1 General [intro]

1.1 Scope [intro.scope]

This International Standard specifies requirements for processors oftthgogramming language. The
first such requirement is that they implement the language, and so this Standard also ¢hefilt@thes
requirements and relaxations of the first requirement appear at various places within the Standard.

C+ is a general purpose programming language based on the C programming language as described in
ISO/IEC 9899 (1.2). In addition to the facilities provided by &; frovides additional data types, classes,
templates, exceptions, inline functions, operator overloading, function name overloading, references, free
store management operators, function argument checking and type conversion, and additional library facili-
ties. These extensions to C are summarized in C.1. The differences between €SO ¢ are summa-

rized in C.2. The extensions te+Gince 1985 are summarized in C.1.2.

Clauses 17 through 27 (thierary clause$ describe the Standard+Clibrary, which provides definitions
for the following kinds of entities: macros (16.3), values (3), types (8.1, 8.3), templates (14), classes (9),
functions (8.3.5), and objects (7).

For classes and class templates, the library clauses specify partial definitions. Private members (11) are not
specified, but each implementation shall supply them to complete the definitions according to the descrip-
tion in the library clauses.

For functions, function templates, objects, and values, the library clauses specifiy declarations. Implemen-
tations shall supply definitions consistent with the descriptions in the library clauses.

The names defined in the library have namespace scope (7.3} trAagslation unit (2.1) obtains access to
these names by including the appropriate standard library header (16.2).

The templates, classes, functions, and objects in the library have external linkage (3.5). An implementation
provides definitions for standard library entities, as necessary, while combining translation units to form a
complete @+ program (2.1).

1.2 Normative references [intro.refs]

The following standards contain provisions which, through reference in this text, constitute provisions of
this International Standard. At the time of publication, the editions indicated were valid. All standards are
subject to revision, and parties to agreements based on this International Standard are encouraged to investi-
gate the possibility of applying the most recent editions of the standards indicated below. Members of IEC
and 1SO maintain registers of currently valid International Standards.

— ANSI X3.172:1990American National Dictionary for Information Processing Systems a
— ISO/IEC 9899:1990C Standard
— ISO/IEC 9899:1990/DAM 1Amendment 1 to C Standard O

The library described in Clause 7 of the C Standard and Clause 4 of Amendment 1 to the C standard is
hereinafter called th8tandard C Library”

Y with the gualifications noted in clauses 17 through 27, and in subclause C.4, the Standard C library is a subset of therStandard C
library.

1-2 General DRAFT: 1 February 1995 1.3 Definitions

1.3 Definitions [intro.defs]

For the purposes of this International Standard, the definitions given in ANSI X3A82 and the follow-
ing definitions apply.

— argument: An expression in the comma-separated list bounded by the parentheses in a function call
expression, a sequence of preprocessing tokens in the comma-separated list bounded by the parentheses
in a function-like macro invocation, the operandfubw , or an expression in the comma-separated
list bounded by the angle brackets in a template instantiation. Also knowrt‘astaal argumeitor
“actual parameter.

— diagnostic message: A message belonging to an implementation-defined subset of the
implementation’s message output.

— dynamic type: The dynamic typeof an expression is determined by its current value and can chahge
during the execution of a program. If a pointer (8.3.1) whose static typeirger to clas®” is point-
ing to an object of clad3, derived from B (10), the dynamic type of the pointéipisinter toD.” Refer-
ences (8.3.2) are treated similarly.

— implementation-defined behavior: Behavior, for a correct program construct and correct data, that
depends on the implementation and that each implementation shall document. The range of possible
behaviors is delineated by the standard.

— implementation limits: Restrictions imposed upon programs by the implementation.

— locale-specific behavior:Behavior that depends on local conventions of nationality, culture, and lan-
guage that each implementation shall document.

— multibyte character: A sequence of one or more bytes representing a member of the extended charac-
ter set of either the source or the execution environment. The extended character set is a superset of the
basic character set.

— parameter: an object or reference declared as part of a function declaration or definition in the [@atch
clause of an exception handler that acquires a value on entry to the function or handler, an identifier
from the comma-separated list bounded by the parentheses immediately following the macro name in a
function-like macro definition, or template-parameterA function can be said tdake argumentsor 0
to “have parameteirsParameters are also known d@$@amal argumentsor “formal parameters.

— signature: The signature of a function is the information about that function that participates in over-
load resolution (13.2): the types of its parameters and, if the function is a non-static member of a class,
the CV-qualifiers (if any) on the function itself and whether the function is a direct member of its class
or inherited from a base class.

— static type: The static typeof an expression is the type (3.8) resulting from analysis of the program
without consideration of execution semantics. It depends only on the form of the program and does not
change.

— undefined behavior: Behavior, such as might arise upon use of an erroneous program construct or of
erroneous data, for which the standard imposes no requirements. Permissible undefined behavior
ranges from ignoring the situation completely with unpredictable results, to behaving during translation
or program execution in a documented manner characteristic of the environment (with or without the
issuance of a diagnostic message), to terminating a translation or execution (with the issuance of a diag-
nostic message). Note that many erroneous program constructs do not engender undefined behavior;
they are required to be diagnosed.

— unspecified behavior:Behavior, for a correct program construct and correct data, that depends on the
implementation. The range of possible behaviors is delineated by the standard. The implementation is
not required to document which behavior occurs.

) Function signatures do not include return type, because that does not participate in overload resolution.

1.3 Definitions DRAFT: 1 February 1995 General 43

Subclause 17.1 defines additional terms that are used only in the library claus2d.(17

1.4 Syntax notation [syntax]

In the syntax notation used in this manual, syntactic categories are indicétigtt ype, and literal words

and characters ioonstant width type. Alternatives are listed on separate lines except in a few cases
where a long set of alternatives is presented on one line, marked by the"phes& An optional termi-

nal or nonterminal symbol is indicated by the subs¢opt,” so

{ expressiop), }
indicates an optional expression enclosed in braces.
Names for syntactic categories have generally been chosen according to the following rules:

— X-nameis a use of an identifier in a context that determines its meaning ¢ags-nametypedef-
name.

— X-id is an identifier with no context-dependent meaning (gualified-id).

— X-seqis one or moreX’s without intervening delimiters (e.gleclaration-seds a sequence of declara-
tions).

— X-listis one or moreX's separated by intervening commas (esgpression-lists a sequence of expres-
sions separated by commas).

1.5 The G+ memory model [intro.memory]

The fundamental storage unit in the-@Gnemory model is thbyte. A byte is at least large enough to con-

tain any member of the basic execution character set and is composed of a contiguous sequence of bits, the
number of which is implementation-defined. The least significant bit is callddwherder bit; the most
significant bit is called th@igh-orderbit. The memory accessible to a+Grogram is one or more con-

tiguous sequences of bytes. Each byte (except perhaps registers) has a unique address. a

1.6 The G+ object model [(intro.object]

The constructs in a+€ program create, refer to, access, and manipulate objectsbjéctis a region of O
storage and, except for bit-fields (9.7), occupies one or more contiguous bytes of storage. An objectlis cre-
ated by adefinition (3.1), by anew-expressiof5.3.4) or by the implementation (12.2) when needed. The
properties of an object are determined when the object is created. An object candi@eé3d. An object [

has astoragealuration which influences itifetime (3.7). An object has a type (3.8). The teshject type O

refers to the type with which the object is created. The object’s type determines the number of byfés that
the object occupies and the interpretation of its content. Some objegshar®rphic(10.3); the imple- O
mentation generates information carried in each such object that makes it possible to determine that@bject’s
type during program execution. For other objects, the meaning of the values found therein is determined by
the type of thexpressioa (5) used to access them. a

Objects can contain other objects, cakketh-objects A sub-object can be member sub-obje¢p.2) or a O
base class sub-obje(t0). An object that is not a sub-object of any other object is cattechplete object
For every objeck, there is some object calldte complete object af, determined as follows:

— If x is a complete object, thenis the complete object af.
— Otherwise, the complete objectofs the complete object of the (unique) object that contains
C+ provides a variety of built-in types and several ways of composing new types from existing types.

Certain types havalignmentrestrictions. An object of one of those types shall appear only at an address
that is divisible by a particular integer.

1-4 General DRAFT: 1 February 1995 1.7 Processor compliance

1.7 Processor compliance [intro.compliance]

Every conforming & processor shall, within its resource limits, accept and correctly execute well-formed
CH programs, and shall issue at least one diagnostic error message when presented with any ill-formed pro-
gram that contains a violation of any diagnosable semantic rule or of any syntax rule, except as noted
herein.

Well-formed G+ programs are those that are constructed according to the syntax rules, diagnosable [Seman-
tic rules, and the One Definition Rule (3.1). If a program is not well-formed but does not contain any diag-
nosable errors, this Standard places no requirement on processors with respect to that program. O

The set of diagnosable semantic rutesonsists of all semantic rules in this Standard except for those riiles
containing an explicit notation thato diagnostic is required.

1.8 Program execution [intro.execution]

The semantic descriptions in this Standard define a parameterized nondeterministic abstract machine. This
Standard places no requirement on the structure of conforming processors. In particular, they need not
copy or emulate the structure of the abstract machine. Rather, conforming processors are required to emu-
late (only) the observable behavior of the abstract machine as explained below.

Certain aspects and operations of the abstract machine are described in this Standard as implementation
defined (for examplesizeof(int)). These constitute the parameters of the abstract machine. Each
implementation shall include documentation describing its characteristics and behavior in these respects,
which documentation defines the instance of the abstract machine that corresponds to that implementation
(referred to as the “corresponding instance” below).

Certain other aspects and operations of the abstract machine are described in this Standard as unspecified
(for example, order of evaluation of arguments to a function). In each case the Standard defines a set of
allowable behaviors. These define the nondeterministic aspects of the abstract machine. An instance of the
abstract machine can thus have more than one possible execution sequence for a given program and a given
input.

Certain other operations are described in this International Standard as undefined (for example, the effect of
dereferencing the null pointer).

A conforming processor executing a well-formed program shall produce the same observable behavior as
one of the possible execution sequences of the corresponding instance of the abstract machine with the
same program and the same input. However, if any such execution sequence contains an undefined opera-
tion, this Standard places no requirement on the processor executing that program with that input (not even
with regard to operations previous to the first undefined operation).

The observable behavior of the abstract machine is its sequence of reads and voit¢eto data and
calls to library 1/0 functiond)

Define afull-expressioras an expression that is not a subexpression of another expression.

It is important to note that certain contexts #r Cause the evaluation of a full-expression that results from
a syntactic construct other thexpressio(b.18). For example, in 8.5 one syntaxifatializer is O

(expression-list)

but the resulting construct is a function-call upon a constructor functioremptiession-lisas an argument
list; such a function call is a full-expression. For another example in 8.5, another syméiafer is

= initializer-clause

but again the resulting construct is a function-call upon a constructor function withssigjmment-
expressioras an argument; again, the function-call is a full-expression.

3) An implementation can offer additional library 1/0 functions as an extension. Implementations that do so should treat calls to those
functions as “observable behavior” as well.

10
11

12

1.8 Program execution DRAFT: 1 February 1995 General -15

Also note that the evaluation of a full-expression can include the evaluation of subexpressions that{@re not
lexically part of the full-expression. For example, subexpressions involved in evaluating default argument
expressions (8.3.6) are considered to be created in the expression that calls the function, not the expression
that defines the default argument.

There is a sequence point at the completion of evaluation of each fuII-eprf)ession

When calling a function (whether or not the function is inline), there is a sequence point after the evaluation
of all function arguments (if any) which takes place before execution of any expressions or statements in
the function body. There is also a sequence point after the copying of a returned value and before the exe-
cution of any expressions outside the functlorBeveral contexts in+€ cause evaluation of a function

call, even though no corresponding function-call syntax appears in the translation unit. For example, evalu-
ation of a new expression invokes one or more allocation and constructor functions; see 5.3.4. For another
example, invocation of a conversion function (12.3.2) can arise in contexts in which no function-call syntax
appears. The sequence points at function-entry and function-exit (as described above) are features of the
function-calls as evaluated, whatever the syntax of the translation unit might be. O

In the evaluation of each of the expressions
a&&hb
allb
a?b:c
a,b

there is a sequence point after the evaluation of the first expr@ssion

ox 1 O

Urhe contexts above all correspond to sequence points already specified in ISO C, although they Cag% arise in
%ew syntactic contexts. The Working Group is still discussing whether there is a sequence point after the
rpperand of dynamic-cast is evaluated; this is a context from which an exception might be throwd, even
rthough no function-call is performed. This has not yet been voted upon by the Working Group, anctit may
[be redundant with the sequence point at function-exit.

%) as specified in 12.2, after the "end-of-full-expression" sequence point, a sequence of zero or more invocations of destructor func-
tions takes place, in reverse order of the construction of each temporary object.

The sequence point at the function return is not explicitly specified in ISO C, and can be considered redundant with sequeride points
at full-expressions, but the extra clarity is important+h.An C+, there are more ways in which a called function can terminate its
execution, such as the throw of an exception, as discussed below.

The operators indicated in this paragraph are the builtin operators, as described in Clause 5. When one of these operators is over-
loaded (13) in a valid context, thus designating a user-defined operator function, the expression designates a function invocation, and
the operands form an argument list, without an implied sequence point between them.

2 Lexical conventions [lex]

A C+ program need not all be translated at the same time. The text of the program is kept in units called
source filesn this standard. A source file together with all the headers (17.3.1.2) and source files included
(16.2) via the preprocessing directi#mclude , less any source lines skipped by any of the conditional
inclusion (16.1) preprocessing directives, is call&édaslation unit Previously translated translation unit8l

can be preserved individually or in libraries. The separate translation units of a program communicate (3.5)
by (for example) calls to functions whose identifiers have external linkage, manipulation of objects whose
identifiers have external linkage, or manipulation of data files. Translation units can be separatelyirans-
lated and then later linked to produce an executable program. (3.5).

2.1 Phases of translation [lex.phases]
The precedence among the syntax rules of translation is specified by the foIIowing7EJhases.

1 Physical source file characters are mapped to the source character set (introducing new-line charac-
ters for end-of-line indicators) if necessary. Trigraph sequences (2.2) are replaced by corresponding
single-character internal representations.

2 Each instance of a new-line character and an immediately preceding backslash character is deleted,
splicing physical source lines to form logical source lines. A source file that is not empty shall end
in a new-line character, which shall not be immediately preceded by a backslash character.

3 The source file is decomposed into preprocessing tokens (2.3) and sequences of white-space charac-
ters (including comments). A source file shall not end in a partial preprocessing token or partial
commen?. Each comment is replaced by one space character. New-line characters are retained.
Whether each nonempty sequence of white-space characters other than new-line is retained or
replaced by one space character is implementation-defined. The process of dividing a source file's
characters into preprocessing tokens is context-dependent. For example, see the hardling of
within a#include preprocessing directive.

4 Preprocessing directives are executed and macro invocations are exparfiedude prepro-
cessing directive causes the named header or source file to be processed from phase 1 through phase
4, recursively.

5 Each source character set member and escape sequence in character constants and string literals is
converted to a member of the execution character set.

6 Adjacent character string literal tokens are concatenated and adjacent wide string literal tokens are
concatenated.

7 White-space characters separating tokens are no longer significant. Each preprocessing token is
converted into a token. (See 2.5). The resulting tokens are syntactically and semantically analyzed
and translated. The result of this process starting from a single source file is dafadlation
unit.

) Implementations shall behave as if these separate phases occur, although in practice different phases might be folded together.
8)A partial preprocessing token would arise from a source file ending in one or more characters of a multi-character token followed by
a‘“line-splicindg backslash. A partial comment would arise from a source file ending with an untlosedhment, or & comment

line that ends with &line-splicing backslash.

2-2 Lexical conventions DRAFT: 1 February 1995 2.1 Phases of translation

8 The translation units that will form a program are combined. All external object and function refer-
ences are resolved.

Box 2 E
What about shared libraries?

I

Library components are linked to satisfy external references to functions and objects not defined in the
current translation. All such translator output is collected into a program image which contains infor-
mation needed for execution in its execution environment.

2.2 Trigraph sequences [lex.trigraph]

Before any other processing takes place, each occurrence of one of the following sequences of three charac-
ters (trigraph sequencés$ is replaced by the single character indicated in Table 1.

Table 1—trigraph sequences

Urigraph replacementU trigraph replacement trigraph replacemgnt

O ??= # 2?7 [27 { 0

0 27/ \ 2?)] 27?8 } O

g ?? N 32! | 225 - H
For example,

??=define arraycheck(a,b) a??(b??) ??1??! b??(a??)
becomes
#define arraycheck(a,b) a[b] || b[a]

2.3 Preprocessing tokens [lex.pptoken]
E O

Box 3 53

Hve have deleted the non-terminal for ‘digraph’, because the alternate representations are just alfErnative
rays of expressing a "first-class” preprocessing token. In C, # and ## are grouped with operatorstaut that
rwould involve more work in clause 13, and wouldn't fit the "spirit of C++". Instead, we simply list @er
Cwhich they are actual tokens.

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
preprocessing-op-or-punc ad
each non-white-space character that cannot be one of the above

Each preprocessing token that is converted to a token (2.5) shall have the lexical form of a keyword, an
identifier, a constant, a string literal, an operator, or a punctuator. O

A preprocessing tokeis the minimal lexical element of the language in translation phases 3 through 6.
The categories of preprocessing token &eader namesdentifiers preprocessing numbersharacter
constantsstring literals preprocessing-op-or-punand single non-white-space characters that do not léxi-
cally match the other preprocessing token categories! lbraa" character matches the last category, the

2.3 Preprocessing tokens DRAFT: 1 February 1995 Lexical conventions-2

behavior is undefined. Preprocessing tokens can be separatddtbyspacethis consists of comments

(2.6), orwhite-space characterspace, horizontal tab, new-line, vertical tab, and form-feed), or both. As
described in Clause 16, in certain circumstances during translation phase 4, white space (or the absence
thereof) serves as more than preprocessing token separation. White space can appear within a préprocess-
ing token only as part of a header name or between the quotation characters in a character constant or string
literal.

If the input stream has been parsed into preprocessing tokens up to a given character, the next preprocessing
token is the longest sequence of characters that could constitute a preprocessing token.

The program fragmerttEx is parsed as a preprocessing number token (one that is not a valid floating or
integer constant token), even though a parse as the pair of preprocessind. takdEx might produce a

valid expression (for example,iix were a macro defined ad). Similarly, the program fragmed€g1 is

parsed as a preprocessing number (one that is a valid floating constant token), whethErioamtacro
name.

The program fragmentt++++y is parsed ag ++ ++ +y |, which, ifx andy are of built-in types, vio-
lates a constraint on increment operators, even though thexparser ++ y might yield a correct

expression. O
2.4 Alternate tokens [{lex.digraph]
Alternate token representations are provided for some operators and pun%tuators O

In all respects of the language, each alternate token behaves the same, respectively, as its primaky token,
except for its spellinjgo). The set of alternate tokens is defined in Table 2. O

Table 2—alternate tokens

Lhlternate primary U alternate primaryl alternate prima@
0 <% { n and && apd_eq &= 0
O %> } [bitor | or_éq |= d
H < [Hor Il xor_é;j] N= H
o >] oxor n nay ! 0
U 9%: # Leompl ~ not! eq I= U
& — & il
0 %:%: ## bitand & 0 0 O
2.5 Tokens [[lex.token]
token: 0
identifier O
keyword a
literal g
operator 0
punctuator 0

There are five kinds of tokens: identifiers, keywords, literals (which include strings and charactén and
numeric constants), operators, and other separators. Blanks, horizontal and vertical tabs, newlineg] form-
feeds, and comments (collectivetyyhite spac®), as described below, are ignored except as they servé to
separate tokens. Some white space is required to separate otherwise adjacent identifiers, keywordg,] and lit-

erals. O

|

I These includé digraph$ and additional reserved words. The témigrapt (token consisting of two characters) is not perfectly
descriptive, since one of the alternate preprocessing-toke¥s¥s and of course several primary tokens contain two charactéts.

Nonetheless, those alternate tokens that aren’t lexical keywords are colloquially kriaigragzhs. |

Thus[and<: behave differently whetstringized (16.3.2), but can otherwise be freely interchanged. O

2—-4 Lexical conventions DRAFT: 1 February 1995 2.6 Comments

2.6 Comments [lex.comment]

The character§ start a comment, which terminates with the chara¢tersThese comments do not nest.

The characterd start a comment, which terminates with the next new-line character. If there is a form-
feed or a vertical-tab character in such a comment, only white-space characters can appear betwegn it and
the new-line that terminates the comment; no diagnostic is required. The comment charadtersaand

*/have no special meaning within/a comment and are treated just like other characters. Similarly, the
comment charactef6 and/* have no special meaning withirf*a comment.

2.7 Identifiers [lex.name]
identifier:
nondigit
identifier nondigit
identifier digit

nondigit one of
_abcdefghijklm
nopgqrstuvwxyz
ABCDEFGHIJKLM
NOPQRSTUVWXYZ

digit: one of
0123456789

An identifier is an arbitrarily long sequence of letters and digits. The first character is a letter; the uhder-
score_ counts as a letter. Upper- and lower-case letters are different. All characters are significant.

2.8 Keywords [lex.key]

The identifiers shown in Table 3 are reserved for use as keywords, and shall not be used othelfwise in
phases 7 and 8:

Table 3—keywords

Lasm do inline short typeid U0
uto double int signed union B ad
ool dynamic_cast long sizeof unsigned OO

break else mutable static using oo

[tase enum namespace static_cast virtual oo

Ltatch explicit new struct void U0
har extern operator switch volatile B ad

class false private template wchar_t OO

[const float protected this while oo

[tonst _cast for public throw oo

Ltontinue friend register true U0
efault goto reinterpret_cast try B ad

[delete if return typedef 0o

Furthermore, the alternate representations shown in Table 4 for certain operators and punctuators (2.4) are
reserved and shall not be used otherwise:

2.8 Keywords DRAFT: 1 February 1995 Lexical conventions -5

Table 4—alternate representations

Chitand and bitor or xor compl O
nd_eq or_eq xor_eq not not eq H

In addition, identifiers containing a double underscore Y or beginning with an underscore and an
upper-case letter are reserved for use Byi@plementations and standard libraries and should be avoided
by users; no diagnostic is required.

The lexical representation ofFCprograms includes a number of preprocessing tokens which are uséd in

the syntax of the preprocessor or are converted into tokens for operators and punctuators: a
preprocessing-op-or-punc one of a
{ } [] # #it = () , O
< > <% %> %: %:%: ; : O
new delete new[] delete]] ? a
+ - * / % " & | ~ O
| = < > += = *= = %= |:|
A= &= |= << >> >>= <<= == I= O
<= >= && I ++ -- , ->* -> O
and bitand bitor compl new<%%> delete<%%> a
not or xor and_eq not_eq or_eq xor_eq d

After preprocessing, eagireprocessing-op-or-punis converted to a single token in translation phasél7
(2.2).

Certain implementation-dependent properties, such as the typsizgfoh (5.3.3) expression, the range§!
of fundamental types (3.8.1), and the types of the most basic library functions are defined in the standard
header files (18)

<float.h> <limits.h> <stddef.h>

These headers are part of the ISO C standard. In addition the headers

<new.h> <stdarg.h> <stdlib.h>
define the types of the most basic library functions. The last two headers are part of the ISO C standard,;
<new.h> is C+ specific.
2.9 Literals [lex.literal]

There are several kinds of literals (often referred ttzasstants).

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal
2.9.1 Integer literals [lex.icon]

integer-literal:
decimal-literal integer-suffix,
octal-literal integer-suffiy,
hexadecimal-literal integer-suffjx

2-6 Lexical conventions DRAFT: 1 February 1995 2.9.1 Integer literals

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
123456789

octal-digit: one of
012345867

hexadecimal-digit: one of
0123456789
abcdef

A B CDEF

integer-suffix:
unsigned-suffix long-suffjy
long-suffix unsigned-suffjy

unsigned-suffix:one of
u u

long-suffix: one of
I L

An integer literal consisting of a sequence of digits is taken to be decimal (base ten) unless it be@ins with
(digit zero). A sequence of digits starting withis taken to be an octal integer (base eight). The digits
and9 are not octal digits. A sequence of digits precedetxbpr 0X is taken to be a hexadecimal integer
(base sixteen). The hexadecimal digits incladar A throughf or F with decimal values ten through fif-
teen. For example, the number twelve can be writBgr014, or 0XC,

The type of an integer literal depends on its form, value, and suffix. If it is decimal and has no suffix, it has
the first of these types in which its value can be represented:long int ,unsigned long int . If

it is octal or hexadecimal and has no suffix, it has the first of these types in which its value can be repre-
sentedint , unsigned int ,long int ,unsigned long int . Ifitis suffixed byu or U, its type is

the first of these types in which its value can be represamisigned int , unsigned long int . If

it is suffixed byl orL, its type is the first of these types in which its value can be represkmigdint ,
unsigned long int . If it is suffixed byul , lu , uL, Lu, Ul, IU, UL, or LU, its type isunsigned

long int

A program is ill-formed if it contains an integer literal that cannot be represented by any of the allowed
types.

2.9.2 Character literals [lex.ccon]

character-literal:
' c-char-sequence
L’ c-char-sequence

2.9.2 Character literals DRAFT: 1 February 1995 Lexical conventions 27

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except
the single-quoté, backslash , or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequencene of
VA2
\a \b \f \n \r \t W

octal-escape-sequence:
\ octal-digit
octal-escape-sequence octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

A character literal is one or more characters enclosed in single quotesx’as, ioptionally preceded by

the letterL, as inL’x’ . Single character literals that do not begin witlhhave typechar , with value

equal to the numerical value of the character in the machine’s character set. Multicharacter literals that do
not begin withL have typent and implementation-defined value.

A character literal that begins with the lettersuch ad 'ab’ , is a wide-character literal. Wide-character
literals have typavchar_t . They are intended for character sets where a character does not fit into a sin-
gle byte. Wide-character literals have implementation-defined values, regardless of the number of charac-
ters in the literal.

Certain nongraphic characters, the single quothe double quoté, ?, and the backslash can be repre- [
sented according to Table 5.

Table 5—escape sequences

Lhew-line NL(LF) \n U
orizontal tab HT \t E
[yertical tab VT \v 0
backspace BS \b 0
Ctarriage return CR \r O
Lorm feed FF \f U
lert BEL \a E
ackslash \ A
rguestion mark ? \? 0
Ckingle quote ' \ O
LHouble quote " v O
ctal number 000 \ooo E
ex number hhh \xhhh

If the character following a backslash is not one of those specified, the behavior is undefined. An escape
sequence specifies a single character.

2-8 Lexical conventions DRAFT: 1 February 1995 2.9.2 Character literals

The escapgoooconsists of the backslash followed by one or more octal digits that are taken to specify the
value of the desired character. The esdapehh consists of the backslash followed hyollowed by one

or more hexadecimal digits that are taken to specify the value of the desired character. There is no limit to
the number of digits in either sequence. A sequence of octal or hexadecimal digits is terminated by the first
character that is not an octal digit or a hexadecimal digit, respectively. The value of a character literal is
implementation dependent if it exceeds that of the largjest (for ordinary literals) omchar_t (for

wide literals).

2.9.3 Floating literals [lex.fcon]

floating-constant:
fractional-constant exponent-pggtfloating-suffixy
digit-sequence exponent-part floating-siffix

fractional-constant:
digit-sequencg, . digit-sequence
digit-sequence.

exponent-part:
e sign,, digit-sequence
E sign,, digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
fl FL

A floating literal consists of an integer part, a decimal point, a fraction pagtpak, an optionally signed

integer exponent, and an optional type suffix. The integer and fraction parts both consist of a sequence of
decimal (base ten) digits. Either the integer part or the fraction part (not both) can be missing; either the
decimal point or the lettex (or E) and the exponent (not both) can be missing. The type of a floatinglit-
eral isdouble unless explicitly specified by a suffix. The suffifeandF specifyfloat , the suffixed

andL specifylong double .

2.9.4 String literals [lex.string]

string-literal:
" s-char-sequencg’
L" s-char-sequengg’

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except
the double-quoté, backslash , or new-line character
escape-sequence

A string literal is a sequence of characters (as defined in 2.9.2) surrounded by double quotes, optionally
beginning with the lettek, as in"..." orL".." . A string literal that does not begin withhas type

“array ofn char " andstaticstorage duration (3.7), whends the size of the string as defined below, and is
initialized with the given characters. Whether all string literals are distinct (that is, are stored in nonover-
lapping objects) is implementation dependent. The effect of attempting to modify a string literal is

2.9.4 string literals DRAFT: 1 February 1995 Lexical conventions 29

undefined.

A string literal that begins with, such ad "asdf" , is a wide-character string. A wide-character string is
of type“array ofn wchar_t ,” wheren is the size of the string as defined below. Concatenation of ordi-
nary and wide-character string literals is undefined.

ox 4 B
[Bhould this render the program ill-formed? Or is it deliberately undefined to encourage extensions?

Adjacent string literals are concatenated. Characters in concatenated strings are kept distinct. For example,
"\XA" "B"

contains the two charactekgA’ and’B’ after concatenation (and not the single hexadecimal character
XAB’).

After any necessary concatenatithi is appended so that programs that scan a string can find its end.
The size of a string is the number of its characters including this terminator. Within a string, the double
guote character shall be preceded by\a a

Escape sequences in string literals have the same meaning as in character literals (2.9.2).

2.9.5 Boolean literals [lex.bool]

boolean-literal:
false
true

The Boolean literals are the keyworfdése andtrue . Such literals have tygeool and the given val-
ues. They are not Ivalues.

3 Basic concepts [basic]

This clause presents the basic concepts of #idaiguage. It explains the difference betweerlaject

and anameand how they relate to the notion oflaalue It introduces the concepts oflaclarationand a

definition and presents+#€'s notion oftype scope linkage andstorage duration The mechanisms for

starting and terminating a program are discussed. Finally, this clause presents the fundamental types of the
language and lists the ways of constructingipoundypes from these.

This clause does not cover concepts that affect only a single part of the language. Such concepts are dis-
cussed in the relevant clauses.

An entityis a value, object, subobject, base class subobject, array element, variable, function, set of func-
tions, instance of a function, enumerator, type, class member, template, or namespace.

A nameis a use of an identifier (2.7) that denotes an entitgtml (6.6.4, 6.1).

Every name that denotes an entity is introduced dbgctaration Every name that denotes a label is intro-

duced either by goto statement (6.6.4) or labeled-statemer(6.1). Every name is introduced in some
contiguous portion of program text calledieclarative region(3.3), which is the largest part of the pro-

gram in which that name can possibly be valid. In general, each particular name is valid only within some
possibly discontiguous portion of program text calleddtspe(3.3). To determine the scope of a declara-

tion, it is sometimes convenient to refer to gutential scop®f a declaration. The scope of a declaration

is the same as its potential scope unless the potential scope contains another declaration of the same name.
In that case, the potential scope of the declaration in the inner (contained) declarative region is excluded
from the scope of the declaration in the outer (containing) declarative region.

For example, in

intj = 24;

main()
inti=j,j;
j=42;

}

the identifierj is declared twice as a name (and used twice). The declarative region of therfaisides
the entire example. The potential scope of theffilségins immediately after thatand extends to the end
of the program, but its (actual) scope excludes the text betweenratid the} . The declarative region of
the second declaration pf(thej immediately before the semicolon) includes all the text betyemrd} ,
but its potential scope excludes the declaration.ofhe scope of the second declaratiof i the same
as its potential scope.

Some names denote types, classes, enumerations, or templates. In general, it is necessary to determine
whether or not a name denotes one of these entities before parsing the program that contains it. The process
that determines this is calledme lookup

Two names denote the same entity if
— they are identifiers composed of the same character sequence; or

— they are the names of overloaded operator functions formed with the same operator; or

3-2 Basic concepts DRAFT: 1 February 1995 3 Basic concepts

— they are the names of user-defined conversion functions formed with the same type. O

An identifier used in more than one translation unit can potentially refer to the same entity in these transla-
tion units depending on the linkage (3.5) specified in the translation units. O

3.1 Declarations and definitions [basic.def]

A declaration (7) introduces one or more names into a program and gives each name a meaning.

A declaration is alefinition unless it declares a function without specifying the function’s body (8.4), it
contains theextern specifier (7.1.1) and neither @nitializer nor afunction-body it declares a static data
member in a class declaration (9.5), it is a class name declaration (9.1), ortypeddef declaration
(7.1.3), ausing declaration(7.3.3), oriasing directive(7.3.4).

The following, for example, are definitions:

int a; 1! definesa

extern constintc = 1; 1 definesc

int f(int x) { return x+a; } // definesf

struct S {inta;intb;}; // definesS

struct X { 1 definesX
int x; 1 defines nonstatic data member
static int y; I declares static data membgr
X(0: x(0) {} I defines a constructor of

int Xiy =1, i definesX::y

enum { up, down }; I definesup and down

namespace N {int d; } 1 definesN and N::d

namespace N1 = N; 1! definesN1

X anX; 1l definesanX

whereas these are just declarations:

externint a; 1 declaresa

extern const int c; /i declaresc

int f(int); 1 declaresf

struct S; I declaresS
typedef int Int; I declaresint
extern X anotherX; /i declaresanotherX
using N::d; 1! declaresN::d

In some circumstancesHCimplementations generate definitions automatically. These definitions include
default constructors, copy constructors, assignment operators, and destructors. For example, given

struct C {
string s; /I string is the standard library class (21.1.2)
I3

main()

{
Ca;
C b=g;
b=a;

}
the implementation will generate functions to make the definitidbezfuivalent to

3.1 Declarations and definitions DRAFT: 1 February 1995 Basic concepts-3

struct C {
string s;

CQ:-s0{}
C(const C& x): s(x.s) {}
C& operator=(const C& x) { s = x.s; return *this; }

~CO{}
I3
A class name can also implicitly be declared bglaborated-type-specifigi.1.5.3).

