public A, public virtual V {};
class C : public A, public virtual V {};
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class D : public B, public C { };

void f(D* pd)
{

pd->v++; // ok: only one ‘v’ (virtual)
pd->s++; // ok: only one ‘s’ (static)
int i = pd->e; // ok: only one ‘e’ (enumerator)
pd->a++; // error, ambiguous: two ‘a’s in ‘D’

}

6 When virtual base classes are used, a hidden declaration can be reached along a path through the sub-object
lattice that does not pass through the hiding declaration. This is not an ambiguity. The identical use with
nonvirtual base classes is an ambiguity; in that case there is no unique instance of the name that hides all
the others. For example,

class V { public: int f(); int x; };
class W { public: int g(); int y; };
class B : public virtual V, public W
{
public:

int f(); int x;
int g(); int y;

};
class C : public virtual V, public W { };

class D : public B, public C { void glorp(); }; 

V W W

B C

D

The names defined inV and the left hand instance ofWare hidden by those inB, but the names defined in
the right hand instance ofWare not hidden at all.

void D::glorp() 
{

x++; // ok: B::x hides V::x
f(); // ok: B::f() hides V::f()
y++; // error: B::y and C’s W::y
g(); // error: B::g() and C’s W::g()

}

7 An explicit or implicit conversion from a pointer to or an lvalue of a derived class to a pointer or reference
to one of its base classes shall unambiguously refer to a unique object representing the base class. For
example,

class V { };
class A { };
class B : public A, public virtual V { };
class C : public A, public virtual V { };
class D : public B, public C { };
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void g()
{

D d;
B* pb = &d;
A* pa = &d; // error, ambiguous: C’s A or B’s A ?
V* pv = &d; // fine: only one V sub-object

}

[class.virtual] 10.3 Virtual functions

1 Virtual functions support dynamic binding and object-oriented programming. A class that declares or
inherits a virtual function is called apolymorphic class.

2 If a virtual member functionvf is declared in a classBase and in a classDerived , derived directly or
indirectly fromBase , a member functionvf with the same name and same parameter list asBase::vf is
declared, thenDerived::vf is also virtual (whether or not it is so declared) and itoverrides51)

Base::vf . For convenience we say that any virtual function overrides itself. Then in any well-formed
class, for each virtual function declared in that class or any of its direct or indirect base classes there is a
uniquefinal overriderthat overrides that function and every other overrider of that function.

3 A virtual member function does not have to be visible to be overridden, for example, 

struct B { 
virtual void f(); 

}; 
struct D : B { 

void f(int); 
}; 
struct D2 : D { 

void f(); 
}; 

the functionf(int) in classDhides the virtual functionf() in its base classB; D::f(int) is not a vir- 
tual function. However,f() declared in classD2 has the same name and the same parameter list as
B::f() , and therefore is a virtual function that overrides the functionB::f() even thoughB::f() is 
not visible in classD2. 

4 A program is ill-formed if the return type of any overriding function differs from the return type of the
overridden function unless the return type of the latter is pointer or reference (possibly cv-qualified) to a
classB, and the return type of the former is pointer or reference (respectively) to a classD such thatB is an
unambiguous direct or indirect base class ofD, accessible in the class of the overriding function, and the
cv-qualification in the return type of the overriding function is less than or equal to the cv-qualification in
the return type of the overridden function. In that case when the overriding function is called as the final
overrider of the overridden function, its result is converted to the type returned by the (statically chosen)
overridden function. See 5.2.2. For example,

class B {};
class D : private B { friend class Derived; };
struct Base {

virtual void vf1();
virtual void vf2();
virtual void vf3();
virtual B* vf4();
void f();

};

__________________
51) A function with the same name but a different parameter list (see 13) as a virtual function is not necessarily virtual and does not
override. The use of thevirtual specifier in the declaration of an overriding function is legal but redundant (has empty semantics).
Access control (11) is not considered in determining overriding.
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struct No_good : public Base {
D* vf4(); // error: B (base class of D) inaccessible

};

struct Derived : public Base {
void vf1(); // virtual and overrides Base::vf1()
void vf2(int); // not virtual, hides Base::vf2()
char vf3(); // error: invalid difference in return type only
D* vf4(); // okay: returns pointer to derived class
void f();

};

void g()
{

Derived d;
Base* bp = &d; // standard conversion:

// Derived* to Base*
bp->vf1(); // calls Derived::vf1()
bp->vf2(); // calls Base::vf2()
bp->f(); // calls Base::f() (not virtual)
B* p = bp->vf4(); // calls Derived::pf() and converts the

// result to B*
Derived* dp = &d;
D* q = dp->vf4(); // calls Derived::pf() and does not

// convert the result to B*
dp->vf2(); // ill-formed: argument mismatch

}

5 That is, the interpretation of the call of a virtual function depends on the type of the object for which it is
called (the dynamic type), whereas the interpretation of a call of a nonvirtual member function depends
only on the type of the pointer or refe rence denoting that object (the static type). See 5.2.2.

6 Thevirtual specifier implies membership, so a virtual function cannot be a global (nonmember) (7.1.2)
function. Nor can a virtual function be a static member, since a virtual function call relies on a specific
object for determining which function to invoke. A virtual function can be declared afriend in another
class. A virtual function declared in a class shall be defined or declared pure (10.4) in that class. 

7 Following are some examples of virtual functions used with multiple base classes:

struct A {
virtual void f();

};

struct B1 : A { // note non-virtual derivation
void f();

};

struct B2 : A {
void f();

};

struct D : B1, B2 { // D has two separate A sub-objects
};
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void foo()
{

D d;
// A* ap = &d; // would be ill-formed: ambiguous
B1* b1p = &d;
A* ap = b1p;
D* dp = &d;
ap->f(); // calls D::B1::f
dp->f(); // ill-formed: ambiguous

}

In classD above there are two occurrences of classA and hence two occurrences of the virtual member
function A::f . The final overrider ofB1::A::f is B1::f and the final overrider ofB2::A::f is
B2::f .

8 The following example shows a function that does not have a unique final overrider:

struct A {
virtual void f();

};

struct VB1 : virtual A { // note virtual derivation
void f();

};

struct VB2 : virtual A {
void f();

};

struct Error : VB1, VB2 { // ill-formed
};

struct Okay : VB1, VB2 {
void f();

};

Both VB1::f andVB2::f overrideA::f but there is no overrider of both of them in classError . This
example is therefore ill-formed. ClassOkay is well formed, however, becauseOkay::f is a final over-
rider.

9 The following example uses the well-formed classes from above.

struct VB1a : virtual A { // does not declare f
};

struct Da : VB1a, VB2 {
};

void foe()
{

VB1a* vb1ap = new Da;
vb1ap->f(); // calls VB2:f

}

10 Explicit qualification with the scope operator (5.1) suppresses the virtual call mechanism. For example,

class B { public: virtual void f(); };
class D : public B { public: void f(); };

void D::f() { /* ... */ B::f(); }

Here, the function call inD::f really does callB::f and notD::f .
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[class.abstract] 10.4 Abstract classes

1 The abstract class mechanism supports the notion of a general concept, such as ashape , of which only
more concrete variants, such ascircle andsquare , can actually be used. An abstract class can also be
used to define an interface for which derived classes provide a variety of implementations.

2 An abstract classis a class that can be used only as a base class of some other class; no objects of an
abstract class can be created except as sub-objects of a class derived from it. A class is abstract if it has at
least onepure virtual function(which might be inherited: see below). A virtual function is specifiedpure 
by using apure-specifier(9.2) in the function declaration in the class declaration. A pure virtual function
need be defined only if explicitly called with thequalified-idsyntax (5.1). For example,

class point { /* ... */ };
class shape { // abstract class

point center;
// ...

public:
point where() { return center; }
void move(point p) { center=p; draw(); }
virtual void rotate(int) = 0; // pure virtual
virtual void draw() = 0; // pure virtual
// ...

};

An abstract class shall not be used as an parameter type, as a function return type, or as the type of an
explicit conversion. Pointers and references to an abstract class can be declared. For example, 

shape x; // error: object of abstract class
shape* p; // ok
shape f(); // error
void g(shape); // error
shape& h(shape&); // ok

3 Pure virtual functions are inherited as pure virtual functions. For example,

class ab_circle : public shape {
int radius;

public:
void rotate(int) {}
// ab_circle::draw() is a pure virtual

};

Sinceshape::draw() is a pure virtual functionab_circle::draw() is a pure virtual by default.
The alternative declaration,

class circle : public shape {
int radius;

public:
void rotate(int) {}
void draw(); // a definition is required somewhere 

};

would make classcircle nonabstract and a definition ofcircle::draw() must be provided.

4 An abstract class can be derived from a class that is not abstract, and a pure virtual function may override a
virtual function which is not pure.

5 Member functions can be called from a constructor of an abstract class; the effect of calling a pure virtual
function directly or indirectly for the object being created from such a constructor is undefined. ∗





_ _____________________________________________________________________________________________________________________________________________________________________________ ___________________________________________

11 Member access control [class.access]
_ _____________________________________________________________________________________________________________________________________________________________________________ ___________________________________________

1 A member of a class can be ∗

— private ; that is, its name can be used only by member functions and friends of the class in which
it is declared.

— protected ; that is, its name can be used only by member functions and friends of the class in
which it is declared and by member functions and friends of classes derived from this class (see
11.5).

— public ; that is, its name can be used by any function. ∗

2 Members of a class declared with the keywordclass areprivate by default. Members of a class
declared with the keywordsstruct or union arepublic by default. For example,

class X {
int a; // X::a is private by default

};

struct S {
int a; // S::a is public by default

};

3 Access control is applied uniformly to all names. 

4 It should be noted that it isaccessto members and base classes that is controlled, not theirvisibility. 
Names of members are still visible, and implicit conversions to base classes are still considered, when those
members and base classes are inaccessible. The interpretation of a given construct is established without
regard to access control. If the interpretation established makes use of inaccessible member names or base
classes, the construct is ill-formed. 

5 All access controls in this clause affect the ability of an entire function or member function to access a class
member. In particular, access controls apply as usual to members accessed as part of a function return type,
even though it is not possible to determine the access privileges of that use without first parsing the rest of
the function. For example: 

class A { 
typedef int I; // private member 
I f(); 
friend I g(I); 
static I x; 

}; 

A::I A::f() { return 0; } 
A::I g(A::I); 
A::I g(A::I p) { return 0; } 
A::I A::x = 0; 

Here, all the uses of A::I are well-formed becauseA::f andA::x are members of classA andg is a friend 
of classA. This implies, for example, that access checking on the first use ofA::I must be deferred until 
it is determined that this use ofA::I is as the return type of a member of classA.
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[class.access.spec] 11.1 Access specifiers

1 Member declarations can be labeled by anaccess-specifier(10): 

access-specifier: member-specificationopt

An access-specifierspecifies the access rules for members following it until the end of the class or until
anotheraccess-specifieris encountered. For example,

class X {
int a; // X::a is private by default: ‘class’ used

public:
int b; // X::b is public
int c; // X::c is public

};

Any number of access specifiers is allowed and no particular order is required. For example,

struct S {
int a; // S::a is public by default: ‘struct’ used

protected:
int b; // S::b is protected

private:
int c; // S::c is private

public:
int d; // S::d is public

};

2 The order of allocation of data members with separateaccess-specifierlabels is implementation dependent
(9.2).

[class.access.base] 11.2 Access specifiers for base classes

1 If a class is declared to be a base class (10) for another class using thepublic access specifier, the
public members of the base class are accessible aspublic members of the derived class and
protected members of the base class are accessible asprotected members of the derived class. If a
class is declared to be a base class for another class using theprotected access specifier, thepublic
andprotected members of the base class are accessible asprotected members of the derived class.
If a class is declared to be a base class for another class using theprivate access specifier, thepublic
andprotected members of the base class are accessible asprivate members of the derived class52).

2 In the absence of anaccess-specifierfor a base class,public is assumed when the derived class is
declaredstruct andprivate is assumed when the class is declaredclass . For example,

class B { /* ... */ };
class D1 : private B { /* ... */ };
class D2 : public B { /* ... */ };
class D3 : B { /* ... */ }; // ‘B’ private by default
struct D4 : public B { /* ... */ };
struct D5 : private B { /* ... */ };
struct D6 : B { /* ... */ }; // ‘B’ public by default
class D7 : protected B { /* ... */ };
struct D8 : protected B { /* ... */ };

HereB is a public base ofD2, D4, andD6, a private base ofD1, D3, andD5, and a protected base ofD7
andD8. ∗

3 Because of the rules on pointer conversion (4.10), a static member of a private base class might be inacces-
sible as an inherited name, but accessible directly. For example,
__________________
52) As specified previously in 11, private members of a base class remain inaccessible even to derived classes unlessfriend declara-
tions within the base class declaration are used to grant access explicitly.
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class B {
public:

int mi; // nonstatic member
static int si; // static member

};
class D : private B {
};
class DD : public D {

void f();
};

void DD::f() {
mi = 3; // error: mi is private in D
si = 3; // error: si is private in D
B b;
b.mi = 3; // okay (b.mi is different from this->mi)
b.si = 3; // okay (b.si is different from this->si) 
B::si = 3; // okay
B* bp1 = this; // error: B is a private base class
B* bp2 = (B*)this; // okay with cast
bp2->mi = 3; // okay: access through a pointer to B. 

}

4 A base class is said to be accessible if an invented public member of the base class is accessible. If a base
class is accessible, one can implicitly convert a pointer to a derived class to a pointer to that base class
(4.10, 4.11). It follows that members and friends of a classX can implicitly convert anX* to a pointer to a
private or protected immediate base class ofX.

[class.access.dcl] 11.3 Access declarations

1 The access of a member of a base class can be changed in the derived class by mentioning itsqualified-id in 
the derived class declaration. Such mention is called anaccess declaration. The base class member is
given, in the derived class, the access in effect in the derived class declaration at the point of the access dec-
laration. The effect of an access declarationqualified-id ; is defined to be equivalent to the declaration
using qualified-id ; .53)

2 For example,

class A {
public:

int z;
int z1;

};

class B : public A {
int a;

public:
int b, c;
int bf();

protected:
int x;
int y;

};

__________________
53) Access declarations are deprecated; memberusing-declarations(7.3.3) provide a better means of doing the same things. In earlier
versions of the C + + language, access declarations were more limited; they were generalized and made equivalent tousing declara-
tions in the interest of simplicity. Programmers are encouraged to useusing , rather than the new capabilities of access declarations,
in new code.
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class D : private B {
int d;

public:
B::c; // adjust access to ‘B::c’
B::z; // adjust access to ‘A::z’
A::z1; // adjust access to ‘A::z1’
int e;
int df();

protected:
B::x; // adjust access to ‘B::x’
int g;

};

class X : public D {
int xf();

};

int ef(D&);
int ff(X&);

The external functionef can use only the namesc , z , z1 , e, anddf . Being a member ofD, the function
df can use the namesb, c , z , z1 , bf , x , y , d, e, df , andg, but nota. Being a member ofB, the function
bf can use the membersa, b, c , z , z1 , bf , x , andy . The functionxf can use the public and protected
names fromD, that is,c , z , z1 , e, anddf (public), andx , andg (protected). Thus the external function
ff has access only toc , z , z1 , e, anddf . If D were a protected or private base class ofX, xf would have
the same privileges as before, butff would have no access at all. ∗

[class.friend] 11.4 Friends

1 A friend of a class is a function that is not a member of the class but is permitted to use the private and pro-
tected member names from the class. The name of a friend is not in the scope of the class, and the friend is
not called with the member access operators (5.2.4) unless it is a member of another class. The following
example illustrates the differences between members and friends:

class X {
int a;
friend void friend_set(X*, int);

public:
void member_set(int);

};

void friend_set(X* p, int i) { p->a = i; }
void X::member_set(int i) { a = i; }

void f()
{

X obj;
friend_set(&obj,10);
obj.member_set(10);

}

2 When afriend declaration refers to an overloaded name or operator, only the function specified by the
parameter types becomes a friend. A member function of a classX can be a friend of a classY. For exam-
ple,

class Y {
friend char* X::foo(int);
// ...

};

All the functions of a classX can be made friends of a classY by a single declaration using anelaborated-
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type-specifier54) (9.1):

class Y {
friend class X;
// ...

};

Declaring a class to be a friend also implies that private and protected names from the class granting friend-
ship can be used in the class receiving it. For example,

class X {
enum { a=100 };
friend class Y;

};

class Y {
int v[X::a]; // ok, Y is a friend of X

};

class Z {
int v[X::a]; // error: X::a is private

};

3 A function declared as afriend and not previously declared, is introduced in the smallest enclosing non-
class, non-function prototype scope that contains thefriend declaration. For a class mentioned as a
friend and not previously declared, see 7.1.5.3.

4 A function first declared in a friend declaration has external linkage (3.5). Otherwise, it retains its previous
linkage (7.1.1). Nostorage-class-specifiershall appear in thedecl-specifier-seqof a friend declaration. 

5 A function of namespace scope can be defined in afriend declaration of a non-local class (9.9). The
function is theninline . A friend function defined in a class is in the (lexical) scope of the class in
which it is defined. A friend function defined outside the class is not.

6 Friend declarations are not affected byaccess-specifiers(9.2).

7 Friendship is neither inherited nor transitive. For example,

class A {
friend class B;
int a;

};

class B {
friend class C;

};

class C {
void f(A* p)
{

p->a++; // error: C is not a friend of A
// despite being a friend of a friend

}
};

__________________
54)Note that theclass-keyof theelaborated-type-specifieris required.
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class D : public B {
void f(A* p)
{

p->a++; // error: D is not a friend of A
// despite being derived from a friend

}
};

[class.protected] 11.5 Protected member access

1 A friend or a member function of a derived class can access a protected static member, type or enumerator
constant of a base class; if the access is through aqualified-id, thenested-name-specifiermust name the 
derived class (or any class derived from that class). 

2 A friend or a member function of a derived class can access a protected nonstatic member of a base class.
Except when forming a pointer to member, the access must be through a pointer to, reference to, or object
of the derived class itself (or any class derived from that class). If the nonstatic protected member thus
accessed is also qualified, the qualification is ignored for the purpose of this access checking. If the access
is to form a pointer to member (5.3.1), thenested-name-specifiershall name the derived class (or any class
derived from that class). For example,

class B {
protected:

int i;
static int j; 

};

class D1 : public B {
};

class D2 : public B {
friend void fr(B*,D1*,D2*);
void mem(B*,D1*);

};

void fr(B* pb, D1* p1, D2* p2)
{

pb->i = 1; // illegal
p1->i = 2; // illegal
p2->i = 3; // ok (access through a D2)
p2->B::i = 4; // ok (access through a D2, qualification ignored) 
int B::* pmi_B = &B::i; // illegal 
int B::* pmi_B = &D2::i; // ok (type of &D2::i is "int B::*") 
B::j = 5; // illegal 
D2::j =6; // ok (access through a D2) 

}

void D2::mem(B* pb, D1* p1)
{

pb->i = 1; // illegal
p1->i = 2; // illegal
i = 3; // ok (access through ‘this’)
B::i = 4; // ok (access through ‘this’, qualification ignored) 
j = 5; // ok (static member accessed by derived class function) 
B::j = 6; // illegal 

}
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void g(B* pb, D1* p1, D2* p2)
{

pb->i = 1; // illegal
p1->i = 2; // illegal
p2->i = 3; // illegal

}

[class.access.virt] 11.6 Access to virtual functions

1 The access rules (11) for a virtual function are determined by its declaration and are not affected by the
rules for a function that later overrides it. For example,

class B {
public:

virtual int f(); 
};

class D : public B {
private:

int f(); 
};

void f()
{

D d;
B* pb = &d;
D* pd = &d;

pb->f(); // ok: B::f() is public,
// D::f() is invoked

pd->f(); // error: D::f() is private
}

Access is checked at the call point using the type of the expression used to denote the object for which the
member function is called (B* in the example above). The access of the member function in the class in
which it was defined (D in the example above) is in general not known.

[class.paths] 11.7 Multiple access

1 If a name can be reached by several paths through a multiple inheritance graph, the access is that of the path
that gives most access. For example,

class W { public: void f(); };
class A : private virtual W { };
class B : public virtual W { };
class C : public A, public B {

void f() { W::f(); } // ok
};

SinceW::f() is available toC::f() along the public path throughB, access is allowed. ∗





_ _____________________________________________________________________________________________________________________________________________________________________________ ___________________________________________

12 Special member functions [special]
_ _____________________________________________________________________________________________________________________________________________________________________________ ___________________________________________

1 Some member functions are special in that they affect the way objects of a class are created, copied, and
destroyed, and how values can be converted to values of other types. Often such special functions are
called implicitly. Also, the compiler can generate instances of these functions when the programmer does
not supply them. Compiler-generated special functions can be referred to in the same ways that
programmer-written functions are.

2 These member functions obey the usual access rules (11). For example, declaring a constructor
protected ensures that only derived classes and friends can create objects using it.

[class.ctor] 12.1 Constructors

1 A member function with the same name as its class is called a constructor; it is used to initialize objects of
its class type. For initialization of objects of class type see 12.6.

2 A constructor can be invoked for aconst , volatile or const volatile object.55) A constructor 
shall not be declaredconst , volatile , or const volatile (9.4.2). A constructor shall not be
virtual or static .

3 Constructors are not inherited. 

4 A default constructorfor a classX is a constructor of classX that can be called without an argument. If
there is nouser-declared constructorfor class X, a default constructor is implicitly declared. An
implicitly-declared default constructoris apublic member of its class. A constructor istrivial if it is 
an implicitly-declared default constructor and if: 

— its class has no virtual functions (10.3) and no virtual base classes (10.1), and 

— all the direct base classes of its class have trivial constructors, and 

— for all the nonstatic data members of its class that are of class type (or array thereof), each such class
has a trivial constructor.

5 Otherwise, the constructor isnon-trivial. 

6 An implicitly-declared default constructor for a class isimplicitly-definedwhen it is used to create an
object of its class type (3.7). A program is ill-formed if the class for which a default constructor is
implicitly defined has: 

— a nonstatic data member ofconst type, or 

— a nonstatic data member of reference type, or 

— a nonstatic data member of class type (or array thereof) with an inaccessible default constructor, or

— a base class with an inaccessible default constructor.56) 

__________________
55)Volatile semantics might or might not be used.
56) When a default constructor for a derived class is implicitly defined, all the implicitly-declared default constructors for its bases and
members are also implicitly defined (and this recursively for the members’ base classes and members).
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Box 48 
Should it be specified more precisely at which point in the program the implicit definition is ill-formed?
i.e. is something like this needed: "The declaration or expression causing the implicit definition is ill-
formed" ?  _ ________________________________________________________________________________________






_ ________________________________________________________________________________________




 

7 A copy constructorfor a classX is a constructor that accepts one parameter of typeX& or of type 
const X&. See 12.8 for more information on copy constructors.

8 12.6.2 describes the order in which constructors for base classes and non-static members are called and
describes how arguments can be specified for the calls to these constructors.

9 A union member cannot be of a class type (or array thereof) that has a non-trivial constructor. 

10 No return type (not evenvoid ) can be specified for a constructor. Areturn statement in the body of
a constructor shall not specify a return value. It is not possible to take the address of a constructor.

11 A constructor can be used explicitly to create new objects of its type, using the syntax

class-name( expression-listopt )

For example,

complex zz = complex(1,2.3);
cprint( complex(7.8,1.2) );

An object created in this way is unnamed. 12.2 describes the lifetime of temporary objects. 

12 Some language constructs have special semantics when used during construction; see 12.6.2 and 12.7.

[class.temporary] 12.2 Temporary objects

1 In some circumstances it might be necessary or convenient for the compiler to generate a temporary object.
Precisely when such temporaries are introduced is implementation dependent. For example,

class X { 
// ... 

public: 
// ... 
X(int); 
X(const X&); 
~X(); 

}; 

X f(X); 

void g() 
{ 

X a(1); 
X b = f(X(2)); 
a = f(a); 

} 

Here, an implementation might use a temporary in which to constructX(2) before passing it tof() using 
X’s copy-constructor; alternatively,X(2) might be constructed in the space used to hold the argument.
Also, a temporary might be used to hold the result off(X(2)) before copying it tob using X’s copy- 
constructor; alternatively,f() ’s result might be constructed inb. On the other hand, the expression
a=f(a) requires a temporary for either the argumenta or the result off(a) to avoid undesired aliasing of
a. Even if the copy constructor is not called, all the semantic restrictions, such as accessibility, shall be sat-
isfied.

2 When a compiler introduces a temporary object of a class that has a non-trivial constructor (12.1), it shall
ensure that a constructor is called for the temporary object. Similarly, the destructor shall be called for a
temporary with a non-trivial destructor (12.4). Ordinarily, temporary objects are destroyed as the last step
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in evaluating the full-expression (1.8) that (lexically) contains the point where they were created. This is
true even if that evaluation ends in throwing an exception.

3 There are two contexts in which temporaries are destroyed at a different point then at the end of the full-
expression. The first context is when an expression appears as an initializer for a declarator defining an
object. In that context, the temporary that holds the result of the expression shall persist until the object’s
initialization is complete. The object is initialized from a copy of the temporary; during this copying, an
implementation can call the copy constructor many times; the temporary is destroyed as soon as it has been
copied. 

4 The second context is when a temporary is bound to a reference. The temporary bound to the reference or
the temporary containing the sub-object that is bound to the reference persists for the lifetime of the refer-
ence initialized or until the end of the scope in which the temporary is created, which ever comes first. A
temporary holding the result of an initializer expression for a declarator that declares a reference persists
until the end of the scope in which the reference declaration occurs. A temporary bound to a reference in a
constructor’s ctor-initializer (12.6.2) persists until the constructor exits. A temporary bound to a reference
parameter in a function call (5.2.2) persists until the completion of the call. A temporary bound in a func-
tion return statement (6.6.3) persists until the function exits. 

5 In all cases, temporaries are destroyed in reverse order of creation. 

[class.conv] 12.3 Conversions

1 Type conversions of class objects can be specified by constructors and by conversion functions.

2 Such conversions, often calleduser-defined conversions, are used implicitly in addition to standard conver-
sions (4). For example, a function expecting an argument of typeX can be called not only with an argu-
ment of typeX but also with an argument of typeT where a conversion fromT to X exists. User-defined
conversions are used similarly for conversion of initializers (8.5), function arguments (5.2.2, 8.3.5), func-
tion return values (6.6.3, 8.3.5), expression operands (5), expressions controlling iteration and selection
statements (6.4, 6.5), and explicit type conversions (5.2.3, 5.4).

3 User-defined conversions are applied only where they are unambiguous (10.2, 12.3.2). Conversions obey
the access control rules (11). As ever access control is applied after ambiguity resolution (3.4).

4 See 13.2 for a discussion of the use of conversions in function calls as well as examples below.

[class.conv.ctor] 12.3.1 Conversion by constructor

1 A constructor declared without thefunction-specifierexplicit that can be called with a single parameter
specifies a conversion from the type of its first parameter to the type of its class. Such a constructor is
called a converting constructor. For example,

class X {
// ...

public:
X(int);
X(const char*, int =0);

};

void f(X arg) 
{ 

X a = 1; // a = X(1)
X b = "Jessie"; // b = X("Jessie",0)
a = 2; // a = X(2)
f(3); // f(X(3))

}

2 A nonconverting constructor constructs objects just like converting constructors, but does so only where a
constructor call is explicitly indicated by the syntax. 
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class Z { 
public: 

explicit Z(int); 
// ... 

}; 

Z a1 = 1; // error: no implicit conversion 
Z a3 = Z(1); // ok: explicit use of constructor 
Z a2(1); // ok: explicit use of constructor 
Z* p = new Z(1); // ok: explicit use of constructor 

3 When no converting constructor for classX accepts the given type, no attempt is made to find other con-
structors or conversion functions to convert the assigned value into a type acceptable to a constructor for
classX. For example,

class X { 
public: 

X(int); 
// ... 

}; 

class Y { 
public: 

Y(X); 
// ... 

}; 

Y a = 1; // illegal: Y(X(1)) not tried

[class.conv.fct] 12.3.2 Conversion functions

1 A member function of a classX with a name of the form

conversion-function-id:
operator conversion-type-id

conversion-type-id:
type-specifier-seq conversion-declaratoropt

conversion-declarator:
ptr-operator conversion-declaratoropt

specifies a conversion fromX to the type specified by theconversion-type-id. Such member functions are
called conversion functions. Classes, enumerations, andtypedef-names shall not be declared in thetype- 
specifier-seq. Neither parameter types nor return type can be specified. A conversion operator is never
used to convert a (possibly qualified) object (or reference to an object) to the (possibly qualified) same
object type (or a reference to it), or to a (possibly qualified) base class of that type (or a reference to it). If
conversion-type-idis void or cv-qualifiedvoid , the program is ill-formed.

2 Here is an example:

class X {
// ...

public:
operator int();

};
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void f(X a)
{

int i = int(a);
i = (int)a;
i = a;

}

In all three cases the value assigned will be converted byX::operator int() . User-defined conver-
sions are not restricted to use in assignments and initializations. For example,

void g(X a, X b)
{

int i = (a) ? 1+a : 0;
int j = (a&&b) ? a+b : i;
if (a) { // ...
}

}

3 The conversion-type-idin a conversion-function-idis the longest possible sequence ofconversion-
declarators. This prevents ambiguities between the declarator operator * and its expression counterparts.
For example:

&ac.operator int*i; // syntax error:
// parsed as: ’&(ac.operator int *) i’
// not as: ’&(ac.operator int)*i’

The * is the pointer declarator and not the multiplication operator.

4 Conversion operators are inherited.

5 Conversion functions can be virtual.

6 At most one user-defined conversion (constructor or conversion function) is implicitly applied to a single
value. For example,

class X {
// ...

public:
operator int();

};

class Y {
// ...

public:
operator X();

};

Y a;
int b = a; // illegal:

// a.operator X().operator int() not tried
int c = X(a); // ok: a.operator X().operator int()

7 User-defined conversions are used implicitly only if they are unambiguous. A conversion function in a
derived class does not hide a conversion function in a base class unless the two functions convert to the
same type. For example,

class X {
public:

// ...
operator int();

};
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class Y : public X {
public:

// ...
operator void*();

};

void f(Y& a)
{

if (a) { // error: ambiguous
// ...

}
}

[class.dtor] 12.4 Destructors

1 A member function of classcl named~cl is called a destructor; it is used to destroy objects of typecl . 
A destructor takes no parameters, and no return type can be specified for it (not evenvoid ). It is not pos-
sible to take the address of a destructor. A destructor can be invoked for aconst , volatile or const 
volatile object.57) A destructor shall not be declaredconst , volatile or const volatile 
(9.4.2). A destructor shall not bestatic . 

2 If a class has nouser-declared destructor, a destructor is declared implicitly. Animplicitly-declared 
destructoris apublic member of its class. A destructor istrivial if it is an implicitly-declared destructor
and if: 

— all of the direct base classes of its class have trivial destructors and 

— for all of the non-static data members of its class that are of class type (or array thereof), each such
class has a trivial destructor. 

3 Otherwise, the destructor isnon-trivial . 

4 An implicitly-declared destructor isimplicitly-definedwhen it is used to destroy an object of its class
type (3.7). A program is ill-formed if the class for which a destructor is implicitly defined has: 

— a non-static data member of class type (or array thereof) with an inaccessible destructor, or 

— a base class with an inaccessible destructor.58)

Box 49

Should it be specified more precisely at which point in the program the implicit definition is ill-formed? _ ________________________________________________________________________________________



_ ________________________________________________________________________________________




5 ∗Bases and members are destroyed in reverse of their construction (see 12.6.1). Destructors for elements
of an array are called in reverse order of their construction.

6 Destructors are not inherited. A destructor can be declaredvirtual (10.3) or purevirtual (10.4); 
if any objects of that class or any derived class are created in the program, the destructor shall be
defined. If a class has a base class with a virtual destructor, its destructor (whether user- or implicitly-
declared) is virtual.

7 Some language constructs have special semantics when used during destruction; see 12.7. 

8 A union member cannot be of a class type (or array thereof) that requires a non-trivial destructor.

__________________
57)Volatile semantics might or might not be used.
58)When a destructor for a derived class is implicitly defined, all the implicitly-declared destructors for its bases and members are also
implicitly defined (and this recursively for the members’ base classes and members).
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9 Destructors are invoked implicitly (1) when an automatic variable (3.7) or temporary (12.2, 8.5.3)
object goes out of scope, (2) for constructed static (3.7) objects at program termination (3.6), and (3)
through use of adelete-expression(5.3.5) for objects allocated by anew-expression(5.3.4). Destructors
can also be invoked explicitly. Adelete-expressioninvokes the destructor for the referenced object and
passes the address of its memory to a deallocation function (5.3.5, 12.5). For example,

class X {
// ...

public:
X(int);
~X();

};

void g(X*);

void f() // common use:
{

X* p = new X(111); // allocate and initialize
g(p);
delete p; // cleanup and deallocate

}

10 Explicit calls of destructors are rarely needed. One use of such calls is for objects placed at specific
addresses using anew-expressionwith the placement option. Such use of explicit placement and
destruction of objects can be necessary to cope with dedicated hardware resources and for writing memory
management facilities. For example,

void* operator new(size_t, void* p) { return p; }

void f(X* p);

static char buf[sizeof(X)];

void g() // rare, specialized use:
{

X* p = new(buf) X(222); // use buf[]
// and initialize

f(p);
p->X::~X(); // cleanup

}

11 Invocation of destructors is subject to the usual rules for member functions, e.g., an object of the appropri-
ate type is required (except invokingdelete on a null pointer has no effect). When a destructor is
invoked for an object, the object no longer exists; if the destructor is explicitly invoked again for the same
object the behavior is undefined. For example, if the destructor for an automatic object is explicitly
invoked, and the block is subsequently left in a manner that would ordinarily invoke implicit destruction of
the object, the behavior is undefined.

12 The notation for explicit call of a destructor can be used for any simple type name. For example, 

int* p;
// ...
p->int::~int();

Using the notation for a type that does not have a destructor has no effect. Allowing this enables people to
write code without having to know if a destructor exists for a given type.

13 The effect of destroying an object more than once is undefined. This implies that that explicitly destroying
a local variable causes undefined behavior on exit from the block, because exiting will attempt to destroy
the variable again. This is true even if the block is exited because of an exception.
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[class.free] 12.5 Free store

1 When an object is created with anew-expression(5.3.4), anallocation function(operator new() for
non-array objects oroperator new[]() for arrays) is (implicitly) called to get the required storage
(3.7.3.1).

2 When a non-array object or an array of classT is created by anew-expression, the allocation function is
looked up in the scope of classT using the usual rules.

3 When anew-expressionis executed, the selected allocation function will be called with the amount of space
requested (possibly zero) as its first argument.

4 Any allocation function for a classX is a static member (even if not explicitly declaredstatic ).

5 For example,

class Arena; class Array_arena;
struct B {

void* operator new(size_t, Arena*);
};
struct D1 : B {
};

Arena* ap; Array_arena* aap;
void foo(int i)
{

new (ap) D1; // calls B::operator new(size_t, Arena*)
new D1[i]; // calls ::operator new[](size_t)
new D1; // ill-formed: ::operator new(size_t) hidden

}

6 When an object is deleted with adelete-expression(5.3.5), a deallocation function
(operator delete() for non-array objects oroperator delete[]() for arrays) is (implicitly)
called to reclaim the storage occupied by the object.

7 When an object is deleted by adelete-expression, the deallocation function is looked up in the scope of
class of the executed destructor (see 5.3.5) using the usual rules.

8 When adelete-expressionis executed, the selected deallocation function will be called with the address of
the block of storage to be reclaimed as its first argument and (if the two-parameter style is used) the size of
the block as its second argument.59)

9 Any deallocation function for a classX is a static member (even if not explicitly declaredstatic ). For
example,

class X {
// ...
void operator delete(void*);
void operator delete[](void*, size_t);

};

class Y {
// ...
void operator delete(void*, size_t);
void operator delete[](void*);

};

__________________
59) If the static class in thedelete-expressionis different from the dynamic class and the destructor is not virtual the size might be
incorrect, but that case is already undefined.
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10 Since member allocation and deallocation functions arestatic they cannot be virtual. However, the
deallocation function actually called is determined by the destructor actually called, so if the destructor is
virtual the effect is the same. For example,

struct B {
virtual ~B();
void operator delete(void*, size_t);

};

struct D : B {
void operator delete(void*);
void operator delete[](void*, size_t);

};

void f(int i)
{

B* bp = new D;
delete bp; // uses D::operator delete(void*)
D* dp = new D[i];
delete [] dp; // uses D::operator delete[](void*, size_t)

}

Here, storage for the non-array object of classD is deallocated byD::operator delete() , due to the
virtual destructor.

11 Access to the deallocation function is checked statically. Hence, even though a different one might actually
be executed, the statically visible deallocation function is required to be accessible. Thus in the example
above, ifB::operator delete() had beenprivate , the delete expression would have been ill-
formed.

[class.init] 12.6 Initialization

Box 50 
This needs to be improved to talk about the behavior of all initializations; operator new cannot use an
initializer-clause; temporary creation only uses default constructors.  _ ________________________________________________________________________________________





_ ________________________________________________________________________________________



 

1 When no explicit initialization is specified when creating a class object, if the class has a default constructor
(12.1), the default constructor is used to initialize the object. If no default constructor exists for the class
and the class has a non-trivial constructor (12.1), the object shall be explicitly initialized. If the class is an
aggregate (8.5.1), aninitializer-clausecan be used; otherwise, a call to a user-declared constructor shall be
specified. 

2 Arrays of objects of class type use constructors in initialization (12.1) just as do individual objects. If the
array is not explicitly initialized and the class has a default constructor, implicit initialization of the array
elements occurs by calling the default constructor for each element of the array, in order of increasing
addresses (8.3.4). If no default constructor exists for the class and the class has a non-trivial constructor,
the array shall be explicitly initialized.

[class.expl.init] 12.6.1 Explicit initialization

1 Objects of classes with user-declared constructors (12.1) can be initialized with a parenthesized expression
list. This list is taken as the argument list for a call of a constructor doing the initialization. Alternatively
for declarations, a single value is specified as the initializer using the= operator. This value is used as the
argument to a copy constructor (12.1, 12.8). Typically, that call of a copy constructor can be eliminated
(12.2). For example,
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class complex {
// ...

public:
complex();
complex(double);
complex(double,double);
// ...

};

complex sqrt(complex,complex);

complex a(1); // initialize by a call of
// complex(double)

complex b = a; // initialize by a copy of ‘a’
complex c = complex(1,2); // construct complex(1,2)

// using complex(double,double)
// copy it into ‘c’

complex d = sqrt(b,c); // call sqrt(complex,complex)
// and copy the result into ‘d’

complex e; // initialize by a call of
// complex()

complex f = 3; // construct complex(3) using
// complex(double)
// copy it into ‘f’

complex g = { 1, 2 }; // error; constructor is required 

Overloading of the assignment operator (13.4.3)= has no effect on initialization. See 8.5 for the distinction
between the parenthesized and= forms of initialization.

2 If an array of class objects is initialized with aninitializer-clause(8.5.1), eachassignment-expressionis 
treated as an argument in a constructor call to initialize one element of the array, using the= form of initial- 
ization (8.5). If there are fewerassignment-expressions in theinitializer-clausethan elements in the array,
the remaining elements are initialized using the default constructor for the class. If there is no default con-
structor and theinitializer-clauseis incomplete, the array declaration is ill-formed. For example,

complex v[6] = { 1,complex(1,2),complex(),2 }; ∗

Here,v[0] and v[3] are initialized withcomplex::complex(double) , v[1] is initialized with
complex::complex(double,double) , and v[2] , v[4] , and v[5] are initialized with
complex::complex() .

3 The order in which static objects are initialized is described in 3.6.2 and 6.7. 

[class.base.init] 12.6.2 Initializing bases and members

1 The definition of a constructor can specify initializers for direct and virtual base classes and for nonstatic
members not inherited from a base class. This is most useful for class objects, constants, and references
where the semantics of initialization and assignment differ. Actor-initializer has the form

ctor-initializer:
: mem-initializer-list

mem-initializer-list:
mem-initializer
mem-initializer , mem-initializer-list

mem-initializer:
:: opt nested-name-specifieropt class-name( expression-listopt )
identifier ( expression-listopt )

The argument list is used to initialize the named nonstatic member or base class object. This (or for an
aggregate (8.5.1), initialization by a brace-enclosed list) is the only way to initialize nonstaticconst and
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reference members. For example,

struct B1 { B1(int); /* ... */ };
struct B2 { B2(int); /* ... */ };

struct D : B1, B2 {
D(int);
B1 b;
const c;

};

D::D(int a) : B2(a+1), B1(a+2), c(a+3), b(a+4)
{ /* ... */ }

D d(10);

2 If classX has a membermof class typeMandMhas no default constructor, then a definition of a constructor
for classX is ill-formed if it does not specify amem-initializerfor m. 

3 
Box 51 
It needs to be made clear that the order specified below applies for user-declared constructors as well as for
implicitly-declared constructors.  _ ________________________________________________________________________________________





_ ________________________________________________________________________________________



 

First, the base classes are initialized in declaration order (independent of the order ofmem-initializers), then
the members are initialized in declaration order (independent of the order ofmem-initializers), then the
body ofD::D() is executed (12.1). The declaration order is used to ensure that sub-objects and members
are destroyed in the reverse order of initialization.

4 Virtual base classes constitute a special case. Virtual bases are constructed before any nonvirtual bases and
in the order they appear on a depth-first left-to-right traversal of the directed acyclic graph of base classes;
“left-to-right” is the order of appearance of the base class names in the declaration of the derived class.

5 The class of acomplete object(1.6) is said to be themost derivedclass for the sub-objects representing base
classes of the object. All sub-objects for virtual base classes are initialized by the constructor of the most
derived class. If a constructor of the most derived class does not specify amem-initializerfor a virtual base 
class then that virtual base class shall have a default constructor. Anymem-initializers for virtual classes
specified in a constructor for a class that is not the class of the complete object are ignored. For example,

class V {
public:

V();
V(int);
// ...

};

class A : public virtual V {
public:

A();
A(int);
// ...

};

class B : public virtual V {
public:

B();
B(int);
// ...

};
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class C : public A, public B, private virtual V {
public:

C();
C(int);
// ...

};

A::A(int i) : V(i) { /* ... */ }
B::B(int i) { /* ... */ }
C::C(int i) { /* ... */ }

V v(1); // use V(int)
A a(2); // use V(int)
B b(3); // use V()
C c(4); // use V()

6 A mem-initializeris evaluated in the scope of the constructor in which it appears. For example, ∗

class X { 
int a; 

public: 
const int& r; 
X(): r(a) {} 

}; 

initializesX::r to refer toX::a for each object of classX.

7 The identifier of actor-initializer’s mem-initializerin a class’ constructor is looked up in the scope of the
class. It shall denote a nonstatic data member or the type of a direct or virtual base class. For the purpose
of this name lookup, the name, if any, of each class is considered a nested class member of that class. A
constructor’smem-initializer-listcan initialize a base class using any name that denotes that base class type;
the name used can differ from the class definition. For example: 

struct A { A(); }; 
typedef A global_A; 
struct B { }; 
struct C: public A, public B { C(); }; 
C::C(): global_A() { } // calls A() 

A base class type in actor-initializer’s mem-initializershall not designate both a direct non-virtual base
class and an inherited virtual base class. For example:

struct A { A(); };
struct B: public virtual A { };
struct C: public A, public B { C(); };

C::C(): A() { } // ill-formed: which A?

8 ∗Member functions (including virtual member functions, 10.3) can be called for an object under construc-
tion. Similarly, an object under construction can be the operand of thetypeid operator (5.2.7) or of a
dynamic_cast (5.2.6). However, if these operations are performed in actor-intializer (or in a function 
called directly or indirectly from actor-intializer) before all themem-initializers for base classes have com-
pleted, the result of the operation is undefined. For example: 

class A { 
public: 

A(int); 
}; 
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class B : public A { 
int j; 

public: 
int f(); 

B() : A(f()), // undefined: calls member function 
// but base A not yet initialized 

j(f()) { } // well-defined: bases are all initialized 
}; 

class C { 
public: 

C(int); 
}; 

class D : public B, C { 
int i; 

public: 
D() : C(f()), // undefined: calls member function 

// but base C not yet initialized 
i(f()) {} // well-defined: bases are all initialized 

}; 

9 12.7 describes the result of virtual function calls,typeid anddynamic_cast s during construction for 
the well-defined cases; that is, describes thepolymorphic behaviorof an object under construction. 