3.2 One definition rule [basic.def.odr]

H?JOX 5 O

d
[Orhis is still very much under review by the Committee.

No translation unit shall contain more than one definition of any variable, function, class type, enumeration
type or template.

A function isusedif it is called, its address is taken, or it is a virtual member function that is not pure
(10.4). Every program shall contain at least one definition of every function that is used in that prdgram.
That definition can appear explicitly in the program, it can be found in the standard or a user-défined
library, or (when appropriate) the implementation can generate it. If a non-virtual function is not defined, a
diagnostic is required only if an attempt is actually made to call that function. If a virtual function is neither
called nor defined, no diagnostic is required.

EBox 6 D
|:|ThIS says nothing about user-defined libraries. Probably it shouldn’t, but perhaps it should be morqpxpllcn
[that it isn’t discussing it. O

Exactly one definition in a program is required for a non-local variable with static storage duration, unless
it has a builtin type or is an aggregate and also is unused or used only as the operasideafftheopera-
tor.

BBox 7 g
(Orhis is still uncertain.f]

At least one definition of a class is required in a translation unit if the class is used other than in the forma-
tion of a pointer or reference type.

EBox 8 D
|:|ThIS is not quite right, because it is possible to declare a function that has an undefined class ty[ge as its
Creturn type, that has arguments of undefined class type. O
EBox 9 D
DThere might be other situations that do not require a class to be defined: extern declarations (i.e. "@Xtern X
[k;"), declaration of static members, others??? O

For example the following complete translation unit is well-formed, even though it never defines

3-4 Basic concepts DRAFT: 1 February 1995 3.2 One definition rule

struct X; 1 declareXis a struct type
struct X* x1; // useX in pointer formation
X* X2; 1 useX in pointer formation

There can be more than one definition of a named enumeration type in a program provided that eachldefini-
tion appears in a different translation unit and the names and values of the enumerators are the same.

%ox 10 g
[Orhis will need to be revisited when the ODR is made more precise

There can be more than one definition of a class type in a program provided that each definition appears in
a different translation unit and the definitions describe the same type.

No diagnostic is required for a violation of the ODR rule.

%ox 11 g
[Orhis will need to be revisited when the ODR is made more precise

3.3 Declarative regions and scopes [basic.scope]
The name look up rules are summarized in 3.4. O
3.3.1 Local scope [basic.scope.local]

A name declared in a block (6.3) is local to that block. Its scope begins at its point of declaration (3.3.9)
and ends at the end of its declarative region.

A function parameter name in a function definition (8.4) is a local name in the scope of the outermostiblock
of the function and shall not be redeclared in that scope.

The name in @atch exception-declaration is local to the handler and shall not be redeclared in the outer-
most block of the handler.

Names declared in tHer-init-statementcondition and controlling expression partsibf, while , for ,
andswitch statments are local to tlike , while , for , or switch statement (including the controlled
statement), and shall not be redeclared in a subsequent condition or controlling expression of that statement
nor in the outermost block of the controlled statement.

Names declared in the outermost block of the controlled statemedbatatement shall not be redeclared
in the controlling expression.
3.3.2 Function prototype scope [basic.scope.proto]

In a function declaration, or in any of function declarator except the declarator of a function definition((8.4),
names of parameters (if supplied) have function prototype scope, which terminates at the end of the func-
tion declarator.

3.3.3 Function scope

Labels (6.1) can be used anywhere in the function in which they are declared. Only labels have function
scope.

3.3.4 Namespace scope DRAFT: 1 February 1995 Basic concepts5 3

3.3.4 Namespace scope [basic.scope.namespace]

A name declared in a named or unnamed namespace (7.3) has namespace scope. Its potential scope
includes its namespace from the name’s point of declaration (3.3.9) onwards, as well as the potential scope
of anyusing directive(7.3.4) that nominates its namespace. A namespace member can also be used after
the:: scope resolution operator (5.1) applied to the name of its namespace.

A name declared outside all named or unnamed namespaces (7.3), blocks (6.3) and classg®lj@) has
namespace scofalso calledglobal scopg The potential scope of such a name begins at its point of dec-
laration (3.3.9) and ends at the end of the translation unit that is its declarative region. Names declared in
the global namespace scope are said tgldizal.

3.3.5 Class scope [basic.scope.class]

The name of a class member is local to its class and can be used only in: O

— the scope of that class (9.3) or a class derived (10) from that class,

— after the. operator applied to an expression of the type of its class (5.2.4) or a class derived from its
class,

— after the-> operator applied to a pointer to an object of its class (5.2.4) or a class derived from its class,

— after the:: scope resolution operator (5.1) applied to the name of its class or a class derived from its
class,

— or after ausing declaratior(7.3.3). O
The scope of names introduced by friend declarations is described in 7.3.1.

The scope rules for classes are summarized in 9.3.

3.3.6 Name hiding [basic.scope.hiding]

A name can be hidden by an explicit declaration of that same name in a nested declarative region ot dlerived
class.

A class name (9.1) or enumeration name (7.2) can be hidden by the name of an object, function, or enumer-
ator declared in the same scope. If a class or enumeration name and an object, function, or enumerator are
declared in the same scope (in any order) with the same name, the class or enumeration name is hidden
wherever the object, function, or enumerator name is visible.

In a member function definition, the declaration of a local name hides the declaration of a memberof the
class with the same name; see 9.3. The declaration of a member in a derived class (10) hides the[declara-
tion of a member of a base class of the same name; see 10.2. a

If a name is in scope and is not hidden it is said tadible g

The region in which a name is visible is calledriéechof the name.

HBOX 12 E
Orhe term 'reach’ is defined here but never used. More work is needed with the "descriptive termindlogy".

3.3.7 Explicit qualification [basic.scope.exqual]

[Box 13 O
O

O
rhe information in this section is very similar to the one provided in 7.3.1.1. The information in these two
sections (3.3.7 and 7.3.1.1) should be consolidated in one place. a

a b~ W N

3-6 Basic concepts DRAFT: 1 February 1995 3.3.7 Explicit qualification

A name hidden by a nested declarative region or derived class can still be used when it is qualified by its
class or namespace name using:th@perator (5.1, 9.5, 10). A hidden global scope name can still be used
when it is qualified by the unarty operator (5.1).

3.3.8 Elaborated type specifier [basic.scope.elab]

A class name or enumeration name can be hidden by the name of an object, function, or enumerator in
local, class or namespace scope. A hidden class name can still be used when appropriately prefixed with
class , struct , orunion (7.1.5), or when followed by the operator. A hidden enumeration name

can still be used when appropriately prefixed weittum (7.1.5). For example:

class A {
public:
static int n;
I3
main()
{
int A;
A:n=42; I OK
class A a; I OK
Ab; [l ill-formed: A does not name a type
}

The scope of class names first introduceel@borated-type-specifieis described in (7.1.5.3).

3.3.9 Point of declaration [basic.scope.pdecl]

Thepoint of declaratiorfor a name is immediately after its complete declarator (8) and befangiékzer
(if any), except as noted below. For example,

intx =12;
{intx=x;}
Here the seconxl is initialized with its own (unspecified) value.
For the point of declaration for an enumerator, see 7.2.
For the point of declaration of a function first declaredfinesmd declaration, see 11.4. O

For the point of declaration of a class first declared ielaborated-type-specifi@r in afriend declara- O
tion, see 7.1.5.3.

A nonlocal name remains visible up to the point of declaration of the local name that hides it. For example,
constint i=2;
{int ifi]; }

declares a local array of two integers.

The point of instantiation of a template is described in 14.3. a

3.4 Name look up [[class.scope]

The name look up rules apply uniformly to all names (includypgdef-name (7.1.3),namespace-narae

(7.3) andclass-name (9.1)) wherever the grammar allows such names in the context discussed by a [partic-
ular rule. This section discusses name look up in lexical scope only; 3.5 discusses linkage issué$. The
notions of name hiding and point of declaration are discussed in 3.3. a

Name look up associates the use of a name with a visible declaration (3.1) of that name. Name [dok up
shall find an unambiguous declaration for the name (see 10.2). Name look up may associate more than one
declaration with a name if it finds the name to be a function name; in this case, all the declarations $hall be
found in the same scope (10.2); the declarations are said to form a set of overloaded functions((13.1).

10

3.4 Name look up DRAFT: 1 February 1995 Basic concepts-3

Overload resolution (13.2) takes place after name look up has succeeded. The access rules (11) arg consid-
ered only once name look up and function overload resolution (if applicable) have succeeded. Only after
name look up, function overload resolution (if applicable) and access checking have succeeded [@re the
attributes introduced by the name’s declaration used further in expression processing (5). O

A name used in the global scope outside of any function, class or user-declared namespace, Ehall be
declared before it is used in global scope or be a hame introducagsimga directive (7.3.4) that appeard]
in global scope before the name is used. O

A name specified aftermested-name-specifies looked up in the scope of the class or namespace denbted
by thenested-name-specifiesee 5.1 and 7.3.1.1. A name prefixed by the unary scope operafon) is [0
looked up in global scope. A name specified after. ttperator o> operator of a class member acce§s
is looked up as specified in 5.2.4. O

A name that is not qualified in any of the ways described above and that is used in a namespace outside of
the definition of any function or class shall be declared before its use in that namespace or in ong@ of its
enclosing namespaces or, be introduced Wisireg directive (7.3.4) visible at the point the name is used.]

A name that is not qualified in any of the ways described above and that is used in a function that IS not a
class member shall be declared before its use in the block in which it is used or in one of its enclosing
blocks (6.3) or, shall be declared before its use in the namespace enclosing the function definition oflin one
of its enclosing namespaces or, shall be introduced Usirgy directive (7.3.4) visible at the point the]
name is used. O

A name that is not qualified in any of the ways described above and that is used in the definition of @ class
X outside of any inline member function or nested class definition shall be declared before its us&in [dlass
(9.3) or be a member of a base class of cka§t0) or, if X is a nested class of cla¥s(9.8), shall be O
declared before the definition of clasén the enclosing clasgor in Y's enclosing classes or,Xfis a local [

class (9.9), shall be declared before the definition of ¥ass block enclosing the definition of clag®r, [

shall be declared before the definition of clXs® a hamespace enclosing the definition of chass, be O
introduced by ausing directive (7.3.4) visible at the point the name is used. 9.3 further describe<he
restrictions on the use of names in a class definition. 9.8 further describes the restrictions on theéluse of
names in nested class definitions. 9.9 further describes the restrictions on the use of names in lo€al class
definitions. O

A name that is not qualified in any of the ways described above and that is used in a function that is B mem-
ber function (9.4) of clasX shall be declared before its use in the block in which it is used or in an entlos-

ing block (6.3) or, shall be a member of clx49.2) or a member of a base class of ck€k0) or, ifXisa O

nested class of clasé (9.8), shall be a member of the enclosing css a member off’s enclosing [0
classes or, iX is a local class (9.9), shall be declared before the definition of Xlasa block enclosing O

the definition of clasX or, shall be declared before the member function definition in a namespace enclos-
ing the member function definition or, be introduced hyseng directive (7.3.4) visible at the point thel

name is used. 9.4 and 9.5 further describe the restrictions on the use of names in member functiof! defini-
tions. 9.8 further describes the restrictions on the use of names in the scope of nested classes. 99 further
describes the restrictions on the use of names in local class definitions. O

For afriend function (11.4) defined inline in the definition of the class granting friendship, name lookl up
in thefriend function definition for a name that is not qualified in any of the ways described abovelpro-
ceeds as described in member function definitions. Ifftleed function is not defined in the class]
granting friendship, name look up in thieend function definition for a name that is not qualified in any
of the ways described above proceeds as described in nonmember function definitions. O

A name that is not qualified in any of the ways described above and that is used in a paretoeter- [
declaration-clauseas a default argument (8.3.6) or that is used in a functoninitializer (12.6.2) is O
looked up as if the name was used in the outermost block of the function definition. In particular, theélfunc-
tion parameter names are visible for name look up in default arguments @nd-imtializers. 8.3.6 fur- O

ther describes the restrictions on the use of names in default arguments. 12.6.2further describes thél restric-
tions on the use of names ictar-initializer. O

11

12

3-8 Basic concepts DRAFT: 1 February 1995 3.4 Name look up

A name that is not qualified in any of the ways described above and that is useihitietizer expression O

of astatic member of clasX (9.5.2) shall be a member of cla$$9.2) or a member of a base class af
classX (10) or, if X is a nested class of cla¥$9.8), shall be a member of the enclosing céss a mem- O

ber of Y's enclosing classes or, be declared before the static member definition in the namespace entlosing
the static member definition or in one of its enclosing namespaces or, be introducesiryy adirective O
(7.3.4) visible at the point the name is used. 9.5.2 further describes the restrictions on the use of names in
theinitializer expression for atatic data member. 9.8 further describes the restrictions on the udé of
names in nested class definitions. O

In all cases, the scopes are searched for a declaration in the order listed in each of the respective [dategory

above and name look up ends as soon as a declaration is found for the name. O

ox 14 E O
[This subclause should probably say something about look up in template definitions. M
3.5 Program and linkage [basic.link]

A programconsists of one or morteanslation units(2) linked together. A translation unit consists of a
sequence of declarations.

translation unit:
declaration-seg,

A name is said to havimkagewhen it might denote the same object, function, type, template, or valuelas a
name introduced by a declaration in another scope: O

— When a name haaxternal linkagethe entity it denotes can be referred to by names from scop€s of
other translation units or from other scopes of the same translation unit.

— When a name haaternal linkage the entity it denotes can be referred to by names from other scbpes
of the same translation unit.

— When a name haw linkage the entity it denotes cannot be referred to by names from other scopesl
A name of namespace scope (3.3.4) has internal linkage if it is the name of

— a variable that is explicitly declaredatic or is explicitly declarecconst and neither explicitly
declaredextern nor previously declared to have external linkage; or

— a function that is explicitly declarestatic or is explicitly declarednline and neither explicitly
declaredextern nor previously declared to have external linkage; or

— the name of a data member of an anonymous union.

A name of namespace scope has external linkage if it is the name of
— a variable, unless it has internal linkage; or

— a function, unless it has internal linkage; or

— aclass (9) or enumeration (7.2) or an enumerator; or

— a template (14). In addition, a name of class scope has external linkage if the name of the clalss has
external linkage.

HBox 15 g
OWhat is the linkage of unnamed classes and their members? Unnamed enumeration and their enumerators?

3.5 Program and linkage DRAFT: 1 February 1995 Basic concepts—-9

The name of a function declared in a block scope or a variable deeldeed in a block scope has link-
age, either internal or external to match the linkage of prior visible declarations of the name in the same
translation unit, but if there is no prior visible declaration it has external linkage.

Names not covered by these rules have no linkage. Moreover, except as noted, a name declared in a local
scope (3.3.1) has no linkage. A name with no linkage (notably, the name of a class or enumeration déclared
in a local scope (3.3.1)) shall not be used to declare an entity with linkage. For example:

void f()
struct A {int x; }; // no linkage
extern A a; /! ill-formed
}

This implies that names with no linkage cannot be used as template arguments (14.7).

Two names that are the same and that are declared in different scopes shall denote the same object, func-
tion, type, enumerator, or template if a

— both names have external linkage or else both names have internal linkage and are declared in the same
translation unit; and

— both names refer to members of the same namespace or to members, not by inheritance, of the same
class; and

— when both names denote functions or function templates, the function types are identical for purposes of
overloading. a

After all adjustments of types (during which typedefs (7.1.3) are replaced by their definitions), the types
specified by all declarations of a particular external name shall be identical, except that such types €an dif-
fer by the presence or absence of a major array bound (8.3.4). A violation of this rule does not require a
diagnostic.

ox 16 B
(rhis needs to specified more precisely to deal with function name overloadling.

Linkage to non-& declarations can be achieved usinipkage-specificatiorf7.5).
3.6 Start and termination [basic.start]

3.6.1 Main function [basic.start.main]
A program shall contain global a function calladin , which is the designated start of the program.

This function is not predefined by the compiler, it cannot be overloaded, and its type is implementation
dependent. The two examples below are allowed on any implementation. It is recommended that any fur-
ther (optional) parameters be added atgv . The functiormain() can be defined as a

intmain() {/*...*/}
or

int main(int argc, char* argv[]) { /* ... */ }
In the latter formargc shall be the number of arguments passed to the program from an environment in
which the program is run. Hrgc is nonzero these arguments shall be suppliegrgn[0] through
argv[argc-1] as pointers to the initial characters of zero-terminated stringgrgufd] shall be the

pointer to the initial character of a zero-terminated string that represents the name used to invoke the pro-
gram or™ . Itis guaranteed thargv[argc]==0

3-10 Basic concepts DRAFT: 1 February 1995 3.6.1 Main function

The functionmain() shall not be called from within a program. The linkage (3.5nain() is imple-
mentation dependent. The addressmain() shall not be taken anohain() shall not be declared
inline orstatic . The namenain is not otherwise reserved. For example, member functions, classes,
and enumerations can be caltadin , as can entities in other namespaces. g

Calling the function O
void exit(int);

declared irccstdlib> (18.3) terminates the program without leaving the current block and hence With-
out destroying any local variables (12.4). The argument value is returned to the program’s environment as
the value of the program.

A return statement imain() has the effect of leaving the main function (destroying any local variables)
and callingexit() with the return value as the argument. If control reaches the emainf without
encountering aeturn statement, the effect is that of executing

return O;

3.6.2 Initialization of non-local objects [basic.start.init]

HBox 17 E
(rhis is still under active discussion by the committee.

The initialization of nonlocal static objects (3.7) in a translation unit is done before the first use of any func-
tion or object defined in that translation unit. Such initializations (8.5, 9.5, 12.1, 12.6.1) can be done [Before
the first statement ahain() or deferred to any point in time before the first use of a function or object
defined in that translation unit. The default initialization of all static objects to zero (8.5) is performed
before any other initialization. Static objects initialized with constant expressions (5.19) are initialized
before any dynamic (that is, run-time) initialization takes place. The order of initialization of nonlacal
static objects defined in the same translation unit is the order in which their definition appears in thdtrans-
lation unit. No further order is imposed on the initialization of objects from different translation units. The
initialization of local static objects is described in 6.7.

If construction or destruction of a non-local static object ends in throwing an uncaught exception, the result
is to callterminate() (18.6.1.3). O

3.6.3 Termination [basic.start.term]

Destructors (12.4) for initialized static objects are called when returningrfraim() and when calling
exit() (18.3). Destruction is done in reverse order of initialization. The funetierit() from O
<cstdlib> can be used to specify a function to be called at exitekKit() is to be called, the imple-O
mentation shall not destroy objects initialized beforatamit() call until after the function specified in(]
theatexit() call has been called.

Where a €+ implementation coexists with a C implementation, any actions specified by the C implementa-
tion to take place after treexit() functions have been called take place after all destructors have been
called.

Calling the function O
void abort();

declared in<cstdlib> terminates the program without executing destructors for static objects and with-
out calling the functions passedatexit() . O

3.7 Storage duration and lifetime DRAFT: 1 February 1995 Basic concepts-31

3.7 Storage duration and lifetime [[basic.stc]

Storage duration is a property of an object that indicates the potential time extent the storage in wiiich the
object resides might last. The storage duration is determined by the construct used to create the olaject and

is one of the following: O
— static storage duration O
— automatic storage duration O

— dynamic storage duration

Static and automatic storage durations are associated with objects introduced by declarations (3.1) &hd with
temporaries (12.2). The dynamic storage duration is associated with objects creatgzbrgitbr new [

(5.3.4). O
The storage class specifiestatic , auto , andmutable are related to storage duration as described
below. O

References (8.3.2) might or might not require storage; however, the storage duration categories apply to ref-
erences as well. O

The lifetime of an object is a runtime property of the object. The implementation controls the lifetime of
objects with static or automatic storage duration. Users control the lifetime of objects with dynamic siorage
duration. O

ox 18 h

Lwhat is the lifetime of an object? When is it well-formed and well-defined to access an object? W@m is it

[I-formed or undefined to access an object? Subclause 1.5 used to say: "The lifetime of an objddil starts
rgfter any required initialization (8.5) has completed. For objects with destructor, it ends when destitiction
[starts." This description is being worked out by the Core Language WG. In particular, a better desgription
Os needed to take into account what happens when users play tricks with objects’ lifetime.

The lifetime of temporaries is described in (12.2). O

3.7.1 Static storage duration [basic.stc.static]

All non-local objects havstatic storage durationThe storage for these objects can last for the entire dira-
tion of the program. These objects are initialized and destroyed as described in 3.6.2 and 3.6.3.

Note that if an object of static storage duration has initialization or a destructor with side effects, it shall not
be eliminated even if it appears to be unused.

HBOX 19 g
rhis awaits committee action on the “as-if” rulel

The keywordstatic can be used to declare a local variable with static storage duration; for a description
of initialization and destruction of locatatic variables, see 6.7.

The keywordstatic applied to a class data member in a class definition gives the data member[S$tatic
storage duration. O

Temporaries created at global scope have static storage duration. O

3-12 Basic concepts DRAFT: 1 February 1995 3.7.2 Automatic storage duration

3.7.2 Automatic storage duration [basic.stc.auto]

Local objects explicitly declareduto or register or not explicitly declaredtatic =~ haveautomatic [
storage duration The storage for these objects lasts until the block in which they are created exits.

These objects are initialized and destroyed as described 6.7. O

If a named automatic object has initialization or a destructor with side effects, it shall not be desttoyed
before the end of its block, nor shall it be eliminated as an optimization even if it appears to be unuséd.

Temporaries created in block scope have automatic storage duration. O

3.7.3 Dynamic storage duration [basic.stc.dynamic]

Objects can be created dynamically during program execution (1.8), nsmgxpressian (5.3.4), and
destroyed usingelete-expressian(5.3.5). A @+ implementation provides access to, and management of,
dynamic storage via the globallocation functionsoperator new and operator new[] and the O
globaldeallocation functionsperator delete andoperator delete[] . g

These functions are always implicitly declared. The library provides default definitions for them (18.4.1).
A CH program shall provide at most one definition of any of the functionperator

new(size_t) , :operator new[](size_t) , .operator delete(void*) , and/or
::operator delete[](void*) . Any such function definitions replace the default versions. This
replacement is global and takes effect upon program startup (3.6). Allocation and/or deallocation funttions
can also be declared and defined for any class (12.5).

Any allocation and/or deallocation functions defined inta @@ogram shall conform to the semantics spec-
ified in this subclause.

3.7.3.1 Allocation functions [basic.stc.dynamic.allocation]

Allocation functions can be static class member functions or global functions. They can be overloadgd, but
the return type shall always lweid* and the first parameter type shall alwayssize t (5.3.3), an
implementation-defined integral type defined in the standard headiidef> (18).

The function shall return the address of a block of available storage at least as large as the requested size.
The order, contiguity, and initial value of storage allocated by successive calls to an allocation function is
unspecified. The pointer returned is suitably aligned so that it can be assigned to a pointer of any type and
then used to access such an object or an array of such objects in the storage allocated (until the storage is
explicitly deallocated by a call to a corresponding deallocation function). Each such allocation shall yield a
pointer to storage (1.5) disjoint from any other currently allocated storage. The pointer returned points to
the start (lowest byte address) of the allocated storage. If the size of the space requested is zero, the value
returned shall be nonzero and shall not pointer to or within any other currently allocated storage. The
results of dereferencing a pointer returned as a request for zero size are urtdkfined.

If an allocation function is unable to obtain an appropriate block of storage, it can invoke the cuiently
installed new_handler 12) and/or throw an exception (15) of clasad_alloc (18.4.2.1) or a classO
derived frombad_alloc

If the allocation function returns the null pointer the result is implementation defined.

O
1 The intent is to haveperator new() implementable by callinghalloc() orcalloc() , so the rules are substantially the]
igsne. &+ differs from C in requiring a zero request to return a non-null pointer. O

A program-supplied allocation function can obtain the address of the currently installedhandler (18.4.2.2) using the O
set_new_handler() function (18.4.2.3).

3.7.3.2 Deallocation functions DRAFT: 1 February 1995 Basic concepts- 13

3.7.3.2 Deallocation functions [basic.stc.dynamic.deallocation]
Like allocation functions, deallocation functions can be static class member functions or global functidhs.

Each deallocation function shall retuwnoid and its first parameter shall lveid* . For class member
deallocation functions, a second parameter of §fjpe t can be added but deallocation functions shall
not be overloaded.

The value of the first parameter supplied to a deallocation function shall be zero, or refer to storage allo-
cated by the corresponding allocation function (even if that allocation function was called with a zero argu-
ment). If the value of the first argument is null, the call to the deallocation function has no effect. If the
value of the first argument refers to a pointer already deallocated, the effect is undefined.

A deallocation function can free the storage referenced by the pointer given as its argument and renders the
pointerinvalid. The storage can be made available for further allocation. An invalid pointer contaih$ an
unusable value: it cannot even be used in an expression.

If the argument is non-null, the value of a pointer that refers to deallocated sjadetésminate The
effect of dereferencing an indeterminate pointer value is undefihed.

3.7.4 Duration of sub-objects [basic.stc.inherit]

The storage duration of member subobjects, base class subobjects and array elements is that of ttéir com-
plete object (1.6).

3.7.5 Themutable keyword [basic.stc.mutable]

The keywordmutable is grammatically a storage class specifier but is unrelated to the storage duration
(lifetime) of the class member it describes. The mutable keyword is described in 3.9, 5.2.4, 7.1.1 and
7.1.5.1. O

3.8 Types [basic.types]

There are two kinds of types: fundamental types and compound types. Types can describe objects (1.6),
references (8.3.2), or functions (8.3.5).

Object types haveaalignment requirement3.8.1, 3.8.2). The alignment of an object type is ah
implementation-dependent integer value representing a number of bytes; an object is allocated at ai"address
that is divisible by the alignment of its object type. O

Arrays of unknown size and classes that have been declared but not defined anecmatiptetetypes O
because the size and layout of an instance of the type is unknown. Algojdhaype is an incomplete O

type; it represents an empty set of values. No objects can be defined to have incomplete type. The term
incompletely-defined object tyjgea synonym foincomplete typethe termcompletely-defined object type

is a synonym focomplete type

A class type (such dglass X ") can be incomplete at one point in a translation unit and complete [Ater
on; the typé‘class X " is the same type at both points. The declared type of an array can be incorhplete
at one point in a translation unit and complete later on; the array types at those two “poiats df
unknown bound off” and“array of NT”) are different types. However, the type of a pointer to array of
unknown size, or of a type defined byypedef declaration to be an array of unknown size, cannot be
completed.

Expressions that have incomplete type are prohibited in some contexts. For example:

13)on some architectures, it causes a system-generated runtime fault.

3-14 Basic concepts DRAFT: 1 February 1995 3.8 Types

class X; /I X is an incomplete type
extern X* xp; /I Xp is a pointer to an incomplete type
extern int arr[]; /I the type of arr is incomplete
typedef int UNKA[]; // UNKA is an incomplete type
UNKA* arrp; /[arrp is a pointer to an incomplete type
UNKA** arrpp;
void foo()
{
Xp++; /l'ill-formed: X is incomplete
arrp++; /l'ill-formed: incomplete type
arrpp++; /I okay: sizeof UNKA* is known
}
struct X {inti; }; // now X is a complete type
int arr[10]; /I now the type of arr is complete
X X;
void bar()
{
Xp = &X; /I okay; type is “pointer to X”
arrp = &arr; Il ill-formed: different types
Xp++; /I okay: X is complete
arrp++; /I ill-formed: UNKA can'’t be completed
}

Clauses 5 and 6 indicate in more details in which contexts incomplete types are allowed or prohibited]

If two typesT1 andT2 are the same type, th@d andT2 arelayout-compatibléypes. Layout-compatible [
enumerations are described in 7.2. Layout-compatible POD-structs and POD-unions are described in 9.2.

3.8.1 Fundamental types [basic.fundamental]
There are several fundamental types. Specializations of the standard temaplate_limits (18.2) O
specify the largest and smallest values of each for an implementation. O

Objects declared as charactarlsar) are large enough to store any member of the implementation’s basic
character set. If a character from this set is stored in a character variable, its value is equivalent to the inte-
ger code of that character. It is implementation-specified whettiesira object can take on negative val-

ues. Characters can be explicitly declavedigned or signed . Plainchar , signedchar , and O
unsigned char are three distinct types. Ahar , a signed char , and anunsigned char O
occupy the same amount of storage and have the same alignment requirements (3.8). In any particular
implementation, a plaithar object can take on either the same values agmed char or an
unsigned char ; which one is implementation-defined.

An enumeratiorcomprises a set of named integer constant values, which form the basis for an integral sub-
range that includes those values. Each distinct enumeration constitutes a diffieraptated typeEach
constant has the type of its enumeration.

There are fousigned integer type$signed char ", “short int ", “int ", and“long int .” In this

list, each type provides at least as much storage as those preceding it in the list, but the implementdfion can
otherwise make any of them equal in storage size. Ri&irs have the natural size suggested by the
machine architecture; the other signed integer types are provided to meet special needs.

For each of the signed integer types, there exists a corresponding (but diffieisgtjed integer type
“unsigned char ", “unsigned short int ", “unsigned int , and “unsigned long

int, " each of which occupies the same amount of storage and has the same alignment requiremelits (3.8)
as the corresponding signed integer t%/ﬁél?he range of nonnegative values adigned integetype is a O

%) see7.15.2 regarding the correspondence between types and the sequgpeespetifies that designate them.

10

11

12

3.8.1 Fundamental types DRAFT: 1 February 1995 Basic concepts-B5

subrange of the correspondingsigned integetype, and the representation of the same value in each fype
is the same.

Unsigned integers, declaredsigned , obey the laws of arithmetic modul8 ®&heren is the number of
bits in the representation of that particular size of integer. This implies that unsigned arithmetic does not
overflow.

Typewchar_t is a distinct type whose values can represent distinct codes for all members of the largest
extended character set specified among the supported locales (22.1.1wchgpet has the same size,
signedness, and alignment requirements (1.5) as one of the other integral types, caliledljing type

Values of typebool can be eithetrue or false 15 There are neigned , unsigned , short , or
long bool types or values. As described beldwpl values behave as integral types. Thus, for exam-
ple, they participate in integral promotions (4.5, 5.2.3). Although values obtygle generally behave as
signed integers, for example by promoting (4.5)nto instead ofunsigned int , abool value can
successfully be stored in a bit-field of any (nonzero) size.

Typesbool , char , wchar_t , and the signed and unsigned integer types are collectively aaibedal O
types. A synonym for integral type iisteger type Enumerations (7.2) are not integral, but they can [Be

promoted (4.5) tant , unsigned int , long , orunsigned long . The representations of integrall
types shall define values by use of a pure binary numeration system. O
HBox 20 E O
[Does this mean two's complement? Is there a definitidpwfe binary numeration systetn?l M

There are thre#oating pointtypes:float , double , andlong double . The typedouble provides O
at least as much precisionf&sat , and the typdong double provides at least as much precision as
double . Integralandfloatingtypes are collectively calleafithmetictypes. O

Thevoid type specifies an empty set of values. It is used as the return type for functions that do not return
a value. Objects of typeoid shall not be declared. Any expression can be explicitly converted to fype
void (5.4); the resulting expression can be used only as an expression statement (6.2), as the left[dperand
of a comma expression (5.18), or as a second or third oper@nd5f16). O

Even if the implementation defines two or more basic types to have the same representation, they aff@ never-
theless different types.
3.8.2 Compound types [basic.compound]

There is a conceptually infinite number of compound types constructed from the fundamental types in the
following ways:

— arraysof objects of a given type, 8.3.4;

— functions which have parameters of given types and return objects of a given type, 8.3.5;
— pointersto objects or functions (including static members of classes) of a given type, 8.3.1;
— referencedo objects or functions of a given type, 8.3.2;

— constantswhich are values of a given type, 7.1.5;

— classescontaining a sequence of objects of various types (9), a set of functions for manipulating these
objects (9.4), and a set of restrictions on the access to these objects and functions, 11;

— unions which are classes capable of containing objects of different types at different times, 9.6; [0

— pointers to non-stat®® class memberswvhich identify members of a given type within objects of a

) Using abool value in ways described by this International Standard as “undefined,” such as by examining the value of an unini-
tialized automatic variable, might cause it to behave as if is n#itieer norfalse .
Static class members are objects or functions, and pointers to them are ordinary pointers to objects or functions.

3-16 Basic concepts DRAFT: 1 February 1995 3.8.2 Compound types

given class, 8.3.3.

In general, these methods of constructing types can be applied recursively; restrictions are mentioned in
8.3.1,8.3.4, 8.3.5, and 8.3.2.