[class.cdtor]12.7 Construction and destruction 

1 For an object of non-POD class type (9), before the constructor begins execution and after the destructor
finishes execution, referring to any nonstatic member or base class of the object results in undefined behav-
ior. For example, 

struct X { int i; }; 
struct Y : X { }; 
struct A { int a; }; 
struct B : public A { int j; Y y; }; 

extern B bobj; 
B* pb = &bobj; // ok 
int* p1 = &bobj.a; // undefined, refers to base class member 
int* p2 = &bobj.y.i; // undefined, refers to member’s member 

A* pa = &bobj; // undefined, upcast to a base class type 
B bobj; // definition of bobj 

extern X xobj; 
int* p3 = &xobj.i; // Ok, X is a POD class 
X xobj; 

2 Example 

struct W { int j; }; 
struct X : public virtual W { }; 
struct Y { 

int *p; 
X x; 
Y() : p(&x.j) // undefined, x is not yet constructed 
{ } 

}; 
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3 To explicitly or implicitly convert a pointer to an object of classX to a pointer to a direct or indirect base
classB, the construction ofX and the construction of all of its direct or indirect bases that directly or indi-
rectly derive fromB and which are also direct or indirect base classes ofX60) shall have started and the
destruction of these classes shall not have completed, otherwise the computation results in undefined
behavior. To form a pointer to a direct nonstatic member of an objectX given a pointer toX, the construc- 
tion of X shall have started and the destruction ofX shall not have completed, otherwise the computation
results in undefined behavior. For example, 

struct A { }; 
struct B : virtual A { }; 
struct C : B { }; 
struct D : virtual A { D(A*); }; 
struct X { X(A*); }; 

struct E : C, D, X { 
E() : D(this), // undefined: upcast from E* to A* 

// might use path E* -> D* -> A* 
// but D is not constructed 

// D((C*)this), // defined: 
// E* -> C* defined because E() has started 
// and C* -> A* defined because 
// C fully constructed 

X(this) // defined: upon construction of X, 
// C/B/D/A sublattice is fully constructed 

{ } 
}; 

4 Member functions, including virtual functions (10.3), can be called during construction or destruction
(12.6.2). When a virtual function is called directly or indirectly from a constructor (including from its
ctor-initializer) or from a destructor, the function called is the one defined in the constructor or destructor’s
own class or in one of its bases, but not a function overriding it in a class derived from the constructor or
destructor’s class or overriding it in one of the other base classes of the complete object (1.6). If the virtual
function call uses an explicit class member access (5.2.4) and the object-expression’s type is neither the
constructor or destructor’s own class or one of its bases, the result of the call is undefined. For example,

class V { 
public:

virtual void f(); 
virtual void g(); 

};

class A : public virtual V { 
public:

virtual void f(); 
};

class B : public virtual V { 
public: 

virtual void g(); 
B(V*, A*); 

}; 

__________________
60) If X is itself a base class, not all classes derived fromB are necessarily base classes ofX.
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class D : public A, B { 
public: 

virtual void f(); 
virtual void g(); 
D() : B((A*)this, this) { } 

}; 

B::B(V* v, A* a) { 
f(); // calls V::f, not A::f 
g(); // calls B::g, not D::g 
v->g(); // v is base of B, the call is well-defined, calls B::g 
a->f(); // undefined behavior, a’s type not a base of B 

} 

5 The typeid operator (5.2.7) can be used during construction or destruction (12.6.2). Whentypeid is 
used in a constructor (including in itsctor-initializer) or in a destructor, or used in a function called
(directly or indirectly) from a constructor or destructor, if the operand oftypeid refers to the object under
construction or destruction,typeid yields the type_info representing the constructor or destructor’s class.
If the operand oftypeid refers to the object under construction or destruction and the static type of the
operand is neither the constructor or destructor’s class nor one of its bases, the result oftypeid is unde- 
fined. 

6 Dynamic_cast s (5.2.6) can be used during construction or destruction (12.6.2). When a
dynamic_cast is used in a constructor (including in itsctor-initializer) or in a destructor, or used in a
function called (directly or indirectly) from a constructor or destructor, if the operand of the
dynamic_cast refers to the object under construction or destruction, this object is considered to be a
complete object that has the type of the constructor or destructor’s class. If the operand of the
dynamic_cast refers to the object under construction or destruction and the static type of the operand is
not a pointer to or object of the constructor or destructor’s own class or one of its bases, the
dynamic_cast results in undefined behavior. 

7 Example 

class V { 
public: 

virtual void f(); 
}; 

class A : public virtual V { }; 

class B : public virtual V { 
public: 

B(V*, A*); 
}; 

class D : public A, B { 
public: 

D() : B((A*)this, this) { } 
}; 



12– 16 Special member functions DRAFT: 1 February 1995 12.7 Construction and destruction

B::B(V* v, A* a) { 
typeid(this); // type_info for B 
typeid(*v); // well-defined: *v has type V, a base of B 

// yields type_info for B 
typeid(*a); // undefined behavior: type A not a base of B 
dynamic_cast<B*>(v); // well-defined: v of type V*, V base of B 

// results in B* 
dynamic_cast<B*>(a); // undefined behavior, 

// a has type A*, A not a base of B 
} 

[class.copy] 12.8 Copying class objects

1 A class object can be copied in two ways, by initialization (12.1, 8.5), including for function argument
passing (5.2.2) and for function value return (6.6.3), and by assignment (5.17). Conceptually, these two
operations are implemented by a copy constructor (12.1) and copy assignment operator (13.4.3).

2 A copy constructorfor a classX is a constructor whose first parameter is of typeX& or const X& and 
whose other parameters, if any, all have default arguments (8.3.6), so that it can be called with a single
argument of typeX. For example,X::X(const X&) andX::X(X&, int=1) are copy constructors. 

Box 52 
Should the parameter of the implicitly-declared copy constructor have typeconst volatile X&? See 
94-0193R1/N0580R1.  _ ________________________________________________________________________________________





_ ________________________________________________________________________________________



 

class X { 
// ... 

public: 
X(int); 
X(const X&, int = 1); 

}; 
X a(1); // calls X(int); 
X b(a, 0); // calls X(const X&, int); 
X c = b; // calls X(const X&, int); 

3 A constructor for a classX whose first and only parameter is of type (optionally cv-qualified)X is ill- 
formed. 

4 If there is nouser-declared copy constructor, a copy constructor is implicitly declared61).

5 If all bases and members of a classX have copy constructors acceptingconst parameters, the implicitly- 
declared copy constructor forX has a single parameter of typeconst X& , as follows: 

X::X(const X&) 

Otherwise it has a single parameter of typeX&62): 

X::X(X&) 
__________________ 
61)Thus the class definition 

struct X { 
X(const X&, int); 

}; 

causes a copy constructor to be implicitly-declared and the member function definition 

X::X(const X& x, int i =0) { ... } 

is ill-formed because of ambiguity. 
62) In this case, programs that attempt initialization by copying ofconst X objects are ill-formed. 
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6 ∗An implicitly-declared copy constructor is apublic member of its class. Copy constructors are not inher-
ited.

7 An implicitly-declared copy constructor isimplicitly definedwhen it is used to copy an object of its class
type. 

Box 53 
We need to refer to subclauses that describe when class copy takes place. Is the concept of trivial copy con-
structor needed?  _ ________________________________________________________________________________________





_ ________________________________________________________________________________________



 

A program is ill-formed if the class for which a copy constructor is implicitly defined has: 

— a nonstatic data member of class type (or array thereof) with an inaccessible copy constructor, or

— a base class with an inaccessible copy constructor.63) 

Box 54 
Should it be specified more precisely at which point in the program the implicit definition is ill-formed?
i.e. is something like this needed: "The first declaration or expression that does a class copy causing the
implicitly-declared copy constructor to be implicitly-defined is ill-formed" ?  _ ________________________________________________________________________________________






_ ________________________________________________________________________________________




 

8 The semantics of the implicitly-declared copy constructor are that ofmemberwise initializationof the 
base classes and nonstatic data members; memberwise initialization implies that if a classX has a mem- 
ber (or array thereof) or base of a classM, M’s copy constructor is used byX’s implicitly-declared copy 
constructor for the initialization of the member or baseM. Objects representing virtual base classes will
be initialized only once by the implicitly-declared copy constructor. See 12.6.1 for the order of initial-
ization of members and bases.

9 A copy assignment operatoroperator= is a non-static member function of classX with exactly one 
parameter of typeX&or const X& . If there is nouser-declared copy assignment operator, a copy 
assignment operator is implicitly declared for classX. If all bases and members of a classX have a copy 
assignment operators acceptingconst parameters, the implicitly-declared copy assignment operator
for X will have a single parameter of typeconst X& , as follows: 

X& X::operator=(const X&) 

Box 55 
Should the parameter of the implicitly-declared copy assignment operator have typeconst volatile 
X&? See 94-0193R1/N0580R1.  _ ________________________________________________________________________________________





_ ________________________________________________________________________________________



 

Otherwise it will have a single parameter of typeX&64):

X& X::operator=(X&) 

The implicitly-declared copy assignment operator for classX has the return typeX&; it returns the object for 
which the assignment operator is invoked, that is, the object assigned to65).
__________________ 
63) When a copy constructor for a derived class is implicitly defined, all the implicitly-declared copy constructors for the bases and
members are also implicitly defined (and this recursively for the members’ base classes and members). 
64) In this case, programs that attempt assignment by copying of constX objects will be ill-formed. 
65) Given the parameter type for the copy assignment operator, objects of a derived class type can be assigned to objects of an accessi-
ble base class type. For example, 

class X { 
public: 

int b; 
}; 
class Y : public X { 
public: 

int c; 
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10 An implicitly-declared copy assignment operator is apublic of its class. Copy assignment operators are
not inherited. 

11 An implicitly-declared copy assignment operator isimplicitly definedwhen an object of its class type is
copied. 

Box 56 
We need to refer to subclauses that describe when class copy takes place. Is the concept of trivial copy
assignment operator needed?  _ ________________________________________________________________________________________





_ ________________________________________________________________________________________



 

A program is ill-formed if the class for which a copy assignment operator is implicitly defined has: 

— a nonstatic data member ofconst type, or 

— a nonstatic data member of reference type, or 

— a nonstatic data member of class type (or array thereof) with an inaccessible copy assignment opera-
tor, or 

— a base class with an inaccessible copy assignment operator66) 

Box 57 
Should it be specified more precisely at which point in the program the implicit definition is ill-formed?
i.e. is something like this needed: "The first expression that does a class assignment causing the
implicitly-declared copy assignment operator to be implicitly-defined is ill-formed" ?  _ ________________________________________________________________________________________






_ ________________________________________________________________________________________




 

12 The semantics of the implicitly-declared copy assignment operator are that of memberwise assignment
of the base classes and nonstatic data members; memberwise assignment implies that if a classX has a 
member (or array thereof) or base of a classM, M’s copy assignment operator is used byX’s implicitly- 
declared copy assignment operator for the assignment of the member or baseM. Objects representing
virtual base classes will be assigned only once by a the implicitly-declared copy assignment operator
67). 

__________________ 
}; 

void f() 
{ 

X x1; 
Y y1; 
x1 = y1; //1: ok 
y1 = x1; // error 

} 

On line //1,y1.b is assigned tox1.b andy1.c is not copied. 
66)When a copy assignment operator for a derived class is implicitly defined, all the implicitly-declared copy assignment operators for
the bases and members are also implicitly defined (and this recursively for the members’ base classes and members). 
67) Copying one object into another using the copy constructor or the copy assignment operator does not change the layout or size of
either object. For example, 

struct s { 
virtual f(); 
// ... 

}; 

struct ss : public s { 
f(); 
// ... 

}; 

void f() 
{ 

s a; 
ss b; 
a = b; // really a.s::operator=(b) 
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Box 58 
This needs more work. See 94-0193R1/N0580R1.  _ ____________________________________________




_ ____________________________________________


 

__________________ 
b = a; // error 
a.f(); // calls s::f 
b.f(); // calls ss::f 
(s&)b = a; // assign to b’s s part 

// really ((s&)b).s::operator=(a) 
b.f(); // still calls ss::f 

} 

The calla.f() will invoke s::f() (as is suitable for an object of classs (10.3)) and the callb.f() will call ss::f() (as is suit- 
able for an object of classss ). 





_ _____________________________________________________________________________________________________________________________________________________________________________ ___________________________________________

13 Overloading [over]
_ _____________________________________________________________________________________________________________________________________________________________________________ ___________________________________________

1 When two or more different declarations are specified for a single name in the same scope, that name is
said to beoverloaded. By extension, two declarations in the same scope that declare the same name but
with different types are calledoverloaded declarations. Only function declarations can be overloaded;
object and type declarations cannot be overloaded.

2 When an overloaded function name is used, which overloaded function declaration is being referenced
is determined by comparing the types of the arguments at the point of use with the types of the parame-
ters in the overloaded declarations that are visible at the point of use. This function selection process is
calledoverload resolutionand is defined in 13.2. For example,

double abs(double);
int abs(int);

abs(1); // call abs(int);
abs(1.0); // call abs(double);

[over.load] 13.1 Overloadable declarations

1 Not all function declarations can be overloaded. Those that cannot be overloaded are specified here. A
program is ill-formed if it contains two such non-overloadable declarations in the same scope.

2 Certain function declarations that cannot be distinguished by overload resolution cannot be overloaded:

— Since for any type“T,” a parameter of type“T” and a parameter of type ‘‘reference toT” accept the
same set of initializer values, function declarations with parameter types differing only in this
respect cannot be overloaded.

Box 59

This restriction is hard to check across translation units. Moreover, ambiguities can be detected just
fine at call time. Perhaps we should remove it._ ________________________________________________________________________________________





_ ________________________________________________________________________________________





For example,

int f(int i)
{

// ...
}

int f(int& r) // error: function types
// not sufficiently different

{
// ...

}

It is, however, possible to distinguish between“reference toconst T,” “reference tovolatile
T,” and plain“reference toT” so function declarations that differ only in this respect can be over-
loaded. Similarly, it is possible to distinguish between“pointer to const T ,” “pointer to
volatile T ,” and plain“reference toT” so function declarations that differ only in this respect
can be overloaded.
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— Function declarations that differ only in the return type cannot be overloaded.

— Member function declarations with the same name and the same parameter types cannot be over-
loaded if any of them is astatic member function declaration (9.5). The types of the implicit
object parameters constructed for the member functions for the purpose of overload resolution
(13.2.1) are not considered when comparing parameter types for enforcement of this rule. In con-
trast, if there is nostatic member function declaration among a set of member function declara-
tions with the same name and the same parameter types, then these member function declarations
can be overloaded if they differ in the type of their implicit object parameter. The following exam-
ple illustrates this distinction: 

class X { 
static void f(); 
void f(); // ill-formed 
void f() const; // ill-formed 
void f() const volatile; // ill-formed 
void g(); 
void g() const; // Ok: no static g 
void g() const volatile; // Ok: no static g 

}; 

3 Function declarations that have equivalent parameter declarations declare the same function and there-
fore cannot be overloaded:

— Parameter declarations that differ only in the use of equivalent typedef“types” are equivalent. A
typedef is not a separate type, but only a synonym for another type (7.1.3). For example,

typedef int Int;

void f(int i);
void f(Int i); // OK: redeclaration of f(int)
void f(int i) { /* ... */ }
void f(Int i) { /* ... */ } // error: redefinition of f(int)

Enumerations, on the other hand, are distinct types and can be used to distinguish overloaded func-
tion declarations. For example,

enum E { a };

void f(int i) { /* ... */ }
void f(E i) { /* ... */ }

— Parameter declarations that differ only in a pointer* versus an array[] are equivalent. That is, the
array declaration is adjusted to become a pointer declaration (8.3.5). Note that only the second and
subsequent array dimensions are significant in parameter types (8.3.4).

f(char*);
f(char[]); // same as f(char*);
f(char[7]); // same as f(char*);
f(char[9]); // same as f(char*);

g(char(*)[10]);
g(char[5][10]); // same as g(char(*)[10]);
g(char[7][10]); // same as g(char(*)[10]);
g(char(*)[20]); // different from g(char(*)[10]);

— Parameter declarations that differ only in the presence or absence ofconst and/orvolatile are
equivalent. That is, theconst andvolatile type-specifiers for each parameter type are ignored
when determining which function is being declared, defined, or called. For example,
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typedef const int cInt;

int f (int);
int f (const int); // redeclaration of f (int);
int f (int) { ... } // definition of f (int)
int f (cInt) { ... } // error: redefinition of f (int)

Only theconst andvolatile type-specifiers at the outermost level of the parameter type speci-
fication are ignored in this fashion;const andvolatile type-specifiers buried within a parame-
ter type specification are significant and can be used to distinguish overloaded function declarations.
In particular, for any typeT, “pointer toT,” “pointer toconst T,” and“pointer tovolatile T” 
are considered distinct parameter types, as are“reference toT,” “reference toconst T,” and“refer-
ence tovolatile T.”

— Two parameter declarations that differ only in their default initialization are equivalent. Consider the
following example

void f (int i, int j);
void f (int i, int j = 99); // Ok: redeclaration of f (int, int)
void f (int i = 88, int j = 99); // Ok: redeclaration of f (int, int)
void f (); // Ok: overloaded declaration of f

void prog ()
{

f (1, 2); // Ok: call f (int, int)
f (1); // Ok: call f (int, int)
f (); // Error: f (int, int) or f ()?

}

[over.dcl] 13.1.1 Declaration matching

1 Two function declarations of the same name refer to the same function if they are in the same scope and
have equivalent parameter declarations (13.1). A function member of a derived class isnot in the same
scope as a function member of the same name in a base class. For example,

class B {
public:

int f(int);
};

class D : public B {
public:

int f(char*);
};

HereD::f(char*) hidesB::f(int) rather than overloading it.

void h(D* pd)
{

pd->f(1); // error:
// D::f(char*) hides B::f(int)

pd->B::f(1); // ok
pd->f("Ben"); // ok, calls D::f

}

A locally declared function is not in the same scope as a function in a containing scope.
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int f(char*);
void g()
{

extern f(int);
f("asdf"); // error: f(int) hides f(char*)

// so there is no f(char*) in this scope
}

void caller ()
{

void callee (int, int);
{

void callee (int); // hides callee (int, int)
callee (88, 99); // error: only callee (int) in scope

}
)

2 Different versions of an overloaded member function can be given different access rules. For example,

class buffer {
private:

char* p;
int size;

protected:
buffer(int s, char* store) { size = s; p = store; }
// ...

public:
buffer(int s) { p = new char[size = s]; }
// ...

};

[over.match] 13.2 Overload resolution

1 Overload resolution is a mechanism for selecting the best function to call given a list of expressions that are
to be the arguments of the call and a set ofcandidate functionsthat can be called based on the context of the
call. The selection criteria for the best function are the number of arguments, how well the arguments
match the types of the parameters of the candidate function, and certain other properties of the candidate
function. The function selected by overload resolution is not guaranteed to be appropriate for the context.
Other restrictions, such as the accessibility of the function, can make its use in the calling context ill-
formed.

2 Overload resolution selects the function to call in five distinct contexts within the language:

— Invocation of a function named in the function call syntax (5.2.2)

— Invocation of a function call operator, a pointer-to-function conversion function, or a reference-to-
function conversion function of a class object named in the function call syntax (13.2.1.1)

— Invocation of the operator referenced in an expression (5)

— Invocation of a constructor during initialization of a class object via a parenthesized expression list
(12.6.1)

— Invocation of a user-defined conversion during initialization from an expression (8.5, 8.5.3)

3 Each of these contexts defines the set of candidate functions and the list of arguments in its own unique
way. But, once the candidate functions and argument lists have been identified, the selection of the best
function is the same in all cases:

— First, a subset of the candidate functions—those that have the proper number of arguments and meet
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certain other conditions—-is selected to form a set ofviable functions.

— Then the best viable function is selected based on the implicit conversion sequences (13.2.3.1) needed
to match each argument to the corresponding parameter of each viable function.

4 If a best viable function exists and is unique, overload resolution succeeds and produces it as the result.
Otherwise overload resolution fails and the invocation is ill-formed.

[over.match.funcs] 13.2.1 Candidate functions and argument lists

1 The following subclauses describe the set of candidate functions and the argument list submitted to over-
load resolution in each of the five contexts in which overload resolution is used. The source transforma-
tions and constructions defined in these subclauses are only for the purpose of describing the overload reso-
lution process. An implementation is not required to use such transformations and constructions.

2 The set of candidate functions can contain both member and non-member functions to be resolved against
the same argument list. So that argument and parameter lists are comparable within this heterogeneous set,
a member function is considered to have an extra parameter, called theimplicit object parameter, which
represents the object for which the member function has been called. For the purposes of overload resolu-
tion, both static and non-static member functions have an implicit object parameter, but constructors do not.

3 Similarly, when appropriate, the context can construct an argument list that contains animplied object 
argumentto denote the object to be operated on. Since arguments and parameters are associated by posi-
tion within their respective lists, the convention is that the implicit object parameter, if present, is always
the first parameter and the implied object argument, if present, is always the first argument.

4 For non-static member functions, the type of the implicit object parameter is“reference tocv X” whereX is
the class that defines the member function andcv is the cv-qualification on the member function declara-
tion. For example, for aconst member function of classX, the extra parameter is assumed to have type
“reference toconst X ”. For static member functions, the implicit object parameter is considered to
match any object (since if the function is selected, the object is discarded).

5 During overload resolution, the implied object argument is indistinguishable from other arguments. The
implicit object parameter, however, retains its identity since conversions on the corresponding argument
shall obey these additional rules:

— no temporary object can be introduced to hold the argument for the implicit object parameter

— no user-defined conversions can be applied to achieve a type match with it

— even if the implicit object parameter is notconst -qualified, an rvalue temporary can be bound to the
parameter as long as in all other respects the temporary can be converted to the type of the implicit
object parameter.

[over.match.call] 13.2.1.1 Function call syntax

1 Recall from 5.2.2, that afunction call is apostfix-expression, possibly nested arbitrarily deep in parenthe-
ses, followed by an optionalexpression-listenclosed in parentheses:

( ...( opt postfix-expression) ...) opt ( expression-listopt )

Overload resolution is required if thepostfix-expressionyields the name of a function, an object of class
type, or a set of pointers-to-function.

2 Subclauses 13.2.1.1.1 and 13.2.1.1.2, respectively, describe how overload resolution is used in the first two
cases to determine the function to call.

3 The third case arises from apostfix-expressionof the form&F, whereF names a set of overloaded func-
tions. In the context of a function call, the set of functions named byF shall contain only non-member
functions and static member functions68). And in this context using&F behaves the same as using the name
__________________ 
68) If F names a non-static member function,&F is a pointer-to-member, which cannot be used with the function call syntax. 
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F by itself. Thus, (&F)( expression-listopt ) is simply (F)( expression-listopt ) , which is discussed in
13.2.1.1.1. (The resolution of&F in other contexts is described in 13.3.)

[over.call.func] 13.2.1.1.1 Call to named function

1 Of interest in this subclause are only those function calls in which thepostfix-expressionultimately con-
tains a name that denotes one or more functions that might be called. Such apostfix-expression, perhaps
nested arbitrarily deep in parentheses, has one of the following forms:

postfix-expression:
postfix-expression. id-expression
postfix-expression-> id-expression
primary-expression

These represent two syntactic subcategories of function calls: qualified function calls and unqualified func-
tion calls.

2 In qualified function calls, the name to be resolved is anid-expressionand is preceded by an-> or . oper-
ator. Since the constructA->B is generally equivalent to(*A).B , the rest of this clause assumes, without
loss of generality, that all member function calls have been normalized to the form that uses an object and
the . operator. Furthermore, this clause assumes that thepostfix-expressionthat is the left operand of the
. operator has type“cv T” whereT denotes a class69). Under this assumption, theid-expressionin the call
is looked up as a member function ofT following the rules for looking up names in classes (10). If a mem-
ber function is found, that function and its overloaded declarations constitute the set of candidate functions.
Because of the usual name hiding rules, these will all be declared inT or they will all be declared in the
same base class ofT. The argument list is theexpression-listin the call augmented by the addition of the
left operand of the. operator in the normalized member function call as the implied object argument.

3 In unqualified function calls, the name is not qualified by an-> or . operator and has the more general
form of aprimary-expression. The name is looked up in the context of the function call following the nor-
mal rules for name lookup. If the name resolves to a non-member function declaration, that function and its
overloaded declarations constitute the set of candidate functions. Because of the usual name hiding rules,
these will all be declared in the same block or namespace. The argument list is the same as theexpression-
list in the call. If the name resolves to a member function, then the function call is actually a member func-
tion call. If the keywordthis is in scope and refers to the class of that member function, then the function
call is transformed into a normalized qualified function call using(*this) as thepostfix-expressionto the
left of the . operator. The candidate functions and argument list are as described for qualified function
calls above. If the keywordthis is not in scope or refers to another class, then name resolution found a
static member of some classT. In this case, all overloaded declarations of the function name inT become
candidate functions and a contrived object of typeT becomes the implied object argument70). The call is
ill-formed, however, if overload resolution selects one of the non-static member functions ofT in this case.

[over.call.object] 13.2.1.1.2 Call to object of class type

1 If the primary-expressionE in the function call syntax evaluates to a class object of type“cvT”, then the set
of candidate functions includes at least the function call operators ofT. The function call operators ofT are
obtained by ordinary lookup of the nameoperator() in the context of(E).operator() . Because of
the usual name hiding rules, these will all be declared inT or they will all be declared in the same base
class ofT.

2 In addition, for each conversion function declared inT of the form

operator conversion-type-id() cv-qualifier;

__________________ 
69)Note that cv-qualifiers on the type of objects are significant in overload resolution for both lvalue and rvalue objects. 
70) An implied object argument must be contrived to correspond to the implicit object parameter attributed to member functions during
overload resolution. It is not used in the call to the selected function. Since the member functions all have the same implicit object
parameter, the contrived object will not be the cause to select or reject a function. 
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where conversion-type-iddenotes the type“pointer to function with parameters of typeP1,...,Pn and
returningR” or type“reference to function with parameters of typeP1,...,Pn and returningR”, asurrogate
call functionwith the unique namecall-functionand having the form

R call-function ( conversion-type-idF, P1 a1, ...,Pn an) { return F (a1, ...,an); }

is also considered as a candidate function. Similarly, surrogate call functions are added to the set of candi-
date functions for each conversion function declared in an accessible base class provided the function is not
hidden withinT by another intervening declaration71).

3 If such a surrogate call function is selected by overload resolution, its body, as defined above, will be exe-
cuted to convertE to the appropriate function and then to invoke that function with the arguments of the
call.

4 The argument list submitted to overload resolution consists of the argument expressions present in the func-
tion call syntax preceded by the implied object argument(E) . When comparing the call against the func-
tion call operators, the implied object argument is compared against the implicit object parameter of the
function call operator. When comparing the call against a surrogate call funtion, the implied object argu-
ment is compared against the first parameter of the surrogate call function. The conversion function from
which the surrogate call function was derived will be used in the conversion sequence for that parameter
since it converts the implied object argument to the appropriate function pointer or reference required by
that first parameter.

[over.match.oper] 13.2.1.2 Operators in expressions

1 If no operand of the operator has a type that is a class or an enumeration, the operator is assumed to be a
built-in operator and interpreted according to clause 5. For example,

class String {
public:

String (const String&);
String (char*);

operator char* ();
};
String operator + (const String&, const String&);

void f(void)
{

char* p= "one" + "two"; // ill-formed because neither
// operand has user defined type

int I = 1 + 1; // Always evaluates to 2 even if
// user defined types exist which
// would perform the operation.

}

2 If either operand has a type that is a class or an enumeration, a user-defined operator function might be
declared that implements this operator or a user-defined conversion can be necessary to convert the operand
to a type that is appropriate for a built-in operator. In this case, overload resolution is used to determine
which operator function is to be invoked to implement the operator. Therefore, the operator notation is first
transformed to the equivalent function-call notation as summarized in Table 8 (where @ denotes one of the
operators covered in the specified subclause).

__________________ 
71)Note that this construction can yield candidate call functions that cannot be differentiated one from the other by overload resolution
because they have identical declarations or differ only in their return type. The call will be ambiguous if overload resolution cannot
select a match to the call that is uniquely better than such undifferentiable functions. 
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Table 8—relationship between operator and function call notation
_ ______________________________________________________________________
Subclause Expression As member function As non-member function_ _______________________________________________________________________ ______________________________________________________________________
13.4.1 @a (a).operator@ () operator@ (a)
13.4.2 a@b (a).operator@ (b) operator@ (a, b)
13.4.3 a=b (a).operator= (b)
13.4.5 a[b] (a).operator[](b)
13.4.6 a-> (a).operator-> ()
13.4.7 a@ (a).operator@ (0) operator@ (a, 0)_ ______________________________________________________________________ 


















































3 Three sets of candidate functions are constructed as follows:

— If the first operand of the operator is an object or reference to an object of classX, the operator could be
implemented by a member operator function ofX. The expression is transformed to a qualified function
call per column 3 of Table 8 and a set of candidate functions is constructed for the transformed call
according to the rules in 13.2.1.1.1. This set is designated themember candidates.

— If the operator is either a unary or binary operator (13.4.1, 13.4.2, or 13.4.7), the operator could be
implemented by a non-member operator function. The expression is transformed to an unqualified
function call per column 4 of Table 8. The operator name is looked up in the context of the expression
following the usual rules for name lookup except that all member functions are ignored. Thus, if the
operator name resolves to any declaration, it will be to a non-member function declaration. That func-
tion and its overloaded declarations constitute the set of candidate functions designated thenon-member
candidates. Because of the name hiding rules, these will all be declared in the same block or name-
space72).

Box 60

A motion is expected in Valley Forge that would eliminate all name hiding when resolving non-member
operator names so that the non-member candidates would include all operators of the same name with a
declaration in any enclosing block or namespace._ ________________________________________________________________________________________






_ ________________________________________________________________________________________






— In any case, a set of candidate functions, called thebuilt-in candidates, is constructed. For the
binary operator, or the unary operator&, the built-in candidates set is empty. For all other operators,
the built-in candidates include all of the built-in operators defined in 13.5 that, compared to the given
operator,

— have the same operator name, and

— accept the same number of operands, and
__________________ 
72) Note that the look up rules for operators in expressions are different than the lookup rules for operator function names in a function
call as shown in the following example: 

struct A { }; 
void operator + (A, A); 

struct B { 
void operator + (B); 
void f (); 

}; 

A a; 

void B::f() { 
operator+ (a,a); // ERROR - global operator hidden by member 
a + a; // OK - calls global operator+ 

} 
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— accept operand types to which the given operand or operands can be converted according to
13.2.3.1.

4 For the built-in assignment operators, conversions of the left operand are restricted as follows:

— no temporaries are introduced to hold the left operand 

— no user-defined conversions are applied to achieve a type match with it 

5 For all other operators, no such restrictions apply.

6 If a built-in candidate is selected by overload resolution, any class operands are first converted to the appro-
priate type for the operator. Then the operator is treated as the corresponding built-in operator and inter-
preted according to clause 5. The set of candidate functions for overload resolution is the union of the
member candidates, the non-member candidates, and the built-in candidates. The argument list contains all
of the operands of the operator.

7 If the operator is the binary operator ,or the unary operator & and overload resolution is unsuccessful, then
the operator is assumed to be the built-in operator and interpreted according to clause 5.

[over.match.user] 13.2.1.3 Initialization by user-defined conversions

1 Under the conditions specified in 8.5 and 8.5.3, a user-defined conversion can be invoked to convert the
assignment-expressionof an initializer-clauseto the type of the object being initialized (which might be a
temporary in the reference case). Overload resolution is used to select the user-defined conversion to be
invoked. Assuming that“cv1 T” is the type of the object being initialized, the candidate functions are
selected as follows:

— WhenT is a class type, the constructors ofT are candidate functions

— When the type of theassignment-expressionis a class type“cv S”, the conversion functions ofS and its 
base classes are considered. Those that are not hidden withinS and yield type“cv2 T” or a type that 
can be converted to type“cv2 T,” for any cv2 that is the same cv-qualification as, or lesser cv-
qualification than,cv1, via a standard conversion sequence (13.2.3.1.1) are candidate functions

2 In both cases, the argument list has one argument, which is theassignment-expressionof the initializer-
clause. This argument will be compared against the first parameter of the constructors and against the
implicit object parameter of the conversion functions.

3 Because only one user-defined conversion is allowed in an implicit conversion sequence, special rules
apply when selecting the best user-defined conversion (13.2.3, 13.2.3.1).

[over.match.ctor] 13.2.1.4 Initialization by constructor

1 When objects of classes with constructors are initialized with a parenthesizedexpression-list(12.6.1), over-
load resolution selects the constructor. The candidate functions are all the constructors of the class of the
object being initialized. The argument list is theexpression-listwithin the parentheses of the initializer.

[over.match.viable] 13.2.2 Viable functions

1 From the set of candidate functions constructed for a given context (13.2.1), a set of viable functions is cho-
sen, from which the best function will be selected by comparing argument conversion sequences for the
best fit (13.2.3). The selection of viable functions considers relationships between arguments and function
parameters other than the ranking of conversion sequences.

2 First, to be a viable function, a candidate function shall have enough parameters to agree in number with the
arguments in the list.

— If there aremarguments in the list, all candidate functions having exactlymparameters are viable.

— A candidate function having fewer thanm parameters is viable only if it has an ellipsis in its parameter
list (8.3.5). For the purposes of overload resolution, its parameter list is extended to the right with
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ellipses so that there are exactlymparameters.

— A candidate function having more thanm parameters is viable only if the(m+1)– st parameter has a
default initializer (8.3.6). For the purposes of overload resolution, the parameter list is truncated on the
right, so that there are exactlymparameters.

3 Second, forF to be a viable function, there shall exist for each argument animplicit conversion sequence
(13.2.3.1) that converts that argument to the corresponding parameter ofF. If the parameter has reference
type, the implicit conversion sequence includes the operation of binding the reference, and the fact that a
reference to non-const cannot be bound to an rvalue can affect the viability of the function (see
13.2.3.1.4).

[over.match.best] 13.2.3 Best Viable Function

1 Let ICSi(F) denote the implicit conversion sequence that converts thei-th argument in the list to the type of
the i-th parameter of viable functionF. Subclause 13.2.3.1 defines the implicit conversion sequences and
subclause 13.2.3.2 defines what it means for one implicit conversion sequence to be a better conversion
sequence or worse conversion sequence than another. Given these definitions, a viable functionF1 is
defined to be abetter function than another viable functionF2 if for all argumentsi, ICSi(F1) is not a
worse conversion sequence than ICSi(F2), and then

— for some argumentj, ICSj(F1) is a better conversion sequence than ICSj(F2), or, if not that,

— F1 is a non-template function andF2 is a template function, or, if not that, 

— the context is an initialization by user-defined conversion (see 8.5 and 13.2.1.3) and the standard con-
version sequence from the return type ofF1 to the destination type (i.e., the type of the entity being ini-
tialized) is a better conversion sequence than the standard conversion sequence from the return type of
F2 to the destination type. For example, 

struct A { 
A(); 
operator int(); 
operator double(); 

} a; 
int i = a; // a.operator int() followed by no conversion is better 

// than a.operator double() followed by a conversion 
// to int 

float x = a; // ambiguous: both possibilities require conversions, 
// and neither is better than the other 

2 If there is exactly one viable function that is a better function than all other viable functions, then it is the
one selected by overload resolution; otherwise the call is ill-formed73).

3 Examples:

__________________ 
73) The algorithm for selecting the best viable function is linear in the number of viable functions. Run a simple tournament to find a
functionWthat is not worse than any opponent it faced. Although another functionF thatWdid not face might be better thanW, F can- 
not be the best function because at some point in the tournamentF encountered another functionGsuch thatF was not better thanG.
Hence,Wis either the best function or there is no best function. So, make a second pass over the viable functions to verify thatWis bet-
ter than all other functions.
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void Fcn(const int*, short);
void Fcn(int*, int);

int i;
short s = 0;

Fcn(&i, s); // is ambiguous because
// &i -> int* is better than &i -> const int*
// but s -> short is also better than s -> int

Fcn(&i, 1L); // calls Fcn(int*, int), because
// &i -> int* is better than &i -> const int*
// and 1L -> short and 1L -> int are indistinguishable

Fcn(&i,’c’); // calls Fcn(int*, int), because
// &i -> int* is better than &i -> const int*
// and ’c’ -> int is better than ’c’ -> short

[over.best.ics] 13.2.3.1 Implicit conversion sequences

1 An implicit conversion sequenceis a sequence of conversions used to convert an argument in a function
call to the type of the corresponding parameter of the function being called. The sequence of conversions is
governed by the rules for initialization of an object or reference by a single expression (8.5 and 8.5.3).

2 Implicit conversion sequences are concerned only with the type, cv-qualification, and lvalue-ness of the
argument and how these are converted to match the corresponding properties of the parameter. Other prop-
erties, such as the lifetime, storage class, alignment, or accessibility of the argument and whether or not the
argument is a bit-field are ignored. So, although an implicit conversion sequence can be defined for a given
argument-parameter pair, the conversion from the argument to the parameter might still be ill-formed in the
final analysis.

3 Except in the context of an initialization by user-defined conversion (13.2.1.3), a well-formed implicit con-
version sequence is one of the following forms:

— astandard conversion sequence(13.2.3.1.1),

— auser-defined conversion sequence(13.2.3.1.2), or

— anellipsis conversion sequence(13.2.3.1.3).

4 In the context of an initialization by user-defined conversion (i.e., when considering the argument of a
user-defined conversion function; see 13.2.1.3), only standard conversion sequences and ellipsis conversion
sequences are allowed.

5 When initializing a reference, the operation of binding the reference to an object or temporary occurs after
any conversion. The binding operation is not a conversion, but it is considered to be part of a standard con-
version sequence, and it can affect the rank of the conversion sequence. See 13.2.3.1.4.

6 In all contexts, when converting to the implicit object parameter or when converting to the left operand of
an assignment operation only standard conversion sequences that create no temporary object for the result
are allowed.

7 If no conversions are required to match an argument to a parameter type, the implicit conversion sequence
is the standard conversion sequence consisting of the identity conversion (13.2.3.1.1).

8 If no sequence of conversions can be found to convert an argument to a parameter type or the conversion is
otherwise ill-formed, an implicit conversion sequence cannot be formed.

9 If several different sequences of conversions exist that each convert the argument to the parameter type, the
implicit conversion sequence is a sequence among these that is not worse than all the rest according to
13.2.3.274). If that conversion sequence in not better than all the rest and a function that uses such an
__________________
74) This rule prevents a function from becoming non-viable because of an ambiguous conversion sequence for one of its parameters.
Consider this example,
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implicit conversion sequence is selected as the best viable function, then the call will be ill-formed because
the conversion of one of the arguments in the call is ambiguous.

10 The three forms of implicit conversion sequences mentioned above are defined in the following subclauses.

[over.ics.scs] 13.2.3.1.1 Standard conversion sequences

1 Table 9 summarizes the conversions defined in clause 4 and partitions them into four disjoint categories:
Lvalue Transformation, Qualification Adjustment, Promotion, and Conversion. Note that these categories
are orthogonal with respect to lvalue-ness, cv-qualification, and data representation: the Lvalue Transfor-
mations do not change the cv-qualification or data representation of the type; the Qualification Adjustments
do not change the lvalue-ness or data representation of the type; and the Promotions and Conversions do
not change the lvalue-ness or cv-qualification of the type.

2 A standard conversion sequence is either the Identity conversion by itself or consists of one to four conver-
sions from the other four categories. At most one conversion from each category is allowed in a single
standard conversion sequence. If there are two or more conversions in the sequence, the conversions are
applied in the canonical order:Lvalue Transformation, Promotion, Conversion, Qualification
Adjustment.

3 Each conversion in Table 9 also has an associated rank (Exact Match, Promotion, or Conversion). These
are used to rank standard conversion sequences (13.2.3.2). The rank of a conversion sequence is deter-
mined by considering the rank of each conversion in the sequence and the rank of any reference binding
(13.2.3.1.4). If any of those has Conversion rank, the sequence has Conversion rank; otherwise, if any of
those has Promotion rank, the sequence has Promotion rank; otherwise, the sequence has Exact Match rank.

__________________
class B;
class A { A (B&); };
class B { operator A (); };
class C { C (B&); };
f(A) { }
f(C) { }
B b;
f(b); // ambiguous since b -> C via constructor and

// b -> A via constructor or conversion function.

If it were not for this rule,f(A) would be eliminated as a viable function for the callf(b) causing overload resolution to selectf(C)
as the function to call even though it is not clearly the best choice. On the other hand, if anf(B) were to be declared thenf(b)
would resolved to thatf(B) because the exact match withf(B) is better than any of the sequences required to matchf(A) .
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Table 9—conversions
_ ___________________________________________________________________________
Conversion Category Rank Subclause_ ____________________________________________________________________________ ____________________________________________________________________________ ___________________________________________________________________________
No conversions required Identity_ __________________________________________________ _ ___________
Lvalue-to-rvalue conversion 4.1_ ___________________________ _ ___________
Array-to-pointer conversion 4.2_ ___________________________ _ ___________
Function-to-pointer conversion

Lvalue Transformation

4.3_ __________________________________________________ _ ___________
Qualification conversions Qualification Adjustment

Exact Match

4.4_ ___________________________________________________________________________
Integral promotions 4.5_ ___________________________ _ ___________
Floating point promotion

Promotion Promotion
4.6_ ___________________________________________________________________________

Integral conversions 4.7_ ___________________________ _ ___________
Floating point conversions 4.8_ ___________________________ _ ___________
Floating-integral conversions 4.9_ ___________________________ _ ___________
Pointer conversions 4.10_ ___________________________ _ ___________
Pointer to member conversions 4.11_ ___________________________ _ ___________
Base class conversion 4.12_ ___________________________ _ ___________
Boolean conversions

Conversion Conversion

4.13_ ___________________________________________________________________________ 













































































































[over.ics.user] 13.2.3.1.2 User-defined conversion sequences

1 A user-defined conversion sequence consists of an initial standard conversion sequence followed by a
user-defined conversion (12.3) followed by a second standard conversion sequence. If the user-defined
conversion is specified by a constructor (12.3.1), the initial standard conversion sequence converts the
source type to the type required by the argument of the constructor. If the user-defined conversion is speci-
fied by a conversion function (12.3.2), the initial standard conversion sequence converts the source type to
the implicit object parameter of the conversion function.

2 The second standard conversion sequence converts the result of the user-defined conversion to the target
type for the sequence. Since an implicit conversion sequence is an initialization, the special rules for
initialization by user-defined conversion apply when selecting the best user-defined conversion for a user-
defined conversion sequence (see 13.2.3 and 13.2.3.1)

3 It should be noted that a conversion of an expression of class type to the same class type or to a base class
of that type is a standard conversion rather than a user-defined conversion in spite of the fact that a copy
constructor (i.e., a user-defined conversion function) is called.

[over.ics.ellipsis] 13.2.3.1.3 Ellipsis conversion sequences

1 An ellipsis conversion sequence occurs when an argument in a function call is matched with the ellipsis
parameter specification of the function called.

[over.ics.ref] 13.2.3.1.4 Reference binding

1 The operation of binding a reference is not a conversion, but for the purposes of overload resolution it is
considered to be part of a standard conversion sequence (specifically, it is the last step in such a sequence).

2 A standard conversion sequence cannot be formed if it requires binding a reference to non-const to an
rvalue (except when binding an implicit object parameter; see the special rules for that case in 13.2.1). This
means, for example, that a candidate function cannot be a viable function if it has a non-const reference
parameter (other than the implicit object parameter) and the corresponding argument is a temporary or
would require one to be created to initialize the reference (see 8.5.3).
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3 Other restrictions on binding a reference to a particular argument do not affect the formation of a standard
conversion sequence, however. For example, a function with a“reference toint ” parameter can be a
viable candidate even if the corresponding argument is anint bit-field. The formation of implicit conver-
sion sequences treats theint bit-field as anint lvalue and finds an exact match with the parameter. If the
function is selected by overload resolution, the call will nonetheless be ill-formed because of the prohibi-
tion on binding a non-const reference to a bit-field (8.5.3).

4 A reference binding in general has no effect on the rank of a standard conversion sequence, but there is one
exception: the binding of a reference to a (possibly cv-qualified) class to an expression of a (possibly cv-
qualified) class derived from that class gives the overall standard conversion sequence Conversion rank.

[over.ics.rank] 13.2.3.2 Ranking implicit conversion sequences

1 This clause defines a partial ordering of implicit conversion sequences based on the relationshipsbetter
conversion sequenceandbetter conversion. If an implicit conversion sequence S1 is defined by these rules
to be a better conversion sequence than S2, then it is also the case that S2 is aworse conversion sequence
than S1. If conversion sequence S1 is neither better than nor worse than conversion sequence S2, S1 and
S2 are said to beindistinguishable conversion sequences.

2 When comparing the basic forms of implicit conversion sequences (as defined in 13.2.3.1)

— A standard conversion sequence (13.2.3.1.1) is a better conversion sequence than a user-defined conver-
sion sequence or an ellipsis conversion sequence

— A user-defined conversion sequence (13.2.3.1.2) is a better conversion sequence than an ellipsis conver-
sion sequence (13.2.3.1.3)

3 Two implicit conversion sequences of the same form are indistinguishable conversion sequences unless one
of the following rules apply:

— Standard conversion sequenceS1 is a better conversion sequence than standard conversion sequence
S2 if

— S1 is a proper subsequence ofS2, or, if not that,

— the dominant conversion ofS1 is better than the dominant conversion ofS2 (by the rules defined
below), or, if not that,

— S1 andS2 differ only in their qualification conversion and they yield types identical except for cv-
qualifiers andS2 adds all the qualifiers thatS1 adds (and in the same places) andS2 adds yet more
cv-qualifiers thanS1, or the similar case with reference binding (see the definition ofreference-
compatible with added qualificationin 8.5.3).

— User-defined conversion sequenceU1 is a better conversion sequence than another user-defined conver-
sion sequenceU2 if they contain the same user-defined conversion operator or constructor and if the
second standard conversion sequence ofU1 is better than the second standard conversion sequence of
U2.

4 Standard conversions are ordered by their ranks: an Exact Match is a better conversion than a Promotion,
which is a better conversion than a Conversion. Two conversions with the same rank are indistinguishable
unless one of the following rules applies:

— If classB is derived directly or indirectly from classA, conversion ofB* to A* is better than conversion
of B* to void* .