A pointer to objects of a typEis referred to as ‘gointer toT.” For example, a pointer to an object of typ&

int is referred to a8pointer toint ” and a pointer to an object of classs called & pointer toX.” Point- [

ers to incomplete types are allowed although there are restrictions on what can be done with thei (3.8).
Pointers to qualified or unqualified versions (3.8.3) of layout-compatible types shall have the sameliepre-
sentation and alignment requirements (3.8).

Objects of cv-qualified (3.8.3) or unqualified typeid* (pointer to void), can be used to point to objects

of unknown type. Avoid* has enough bits to hold any object pointer. A qualified or unqualified (3.813)
void* shall have the same representation and alignment requirements as a qualified or unqgualified
char* .

Except for pointers to static members, text referririgptonters does not apply to pointers to members.

3.8.3 CV-qualifiers [basic.type.qualifier]

Any type so far mentioned is amqualified type Each unqualified fundamental type (3.8.1) has three dadr-
responding qualified versions of its type:canst-qualifiedversion, avolatile-qualified version, and a O
const-volatile-qualifiedversion. The ternobject type(1.6) includes the cv-qualifiers specified when the
object is created. The presence afomst specifier in adecl-specifier-sea@leclares an object aonst- [
qualified object typesuch object is called eonst object The presence of wolatile specifier in a O
decl-specifier-segeclares an object eblatile-qualified object typesuch object is calledwlatile object [
The presence of botbv-qualifiersin a decl-specifier-segleclares an object afonst-volatile-qualified O
object type such object is called @nst volatile object The cv-qualified or unqualified versions of a type
are distinct types; however, they have the same representation and alignment requiremé@tﬂ &) O
pound type (3.8.2) is not cv-qualified by the cv-qualifiers (if any) of the type from which it is compourided.
However, an array type is considered to be cv-qualified by the cv-qualifiers of its element type. MorEover,
when an array type is cv-qualified, its element type is considered to have the same cv-qualifiers (8.3.4).

Each non-function, non-static, non-mutable member of a const-qualified class object is const-qualified,
each non-function, non-static member of a volatile-qualified class object is volatile-qualified and sintilarly
for members of a const-volatile class. See 8.3.5 and 9.4.2 regarding cv-qualified function types. O

There is a (partial) ordering on cv-qualifiers, so that a type can be saidiaréev-qualifiedhan another. O
Table 6 shows the relations that constitute this ordering.

Table 6—relations onconst and volatile

0 no cv-qualifier < const
B no cv-qualifier < volatile
o cv-qualifier < const volatile
] const < const volatile

g volatile < const volatile

mOoOoOoOoo
I I

In this document, the notati@v (or cvl, cv2, etc.), used in the description of types, represents an arbittary

set of cv-qualifiers, i.e., one otnst }, {volatile }, {const, volatile }, or the empty set. Cv-
qualifiers applied to an array type attach to the underlying element type, so the riatalignwhereT is

an array type, refers to an array whose elements are so-qualified. Such array types can be said to be more
(or less) cv-qualified than other types based on the cv-qualification of the underlying element types.

1) The same representation and alignment requirements are meant to imply interchangeability as arguments to functions, rettrn values
from functions, and members of unions.

10
11

12
13

14

3.8.4 Type names DRAFT: 1 February 1995 Basic concepts-Br7

3.8.4 Type names [basic.type.name]

Fundamental and compound types can be given names typ#uef mechanism (7.1.3), and families of
types and functions can be specified and named betinglate mechanism (14).

3.9 Lvalues and rvalues [basic.lval]
Every expression is either aralueor rvalue

An Ivalue refers to an obé'ect or function. Some rvalue expressitirtse of class or cv-qualified class
type—also refer to object%)

Some builtin operators and function calls yield Ivalues. For examgesifin expression of pointer type,
then*E is an Ivalue expression referring to the object or function to whiphints. As another example,
the function

int& f();
yields an Ivalue, so the cdf) is an Ivalue expression.

Some builtin operators expect Ivalue operands, for example the builtin assignment operators all expect their
left hand operands to be Ivalues. Other builtin operators yield rvalues, and some expect them. For example
the unary and binary operators expect rvalue arguments and yield rvalue results. The discussion ofleach
builtin operator in 5 indicates whether it expects Ivalue operands and whether it yields an lvalue.

Constructor invocations and calls to functions that do not return references are always rvalues. User
defined operators are functions, and whether such operators expect or yield Ivalues is determined by their

type.

Whenever an lvalue appears in a context where an lvalue is not expected, the Ivalue is convertéd to an
rvalue; see 4.1, 4.2, and 4.3. O

The discussion of reference initialization in 8.5.3 and of temporaries in 12.2 indicates the behavior &f Ival-
ues and rvalues in other significant contexts.

Class rvalues can have qualified types; non-class rvalues always have unqualified types. Rvaluedialways
have complete types or theid type; lvalues may have incomplete types.

An lvalue for an object is generally necessary in order to modify the object. An rvalue of class typé can
also be used to modify its referent under certain circumstances. For example, a member function called for
an object (9.4) can modify the object.

Functions cannot be modified, but pointers to functions can be modifiable. a
A pointer to an incomplete type can be modifiable. At some point in the program when this pointer tyipe is
complete, the object at which the pointer points can also be modified. a
Array objects cannot be modified, but their elements can be modifiable. a

The referent of @onst -qualified expression shall not be modified (through that expression), except that if
it is of class type and hasvautable component, that component can be modified. a

If an expression can be used to modify its object, it is calledifiable A program that attempts to modify
an object through a nonmodifiable Ivalue or rvalue expression is ill-formed.

18) Expressions such as invocations of constructors and of functions that return a class type do in some sense refer to an objdét, and the
implementation can invoke a member function upon such objects, but the expressions are not Ivalues.

4 Standard conversions [conv]

Expressions with a given type will be implicitly converted to other types in several contexts:

— When used as operands of operators. The operator’'s requirements for its operands dictate the destina-
tion type. See 5.

— When used in the condition of & statement or iteration statement (6.4, 6.5). The destination tyge is
bool .

— When used in the expression afwitch statement. The destination type is integral (6.4).

— When used as the source expression for an initialization (which includes use as an argument in a func-
tion call and use as the expression irtrn statement). The type of the entity being initialized is
(generally) the destination type. See 8.5, 8.5.3.

Standard conversions are implicit conversions defined for built-in types. For user-defined types[Juser-
defined conversions are considered as well; see 12.3. In general, an implicit conversion sequence (18.2.3.1)
consists of zero or more standard conversions and zero or one user-defined conversion. O

One or more of the following standard conversions will be applied to an expression if necessary to convert
it to a required destination type.

There are some contexts where certain conversions are suppressed. For example, the Ivalue-to-rvalue con-
version is not done on the operand of the ugaoperator. Such exceptions are given in the descriptions of
those operators and contexts.

4.1 Lvalue-to-rvalue conversion [conv.lval]

An Ivalue (3.9) of a non-array typlecan be converted to an rvalue.Tlfs an incomplete type, a program
that necessitates this conversion is ill-formedT i$ a non-class type, the type of the rvalue is the unquali-
fied version ofT. Otherwise (i.e.T is a class type), the type of the rvalu@.i

The value contained in the object indicated by the Ivalue is the rvalue result. When an Ivalue-to-rvalue con-
version is done within the operand sifeof (5.3.3) the value contained in the referenced object is not
accessed, since that operator does not evaluate its operand.

See also 3.9.

4.2 Array-to-pointer conversion [conv.array]

An Ivalue or rvalue of typ&array ofNT” or “array of unknown bound &f’ can be converted to an rvalue
of type“pointer toT.” The result is a pointer to the first element of the array.

)In G+ class rvalues can have qualified types (because they are objects). This differs from ISO C, in which non-lvalues never have
qualified types.

4-2 Standard conversions DRAFT: 1 February 1995 4.3 Function-to-pointer conversion

4.3 Function-to-pointer conversion [conv.func]

An Ivalue of function typ& can be converted to an rvalue of typeinter toT.” The result is a pointer to
the functior?”

See 13.3 for additional rules for the case where the function is overloaded.

4.4 Qualification conversions [conv.qual]

An rvalue of typé‘pointer tocvlT” can be converted to an rvalue of tyminter tocv2T” if “cv2T” is
more cv-qualified thaticvlT.” O

An rvalue of type‘pointer to member oX of typecvlT” can be converted to an rvalue of typeinter to [
member ofX of typecv2T” if “cv2T” is more cv-qualified thatcvlT.” O

A conversion can add type qualifiers at levels other than the first in multi-level pointers, subject to tlié fol-
lowing rules?t
Two pointer types T1 and T2 asanilar if there exists a typ& and integeN >0 such that:

TlisTevyn * <-- Cvp 1 * CVyg
and
T2 isTcvpn * © -+ CVp 1 * CVy g
where eacley, j is const , volatile , const volatile , or nothing. An expression of tygel

can be converted to tyge if and only if the following conditions are satisfied:
— the pointer types are similar.
— for everyj >0, if const is incv, ; thenconst isincv, ;, and similarly forvolatile
— thecv, j andcv, ; are different, thegonst is in everycv, y for 0<k <j.

When a multi-level pointer is composed of data member pointers, or a mix of object and data nmiémber
pointers, the rules for adding type qualifiers are the same as those for object pointers. Thanmthel
ber’ aspect of the pointers is irrelevant in determining where type qualifiers can be added.

4.5 Integral promotions [conv.prom]

An rvalue of typechar , signed char , unsigned char , short int , or unsigned short
int can be converted to an rvalue of type if int can represent all the values of the source type; other-
wise, the source rvalue can be converted to an rvalue ofibgigned int

An rvalue of typewchar_t (3.8.1) or an enumeration type (7.2) can be converted to an rvalue of the first
of the following types that can represent all the values of the sourcdrtypgunsigned int , long ,
or unsigned long

An rvalue for an integral bit-field (9.7) can be converted to an rvalue ofitypdf int can represent all
the values of the bit-field; otherwise, it can be convertathigned int if unsigned int can rep-
resent all the values of the bit-fié

An rvalue of typebool can be converted to an rvalue of type , with false becoming zero antfue
becoming one.

These conversions are called integral promotions.

2Y) This conversion never applies to nonstatic member functions because there is no way to obtain an Ivalue for a nonstati¢_member
function.

These rules ensure that const-safety is preserved by the conversion. O

If the bit-field is larger yet, it is not eligible for integral promotion. If the bit-field has an enumerated type, it is treated as any other
value of that type for promotion purposes.

4.6 Floating point promotion DRAFT: 1 February 1995 Standard conversions 43

4.6 Floating point promotion [conv.fpprom]
An rvalue of typdloat can be converted to an rvalue of tyfmible . The value is unchanged.

This conversion is called floating point promotion.

4.7 Integral conversions [conv.integral]
An rvalue of an integer type can be converted to an rvalue of another integer type.

If the destination type is unsigned, the resulting value is the least unsigned integer congruent to the source
integer (modulo 2 wheren is the number of bits used to represent the unsigned type). In a two’s comple-
ment representation, this conversion is conceptual and there is no change in the bit pattern (if there is no
truncation).

If the destination type is signed, the value is unchanged if it can be represented in the destination type; oth-
erwise, the value is implementation-defined.

If the destination type iBool , see 4.13. If the source typebisol , the source integer is taken to be zero
for false and one fotrue .

The conversions allowed as integral promotions are excluded from the set of integral conversions.

4.8 Floating point conversions [conv.double]

An rvalue of floating point type can be converted to an rvalue of another floating point type. If the source
value can be exactly represented in the destination type, the result of the conversion is that exact representa-
tion. If the source value is between two adjacent destination values, the result of the conversion can be
either of those values. Otherwise, the behavior is undefined.

The conversions allowed as floating point promotions are excluded from the set of floating point conver-
sions.

4.9 Floating-integral conversions [conv.fpint]

An rvalue of a floating point type can be converted to an rvalue of an integer type. The conversion trun-
cates; that is, the fractional part is discarded. The result is undefined if the truncated value cannot be repre-
sented in the destination type. If the destination typed , see 4.13.

An rvalue of an integer type can be converted to an rvalue of a floating point type. The result is exact if
possible. Otherwise, it can be either the next lower or higher representable value. Loss of precision occurs
if the integral value cannot be represented exactly as a value of the floating type. If the source type is
bool , the source integer is taken to be zerddtee and one fotrue .

4.10 Pointer conversions [conv.ptr]

A constant expression (5.19) rvalue of an integer type that evaluates to zero (oallggbanter constant

can be converted to a pointer type. The result is a value (calledithmointer valueof that type) distin-
guishable from every pointer to an object or function. Two null pointer values of a given type compare
equal.

An rvalue of type“pointer tocvT,” whereT is an object type, can be converted to an rvalue of type
“pointer tocvvoid .”

An rvalue of typé'pointer tocvD,” whereD s a class type, can be converted to an rvalue of“fypmter

to cvB,” whereB is a base class (10) bf If B is an inaccessible (11) or ambiguous (10.2) base cld3s of

a program that necessitates this conversion is ill-formed. The result of the conversion is a pointer to the
base class sub-object of the derived class object. The null pointer value is converted to the null pointer
value of the destination type.

4-4 Standard conversions DRAFT: 1 February 1995 4.11 Pointer to member conversions

4.11 Pointer to member conversions [conv.mem]

A null pointer constant (4.10) can be converted to a pointer to member type. The result is a value (called
the null member pointer valuef that type) distinguishable from a pointer to any member. Two null mem-
ber pointer values of a given type compare equal.

An rvalue of type'pointer to member dB of typecvT,” whereB is a class type, can be converted to an
rvalue of type'pointer to member dD of typecvT,” whereD is a derived class (10) & If Bis an inac-

cessible (11) or ambiguous (10.2) base cla$3 afprogram that necessitates this conversion is ill-formed.

The result of the conversion refers to the same member as the pointer to member before the conversion took
place, but it refers to the base class member as if it were a member of the derived class. The result refers to
the member iD's instance oB. Since the result has typpointer to member dD of typecvT,” it can be O
dereferenced with B object. The result is the same as if the pointer to membBrwdre dereferenced

with theB sub-object oD. The null member pointer value is converted to the null member pointer value of

the destination typ%?.’)

4.12 Base class conversion [conv.class]

An rvalue of typé'cvD,” whereDis a class type, can be converted to an rvalue of‘typB,” whereB is a

base class (10) @. If Bis an inaccessible (11) or ambiguous (10.2) base cld3soofif the conversion is [
implemented by calling a constructor (12.3.1) and the constructor is not callable, a program that necessi-
tates this conversion is ill-formed. The result of the conversion is the value of the base class sub-object of
the derived class object.

4.13 Boolean conversions [conv.bool]

An rvalue of arithmetic, enumeration, pointer, or pointer to member type can be converted to an rvalue of
type bool . A zero value, null pointer value, or null member pointer value is convertiadst® ; any
other value is converted taue .

The conversions allowed as integral promotions are excluded from the set of boolean conversions.

23)The rule for conversion of pointers to members (from pointer to member of base to pointer to member of derived) appears inverted
compared to the rule for pointers to objects (from pointer to derived to pointer to base) (4.10, 10). This inversion is necessary to ensure
type safety. Note that a pointer to member is not a pointer to object or a pointer to function and the rules for conversions of such point-
ers do not apply to pointers to members. In particular, a pointer to member cannot be convedit! to a

5 Expressions [expr]

This clause defines the syntax, order of evaluation, and meaning of expressions. An expression is a
sequence of operators and operands that specifies a computation. An expression can result in a value and
can cause side effects.

Operators can be overloaded, that is, given meaning when applied to expressions of class type (9). Uses of
overloaded operators are transformed into function calls as described in 13.4. Overloaded operators obey
the rules for syntax specified in this clause, but the requirements of operand type, Ivalue, and evaluation
order are replaced by the rules for function call. Relations between operators, stiahnasaninga+=1,

are not guaranteed for overloaded operators (fé).4).

This clause defines the operators when applied to types for which they have not been overloaded. Qperator
overloading shall not modify the rules for thailt-in operators that is, for operators applied to types far

which they are defined by the language itself. However, these built-in operators participate in overload res-
olution; see 13.2.1.2.

Operators can be regrouped according to the usual mathematical rules only where the operators réhlly are
associative or commutative. Overloaded operators are never assumed to be associative or commutative.
Except where noted, the order of evaluation of operands of individual operators and subexpressions of indi-
vidual expressions is unspecified. In particular, if a value is modified twice in an expression, the result of
the expression is unspecified except where an ordering is guaranteed by the operators involved. For exam-
ple,

i = V[i++]; /Il the value of ‘' is undefined

I=7,i++,i++; /I''i becomes 9

The handling of overflow and divide by zero in expression evaluation is implementation dependent. Most
existing implementations of+E ignore integer overflows. Treatment of division by zero and all floating
point exceptions vary among machines, and is usually adjustable by a library function.

Except where noted, operands of tygeast T , volatile T , T&, const T& , andvolatile T&

can be used as if they were of the plain tylpe Similarly, except where noted, operands of type
T* const andT* volatile can be used as if they were of the plain type Similarly, a plainT can

be used where wolatile T or aconst T is required. These rules apply in combination so that,
except where noted, B* const volatile can be used where ® is required. Such uses do not

count as standard conversions when considering overloading resolution (13.2). O

If an expression initially has the typeeference ta™” (8.3.2, 8.5.3), the type is adjusted‘® prior to any
further analysis, the expression designates the object or function denoted by the reference, and the expres-
sion is an Ivalue. A reference can be thought of as a name of an object.

An expression designating an object is calledlgact-expressian O

User-defined conversions of class or enum types to and from fundamental types, pointers, and so ori] can be
defined (12.3). If unambiguous (13.2), such conversions will be applied by the compiler wherever a class
object appears as an operand of an operator or as a function argument (5.2.2).

“®)Nor is it guaranteed for tygmol ; the left operand of= shall not have typbool . O

10

11

12

13

5-2 Expressions DRAFT: 1 February 1995 5 Expressions

Whenever an Ivalue expression appears as an operand of an operator that expects an rvalue for that operand,
the Ivalue-to-rvalue (4.1), array-to-pointer (4.2), or function-to-pointer (4.3) standard conversion will be
applied to convert the expression to an rvalue.

Many binary operators that expect operands of arithmetic type cause conversions and yield result types in a
similar way. The purpose is to yield a common type, which is also the type of the result. This pattern is
called the' usual arithmetic conversiofis.

BBox 21 O

O
%numerations are handled correctly by the usual arithmetic conversions, and for any operator thatjnvokes
rthe integral promotions. However, there may be other places in this Clause that fail to treat enumeérations
Cappropriately. &

— If either operand is of typeng double , the other is converted tong double .

— Otherwise, if either operand d®uble , the other is converted timuble .

— Otherwise, if either operandfipat , the other is converted flmat

— Otherwise, the integral promotions (4.5) are performed on both op&%nds. O
— Then, if either operand imsigned long the other is converted tmsigned long .

— Otherwise, if one operand id@ng int and the otheunsigned int , then if along int can rep-
resent all the values of amsigned int , theunsigned int is converted to éong int ; other-
wise both operands are converteditnsigned long int

— Otherwise, if either operandlisng , the other is converted tong .
— Otherwise, if either operandusmsigned , the other is converted tmsigned

— Otherwise, both operands an¢ .

If the program attempts to access the stored value of an object through an Ivalue of other than ong of the

following types: O

— the dynamic type of the object, O

— a qualified version of the declared type of the object, O

— atype that is the signed or unsigned type corresponding to the declared type of the object, O

— atype that is the signed or unsigned type corresponding to a qualified version of the declared typ# of the
object, O

— an aggregate or union type that includes one of the aforementioned types among its members [(includ-
ing, recursively, a member of a subaggregate or contained union), O

— atype that is a (possibly qualified) base class type of the declared type of the object, O

— acharacter typ%é.s) the result is undefined.

;Z) As a consequence, operands of tgpel , wchar_t , or an enumerated type are converted to some integral type.
)The intent of this list is to specify those circumstances in which an object may or may not be aliased.

5.1 Primary expressions DRAFT: 1 February 1995 Expressions-3

5.1 Primary expressions [expr.prim]
Primary expressions are literals, names, and names qualified by the scope resolution:pperator

primary-expression:

literal

this
identifier
operator-function-id
qualified-id

(expression)

id-expression

A literal is a primary expression. Its type depends on its form (2.9).

In the body of a nonstatic member function (9.4), the keywtloisl names a pointer to the object for
which the function was invoked. The keywdtds shall not be used outside a class member function
body.

HBOX 22 E
[n a constructor it is common practice to allthws in meme-initializers O

The operator: followed by anidentifier, a qualified-id or anoperator-function-idis a primary expres-
sion. lIts type is specified by the declaration of the identifier, namepemator-function-id The result is
the identifier, name, ooperator-function-id The result is an Ivalue if the identifier is. The identifier or
operator-function-idshall be of nhamespace scope. Use: ofallows a type, an object, a function, or an
enumerator to be referred to even if its identifier has been hidden (3.3).

A parenthesized expression is a primary expression whose type and value are identical to those of the
unadorned expression. The presence of parentheses does not affect whether the expression is an Ivalue.

A id-expressiorns a restricted form of primary-expressiothat can appear afterand-> (5.2.4):

id-expression:
unqualified-id
qualified-id

unqualified-id:
identifier
operator-function-id
conversion-function-id
~ class-name

%ox 23 g
Ossue: now it's allowed to invokeint() , but~class-name doesn’t allow for that.d

An identifier is anid-expressiorprovided it has been suitably declared (7). ®jerator-function-id, see
13.4. Forconversion-function-ig, see 12.3.2. Alass-namerefixed by~ denotes a destructor; see 12.4.

qualified-id:
nested-name-specifier unqualified-id

A nested-name-specifitihat names a class (7.1.5) followed:by and the name of a member of that class
(9.2), or a member of a base of that class (10)gisadified-id its type is the data member type or functidn
member type; it is not an object type. The result is the member. The result is an Ivalue if the member is.
The class-namenight be hidden by a nontype name, in which caseltss-namas still found and used. O
Whereclass-name: class-namés used, and the twolass-name refer to the same class, this notation
names the constructor (12.1). Whetass-name: ~ class-namés used, the twalass-name shall refer [

5-4 Expressions DRAFT: 1 February 1995 5.1 Primary expressions

to the same class; this notation names the destructor (12.4). Multiply qualified names, such as
N1::N2::N3::n , can be used to refer to nested types (9.8).

In a qualified-id, if the id-expressioris a conversion-function-idits conversion-type-ighall denote the
same type in both the context in which the ergiralified-idoccurs and in the context of the class denoted
by thenested-name-specifiefFor the purpose of this evaluation, the name, if any, of each class is also con-
sidered a nested class member of that class.

5.2 Postfix expressions [expr.post]

Postfix expressions group left-to-right.

postfix-expression:
primary-expression
postfix-expressior] expression]
postfix-expression(expression-ligf,)
simple-type-specifie expression-ligf;)
postfix-expression id-expression
postfix-expression> id-expression
postfix-expressiont++
postfix-expression-
dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
const_cast < type-id > (expression)
typeid (expression)
typeid (type-id)

expression-list:
assignment-expression
expression-list, assignment-expression

5.2.1 Subscripting [expr.sub]

A postfix expression followed by an expression in square brackets is a postfix expression. The intuitive
meaning is that of a subscript. One of the expressions shall have tHgdyuter toT” and the other shall

be of enumeration or integral type. The result is an Ivalue of‘tygeThe type“T” shall be complete. [

The expressio1[E2] is identical (by definition) td((E1)+(E2)) . See 5.3 and 5.7 for details of

and+ and 8.3.4 for details of arrays.

5.2.2 Function call [expr.call]

There are two kinds of function call: ordinary function call and member fuﬁ@ci@m) call. A function

call is a postfix expression followed by parentheses containing a possibly empty, comma-separated list of
expressions which constitute the arguments to the function. For ordinary function call, the postfix expres-
sion shall be a function name, or a pointer or reference to function. For member function call, the pbstfix
expression shall be an implicit (9.4) or explicit class member access (5.2.4) iddeapeessions a func-

tion member name, or a pointer-to-member expression (5.5) selecting a function member. The first expres-
sion in the postfix expression is then calleddbgect expressigrand the call is as a member of the object
pointed to or referred to. In the case of an implicit class member access, the implied object is the one
pointed to bythis . That is, a member function call of the fofh is interpreted athis->f() (see O
9.4.2). If a function or member function name is used, the name can be overloaded (13), in which dase the
appropriate function will be selected according to the rules in 13.2. The function called in a member func-
tion call is normally selected according to the static type of the object expression (see 10), but if that func-
tion is virtual the function actually called will be the final overrider (10.3) of the selected function in
the dynamic type of the object expression (i.e., the type of the object pointed or referred to by the current

21) A static member function (9.5) is an ordinary function.

10
11

5.2.2 Function call DRAFT: 1 February 1995 Expressions -5

value of the object expression). 12.7 describes the behavior of virtual function calls when the abject-
expression refers to an object under construction or destruction.

The type of the function call expression is the return type of the statically chosen function (i.e., ignoring the
virtual keyword), even if the type of the function actually called is different. This type shall be ¢om-
plete or the typ&oid .

When a function is called, each parameter (8.3.5) is initialized (8.5.3, 12.8, 12.1) with its corresponding
argument. Standard (4) and user-defined (12.3) conversions are performed. The value of a function call is
the value returned by the called function except in a virtual function call if the return type of the final over-
rider is different from the return type of the statically chosen function, the value returned from the final
overrider is converted to the return type of the statically chosen function. A function can change thelNalues
of its nonconstant parameters, but these changes cannot affect the values of the arguments except where a
parameter is of a notenst reference type (8.3.2). Where a parameter is of reference type a temporary
variable is introduced if needed (7.1.5, 2.9, 2.9.4, 8.3.4, 12.2). In addition, it is possible to modify the val-
ues of honconstant objects through pointer parameters.

A function can be declared to accept fewer arguments (by declaring default arguments (8.3.6)) drl more
arguments (by using the ellipsis, 8.3.5) than the number of parameters in the function definition (8.4).

If no declaration of the called function is accessible from the scope of the call the program is ill-formed.
This implies that, except where the ellipsis () is used, a parameter is available for each argument.

Any argument of typdloat for which there is no parameter is converteddable before the call; any

of char , short , or a bit-field type for which there is no parameter are converted toor unsigned

by integral promotion (4.5). Any argument of enumeration type is converiatl tounsigned , long ,

or unsigned long by integral promotion. An object of a class for which no parameter is declared is
passed as a data structure.

EBOX 24 B
o “pass a parameter as a data structure” means, roughly, that the parameter must be a PODSpjand that
[Cobtherwise the behavior is undefined. This must be made more precise. a

An object of a class for which a parameter is declared is passed by initializing the parameter with the argu-
ment by a constructor call before the function is entered (12.2, 12.8).

The order of evaluation of arguments is unspecified; take note that compilers differ. All side effects of
argument expressions take effect before the function is entered. The order of evaluation of the postfix
expression and the argument expression list is unspecified.

The function-to-pointer standard conversion (4.3) is suppressed on the postfix expression of a function call.
Recursive calls are permitted.

A function call is an Ivalue if and only if the result type is a reference.

5.2.3 Explicit type conversion (functional notation) [expr.type.conv]

A simple-type-specifief7.1.5) followed by a parenthesizegdpression-listonstructs a value of the speci-

fied type given the expression list. If the expression list specifies a single value, the expression is equiva-
lent (in definedness, and if defined in meaning) to the corresponding cast expression (5.4). If the Ekpres-
sion list specifies more than a single value, the type shall be a class with a suitably declared coniStructor
(8.5, 12.1), and the expressidx1, x2, ...) is equivalent in effect to the declaratidr(x1, O

X2, ...); for some invented temporary variablewith the result being the valuetofas an rvalue.

A simple-type-specifigf7.1.5) followed by a (empty) pair of parentheses constructs a value of the specified
type. If the type is a class with a default constructor (12.1), that constructor will be called; otherwise the
result is the default value given to a static object of the specified type. See also (5.4).

5-6 Expressions DRAFT: 1 February 1995 5.2.4 Class member access

5.2.4 Class member access [expr.ref]

A postfix expression followed by a dat)(or an arrow) followed by anid-expressions a postfix
expression. The postfix expression before the dot or arrow is evafuatad; result of that evaluation,
together with thed-expressiondetermine the result of the entire postfix expression.

For the first option (dot) the type of the first expression @hiect expressigrmshall be“class object (of a
complete type). For the second option (arrow) the type of the first expressipuoifiter expressionshall

be “pointer to class objettof a complete type). Thil-expressiorshall name a member of that clas§]
except that an imputed destructor can be explicitly invoked for a built-in type (12.4). Therefdrédnaié
the type “pointer to classX,” then the expressiofEl->E2 is converted to the equivalent form
(*(E1)).E2 ; the remainder of this subclause will address only the first optior??bot)

If the id-expressions aqualified-id thenested-name-specifief the qualified-id can specify a namespacé!

name or a class name. If thested-name-specifi@f the qualified-id specifies a namespace name, the
name is looked up in the context in which the ergwstfix-expressionccurs. Ifnested-name-specifief

the qualified-id specifies a class name, the class name is looked up as a type both in the class of the object
expression (or the class pointed to by the pointer expression) and the context in which thpostfitire
expressioroccurs. For the purpose of this type lookup, the name, if any, of each class is also considered a
nested class member of that class. These searches shall yield a single type which might be found in either
or both contexts. If theested-name-specifieontains a claseemplate-id(14.1), itstemplate-argumest

are evaluated in the context in which the ergostfix-expressionccurs.

Similarly, if theid-expressions aconversion-function-idits conversion-type-ighall denote the same type

in both the context in which the entpestfix-expressionccurs and in the context of the class of the object
expression (or the class pointed to by the pointer expression). For the purpose of this evaluation, the name,
if any, of each class is also considered a nested class member of that class.

Abbreviatingobject-expression.id-expressiasE1.E2 , then the type and Ivalue properties of this expres-
sion are determined as follows. In the remainder of this subclagsepresents eithetonst or the
absence otonst ; vqrepresents eitherolatile or the absence ofolatile . cvrepresents an arbi-[]
trary set of cv-qualifiers, as defined in 3.8.3.

If E2 is declared to have typgeeference tal”, thenE1l.E2 is an Ivalue; the type d&1.E2 is T. Other- 0O
wise, one of the following rules applies.

— If E2 is a static data member, and the typ&sfis T, thenE1.E2 is an lvalue; the expression desid-!
nates the named member of the class. The tyg&@ &2 isT. O

— If E2is a (possibly overloaded) static member function, and the tyia2 isf“ cv function of (parameter [
type list) returningl’”, thenE1.E2 is an Ivalue; the expression designates the static member function.
The type ofE1.E2 is the same type as thatE2, namely*cvfunction of (parameter type list) returnind’
T

— If E2 is a non-static data member, and the typglfs “cql vqlX’, and the type oE2 is “cq2 vq2T”,
the expression designates the named member of the object designated by the first expré&skisn. If
an Ivalue, theiic1.E2 is an lvalue. Let the notatiomg12stand for theé union’ of vqlandvqg2; that is,
if vqlorvqg2is volatile |, thenvql2is volatile . Similarly, let the notatiorcql2 stand for the
“union’ of cqlandcqgz that is, ifcqlor cq2is const , thencql2is const . If E2 is declared to be a
mutable member, then the type &1.E2 is“vql2T”. If E2 is not declared to berautable mem-
ber, then the type &1.E2 is“cql2 vql2T”.

— If E2 is a (possibly overloaded) non-static member function, and the tyg2 of “cv function of 0O
(parameter type list) returninf’, thenE1.E2 is not an lvalue. The expression designates a member
function (of some clasX). The expression can be used only as the left-hand operand of a member

28) This evaluation happens even if the result is unnecessary to determine the value of the entire postfix expression, for example if the
id-expressiomenotes a static member.
Note that ifE1 has the typ&pointer to clasX”, then(*(E1)) is an Ivalue.

5.2.4 Class member access DRAFT: 1 February 1995 Expressions75

function call (9.4). The member function shall be at least as cv-qualified as the left-hand operand. The
type ofE1.E2 is“classX’'s cvmember function of (parameter type list) returnirig O

— If E2is a nested type, the expressiihE?2 is ill-formed.

— If E2 is a member constant, and the typ&®fis T, the expressio&1.E2 is not an lvalue. The type of(]
E1.E2 isT. O

Note that'class objectscan be structures (9.2) and unions (9.6). Classes are discussed in 9.

5.2.5 Increment and decrement [expr.post.incr]

The value obtained by applying a postfix is (a copy of) the value that the operand had before applying

the operator. The operand shall be a modifiable Ivalue. The type of the operand shall be an arithmetic type
or a pointer to object type. After the result is noted, the value of the object is modified by hddliiig

unless the object is of tygmol , in which case it is set toue (this use is deprecated). The type of the
result is the same as the type of the operand, but it is not an Ivalue. See also 5.7 and 5.17.

The operand of postfix is decremented analogously to the postfixoperator, except that the operand
shall not be of typbool .

5.2.6 Dynamic cast [expr.dynamic.cast]

The result of the expressiatynamic_cast<T>(v) is the result of converting the expressioto type [
T. T shall be a pointer or reference to a complete class tyfgoorter tocvvoid ”. Types shall not be
defined in adynamic_cast . Thedynamic_cast operator shall not cast away constness (5.2.10). O

If Tis a pointer typey shall be an rvalue of a pointer to complete class type, and the result is an rvaluie of
typeT. If T is a reference type, shall be an Ivalue of a complete class type, and the result is an Ivallié of
the type referred to bY. O

If the type ofv is the same as the required result type (which, for convenience, will be Ralethis O
description), or it can be convertedRwia a qualification conversion (4.4) in the pointer case, the resulilis
v (converted if necessary). O

If the value ofv is a null pointer value in the pointer case, the result is the null pointer value & type 0O

If T is“pointer tocvlB” andv has typé‘pointer tocv2 D’ such thaB is a base class &, the result is a [
pointer to the uniqu® sub-object of thé object pointed to by. Similarly, if T is “reference tavlB’ [0
andv has typé‘'cv2D’ such thaB is a base class @, the result is an Ivalue for the uni&ﬂ)eB sub-object O
of the D object referred to byw. In both the pointer and reference casmd, shall be the same cv-[I
qualification as, or greater cv-qualification tham? andB shall be an accessible nonambiguous base class
of D. For example,

struct B {};
struct D : B {};
void foo(D* dp)

B* bp = dynamic_cast<B*>(dp); // equivalentto B* bp = dp;
}

Otherwisey shall be a pointer to or an Ivalue of a polymorphic type (10.3). ad

If T is “pointer tocv void ,” then the result is a pointer to the complete object (12.6.2) pointedyto by
Otherwise, a run-time check is applied to see if the object pointed or referred tcabybe converted to
the type pointed or referred to by

YU The complete object pointed or referred tosbgan contain otheB objects as base classes, but these are ignored. O

5-8 Expressions DRAFT: 1 February 1995 5.2.6 Dynamic cast

The run-time check logically executes like this: If, in the complete object pointed (referred)vtovby
points (refers) to an unambiguous base class sub-objedt object, the result is a pointer (an Ivalue refei3
ring) to thatT object. Otherwise, if the type of the complete object has an unambiguous public base class
of typeT, the result is a pointer (reference) to Theub-object of the complete object. Otherwise, the run-
time checKails.

BBox 25 O

O
Epomment from Bill Gibbons: the original papers allowed all strict downcasts from accessible bases. This
rwording does not. The paragraph can be fixed by changing the first instance of “an unambiguoud? to “a

Chublic.” g

The value of a failed cast to pointer type is the null pointer value of the required result type. A failed Cast to
reference type throwsad_cast (18.5.2.1). For example, O

class A { virtual void f(); };
class B { virtual void g(); };
class D : public virtual A, private B {};

void g()
D d;
B* bp = (B*)&d; // cast needed to break protection
A* ap = &d; /I public derivation, no cast needed
D& dr = dynamic_cast<D&>(*bp); // succeeds
ap = dynamic_cast<A*>(bp); /I succeeds
bp = dynamic_cast<B*>(ap); // fails
ap = dynamic_cast<A*>(&dr); I/l succeeds
bp = dynamic_cast<B*>(&dr); // fails
}

class E : public D, public B {};
class F : public E, public D {}
void h()

{
F f
A* ap = &f; // okay: finds unique A
D* dp = dynamic_cast<D*>(ap); // fails: ambiguous
E* ep=(E%ap; // error: cast from virtual base
E* ep = dynamic_cast<E*>(ap); // succeeds

}

12.7 describes the behavior afiyjnamic_cast applied to an object under construction or destruction.[]

5.2.7 Type identification [expr.typeid]

The result of atypeid expression is of typeonst type_info& . The value is a reference to &l
type_info object (18.5.1.1) that represents thige-idor the type of thexpressiomespectively. O

If the expressionis a reference to a polymorphic type (10.3), tyyj@ge_info for the complete object
(12.6.2) referred to is the result. O

If the expressioris the result of applying unary to a pointer to a polymorphic tyﬁ’é), then the pointer O
shall either be zero or point to a valid object. If the pointer is zerdyfpieéd expression throws the
bad_typeid exception (18.5.2.2). Otherwise, the result oftifpeeid expression is the value that rep-I
resents the type of the complete object to which the pointer points.

34 p is a pointer, thefp , (*p) , ((*p)) . and so on all meet this requirement.

5.2.7 Type identification DRAFT: 1 February 1995 Expressions -9

If the expressioris the result of subscripting (5.2.1) a pointer, paghat points to a polymorphic tyB@, O
then the result of thigpeid expression is that aypeid(*p) . The subscript is not evaluated. O
If the expression is neither a pointer nor a reference to a polymorphic type, the resutyjie thvefo O
representing the (static) type of twepression Theexpressiorns not evaluated. O
In all casesypeid ignores the top-level cv-qualifiers of its operand’s type. For example: ad
classD{... }; a
D d1; 0
const D d2; a
typeid(dl) == typeid(d2); /l yields true a
typeid(D) == typeid(const D); // yields true a
typeid(D) == typeid(d2); I yields true 0
12.7 describes the behaviortgpeid applied to an object under construction or destrcution.
5.2.8 Static cast [expr.static.cast]
The result of the expressistatic_cast<T>(v) is the result of converting the expressioto typeT. O
If Tis areference type, the result is an Ivalue; otherwise, the result is an rvalue. Types shall not be [defined
in astatic_cast . Thestatic_cast operator shall not cast away constness. See 5.2.10. O
Any implicit conversion (including standard conversions and/or user-defined conversions; see @ and
13.2.3.1) can be performed explicitly usistatic_cast . More precisely, ifT t(v); is a wel- 0O
formed declaration, for some invented temporary variabllen the result adtatic_cast<T>(v) is O
defined to be the temporaty, and is an Ivalue ifl is a reference type, and an rvalue otherwise. The
expressiorv shall be an Ivalue if the equivalent declaration requires an Ivalwe for O

If the static_cast does not correspond to an implicit conversion by the above definition, it shall [ger-
form one of the conversions listed below. No other conversion can be performed explicitly udihg a
static_cast

Any expression can be explicitly converted to typevoid .” The expression value is discarded. O

An Ivalue expression of typEl can be cast to the typeeference ta'2” if an expression of typépointer 0O

to T1” can be explicitly converted to the typgointer toT2” using astatic_cast . Thatis, a referencel]

cast static_cast<T&>x has the same effect as the conversistatic_cast<T*>&x with the 0O
built-in & and * operators. The result is an Ivalue. This interpretation is used only if the original
static_cast is not well-formed as an implicit conversion under the rules given above. This forf of
reference cast creates an Ivalue that refers to the same object as the source Ivalue, but with a differi@nt type.
Consequently, it does not create a temporary or copy the object, and constructors (12.1) or conversiah func-
tions (12.3) are not called. For example,

struct B {};

struct D : public B {};

Dd;

/I creating a temporary for the B sub-object not allowed
... (constB&) d ...

O

OoOoood

The inverse of any standard conversion (4) can be performed explicitly staligy cast subject to O
the restriction that the explicit conversion does not cast away constness (5.2.10), and the following addi-
tional rules for specific cases:

A value of integral type can be explicitly converted to an enumeration type. The value is unchangedlif the
integral value is within the range of the enumeration values (7.2). Otherwise, the resulting enumeration
value is unspecified.

32) 4 p is a pointer to a polymorphic type and has integral or enumerated type, thpfi] , (p[i) ., (p)i]
[(@onm ,i[p] . ([p])) ., and so on all meet this requirement.

10

5-10 Expressions DRAFT: 1 February 1995 5.2.8 Static cast

An rvalue of typé‘pointer tocv1B”, whereB is a class type, can be converted to an rvalue of‘fypater [
tocv2D’, whereDis a class derived (10) froB if a valid standard conversion frotpointer tocv2D’ to O
“pointer tocv2 B” exists (4.10)cv2is the same cv-qualification as, or greater cv-qualification tbal), O
andB is not a virtual base class bf The null pointer value (4.10) is converted to the null pointer valud bf
the destination type. If the rvalue of tyfygointer tocv1B” points to &B that is actually a sub-object of an
object of typeD, the resulting pointer points to the enclosing object of yp©therwise, the result of thell
cast is undefined.

An rvalue of type‘pointer to member dD of typecv1lT” can be converted to an rvalue of tyjpinter to [
member ofB of typecv2T”, whereB is a base class (10) Bf if a valid standard conversion frgrpointer [
to member oB of typecv2T” to “pointer to member db of typecv2T” exists (4.11), andv2is the same [
cv-qualification as, or greater cv-qualification theml The null member pointer value (4.11) is converted
to the null member pointer value of the destination type. If @asstains or inherits the original member]
the resulting pointer to member points to the member in Bagtherwise, the result of the cast is undét
fined.

5.2.9 Reinterpret cast [expr.reinterpret.cast]

The result of the expressioginterpret_cast<T>(v) is the result of converting the expressioto [
typeT. If T is a reference type, the result is an Ivalue; otherwise, the result is an rvalue. Types shallthot be
defined in a reinterpret_cast . Conversions that can be performed explicitly using
reinterpret_cast are listed below. No other conversion can be performed explicitly udihg
reinterpret_cast

Thereinterpret_cast operator shall not cast away constness; see 5.2.10. O

The mapping performed bginterpret_cast is implementation-defined; it might, or might not, prd-l
duce a representation different from the original value.

A pointer can be explicitly converted to any integral type large enough to hold it. The mapping function is
implementation-defined, but is intended to be unsurprising to those who know the addressing structure of
the underlying machine.

A value of integral type can be explicitly converted to a pointer. A pointer converted to an integer of suffi-
cient size (if any such exists on the implementation) and back to the same pointer type will have its original
value; mappings between pointers and integers are otherwise implementation-defined.

The operand of a pointer cast can be an rvalue of‘fypiater to incomplete class typeThe destination [
type of a pointer cast can Bpointer to incomplete class typeln such cases, if there is any inheritance
relationship between the source and destination classes, the behavior is undefined. O

A pointer to a function can be explicitly converted to a pointer to a function of a different type. The &ffect
of calling a function through a pointer to a function type that differs from the type used in the definition of
the function is undefined. See also 4.10.

A pointer to an object can be explicitly converted to a pointer to an object of different type. In general, the
results of this are unspecified; except that converting an rvalue of pgiger toT1” to the type‘ pointer

to T2” (whereT1 andT2 are object types and where the alignment requiremerii& afe no stricter than

those ofT1) and back to its original type yields the original pointer value.

ox 26 E
[rhis does not allow conversion of function pointers to other function pointer types and back. Shiuld it?

The null pointer value (4.10) is converted to the null pointer value of the destination type.

An rvalue of type'pointer to member oK of type T1”, can be explicitly converted to an rvalue of typé
“pointer to member of of typeT2”, if T1 andT2 are both member function types or both data member
types. The null member pointer value (4.11) is converted to the null member pointer value of the destina-
tion type. In general, the result of this conversion is unspecified, except that:

11

12

5.2.9 Reinterpret cast DRAFT: 1 February 1995 Expressions-81

— converting an rvalue of typ&ointer to member functidnto a different pointer to member function
type and back to its original type yields the original pointer to member value.

— converting an rvalue of typggointer to data member &fof typeT1” to the typ€e‘pointer to data mem-
ber ofY of typeT2” (where the alignment requirementsi@ are no stricter than those 1) and back
to its original type yields the original pointer to member value.

Calling a member function through a pointer to member that represents a function type that differs from the
function type specified on the member function declaration results in undefined behavior.

An Ivalue expression of typEl can be cast to the typeeference tad'2” if an expression of typépointer [

to T1” can be explicitly converted to the typpointer toT2” using areinterpret_cast . Thatis, a O
reference cast reinterpret_cast<T&>X has the same effect as the conversiah
reinterpret_cast<T>&x with the built-in& and* operators. The result is an Ivalue that refers (b

the same object as the source Ivalue, but with a different type. No temporary is created, no copy i§lmade,
and constructors (12.1) or conversion functions (12.3) are not called.

5.2.10 Const cast [expr.const.cast]
HBox 27 E O
[CEditorial change from previous edition: it is permitted to esmst cast as a no-op.[M
The result of the expressiaconst_cast<T>(v) is of type“T.” Types shall not be defined in &l

const_cast . Conversions that can be performed explicitly ugingst cast are listed below. No [
other conversion shall be performed explicitly usingst_cast

An rvalue of typé‘pointer tocvl T” can be explicitly converted to the typgointer tocv2 T”, whereT is [
any object type and wheow1landcv2are cv-qualifications , using the casinst_cast< c¢cv2 T*>. An [
Ivalue of typecvlT can be explicitly converted to an Ivalue of typ@ T, whereT is any object type and[
wherecvlandcv2are cv-qualifications, using the casinst_cast< cv2 T&>. The result of a pointer or[]
referenceonst_cast refers to the original object.

An rvalue of typée pointer to member of of typecvlT” can be explicitly converted to the typygointer to [
member ofX of typecv2T”, whereT is a data member type and whevd andcv2are cv-qualifiers, using O
the castonst_cast< cv2 T X::*> . The result of a pointer to membmnst_cast will refer to the
same member as the original (uncast) pointer to data member.

The following rules define casting away constness. In these Tal@sd Xn represent types. For two
pointer types:

X1lisTlevy 1 * -+ cvyny * where T1 is not a pointer type
X2 isT2cvy 1 * -+ cvpy * where T2 is not a pointer type
K is min(N,M)

casting fromX1 to X2 casts away constness if, for a non-pointer fijffe.g.,int), there does not exist an
implicit conversion from:

Tevy (n-k+1) ¥ CVi,(N-Kk+2) ¥ "7 CViN ¥

to

TeVo n-k+1) ¥ CVo (M-Kk+2) ¥ """ CVom *

Casting from an lvalue of typEl to an Ivalue of typd2 using a reference cast casts away constness if a
cast from an rvalue of tyggointer toT1” to the type pointer toT2” casts away constness.

5-12 Expressions DRAFT: 1 February 1995 5.2.10 Const cast

Casting from an rvalue of type "pointer to data membé&t afftype“T1” to the type'pointer to data mem-
ber of Y of type T2” casts away constness if a cast from an rvalue of ‘tgpater toT1” to the type
“pointer toT2” casts away constness.

Note that these rules are not intended to protect constness in all cases. For instance, conversions between
pointers to functions are not covered because such conversions lead to values whose use causes undefined
behavior. For the same reasons, conversions between pointers to member functions, and in particular, the
conversion from a pointer to a const member function to a pointer to a non-const member function, are not
covered. For multi-level pointers to data members, or multi-level mixed object and member pointers, the
same rules apply as for multi-level object pointers. That isirember of attribute is ignored for pur-

poses of determining whethesnst has been cast away.

Depending on the type of the object, a write operation through the pointer, lvalue or pointer to data member
resulting from aconst_cast that casts away constness may produce undefined behavior (7.1.5.1). O

ox 28 E
rhis will need to be reworked once the memory model and object model are ironéd out.

A null pointer value (4.10) is converted to the null pointer value of the destination type. The null member
pointer value (4.11) is converted to the null member pointer value of the destination type.

5.3 Unary expressions [expr.unary]

Expressions with unary operators group right-to-left.

unary-expression:
postfix-expression
++ unary-expression
-~ unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-id)
new-expression
delete-expression

unary-operator: one of
* & o+ - | ~

5.3.1 Unary operators [expr.unary.op]

The unary* operator meanmdirectiont the expression shall be a pointer, and the result is an Ivalue réfer-
ring to the object to which the expression points. If the type of the expressmmiriter toT,” the type of
the result iST.”

The result of the unar& operator is a pointer to its operand. The operand shall be an Ivalgpialifeed- O
id. In the first case, if the type of the expressiofili$ the type of the result Ipointer toT.” In particular, O
the address of an object of typev T” is “pointer tocv T,” with the same cv-qualifiers. For example, the
address of an object of typeonst int " has typ€‘pointer toconst int .” For aqualified-id if the O
member is a nonstatic member of cl@ssf typeT, the type of the result igpointer to member oflass
Cof typeT.” For example:

struct A {inti; };
structB: A{};
... &B::i ... Il has type "int A::*"

OooOo o

For a static member of tygd™, the type is plairfpointer toT.” Note that a pointer to member is only

formed when an explici& is used and its operand igjaalified-id not enclosed in parentheses. For exam-
ple, the expressio&(qualified-id) , Where thegualified-idis enclosed in parentheses, does not form
an expression of typépointer to membet. Neither doesqualified-id , and there is no implicit O

5.3.1 Unary operators DRAFT: 1 February 1995 Expressions-8.3

conversion from the typnonstatic member functiério the typée' pointer to member functidnas there is
from an Ivalue of function type to the typeointer to functioh (4.3). Nor is&unqualified-id a
pointer to member, even within the scopenofualified-ids class.

HBOX 29

O
[Orhis section probably needs to take into accoonst _and its relationship tmutable. [J

The address of an object of incomplete type can be taken, but only if the complete type of that objeldt does
not have the address-of operatmmpdrator&()) overloaded; no diagnostic is required.

The address of an overloaded function (13) can be taken only in a context that uniquely determines which
version of the overloaded function is referred to (see 13.3). Note that since the context might detérmine
whether the operand is a static or nonstatic member function, the context can also affect whether thedexpres-
sion has typé&pointer to functio or “pointer to member functioh.

The operand of the unatyoperator shal have arithmetic, enumeration, or pointer type and the result is the
value of the argument. Integral promotion is performed on integral or enumeration operands. The type of
the result is the type of the promoted operand.

The operand of the unaryoperator shall have arithmetic or enumeration type and the result is the negation
of its operand. Integral promotion is performed on integral or enumeration operands. The negative of an
unsigned quantity is computed by subtracting its value frbnwBeren is the number of bits in the pro-
moted operand. The type of the result is the type of the promoted operand.

The operand of the logical negation operatois converted tdool (4.13); its value igrue if the con-
verted operand ifalse andfalse otherwise. The type of the resultisol .

The operand of shall have integral or enumeration type; the result is the one’s complement of its opé&rand.
Integral promotions are performed. The type of the result is the type of the promoted operand.

5.3.2 Increment and decrement [expr.pre.incr]

The operand of prefix+ is modified by addindl, or set totrue if it is bool (this use is deprecated).

The operand shall be a modifiable Ivalue. The type of the operand shall be an arithmetic type or a pointer
to a completely-defined object type. The value is the new value of the operand; it is an Ivalienot

of typebool , the expressiom+x is equivalent toc+=1. See the discussions of addition (5.7) and assign-
ment operators (5.17) for information on conversions.

The operand of prefix- is decremented analogously to the prefix operator, except that the operand
shall not be of typbool .

5.3.3 Sizeof [expr.sizeof]

Thesizeof operator yields the size, in bytes, of its operand. The operand is either an expression, which
is not evaluated, or a parenthesizgge-id Thesizeof operator shall not be applied to an expressiah

that has function or incomplete type, or to the parenthesized name of such a type, or to an Ivalue that desig-
nates a bit-field. Abyte is unspecified by the language except in terms of the valusizebf ;
sizeof(char) is 1, butsizeof(bool) andsizeof(wchar_t) are implementation-define(f’.3)

When applied to a reference, the result is the size of the referenced object. When applied to a class, the
result is the number of bytes in an object of that class including any padding required for placing such
objects in an array. The size of any class or class object is greater than zero. When applied to an array, the
result is the total number of bytes in the array. This implies that the size of an aregmknts i: times

the size of an element.

33) sizeof(bool) is not required to bg.

5-14 Expressions DRAFT: 1 February 1995 5.3.3 Sizeof

Thesizeof operator can be applied to a pointer to a function, but shall not be applied directly to affunc-
tion.

The Ivalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are
suppressed on the operandsiziof

Types shall not be defined irsezeof expression. O
The result is a constant of tygeze t , an implementation-dependent unsigned integral type defined in
the standard headecstddef> (18.1). g
5.3.4 New [expr.new]

The new-expressioattempts to create an object of tigpe-id(8.1) to which it is applied. This type shall
be a complete object or array type (1.5, 3.8).

new-expression:
T opt NEW new-placemepy new-typ_e-id new-?n_it?alﬁzg;;t
T opt NEW new-placemegy, (type-id) new-initializeg,

new-placement:
(expression-list)

new-type-id:
type-specifier-seq new-declaraigr

new-declarator:
* cv-qualifier-segy, new-dgglaratogpt 3
Ioopt nested-name-specifiet cv-qualifier-seg, new-declaratog,
direct-new-declarator

direct-new-declarator:
[expression]
direct-new-declarator[constant-expression

new-initializer:
(expression-ligf,)

Entities created by mew-expressiohave dynamic storage duration (3.7.3). That is, the lifetime of such an
entity is not restricted to the scope in which it is created. If the entity is an objeagwhexpression
returns a pointer to the object created. If it is an arraynéeexpressioneturns a pointer to the initial
element of the array.

Thenew-typdn anew-expressiois the longest possible sequencaeiv-declaratos. This prevents ambi-
guities between declarator operat&r$, [] , and their expression counterparts. For example,

new int*i; /I syntax error: parsed as ‘(new int*) i’
i not as ‘(new int)*’

The* is the pointer declarator and not the multiplication operator.

Parentheses shall not appear mew-type-idused as the operand foew. For example, O

new int(*[10])(); Il error

is ill-formed because the binding is
(new int) (*[10])(); Il error

The explicitly parenthesized version of thew operator can be used to create objects of compound types
(3.8.2). For example,

new (int (*[10])0);

allocates an array df0 pointers to functions (taking no argument and returimng).

10

11

12

13

14

15

5.3.4 New DRAFT: 1 February 1995 Expressions-85

Thetype-specifier-seghall not contain class declarations, or enumeration declarations. O

When the allocated object is an array (that isdilect-new-declaratosyntax is used or theew-type-idor
type-id denotes an array type), timew-expressiolyields a pointer to the initial element (if any) of the
array. Thus, botimew int andnew int[10] return anint* and the type ohew int[i][10] is

int (*)[10]

Every constant-expressioin adirect-new-declaratoshall be an integral constant expression (5.19) with a
strictly positive value. Thexpressionin a direct-new-declaratoshall be of integral type (3.8.1) with a

non-negative value. For examplenifs a variable of typet , thennew float[n][5] is well-formed
(becausen is theexpressiorof a direct-new-declaratd; but new float[5][n] is ill-formed (because
n is not aconstant-expression If n is negative, the effect ofew float[n][5] is undefined.

When the value of thexpressionn adirect-new-declarators zero, an array with no elements is allocated.
The pointer returned by theew-expressiomwill be non-null and distinct from the pointer to any other
object.

Storage for the object created bynew-expressiois obtained from the appropriagdlocation function
(3.7.3.1). When the allocation function is called, the first argument will be amount of space requested
(which might be larger than the size of the object being created only if that object is an array).

An implementation provides default definitions of the global allocation functipesator new() for O
non-arrays (18.4.1.1) araperator new[]() for arrays (18.4.1.2). A+« program can provide alter-[]
native definitions of these functions (17.3.3.4), and/or class-specific versions (12.5).

Thenew-placemerdgyntax can be used to supply additional arguments to an allocation function. Overload-
ing resolution is done by assembling an argument list from the amount of space requested (the first argu-
ment) and the expressions in thew-placemenpart of thenew-expressignf used (the second and suc-
ceeding arguments).

For example:

— new T results in a call obperator new(sizeof(T)) ,

— new(2,f) T results in a call obperator new(sizeof(T),2,f) ,

— new T[5] results in a call obperator new[](sizeof(T)*5+x) , and O

— new(2,f) T[5] results in a call obperator new[](sizeof(T)*5+y,2,f) . Herex andy 0O
are non-negative, implementation-defined values representing array allocation overhead. Theymight
vary from one use afew to another.

The return value from the allocation function, if non-null, will be assumed to point to a block of appropri-
ately aligned available storage of the requested size, and the object will be created in that block (but not
necessarily at the beginning of the block, if the object is an array).

A new-expressiofor a class calls one of the class constructors (12.1) to initialize i the object. An objédt of
a class can be created bgw only if suitable arguments are provided for the class’ constructors bylthe
new-initializer, or if the class has a default construé®rif no user-declared constructor is used anda
new-initializeris provided, the new-initializer shall be of the fo(expression)pr (); if the expression is [
present, it shall be of class type and is used to initialize the object.

No initializers can be specified for arrays. Arrays of objects of a class can be createevipe)gression
only if the class has a default constructonn that case, the default constructor will be called for each ele-
ment of the array, in order of increasing address.

3%) This means thattruct s{}; s* ps=news; is allowed on the grounds thaass s has an implicitly-declared default O
constructor.
PODS structs have an implicitly-declared default constructor.

16
17

18

19

20

5-16 Expressions DRAFT: 1 February 1995 5.3.4 New

Access and ambiguity control are done for both the allocation function and the constructor (12.1, 12.5).

The allocation function can indicate failure by throwingaa_alloc exception (15, 18.4.2.1). In thisd
case no initialization is done.

If the constructor throws an exception and rlegv-expressiodoes not contain aew-placementthen the
deallocation function (3.7.3.2, 12.5) is used to free the memory in which the object was being constructed,
after which the exception continues to propagate in the context néthexpressian

The way the object was allocated determines how it is freed: if it is allocatenkhy , then it is freed by
:delete , andifitis an array, itis freed lolelete[] or::delete]] as appropriate.

BBox 30 O

O
BThis is a correction to San Diego resolution 3.5, which on its face seems to require that whether to use
delete or delete[] must be decided purely on syntactic grounds. | believe the intent of the committee
Ovas to make the form afelete correspond to the form of the correspondiegy. g

Whether the allocation function is called before evaluating the constructor arguments, after evaluating the
constructor arguments but before entering the constructor, or by the constructor itself is unspecified. It is
also unspecified whether the arguments to a constructor are evaluated if the allocation function returns the
null pointer or throws an exception.

5.3.5 Delete [expr.delete]

Thedelete-expressiooperator destroys a complete object (1.5) or array createddwy-axpressian

delete-expression:
i1 opt delete cast-expression
i op delete [1] cast-expression

The first alternative is for non-array objects, and the second is for arrays. The result kagitype

In either alternative, if the value of the operandielete is the null pointer the operation has no effect.
Otherwise, in the first alternative€lete objedt the value of the operand délete shall be a pointer to a
non-array object created bynaw-expressiowithout anew-placemenspecification, or a pointer to a sub-
object (1.5) representing a base class of such an object (10).

BBox 31 g
Ossue: ... or a class with an unambiguous conversion to such a pointer type ...

In the second alternativel€lete array, the value of the operand délete shall be a pointer to an array
created by aew-expressiowithout anew-placemergpecification.

In the first alternativedelete objedt if the static type of the operand is different from its dynamic type, the
static type shall have a virtual destructor or the result is undefined. In the second altettnlatecatray

if the dynamic type of the object to be deleted is a class that has a destructor and its static type is different
from its dynamic type, the result is undefined.

BBox 32 E
Orhis should probably be tightened to require that the static and dynamic types match,[period.

The deletion of an object might change its value. If the expression denoting the objedeletea O
expressions a modifiable Ivalue, any attempt to access its value after the deletion is undefined (3.7.3.2).

If the class of the object being deleted is incomplete at the point of deletion and the class has a destflictor or
an allocation function or a deallocation function, the result is undefined.

5.3.5 Delete DRAFT: 1 February 1995 Expressions-37

The delete-expressiowill invoke the destructor (if any) for the object or the elements of the array being
deleted. In the case of an array, the elements will be destroyed in order of decreasing address (that is, in
reverse order of construction).

To free the storage pointed to, thedete-expressiowill call a deallocation functiorf3.7.3.2).

An implementation provides default definitions of the global deallocation functions
operator delete() for non-arrays (18.4.1.1) armperator delete[]() for arrays (18.4.1.2). 0

A G+ program can provide alternative definitions of these functions (17.3.3.4), and/or class-specific ver-
sions (12.5).

Access and ambiguity control are done for both the deallocation function and the destructor (12.4, 12.5).

5.4 Explicit type conversion (cast notation) [expr.cast]

The result of the expressiofl) cast-expressions of type T. An explicit type conversion can be
expressed using functional notation (5.2.3), a type conversion operdigran{ic_cast,
static_cast, reinterpret_cast, const_cast), or thecastnotation.

cast-expression:
unary-expression
(type-id) cast-expression

Types shall not be defined in casts. O
Any type conversion not mentioned below and not explicitly defined by the user (12.3) is ill-formed.

The conversions performed Istatic_cast (5.2.8), reinterpret_cast (5.2.9), const_cast

(5.2.10), or any sequence thereof, can be performed using the cast notation of explicit type conversigh. The
same semantic restrictions and behaviors apply. If a given conversion can be performed usind]either
static_cast or reinterpret_cast , thestatic_cast interpretation is used.

In addition to those conversions, a pointer to an object of a derived class (10) can be explicitly convéited to
a pointer to any of its base classes regardless of accessibility restrictions (11.2), provided the conversion is
unambiguous (10.2). The resulting pointer will refer to the contained object of the base class.

5.5 Pointer-to-member operators [expr.mptr.oper]

The pointer-to-member operaters and.* group left-to-right.

pm-expression:
cast-expression
pm-expression* cast-expression
pm-expression->* cast-expression

The binary operator* binds its second operand, which shall be of typeinter to member of” to its O
first operand, which shall be of cla$sor of a class of whiciH is an unambiguous and accessible base
class. The result is an object or a function of the type specified by the second operand.

The binary operator>* binds its second operand, which shall be of typa@nter to member of” to its O
first operand, which shall be of typpointer toT” or “pointer to a class of whichis an unambiguous and
accessible base clds3he result is an object or a function of the type specified by the second operand.

If the result of.* or->* is a function, then that result can be used only as the operand for the function
call operatof) . For example,

(ptr_to_obj->*ptr_to_mfct)(10);

calls the member function denoted jpy_to_mfct for the object pointed to bgtr to obj . The

result of a.* expression is an Ivalue only if its first operand is an Ivalue and its second operand is a
pointer to data member. The result of-ah expression is an Ivalue only if its second operand is a pointer
to data member. If the second operand is the null pointer to member value (4.11), the result is undefined.

5-18 Expressions DRAFT: 1 February 1995 5.6 Multiplicative operators

5.6 Multiplicative operators [expr.mul]

The multiplicative operators, / , and%group left-to-right.

multiplicative-expression:
pm-expression
multiplicative-expressiort pm-expression
multiplicative-expression’ pm-expression
multiplicative-expressiorfo pm-expression

The operands of and/ shall have arithmetic type; the operand®4sfhall have integral type. The usudl
arithmetic conversions are performed on the operands and determine the type of the result.

The binary* operator indicates multiplication.

The binary/ operator yields the quotient, and the bin#gperator yields the remainder from the division

of the first expression by the second. If the second operanaid¥is zero the result is undefined; other-
wise (a/b)*b + a%b is equal taa. If both operands are nonnegative then the remainder is nonnegative;
if not, the sign of the remainder is implementation dependent.

5.7 Additive operators [expr.add]

The additive operators and- group left-to-right. The usual arithmetic conversions are performed for
operands of arithmetic type.

additive-expression:
multiplicative-expression
additive-expression+ multiplicative-expression
additive-expression multiplicative-expression

For addition, either both operands shall have arithmetic type, or one operand shall be a pointer to a com-
pletely defined object type and the other shall have integral type.

For subtraction, one of the following shall hold:
— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of the same completely defined object
type; or

— the left operand is a pointer to a completely defined object type and the right operand has integral type.

If both operands have arithmetic type, the usual arithmetic conversions are performed on them. The result
of the binary+ operator is the sum of the operands. The result of the binaperator is the difference
resulting from the subtraction of the second operand from the first.

For the purposes of these operators, a pointer to a nonarray object behaves the same as a pointer to the first
element of an array of length one with the type of the object as its element type.

When an expression that has integral type is added to or subtracted from a pointer, the result has the type of
the pointer operand. If the pointer operand points to an element of an array object, and the array is large
enough, the result points to an element offset from the original element such that the difference of the sub-
scripts of the resulting and original array elements equals the integral expression. In other words, if the
expressiorP points to the-th element of an array object, the expressi®)sN (equivalently,N+(P))

and (P)-N (whereN has the valu@) point to, respectively, thern-th andi—n-th elements of the array

object, provided they exist. Moreover, if the expres$igoints to the last element of an array object, the
expressior(P)+1 points one past the last element of the array object, and if the exprégsiams one

past the last element of an array object, the expref@iph points to the last element of the array object.

If both the pointer operand and the result point to elements of the same array object, or one past the last ele-
ment of the array object, the evaluation shall not produce an overflow; otherwise, the behavior is undefined.
If the result is used as an operand of the uhasperator, the behavior is undefined unless both the pointer
operand and the result point to elements of the same array object, or the pointer operand points one past the
last element of an array object and the result points to an element of the same array object.

5.7 Additive operators DRAFT: 1 February 1995 Expressions 519

When two pointers to elements of the same array object are subtracted, the result is the difference of the
subscripts of the two array elements. The type of the result is an implementation-defined signed integral
type; this type shall be the same type that is defingudrdif_t in the<cstddef> header (18.1). As

with any other arithmetic overflow, if the result does not fit in the space provided, the behavior is unde-
fined. In other words, if the expressioRsand Q point to, respectively, theth andj-th elements of an

array object, the expressidi)-(Q) has the value—j provided the value fits in an object of type
ptrdiff_t . Moreover, if the expressida points either to an element of an array object or one past the
last element of an array object, and the expre<3ipoints to the last element of the same array object, the
expression(Q)+1)-(P) has the same value §€)-(P))+1 and as-((P)-((Q)+1)) , and has

the value zero if the expressiéhpoints one past the last element of the array object, even though the
expressio{Q)+1 does not point to an element of the array object. Unless both pointers point to elements
of the same array object, or one past the last element of the array object, the behavior is l[f)l%lefined.