— If classB is derived directly or indirectly from classA and classC is derived directly or indirectly from
B,

— conversion ofC* to B* is better than conversion ofC* to A*

— Binding of an expression of typeC to a reference of typeB& is better than binding an expression of
typeC to a reference of typeA&
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— conversion ofA::* to B::* is better than conversion ofA::* to C::*

[over.over] 13.3 Address of overloaded function

1 A use of a function name without arguments selects, among all functions of that name that are in scope, the
(only) function that exactly matches the target. The target can be 

— an object being initialized (8.5)

— the left side of an assignment (5.17)

— a parameter of a function (5.2.2)

— a parameter of a user-defined operator (13.4)

— the return value of a function, operator function, or conversion (6.6.3)

— an explicit type conversion (5.2.3, 5.4)

2 Non-member functions match targets of type“pointer-to-function;” member functions match targets of type
“pointer-to-member-function.”

3 Note that iff() andg() are both overloaded functions, the cross product of possibilities must be consid-
ered to resolvef(&g) , or the equivalent expressionf(g) .

4 For example,

int f(double);
int f(int);
(int (*)(int))&f; // cast expression as selector
int (*pfd)(double) = &f; // selects f(double)
int (*pfi)(int) = &f; // selects f (int)
int (*pfe)(...) = &f; // error: type mismatch

The last initialization is ill-formed because nof() with type int(...) has been defined, and not
because of any ambiguity.

5 Note also that there are no standard conversions (4) of one pointer-to-function type or pointer-to-member-
function into another (4.10). In particular, even ifB is a public base ofDwe have

D* f();
B* (*p1)() = &f; // error

void g(D*);
void (*p2)(B*) = &g; // error

6 Note that if the target type is a pointer to member function, the function type of the pointer to member is
used to select the member function from a set of overloaded member functions. For example:

struct X {
int f(int);
static int f(long);

};

int (X::*p1)(int) = &X::f; // OK
int (*p2)(int) = &X::f; // error: mismatch
int (*p3)(long) = &X::f; // OK
int (X::*p4)(long) = &X::f; // error: mismatch
int (X::*p5)(int) = &(X::f); // error: wrong syntax for

// pointer to member
int (*p6)(long) = &(X::f); // OK
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[over.oper] 13.4 Overloaded operators

1 A function declaration having one of the followingoperator-function-ids as its name declares anoperator
function. An operator function is said toimplementthe operator named in itsoperator-function-id.

operator-function-id:
operator operator

operator: one of
new delete new[] delete[]
+ - * / % ^ & | ~
! = < > += -= *= /= %=
^= &= |= << >> >>= <<= == !=
<= >= && || ++ -- , ->* ->
() []

The last two operators are function call (5.2.2) and subscripting (5.2.1).

2 Both the unary and binary forms of

+ - * &

can be overloaded.

3 The following operators cannot be overloaded:

. .* :: ?:

nor can the preprocessing symbols# and## (16).

4 Operator functions are usually not called directly; instead they are invoked to evaluate the operators they
implement (13.4.1 - 13.4.7). They can be explicitly called, though. For example,

complex z = a.operator+(b); // complex z = a+b;
void* p = operator new(sizeof(int)*n);

5 The allocation and deallocation functions,operator new , operator new[] , operator delete
andoperator delete[] , are described completely in 12.5. The attributes and restrictions found in the
rest of this section do not apply to them unless explicitly stated in 12.5.

6 An operator function shall either be a non-static member function or, be a non-member function and have
at least one parameter whose type is a class, a reference to a class, an enumeration, or a reference to an enu-
meration. It is not possible to change the precedence, grouping, or number of operands of operators. The
meaning of the operators=, (unary)&, and, (comma), predefined for each type, can be changed for spe-
cific types by defining operator functions that implement these operators. Operator functions are inherited
the same as other functions, but because an instance ofoperator= is automatically constructed for each
class (12.8, 13.4.3),operator= is never inherited by a class from its bases.

7 The identities among certain predefined operators applied to basic types (for example,++a ≡ a+=1 ) need
not hold for operator functions. Some predefined operators, such as+=, require an operand to be an lvalue
when applied to basic types; this is not required by operator functions.

8 An operator function cannot have default arguments (8.3.6).

9 Operators not mentioned explicitly below in 13.4.3 to 13.4.7 act as ordinary unary and binary operators
obeying the rules of section 13.4.1 or 13.4.2.

[over.unary] 13.4.1 Unary operators

1 A prefix unary operator can be implemented by a non-static member function (9.4) with no parameters or a
non-member function with one parameter. Thus, for any prefix unary operator@, @xcan be interpreted as
eitherx.operator@() or operator@(x) . If both forms of the operator function have been declared,
the rules in 13.2.1.2 determine which, if any, interpretation is used. See 13.4.7 for an explanation of the
postfix unary operators++ and-- .
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2 The unary and binary forms of the same operator are considered to have the same name. Consequently, a
unary operator can hide a binary operator from an enclosing scope, and vice versa.

[over.binary] 13.4.2 Binary operators

1 A binary operator can be implemented either by a non-static member function (9.4) with one parameter or
by a non-member function with two parameters. Thus, for any binary operator@, x@ycan be interpreted as
either x.operator@(y) or operator@(x,y) . If both forms of the operator function have been
declared, the rules in 13.2.1.2 determines which, if any, interpretation is used.

[over.ass] 13.4.3 Assignment

1 An overloaded assignment operator shall be a non-static member function with exactly one parameter.
Because an instance ofoperator= is constructed for each class (12.8), it is never inherited by a derived
class. 

2 A copy assignment operatoroperator= is a non-static member function of classX with exactly one 
parameter of typeX&or const X&. 12.8 describes the copy assignment operator.

[over.call] 13.4.4 Function call

1 operator() shall be a non-static member function. It implements the function call syntax 

postfix-expression( expression-listopt )

where thepostfix-expressionevaluates to a class object and the possibly emptyexpression-listmatches the
parameter list of anoperator() member function of the class. Thus, a callx(arg1,arg2,arg3) is
interpreted as x.operator()(arg1,arg2,arg3) for a class object x of type T if
T::operator()(T1, T2, T3) exists and if the operator is selected as the best match function by the
overload resolution mechanism (13.2.3).

[over.sub] 13.4.5 Subscripting

1 operator[] shall be a non-static member function. It implements the subscripting syntax 

postfix-expression[ expression]

Thus, a subscripting expressionx[y] is interpreted asx.operator[](y) for a class objectx of typeT
if T::operator()(T1) exists and if the operator is selected as the best match function by the overload
resolution mechanism (13.2.3).

[over.ref] 13.4.6 Class member access

1 operator-> shall be a non-static member function taking no parameters. It implements class member
access using->

postfix-expression-> primary-expression

An expressionx->m is interpreted as(x.operator->())->m for a class objectx of type T if
T::operator->() exists and if the operator is selected as the best match function by the overload reso-
lution mechanism (13.2). It follows thatoperator-> must return either a pointer to a class that has a
membermor an object of or a reference to a class for whichoperator-> is defined.

[over.inc] 13.4.7 Increment and decrement

1 The prefix and postfix increment operators can be implemented by a function calledoperator++ . If this
function is a member function with no parameters, or a non-member function with one class parameter, it
defines the prefix increment operator++ for objects of that class. If the function is a member function with
one parameter (which shall be of typeint ) or a non-member function with two parameters (the second
shall be of typeint ), it defines the postfix increment operator++ for objects of that class. When the post-
fix increment is called, theint argument will have value zero. For example,
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class X {
public:

const X& operator++(); // prefix ++a
const X& operator++(int); // postfix a++

};

class Y {
public:
};
const Y& operator++(Y&); // prefix ++b
const Y& operator++(Y&, int); // postfix b++

void f(X a, Y b)
{

++a; // a.operator++();
a++; // a.operator++(0);
++b; // operator++(b);
b++; // operator++(b, 0);

a.operator++(); // explicit call: like ++a;
a.operator++(0); // explicit call: like a++;
operator++(b); // explicit call: like ++b;
operator++(b, 0); // explicit call: like b++;

}

2 The prefix and postfix decrement operators-- are handled similarly.

[over.built] 13.5 Built-in operators

1 The built-in operators (5) participate in overload resolution (13.2.1.2) as though declared as specified in this
section. Foroperator, and unaryoperator& , a built-in operator is selected only if there are no user-
defined operator candidates. For all other built-in operators, since they take only operands with non-class
type, and operator overload resolution occurs only when an operand expression originally has class type,
operator overload resolution can resolve to a built-in operator only when an operand has a class type which
has a user-defined conversion to a non-class type appropriate for the operator.

2 In this section, the termpromoted integral typeis used to refer to those integral types which are preserved
by integral promotion (including e.g.int but excluding e.g.char ). Similarly, the termpromoted
arithmetic typerefers to promoted integral types plus floating types.

3 For every pair (T, VQ), whereT is an arithmetic type, andVQ is eithervolatile or empty, there exist

VQ T& operator++( VQ T&);
VQ T& operator--( VQ T&);
T operator++( VQ T&, int);
T operator--( VQ T&, int);

4 For every pair (T, VQ), whereT is a cv-qualified or unqualified complete object type, andVQ is either
volatile or empty, there exist

T* VQ& operator++( T* VQ&);
T* VQ& operator--( T* VQ&);
T* operator++( T* VQ&, int);
T* operator--( T* VQ&, int);

5 For every cv-qualified or unqualified complete object typeT, there exists

T& operator*( T*);
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6 For every function typeT, there exists

T& operator*( T*);

7 For every typeT, there exist

T* operator&( T&);
T* operator+( T*);

8 For every promoted arithmetic typeT, there exist

T operator+( T);
T operator-( T);

9 For every promoted integral typeT, there exists

T operator~( T);

10 For every quadruple (C, T, CV1, CV2), whereC is a class type,T is a complete object type or a function
type, andCV1andCV2arecv-qualifier-seqs, there exists

CV12 T& operator->*( CV1 C*, CV2 T C::*);

whereCV12is the union ofCV1andCV2.

11 For every pair of promoted arithmetic typesL andR, there exist

LR operator*( L, R);
LR operator/( L, R);
LR operator+( L, R);
LR operator-( L, R);
bool operator<( L, R);
bool operator>( L, R);
bool operator<=( L, R);
bool operator>=( L, R);
bool operator==( L, R);
bool operator!=( L, R);

whereLR is the result of the usual arithmetic conversions between typesL andR.

12 For every pair of typesT andI, whereT is a cv-qualified or unqualified complete object type andI is a pro-
moted integral type, there exist

T* operator+( T*, I);
T& operator[]( T*, I);
T* operator-( T*, I);
T* operator+( I, T*);
T& operator[]( I, T*);

13 For every triple (T, CV1, CV2), whereT is a complete object type, andCV1andCV2arecv-qualifier-seqs,
there exists

ptrdiff_t operator-( CV1 T*, CV2 T*);

14 For every triple (T, CV1, CV2), whereT is any type, andCV1andCV2arecv-qualifier-seqs, there exist

bool operator<( CV1 T*, CV2 T*);
bool operator>( CV1 T*, CV2 T*);
bool operator<=( CV1 T*, CV2 T*);
bool operator>=( CV1 T*, CV2 T*);
bool operator==( CV1 T*, CV2 T*);
bool operator!=( CV1 T*, CV2 T*);



13– 20 Overloading DRAFT: 1 February 1995 13.5 Built-in operators

15 For every quadruple (C, T, CV1, CV2), whereC is a class type,T is any type, andCV1 andCV2 arecv-
qualifier-seqs, there exist

bool operator==( CV1 T C::*, CV2 T C::*);
bool operator!=( CV1 T C::*, CV2 T C::*);

16 For every pair of promoted integral typesL andR, there exist

LR operator%( L, R);
LR operator&( L, R);
LR operator^( L, R);
LR operator|( L, R);
L operator<<( L, R);
L operator>>( L, R);

whereLR is the result of the usual arithmetic conversions between typesL andR.

17 For every triple (L, VQ, R), whereL is an arithmetic type,VQ is eithervolatile or empty, andR is a
promoted arithmetic type, there exist

VQ L& operator=( VQ L&, R);
VQ L& operator*=( VQ L&, R);
VQ L& operator/=( VQ L&, R);
VQ L& operator+=( VQ L&, R);
VQ L& operator-=( VQ L&, R);

18 For every pair (T, VQ), whereT is any type andVQ is eithervolatile or empty, there exists

T* VQ& operator=( T* VQ&, T*);

19 For every triple (T, VQ, I), whereT is a cv-qualified or unqualified complete object type,VQ is either
volatile or empty, andI is a promoted integral type, there exist

T* VQ& operator+=( T* VQ&, I);
T* VQ& operator-=( T* VQ&, I);

20 For every triple (L, VQ, R), whereL is an integral type,VQ is eithervolatile or empty, andR is a pro-
moted integral type, there exist

VQ L& operator%=( VQ L&, R);
VQ L& operator<<=( VQ L&, R);
VQ L& operator>>=( VQ L&, R);
VQ L& operator&=( VQ L&, R);
VQ L& operator^=( VQ L&, R);
VQ L& operator|=( VQ L&, R);

21 For every pair of typesL andR, there exists

R operator,( L, R);

22 There also exist

bool operator!(bool);
bool operator&&(bool, bool);
bool operator||(bool, bool);
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14 Templates [temp]
_ _____________________________________________________________________________________________________________________________________________________________________________ ___________________________________________

1 A classtemplatedefines the layout and operations for an unbounded set of related types. For example, a
single class templateList might provide a common definition for list ofint , list of float , and list of
pointers toShapes. A functiontemplatedefines an unbounded set of related functions. For example, a
single function templatesort() might provide a common definition for sorting all the types defined by
theList class template.

2 A templatedefines a family of types or functions.

template-declaration:
template < template-parameter-list> declaration

template-parameter-list:
template-parameter
template-parameter-list, template-parameter

Thedeclarationin a template-declarationshall declare or define a function or a class, define a static data
member of a template class, or define a template member of a class. Atemplate-declarationis a
declaration. A template-declarationis a definition (also) if itsdeclarationdefines a function, a class, or a
static data member of a template class. There shall be exactly one definition for each template in a pro-
gram. There can be many declarations. Multiple definitions of a template in a single compilation unit is a
required diagnostic. Multiple definitions of a template in different compilation units is a nonrequired diag-
nostic. 

Box 61 
This – and all other requirements for unique definitions of templates in this clause– will have to be 
rephrased to take the ODR into account when the ODR is completely defined.  _ ________________________________________________________________________________________





_ ________________________________________________________________________________________



 

3 The name of a template obeys the usual scope and access control rules. Atemplate-declarationcan appear 
only as a global declaration, as a member of a namespace, as a member of a class, or as a member of a class
template. A member template shall not bevirtual . A destructor shall not be a template. A local class
shall not have a member template.

4 A template shall not have C linkage. If the linkage of a template is something other than C or C + +, the
behavior is implementation-defined.

5 A vector class template might be declared like this:

template<class T> class vector {
T* v;
int sz;

public:
vector(int);
T& operator[](int);
T& elem(int i) { return v[i]; }
// ...

};

The prefixtemplate <class T> specifies that a template is being declared and that atype-nameT will
be used in the declaration. In other words,vector is a parameterized type withT as its parameter. A
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class template definition specifies how individual classes can be constructed much as a class definition
specifies how individual objects can be constructed.

6 A member template can be defined within its class or separately. For example:

template<class T> class string {
public:

template<class T2> compare(const T2&);
template<class T2> string(const string<T2>& s) { /* ... */ }
// ...

};

template<class T> template<class T2> string<T>::compare(const T2& s)
{

// ...
}

[temp.names] 14.1 Template names

1 A template can be referred to by atemplate-id:

template-id:
template-name< template-argument-list>

template-name:
identifier

template-argument-list:
template-argument
template-argument-list, template-argument

template-argument:
assignment-expression
type-id
template-name

2 A template-idthat names a template class is aclass-name(9).

3 A template-idthat names a defined template class can be used exactly like the names of other defined
classes. For example:

vector<int> v(10);
vector<int>* p = &v;

Template-ids that name functions are discussed in 14.9.

4 A template-idthat names a template class that has been declared but not defined can be used exactly like
the names of other declared but undefined classes. For example:

template<class T> class X; // X is a class template

X<int>* p; // ok: pointer to declared class X<int>
X<int> x; // error: object of undefined class X<int>

5 The name of a template followed by a< is always taken as the beginning of atemplate-idand never as a
name followed by the less-than operator. Similarly, the first non-nested> is taken as the end of the
template-argument-listrather than a greater-than operator. For example:
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template<int i> class X { /* ... */ }

X< 1>2 >x1; // syntax error
X<(1>2)>x2; // ok

template<class T> class Y { /* ... */ }
Y< X<1> > x3; // ok

6 ∗The name of a class template shall not be declared to refer to any other template, class, function, object,
namespace, value, or type in the same scope. Unless explicitly specified to have internal linkage, a tem-
plate in namespace scope has external linkage (3.5). A global template name shall be unique in a program.

7 In a template-argument, an ambiguity between atype-idand anexpressionis resolved to atype-id. For 
example: 

template<class T> void f(); 
template<int I> void f(); 

void g() 
{ 

f<int()>(); // ‘‘int()’’ is a type-id: call the first f() 
} 

[temp.res] 14.2 Name resolution

1 A name used in a template is assumed not to name a type unless it has been explicitly declared to refer to a
type in the context enclosing the template declaration or is qualified by the keywordtypename . For 
example:

// no B declared here

class X;

template<class T> class Y {
class Z; // forward declaration of member class

void f() { ∗
X* a1; // declare pointer to X
T* a2; // declare pointer to T
Y* a3; // declare pointer to Y
Z* a4; // declare pointer to Z
typedef typename T::A TA; 
TA* a5; // declare pointer to T’s A 
typename T::A* a6; // declare pointer to T’s A 
T::A* a7; // T::A is not a type name: 

// multiply T::A by a7 
B* a8; // B is not a type name: 

// multiply B by a8 
}

};

2 In a template, any use of aqualified-namewhere the qualifier depends on atemplate-parametercan be pre- 
fixed by the keywordtypename to indicate that thequalified-namedenotes a type.

elaborated-type-specifier: 
... 
typename :: opt nested-name-specifier identifier full-template-argument-listopt ; 

full-template-argument-list: 
< template-argument-list> 



14– 4 Templates DRAFT: 1 February 1995 14.2 Name resolution

3 If a specialization of that template is generated for atemplate-argumentsuch that thequalified-namedoes 
not denote a type, the specialization is ill-formed. is adeclarationthat states thatqualified-namenames a 
type, but gives no clue to what that type might be. Thequalified-nameshall include a qualifier containing a
template parameter or a template class name.

4 Knowing which names are type names allows the syntax of every template declaration to be checked. Syn-
tax errors in a template declaration can therefore be diagnosed at the point of the declaration exactly as
errors for non-template constructs. Other errors, such as type errors involving template parameters, cannot
be diagnosed until later; such errors shall be diagnosed at the point of instantiation or at the point where
member functions are generated (14.3). Errors that can be diagnosed at the point of a template declaration,
shall be diagnosed there or later together with the dependent type errors. For example:

template<class T> class X {
// ...
void f(T t, int i, char* p)
{

t = i; // typecheck at point of instantiation,
// or at function generation

p = i; // typecheck immediately at template declaration,
// at point of instantiation,
// or at function generation

}
};

No diagnostics shall be issued for a template definition for which a valid specialization can be generated.

5 Three kinds of names can be used within a template definition:

— The name of the template itself, the names of thetemplate-parameters (14.6), and names declared
within the template itself.

— Names from the scope of the template definition.

— Names dependent on atemplate-argument(14.7) from the scope of a template instantiation.

6 For example:

#include <iostream> 
using namespace std; 

template<class T> class Set {
T* p;
int cnt;

public:
Set();
Set<T>(const Set<T>&);
void printall()
{

for (int i = 0; i<cnt; i++)
cout << p[i] << ’\n’;

}
// ...

};

When looking for the declaration of a name used in a template definition the usual lookup rules (9.3) are
first applied. Thus, in the example,i is the local variablei declared inprintall , cnt is the member
cnt declared inSet , andcout is the standard output stream declared iniostream.h . However, not
every declaration can be found this way; the resolution of some names must be postponed until the actual
template-argumentis known. For example, the even though the nameoperator<< is known within the 
definition of sum() an a declaration of it can be found in<iostream> , the actual declaration of
operator<< needed to printp[i] cannot be known until it is known what typeT is (14.2.3). 
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7 If a name can be bound at the point of the template definition and it is not a function called in a way that
depends on atemplate-parameter(as defined in 14.2.3), it will be bound at the template definition point
and the binding is not affected by later declarations. For example: 

void f(int); 

template<class T> void g(T t) 
{ 

f(1); // f(int) 
f(T(1)); // dependent 
f(t); // dependent 

} 

void f(char); 

void h() 
{ 
f(’a’); // will cause two calls of f(int) followed 

// by a call of f(char) 
} 

[temp.local] 14.2.1 Locally declared names

1 Within the scope of a class template or a specialization of a template the name of the template is equivalent
to the name of the template qualified by thetemplate-parameter. Thus, the constructor forSet can be
referred to asSet() or Set<T>() . Other specializations (14.5) of the class can be referred to by explic-
itly qualifying the template name with appropriatetemplate-arguments. For example:

template<class T> class X {
X* p; // meaning X<T>
X<T>* p2;
X<int>* p3;

};

template<class T> class Y;

class Y<int> {
Y* p; // meaning Y<int>

};

See 14.6 for the scope oftemplate-parameters.

2 A templatetype-parametercan be used in anelaborated-type-specifier. For example:

template<class T> class A {
friend class T;
class T* p;
class T; // error: redeclaration of template parameter T

// (a name declaration, not an elaboration)
// ...

}

3 However, a specialization of a template for which atype-parameterused this way is not in agreement with
theelaborated-type-specifier(7.1.5) is ill-formed. For example:
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class C { /* ... */ };
struct S { /* ... */ };
union U { /* ... */ };
enum E { /* ... */ };

A<C> ac; // ok
A<S> as; // ok
A<U> au; // error: parameter T elaborated as a class,

// but the argument supplied for T is a union
A<int> ai; // error: parameter T elaborated as a class,

// but the argument supplied for T is an int
A<E> ae; // error: parameter T elaborated as a class,

// but the argument supplied for T is an enumeration

[temp.encl] 14.2.2 Names from the template’s enclosing scope

1 If a name used in a template isn’t defined in the template definition itself, names declared in the scope
enclosing the template are considered. If the name used is found there, the name used refers to the name in
the enclosing context. For example:

void g(double);
void h();

template<class T> class Z {
public:

void f() {
g(1); // calls g(double)
h++; // error: cannot increment function

}
};

void g(int); // not in scope at the point of the template
// definition, not considered for the call g(1)

In this, a template definition behaves exactly like other definitions. For example:

void g(double);
void h();

class ZZ {
public:

void f() {
g(1); // calls g(double)
h++; // error: cannot increment function

}
};

void g(int); // not in scope at the point of class ZZ
// definition, not considered for the call g(1)

[temp.dep] 14.2.3 Dependent names

1 Some names used in a template are neither known at the point of the template definition nor declared within
the template definition. Such names shall depend on atemplate-argumentand shall be in scope at the point
of the template instantiation (14.3). For example:
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class Horse { /* ... */ };

ostream& operator<<(ostream&,const Horse&);

void hh(Set<Horse>& h)
{

h.printall();
}

In the call ofSet<Horse>::printall() , the meaning of the<< operator used to printp[i] in the
definition ofSet<T>::printall() (14.2), is

operator<<(ostream&,const Horse&);

This function takes an argument of typeHorse and is called from a template with atemplate-parameterT
for which thetemplate-argumentis Horse . Because this function depends on atemplate-argumentthe call
is well-formed.

2 A function calldepends ona template-argumentif the call would have a different resolution or no resolu-
tion if a type, template, or named constant mentioned in thetemplate-argumentwere missing from the pro-
gram. Examples of calls that depend on an argument typeT are:

1) The function called has a parameter that depends onT according to the type deduction rules (14.9.2).
For example:f(T) , f(Vector<T>) , andf(const T*) .

2) The type of the actual argument depends onT. For example:f(T(1)) , f(t) , f(g(t)) , andf(&t)
assuming thatt has the typeT. 

3) A call is resolved by the use of a conversion toT without either an argument or a parameter of the called
function being of a type that depended onT as specified in (1) and (2). For example:

struct B { };
struct T : B { };
struct X { operator T(); };

void f(B);

void g(X x)
{

f(x); // meaning f( B( x.operator T() ) )
// so the call f(x) depends on T

}

3 ∗This ill-formed template instantiation uses a function that does not depend on atemplate-argument: 

template<class T> class Z {
public:

void f() {
g(1); // g() not found in Z’s context.

// Look again at point of instantiation
}

};

void g(int);

void h(const Z<Horse>& x)
{

x.f(); // error: g(int) called by g(1) does not depend
// on template-parameter ‘‘Horse’’

}

The callx.f() gives raise to the specialization:
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Z<Horse>::f() { g(1); }

The call g(1) would call g(int) , but since that call in no way depends on thetemplate-argument
Horse and becauseg(int) wasn’t in scope at the point of the definition of the template, the callx.f()
is ill-formed.

4 On the other hand:

void h(const Z<int>& y)
{

y.f(); // fine: g(int) called by g(1) depends
// on template-parameter ‘‘int’’

}

Here, the cally.f() gives raise to the specialization:

Z<int>::f() { g(1); }

The callg(1) callsg(int) , and since that call depends on thetemplate-argumentint , the cally.f()
is acceptable even thoughg(int) wasn’t in scope at the point of the template definition.

5 A name from a base class can hide the name of atemplate-parameter. For example:

struct A {
struct B { /* ... */ };
int a;
int Y; 

};

template<class B, class a> struct X : A {
B b; // A’s B
a b; // error: A’s a isn’t a type name

};

6 However, a name from atemplate-argumentcannot hide a name declared within a template, atemplate- 
parameter, or a name from the template’s enclosing scopes. For example:

int a;

template<class T> struct Y : T {
struct B { /* ... */ };
B b; // The B defined in Y
void f(int i) { a = i; } // the global a;
Y* p; // Y<T> 

};

Y<A> ya;

The membersA::B , A::a , andA::Y of the template argumentA do not affect the binding of names in
Y<A>.

7 A name of a member can hide the name of atemplate-parameter. For example:

template<class T> struct A {
struct B { /* ... */ };
void f();

};

template<class B> void A<B>::f()
{

B b; // A’s B, not the template parameter
}
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[temp.inject] 14.2.4 Non-local names declared within a template

1 Names that are not template members can be declared within a template class or function. When a template
is specialized, the names declared in it are declared as if the specialization had been explicitly declared at its
point of instantiation. If a template is first specialized as the result of use within a block or class, names
declared within the template shall be used only after the template use that caused the specialization. For
example:

// Assume that Y is not yet declared 

template<class T> class X {
friend class Y; 

};

Y* py1; // ill-formed: Y is not in scope 

// Here is the point of instantiation for X<C> 
void g()
{

X<C>* pc; // does not cause instantiation 
Y* py2; // ill-formed: Y is not in scope 
X<C> c; // causes instantiation of X<C>, so 

// names from X<C> can be used 
// here on 

Y* py3; // ok 
}
Y* py4; // ok 

[temp.inst]14.3 Template instantiation

1 A class generated from a class template is called a generated class. A function generated from a function
template is called a generated function. A static data member generated from a static data member template
is called a generated static data member. A class defined with atemplate-idas its name is called an explic-
itly specialized class. A function defined with atemplate-idas its name is called an explicitly specialized
function. A static data member defined with atemplate-idas its name is called an explicitly specialized
static data member. A specialization is a class, function, or static data member that is either generated or
explicitly specialized.

2 The act of generating a class, function, or static data member from a template is commonly referred to as
template instantiation. 

[temp.linkage]14.3.1 Template linkage 

1 A function template has external linkage, as does a static member of a class template. Every function tem-
plate shall have the same definition in every translation unit in which it appears.

[temp.point] 14.3.2 Point of instantiation

1 The point of instantiation of a template is the point where names dependent on thetemplate-argumentare
bound. That point is immediately before the declaration in the nearest enclosing global or namespace scope
containing the first use of the template requiring its definition. This implies that names used in a template
definition cannot be bound to local names or class member names from the scope of the template use. They
can, however, be bound to names of namespace members. For example:

// void g(int); not declared here

template<class T> class Y {
public:

void f() { g(1); }
};
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void k(const Y<int>& h)
{

void g(int);
h.f(); // error: g(int) called by g(1) not found

// local g() not considered
}

class C {
void g(int);

void m(const Y<int>& h)
{

h.f(); // error: g(int) called by g(1) not found
// C::g() not considered

}
};

namespace N {
void g(int);

void n(const Y<int>& h)
{

h.f(); // N::g(int) called by g(1)
}

}

2 ∗Names from both the namespace of the template itself and of the namespace containing the point of instan-
tiation of a specialization are used to resolve names for the specialization. Overload resolution is used to
chose between functions with the same name in these two namespaces. For example: 

namespace NN { 
void g(int); 
void h(int); 
template<class T> void f(T t) 
{ 

g(t); 
h(t); 
k(t); 

} 
} 

namespace MM { 
void g(double); 
void k(double); 


// instantiation point for NN:f(int) and NN::f(double) 

void m() 
{ 

NN:f(1); // indirectly calls NN::g(int), 
// NN::h, and MM::k. 

NN:f(1.0); // indirectly calls MM::g(double), 
// NN::h, and MM::k. 

} 
} 

If a name is found in both namespaces and overload resolution cannot resolve a use, the program is ill-
formed. 
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3 Each compilation unit in which the definition of a template is used in a way that require definition of a spe-
cialization has a point of instantiation for the template. If this causes names used in the template definition
to bind to different names in different compilations, the one-definition rule has been violated and any use of
the template is ill-formed. Such violation does not require a diagnostic.

4 A template can be either explicitly instantiated for a given argument list or be implicitly instantiated. A
template that has been used in a way that require a specialization of its definition will have the specializa-
tion implicitly generated unless it has either been explicitly instantiated (14.4) or explicitly specialized
(14.5). A specialization will not be implicitly generated unless the definition of a template specialization is
required. For example:

template<class T> class Z {
void f();
void g();

};

void h()
{

Z<int> a; // instantiation of class Z<int> required
Z<char>* p; // instantiation of class Z<char> not required
Z<double>* q; // instantiation of class Z<double> not required

a.f(); // instantiation of Z<int>::f() required
p->g(); // instantiation of class Z<char> required, and

// instantiation of Z<char>::g() required
}

Nothing in this example requiresclass Z<double> , Z<int>::g() , or Z<char>::f() to be instan-
tiated. An implementation shall not instantiate a function or a class that does not require instantiation.
However, virtual functions can be instantiated for implementation purposes.

5 If a virtual function is instantiated, its point of instantiation is immediately following the point of instantia-
tion for its class. ∗

6 The point of instantiation for a template used inside another template and not instantiated previous to an
instantiation of the enclosing template is immediately before the point of instantiation of the enclosing tem-
plate.

namespace N {
template<class T> class List {
public:

T* get();
// ...

};
}

template<class K, class V> class Map {
List<V> lt;
V get(K);
// ...

};

void g(Map<char*,int>& m)
{

int i = m.get("Nicholas");
// ...

}

This allows instantiation of a used template to be done before instantiation of its user.
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7 Implicitly generated template classes, functions, and static data members are placed in the namespace∗
where the template was defined. For example, a call oflt.get() from Map<char*,int>::get()
would placeList<int>::get() in N rather than in the global space.

Box 62

Name injection from an implicitly generated template function specialization are under debate. That is, it
might be banned._ ________________________________________________________________________________________





_ ________________________________________________________________________________________





8 If a template for which a definition is in scope is used in a way that involves overload resolution or conver-
sion to a base class, the definition of a template specialization is required. For example:

template<class T> class B { /* ... */ };
template<class T> class D : public B<T> { /* ... */ };

void f(void*);
void f(B<int>*);

void g(D<int>* p, D<char>* pp)
{

f(p); // instantiation of D<int> required: call f(B<int>*)

B<char>* q = pp; // instantiation of D<char> required:
// convert D<char>* to B<char>*

}

9 If an instantiation of a class template is required and the template is declared but not defined, the program is
ill-formed. For example:

template<class T> class X;

X<char> ch; // error: definition of X required 

10 Recursive instantiation is possible. For example:

template<int i> int fac() { return i>1 ? i*fac<i-1>() : 1; }

int fac<0>() { return 1; }

int f()
{

return fac<17>();
}

11 There shall be an implementation quantity that specifies the limit on the depth of recursive instantiations.∗

12 The result of an infinite recursion in instantiation is undefined. In particular, an implementation is allowed
to report an infinite recursion as being ill-formed. For example:

template<class T> class X {
X<T>* p; // ok
X<T*> a; // instantiation of X<T> requires

// the instantiation of X<T*> which requires
// the instantiation of X<T**> which ...

};

13 No program shall explicitly instantiate any template more than once, both explicitly instantiate and explic-
itly specialize a template, or specialize a template more than once for a given set oftemplate-arguments.
An implementation is not required to diagnose a violation of this rule.
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14 An explicit specialization or explicit instantiation of a template shall be in the namespace in which the tem-
plate was defined. For example:

namespace N {
template<class T> class X { /* ... */ };
template<class T> class Y { /* ... */ };
template<class T> class Z {

void f(int i) { g(i); }
// ...

};

class X<int> { /* ... */ }; // ok: specialization
// in same namespace

}

template class Y<int>; // error: explicit instantiation
// in different namespace

template class N::Y<char*>; // ok: explicit instantiation
// in same namespace

class N::Y<double> { /* ... */ }; // ok: specialization 
// in same namespace 

15 A member function of an explicitly specialized class shall not be implicitly generated from the general tem-
plate. Instead, the member function shall itself be explicitly specialized. For example: 

template<class T> struct A {
void f() { /* ... */ }

};

struct A<int> {
void f();

};

void h()
{

A<int> a;
a.f(); // A<int>::f must be defined somewhere

}

void A<int>::f() { /* ... */ };

Thus, an explicit specialization of a class implies the declaration of specializations of all of its members.
The definition of each such specialized member which is used shall be provided in some translation unit.

14.3.3 Instantiation ofoperator->

1 If a template class has anoperator-> , thatoperator-> can have a return type that cannot be derefer-
enced by-> as long as thatoperator-> is neither invoked, nor has its address taken, isn’t virtual, nor is
explicitly instantiated. For example:
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template<class T> class Ptr {
// ...
T* operator->();

};

Ptr<int> pi; // ok
Ptr<Rec> pr; // ok

void f()
{

pi->m = 7; // error: Ptr<int>::operator->() returns a type
// that cannot be dereference by ->

pr->m = 7; // ok if Rec has an accessible member m
// of suitable type

}

[temp.explicit] 14.4 Explicit instantiation

1 A class or function specialization can be explicitly instantiated from its template.

2 The syntax for explicit instantiation is:

explicit-instantiation:
template inst ;

inst:
class-key template-id
type-specifier-seq template-id( parameter-declaration-clause)

Box 63

Syntax WG: please check this grammar. It ought to allow any declaration that is not a definition of a class
or function with atemplate-idas the name being declared._ ________________________________________________________________________________________





_ ________________________________________________________________________________________





For example:

template class vector<char>;

template void sort<char>(vector<char>&);

3 A declaration of the template shall be in scope at the point of explicit instantiation. ∗

4 A trailing template-argumentcan be left unspecified in an explicit instantiation or explicit specialization of
a template function provided it can be deduced from the function argument type. For example:

// instantiate sort(vector<int>&):
// deduce template-argument:
template void sort<>(vector<int>&);

5 The explicit instantiation of a class implies the instantiation of all of its members not previously explicitly
specialized in the compilation unit containing the explicit instantiation.

[temp.spec] 14.5 Template specialization

1 A specialized template function, template class, or static member of a template can be declared by a decla-
ration where the declared name is atemplate-id, that is:

specialization:
declaration

For example: ∗
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template<class T> class stream;

class stream<char> { /* ... */ };

template<class T> void sort(vector<T>& v) { /* ... */ }

void sort<char*>(vector<char*>&) ;

Given these declarations,stream<char> will be used as the definition of streams ofchar s; other
streams will be handled by template classes generated from the class template. Similarly,sort<char*>
will be used as the sort function for arguments of typevector<char*> ; othervector types will be
sorted by functions generated from the template.

2 A declaration of the template being specialized shall be in scope at the point of declaration of a specializa-
tion. For example:

class X<int> { /* ... */ }; // error: X not a template

template<class T> class X { /* ... */ };

class X<char*> { /* ... */ }; // fine: X is a template

3 If a template is explicitly specialized then that specialization shall be declared before the first use of that
specialization in every translation unit in which it is used. For example:

template<class T> void sort(vector<T>& v) { /* ... */ }

void f(vector<String>& v)
{

sort(v); // use general template
// sort(vector<T>&), T is String

}

void sort<String>(vector<String>& v); // error: specialize after use
void sort<>(vector<char*>& v); // fine sort<char*> not yet used

If a function or class template has been explicitly specialized for atemplate-argumentlist no specialization
will be implicitly generated for thattemplate-argumentlist.

4 Note that a function with the same name as a template and a type that exactly matches that of a template is
not a specialization (14.9.4).

[temp.param] 14.6 Template parameters

1 The syntax fortemplate-parameters is:

template-parameter:
type-parameter
parameter-declaration

type-parameter:
class identifieropt

class identifieropt = type-id
typename identifieropt 
typename identifieropt = type-id 
template < template-parameter-list> class identifieropt

template < template-parameter-list> class identifieropt = template-name

For example:
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template<class T> class myarray { /* ... */ }; 

template<class K, class V, template<class T> class C = myarray>
class Map {

C<K> key;
C<V> value;
// ...

};

2 ∗Default arguments shall not be specified in a declaration or a definition of a specialization.

3 A type-parameterdefines itsidentifier to be atype-namein the scope of the template declaration. Atype-
parametershall not be redeclared within its scope (including nested scopes). A non-typetemplate-
parametershall not be assigned to or in any other way have its value changed. For example:

template<class T, int i> class Y {
int T; // error: template-parameter redefined
void f() {

char T; // error: template-parameter redefined
i++; // error: change of template-argument value

}
};

template<class X> class X; // error: template-parameter redefined

4 A template-parameterthat could be interpreted as either anparameter-declarationor a type-parameter
(because itsidentifier is the name of an already existing class) is taken as atype-parameter. A template-
parameterhides a variable, type, constant, etc. of the same name in the enclosing scope. For example:

class T { /* ... */ };
int i;

template<class T, T i> void f(T t)
{

T t1 = i; // template-arguments T and i
::T t2 = ::i; // globals T and i

}

Here, the templatef has atype-parametercalledT, rather than an unnamed non-type parameter of classT.
There is no semantic difference betweenclass andtypename in a template-parameter. 

5 There are no restrictions on what can be atemplate-argumenttype beyond the constraints imposed by the
set of argument types (14.7). In particular, reference types and types containingcv-qualifiersare allowed. 
A non-referencetemplate-argumentcannot have its address taken. When a non-referencetemplate-
argumentis used as an initializer for a reference a temporary is always used. For example:

template<const X& x, int i> void f()
{

&x; // ok
&i; // error: address of non-reference template-argument

int& ri = i; // error: non-const reference bound to temporary
const int& cri = i; // ok: reference bound to temporary

}

6 A non-typetemplate-parametershall not be of floating type. For example: 

template<double d> class X; // error
template<double* pd> class X; // ok
template<double& rd> class X; // ok
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7 A default template-argumentis a type, value, or template specified after= in a template-parameter. A 
default template-argumentcan be specified in a template declaration or a template definition. The set of∗
defaulttemplate-arguments available for use with a template in a translation unit shall be provided by the
first declaration of the template in that unit. 

8 If a template-parameterhas a default argument, all subsequenttemplate-parameters shall have a default
argument supplied. For example:

template<class T1 = int, class T2> class B; // error

9 The scope of atemplate-argumentextends from its point of declaration until the end of its template. In par-
ticular, atemplate-parametercan be used in the declaration of subsequenttemplate-parameters and their
default arguments. For example:

template<class T, T* p, class U = T> class X { /* ... */ };
template<class T> void f(T* p = new T);

A template-parametercannot be used in precedingtemplate-parametersor their default arguments.

10 A template-parametercan be used in the specification of base classes. For example:

template<class T> class X : public vector<T> { /* ... */ };
template<class T> class Y : public T { /* ... */ };

Note that the use of atemplate-parameteras a base class implies that a class used as atemplate-argument
must be defined and not just declared.

[temp.arg] 14.7 Template arguments

1 The types of thetemplate-arguments specified in atemplate-idshall match the types specified for the tem-
plate in itstemplate-parameter-list. For example,vector s as defined in 14 can be used like this:

vector<int> v1(20);
vector<complex> v2(30);

typedef vector<complex> cvec; // make cvec a synonym
// for vector<complex>

cvec v3(40); // v2 and v3 are of the same type

v1[3] = 7;
v2[3] = v3.elem(4) = complex(7,8);

2 A non-type non-referencetemplate-argumentshall be aconstant-expressionof non-floating type, the 
address of an object or a function with external linkage, or a non-overloaded pointer to member. The
address of an object or function shall be expressed as&f , plain f (for function only), or&X::f wheref is 
the function or object name. In the case of&X::f , X shall be a (possibly qualified) name of a class andf 
the name of a static member ofX. A pointer to member shall be expressed as&X::m whereX is a (possi- 
bly qualified) name of a class andm is the member name. In particular, a string literal (2.9.4) isnot an
acceptabletemplate-argumentbecause a string literal is the address of an object with static linkage. For
example:

template<class T, char* p> class X {
// ...
X(const char* q) { /* ... */ }

};

X<int,"Studebaker"> x1; // error: string literal as template-argument

char* p = "Vivisectionist";
X<int,p> x2; // ok
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3 Similarly, addresses of array elements and non-static class members are not acceptable astemplate-
argument s. For example:

int a[10];
struct S { int m; static int s; } s;

X<&a[2],p> x3; // error: address of element
X<&s.m,p> x4; // error: address of member
X<&s.s,p> x5; // error: address of member (dot operator used) 
X<&S::s,p> x6; // ok: address of static member

4 Nor is a local type or an type with no linkage name an acceptabletemplate-argument. For example:

void f()
{

struct S { /* ... */ };

X<S,p> x3; // error: local type used as template-argument
}

5 Similarly, a referencetemplate-parametercannot be bound to a temporary: 

template<const int& CRI) struct B { /* ... */ };

B<1> b2; // error: temporary required for template argument

int c = 1;
B<c> b1; // ok

6 An argument to atemplate-parameterof pointer to function type shall have exactly the type specified by
thetemplateparameter. This allows selection from a set of overloaded functions. For example: 

void f(char); 
void f(int); 

template<void (*pf)(int)> struct A { /* ... */ }; 

A<&f> a; // selects f(int) 

7 A template has no special access rights to itstemplate-argumenttypes. A template-argumentshall be 
accessible at the point where it is used as atemplate-argument. For example:

template<class T> class X { /* ... */ }; 

class Y {
private:

struct S { /* ... */ };
X<S> x; // ok: S is accessible 

};

X<Y::S> y; // error: S not accessible 

8 ∗In addition to the rules for non-referencetemplate-arguments, an argument for atemplate-parameterof ref- 
erence type shall not be aconstant-expression. In particular, a temporary object is not an acceptable argu-
ment to atemplate-parameterof reference type.

9 When defaulttemplate-argumentsare used, atemplate-argumentlist can be empty. In that case the empty
<> brackets shall still be used. For example: 

template<class T = char> class String;
String<>* p; // ok: String<char>
String* q; // syntax error
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The notion of ‘‘array type decay’’ does not apply totemplate-parameters. For example:

template<int a[5]> struct S { /* ... */ };
int v[5];
int* p = v;
S<v> x; // fine
S<p> y; // error

[temp.type] 14.8 Type equivalence

1 Two template-ids refer to the same class or function if theirtemplatenames are identical and in the same
scope and theirtemplate-arguments have identical values. For example,

template<class E, int size> class buffer;

buffer<char,2*512> x;
buffer<char,1024> y;

declaresx andy to be of the same type, and

template<class T, void(*err_fct)()> class list { /* ... */ }; 

list<int,&error_handler1> x1;
list<int,&error_handler2> x2;
list<int,&error_handler2> x3;
list<char,&error_handler2> x4;

declaresx2 andx3 to be of the same type. Their type differs from the types ofx1 andx4 .

[temp.fct] 14.9 Function templates

1 A function template specifies how individual functions can be constructed. A family of sort functions, for
example, might be declared like this:

template<class T> void sort(vector<T>&); 

A function template specifies an unbounded set of (overloaded) functions. A function generated from a
function template is called a template function, so is an explicit specialization of a function template. Tem-
plate arguments can either be explicitly specified in a call or be deduced from the function arguments.

[temp.arg.explicit] 14.9.1 Explicit template argument specification

1 Template arguments can be specified in a call by qualifying the template function name by the list of
template-arguments exactly astemplate-arguments are specified in uses of a class template. For example:

void f(vector<complex>& cv, vector<int>& ci)
{

sort<complex>(cv); // sort(vector<complex>)
sort<int>(ci); // sort(vector<int>)

}

and

template<class U, class V> U convert(V v);

void g(double d)
{

int i = convert<int,double>(d); // int convert(double)
char c = convert<char,double>(d); // char convert(double)

}

Implicit conversions (4) are accepted for a function argument for which the parameter has been fixed by
explicit specification oftemplate-arguments. For example:
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template<class T> void f(T);

class complex {
// ...
complex(double);

};

void g()
{

f<complex>(1); // ok, means f<complex>((complex(1))
}

Box 64 
There is a problem with the explicit qualification of member template functions. Consider: 

class X { 
public: 

template<size_t> X* malloc(); 
// ... 

}; 

void f(X* p) 
{ 

X* pi = p->malloc<200>(); 
} 

There is no way of knowing thatX::malloc is a template name until after type checking. Consequently,
this example cannot be syntax analysed. 