5.8 Shift operators [expr.shift]
The shift operators< and>> group left-to-right.

shift-expression:
additive-expression
shift-expression<< additive-expression
shift-expression>> additive-expression

The operands shall be of integral type and integral promotions are performed. The type of the resulflis that
of the promoted left operand. The result is undefined if the right operand is negative, or greater than or
equal to the length in bits of the promoted left operand. The valag gk E2 is EL1 (interpreted as a bit
pattern) left-shiftedE?2 bits; vacated bits are zero-filled. The valud&df>> E2 is E1 right-shiftedE2 bit
positions. The right shift is guaranteed to be logical (zero-filllihas an unsigned type or if it has a non-
negative value; otherwise the result is implementation dependent.

5.9 Relational operators [expr.rel]

The relational operators group left-to-right, but this fact is not very usefbkc means(a<b)<c and
not (a<b)&&(b<c)

relational-expression:
shift-expression
relational-expression< shift-expression
relational-expression> shift-expression
relational-expression<=shift-expression
relational-expression>=shift-expression

The operands shall have arithmetic or pointer type. The operaftess than)> (greater than)s<= (less O
than or equal to), and= (greater than or equal to) all yieldise ortrue . The type of the result is
bool .

The usual arithmetic conversions are performed on arithmetic operands. Pointer conversions are pediformed
on pointer operands to bring them to the same type, which shall be a qualified or unqualified versiorilof the
type of one of the operands. This implies that any pointer can be compared to an integral constantléxpres-
sion evaluating to zero and any pointer can be compared to a pointer of qualified or unqualified type
void* (in the latter case the pointer is first converteddm*). Pointers to objects or functions of the

same type (after pointer conversions) can be compared; the result depends on the relative position$ of the
pointed-to objects or functions in the address space.

3%) Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In this scheme the integral
expression added to or subtracted from the converted pointer is first multiplied by the size of the object originally pointed to, and the
resulting pointer is converted back to the original type. For pointer subtraction, the result of the difference between the character point-
ers is similarly divided by the size of the object originally pointed to.

When viewed in this way, an implementation need only provide one extra byte (which might overlap another object in the pfogram)
just after the end of the object in order to satisfy‘tvee past the last elemé&mequirements.

5-20 Expressions DRAFT: 1 February 1995 5.9 Relational operators

If two pointers of the same type point to the same object or function, or both point one past the end of the
same array, or are both null, they compare equal. If two pointers of the same type point to different objects
or functions, or only one of them is null, they compare unequal. If two pointers point to nonstatic data
members of the same object, the pointer to the later declared member compares higher provided the two
members not separated by arcess-specifielabel (11.1) and provided their class is not a union. If two
pointers point to nonstatic members of the same object separatedalogems-specifielabel (11.1) the

result is unspecified. If two pointers point to data members of the same union, they compare equal (after
conversion tovoid* , if necessary). If two pointers point to elements of the same array or one beyond the
end of the array, the pointer to the object with the higher subscript compares higher. Other pointer compar-
isons are implementation-defined.

5.10 Equality operators [expr.eq]

equality-expression:
relational-expression
equality-expression== relational-expression
equality-expression= relational-expression

The== (equal to) and th&= (not equal to) operators have the same semantic restrictions, conversions, and
result type as the relational operators except for their lower precedence and truth-value resuli<i{Thus
==c<d istrue whenevela<b andc<d have the same truth-value.)

In addition, pointers to members of the same type can be compared. Pointer to member conversions (4.11)
are performed. A pointer to member can be compared to an integral constant expression that evallates to
zero. If one operand is a pointer to a virtual member function and the other is not the null pointer to mem-
ber value, the result is unspecified.

5.11 BitwiseAND operator [expr.bit.and]

and-expression:
equality-expression
and-expression& equality-expression

The usual arithmetic conversions are performed; the result is the bitwaseinction of the operands. The
operator applies only to integral operands.

5.12 Bitwise exclusive®R operator [expr.xor]

exclusive-or-expression:
and-expression
exclusive-or-expressiot and-expression

The usual arithmetic conversions are performed; the result is the bitwise exadasfuaction of the
operands. The operator applies only to integral operands.

5.13 Bitwise inclusiveOR operator [expr.or]

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expressior] exclusive-or-expression

The usual arithmetic conversions are performed; the result is the bitwise inchrsifemction of its
operands. The operator applies only to integral operands.

5.14 LogicalAND operator DRAFT: 1 February 1995 Expressions 521

5.14 LogicalAND operator [expr.log.and]

logical-and-expression:
inclusive-or-expression
logical-and-expression&& inclusive-or-expression

The && operator groups left-to-right. The operands are both converted tddgbe (4.13). The result is
true if both operands argue andfalse otherwise. Unlike&, && guarantees left-to-right evaluation:
the second operand is not evaluated if the first operdatsés .

The result is ool . All side effects of the first expression except for destruction of temporaries (12.2)
happen before the second expression is evaluated.

5.15 LogicalOR operator [expr.log.or]

logical-or-expression:
logical-and-expression
logical-or-expression|| logical-and-expression

The|| operator groups left-to-right. The operands are both convertaeabto (4.13). It returndrue if
either of its operands iBue , andfalse otherwise. Unlikgl , || guarantees left-to-right evaluation;
moreover, the second operand is not evaluated if the first operand evaltiates to

The result is @ool . All side effects of the first expression except for destruction of temporaries (12.2)
happen before the second expression is evaluated.

5.16 Conditional operator [expr.cond]

conditional-expression:
logical-or-expression
logical-or-expression? expression: assignment-expression

Conditional expressions group right-to-left. The first expression is convertmabto (4.13). It is evalu-

ated and if it igrue , the result of the conditional expression is the value of the second expression, other-
wise that of the third expression. All side effects of the first expression except for destruction of tempo-
raries (12.2) happen before the second or third expression is evaluated.

If either the second or third expression thrw-expressioif15.1), the result is of the type of the other.

If both the second and the third expressions are of arithmetic type, then if they are of the same type the
result is of that type; otherwise the usual arithmetic conversions are performed to bring them to a common
type. Otherwise, if both the second and the third expressions are either a pointer or an integral constant
expression that evaluates to zero, pointer conversions (4.10) are performed to bring them to a comnidn type,
which shall be a qualified or unqualified version of the type of either the second or the third expression.
Otherwise, if both the second and the third expressions are either a pointer to member or an integral con-
stant expression that evaluates to zero, pointer to member conversions (4.11) are performed to bring them to
a common typ@ which shall be a qualified or unqualified version of the type of either the second ollthe
third expression. Otherwise, if both the second and the third expressions are Ivalues of related class types,
they are converted to a common type as if by a cast to a reference to the common type (5.2.8). Otherwise,
if both the second and the third expressions are of the samel cililesscommon type i$. Otherwise, if

both the second and the third expressions have‘typeoid ", the common type v void .” Otherwise

the expression is ill formed. The result has the common type; only one of the second and third expressions
is evaluated. The result is an Ivalue if the second and the third operands are of the same type and both are
Ivalues.

3)This is one instance in which theomposite typg as described in the C Standard, is still employed-n C

5-22 Expressions DRAFT: 1 February 1995 5.17 Assignment operators

5.17 Assignment operators [expr.ass]

There are several assignment operators, all of which group right-to-left. All require a modifiable Ivalue as
their left operand, and the type of an assignment expression is that of its left operand. The result of the
assignment operation is the value stored in the left operand after the assignment has taken place; the result
is an Ivalue.

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression
throw-expression

assignment-operatorone of
= *= [= Op= += -= >>= <<= &= "= |:

In simple assignment], the value of the expression replaces that of the object referred to by the left
operand.

If the left operand is not of class type, the expression is converted to the unqualified type of the left operand
using standard conversions (4) and/or user-defined conversions (12.3), as necessary.

Assignment to objects of a class ¥0)s defined by the functioX::operator=() (13.4.3). Unless the
user defines aK::operator=() , the default version is used for assignment (12.8). This implies that an
object of a class derived froik (directly or indirectly) by unambiguous public derivation (10) can be
assigned to aK.

For class objects, assignment is not in general the same as initialization (8.5, 12.1, 12.6, 12.8).

When the left operand of an assignment operator denotes a referehcthéooperation assigns to the
object of typerl denoted by the reference.

The behavior of an expression of the foril op= E2 is equivalent toE1=E1 op E2 except thaEl is
evaluated only onceEl shall not havebool type. In+= and-=, E1 can be a pointer to a possibly-
qualified completely defined object type, in which c&shall have integral type and is converted as
explained in 5.7; In all other casé&dl, andE2 shall have arithmetic type.

See 15.1 for throw expressions.

5.18 Comma operator [expr.comma]

The comma operator groups left-to-right.

expression:
assignment-expression
expression, assignment-expression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left expression is
discarded. All side effects of the left expression are performed before the evaluation of the right expres-
sion. The type and value of the result are the type and value of the right operand; the result is an lvalue if
its right operand is.

In contexts where comma is given a special meaning, for example, in lists of arguments to functions (5.2.2)
and lists of initializers (8.5), the comma operator as described in this clause can appear only in parentheses;
for example,

f(a, (t=3, t+2), c);

has three arguments, the second of which has the ¥alue

5.19 Constant expressions DRAFT: 1 February 1995 Expressions-Z3

5.19 Constant expressions [expr.const]

In several places,+€ requires expressions that evaluate to an integral constant: as array bounds (8.3.4), as
case expressions (6.4.2), as bit-field lengths (9.7), and as enumerator initializers (7.2).

constant-expression:
conditional-expression

An integral constant-expressiotan involve only literals (2.9), enumeratocanst values of integral

types initialized with constant expressions (8.5), simdof expressions. Floating constants (2.9.3) cah
appear only if they are cast to integral types. Only type conversions to integral types can be used. In par-
ticular, except irsizeof expressions, functions, class objects, pointers, or references shall not bellised,
and assignment, increment, decrement, function-call, or comma operators shall not be used. O

Other expressions are consideramhstant-expressi@nonly for the purpose of non-local static object
initialization (3.6.2). Such constant expressions shall evaluate to one of the following: O

— a null pointer constant (4.10),
— a null member pointer value (4.11),
— an arithmetic constant expression,

— an address constant,

o 0o o o O

— an address constant for an object type plus or minus an integral constant expression, or
— a pointer to member constant expression.

An arithmetic constant expressi@hall have arithmetic type and shall only have operands that are integer
constants (2.9.1), floating constants (2.9.3), enumerators, character constants (2. 82ofndexpres-

sions (5.3.3). Casts operators in an arithmetic constant expression shall only convert arithmetic types to
arithmetic types, except as part of an operand teite®f operator.

An address constans a pointer to an Ivalue designating an object of static storage duration or a function.

The pointer shall be created explicitly, using the uapperator, or implicitly using an expression of array

(4.2) or function (4.3) type. The subscripting operdforand the class member accessand-> opera-

tors, the& and* unary operators, and pointer casts (exahmiamic_cast s, 5.2.6) can be used in thél
creation of an address constant, but the value of an object shall not be accessed by the use of these opera-
tors. An expression that designates the address of a member or base class of a non-POD class objéct (9) is
never an address constant expression (12.7). Function calls shall not be used in an address constaht expres-
sion, even if the function isline and has a reference return type.

A pointer to member constant expressitiall be created using the un&rpperator applied to qualified-
id operand (5.3.1).

6 Statements [stmt.stmt]

Except as indicated, statements are executed in sequence.

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block

6.1 Labeled statement [stmt.label]

A statement can be labeled.

labeled-statement:
identifier : statement
case constant-expression statement
default : statement

An identifier label declares the identifier. The only use of an identifier label is as the targetof.aThe

scope of a label is the function in which it appears. Labels cannot be redeclared within a function. A label
can be used ingoto statement before its definition. Labels have their own name space and do not inter-
fere with other identifiers.

Case labels and default labels can occur only in switch statements.

6.2 Expression statement [stmt.expr]

Most statements are expression statements, which have the form

expression-statement:
expressiog}Jt ;

Usually expression statements are assignments or function calls. All side effects from an expression state-
ment are completed before the next statement is executed. An expression statement with the expression
missing is called a null statement; it is useful to carry a label just befoyeafh@ compound statement and

to supply a null body to an iteration statement suchiale (6.5.1).

6.3 Compound statement or block [stmt.block]

So that several statements can be used where one is expected, the compound statement (also, and equiva-
lently, called“block’) is provided.

compound-statement:
{ statement-sgg }

6-2 Statements DRAFT: 1 February 1995 6.3 Compound statement or block

statement-seq:
statement
statement-seq statement

A compound statement defines a local scope (3.3).
Note that a declaration isstatement6.7).

6.4 Selection statements [stmt.select]

Selection statements choose one of several flows of control.

selection-statement:
if (condition) statement
if (condition) statementelse statement
switch (condition) statement

condition:
expression
type-specifier-seq declarator assignment-expression

The statementn a selection-statemeriboth statements, in trelse form of theif statement) implicitly
defines a local scope (3.3). That is, if the statement in a selection-statement is a single statement and not a
compound-statemerit,is as if it was rewritten to be a compound-statement containing the original state-
ment. For example,
if (x)
inti;
can be equivalently rewritten as O

if (x) {
inti;
}

Thus after théf statement, is no longer in scope.

The rules forconditiors apply both tselection-statemesitand to thdor andwhile statements (6.5).
The declaratorshall not specify a function or an array. Tkpe-specifieshall not contaitlypedef and O
shall not declare a new class or enumeration.

A name introduced by a declaration ic@nditionis in scope from its point of declaration until the end of
the statements controlled by the condition. The valueaoiditionthat is an initialized declaration is the
value of the initialized variable; the value of@nditionthat is an expression is the value of the expression.
The value of the condition will be referred to as sinfphe conditiofi where the usage is unambiguous.

A variable, constant, etc. in the outermost block of a statement controlled by a condition shall not have the
same name as a variable, constant, etc. declared in the condition.

If a conditioncan be syntactically resolved as either an expression or the declaration of a local name, it is
interpreted as a declaration.

6.4.1 Theif statement [stmt.if]

The condition is converted to tygmol ; if that is not possible, the program is ill-formed. If it yields
true the first substatement is executedelfe is used and the condition yieltidse |, the second sub-
statement is executed. Thise ambiguity is resolved by connecting alse with the last encountered
else -lessif .

6.4.2 Theswitch statement DRAFT: 1 February 1995 Statements -63

6.4.2 Theswitch statement [stmt.switch]

Theswitch statement causes control to be transferred to one of several statements depending on the value
of a condition.

The condition shall be of integral type or of a class type for which an unambiguous conversion to iftegral
type exists (12.3). Integral promotion is performed. Any statement within the statement can be labeled
with one or more case labels as follows:

case constant-expression

where theconstant-expressiofs.19) is converted to the promoted type of the switch condition. No two of

the case constants in the same switch shall have the same value. a
There shall be at most one label of the form a
default :

within aswitch statement.

Switch statements can be nestedase or default label is associated with the smallest switch enclds-

ing it.

When theswitch statement is executed, its condition is evaluated and compared with each case constant.
If one of the case constants is equal to the value of the condition, control is passed to the statement follow-
ing the matched case label. If no case constant matches the condition, and if thdeéaidta label,

control passes to the statement labeled by the default label. If no case matches and if thuerfaist no
then none of the statements in the switch is executed.

case anddefault labels in themselves do not alter the flow of control, which continues unimpeded
across such labels. To exit from a switch, ls®ak , 6.6.1.

Usually, the statement that is the subject of a switch is compound. Declarations can appetatentieat [
of a switch-statement.

6.5 Iteration statements [stmt.iter]

Iteration statements specify looping.

iteration-statement:
while (condition) statement
do statement while (expression) ;
for (for-init-statement conditiq, ; expressiog,) statement

for-init-statement:
expression-statement
declaration-statement

Note that dor-init-statemenends with a semicolon.

The statemenin aniteration-statemenimplicitly defines a local scope (3.3) which is entered and exited
each time through the loop. That is, if the statement in an iteration-statement is a single statement and not a
compound-statemerit,is as if it was rewritten to be a compound-statement containing the original state-
ment. For example,

while (--x >= 0)
int i
can be equivalently rewritten as O
while (--x >=0) {
inti;
}

Thus after thevhile statementi is no longer in scope.

6-4 Statements DRAFT: 1 February 1995 6.5 Iteration statements

See 6.4 for the rules @onditiors.

6.5.1 Thewhile statement [stmt.while]

In thewhile statement the substatement is executed repeatedly until the value of the condition becomes
false . The test takes place before each execution of the statement.

The condition is converted twol (4.13).

6.5.2 Thedo statement [stmt.do]

In the do statement the substatement is executed repeatedly until the value of the condition becomes
false . The test takes place after each execution of the statement.

The condition is converted twol (4.13).

6.5.3 Thefor statement [stmt.for]

Thefor statement

for (for-init-statement conditiqf, ; expressiog,) statement

is equivalent to

for-init-statement

while (condition) {
statement
expression;

}

except that @ontinue in statemen{not enclosed in another iteration statement) will exeexpeession

before re-evaluatingondition Thus the first statement specifies initialization for the loop; the condition
specifies a test, made before each iteration, such that the loop is exited when the condition becomes
false ; the expression often specifies incrementing that is done after each iteration. The condition is con-
verted tobool (4.13).

Either or both of the condition and the expression can be dropped. A missidijonmakes the implied O
while clause equivalent tohile(true)

If the for-init-statements a declaration, the scope of the name(s) declared extends to the endoof the
statement For example:

inti=42;
int a[10];
for (inti=0;i<10; i++)
afi] = i;
intj=1i Ilj=42
6.6 Jump statements [stmt.jump]

Jump statements unconditionally transfer control.

jump-statement:
break ;
continue ;
return expressiog), ;
goto identifier ;

On exit from a scope (however accomplished), destructors (12.4) are called for all constructed objects with
automatic storage duration (3.7.2) (named objects or temporaries) that are declared in that scope, in the
reverse order of their declaration. Transfer out of a loop, out of a block, or back past an initialized variable

6.6 Jump statements DRAFT: 1 February 1995 Statements-6

with automatic storage duration involves the destruction of variables with automatic storage duration that
are in scope at the point transferred from but not at the point transferred to. (See 6.7 for transfers into
blocks). However, the program can be terminated (by cadliif) or abort() (18.3), for example) O
without destroying class objects with automatic storage duration.

6.6.1 Thebreak statement [stmt.break]

Thebreak statement shall occur only in @&eration-statementr aswitch statement and causes termi
nation of the smallest enclosiitgration-statemenor switch statement; control passes to the statement
following the terminated statement, if any.

6.6.2 Thecontinue statement [stmt.cont]

Thecontinue statement shall occur only in &aration-statemenand causes control to pass to the loop-
continuation portion of the smallest enclositggation-statementthat is, to the end of the loop. More pre-
cisely, in each of the statements

while (foo) { do { for (;;) {

...
contin: ; contin: ; contin: ;
} } while (foo); }

acontinue not contained in an enclosed iteration statement is equivalgatdo contin

6.6.3 Thereturn statement [stmt.return]
A function returns to its caller by timeturn statement.

A return statement without an expression can be used only in functions that do not return a value, that is, a
function with the return value typeoid , a constructor (12.1), or a destructor (12.4). A return statement
with an expression can be used only in functions returning a value; the value of the expression is returned to
the caller of the function. If required, the expression is converted, as in an initialization (8.5), to the return
type of the function in which it appears. A return statement can involve the construction and copy of(@ tem-
porary object (12.2). Flowing off the end of a function is equivalent tetan with no value; this

results in undefined behavior in a value-returning function.

6.6.4 Thegoto statement [stmt.goto]

Thegoto statement unconditionally transfers control to the statement labeled by the identifier. The identi-
fier shall be a label (6.1) located in the current function.

6.7 Declaration statement [stmt.dcl]
A declaration statement introduces one or more new identifiers into a block; it has the form

declaration-statement:
declaration

If an identifier introduced by a declaration was previously declared in an outer block, the outer declaration
is hidden for the remainder of the block, after which it resumes its force.

Variables with automatic storage duration (3.7.2) are initialized each timeddéw®aration-statemernis
executed. Variables with automatic storage duration declared in the block are destroyed on exit from the
block (6.6).

It is possible to transfer into a block, but not in a way that bypasses declarations with initialization. A pro-
gram that jumps from a point where a local variable with automatic storage duration is not in scope to a
point where it is in scope is ill-formed unless the variable has pointer or arithmetic type or is an aggregate
(8.5.1), and is declared without iuitializer (8.5). For example,

6-6 Statements DRAFT: 1 February 1995 6.7 Declaration statement

void f()
{
...
goto Ix; /I ill-formed: jump into scope of ‘a’
...
ly:
Xa=1;
...
Ix:
goto ly; /I ok, jump implies destructor
/I call for ‘a’ followed by construction
/I again immediately following label ly
}

The default initialization to zero (8.5) of all local objects with static storage duration (3.7.1) is performed
before any other initialization takes place. A local object with static storage duration (3.7.1) initialized with
a constant-expressiois initialized before its block is first entered. A local object with static storage dura-
tion not initialized with econstant-expressiois initialized the first time control passes completely through

its declaration. If the initialization exits by throwing an exception, the initialization is not complete, so it
will be tried again the next time the function is called.

The destructor for a local object with static storage duration will be executed if and only if the variable was
constructed. The destructor is called either immediately before or as part of the callsteiitfe a
functions (18.3). Exactly when is unspecified.

6.8 Ambiguity resolution [stmt.ambig]

There is an ambiguity in the grammar involviegpression-statementinddeclaratiors: An expression-
statementvith a function-style explicit type conversion (5.2.3) as its leftmost subexpression can be indis-
tinguishable from aleclarationwhere the firstleclaratorstarts with & . In those cases ttstatements a
declaration

To disambiguate, the wholkgtatementmight have to be examined to determine if it isexpression- O
statemenbr adeclaration This disambiguates many examples. For example, assumisig simple-
type-specifie(7.1.5),

T(@)->m=7; /I expression-statement
T(@)++; /I expression-statement
T(a,5)<<c; /I expression-statement
T(*d)(int); /I declaration

T(©)[I; // declaration

TMH={1,2}; /I declaration
T(*g)(double(3)); // declaration

In the last example abovg, which is a pointer td, is initialized todouble(3) . This is of course ill-
formed for semantic reasons, but that does not affect the syntactic analysis.

The remaining cases adeclaratiors. For example,

T(a); // declaration
T(*b)0); /I declaration
T(c)=7, /I declaration

T(d),e,f=3; /I declaration
T(g)(h,2); /I declaration

The disambiguation is purely syntactic; that is, the meaning of the names, beyond whethert}ipeyidre
or not, is not used in the disambiguation.

6.8 Ambiguity resolution DRAFT: 1 February 1995 Statements 67

A slightly different ambiguity betweeexpression-statementainddeclaratiors is resolved by requiring a
type-idfor function declarations within a block (6.3). For example,

void g()
{
intf(); // declaration
int a; /I declaration
fQ); /I expression-statement
a; /I expression-statement

7 Declarations [dcl.dcl]

A declaration introduces one or more names into a program and specifies how those names are to be inter-
preted. Declarations have the form

declaration:
decl-specifier-seg; init-declarator-list,,; ;
function-definition
template-declaration
asm-definition
linkage-specification
namespace-definition
namespace-alias-definition
using-declaration
using-directive

asm-definitios are described in 7.4, atidkage-specificatios are described in 7.3-unction-definitiors
are described in 8.4 andmplate-declaration are described intemp.dcls. Namespace-definitignare
described in 7.3.1ysing-declaratios are described in 7.3.3 anding-directive are described in 7.3.4.
The description of the general form of declaration

decl-specifier-seg; init-declarator-list,; ;

is divided into two partsdecl-specifies, the components of gecl-specifier-segare described in 7.1 and
declaratoss, the components of amit-declarator-list are described in 8.

A declaration occurs in a scope (3.3); the scope rules are summarized in 3.4. A declaration that declares a
function or defines a class, namespace, template, or function also has one or more scopes nested within it.
These nested scopes, in turn, can have declarations nested within them. Unless otherwise stated, ufterances
in this chapter about components in, of, or contained by a declaration or subcomponent thereof refer only to
those components of the declaration thainataested within scopes nested within the declaration.

In the general form of declaration, the optiomal-declarator-list can be omitted only when declaring
class (9), enumeration (7.2) or namespace (7.3.1), that is, whatedhsepecifier-segontains either a
class-specifier an elaborated-type-specifiawith a class-key(9.1), anenum-specifieror a namespace-
definition In these cases and wheneverass-specifierenum-specifieror namespace-definitiois pre-

sent in thadecl-specifier-secgthe identifiers in these specifiers are among the names being declared by the
declaration (aslass-namesnum-namenumeratorsor namespace-namdepending on the syntax).

Each init-declarator in the init-declarator-list contains exactly on&eclarator-id which is the name
declared by thanit-declaratorand hence one of the names declared by the declarationtypEhgpecifiers
(7.1.5) in thedecl-specifier-seand the recursivdeclaratorstructure of thenit-declarator describe a type
(8.3), which is then associated with the name being declared byttdeclarator.

If the decl-specifier-seqontains theypedef specifier, the declaration is calledypedef declaratioand
the name of eachit-declarator is declared to be gpedef-namesynonymous with its associated type
(7.1.3). If thedecl-specifier-seqcontains notypedef specifier, the declaration is calledfanction
declarationif the type associated with the name is a function type (8.3.5) aabjert declaratiorother-
wise.

7-2 Declarations DRAFT: 1 February 1995 7 Declarations

Syntactic components beyond those found in the general form of declaration are added to a function decla-
ration to make dunction-definition An object declaration, however, is also a definition unless it contains
theextern specifier and has no initializer (3.1). A definition causes the appropriate amount of storage to
be reserved and any appropriate initialization (8.5) to be done.

Only in function-definitiong8.4) and in function declarations for constructors, destructors, and type [don-
versions can thdecl-specifier-sebe omitted.

Generally speaking, the names declared by a declaration are introduced into the scope in which the declara-
tion occurs. The presence ofreend specifier, certain uses of tledaborated-type-specifiemd using-
directives alter this general behavior, however (see 11.4, 9.1 and 7.3.4)

7.1 Specifiers [dcl.spec]

The specifiers that can be used in a declaration are

decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend
typedef

decl-specifier-seq:
decl-specifier-segj; decl-specifier

The longest sequence aécl-specifies that could possibly be a type name is taken addblespecifier-seq
of adeclaration The sequence shall be self-consistent as described below. For example, O

typedef char* Pc;
static Pc; [/l error: name missing

Here, the declaratiostaticPc is ill-formed because no name was specified for the static variable of
type Pc. To get a variable of typiat calledPc, thetype-specifieint shall be present to indicate thafl
the typedef-naméc is the name being (re)declared, rather than being part afettiespecifiersequence.

For example,

void f(const Pc); I/ void f(char* const) (not const char*)
void g(const int Pc); // void g(const int)

Note that sincesigned , unsigned , long , andshort by default implyint , atype-nameappearing
after one of those specifiers is treated as the name being (re)declared. For example,

void h(unsigned Pc); // void h(unsigned int)
void k(unsigned int Pc); // void k(unsigned int)

7.1.1 Storage class specifiers [dcl.stc]

The storage class specifiers are

storage-class-specifier:
auto
register
static
extern
mutable

At most onestorage-class-specifieshall appear in a givetiecl-specifier-seqIf a storage-class-specifier
appears in @ecl-specifier-segthere can be ntypedef specifier in the saméecl-specifier-seand the
init-declarator-list of the declaration shall not be empty. Tdierage-class-specifieapplies to the namel
declared by eacinit-declaratorin the list and not to any names declared by other specifiers.

7.1.1 Storage class specifiers DRAFT: 1 February 1995 Declarations-¥

Theauto orregister specifiers can be applied only to names of objects declared in a block (6.3) or to
function parameters (8.4). They specify that the hamed object has automatic storage duration (3.7.2). An
object declared without storage-class-specifiest block scope or declared as a function parameter has
automatic storage duration by default. Henceatlte specifier is almost always redundant and not often
used; one use @uto is to distinguish aeclaration-statemerftom anexpression-stateme(#.2) explic-

itly.

A register specifier has the same semantics aawn specifier together with a hint to the compiler
that the object so declared will be heavily used. The hint can be ignored and in most implementafions it
will be ignored if the address of the object is taken.

The static ~ specifier can be applied only to names of objects and functions and to anonymous unions
(9.6). There can be retatic function declarations within a block, nor astatic ~ function parame-

ters. Astatic specifier used in the declaration of an object declares the object to have static storage
duration (3.7.1). Astatic specifier can be used in the declaration of class members and its effétt is
described in 9.5. A name declared wittatic ~ specifier in a scope other than class scope (3.3.5) has
internal linkage. For a nonmember function,idime specifier is equivalent to static specifier for

linkage purposes (3.5) unless the inline declaration matches a previous declaration of the function, in which
case the function name retains the linkage of the previous declaration.

Theextern specifier can be applied only to the names of objects and functionsexiéra specifier

cannot be used in the declaration of class members or function parameters. A name declared in namespace
scope with theextern specifier has external linkage unless the declaration matches a previous declara-
tion, in which case the name retains the linkage of the previous declaration. An object or function declared
at block scope with thextern specifier has external linkage unless the declaration matches a visible dec-
laration of namespace scope that has internal linkage, in which case the object or function has internal link-
age and refers to the same object or function denoted by the declaration of namespé%gé scope.

A name declared in a namespace scope withstrage-class-specifidras external linkage unless it has
internal linkage because of a previous declaration and provided it is not dedastd. Objects declared
const and not explicitly declareeixtern have internal linkage.

The linkages implied by successive declarations for a given entity shall agree. That is, within algiven
scope, each declaration declaring the same object nhame or the same overloading of a function name shall
imply the same linkage. Each function in a given set of overloaded functions can have a different linkage,
however. For example,

static char* f(); // f() has internal linkage

char* f() I () still has internal linkage
{rF..*}

char* g(); /I g() has external linkage

static char* g() // error: inconsistent linkage
{rF..*}%

void h();

inline void h(); // external linkage

inline void 1();

void 1(); /l internal linkage

inline void m();
extern void m(); // internal linkage

39) Here, “previously” includes enclosing scopes. This implies that a name spesifitd and then specifieéxtern in an
inner scope still has internal linkage.

7—-4 Declarations DRAFT: 1 February 1995 7.1.1 Storage class specifiers

static void n();
inline void n(); // internal linkage

static int a; /l ‘a’ has internal linkage

int a; /] error: two definitions

static int b; //'b’ has internal linkage

extern int b; I/ ‘b’ still has internal linkage

intc; /I ‘¢’ has external linkage

static int c; /I error: inconsistent linkage

extern int d; /1 'd" has external linkage O
static int d; /I error: inconsistent linkage

The name of a declared but undefined class can be usedektean declaration. Such a declaration,
however, cannot be used before the class has been defined. For example,

struct S;

extern S a;
extern S f();
extern void g(S);

void h()
g(a); Il error: S undefined
f0; [l error: S undefined
}

Themutable specifier can be applied only to names of class data members (9.2) and can not be applied to
names declarecbnst orstatic . For example

class X {
mutable const int* p; // ok
mutable int* const q; // ill-formed

h

Themutable specifier on a class data member nullifieast specifier applied to the containing class
object and permits modification of the mutable class member even though the rest of the cbjesit is
(7.1.5.1).

7.1.2 Function specifiers [dcl.fct.spec]

Function-specifiergan be used only in function declarations.

function-specifier:
inline
virtual
explicit O

Theinline specifier is a hint to the compiler that inline substitution of the function body is to be pre-
ferred to the usual function call implementation. The hint can be ignoredinliffee specifier shall not O
appear on a block scope function declaration. For the linkage of inline functions, see 3.5 and 7.1.1. A
function (8.3.5, 9.4, 11.4) defined within the class definition is inline by default.

An inline function shall be defined in every translation unit in which it is used (3.2), and shall have ekactly
the same definition in every case (see one definition rule, 3.2). If a function with external linkage is
declared inline in one translation unit, it shall be declared inline in all translation units in which it appears.
A call to an inline function shall not precede its definition. For example:

7.1.2 Function specifiers DRAFT: 1 February 1995 Declarations-5

class X {
public:
int f();
inline int g();

b
void k(X* p)
{

inti = p->f();

intj =p->g(); // A call appears before X::g is defined
Il'ill-formed

...

}

inline int X::f() /I Declares X::f as an inline function
/I A call appears before X::f is defined
Ilill-formed

{
}

...

inline int X::g()

...
}

The virtual specifier shall be used only in declarations of nonstatic class member functions within a
class declaration; see 10.3. O

The explicit specifier shall be used only in declarations of constructors within a class declaration} see
12.3.1.