One solution is ‘‘then do not do that.’’ Another is to provide some form of explicit qualification. For
example: 

X* pi = p-> templatename malloc<200>(); 

or 

X* pi = p-> template malloc<200>(); 

The latter, use of the keywordtemplate , in general clashes with the use oftemplate for explicit 
instantiation (14.4).  _ __________________________________________________________________________________________





























_ __________________________________________________________________________________________



























 

[temp.deduct] 14.9.2 Template argument deduction

1 Template arguments that can be deduced from the function arguments of a call need not be explicitly speci-
fied. For example,

void f(vector<complex>& cv, vector<int>& ci)
{

sort(cv); // call sort(vector<complex>)
sort(ci); // call sort(vector<int>)

}

and

void g(double d)
{

int i = convert<int>(d); // call convert<int,double>(double)
int c = convert<char>(d); // call convert<char,double>(double)

}
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2 A template type argumentT or a template non-type argumenti can be deduced from a function argument
composed from these elements:

T
cv-list T
T*
T&
T[ integer-constant]
class-template-name<T>
type(*)(T)
type T::*
T(*)()
T(*)(T) 
type[i]
class-template-name<i>

where(T) includes argument lists with more than one argument where at least one argument contains aT, 
and where() includes argument lists with arguments that do not contain aT. Also, these forms can be
used in the same way asT is for further composition of types. For example,

X<int>(*)(char[6]) 

is of the form

class-template-name<T> (*)( type[i])

which is a variant of

type (*)(T)

wheretypeis X<int> andT is char[6] . 

3 In addition, atemplate-parametercan be deduced from a function or pointer to member function argument
if at most one of a set of overloaded functions provides a unique match. For example:

template<class T> void f(void(*)(T,int));

void g(int,int);
void g(char,int);

void h(int,int,int);
void h(char,int);

int m()
{

f(&g); // error: ambiguous
f(&h); // ok: void h(char,int) is a unique match

}

Template arguments shall not be deduced from function arguments involving constructs other than the ones
specified in here (14.9.2).

Box 65

Can a templatetemplate-parameterbe deduced? and if so how? Spicer issue 3.19._ ____________________________________________________________________



_ ____________________________________________________________________




4 Template arguments of an explicit instantiation or explicit specialization are deduced (14.4, 14.5) according
to these rules specified for deducing function arguments.

5 Note that a major array bound is not part of a function parameter type so it can’t be deduced from an argu-
ment:

template<int i> void f1(int a[10][i]);
template<int i> void f2(int a[i][20]); 
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void g(int v[10][20]) 
{

f1(v); // ok: i deduced to be 20 
f1<10>(v); // ok
f2(v); // error: cannot deduce template-argument i
f2<10>(v); // ok

}

6 Nontype parameters shall not be used in expressions in the function declaration. The type of the function
template-parametershall match the type of thetemplate-argumentexactly. For example: 

template<char c> class A { /* ... */ };
template<int i> void f(A<i>); // error: conversion not allowed
template<int i> void f(A<i+1>); // error: expression not allowed

7 Every template-parameterspecified in thetemplate-parameter-listshall be either explicitly specified or
deduced from a function argument. If functiontemplate-arguments are specified in a call they are specified
in declaration order. Trailing arguments can be left out of a list of explicittemplate-arguments. For exam-
ple,

template<class X, class Y, class Z> X f(Y,Z);

void g()
{

f<int,char*,double>("aa",3.0);
f<int,char*>("aa",3.0); // Z is deduced to be double
f<int>("aa",3.0); // Y is deduced to be char*, and

// Z is deduced to be double
f("aa",3.0); // error X cannot be deduced

}

8 A template-parametercannot be deduced from a default function argument. For example:

template <class T> void f(T = 5, T = 7);

void g()
{

f(1); // fine: call f<int>(1,7)
f(); // error: cannot deduce T
f<int>(); // fine: call f<int>(5,7)

}

9 If a template parameter can be deduced from more than one function argument the deduced template
parameter shall the same in each case. For example:

template<class T> void f(T x, T y) { /* ... */ }

struct A { /* ... */ };
struct B : A { /* ... */ };

int g(A a, B b)
{

f(a,a); // ok: T is A
f(b,b); // ok: T is B
f(a,b); // error T could be A or B
f(b,a); // error: T could be A or B

}
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[temp.over] 14.9.3 Overload resolution

1 A template function can be overloaded either by (other) functions of its name or by (other) template func-
tions of that same name. Overloading resolution for template functions and other functions of the same
name is done in the following three steps:

1) Look for an exact match (13.2) on functions; if found, call it.

2) Look for a function template from which a function that can be called with an exact match can be gener-
ated; if found, call it.

3) Look for match with conversions. For arguments to ordinary functions and for arguments to a template
function that corresponds to parameters whose type does not depend on a deducedtemplate-parameter,
the ordinary best match rules apply. For template functions, only the following conversions listed
below applies. After the best matches are found for individual arguments, the intersection rule
(_over.match.args_) is used to look for a best match; if found, call it.

Box 66

Rephrase to match Clause 13._ _________________________



_ _________________________




2 For arguments that correspond to parameters whose type depends on a deduced template parameter, the fol-
lowing conversions are allowed:

— For a parameter of the formB<params> , whereparams is a template parameter list containing
one or more deduced parameters, an argument of type ‘‘class derived fromB<params> ’’ can be
converted toB<params> . Additionally, for a parameter of the formB<params>* , an argument
of type ‘‘pointer to class derived fromB<params> ’’ can be converted toB<params>* . Similarly 
for references.75)

— A pointer (reference) can be converted to a more qualified pointer (reference) type, according to the
rules in 4.10 (_conv.ref_).

— ‘‘array of T’’ to ‘‘pointer to T.’’

— ‘‘function ...’’ to ‘‘pointer to function to ... .’’

3 ∗If no match is found the call is ill-formed. In each case, if there is more than one alternative in the first step
that finds a match, the call is ambiguous and is ill-formed.

4 A match on a template (step (2)) implies that a specific template function with parameters that exactly
match the types of the arguments will be generated (14.3). Not even trivial conversions (13.2) will be
applied in this case.

Box 67

This maybe too strict. See the proposal for a more general overloaded mechanism in N0407/94– 0020
(issue 3.9)._ ________________________________________________________________________________________





_ ________________________________________________________________________________________





5 The same process is used for type matching for pointers to functions (13.3) and pointers to members.

6 Here is an example:

__________________ 
75) It would be nice if an argument of type ‘‘T B::* whereB is a base ofD<params> ’’ could be converted toT D<params>::* . 
Unfortunately this would require an unbounded search of possible instantiations. 
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template<class T> T max(T a, T b) { return a>b?a:b; };

void f(int a, int b, char c, char d)
{

int m1 = max(a,b); // max(int a, int b)
char m2 = max(c,d); // max(char a, char b)
int m3 = max(a,c); // error: cannot generate max(int,char)

}

7 For example, adding

int max(int,int);

to the example above would resolve the third call, by providing a function that could be called for
max(a,c) after using the standard conversion ofchar to int for c .

8 Here is an example involving conversions on a function argument involved intemplate-parameterdeduc-
tion:

template<class T> struct B { /* ... */ };
template<class T> struct D : public B<T> { /* ... */ };
template<class T> void f(B<T>&);

void g(B<int>& bi, D<int>& di)
{

f(bi); // f(bi)
f(di); // f( (B<int>&)di )

}

9 Here is an example involving conversions on a function argument not involved intemplate-parameter
deduction:

template<class T> void f(T*,int); // #1
template<class T> void f(T,char); // #2

void h(int* pi, int i, char c)
{

f(pi,i); // #1: f<int>(pi,i)
f(pi,c); // #2: f<int*>(pi,c)

f(i,c); // #2: f<int>(i,c);
f(i,i); // #2: f<int>(i,char(i))

}

10 The template definition is needed to generate specializations of a template. However, only a function tem-
plate declaration is needed to call a specialization. For example,

template<class T> void f(T); // declaration

void g()
{

f("Annemarie"); // call of f<char*>
}

The call off is well formed because of the the declaration off , and the program will be ill-formed unless a
definition of f is present in some translations unit.

11 In case a call has explicitly qualifiedtemplate-arguments and requires overload resolution, the explicit
qualification is used first to determine the set of overloaded functions to be considered and overload resolu-
tion then takes place for the remaining arguments. For example:
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template<class X, class Y> void f(X,Y*); // #1
template<class X, class Y> void f(X*,Y); // #2

void g(char* pc, int* pi)
{

f(0,0); // error: ambiguous: f<int,int>(int,int*)
// or f<int,int>(int*,int) ?

f<char*>(pc,pi); // #1: f<char*,int>(char*,int*)
f<char>(pc,pi); // #2: f<char,int*>(char*,int*)

}

[temp.over.spec] 14.9.4 Overloading and specialization

1 A template function can be overloaded by a function with the same type as a potentially generated function.
For example:

template<class T> T max(T a, T b) { return a>b?a:b; }
int max(int a, int b);

int min(int a, int b);
template<class T> T min(T a, T b) { return a<b?a:b; }

Such an overloaded function is a specialization but not an explicit specialization. The declaration simply
guides the overload resolution. This implies that a definition ofmax(int,int) andmin(int,int)
will be implicitly generated from the templates. If such implicit instantiation is not wanted, the explicit
specialization syntax should be used instead:

template<class T> T max(T a, T b) { return a>b?a:b; }
int max<int>(int a, int b);

2 Defining a function with the same type as a template specialization that is called is ill-formed. For exam-
ple:

template<class T> T max(T a, T b) { return a>b?a:b; }
int max(int a, int b) { return a>b?a:b; }

void f(int x, int y)
{

max(x,y); // error: duplicate definition of max()
}

If the two definitions ofmax() are not in the same translation unit the diagnostic is not required. If a sepa-
rate definition of a functionmax(int,int) is needed, the specialization syntax can be used. If the con-
versions enabled by an ordinary declaration are also needed, both can be used. For example:

template<class T> T max(T a, T b) { return a>b?a:b; }
int max<>(int a, int b) { /* ... */ }

void g(char x, int y)
{

max(x,y); // error: no exact match, and no conversions allowed
}

int max(int,int);

void f(char x, int y)
{

max(x,y); // max<int>(int(x),y)
}
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3 An explicit specialization of a function template shall beinline or static only if it is explicitly 
declared to be, and independently of whether its function template is. For example: 

template<class T> void f(T) { /* ... */ } 
template<class T> inline T g(T) { /* ... */ } 


inline void f<>(int) { /* ... */ } // ok: inline 
int g<>(int) { /* ... */ } // ok: not inline 

[temp.mem.func] 14.10 Member function templates

1 A member function of a template class is implicitly a template function with thetemplate-parameters of its
class as itstemplate-parameters. For example,

template<class T> class vector {
T* v;
int sz;

public:
vector(int);
T& operator[](int);
T& elem(int i) { return v[i]; }
// ...

};

declares three function templates. The subscript function might be defined like this:

template<class T> T& vector<T>::operator[](int i)
{

if (i<0 || sz<=i) error("vector: range error");
return v[i];

}

2 The template-argumentfor vector<T>::operator[]() will be determined by the vector to which
the subscripting operation is applied.

vector<int> v1(20);
vector<complex> v2(30);

v1[3] = 7; // vector<int>::operator[]()
v2[3] = complex(7,8); // vector<complex>::operator[]()

[temp.friend] 14.11 Friends

1 A friend function of a template can be a template function or a non-template function. For example,

template<class T> class task {
// ...
friend void next_time();
friend task<T>* preempt(task<T>*);
friend task* prmt(task*); // task is task<T>
friend class task<int>;
// ...

};

Here,next_time() andtask<int> become friends of alltask classes, and eachtask has appropri-
ately typed functionspreempt() andprmt() as friends. Thepreempt functions might be defined as a
template.

template<class T> task<T>* preempt(task<T>* t) { /* ... */ }

2 A friend template shall not be defined within a class. For example:
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class A {
friend template<class T> B; // ok
friend friend template<class T> f(T); // ok 

friend template<class T> BB { /* ... /* }; // error
friend template<class T> ff(T){ /* ... /* } // error

};

Note that afriend declaration can add a name to an enclosing scope (14.2.4). 

Box 68 
The syntax above isn’t allowed by the grammar. The grammar allows only: 

template<class T> friend B; 

Is what has been used in the examples up until now a better syntax? I think so, because the template param-
eter specification is part of the type of what is being defined. However, allowing that requires a minor
grammar change. Making 

template<class T> 

a type-specifiermight simplify the grammar while achieving the desired effect.  _ __________________________________________________________________________________________












_ __________________________________________________________________________________________











 

Box 69 
There is no way of declaring a specialization of a static member without also defining it. For example:

template<class T> class X { 
static T s; 

}; 

X<int> s; // definition, can’t just declare 

One answer to this is to do nothing and hope there is little real need for a solution. Another answer is to
introduce a separate keyword to indicate specialization; see Spicer 6.18 .  _ __________________________________________________________________________________________












_ __________________________________________________________________________________________










 

[temp.static] 14.12 Static members and variables

1 Each template class or function generated from a template has its own copies of any static variables or
members. For example,

template<class T> class X {
static T s;
// ...

};

X<int> aa;
X<char*> bb;

HereX<int> has a static members of typeint andX<char*> has a static members of typechar* .

2 Static class member templates are defined similarly to member function templates. For example,

template<class T> T X<T>::s = 0;

int X<int>::s = 3;

3 Similarly,
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template<class T> f(T* p)
{

static T s;
// ...

};

void g(int a, char* b)
{

f(&a); // call f<int>(int*) 
f(&b); // call f<char*>(char**) 

}

Heref<int>(int*) has a static members of typeint andf<char*>(char**) has a static member
s of typechar* .



_ _____________________________________________________________________________________________________________________________________________________________________________ ___________________________________________

15 Exception handling [except]
_ _____________________________________________________________________________________________________________________________________________________________________________ ___________________________________________

1 Exception handling provides a way of transferring control and information from a point in the execution of
a program to anexception handlerassociated with a point previously passed by the execution. A handler
will be invoked only by athrow-expressioninvoked in code executed in the handler’stry-blockor in func-
tions called from the handler’stry-block.

try-block:
try compound-statement handler-seq

handler-seq:
handler handler-seqopt

handler:
catch ( exception-declaration) compound-statement

exception-declaration:
type-specifier-seq declarator
type-specifier-seq abstract-declarator
type-specifier-seq
...

throw-expression:
throw assignment-expressionopt

A try-block is a statement(6). A throw-expressionis of typevoid . A throw-expressionis sometimes
referred to as a“throw-point.” Code that executes athrow-expressionis said to“throw an exception;” code
that subsequently gets control is called a“handler.”

2 A goto , break , return , or continue statement can be used to transfer control out of atry-block or
handler, but not into one. When this happens, each variable declared in thetry-blockwill be destroyed in
the context that directly contains its declaration. For example,

lab: try {
T1 t1;
try {

T2 t2;
if ( condition)

goto lab;
} catch(...) { /* handler 2 */ }

} catch(...) { /* handler 1 */ }

Here, executinggoto lab; will destroy first t2 , then t1 . Any exception raised while destroyingt2
will result in executinghandler 2; any exception raised while destroyingt1 will result in executing
handler 1.

[except.throw] 15.1 Throwing an exception

1 Throwing an exception transfers control to a handler. An object is passed and the type of that object deter-
mines which handlers can catch it. For example,

throw "Help!";
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can be caught by ahandlerof somechar* type:

try {
// ...

}
catch(const char* p) {

// handle character string exceptions here
}

and

class Overflow {
// ...

public:
Overflow(char,double,double);

};

void f(double x)
{

// ...
throw Overflow(’+’,x,3.45e107);

}

can be caught by a handler

try {
// ...
f(1.2);
// ...

}
catch(Overflow& oo) {

// handle exceptions of type Overflow here
}

2 When an exception is thrown, control is transferred to the nearest handler with an appropriate type;“near-
est” means the handler whosetry-block was most recently entered by the thread of control and not yet
exited;“appropriate type” is defined in 15.3.

3 The operand of athrow shall be of a type with no ambiguous base classes. That is, it shall be possible to
convert the value thrown unambiguously to each of its base classes.76)

4 A throw-expressioninitializes a temporary object of the static type of the operand ofthrow , ignoring the 
top-levelcv-qualifiers of the operand’s type, and uses that temporary to initialize the appropriately-typed
variable named in the handler. If the static type of the expression thrown is a class or a pointer or reference
to a class, there shall be an unambiguous conversion from that class type to each of its accessible base
classes. Except for that restriction and for the restrictions on type matching mentioned in 15.3 and the use
of a temporary variable, the operand ofthrow is treated exactly as a function argument in a call (5.2.2) or
the operand of areturn statement.

5 The memory for the temporary copy of the exception being thrown is allocated in an implementation-
defined way. The temporary persists as long as there is a handler being executed for that exception. In par-
ticular, if a handler exits by executing athrow; statement, that passes control to another handler for the
same exception, so the temporary remains. If the use of the temporary object can be eliminated without
changing the meaning of the program except for the execution of constructors and destructors associated
with the use of the temporary object (12.2), then the exception in the handler can be initialized directly with
the argument of the throw expression.

__________________ 
76) If the value thrown has no base classes or is not of class type, this condition is vacuously satisfied. 
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6 A throw-expressionwith no operand rethrows the exception being handled without copying it. For exam-
ple, code that must be executed because of an exception yet cannot completely handle the exception can be
written like this:

try {
// ...

}
catch (...) { // catch all exceptions

// respond (partially) to exception

throw; // pass the exception to some
// other handler

}

7 The exception thrown is the one most recently caught and not finished. An exception is considered caught
when initialization is complete for the formal parameter of the corresponding catch clause, or when
terminate() or unexpected() is entered due to a throw. An exception is considered finished when
the corresponding catch clause exits.

8 If no exception is presently being handled, executing athrow-expressionwith no operand calls
terminate() (15.5.1).

[except.ctor] 15.2 Constructors and destructors

1 As control passes from a throw-point to a handler, destructors are invoked for all automatic objects con-
structed since thetry-blockwas entered.

2 An object that is partially constructed will have destructors executed only for its fully constructed sub-
objects. Should a constructor for an element of an automatic array throw an exception, only the constructed
elements of that array will be destroyed. If the object or array was allocated in anew-expression, the stor-
age occupied by that object is sometimes deleted also (5.3.4).

3 The process of calling destructors for automatic objects constructed on the path from atry-block to a
throw-expressionis called“stack unwinding.”

[except.handle] 15.3 Handling an exception

1 Theexception-declarationin a handlerdescribes the type(s) of exceptions that can cause that handler to be
executed. Theexception-declarationshall not denote an incomplete type.

2 A handlerwith typeT, const T, T&, or const T& is a match for athrow-expressionwith an object of
typeE if

[1] T andE are the same type, or

[2] T is an accessible (4.10) base class ofE at the throw point, or

[3] T is a pointer type andE is a pointer type that can be converted toT by a standard pointer conver-
sion (4.10) at the throw point.
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Box 70 
The intent was and is to require no run-time access or ambiguity checking. 

Paragraph 3 of 15.1 says that we can’t throw an object that would require the handler mechanism to do
ambiguity checks. 

Point [2] above says, in particular, that an object with a private class can be thrown if and only if the
thrower has access to that base. This implies no violation of access, because the thrower could have thrown
the private class directly. 

This implies that an exception can be caught by a private class (the access check, like the ambiguity check
is done at the throw point). This does not require a run-time access check. It does, however, require that a
object of a class with a private base class is transmitted to the catch point together with an indication if it
can be caught by its private base class. 

It has been suggested that this should be simplified by prohibiting the throw of an object of a class with a
private base class. It has also been suggested that run-time access checks should be required. In the
absence of a proposal for change, the text will be clarified along the lines in this box.  _ ________________________________________________________________________________________























_ ________________________________________________________________________________________





















 

For example,

class Matherr { /* ... */ virtual vf(); };
class Overflow: public Matherr { /* ... */ };
class Underflow: public Matherr { /* ... */ };
class Zerodivide: public Matherr { /* ... */ };

void f()
{

try {
g();

}

catch (Overflow oo) {
// ...

}
catch (Matherr mm) {

// ...
}

}

Here, theOverflow handler will catch exceptions of typeOverflow and theMatherr handler will
catch exceptions of typeMatherr and all types publicly derived fromMatherr includingUnderflow
andZerodivide .

3 The handlers for atry-blockare tried in order of appearance. That makes it possible to write handlers that
can never be executed, for example by placing a handler for a derived class after a handler for a correspond-
ing base class.

4 A ... in a handler’sexception-declarationfunctions similarly to... in a function parameter declara-
tion; it specifies a match for any exception. If present, a... handler shall be the last handler for itstry- 
block.

5 If no match is found among the handlers for atry-block, the search for a matching handler continues in a
dynamically surroundingtry-block. ∗

6 An exception is considered handled upon entry to a handler. The stack will have been unwound at that
point. 
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7 If no matching handler is found in a program, the functionterminate() (15.5.1) is called. Whether or
not the stack is unwound before callingterminate() is implementation-defined.

[except.spec] 15.4 Exception specifications

1 A function declaration lists exceptions that its function might directly or indirectly throw by using an
exception-specificationas a suffix of its declarator.

Box 71

Should it be possible to use more general types thantype-ids inexception-specifications? In the absence of
a proposal for change, this box will be removed._ ________________________________________________________________________________________





_ ________________________________________________________________________________________





exception-specification:
throw ( type-id-listopt )

type-id-list:
type-id
type-id-list , type-id

An exception-specificationshall appear only on a function declarator in a declaration or definition. An
exception-specificationshall not appear in a typedef declaration. For example:

void f() throw(int); // OK 
void (*fp) throw (int); // OK 
void g(void pfa() throw(int)); // OK 
typedef int (*pf)() throw(int); // ill-formed 

2 If any declaration of a function has anexception-specification, all declarations, including the definition, of
that function shall have anexception-specificationwith the same set oftype-ids. If a virtual function has an
exception-specification, all declarations, including the definition, of any function that overrides that virtual
function in any derived class shall have anexception-specificationat least as restrictive as that in the base
class. For example:

struct B {
virtual void f() throw (int, double);
virtual void g();

};

struct D: B {
void f(); // ill-formed
void g() throw (int); // OK

};

The declaration ofD::f is ill-formed because it allows all exceptions, whereasB::f allows onlyint and
double . Similarly, any function or pointer to function assigned to, or initializing, a pointer to function
shall have anexception-specificationat least as restrictive as that of the pointer or function being assigned
to or initialized. For example: 

void (*pf1)(); // no exception specification 
void (*pf2) throw(A); 

void f() 
{ 

pf1 = pf2; // ok: pf1 is less restrictive 
pf2 = pf1; // error: pf2 is more restrictive 

} 

3 In such an assignment or initialization,exception-specifications on return types and parameter types shall
match exactly. 
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Box 72 
This is needlessly restrictive. We can safely relax this restriction if needed.  _ ______________________________________________________________




_ ______________________________________________________________


 

4 In other assignments or initializations,exception-specifications shall match exactly. 

Box 73 
This is needlessly restrictive. We can safely relax this restriction if needed.  _ ______________________________________________________________




_ ______________________________________________________________


 

5 Calling a function through a declaration whoseexception-specificationis less restrictive that that of the
function’s definition is ill-formed. No diagnostic is required.