7.1.3 Thetypedef specifier [dcl.typedef]

Declarations containing thdecl-specifietypedef declare identifiers that can be used later for naming
fundamental (3.8.1) or compound (3.8.2) types. fiipedef specifier shall not be used infaenction- O
definition (8.4), and it shall not be combined imecl-specifier-seavith any other kind of specifier except]
atype-specifier

typedef-name:

identifier

A name declared with thgpedef specifier becomestgpedef-nameWithin the scope of its declaration,
atypedef-namés syntactically equivalent to a keyword and names the type associated with the identifier in
the way described in 8. If, indecl-specifier-segontaining thedecl-specifietypedef , there is ndype-
specifier or the onlytype-specifies arecv-qualifiers, thetypedef declaration is ill-formed. Aypedef- O
nameis thus a synonym for another type. typoedef-nameloes not introduce a new type the way a class
declaration (9.1) or enum declaration does. For example, after

typedef int MILES, *KLICKSP;
the constructions

MILES distance;
extern KLICKSP metricp;

are all correct declarations; the typadiftance isint ; that ofmetricp is “pointer toint .

In a given scope, typedef specifier can be used to redefine the name of any type declared in that &cope
to refer to the type to which it already refers. For example,

7-6 Declarations DRAFT: 1 February 1995 7.1.3 Theypedef specifier

typedef structs { /* ... */ } s;
typedefint [;

typedef int [;

typedef I [;

In a given scope, typedef specifier shall not be used to redefine the name of any type declared irndthat
scope to refer to a different type. For example,

class complex { /* ... */ };
typedef int complex; /I error: redefinition

Similarly, in a given scope, a class shall not be declared with the same nangadef-namehat is [
declared in that scope and refers to a type other than the class itself. For example,

typedef int complex;
class complex { /* ... */ }; [/ error: redefinition

A typedef-naméhat names a class iscéass-namg9.1). Thetypedef-nameshall not be used after al
class , struct , orunion prefix and not in the names for constructors and destructors within the class
declaration itself. For example,

struct S {
S();
~S0;
I3

typedef struct S T;

Sa=T(); /I ok
struct T *p; [/l error

An unnamed class defined in a declaration witlypedef specifier gets a dummy name. For linkagé
purposes only (3.5), the firsgpedef-namaleclared by the declaration is used to denote the class type in
place of the dummy name. For example, a

typedef struct { } S, R; // 'S’ is the class name for linkage purposes a

The typedef-namés still only a synonym for the dummy name and shall not be used where a trueltlass
name is required. Such a class cannot have explicit constructors or destructors because they cannot be
named by the user. For example,

typedef struct {
S(); /I error: requires a return type since S is
/I an ordinary member function, not a constructor
1S
If an unnamed class is defined inypedef declaration but the declaration does not declare a class type,
the name of the class for linkage purposes is a dummy name. For example, O
typedef struct { }* ps; // 'ps’ is not the linkage name of the class a

A typedef-namé¢hat names an enumeration is emum-namg7.2). Thetypedef-namehall not be used
after anenum prefix.

7.1.4 Thefriend specifier [dcl.friend]

Thefriend specifier is used to specify access to class members; see 11.4.

7.1.5 Type specifiers DRAFT: 1 February 1995 Declarations—7

7.1.5 Type specifiers [dcl.type]

The type-specifiers are
type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
cv-qualifier

As a general rule, at most otype-specifieiis allowed in the completdecl-specifier-segf a declaration
The only exceptions to this rule are the following:

— const or volatile can be combined with any othéype-specifier However, redundant cv-0
qualifiers are prohibited except when introduced through the use of typedefs (7.1.3) or templafé type
arguments (14.7), in which case the redundant cv-qualifiers are ignored.

— signed orunsigned can be combined witbhar , long , short , orint .
— short orlong can be combined witimt .
— long can be combined wittiouble .

At least onaype-specifieiis required in a typedef declaration. At least type-specifieiis required in a
function declaration unless it declares a constructor, destructor or type conversion operator. If there is no
type-specifieror if the onlytype-specifies present in aecl-specifier-se@re cv-qualifiers, then thent O
specifier is assumed as default. Regarding the prohibition of the defaultpecifier intypedef decla-

rations, see 7.1.3; in all other instances, the usdeof-specifier-sex) which contain nasimple-type-
specifies (and thus default to plaint) is deprecated.

class-specifies andenum-specifiexr are discussed in 9 and 7.2, respectively. The remdiypegspecifies
are discussed in the rest of this section.

7.1.5.1 Thecv-qualifiers [dcl.type.cv]

There are twav-qualifiers const andvolatile . 3.8.3 describes how cv-qualifiers affect object afd
function types.

Unless explicitly declaredxtern , aconst object does not have external linkage and shall be initializéd
(8.5; 12.1). Anintegratonst obiject initialized by an integral constant expression can be used in intégral
constant expressions (5.19). O

CV-qualifiers are supported by the type system so that they cannot be subverted without casting (5.2]110). A
pointer or reference to a cv-qualified type need not actually point or refer to a cv-qualified object, bt it is
treated as if it does; a const-qualified access path cannot be used to modify an object even if the oliject ref-
erenced is a non-const object and can be modified through some other access path. O

Except that any class member declangtable (7.1.1) can be modified, any attempt to modifgcaast [0
object during its lifetime (3.7) results in undefined behavior.

Example O
constintci =3; // cv-qualified (initialized as required) a
ci=4; /I ill-formed: attempt to modify const a
inti=2; /I not cv-qualified O
const int* cip; Il pointer to const int a
cip = &i; Il okay: cv-qualified access path to unqualified a
*Cip = 4; /1 ill-formed: attempt to modify through ptr to const a

7-8 Declarations DRAFT: 1 February 1995 7.1.5.1 Thev-qualifiers

int* ip; O

ip = const_cast<int*> cip; // cast needed to convert const int* to int* a

*ip = 4; /I defined: *ip points to i, a non-const object a

const int* ciq = new const int (3); // initialized as required a

int* ig = const_cast<int*> ciq; /Il cast required a

iq=4; // undefined: modifies a const object a

Example ad
class X { O

public: a

mutable int i; O

int j; a

I3 0

class Y { public: X x; } a

const Y'y; O

Y. X0+t /I well-formed: mutable member can be modified a

VX j++ Il ill-formed: const-qualified member modified O

Y* p = const_cast<Y*>(&y); /I cast away const-ness of y a

p->x.i = 99; /I well-formed: mutable member can be modified O

p->x.j = 99; /I undefined: modifies a const member a

There are no implementation-independent semanticgdiatile objects;volatile is a hint to the O

compiler to avoid aggressive optimization involving the object because the value of the object might be
changed by means undetectable by a compiler.

BBox 33 0

O
ﬁ\lotwithstanding the description above, the semantic®latile are intended to be the same i+ @s
rthey are in C. However, it's not possible simply to copy the wording from the C standard until we [Under-
[stand the ramifications of sequence points, etc. g

7.1.5.2 Simple type specifiers [dcl.type.simple]

The simple type specifiers are

simple-type-specifier:
I opt Nested-name-specifigrtype-name
char
wchar_t
bool
short
int
long
signed
unsigned
float
double
void

type-name:
class-name
enum-name
typedef-name

The simple-type-specifisrspecify either a previously-declared user-defined type or one of the fundamental
types (3.8.1). Table 7 summarizes the valid combinatiossndle-type-specifierand the types they spec-
ify.

7.1.5.2 Simple type specifiers

Table 7—simple-type-specifier and the types they specify

DRAFT: 1 February 1995

[Specifier(s) U Type
ype-name othe type named
rchar 0“char ”
Cunsigned char O"“unsigned char
Lsigned char U“signed char
ool “bool ”
cunsigned " unsigned int
runsigned int []“unsigned int
Ckigned O%int "
Lsigned int U“int »
nt “int "

Declarations-9

B“unsigned short int
[1“unsigned short int
0"“unsigned long int
U“unsigned long int

cunsigned short int
runsigned short
Cunsigned long int
Lunsigned long

OOooOoOoOooooooooooooooooooooooood

igned long int D“Iong int "
Csigned long O‘longint "
rlong int O“longint ”
(ong O“longint ”
Lsigned short int U“shortint ”

igned short “short int "
cshortint “short int ”
short “short int "
Owvchar_t O“wchar_t "
Hloat U«float ”

ouble O double

ong double ‘long double "
[void 0“void ”

When multiplesimple-type-specifierare allowed, they can be freely intermixed with otthecl-specifiers [
in any order. It is implementation-defined whether bit-fields and objeathaf type are represented as
signed or unsigned quantities. Téigned specifier forcexhar objects and bit-fields to be signed; it is
redundant with other integral types.

7.1.5.3 Elaborated type specifiers [dcl.type.elab]

Generally speaking, thelaborated-type-specifiés used to refer to a previously decla@dss-nameor
enum-nameven though the name can be hidden by an intervening object, function, or enumerator declara-
tion (3.3), but in some cases it also can be used to dedkrgsaname

elaborated-type-specifier:
class-key:: o, nested-name-specifigridentifier
enum::,, nested-name-specifigyidentifier

class-key:
class
struct
union

If an elaborated-type-specifigs the sole constituent of a declaration, the declaration is ill-formed unleBk it
has one of the following forms:

— class-key identifier; O

7-10 Declarations DRAFT: 1 February 1995 7.1.5.3 Elaborated type specifiers

in which case thelaborated-type-specifieteclares thedentifier to be a class-name in the scope that
contains the declaration (9.1); O

— friend class-key identifier; H

in which case thelaborated-type-specifiaiieclares thedentifier to be a class-name in the smallest
enclosing non-class, non-function prototype scope that contains the declaration;

g
— friend class-key :identifier; H
friend class-key nested-name-specifier identifier O

in which case th&entifier is resolved as when thledaborated-type-specifies not the sole constituent]
of a declaration. 0

If the elaborated-type-specifids not the sole constituent of the declaration, ittetifier following the 0O
class-keyor enum keyword is resolved as described in 3.4 according to its qualifications, if any, but ignor-
ing any objects, functions, or enumerators that have been declaredid#trttier resolves to &lass-name

or enum-namethe elaborated-type-specifiéntroduces it into the declaration the same waynaple-type-
specifierintroduces itgype-name If the identifier resolves to #ypedef-nameheelaborated-type-specifier

is ill-formed. If the resolution is unsuccessful, tlaborated-type-specifigs ill-formed unless it is of the
simple formclass-key identifier In this case, théentifier is declared in the smallest non-class, non-
function prototype scope that contains the declaration.

The class-keyor enum keyword present in thelaborated-type-specifieshall agree in kind with the decla{]
ration to which the name in thelaborated-type-specifierefers. This rule also applies to the form of
elaborated-type-specifighat declares alass-namer friend class since it can be construed as referring
to the definition of the class. Thus, in agkaborated-type-specifiethe enum keyword shall be used toJ
refer to an enumeration (7.2), theion class-keyshall be used to refer to a union (9), and either the
class orstruct class-keyshall be used to refer to a structure (9) or to a class declared usohgsthe [
class-key For example:

7.1.5.3 Elaborated type specifiers DRAFT: 1 February 1995 Declarations-71

struct Node {

struct Node* Next; /I ok: Refers to Node at global scope
struct Data* Data; /I ok: Declares type Data
/I at global scope and member Data
b
struct Data {
struct Node* Node; /I ok: Refers to Node at global scope
friend struct ::Glob; // error: Glob is not declared 0O
/I cannot introduce a qualified type ad
friend struct Glob; Il ok: Declares Glob in global scope ad
[* . ¥
|3
struct Base {
struct Data; /I ok: Declares nested Data
struct ::Data* thatData; /I ok: Refers to ::Data
struct Base::Data* thisData; /I ok: Refers to nested Data
friend class ::Data; I/ ok: global Data is a friend ad
struct Data { /* ... */ }; /I Defines nested Data
struct Data; /I ok: Redeclares nested Data
b
struct Data; /I ok: Redeclares Data at global scope
struct ::Data; / error: cannot introduce a qualified type ad
struct Base::Data; /l error: cannot introduce a qualified type ad
struct Base::Datum; /I error: Datum undefined
struct Base::Data* pBase; /I ok: refers to nested Data
7.2 Enumeration declarations [dcl.enum]

An enumeration is a distinct type (3.8.1) with named constants. Its name becosnesnanamethat is, a
reserved word within its scope.

enum-name:
identifier

enum-specifier:
enum identifier,,, { enumerator-lisj, }

enumerator-list:
enumerator-definition
enumerator-list, enumerator-definition

enumerator-definition:
enumerator
enumerator= constant-expression

enumerator:
identifier

The identifiers in arenumerator-listare declared as constants, and can appear wherever constanf$s are
required. If noenumerator-definitios with = appear, then the values of the corresponding constants begin
at zero and increase by one ase¢hamerator-lisis read from left to right. Arenumerator-definitiomwvith

= gives the associatezhumeratorthe value indicated by thenstant-expressigrsubsequergnumeratos

without initializers continue the progression from the assigned value cdifstant-expressioshall be of [

7-12 Declarations DRAFT: 1 February 1995 7.2 Enumeration declarations

integral type.

For example,

enum{a, b,c=0};
enum {d, e, f=e+2 };

definesa, ¢, andd to be zerob ande to bel, andf to be3.

The point of declaration for an enumerator is immediately aftenitsnerator-definition For example: O

constintx=12;
{enum {x=x}}

Here, the enumerataris initialized with the value of the constantnamely 12.

Each enumeration defines a type that is different from all other types. The type of an enumerator is its enu-
meration.

Theunderlying typeof an enumeration is an integral type, not gratuitously Iargeriﬂhaﬁgg) that can rep-
resent all enumerator values defined in the enumeration. Hrthmerator-listis empty, the underlying
type is as if the enumeration had a single enumerator with value 0. The valzeod() applied to an
enumeration type, an object of enumeration type, or an enumerator, is the vsizenf(j applied to

the underlying type.

For an enumeration wheeg,, is the smallest enumerator a@g,, is the largest, the values of the enumer-
ation are the values of the underlying type in the rdmgeto b,,.x, Whereb,;, andb,,, are, respectively,
the smallest and largest values of the smallest bit-field that can etgreand e, On a two’s-
complement machind,,,, is the smallest value greater than or equal to @ é,i,) ;abemnax)) of the
form 2Y = 1; by iS zero ifeq, is non-negative and (by.y+1) otherwise. It is possible to define an enu-
meration that has values not defined by any of its enumerators.

Two enumeration types are layout-compatible if they have the same sets of enumerator values. O
ox 34 B O
[Bhouldn’t this be the sammderlying typ@ O M

The value of an enumerator or an object of an enumeration type is converted to an integer by intedral pro-
motion (4.5). For example,

enum color { red, yellow, green=20, blue };
color col = red;

color* cp = &col;

if (*cp == blue) // ...

makescolor a type describing various colors, and then declzmksas an object of that type, aod as a
pointer to an object of that type. The possible values of an object octjpe arered , yellow ,
green , blue ; these values can be converted to the integral values20, and21. Since enumerations
are distinct types, objects of typelor can be assigned only values of tyméor . For example, g

colorc=1; / error: type mismatch,
/I no conversion from int to color

inti = yellow; // ok: yellow converted to integral value 1
I integral promotion

See also C.3.

¥ The type should be larger thamt only if the value of an enumerator won't fit in &mt .

10

7.2 Enumeration declarations DRAFT: 1 February 1995 Declarations 713

An expression of arithmetic type or of typehar_t can be converted to an enumeration type explicitly.
The value is unchanged if it is in the range of enumeration values of the enumeration type; otherwise the
resulting enumeration value is unspecified.

ox 35 g
[0rhis means the program does not crdsh.

The enum-name and each enumerator declared by an enum-specifier is declared in the scope thatlimmedi-

ately contains the enum-specifier. These names obey the scope rules defined for all names in (3.3) and

(3.4). An enumerator declared in class scope can be referred to using the class member access opkerators (
, . (dot) and-> (arrow)), see 5.2.4. For example,

class X {
public:
enum direction { left="I", right="r' };
int f(int i)
{return i==left ? 0 : i==right 71 :2;}
h
void g(X* p)
{
direction d; /I error: ‘direction’ not in scope
int i
i = p->f(left); /I error: ‘left’ not in scope

i = p->f(X::right); // ok
i = p->f(p->left); // ok
...

7.3 Namespaces [basic.namespace]

A namespace is an optionally-named declarative region. The name of a nhamespace can be used to access
entities declared in that namespace; that is, the members of the namespace. Unlike other declarative
regions, the definition of a namespace can be split over several parts of one or more translation unitg.

A name declared outside all named namespaces, blocks (6.3) and classes (9) has global namespace scope
(3.3.4).
7.3.1 Namespace definition [namespace.def]

The grammar for aamespace-definitiois

7-14 Declarations DRAFT: 1 February 1995 7.3.1 Namespace definition

original-namespace-name:
identifier

namespace-definition:

named-namespace-definition ad
unnamed-namespace-definition O
named-namespace-definition: O

original-namespace-definition
extension-namespace-definition

original-namespace-definition: O
namespace identifier{ namespace-body

extension-namespace-definition:
namespace original-namespace-namg namespace-body

unnamed-namespace-definition:
namespace { namespace-body

namespace-body:
declaration-seg,

2 Theidentifierin anoriginal-namespace-definitioghall not have been previously defined in the declarative
region in which theoriginal-namespace-definitiomppears. Theadentifier in an original-namespace-
definition is the name of the namespace. Subsequently in that declarative region, it is treated as an
original-namespace-name

3 The original-namespace-narria anextension-namespace-definitishall have previously been defined in
anoriginal-namespace-definitioim the same declarative region.

4 Everynamespace-definitioghall appear in the global scope or in a namespace scope (3.3.4). O
7.3.1.1 Explict qualification [namespace.qual]
5Box 36 B
CThe information in this section is very similar to the information provided in section 3.3.7. The informgation
[5hould probably be consolidated in one place. O

1 A name in a class or namespace can be accessed using qualification according to the grammar:

id-expression:
unqualified-id
qualified-id

nested-name-specifier:
class-or-namespace-name nested-name-specifigy

class-or-namespace-name:
class-name
namespace-name

namespace-name:
original-namespace-name
namespace-alias

2 The namespace-narsein a nested-name-specifieshall have been previously defined bynamed-
namespace-definitioor anamespace-alias-definition O

7.3.1.1 Explict qualification DRAFT: 1 February 1995 Declarations #15

The search for the initial qualifier preceding any operator locates only the names of types or name-
spaces. The search for a name after docates only names members of a namespace or class. In particu-
lar, using-directive (7.3.4) are ignored, as is any enclosing declarative region.

7.3.1.2 Unnamed namespaces [namespace.unnamed]

An unnamed-namespace-definitibehaves as if it were replaced by

namespace unique { namespace-body
using namespace unique;

where, for each translation unit, all occurrencesrifiue in that translation unit are replaced by an identi-
fier that differs from all other identifiers in the entire progr%%?or example:

namespace {inti; } 1 unique:i
void f() {i++; } 1 unique:i++

namespace A {
namespace {

inti; I Az unique::i
int j; IIA: unique::j
void g() {i++;} /1 A: unique:i++
}
using namespace A,
void h() {
i++; Il error: unique:i or A:: unique:i
A+, I error: Ai undefined
i+ 1A unique:j
}
7.3.1.3 Namespace scope [namespace.scope]

The declarative region ofrmmespace-definitiois itsnamespace-bodyThe potential scope denoted by an
original-namespace-name the concatenation of the declarative regions established by each of the
namespace-definitienin the same declarative region with tbaginal-namespace-nameEntities declared

in anamespace-bodre said to benembes of the namespace, and names introduced by these declarations
into the declarative region of the namespace are saidrteetyder namesf the namespace. For example

namespace N {
inti;
int g(int a) { return a; }
void k();
void q();
}

namespace { int k=1; }

namespace N {
int g(char a) I/l overloads N::g(int)

return k+a; // k is from unnamed namespace

20) Although entities in an unnamed namespace might have external linkage, they are effectively qualified by a name unique to their
translation unit and therefore can never be seen from any other translation unit.

7-16 Declarations DRAFT: 1 February 1995 7.3.1.3 Namespace scope

inti; /I error: duplicate definition

void k(); /I ok: duplicate function declaration
void k() /I ok: definition of N::k()

{ return g(a); // calls N::g(int)

}

int q(); I error: different return type

}

Because aamespace-definitiocontainsdeclaratiors in itsnamespace-bodind anamespace-definitiois
itself adeclaration it follows thatnamespace-definiti@can be nested. For example:

namespace Outer {
inti;
namespace Inner {
void f() { i++; } // Outer::i
int i
void g() {i++; } // Inner::i

}

The use of thetatic keyword is deprecated when declaring objects in a namespace scope (see D); the
unnamed-namespagpeovides a superior alternative.

7.3.1.4 Namespace member definitions [namespace.memdef]

Members of a namespace can be defined within that namespace. For example:

namespace X {
void f() { /* ... */ }
}

Members of a named namespace can also be defined outside that namespace by explicit qualification
(7.3.1.1) of the name being defined, provided that the entity being defined was already declared in the
namespace and the definition appears after the point of declaration in a namespace that encloses the
declaration’s namespace. For example:

namespace Q {
namespace V {
void f();

}

void Vf() { /* ... */'} [/l fine

void V::.g() { /* ... */ } Il error: g() is not yet a member of V
namespace V {

void g();
}
}

namespace R {
void Q::V::g() { /* ... */ } I/ error: R doesn’t enclose Q
}

Every name first declared in a namespace is a member of that namespéendA function first
declared within a class is a member of the innermost enclosing namespace. For example:

7.3.1.4 Namespace member definitions DRAFT: 1 February 1995 Declarations- 177

/l Assume f and g have not yet been defined.
namespace A {

class X {
friend void f(X); // declaration of f
class Y {
friend void g();
2
I3
void f(X) { /* ... *[} /I definition of f declared above
X X;
void g() { f(x); } /Il f and g are members of A
}
using A:X;
void h()
{
A::f(x);
A X:f(X); I error: f is not a member of A::X
A:X:Y:g(); /l error: g is not a member of Az XY
}

The scope of class names first introduceel@borated-type-specifieis described in (7.1.5.3).

When an entity declared with tlextern specifier is not found to refer to some other declaration, then
that entity is a member of the innermost enclosing namespace. However such a declaration does not intro-
duce the member name in its namespace scope. For example:

namespace X {

void p()
q(); I/l error: g not yet declared
extern void q(); // q is a member of namespace X
}
void middle()
{
qQ; I error: g not yet declared
}
void gq() { /* ... */ } /I definition of X::q
}
void q() {/*... */} /I some other, unrelated q
7.3.2 Namespace or class alias [namespace.alias]

A namespace-alias-definitiatieclares an alternate name for a namespace according to the following gram-
mar:
namespace-alias:
identifier

namespace-alias-definition:
namespace identifier = qualified-namespace-specifier ;

qualified-namespace-specifier:
2 opt NESted-name-specifigy class-or-namespace-name

7-18 Declarations DRAFT: 1 February 1995 7.3.2 Namespace or class alias

2 Theidentifierin anamespace-alias-definitias a synonym for the name of the namespace denoted by the
qualified-namespace-specifiand becomes mamespace-alias

3 In a declarative region, mamespace-alias-definitiozan be used to redefinenamespace-aliadeclared in
that declarative region to refer to the namespace to which it already refers. For example, the following dec-
larations are well-formed:

namespace Company_with_very _long_name {/* ... */ }

namespace CWVLN = Company_with_very_long_name;

namespace CWVLN = Company_with_very_long_name; // ok: duplicate
namespace CWVLN = CWVLN;

4 A namespace-nanshall not be declared as the name of any other entity in the same declarative region. A
namespace-nandefined at global scope shall not be declared as the name of any other entity in any global
scope of the program. No diagnostic is required for a violation of this rule by declarations in différent
translation units.

7.3.3 Theusing declaration [namespace.udecl]

1 A using-declaratiorintroduces a name into the declarative region in whichusiieg-declaratiorappears.
That name is a synonym for the name of some entity declared elsewhere.

using-declaration:
using :: o, nested-name-specifier unqualifiedsid
using :: unqualified-id;

BBox 37 E
[rhere is still an open issue regarding the "opt" on the nested-name-spécifier.

2 The member names specified irusing-declarationare declared in the declarative region in which the
using-declaratiorappears.
3 Everyusing-declaratioris adeclarationand amember-declaratioand so can be used in a class definition.
For example:
struct B {

void f(char);
void g(char);

I3
struct D : B {
using B::f;
void f(int) { f('c’); } // calls B::f(char)
void g(int) { g('c’); } // recursively calls D::g(int)
I3
4 A using-declaratiorused as anember-declaratioshall refer to a member of a base class of the class béing
defined. For example:
class C{
int g();
I3

class D2 : public B {
using B::f; // ok: B is a base of D
using C::g; // error: Cisn't a base of D2

7.3.3 Theusing declaration DRAFT: 1 February 1995 Declarations #19

A using-declaratiorfor a member shall beraember-declarationFor example: O
struct X {
inti;
static int s;
b
void f()
{
using X::i; // error: X::iis a class member
/I and this is not a member declaration. 0
using X::s; // error: X::s is a class member
/I and this is not a member declaration. 0

}

Members declared byusing-declaratiorcan be referred to by explicit qualification just like other membér
names (7.3.1.1). Inasing-declarationa prefix:: refers to the global namespace (as ever). For example:

void f();

namespace A {
void g();
}

namespace X {
using ::f; // global f
using A:g; I/ A'sg

}
void h()
{
X::f(); /I calls ::f
X::90; /l calls A::g
}

A using-declaratioris adeclarationand can therefore be used repeatedly where (and only where) multiple
declarations are allowed. For example:

namespace A {

int i
}
void f()
{
using A:i;
using A::i; // ok: double declaration
}
class B {
inti;
5
class X : public B {
using B::i;
using B::i; // error: double member declaration
h

The entity declared by amsing-declaratiorshall be known in the context using it according to its defifi-
tion at the point of theising-declaration Definitions added to the namespace afteruiag-declaration
are not considered when a use of the name is made. For example:

7-20 Declarations DRAFT: 1 February 1995 7.3.3 Thasing declaration

namespace A {
void f(int);
}

using A:f; I fis a synonym for A::f;
/I that is, for A::f(int).
namespace A {
void f(char);

}
void foo()
f(a"); I/ calls f(int),
} /I even though f(char) exists.
void bar()
{
using A:f; Il fis a synonym for A::f;
Il that is, for A::f(int) and A::f(char).
f(a’); /I calls f(char)
9 A name defined by asing-declaratioris an alias for its original declarations so thatukmg-declaration

does not affect the type, linkage or other attributes of the members referred to.

10 If the set of local declarations anding-declaratios for a single nhame are given in a declarative region,
they shall all refer to the same entity, or all refer to functions. For example

namespace B {

inti;
void f(int);
void f(double);
}
void g()
int i
using B::i; [error: i declared twice
void f(char);
using B::f; // fine: each f is a function
}
11 If a local function declaration has the same name and type as a function introduagsifgradeclaration

the program is ill-formed. For example:

namespace C {
void f(int);
void f(double);
void f(char);

}

void h()

{
using B::f; // B::f(int) and B::f(double)
using C::f; [/ C::f(int), C::f(double), and C::f(char)
fCh’); /I calls C::f(char)
f(1); /l error: ambiguous: B::f(int) or C::f(int) ?
void f(int); // error: f(int) conflicts with C::f(int)

7.3.3 Theusing declaration DRAFT: 1 February 1995 Declarations #21

When ausing-declaratiorbrings names from a base class into a derived class scope, member functions in
the derived class override virtual member functions with the same name and argument types in a base class
(rather than conflicting). For example:

struct B {
virtual void f(int);
virtual void f(char);
void g(int);
void h(int);

2

struct D : B {
using B::f;
void f(int); // ok: D::f(int) overrides B::f(int);

using B::g;
void g(char); // ok

using B::h;
void h(int); // error: D::h(int) conflicts with B::h(int)
I3

void k(D* p)
{

p->f(1); /I calls D::f(int)
p->f(’a’); // calls B::f(char)
p->g(1); /I calls B::g(int)
p->g('a’); /I calls D::g(char)

BBox 38 E

O
S:or p->g(1) to be unambiguous, thHe::g(int) synonym forB::g(int) must take part in the over{J
rJoad resolution as if it was a memberfthough its type must be “memberBf’ A proper phrasing for1J
[this is being prepared for a vote.

All instances of the name mentioned inising-declaratiorshall be accessible. In particular, if a derived
class uses asing-declaratiorto access a member of a base class, the member name shall be accesdible. If
the name is that of an overloaded member function, then all functions named shall be accessible. 0O

The alias created by thesing-declaratiorhas the usual accessibility foneember-declaration For exam-
ple:

class A {
private:

void f(char);
public:

void f(int);
protected:

void g();
I3

class B : public A {

using A::f; // error: Az:f(char) is inaccessible
public:

using A::g; // B::g is a public synonym for A::g
I3

15

7-22 Declarations DRAFT: 1 February 1995 7.3.3 Thasing declaration

Use ofaccess-declaratian(11.3) is deprecated; memiosing-declaratios provide a better alternative.
7.3.4 Using directive [namespace.udir]

using-directive:
using namespace :: opt Nested-name-specifigrnamespace-name ;

A using-directivespecifies that the names in the namespace with the gamespace-naméncluding

those specified by anysing-directive in that namespace, can be used in the scope in whialsitige
directiveappears after the using directive, exactly as if the names from the namespace had been declared
outside a namespace at the points where the namespace was defugdg-éirectivedoes not add any
members to the declarative region in which it appears. If a nhamespace is extendeaxXtgnded-
namespace-definitioafter ausing-directiveis given, the additional members of the extended namespace
can be used after tlextended-namespace-definition

The using-directivels transitive: if a namespace containgsing-directivethat nominates a second name-

space that itself containsing-directivs, the effect is as if thesing-directive from the second namespace

also appeared in the first. In particular, a name in a namespace does not hide names in a second hamespace
which is the subject of @sing-directiven the first namespace. For example:

namespace M {
inti;
}

namespace N {
int i
using namespace M;

}

void f()

{
N::i = 7; I/ well-formed: M::i is not a member of N 0
using namespace N; g
i=7; /I error: both M::i and N::i are accessible |

}

During overload resolution, all functions from the transitive search are considered for argument maf¢hing.
An ambiguity exists if the best match finds two functions with the same signature, even if one might seem
to “hide” the other in theusing-directivdattice. For example:

namespace D {

int di;

void f(char); O
}

using namespace D;

int di; /I ok: no conflict with D::d1

namespace E {
inte;
void f(int);
}

namespace D { /l namespace extension
int d2;
using namespace E;
void f(int);

7.3.4 Using directive DRAFT: 1 February 1995 Declarations 23

void f()

{
dl++; [l error: ambiguous ::d1 or D::d1?
ndl++; /I ok
D::d1++; // ok
d2++; /I ok: D::d2
e++] /I ok: E::e
f(1); /I error: ambiguous: D::f(int) or E::f(int)?
f(a’); /I ok: D::f(char)

}

7.4 Theasm declaration [dcl.asm]

An asm declaration has the form

asm-definition:
asm (string-literal) ;

The meaning of aasm declaration is implementation dependent. Typically it is used to pass information
through the compiler to an assembler.

7.5 Linkage specifications [dcl.link]
Linkage (3.5) betweert€ and non-&+ code fragments can be achieved usiligkage-specification

linkage-specification:
extern string-literal { declaration-seg, }
extern string-literal declaration

declaration-seq:
declaration
declaration-seq declaration

The string-literal indicates the required linkage. The meaning of dtreng-literal is implementation
dependent. Every implementation shall provide for linkage to functions written in the C programming lan-
guage,'C" , and linkage to € functions,"C++" . Default linkage isC++" . For example,

complex sqgrt(complex); /I C++ linkage by default
extern "C" {

double sqrt(double); // C linkage
}

[Box 39
O

[This example might need to be revisited depending on what the rules ultimately are concerfimg@ge
[to standard library functions from the C library.

DI%I:H:I

Linkage specifications nest. A linkage specification does not establish a sctipkagk-specificatioman [
occur only in namespace scope (3.3)linkage-specificatiorfor a class applies to nonmember functions
and objects declared within it. lkage-specificatioror a function also applies to functions and objects
declared within it. A linkage declaration with a string that is unknown to the implementation is ill-formed.

If a function has more than otiakage-specificationthey shall agree; that is, they shall specify the sahie
string-literal. Except for functions with & linkage, a function declaration without a linkage specificatiéh
shall not precede the first linkage specification for that function. A function can be declared without &llink-
age specification after an explicit linkage specification has been seen; the linkage explicitly specified in the
earlier declaration is not affected by such a function declaration.

7-24 Declarations DRAFT: 1 February 1995 7.5 Linkage specifications

At most one of a set of overloaded functions (13) with a particular name can have C linkage.
Linkage can be specified for objects. For example,

extern "C" {
...
_iobuf _iob[_NFILE];
...
int _flsbuf(unsigned,_iobuf*);
...
}

Functions and objects can be declastic orinline within the{} of a linkage specification. The[
linkage directive is ignored for a function or object with internal linkage (3.5). A function first declared in
a linkage specification behaves as a function with external linkage. For example,

extern "C" double f();
static double f(); Il error

is ill-formed (7.1.1). An object defined within an
extern "C" {/* ... */ }
construct is still defined (and not just declared).