6 Types shall not be defined inexception-specifications. 

7 An exception-specificationcan include the same class more than once and can include classes related by
inheritance, even though doing so is redundant. Anexception-specificationcan include classes with
ambiguous base classes, even though throwing objects of such classes is ill-formed (15.1). An exception
specification can include identifiers that represent incomplete types. An exception can also include the
name of the predefined classXunexpected . 

Box 74 
The nameXunexpected is under discussion and will change. The exact meaning of ‘‘predefined’’ and a
possible standard library specification of classXunexpected is also being defined.  _ ________________________________________________________________________________________





_ ________________________________________________________________________________________



 

8 If a classX is in thetype-id-listof theexception-specificationof a function, that function is said toallow
exception objects of classX or any class publicly derived fromX. Similarly, if a pointer typeY* is in the
type-id-listof the exception-specificationof a function, the function allows exceptions of typeY* or that
are pointers to any type publicly derived fromY* . 

9 Whenever an exception is thrown and the search for a handler (15.3) encounters the outermost block of a
function with anexception-specification, the functionunexpected() is called (15.5.2) if theexception-
specificationdoes not allow the exception. For example,

class X { };
class Y { };
class Z: public X { };
class W { };

void f() throw (X, Y)
{

int n = 0;
if (n) throw X(); // OK
if (n) throw Z(); // also OK
throw W(); // will call unexpected()

}

10 The functionunexpected() may throw an exception that will satisfy theexception-specificationfor 
which it was invoked, and in this case the search for another handler will continue at the call of the function
with thisexception-specification(see 15.5.2), or it may call terminate. 

11 An implementation shall not reject an expression merely because when executed it throws or might throw
an exception that the containing function does not allow. For example,
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extern void f() throw(X, Y);

void g() throw(X)
{

f(); // OK
}

the call tof is well-formed even though when called,f might throw exceptionY thatg does not allow.

12 A function with noexception-specificationallows all exceptions. A function with an emptyexception-
specification, throw() , does not allow any exceptions.

13 An exception-specificationis not considered part of a function’s type.

[except.special] 15.5 Special functions

1 The exception handling mechanism relies on two functions,terminate() and unexpected() , for 
coping with errors related to the exception handling mechanism itself (18.6).

[except.terminate] 15.5.1 Theterminate() function

1 Occasionally, exception handling must be abandoned for less subtle error handling techniques. For exam-
ple,

— when a exception handling mechanism, after completing evaluation of the object to be thrown, calls a
user function that exits via an uncaught exception,77)

— when the exception handling mechanism cannot find a handler for a thrown exception (see 15.3),

— when the exception handling mechanism finds the stack corrupted, or

— when a destructor called during stack unwinding caused by an exception tries to exit using an exception.

2 In such cases,

void terminate();

is called; terminate() calls the function given on the most recent call of
set_terminate() (_lib.exception.terminate_).

[except.unexpected] 15.5.2 Theunexpected() function

1 If a function with anexception-specificationthrows an exception that is not listed in theexception-
specification, the function

void unexpected();

is called; unexpected() calls the function given on the most recent call of
set_unexpected() (_lib.exception.unexpected_).

2 Theunexpected() function shall not return, but it can throw (or re-throw) an exception. If it throws a
new exception which is allowed by the exception specification which previously was violated, then the
search for another handler will continue at the call of the function whose exception specification was vio-
lated. If it throws or rethrows an exception an exception which is not allowed by theexception-
specificationthen the following happens: if theexception-specificationdoes not include the name of the
predefined exceptionXunexpected then the functionterminate() is called, otherwise the thrown
exception is replaced by an implementation-defined object of the typeXunexpected and the search for
another handler will continue at the call of the function whoseexception-specificationwas violated. 

__________________ 
77)For example, if the object being thrown is of a class with a copy constructor,terminate() will be called if that copy constructor 
exits with an exception during athrow . 
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3 Thus, an exception-specificationguarantees that only the listed exceptions will be thrown. If the
exception-specificationincludes the nameXunexpected then any exception not on the list may be
replaced byXunexpected within the functionunexpected() .

[except.access] 15.6 Exceptions and access

1 The parameter of a catch clause obeys the same access rules as a parameter of the function in which the
catch clause occurs.

2 An object can be thrown if it can be copied and destroyed in the context of the function in which the throw
occurs.



_ _____________________________________________________________________________________________________________________________________________________________________________ ___________________________________________

16 Preprocessing directives [cpp]
_ _____________________________________________________________________________________________________________________________________________________________________________ ___________________________________________

1 A preprocessing directive consists of a sequence of preprocessing tokens that begins with a# preprocessing
token that is either the first character in the source file (optionally after white space containing no new-line
characters) or that follows white space containing at least one new-line character, and is ended by the next
new-line character.78)

preprocessing-file:
groupopt

group:
group-part
group group-part

group-part:
pp-tokensopt new-line
if-section
control-line

if-section:
if-group elif-groupsopt else-groupopt endif-line

if-group:
# if constant-expression new-line groupopt

# ifdef identifier new-line groupopt

# ifndef identifier new-line groupopt

elif-groups:
elif-group
elif-groups elif-group

elif-group:
# elif constant-expression new-line groupopt

else-group:
# else new-line groupopt

endif-line:
# endif new-line

__________________ 
78)Thus, preprocessing directives are commonly called“lines.” These“lines” have no other syntactic significance, as all white space is
equivalent except in certain situations during preprocessing (see the# character string literal creation operator in 16.3.2, for example).
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control-line:
# include pp-tokens new-line
# define identifier replacement-list new-line
# define identifier lparen identifier-listopt ) replacement-list new-line
# undef identifier new-line
# line pp-tokens new-line
# error pp-tokensopt new-line
# pragma pp-tokensopt new-line
# new-line

lparen:
the left-parenthesis character without preceding white-space

replacement-list:
pp-tokensopt

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

2 The only white-space characters that shall appear between preprocessing tokens within a preprocessing
directive (from just after the introducing# preprocessing token through just before the terminating new-line
character) are space and horizontal-tab (including spaces that have replaced comments or possibly other
white-space characters in translation phase 3).

3 The implementation can process and skip sections of source files conditionally, include other source files,
and replace macros. These capabilities are calledpreprocessing, because conceptually they occur before
translation of the resulting translation unit.

4 The preprocessing tokens within a preprocessing directive are not subject to macro expansion unless other-
wise stated.

[cpp.cond] 16.1 Conditional inclusion

1 The expression that controls conditional inclusion shall be an integral constant expression except that: it
shall not contain a cast; identifiers (including those lexically identical to keywords) are interpreted as
described below;79) and it may contain unary operator expressions of the form

defined identifier
or

defined ( identifier )

which evaluate to1 if the identifier is currently defined as a macro name (that is, if it is predefined or if it
has been the subject of a#define preprocessing directive without an intervening#undef directive with
the same subject identifier), zero if it is not.

2 Each preprocessing token that remains after all macro replacements have occurred shall be in the lexical
form of a token (2.5).

3 Preprocessing directives of the forms

# if constant-expression new-line groupopt

# elif constant-expression new-line groupopt

check whether the controlling constant expression evaluates to nonzero.
__________________ 
79)Because the controlling constant expression is evaluated during translation phase 4, all identifiers either are or are not macro names
— there simply are no keywords, enumeration constants, and so on. 
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4 Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the controlling
constant expression are replaced (except for those macro names modified by thedefined unary operator),
just as in normal text. If the tokendefined is generated as a result of this replacement process or use of
the defined unary operator does not match one of the two specified forms prior to macro replacement,
the behavior is undefined. After all replacements due to macro expansion and thedefined unary operator
have been performed, all remaining identifiers are replaced with the pp-number0, and then each prepro-
cessing token is converted into a token. The resulting tokens comprise the controlling constant expression
which is evaluated according to the rules of 5.19 using arithmetic that has at least the ranges specified in
18.2, except thatint and unsigned int act as if they have the same representation as, respectively,
long andunsigned long . This includes interpreting character constants, which may involve convert-
ing escape sequences into execution character set members. Whether the numeric value for these character
constants matches the value obtained when an identical character constant occurs in an expression (other
than within a#if or #elif directive) is implementation-defined.80) Also, whether a single-character char-
acter constant may have a negative value is implementation-defined.

5 Preprocessing directives of the forms

# ifdef identifier new-line groupopt

# ifndef identifier new-line groupopt

check whether the identifier is or is not currently defined as a macro name. Their conditions are equivalent
to #if defined identifier and#if !defined identifier respectively.

6 Each directive’s condition is checked in order. If it evaluates to false (zero), the group that it controls is
skipped: directives are processed only through the name that determines the directive in order to keep track
of the level of nested conditionals; the rest of the directives’ preprocessing tokens are ignored, as are the
other preprocessing tokens in the group. Only the first group whose control condition evaluates to true
(nonzero) is processed. If none of the conditions evaluates to true, and there is a#else directive, the
group controlled by the#else is processed; lacking a#else directive, all the groups until the#endif
are skipped.81)

[cpp.include] 16.2 Source file inclusion

1 A #include directive shall identify a header or source file that can be processed by the implementation.

2 A preprocessing directive of the form

# include < h-char-sequence> new-line

searches a sequence of implementation-defined places for a header identified uniquely by the specified
sequence between the< and> delimiters, and causes the replacement of that directive by the entire contents
of the header. How the places are specified or the header identified is implementation-defined.

3 A preprocessing directive of the form

# include " q-char-sequence" new-line

causes the replacement of that directive by the entire contents of the source file identified by the specified
sequence between the" delimiters. The named source file is searched for in an implementation-defined
manner. If this search is not supported, or if the search fails, the directive is reprocessed as if it read

# include < h-char-sequence> new-line

with the identical contained sequence (including> characters, if any) from the original directive.
__________________ 
80) Thus, the constant expression in the following#if directive andif statement is not guaranteed to evaluate to the same value in
these two contexts. 

#if ’z’ - ’a’ = = 25 
if (’z’ - ’a’ = = 25) 

81) As indicated by the syntax, a preprocessing token shall not follow a#else or #endif directive before the terminating new-line
character. However, comments may appear anywhere in a source file, including within a preprocessing directive. 
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4 A preprocessing directive of the form

# include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens afterinclude
in the directive are processed just as in normal text. (Each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens.)The directive resulting after all replacements shall
match one of the two previous forms.82) The method by which a sequence of preprocessing tokens between
a < and a> preprocessing token pair or a pair of" characters is combined into a single header name prepro-
cessing token is implementation-defined.

5 There shall be an implementation-defined mapping between the delimited sequence and the external source
file name. The implementation shall provide unique mappings for sequences consisting of one or more
nondigits (2.7) followed by a period (. ) and a singlenondigit. The implementation may ignore the distinc-
tions of alphabetical case and restrict the mapping to six significant characters before the period.

Box 75

Does this restriction still make sense for C + +?_ ______________________________________



_ ______________________________________




6 A #include preprocessing directive may appear in a source file that has been read because of a
#include directive in another file, up to an implementation-defined nesting limit (see<<<<???>>>>).

7 The most common uses of#include preprocessing directives are as in the following:

#include <stdio.h>
#include "myprog.h"

8 This example illustrates a macro-replaced#include directive:

#if VERSION = = 1
#define INCFILE "vers1.h"

#elif VERSION = = 2
#define INCFILE "vers2.h" /* and so on*/

#else
#define INCFILE "versN.h"

#endif
#include INCFILE

[cpp.replace] 16.3 Macro replacement

1 Two replacement lists are identical if and only if the preprocessing tokens in both have the same number,
ordering, spelling, and white-space separation, where all white-space separations are considered identical.

2 An identifier currently defined as a macro without use of lparen (anobject-likemacro) may be redefined by
another#define preprocessing directive provided that the second definition is an object-like macro defi-
nition and the two replacement lists are identical.

3 An identifier currently defined as a macro using lparen (afunction-likemacro) may be redefined by another
#define preprocessing directive provided that the second definition is a function-like macro definition
that has the same number and spelling of parameters, and the two replacement lists are identical.

4 The number of arguments in an invocation of a function-like macro shall agree with the number of parame-
ters in the macro definition, and there shall exist a) preprocessing token that terminates the invocation.

5 A parameter identifier in a function-like macro shall be uniquely declared within its scope.

__________________ 
82) Note that adjacent string literals are not concatenated into a single string literal (see the translation phases in 2.1); thus, an expan-
sion that results in two string literals is an invalid directive. 
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6 The identifier immediately following thedefine is called themacro name. There is one name space for
macro names. Any white-space characters preceding or following the replacement list of preprocessing
tokens are not considered part of the replacement list for either form of macro.

7 If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a preprocessing
directive could begin, the identifier is not subject to macro replacement.

8 A preprocessing directive of the form

# define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name83) to be replaced by
the replacement list of preprocessing tokens that constitute the remainder of the directive. The replacement
list is then rescanned for more macro names as specified below.

9 A preprocessing directive of the form

# define identifier lparen identifier-listopt ) replacement-list new-line

defines a function-like macro with parameters, similar syntactically to a function call. The parameters are
specified by the optional list of identifiers, whose scope extends from their declaration in the identifier list
until the new-line character that terminates the#define preprocessing directive. Each subsequent
instance of the function-like macro name followed by a( as the next preprocessing token introduces the
sequence of preprocessing tokens that is replaced by the replacement list in the definition (an invocation of
the macro). The replaced sequence of preprocessing tokens is terminated by the matching) preprocessing
token, skipping intervening matched pairs of left and right parenthesis preprocessing tokens. Within the
sequence of preprocessing tokens making up an invocation of a function-like macro, new-line is considered
a normal white-space character.

10 The sequence of preprocessing tokens bounded by the outside-most matching parentheses forms the list of
arguments for the function-like macro. The individual arguments within the list are separated by comma
preprocessing tokens, but comma preprocessing tokens between matching inner parentheses do not separate
arguments. If (before argument substitution) any argument consists of no preprocessing tokens, the behav-
ior is undefined. If there are sequences of preprocessing tokens within the list of arguments that would oth-
erwise act as preprocessing directives, the behavior is undefined.

[cpp.subst] 16.3.1 Argument substitution

1 After the arguments for the invocation of a function-like macro have been identified, argument substitution
takes place. A parameter in the replacement list, unless preceded by a# or ## preprocessing token or fol-
lowed by a## preprocessing token (see below), is replaced by the corresponding argument after all macros
contained therein have been expanded. Before being substituted, each argument’s preprocessing tokens are
completely macro replaced as if they formed the rest of the translation unit; no other preprocessing tokens
are available.

[cpp.stringize] 16.3.2 The# operator

1 Each# preprocessing token in the replacement list for a function-like macro shall be followed by a parame-
ter as the next preprocessing token in the replacement list.

2 If, in the replacement list, a parameter is immediately preceded by a# preprocessing token, both are
replaced by a single character string literal preprocessing token that contains the spelling of the preprocess-
ing token sequence for the corresponding argument. Each occurrence of white space between the
argument’s preprocessing tokens becomes a single space character in the character string literal. White
space before the first preprocessing token and after the last preprocessing token comprising the argument is
deleted. Otherwise, the original spelling of each preprocessing token in the argument is retained in the
character string literal, except for special handling for producing the spelling of string literals and character
__________________ 
83) Since, by macro-replacement time, all character constants and string literals are preprocessing tokens, not sequences possibly con-
taining identifier-like subsequences (see 2.1.1.2, translation phases), they are never scanned for macro names or parameters.
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constants: a\ character is inserted before each" and \ character of a character constant or string literal
(including the delimiting " characters). If the replacement that results is not a valid character string literal,
the behavior is undefined. The order of evaluation of# and## operators is unspecified.

[cpp.concat] 16.3.3 The## operator

1 A ## preprocessing token shall not occur at the beginning or at the end of a replacement list for either form
of macro definition.

2 If, in the replacement list, a parameter is immediately preceded or followed by a## preprocessing token,
the parameter is replaced by the corresponding argument’s preprocessing token sequence.

3 For both object-like and function-like macro invocations, before the replacement list is reexamined for
more macro names to replace, each instance of a## preprocessing token in the replacement list (not from
an argument) is deleted and the preceding preprocessing token is concatenated with the following prepro-
cessing token. If the result is not a valid preprocessing token, the behavior is undefined. The resulting
token is available for further macro replacement. The order of evaluation of## operators is unspecified.

[cpp.rescan] 16.3.4 Rescanning and further replacement

1 After all parameters in the replacement list have been substituted, the resulting preprocessing token
sequence is rescanned with all subsequent preprocessing tokens of the source file for more macro names to
replace.

2 If the name of the macro being replaced is found during this scan of the replacement list (not including the
rest of the source file’s preprocessing tokens), it is not replaced. Further, if any nested replacements
encounter the name of the macro being replaced, it is not replaced. These nonreplaced macro name prepro-
cessing tokens are no longer available for further replacement even if they are later (re)examined in con-
texts in which that macro name preprocessing token would otherwise have been replaced.

3 The resulting completely macro-replaced preprocessing token sequence is not processed as a preprocessing
directive even if it resembles one.

[cpp.scope] 16.3.5 Scope of macro definitions

1 A macro definition lasts (independent of block structure) until a corresponding#undef directive is
encountered or (if none is encountered) until the end of the translation unit.

2 A preprocessing directive of the form

# undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. It is ignored if the specified identi-
fier is not currently defined as a macro name.

3 The simplest use of this facility is to define a“manifest constant,” as in

#define TABSIZE 100

int table[TABSIZE];

4 The following defines a function-like macro whose value is the maximum of its arguments. It has the
advantages of working for any compatible types of the arguments and of generating in-line code without the
overhead of function calling. It has the disadvantages of evaluating one or the other of its arguments a sec-
ond time (including side effects) and generating more code than a function if invoked several times. It also
cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.
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5 To illustrate the rules for redefinition and reexamination, the sequence

#define x 3
#define f(a) f(x * (a))
#undef x
#define x 2
#define g f
#define z z[0]
#define h g( ~
#define m(a) a(w)
#define w 0,1
#define t(a) a

f(y+1) + f(f(z)) % t(t(g)(0) + t)(1);
g(x+(3,4)-w) | h 5) & m

(f)^m(m);

results in

f(2 * (y+1)) + f(2 * (f(2 * (z[0])))) % f(2 * (0)) + t(1);
f(2 * (2+(3,4)-0,1)) | f(2 * ( ~ 5)) & f(2 * (0,1))^m(0,1);

6 To illustrate the rules for creating character string literals and concatenating tokens, the sequence

#define str(s) # s
#define xstr(s) str(s)
#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \

x ## s, x ## t)
#define INCFILE(n) vers ## n /* from previous#include example */
#define glue(a, b) a ## b
#define xglue(a, b) glue(a, b)
#define HIGHLOW "hello"
#define LOW LOW ", world"

debug(1, 2);
fputs(str(strncmp("abc\0d", "abc", ’\4’) /* this goes away */

= = 0) str(: @\n), s);
#include xstr(INCFILE(2).h)
glue(HIGH, LOW);
xglue(HIGH, LOW)

results in

printf("x" "1" "= %d, x" "2" "= %s", x1, x2);
fputs("strncmp(\"abc\\0d\", \"abc\", ’\\4’) = = 0" ": @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello" ", world"

or, after concatenation of the character string literals,

printf("x1= %d, x2= %s", x1, x2);
fputs("strncmp(\"abc\\0d\", \"abc\", ’\\4’) = = 0: @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello, world"

Space around the# and## tokens in the macro definition is optional.

7 And finally, to demonstrate the redefinition rules, the following sequence is valid.
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#define OBJ_LIKE (1-1)
#define OBJ_LIKE /* white space */ (1-1) /* other */
#define FTN_LIKE(a) ( a )
#define FTN_LIKE( a )( /* note the white space */ \

a /* other stuff on this line
*/ )

But the following redefinitions are invalid:

#define OBJ_LIKE (0) /* different token sequence*/
#define OBJ_LIKE (1 - 1) /* different white space*/
#define FTN_LIKE(b) ( a ) /* different parameter usage*/
#define FTN_LIKE(b) ( b ) /* different parameter spelling*/

[cpp.line] 16.4 Line control

1 The string literal of a#line directive, if present, shall be a character string literal.

2 The line numberof the current source line is one greater than the number of new-line characters read or
introduced in translation phase 1 (2.1) while processing the source file to the current token.

3 A preprocessing directive of the form

# line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a source line
that has a line number as specified by the digit sequence (interpreted as a decimal integer). The digit
sequence shall not specify zero, nor a number greater than 32767.

4 A preprocessing directive of the form

# line digit-sequence" s-char-sequenceopt" new-line

sets the line number similarly and changes the presumed name of the source file to be the contents of the
character string literal.

5 A preprocessing directive of the form

# line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens afterline on
the directive are processed just as in normal text (each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens). The directive resulting after all replacements
shall match one of the two previous forms and is then processed as appropriate.

[cpp.error] 16.5 Error directive

1 A preprocessing directive of the form

# error pp-tokensopt new-line

causes the implementation to produce a diagnostic message that includes the specified sequence of prepro-
cessing tokens.

[cpp.pragma] 16.6 Pragma directive

1 A preprocessing directive of the form

# pragma pp-tokensopt new-line

causes the implementation to behave in an implementation-defined manner. Any pragma that is not recog-
nized by the implementation is ignored.
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[cpp.null] 16.7 Null directive

1 A preprocessing directive of the form

# new-line

has no effect.

[cpp.predefined] 16.8 Predefined macro names

1 The following macro names shall be defined by the implementation:

_ _LINE_ _The line number of the current source line (a decimal constant).

_ _FILE_ _The presumed name of the source file (a character string literal).

_ _DATE_ _The date of translation of the source file (a character string literal of the form
"Mmm dd yyyy" , where the names of the months are the same as those generated by theasctime
function, and the first character ofdd is a space character if the value is less than 10). If the date of
translation is not available, an implementation-defined valid date shall be supplied.

_ _TIME_ _The time of translation of the source file (a character string literal of the form"hh:mm:ss"
as in the time generated by theasctime function). If the time of translation is not available, an
implementation-defined valid time shall be supplied.

_ _STDC_ _Whether_ _STDC_ _ is defined and if so, what its value is, are implementation dependent.

_ _cplusplus The name_ _cplusplus is defined (to an unspecified value) when compiling a C + +
translation unit.

2 The values of the predefined macros (except for_ _LINE_ _ and_ _FILE_ _) remain constant throughout
the translation unit.

3 None of these macro names, nor the identifierdefined , shall be the subject of a#define or a#undef
preprocessing directive. All predefined macro names shall begin with a leading underscore followed by an
uppercase letter or a second underscore.
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