Linkage from @+ to objects defined in other languages and to objects defined iindth other languages

is implementation and language dependent. Only where the object layout strategies of two language imple-
mentations are similar enough can such linkage be achieved. Taking the address of a function whdse link-
age is other thant€ or C produces undefined behavior.

When the name of a programming language is used to nhame a style of linkagestiinthibiteral in a
linkage-specificationit is recommended that the spelling be taken from the document defining that lan-
guage, for examplédda (not ADA andFORTRANnotFortran).

8 Declarators [dcl.decl]

A declarator declares a single object, function, or type, within a declaration.initfieclarator-list
appearing in a declaration is a comma-separated sequence of declarators, each of which can have an initial-
izer.

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator initializeg,

The two components of declarationare the specifiersdécl-specifier-seq7.1) and the declaratoriif-
declarator-lis). The specifiers indicate the fundamental type, storage class, or other properties of the
objects and functions being declared. The declarators specify the names of these objects and functions and
(optionally) modify the type with operators such*a§ointer to) and) (function returning). Initial val-

ues can also be specified in a declarator; initializers are discussed in 8.5 and 12.6.

Eachinit-declaratorin a declaration is analyzed separately as if it was in a declaration b)‘}Ji}seIf.
Declarators have the syntax

declarator:
direct-declarator
ptr-operator declarator

direct-declarator:
declarator-id
direct-declarator (parameter-declaration-clausg¢ cv-qualifier-seg, exception-specificatiop
direct-declarator [constant-expressigg |
(declarator)

#1) A declaration with several declarators is usually equivalent to the corresponding sequence of declarations each with a single
declarator. That is

T D1,D2,...Dn;

is usually equvalent to

T D1, TD2;..TDn;

whereT is adecl-specifier-segnd eacli is ainit-declarator The exception occurs when one declarator modifies the name environ-
ment used by a following declarator, as in

struct S{... };
S S, T; /ldeclare two instances of struct S

which is not equivalent to

structS{... };
S S;
S T, [lerror

8-2 Declarators DRAFT: 1 February 1995 8 Declarators

ptr-operator:
* cv-qualifier-segy
&
B optnested-name-specifie’r cv-qualifier-segpt

cv-qualifier-seq:
cv-qualifier cv-qualifier-seg

cv-qualifier:
const
volatile

declarator-id:
id-expression
nested-name-specifigftype-name

A class-naméhas special meaning in a declaration of the class of that name and when qualified by that
name using the scope resolution operatof5.1, 12.1, 12.4).

8.1 Type names [dcl.name]

To specify type conversions explicitly, and as an argumesizebf or new, the name of a type shall be]
specified. This can be done withygpe-id which is syntactically a declaration for an object or function of
that type that omits the name of the object or function.

type-id:
type-specifier-seq abstract-declaraggr

type-specifier-seq:
type-specifier type-specifier-sgg

abstract-declarator:
ptr-operator abstract-declaratgy
direct-abstract-declarator

direct-abstract-declarator:
direct-abstract-declaratqy, (parameter-declaration-claus¢ cv-qualifier-seg, exception-specificatiqg
direct-abstract-declaratqg, [constant-expressigp]
(abstract-declarator)

It is possible to identify uniquely the location in thiestract-declaratomwhere the identifier would appear
if the construction were a declarator in a declaration. The named type is then the same as the type of the
hypothetical identifier. For example,

int /linti

int * /lint *pi
int *[3] /l'int *p[3]
int (*)[3] I/l int (*p3i)[3]
int *() I'int *f()

int (*)(double) [l int (*pf)(double)

name respectively the typémteger, “pointer to integet, “array of 3 pointers to integets;pointer to
array of 3 integers,“function having no parameters and returning pointer to integed pointer to func-
tion ofdouble returning an integet.

A type can also be named (often more easily) by ustpgexief(7.1.3).

Note that anexception-specificatiodoes not affect the function type, so its appearance iabatract-
declaratorwill have empty semantics.

5

6

8.2 Ambiguity resolution DRAFT: 1 February 1995 Declarators 83

8.2 Ambiguity resolution [dcl.ambig.res]

The ambiguity arising from the similarity between a function-style cast and a declaration mentioned in 6.8
can also occur in the context of a declaration. In that context, it surfaces as a choice between a function
declaration with a redundant set of parentheses around a parameter name and an object declaration with a
function-style cast as the initializer. Just as for statements, the resolution is to consider any construct that
could possibly be a declaration a declaration. A declaration can be explicitly disambiguated by a
nonfunction-style cast or=ato indicate initialization. For example,

struct S {
S(int);

2

void foo(double a)

{
S x(int(a)); / function declaration
S y((int)a); /I object declaration
Sz =int(a); /Il object declaration

}

The ambiguity arising from the similarity between a function-style cast sypkadcan occur in many dif-

ferent contexts. The ambiguity surfaces as a choice between a function-style cast expression and a declara-
tion of a type. The resolution is that any construct that could possiblyype-adin its syntactic context

shall be consideredtgpe-id

For example,

#include <stddef.h>

char *p;

void *operator new(size_t, int);

void foo(int x) {
new (int(*p)) int; /I new-placement expression
new (int(*[x])); Il new type-id

}

For example,

template <class T>

struct S {

T *p;

I3

S<int()> x; /I type-id

S<int(1)>y; Il expression (ill-formed)

For example,

void foo()

{
sizeof(int(1)); // expression
sizeof(int()); // type-id (ill-formed)

}
For example,
void foo()
{
(int(1)); Il expression
(int0)1; Il type-id (ill-formed)

8-4 Declarators DRAFT: 1 February 1995 8.3 Meaning of declarators

8.3 Meaning of declarators [dcl.meaning]

A list of declarators appears after an optionald@gl-specifier-se7.1). Each declarator contains exactly

one declarator-id it names the identifier that is declared. daclarator-id shall be a simpledentifier,

except for the following cases: the declaration of some special functions (12.3, 12.4, 13.4), the definition of
a member function (9.4), the definition of a static data member (9.5), the declaration of a friend function
that is a member of another class (11.4). afuto , static , extern , register , friend ,inline

virtual , ortypedef specifier applies directly to eadeclarator-idin a init-declarator-list the type
specified for eacldeclarator-iddepends on both thiecl-specifier-se@nd itsdeclarator.

Thus, a declaration of a particular identifier has the form
TD

whereT is adecl-specifier-se@ndD is a declarator. The following subsections give an inductive proce-
dure for determining the type specified for the contadtealarator-idby such a declaration.

First, thedecl-specifier-sedetermines a type. For example, in the declaration
int unsigned i;

the type specifiersit unsigned determine the typtunsigned int ” (7.1.5.2). Or in general, in the
declaration

TD

thedecl-specifier-sed@ determines the typer.”

In a declaratiolm DwhereDis an unadorned identifier the type of this identifiétTis

In a declaratiom DwhereD has the form
(D1)

the type of the containetkclarator-idis the same as that of the contaidedlarator-idin the declaration
TD1

Parentheses do not alter the type of the embedeeldrator-id but they can alter the binding of compleki
declarators.

8.3.1 Pointers [dcl.ptr]
In a declaratiom DwhereD has the form
* cv-qualifier-seg, D1

and the type of the identifier in the declaratioB1 is “type-modifierT,” then the type of the identifier &f
is “type-modifier cv-qualifier-sepointer toT.” The cv-qualifiers apply to the pointer and not to the object
pointed to.

For example, the declarations

const int ci = 10, *pc = &ci, *const cpc = pc, **ppc;

inti, *p, *const cp = &i;
declareci , a constant integepc, a pointer to a constant integepc, a constant pointer to a constant
integer,ppc, a pointer to a pointer to a constant integeran integerp, a pointer to integer; anth, a
constant pointer to integer. The valuecdf cpc , andcp cannot be changed after initialization. The value
of pc can be changed, and so can the object pointed¢p b¥xamples of correct operations are

8.3.1 Pointers DRAFT: 1 February 1995 Declarators -85

i=ci

*Cp = Ci;
pct++;

pc = cpc;
pc = p;
ppc = &pc;

Examples of ill-formed operations are
ci=1, /I error
Ci++; /I error
*pe = 2; /I error
cp = &ci; I error
CpC++; Il error
p = pc; /I error

ppc = &p; /I error

Each is unacceptable because it would either change the value of an object deaktredr allow it to be
changed through an unqualified pointer later, for example:

*ppc = &ci; // okay, but would make p pointtoci ...
Il ... because of previous error
*p =5; /I clobber ci

volatile specifiers are handled similarly.

See also 5.17 and 8.5.

There can be no pointers to references (8.3.2) or pointers to bit-fields (9.7).

8.3.2 References [dcl.ref]

In a declaratiom DwhereD has the form
& D1

and the type of the identifier in the declarafioB1 is “type-modifierT,” then the type of the identifier &f
is “type-modifierreference tal.” At all times during the determination of a type, types of the ftom
qualifiedreference ta@” is adjusted to btreference ta”. For example, in

typedef int& A;
const A aref = 3;

the type ofaref is “reference tdnt ", not“const reference tant
type“reference tavvoid” is ill-formed.

. A declarator that specifies the

For example,

void f(double& a) { a += 3.14; }
...

double d = 0;

f(d);

declares to be a reference parameterf oo the calf(d) will add3.14 tod.

int v[20];

...

int& g(int i) { return v[i]; }
...

93 =7;

declares the functiog() to return a reference to an integergg8)=7 will assign7 to the fourth element
of the array.

8-6 Declarators DRAFT: 1 February 1995 8.3.2 References

struct link {
link* next;

J5

link* first;

void h(link*& p) // ‘p’ is a reference to pointer

p->next = first;

first = p;
p=0;

}

void k()

link* g = new link;
h(a);

declareg to be a reference to a pointedittk soh(g) will leave g with the value zero. See also 8.5.3.
A reference may or may not require storage (3.7). O

There can be no references to references, no references to bit-fields (9.7), no arrays of referenced] and no
pointers to references. The declaration of a reference shall contaiiti@izer (8.5.3) except when thell
declaration contains an explieiktern specifier (7.1.1), is a class member (9.2) declaration within a class
declaration, or is the declaration of an parameter or a return type (8.3.5); see 3.1. A reference shalllbe ini-
tialized to refer to a valid object or function. In particular, null references are prohibited; no diagnostic is
required.

8.3.3 Pointers to members [dcl.mptr]
In a declaratiom DwhereD has the form
iI optNested-name-specifier * cv-qualifier-seg, D1

and thenested-name-specifieames a class, and the type of the identifier in the declarhtixhis “type-
modifier T,” then the type of the identifier @ is “type-modifier cv-qualifier-seqointer to member of
class nested-name-specifier of type

For example,

class X {
public:
void f(int);
int a;
b

class Y;

int X::* pmi = &X::a;

void (X::* pmf)(int) = &X::f;
double X::* pmd;

char Y::* pmc;

declaregpmi, pmf, pmdandpmcto be a pointer to a memberXbf typeint , a pointer to a member &f
of typevoid(int) , & pointer to a member fof typedouble and a pointer to a member 6fof type
char respectively. The declaration @md is well-formed even thougX has no members of type
double . Similarly, the declaration gdmc is well-formed even thougt is an incomplete typepmi and
pmf can be used like this:

8.3.3 Pointers to members DRAFT: 1 February 1995 Declarators—&

X obj;
/...
obj.*pmi =7; /[assign 7 to an integer
/I member of obj
(obj.*pmf)(7); // call a function member of obj
[/l with the argument 7

Note that a pointer to member cannot point to a static member of a class (9.5), a member with reference
type, or‘cvvoid .” There are no references to members. See also 5.5 and 5.3.

8.3.4 Arrays [dcl.array]
In a declaratiod DwhereD has the form
D1 [constant-expressigg]

and the type of the identifier in the declarafioD1 is “type-modifiefT,” then the type of the identifier &f
is an array type.T shall not be a reference type, an incomplete type, or an abstract class type. [f the
constant-expressiof.19) is present, its value shall be greater than zero. The constant expression specifies
theboundof (number of elements in) the array. If the value of the constant expreshkidahésarray habl
elements numberd@ito N-1, and the type of the identifier &fis “type-modifierarray of N T.” If the con-
stant expression is omitted, the type of the identified & “type-modifierarray of unknown bound &f,”
an incomplete object type. The typype-modifierarray of N T” is a different type from the typdype-
modifierarray of unknown bound df,” see 3.8. Any cv-qualifiers that appeatype-modifierare applied
to the typerl and not to the array type, as in this example:

typedef int A[5], AA[2][3];

const A x; I type is “array of 5 const int”

const AAy; I type is “array of 2 array of 3 const int”

An array can be constructed from one of the fundamentald‘@qexceptvoid), from a pointer, from a O
pointer to member, from a class, or from another array.

When several'array of specifications are adjacent, a multidimensional array is created; the constant
expressions that specify the bounds of the arrays can be omitted only for the first member of the seluence.
This elision is useful for function parameters of array types, and when the array is external and the defini-
tion, which allocates storage, is given elsewhere. Thecinsstant-expressiocan also be omitted when]

the declarator is followed by anitializer (8.5). In this case the bound is calculated from the number of
initial elements (say\) supplied (8.5.1), and the type of the identifieDa$ “array ofN T.”

The declaration
float fa[17], *afp[17];

declares an array fibat numbers and an array of pointerdle@t numbers. The declaration
static int x3d[3][5][7];

declares a static three-dimensional array of integers, with re¥73 In complete detaik3d is an array

of three items; each item is an array of five arrays; each of the latter arrays is an array of seven integers.
Any of the expressiong3d, x3d[i] , x3d[i][j] . x3d[i][jI[k] can reasonably appear in afnl
expression.

Conversions affecting Ivalues of array type are described in 4.2. Obijects of array types cannot be modified,
see 3.9.

Except where it has been declared for a class (13.4.5), the subscript dperatmterpreted in such a way
thatE1[E2] is identical to*((E1)+(E2)) . Because of the conversion rules that apphy,tib E1 is an
array ande2 an integer, the&1[E2] refers to thée2-th member oE1l. Therefore, despite its asymmetric

#2)The enumeration types are included in the fundamental types.

8-8 Declarators DRAFT: 1 February 1995 8.3.4 Arrays

appearance, subscripting is a commutative operation.

A consistent rule is followed for multidimensional arrays. Hfis an n-dimensional array of rank
ixjx - -xk, thenE appearing in an expression is converted to a pointer tm ai \-dimensional array
with rankjx - - - xk. If the* operator, either explicitly or implicitly as a result of subscripting, is applied to
this pointer, the result is the pointed-to-1)-dimensional array, which itself is immediately converted
into a pointer.

For example, consider
int x[3][5];

Herex is a X5 array of integers. Whenappears in an expression, it is converted to a pointer to (the first

of three) five-membered arrays of integers. In the expres§ijon, which is equivalent t(x+i) , X is

first converted to a pointer as described; thein is converted to the type &f which involves multiplying

i by the length of the object to which the pointer points, namely five integer objects. The results are added
and indirection applied to yield an array (of five integers), which in turn is converted to a pointer to the first
of the integers. If there is another subscript the same argument applies again; this time the result is an inte-
ger.

It follows from all this that arrays in+€ are stored row-wise (last subscript varies fastest) and that the first
subscript in the declaration helps determine the amount of storage consumed by an array but plays no other
part in subscript calculations.

8.3.5 Functions [dcl.fct]
In a declaratiod DwhereD has the form
D1(parameter-declaration-clausg cv-qualifier-seg,

and the type of the containeéclarator-idin the declaratiom D1 is “type-modifierT1,” the type of the
declarator-id in D is “type-modifier cv-qualifier-seg function with parameters of typparameter-
declaration-clausend returningr'l”; a type of this form is tunction typé3).

parameter-declaration-clause:
parameter-declarat?on-I?g;t o opt
parameter-declaration-list, ...

parameter-declaration-list:
parameter-declaration
parameter-declaration-list, parameter-declaration

parameter-declaration:
decl-specifier-seq declarator
decl-specifier-seq declarator assignment-expression
decl-specifier-seq abstract-declaraggr
decl-specifier-seq abstract-declaratgr = assignment-expression

The parameter-declaration-clausdetermines the arguments that can be specified, and their processing,
when the function is called. If tiarameter-declaration-claugerminates with an ellipsis, the number of
arguments is known only to be equal to or greater than the number of parameters specified; if it is empty,
the function takes no arguments. The parametef{M@t) is equivalent to the empty parameter lisfl
Except for this special caseid shall not be a parameter type (though types derived ¥md , such as [0
void* , can). Where syntactically corre¢t,... " is synonymous withf... ”. The standard headef]
<cstdarg> contains a mechanism for accessing arguments passed using the ellipsis (see 5.2.2 and 18.7).

#3) as indicated by the syntax, cv-qualifiers are a significant component in function return types.

8.3.5 Functions DRAFT: 1 February 1995 Declarators -89

A single name can be used for several different functions in a single scope; this is function overldading
(13). All declarations for a function with a given parameter list shall agree exactly both in the type of the
value returned and in the number and type of parameters; the presence or absence of the ellipsis is consid-
ered part of the function type. The type of each parameter is determined from itledvapecifier-seq
anddeclarator After determining the type of each parameter, any parameter ofayag of T” or “func-

tion returningT” is adjusted to bé&pointer toT” or “pointer to function returnind@,” respectively. After
producing the list of parameter types, several transformations take place upon the types-gialjfier
modifying a parameter type is deleted; e.g., the wgid(constint) becomesoid(int) . Such
cv-qualifiers affect only the definition of the parameter within the body of the function. I$ttrage-
class-specifieregister modifies a parameter type, the specifier is deleted; egisterchar*
becomeghar* . Suchstorage-class-qualifier affect only the definition of the parameter within the body

of the function. The resulting list of transformed parameter types is the fungtaraiseter type list

ox 40 B
Ossue: a definition fotsignaturé will be added as soon as the semantics are made precise.

The return type and the parameter type list, but not the default arguments (8.3.6), are part of the function
type. If the type of a parameter includes a type of the fgrointer to array of unknown bound ©f or
“reference to array of unknown boundTgf the program is ill-formed® A cv-qualifier-seqcan only be

part of a declaration or definition of a nonstatic member function, and of a pointer to a member function;
see 9.4.2. Itis part of the function type.

Functions cannot return arrays or functions, although they can return pointers and references to suchithings.
There are no arrays of functions, although there can be arrays of pointers to functions.

Types shall not be defined in return or parameter types. O

The parameter-declaration-claugs used to check and convert arguments in calls and to check pointer-to-
function and reference-to-function assignments and initializations.

An identifier can optionally be provided as a parameter name; if present in a function declaration, it cannot
be used since it goes out of scope at the end of the function declarator (3.3); if present in a function defini-
tion (8.4), it names a parameter (sometimes céfieanal argumerif). In particular, parameter names are
also optional in function definitions and names used for a parameter in different declarations and the defini-
tion of a function need not be the same.
The declaration
inti,

*pi,

f0,

*fpi(int),

(*pif)(const char*, const char*);

(*fpif(int))(int);

declares an integér, a pointempi to an integer, a functioh taking no arguments and returning an integer,

a functionfpi taking an integer argument and returning a pointer to an integer, a gfintés a function

which takes two pointers to constant characters and returns an integer, a fipiictiotaking an integer
argument and returning a pointer to a function that takes an integer argument and returns an integer. It is
especially useful to compafigi andpif . The binding offpi(int) is *(fpi(int)) , S0 the decla-

ration suggests, and the same construction in an expression requires, the calling of affiinctioe then

using indirection through the (pointer) result to yield an integer. In the decldrptf)(const

char*, const char*) |, the extra parentheses are necessary to indicate that indirection through a pointer
to a function yields a function, which is then called.

%%) This excludes parameters of tyfygr-arr-seq T2” whereT2 is “pointer to array of unknown bound ©f and whereptr-arr-seq
means any sequence“‘@ointer td and“array of modifiers. This exclusion applies to the parameters of the function, and if a parame-
ter is a pointer to function then to its parameters also, etc.

10

8-10 Declarators DRAFT: 1 February 1995 8.3.5 Functions

Typedefs are sometimes convenient when the return type of a function is complex. For example, the func-
tion fpif above could have been declared

typedefint IFUNC(int);
IFUNC* fpif(int);

The declaration
fseek(FILE*, long, int);

declares a function taking three arguments of the specified types. Since no return value type is specified it
is taken to bént (7.1.5). The declaration

printf(const char* ...);
declares a function that can be called with varying numbers and types of arguments. For example,

printf("hello world");
printf("a=%d b=%d", a, b);

It shall always have a value, however, that can be convertezbtesa char* as its first argument. O

8.3.6 Default arguments [dcl.fct.default]

If an expression is specified in a parameter declaration this expression is used as a default argument.
Default arguments will be used in calls where trailing arguments are missing. O

The declaration
point(int = 3, int = 4);

declares a function that can be called with zero, one, or two arguments bittypét can be called in any[
of these ways:

point(1,2); point(1); point();
The last two calls are equivalentgoint(1,4) andpoint(3,4) , respectively.

A default argument expression shall be specified only inpivameter-declaration-clausef a function [
declaration or in demplate-parametefl4.6). If it is specified in @arameter-declaration-clausé shall [

not occur within aleclaratoror abstract-declaratoof aparameter-declaratioﬁa O

EBOX 41 El]
[This restriction, voted in at the Valley Forge meeting, is expected to be reviewed at the Austin mgeting.
[Mike Miller has promised a paper. M

Default arguments can be added in later declarations of a function, but only in the same scope. Déclara-
tions in different scopes have completely distinct sets of default arguments. That is, declarations il inner
scopes do not acquire default arguments from declarations in outer scopes, and vice versa. In a givian func-
tion declaration, all parameters subsequent to a parameter with a default argument shall have defallt argu-
ments supplied in this or previous declarations. A default argument shall not be redefined by a latefdecla-
ration (not even to the same value). For example: O

#9) This means that default arguments cannot appear, for example, in declarations of pointers to functions, references to functions, or
typedef declarations.

8.3.6 Default arguments DRAFT: 1 February 1995 Declarators 811

void f(int, int); O
void f(int, int = 7); a
void h() a
a

(3); /1 ok, calls (3, 7) a

void f(int = 1, int); /I error: does not use default a

I/l from surrounding scope a

a

void m() a
0

void f(int, int); /I has no defaults a

f(4); /I error: wrong number of arguments a

void f(int, int = 5); /I ok O

f(4); I ok, calls f(4, 5); 0

void f(int, int = 5); /I error: cannot redefine, even to a

I/l same value a

} a
void n() a
a

f(6); /1 ok, calls f(6, 7) a

} a

Declarations of a given nonmember function in different translation units need not specify the same default
arguments. Declarations of a given member function in different translation units, however, shall dpecify
the same default arguments (the accumulated sets of default arguments at the end of the translation units

shall be the same). a

EBox 42 ED

[This was decided on the basis of guesses regarding the One Definition Rule and should be reviewied once
[that section is finished. ™

Default argument expressions in non-member functions have their names bound and their types chétked at
the point of declaration, and are evaluated at each point of call. In member functions, names in default
argument expressions are bound at the end of the class declaration, like names in inline member function
bodies (class.inling). In the following exampleg will be called with the valug1) : a

inta=1,

int f(int);

int g(int x = f(a)); // default argument: f(::a)

void h() {
a=2;
{
inta=3;
90; 11'g(f(::a))
}
}
Local variables shall not be used in default argument expressions. For example,
void f()
{ . .
int i

extern void g(int x =i); // error
...

}
this shall not be used in a default argument of a member function. For example, O

10

8-12 Declarators DRAFT: 1 February 1995 8.3.6 Default arguments

class A { a
void f(A* p = this); Il error a
2 0

Note that default arguments are evaluated before entry into a function and that the order of evaluation of

function arguments is implementation dependent. Consequently, parameters of a function shall not be used
in default argument expressions, even if they are not evaluated. Parameters of a function declared before a
default argument expression are in scope and can hide namespace and class member names. For éxample,

int a;
int f(int a, int b = a); /[error: parameter ‘a’
/l used as default argument
typedefint [;
int g(float |, int b = 1(2)); // error: ‘float’ called
int h(int a, int b = sizeof(a)); // error, parameter ‘a’ used ad

/l in default argument ad

Similarly, a nonstatic member shall not be used in a default argument expression, even if it is not evaluated,
unless it appears as the id-expression of a class member access expression (5.2.4). For example, the decla-
ration ofX::mem1() in the following example is ill-formed because no object is supplied for the nonstatic
memberX::a used as an initializer.

int b;
class X {
int a;
meml(inti = a); // error: nonstatic member ‘a’
// used as default argument
mem2(int i = b); // ok; use X::b
static b;
b

The declaration oK::mem2() is meaningful, however, since no object is needed to access the static
memberX::b . Classes, objects, and members are described in 9.

A default argument is not part of the type of a function.

int f(int = 0);
void h()
{
intj = f(1);
int k = (); /I fine, means f(0) O
}
int (*p1)(int) = &f;
int (*p2)() = &f; /I error: type mismatch
When a declaration of a function is introduced by way oéiag declaration (7.3.3), any default arguE!
ment information associated with the declaration is imported as well. O
EBox 43 Hy|

0
Epan additional default arguments be added to the function thereafter by way of redeclarations of thg func-
(fion? Can the function be redeclared in the namespace with added default arguments, and if so, [dfe those
Cadded arguments visible to those who have imported the function via using? &

An overloaded operator (13.4) shall not have default arguments. O

A virtual function call (10.3) uses the default arguments in the declaration of the virtual function déeter-
mined by the static type of the pointer or reference denoting the object. An overriding function in a dérived
class does not acquire default arguments from the function it overrides. For example, O

8.3.6 Default arguments DRAFT: 1 February 1995 Declarators -813

struct A { a
virtual void f(inta = 7); a
2 0
struct B : public A { a
void f(int a); a
; g
void m() a
{ a
B* pb = new B; O
A* pa = pb; a
pa->f(); Il ok, calls pa->A::f(7) O
pb->f(); /[error: wrong number of arguments for B::f() a
} a
8.4 Function definitions [dcl.fct.def]
Function definitions have the form
function-definition:
decl-specifier-segj, declarator ctor-initializegy, function-body
function-body:
compound-statement
Thedeclaratorin afunction-definitionshall have the form
D1 (parameter-declaration-claus¢ cv-qualifier-segy,
as described in 8.3.5. A function can be defined only in namespace or class scope. O

The parameters are in the scope of the outermost block fofrittion-body
A simple example of a complete function definition is

int max(int a, int b, int c)

intm=(a>b)?a:b;
return (m >c) ? m: c;

}

Hereint is thedecl-specifier-segmax(int a, int b, int c¢) is thedeclarator, {/* ... */ } is
thefunction-body

A ctor-initializer is used only in a constructor; see 12.1 and 12.6.

A cv-qualifier-seccan be part of a non-static member function declaration, non-static member function def-
inition, or pointer to member function only; see 9.4.2. It is part of the function type.

Note that unused parameters need not be named. For example,

void print(int a, int)

printf("a = %d\n",a);

8.5 Initializers [dcl.init]

A declarator can specify an initial value for the identifier being declared. The identifier designatés an
object or reference being initialized. The process of initialization described in the remainder of this sub-
clause (8.5) applies also to initializations specified by other syntactic contexts, such as the initialization of
function parameters with argument expressions (5.2.2) or the initialization of return values (6.6.3).

8-14 Declarators DRAFT: 1 February 1995 8.5 Initializers

initializer:
= initializer-clause
(expression-list)

initializer-clause:
assignment-expression
{ initializer-list , o }

{}

initializer-list:
initializer-clause
initializer-list , initializer-clause

Automatic, register, static, and external variables of namespace scope can be initialized by arbitrary [@xpres-
sions involving constants and previously declared variables and functions.

int f(int);

inta=2;

int b = f(a);

int c(b);

Default argument expressions are more restricted; see 8.3.6. O
The order of initialization of static objects is described in 3.6 and 6.7.

Variables with static storage duration (3.7) that are not initialized and do not have a user-declared cahstruc-
tor are guaranteed to start off as zero converted to the appropriate type. If the objekdss aor

struct , its nonstatic data members start off as zero converted to the appropriate type. If the objéctt is a
union , its first nonstatic data member starts off as zero converted to the appropriate type. The initidl val-
ues of automatic and register variables that are not initialized are indeterminate.

An initializer for a static member is in the scope of the member’s class. For example, O

int a;

struct X {
static int a;
static int b;

h

int X:;za=1;
intX:b=a; //X:b=X:a

The form of initialization (using parentheses=9ris generally insignificant, but does matter when thé
entity being initialized has a class type; see below. A parenthesized initializer can be a list of expréssions

only when the entity being initialized has a class type. O
Note that sinc€) is not aninitializer, O
X a(); a
is not the declaration of an object of cla§sbut the declaration of a function taking no argument and
returning anX. O
The initialization that occurs in argument passing and function return is equivalent to the form O
Tx=a; O

The initialization that occurs inew expressions (5.3.4jtatic_cast expressions (5.2.8), functionald
notation type conversions (5.2.3), and base and member initializers (12.6.2) is equivalent to the form(

T x(a); a

10

8.5 Initializers DRAFT: 1 February 1995 Declarators 815

The semantics of initializers are as follows. Testination typés the type of the object or reference beirig
initialized and thesource types the type of the initializer expression. The source type is not defined when
the initializer is brace-enclosed or when it is a parenthesized list of expressions.

— If the destination type is a reference type, see 8.5.3.

— If the destination type is an array of characters or an arnagltdr_t , and the initializer is a string lit- [
eral, see 8.5.2. O

— Otherwise, if the destination type is an array, see 8.5.1. O

— If the destination type is a (possibly cv-qualified) class type that is an aggregate (8.5.1), and the initial-
izer is a brace-enclosed list, see 8.5.1.

— Otherwise, if the destination type is a (possibly cv-qualified) class type and the initializer has the paren-
thesized form, constructors are considered. The applicable constructors are enumerated (13.2.1J4), and
the best one is chosen through overload resolution (13.2). The constructor so selected is calledlto ini-
tialize the object, with the initializer expression(s) as its argument(s). If no constructor applies, @r the
overload resolution is ambiguous, the initialization is ill-formed. O

— Otherwise, if the destination type or the source type is a (possibly cv-qualified) class type, user-defined
conversions are considered. The applicable user-defined conversions are enumerated (13.2.1.3), and the
best one is chosen through overload resolution (13.2). The user-defined conversion so selected is called
to copy or convert the initializer expression into the object being initialized. If the conversion cannot be
done or is ambiguous, the initialization is ill-formed. O

— Otherwise, the initial value of the object being initialized is the (possibly converted) value of the initial-
izer expression. Standard conversions (clause 4) will be used, if necessary, to convert the iniflalizer
expression to the unqualified version of the destination type; no user-defined conversions are consid-
ered. If the conversion cannot be done, the initialization is ill-formed. Note that an expression difltype
“cvl T” can initialize an object of typ&cv2 T” independently of the cv-qualifiersyl andcv2 For [

example, O
int a; O
constintb = a; 0
intc=b; a
8.5.1 Aggregates [dcl.init.aggr]

An aggregates an array or an object of a class (9) with no user-declared constructors (12.1), no private or
protected members (11), no base classes (10), and no virtual functions (10.3). When an aggregate is initial-
ized theinitializer can be annitializer-clauseconsisting of a brace-enclosed, comma-separated list of [ihi-
tializers for the members of the aggregate, written in increasing subscript or member order. If the aggregate
contains subaggregates, this rule applies recursively to the members of the subaggregate. If there are fewer
initializers in the list than there are members of the aggregate, then the aggregate is padded with zeros of
the appropriate typeA!?.)

For example,

struct S {int a; char* b; int c; };
Sss={1, "asdf" };

initializesss.a with 1, ss.b with "asdf* , andss.c with zero.

An aggregate that is a class can also be initialized with a single non-brace-enclosed expression, as described
in 8.5.

“®) The syntax provides for empty initializer clauses, but nonethelesdo€s not have zero length arrays.

8-16 Declarators DRAFT: 1 February 1995 8.5.1 Aggregates

Braces can be elided as follows. If timitializer-clausebegins with a left brace, then the succeeding
comma-separated list of initializers initializes the members of the aggregate; it is erroneous for there to be
more initializers than members. If, however, thializer-clauseor a subaggregate does not begin with a

left brace, then only enough elements from the list are taken to account for the members of the aggregate;
any remaining elements are left to initialize the next member of the aggregate of which the current aggre-
gate is a part.

For example,
intx[]={1,3,5}

declares and initializes as a one-dimensional array that has three members, since no size was specified
and there are three initializers.
float y[4][3] = {
{1,3,5},
{2,4,61},
{3,5,7},
h
is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the &y, namely
y[0][0] ,y[O][1] ,andy[O][2] . Likewise the nexttwo lines initializg1l] andy[2] . The initial-
izer ends early and therefoy§3] is initialized with zeros. Precisely the same effect could have been
achieved by
float y[4][3] = {
1,3,52,46,3,5 7
b
The last (rightmost) index varies fastest (8.3.4).

The initializer fory begins with a left brace, but the one 0] does not, therefore three elements from
the list are used. Likewise the next three are taken successivg|§]forandy[2] . Also,

float y[4][3] = {
\ {1h{2}L{3}L{4}

initializes the first column of (regarded as a two-dimensional array) and leaves the rest zero.
Initialization of arrays of objects of a class with non-trivial constructors (12.1) is described in 12.6.1. O

The initializer for a union with no user-declared constructor is either a single expression of the samig type,
or a brace-enclosed initializer for the first member of the union. For example,

union u { int a; char* b; };

ua={1}

ub=a;

uc=1; /I error
ud={0,"asdf"}; // error
ue={"asdf"}; Il error

There shall not be more initializers than there are members or elements to initialize. For example, 0O
charcv[4]={'a,’'s’,'d,'f,0}; /lerror

is ill-formed. a

8.5.2 Character arrays [dcl.init.string]

A char array (whether plaichar , signed , orunsigned) can be initialized by a string;vachar t [0
array can be initialized by a wide-character string; successive characters of the string initialize the members
of the array. For example,

8.5.2 Character arrays DRAFT: 1 February 1995 Declarators 817

char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string. Note that Betause a single
character and because a traili@j is appendedsizeof(msg) is 25.

There shall not be more initializers than there are array elements. For example, a

char cv[4] = "asdf"; // error

is ill-formed since there is no space for the implied traiNdg .

8.5.3 References [dcl.init.ref]

A variable declared to be B&, that is“reference to typd” (8.3.2), shall be initialized by an object, ofl
function, of typeT or by an object that can be converted info &or example,

int g(int);
void f()
{ . .
inti;
int&r=1i; //‘rrefersto V'
r=1; // the value of ‘i’ becomes 1

int* p = &r; // ‘p’ points to ‘'
int& rr =r; // ‘rr’ refers to what ‘r’ refers to,

Il that is, to i’
int (&rg)(int) = g; // ‘rg’ refers to the function ‘g’
rg(i); /I calls function ‘g’
int a[3];
int (&ra)[3] = a; [/ ‘ra’ refers to the array ‘a’
ra[l] =1i; /I modifies ‘a[1]’

}

A reference cannot be changed to refer to another object after initialization. Note that initialization of a ref-
erence is treated very differently from assignment to it. Argument passing (5.2.2) and function value return
(6.6.3) are initializations.

The initializer can be omitted for a reference only in a parameter declaration (8.3.5), in the declaratidh of a
function return type, in the declaration of a class member within its class declaration (9.2), and where the
extern specifier is explicitly used. For example,

int& ri; I/ error: initializer missing
extern int& r2; // ok

Given types'cvlT1l” and“cv2T2,” “cvlT1” is reference-relatedo “cv2T2” if T1 is the same type as

T2, 0rTlis a base class dR2. “cv1T1” is reference-compatibleith “cv2T2" if T1 is reference-related

to T2 andcvlis the same cv-qualification as, or greater cv-qualification tte, For purposes of over-

load resolution, cases for whiatvl is greater cv-qualification thaov2 are identified aseference-
compatible with added qualificatiofsee 13.2.3.2). In all cases where the reference-related or referénce-
compatible relationship of two types is used to establish the validity of a reference bindifg,iaadase [
class ofT2, a program that necessitates such a binding is ill-formgtl i§ an inaccessible (11) or ambiguE]
ous (10.2) base class©2.

A reference to typecvlT1” is initialized by an expression of typev2T2" as follows:

— If the initializer expression is an Ivalue (but not an Ivalue for a bit-field), and

— “cv1TL1" is reference-compatible witttv2T2,” or

— the initializer expression can be implicitly converted to an Ivalue of‘typ@T1,” wherecv3is the
same cv-qualification as, or lesser cv-qualification tham,47)then

%) This requires a conversion function (12.3.2) returning a reference type, and therefore applies ohB/iwlheriass type.

10

11

8-18 Declarators DRAFT: 1 February 1995 8.5.3 References

the reference is bound directly to the initializer expression Ivalue. Note that the usual Ivalue-to-rvalue
(4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are not needed, and

therefore are suppressed, when such direct bindings to Ivalues are done.

double d = 2.0;
double& rd = d; /I rd refers to ‘d’
const double& rcd = d; // rcd refers to ‘d’
struct A { };
struct B : public A {} b;
A& ra=b; I ra refers to A sub-object in ‘b’
const A& rca = b; / rca refers to A sub-object in ‘b’
— Otherwise, the reference shall be to a non-volatile const typecyileshall beconst).
double& rd2 = 2.0; /I error: not an lvalue and reference
/Il not const
int i=2;
double& rd3 = i; /I error: type mismatch and reference

/I not const

— If the initializer expression is an rvalue, witl2 a class type, anttvlT1” is reference-compatible
with “cv2T2,” the reference is bound in one of the following ways (the choice is implementation-

defined):

— The reference is bound directly to the object represented by the rvalue (see 3.9) or to a sub-object

within that object.

I

— A temporary of typécvlT2" [sic] is created, and a copy constructor is called to copy the entire

rvalue object into the temporary. The reference is bound to the temporary or to a sub-object

within the temporary.4
The appropriate copy constructor must be callable whether or not the copy is actually done.

struct A{};

struct B : public A {} b;

extern B f();

const A& rca = f(); /l Either bound directly or
/I the entire B object is copied and
/I the reference is bound to the
/I A sub-object of the copy

— Otherwise, a temporary of typevlT1” is created and initialized from the initializer expressioDn
using the rules for a non-reference initialization (8.5). The reference is then bound to the temporary.

If T1 is reference-related {62, cvlmust be the same cv-qualification as, or greater cv-qualification

than,cv2, otherwise, the program is ill-formed.

const double& rcd2 = 2; // rcd2 refers to temporary
/I with value 2.0’

const volatile int cvi=1;
const int& r = cvi; /I error: type qualifiers dropped

12.2 describes the lifetime of temporaries bound to references.

) Clearly, if the reference initialization being processed is one for the first argument of a copy constructor call, an implementation

must eventually choose the direct-binding alternative to avoid infinite recursion.

9 Classes [class]

A class is a type. Its name becometaas-nam€9.1) within its scope. a
class-name:
identifier
template-id

Class-specifies andelaborated-type-specifisr(7.1.5.3) are used to matlass-nams. An object of a class
consists of a (possibly empty) sequence of members and base class objects.

class-specifier:
class-head{ member-specificatiqp, }

class-head:
class-key identifigf, base-clausgy,
class-key nested-name-specifier identifier base-clguse

class-key:
class
struct
union

The name of a class can be used alass-nameven within thebase-clausend member-specificatioof

the class specifier itself. Alass-specifieis commonly referred to as a class definition. A class is consid-
ered defined after the closing brace ofdlass-specifiehas been seen even though its member functions
are in general not yet defined.

Objects of an empty class have a nonzero size.

EBox 44 B
[Bill Gibbons suggest that a base class subobject should be allowed to occupy zero bytes of the gomplete
[bbject. This would permit two base class subobjects to have the same address, for example. O

Class objects can be assigned, passed as arguments to functions, and returned by functions (except objects
of classes for which copying has been restricted; see 12.8). Other plausible operators, such as equality
comparison, can be defined by the user; see 13.4.

A structureis a class declared with tletass-keystruct ; its members and base classes (10) are public by
default (11). Aunionis a class declared with tietass-keynion ; its members are public by default and it
holds only one member at a time (9.6). a

Aggregates of class type are described in 8.5.PO-struct? is an aggregate class that has no membérs

of type reference, pointer to member, non-POD-struct or non-POD-union. Simil&®Daunionis an O
aggregate union that has no members of type reference, pointer to member, non-POD-struct or ndi-POD-
union.

) The acronym POD stands ftplain ol’ data

9-2 Classes DRAFT: 1 February 1995 9.1 Class names

9.1 Class names [class.name]
A class definition introduces a new type. For example,

struct X { int a; };
struct Y {inta; };
X al;

Y az;

int a3;

declares three variables of three different types. This implies that

al = az; I error: Y assigned to X
al =a3; [l error: int assigned to X

are type mismatches, and that

int f(X);
int f(Y);

declare an overloaded (13) functiifn and not simply a single functid) twice. For the same reason,

struct S {inta; };
struct S {inta; }; // error, double definition

is ill-formed because it definé&stwice.

A class definition introduces the class name into the scope where it is defined and hides any class, object,
function, or other declaration of that name in an enclosing scope (3.3). If a class name is declared in a
scope where an object, function, or enumerator of the same name is also declared, then when both declara-
tions are in scope, the class can be referred to only usielplaorated-type-specifidir.1.5.3). For exam-
ple,

struct stat {

...
b

stat gstat; /I use plain ‘stat’ to
/I define variable

int stat(struct stat*); // redefine ‘stat’ as function

void f()
{
struct stat* ps; /I *struct’ prefix needed
/l to name struct stat
...
stat(ps); /I call stat()
...
}

A declarationconsisting solely otlass-key identifier is either a redeclaration of the name in the current
scope or a forward declaration of the identifier as a class name. It introduces the class name into the current
scope. For example,

structs{inta; };

void g()
struct s; // hide global struct ‘s’
s* p; /I refer to local struct ‘s’
struct s { char* p; }; // declare local struct ‘s’
struct s; I receclaration, has no effect
}

Such declarations allow definition of classes that refer to each other. For example,

9.1 Class names DRAFT: 1 February 1995 Classes-3

class vector;

class matrix {
...
friend vector operator*(matrix&, vector&);

k

class vector {
...
friend vector operator*(matrix&, vector&);

h
Declaration ofriend s is described in 11.4, operator functions in 13.4.

An elaborated-type-specifi€i7.1.5.3) can also be used in the declarations of objects and functions. It dif-
fers from a class declaration in that if a class of the elaborated name is in scope the elaborated name will
refer to it. For example,

structs{inta; };

void g(int s)
struct s* p = new struct s; /l global ‘s’
p->a=s; /l'local ‘s’
}

A name declaration takes effect immediately afteidkatifieris seen. For example,
class A*A;

first specifiesA to be the name of a class and then redefines it as the name of a pointer to an object of that
class. This means that the elaborated folass A must be used to refer to the class. Such artistry with
names can be confusing and is best avoided.

A typedef-namég7.1.3) that nhames a class islass-namgbut shall not be used in ataborated-type-
specifier see also 7.1.3.

9.2 Class members [class.mem]

member-specification:
member-declaration member-specificatjpn
access-specifier. member-specificatiqp

member-declaration:
decl-specifier-segj, member-declarator-ligf, ;
function-definition ;
qualified-id ;
using-declaration

member-declarator-list:
member-declarator
member-declarator-list, member-declarator

member-declarator:
declarator pure-specifigy,
declarator constant-initializey,
identifier,, : constant-expression

pure-specifier:
=0

10

9-4 Classes DRAFT: 1 February 1995 9.2 Class members

constant-initializer:
= constant-expression

Themember-specificatioim a class definition declares the full set of members of the class; no member can

be added elsewhere. Members of a class are data members, member functions (9.4), nested types, and
member constants. Data members and member functions are static or nonstatic; see 9.5. Nested types are
classes (9.1, 9.8) and enumerations (7.2) defined in the class, and arbitrary types declared as members by
use of a typedef declaration (7.1.3). The enumerators of an enumeration (7.2) defined in the class are mem-
ber constants of the class. Except when used to declare friends (11.4) or to adjust the access to a member of
a base class (11.3nember-declarationdeclare members of the class, and each mgchber-declaration

must declare at least one member name of the class. A member shall not be declared twicenbére [
specification except that a nested class can be declared and then later defined. O

Note that a single name can denote several function members provided their types are sufficiently different
(13).

A member-declaratocan contain @onstant-initializeronly if it declares atatic member (9.5) of inte- O
gral or enumeration type, see 9.5.2.

A member can be initialized using a constructor; see 12.1.
A member shall not bauto , extern , orregister . O

The decl-specifier-segan be omitted in constructor, destructor, and conversion function declarations only.
The member-declarator-listan be omitted only after elass-specifier an enum-specifier or a decl-
specifier-sepf the formfriend elaborated-type-specifierA pure-specifiershall be used only in thed
declaration of a virtual function (10.3).

Non-static (9.5) members that are class objects shall be objects of previously defined classes. In[partic-
ular, a clasgl shall not contain an object of clads, but it can contain a pointer or reference to an objétt
of classcl . When an array is used as the type of a nonstatic member all dimensions shall be specifiéd.

A simple example of a class definition is

struct tnode {
char tword[20];
int count;
tnode *left;
tnode *right;

b

which contains an array of twenty characters, an integer, and two pointers to similar structures. Once this
definition has been given, the declaration

tnode s, *sp;

declares to be anode andsp to be a pointer to mode . With these declarationsp->count refers
to thecount member of the structure to whislp points;s.left refers to thdeft subtree pointer of
the structures; ands.right->tword[0] refers to the initial character of ttword member of the
right subtree ob.

Nonstatic data members of a class declared without an intervacoegs-specifieare allocated so that

later members have higher addresses within a class object. The order of allocation of nonstatic data mem-
bers separated by amccess-specifiers implementation dependent (11.1). Implementation alignméht
requirements might cause two adjacent members not to be allocated immediately after each other; $6 might
requirements for space for managing virtual functions (10.3) and virtual base classes (10.1); see also 5.4.

A function member (9.4) with the same name as its class is a constructor (12.1). A static data memkér, enu-
merator, member of an anonymous union, or nested type shall not have the same name as its class.

11

12

13

14

9.2 Class members DRAFT: 1 February 1995 Classes-B

Two POD-struct (9) types are layout-compatible if they have the same number of members, andXorre-
sponding members (in order) have layout-compatible types (3.8).

Two POD-union (9) types are layout-compatible if they have the same number of members, andCtorre-
sponding members (in any order) have layout-compatible types (3.8).

ox 45 E
[Bhouldn’t this be the sansetof types? [

If a POD-union contains several POD-structs that share a common initial sequence, and if the POD}union
object currently contains one of these POD-structs, it is permitted to inspect the common initial partGf any
of them. Two POD-structs share a common initial sequence if corresponding members have [ayout-
compatible types (and, for bit-fields, the same widths) for a sequence of one or more initial members.

A pointer to a POD-struct object, suitably converted, points to its initial member (or if that membeldis a
bit-field, then to the unit in which it resides) and vice versa. There might therefore be unnamed padding
within a POD-struct object, but not at its beginning, as necessary to achieve appropriate alignment.

9.3 Scope rules for classes [class.scope0]
The following rules describe the scope of names declared in classes.

1) The scope of a name declared in a class consists not only of the text following the name’s declarator,
but also of all function bodies, default arguments, and constructor initializers in that class (including
such things in nested classes).

2) A nameNused in a clasS shal refer to the same declaration when re-evaluated in its context afd in
the completed scope of S.

3) If reordering member declarations in a class yields an alternate valid program under (1) and (2), the
program’s meaning is undefined.

4) A declaration in a nested declarative region hides a declaration whose declarative region contains
the nested declarative region.

5) A declaration within a member function hides a declaration whose scope extends to or past the end
of the member function’s class.

6) The scope of a declaration that extends to or past the end of a class definition also extends to the
regions defined by its member definitions, even if defined lexically outside the class (this indiides
static data member initializations, nested class definitions and member function definitions (that is,
the parameter-declaration-clausicluding default arguments (8.3.6), the member function bddy
and, for constructor functions (12.1), the ctor-initializer (12.6.2)).

For example:
typedefint c;
enum{i=1}
class X {

char V[i]; // error: i’ refers to :i
// but when reevaluated is X::i
int f() { return sizeof(c); } // okay: X::c
char c;
enum{i=2}

9-6 Classes DRAFT: 1 February 1995 9.3 Scope rules for classes

typedef char* T;
struct Y {
T a [/l error: 'T' refers to ::T
/I but when reevaluated is Y::T
typedeflong T,;

T b;
h
struct Z {
int f(const R); // error: 'R’ is parameter name
// but swapping the two declarations
/I changes it to a type
typedefint R;
b
9.4 Member functions [class.mfct]
0
ox 46 E 0
[(This subclause does not take into account inheritance. Should it? ™

Functions declared in the definition of a class (excluding those declaredfwéhdh specifier; 11.4) are O
called member functions of that class. A member function may be destated in which case itis a
static member function of its class (9.5); otherwise it inamstaticmember function of its class (9.4.101
9.4.2). O

A member function may be defined (8.4) in its class definition, in which case itinéiremmember func- O
tion, or it may be defined outside of its class definition if it has already been declared but not definedlin its
class definition. Thisut-of-linedefinition shall appear in a namespace scope containing the definition of
the member function’s class. O

Aninline member function (whether static or nonstatic) may also be defined outside of its class deéfini-
tion provided either its declaration in the class definition or its definition outside of the class defifition
declares the function asline , see 7.1.2. O

Member functions of a class in namespace scope have external linkage. Member functions of a lodal class
(9.9) have no linkage. See 3.5. a

There shall be exactly one definition of a non-inline member function in a program; no diagnogfic is
required. There may be more than amiine member function definition in a program. See 3.2 and
7.1.2. O

If the definition of a member function is lexically outside its class definition, the member function mname
shall be qualified by its class name using the operator. A member function definition (that is, thé
parameter-declaration-clausacluding the default arguments (8.3.6), the member function body and, fdr a
constructor function (12.1), the ctor-initializer (12.6.2)) is in the scope of the member function’s [dlass

(_class.scope0). For example, a
struct X { a

typedef int T; O

static T count; O

void f(T); a

2 0

void X::f(T t = count) {} O

The member functioh of classX is defined in global scope; the notati®nf specifies that the function
f is a member of class and in the scope of cla¥s In the function definition, the parameter typeefers 0O
to the typedef member CW T declared in cldsand the default argumenbunt refers to the static datall
membercount declared in clasX. O

9.4 Member functions DRAFT: 1 February 1995 Classes-9

A static local variable in a member function always refers to the same object, whether or not thelthem-

ber function ignline . O
Member functions may be mentionediiend declarations after their class has been defined. O
Member functions of a local class shall be defined inline in their class definition. O
9.4.1 Nonstatic member functions [Jclass.mfct.nonstatic]

A nonstaticmember function may be called for an object of its class type using the class member Bccess
syntax (5.2.4, 13.2.1.1). A nonstatic member function may also be called directly from within the bady of

the member functions of its class using the function call syntax (5.2.2, 13.2.1.1). The effect of calling a
nonstatic member function of a clasfor something that is not an object of clxss undefined. g

The names of a member of claésnay be used directly in the body of a nonstatic member functidn of]
During name lookup, when ad-expressior(5.1) used in a nonstatic member function body resolves tad a
nonstatic member of the member function’s class,idhexpressions transformed into a class memben
access expression (5.2.4) usifithis) (9.4.2) as theostfix-expressiomo the left of the. operator. O
The member name then refers to the member of the object for which the function is called. Similarly dur-
ing name look up, when amqualified-id(5.1) used in the definition of a member function resolves tala
static member, an enumerator or a nested type of member function’s classgtedified-idis trans- O
formed into aqualified-id (5.1) in which thenested-name-specifiaames the class of the member functionl.

For example,

struct tnode {

char tword[20]; O
int count; O
tnode *left; O
tnode *right; O
void set(char*, tnode* |, thode* r); O
2
void tnode::set(char* w, thode* |, tnode* r) 0
{
count = strlen(w)+1; O
if (sizeof(tword)<=count) ad
error("tnode string too long"); g
strepy(tword,w); ad
left=1; d
right =r; 0
}
void f(tnode n1, thode n2) ad
{
nl.set("abc",&n2,0); O
n2.set("def",0,0); O
}

The member nameword , count , left , andright refer to members of the object for which the funéi
tion is called. Thus, in the calhl.set(abc",&n2,0)"tword refers tonl.tword , and in the call O
,n2.set(def",0,0)" it refers tn2.tword . The functionstrlen , error , andstrcpy are not mem- [
bers of the classiode and shall be declared elsewhefe.

The type of a nonstatic member function involves its class name; thus the typeqoélified-id expres- O
sion tnode::set is member function and the type &fnode::set is pointer to member functiond
(that is,void (tnode::*)(char*,tnote*,tnode*) , see 5.3.1).

V) See, for examplescstring> (21.2).

9-8 Classes DRAFT: 1 February 1995 9.4.1 Nonstatic member functions

A nonstatic member function may be declaoeshst , volatile , or constvolatile . Thesecv- O
qualifiers affect the type of théhis pointer, see 9.4.2. They also affect the type of the member function;

a member function declarednst is aconstmember function, a member function declavethtile is 0O

avolatile member function and a member function decla@ust volatile is aconst volatilemember O

function. For example, O

struct X { a

void g() const; a

void h() const volatile; a

b O

X::g isaconst member function an¥::h is aconst volatile member function. a

A nonstatic member function may be declavethal (10.3) orpure virtual(10.4). O

9.4.2 Thethis pointer [class.this]

In the body of a nonstatic (9.4) member function, the keywloisl is a non-lvalue expression whoseél
value is the address of the object for which the function is called. The tyips ofin a member function

of a classXis X*. If the member function is declarednst , the type othis isconst X*, if the mem- O
ber function is declaredolatile , the type ofthis is volatile X*, and if the member function is[]
declarecconst volatile , the type othis isconst volatile X*, O

In aconst member function, the object for which the function is called is accessed thraxgyista [
access path; thereforecanst member function shall not modify the object and its non-static members.
For example,

struct s {
int a;
int f() const;
int g() { return a++; }
int h() const { return a++; } // error

2
int s::f() const { return a; }

The a++ in the body ofs::h s ill-formed because it tries to modify (a part of) the object for which
s::th() is called. This is not allowed in@nst member function wherthis is a pointer taconst |,
that is,*this is aconst .

Similarly, volatile semantics (7.1.5.1) apply wolatile member functions when accessing thHe
object and its non-static members. O

A cv-qualifiedmember function can be called on an object-expression (5.2.4) only if the object-expréssion
is as qualified or less-qualified than the member function. For example,

void k(s& x, const s& y)

{
x.f0;
x.90);
y.f0;
y.90; I error

}

The cally.g() is ill-formed becausg is const ands::g() is a noneonst member function, that is,J
s::g() is less-qualified than the object-expression y.

Constructors (12.1) and destructors (12.4) cannot be dedanstl , volatile orconst volatle ; O
however, these functions can be invoked to create and destroy objects with cv-qualified types, see 12.1 and
12.4.

9.5 Static members DRAFT: 1 February 1995 Classes-9

9.5 Static members [class.static]

A data or function member of a class may be declsrait in a class definition, in which case it is &
static membeof the class.

A static members of classX may be referred to using tly@alified-id expressiorK::s ; it is not neces- [
sary to use the class member access syntdas§.ref) to refer to sstatic member. Astatic mem- O
ber may be referred to using the class member access syntax, in which cdgecthexpressiors always [
evaluated. For example,

class process {

public: O
static void reschedule(); O
I3
process& g(); ad
void f() u
{
process::reschedule(); // ok: no object necessary O
g().reschedule(); /1'g() is called ad
}

A static member may be referred to directly in the scope of its class; in this castgttbe member O
is referred to as if gualified-idexpression was used in which thested-name-specifiaames the class of(]
the static member. For example,

class X {
public:
static int i;
static int g();
b
int X::i = g(); // equivalent to X::g();

I R

The definition of sstatic member function or thimitializer expression of atatic data member defi- O
nition may use the names of th@atic = members, enumerators, and nested types of the member’s Elass
directly. During name lookup, when amqualified-id (5.1) used in the definition of a static membéi
resolves to atatic member, enumerator or nested type of its classjribealified-idis transformed into O
a qualified-id expression in which theested-name-specifieames the class of tis¢gatic member. The O
definition of astatic member shall not use directly the names of the nonstatic members of its [dlass
(including as operands of tlszeof operator). The definition of static member may only refer toO
the nonstatic members of its class by using the class member access syntax (5.2.4) objgctan]
expressiorof its class type. O

Static members obey the usual class member access rules (11). O

The type of astatic member does not involve its class name; thus, in the example above, the type[of the
qualified-id expressiorX::g is a function type and the type &K::g is pointer to function type (that is,[]

void(*)() , see 5.3.1). O
9.5.1 Static member functions [[class.static.mfct]

The rules described in 9.4 applysiatic member functions. g

A static member function does not havéhis pointer (9.4.2). Astatic member function shall notO
bevirtual . There shall not be static and a nonstatic member function with the same name andthe
same parameter types (13.1). A nonstatic member function shall not be deolased owvolatile , O

const volatile . a

9-10 Classes DRAFT: 1 February 1995 9.5.2 Static data members

9.5.2 Static data members [Jclass.static.data]

A static data member is not part of the subobjects of a class. There is only one coyigitaf a data 0O
member shared by all the objects of the class. O

The declaration of atatic data member in its class definition is not a definition and may be offlan
incomplete type. A definition shall be provided for thatic data member in a namespace scopk
enclosing the member’s class definition. In the definition at namespace scope, the nansaticthe [
data member shall be qualified by its class name using th@perator. Thenitializer expression in the [
definition of astatic =~ data member is in the scope of its class (9.3). For example,

class process { ad
static process* run_chain; ad
static process* running; O

3 O

process* process::running = get_main();

process* process::run_chain = running; O

The static data memberun_chain of classprocess is defined in global scope; the notatiofl
process::run_chain specifies that the membarn_chain is a member of claggrocess and in O
the scope of clagsrocess . In thestatic data member definition, thaitializer expression refers tod
thestatic data memberunning of classprocess .

Once thestatic data member has been defined, it exists even if no objects of its class have i beéh cre-
ated. For example, in the example abawm,_chain andrunning exist even if no objects of class
process are been created by the program. O

If a static data member is of integral or enumeration type, its declaration in the class definitionCOmay
specify aconstant-initializer In that case, the member can appear in integral constant expressions (5.19)
within its declarative region after its declaration. The member shall still be defined in a hamespacélscope

and the definition of the member in namespace scope shall not contiitiediner. O
There shall be exactly one definition oftatic data member in a program; no diagnostic is required; §ee

3.2. O

Static data members of a class in namespace scope have external linkage (3.5). A local classCtannot
havestatic data members. O

Static data members are initialized and destroyed exactly like global objects; see 3.6.2 and 3.6.3.
A static data member cannot beutable (7.1.1). O

9.6 Unions [class.union]

A union can be thought of as a class whose member objects all begin at offset zero and whose sizelis suffi-
cient to contain any of its member objects. At most one of the member objects can be stored in a union at
any time. A union can have member functions (including constructors and destructors), but not Mirtual
(10.3) functions. A union shall not have base classes. A union shall not be used as a base class. Ah object
of a class with a non-trivial constructor (12.1) or a non-trivial destructor (12.4) or with a user-definedtopy
assignment operator (13.4.3) cannot be a member of a union. A union can Btateno data members.

ox 47 g
[(Bhouldn’t we prohibit references in uniong?

A union of the form
union{ member-specificatior} ;

is called an anonymous union; it defines an unnamed object (and not a type). The names of the meimbers of
an anonymous union shall be distinct from other names in the scope in which the union is declared; they are

9.6 Unions DRAFT: 1 February 1995 Classes-491

used directly in that scope without the usual member access syntax (5.2.4). For example,

void f()
{
union {int a; char* p; };
a=1;
...
p = "Jennifer";

...
}

Herea andp are used like ordinary (nonmember) variables, but since they are union members they have
the same address.

A global anonymous union shall be declastatic . An anonymous union shall not hapevate or 0O
protected members (11). An anonymous union shall not have function members. O

A union for which objects or pointers are declared is not an anonymous union. For example,

union { int aa; char* p; } obj, *ptr = &obj;
aa=1, /I error
ptr->aa=1; // ok

The assignment to plaiaa is ill formed since the member name is not associated with any particular
object.

Initialization of unions with no user-declared constructors is described in 8.5.1. O

9.7 Bit-fields [class.hit]

A member-declaratoof the form

identifier,, : constant-expression

specifies a bit-field; its length is set off from the bit-field name by a colon. Allocation of bit-fields within a
class object is implementation dependent. Fields are packed into some addressable allocation unit. Fields
straddle allocation units on some machines and not on others. Alignment of bit-fields is implementation
dependent. Fields are assigned right-to-left on some machines, left-to-right on others.

An unnamed bit-field is useful for padding to conform to externally-imposed layouts. Unnamed fields are
not members and cannot be initialized. As a special case, an unnamed bit-field with a width of zero speci-
fies alignment of the next bit-field at an allocation unit boundary.

A bit-field shall not be a static member. A bit-field shall have integral or enumeration type (3.8.1).0lt is
implementation dependent whether a plain (neither explicitly signed nor unsighedield is signed or
unsigned. The address-of operatshall not be applied to a bit-field, so there are no pointers to bit-fields.
Nor are there references to bit-fields.

9.8 Nested class declarations [class.nest]

A class can be defined within another class. A class defined within another is cadlstk@class. The O
name of a nested class is local to its enclosing class. The nested class is in the scope of its enclosing class.
Except by using explicit pointers, references, and object names, declarations in a nested class can use only
type names, static members, and enumerators from the enclosing class.

int x;

inty;

class enclose {
public:
int x;
static int s;

9-12 Classes DRAFT: 1 February 1995 9.8 Nested class declarations

class inner {
void f(int i)
{
x =1i; [/ error: assign to enclose::x
s =1i; [/ ok: assign to enclose::s
=X = i; /] ok: assign to global x
y =i I/ ok: assign to global y
}
void g(enclose* p, int i)
{
p->x=i; [/l ok: assign to enclose::x
}

2
inner* p=0; // error ‘inner’ not in scope

Member functions of a nested class have no special access to members of an enclosing class; they obey the
usual access rules (11). Member functions of an enclosing class have no special access to members of a
nested class; they obey the usual access rules. For example,

class E {
int x;

class | {

inty;

void f(E* p, int i)

p->x =i; [/l error: E:x is private

I3
int g(I* p)
{

return p->y; [l error: I:1y is private

2

Member functions and static data members of a nested class can be defined in a namespace scopél contain-
ing the definition of their class. For example,

class enclose {

public: O
class inner {
static int x;
void f(int i);
h
3
int enclose::inner::x = 1; 0

void enclose::inner:f(int i) { /* ... */ }

A nested clas¥ may be declared in a cla¥sand later defined in the definition of claXsor be later O
defined in a namespace scope containing the definition ofXlaBer example:

9.8 Nested class declarations DRAFT: 1 February 1995 Classes13

class E {
class I1; /I forward declaration of nested class
class 12;
class I1 {}; // definition of nested class

c’Iass E:12{}; /I definition of nested class

Like a member function, a friend function (11.4) defined within a nested class is in the lexical scope [of that
class; it obeys the same rules for name binding as a static member function of that class (describedlin 9.5)
and has no special access rights to members of an enclosing class.

9.9 Local class declarations [class.local]

A class can be defined within a function definition; such a class is cdtbedlalass. The name of a local

class is local to its enclosing scope. The local class is in the scope of the enclosing scope. Declarations in a
local class can use only type names, static variabldsrn variables and functions, and enumerators

from the enclosing scope. For example,

int x;
void f()
{ . .
static int s ;
int x;
extern int g();
struct local {
intg() { return x; } /I error: ‘X’ is auto
inth() {returns; } Il ok
int k() { return ::x; } // ok
int1() { return g(); } // ok
2
...
}

local*p=0; // error: ‘local’ not in scope

An enclosing function has no special access to members of the local class; it obeys the usual access rules
(11). Member functions of a local class shall be defined within their class definition. A local class(shall
not have static data members.

9.10 Nested type names [class.nested.type]

Type names obey exactly the same scope rules as other names. In particular, type names defined within a
class definition cannot be used outside their class without qualification. For example,

class X {

public:
typedef int [;
classY {/*...*};
I a;

h

| b; /I error
Y c; /I error
X:Yd; //ok
X:le; /lok

10 Derived classes [class.derived]
A list of base classes can be specified in a class declaration using the notation: a
base-clause:

base-specifier-list

base-specifier-list:
base-specifier
base-specifier-list, base-specifier

base-specifier:
X opt NESted-name-specifigyclass-name
virtual access-specifigy; :: o, N€sted-name-specifigyclass-name
access-specifier virtug) :: . nested-name-specifigy class-name

access-specifier:
private
protected
public

Theclass-namén abase-specifieshall denote a previously declared class (9), which is caliireet base O
classfor the class being declared. A cldsts a base class of a claldf it is a direct base class ©for a

direct base class of one D base classes. A class isiadirect base class of another if it is a base class

but not a direct base class. A class is said to be (directly or indirdetiypdfrom its (direct or indirect)

base classes. For the meaningaofess-specifiesee 11. Unless redefined in the derived class, members

of a base class can be referred to in expressions as if they were members of the derived class. The base
class members are said toibkeritedby the derived class. The scope resolution operatdb.1) can be O

used to refer to a base member explicitly. This allows access to a name that has been redefined in the
derived class. A derived class can itself serve as a base class subject to access control; see 11.2. [A pointer
to a derived class can be implicitly converted to a pointer to an accessible unambiguous base classl (4.10).
An Ivalue of a derived class type can be bound to a reference to an accessible unambiguous bdse class
(8.5.3).

For example,

class Base {
public:

inta, b, c;
b

class Derived : public Base {
public:

int b;
h

class Derived2 : public Derived {
public:

intc;
b

10-2 Derived classes DRAFT: 1 February 1995 10 Derived classes

Here, an object of clad3erived2 will have a sub-object of clad3erived which in turn will have a
sub-object of clasBase. A derived class and its base class sub-objects can be represented by a directed
acyclic graphPAG) where an arrow mearidirectly derived froni. A DAG of sub-objects is often referred

to as d sub-object lattic&.For example,

Base

|

Derived

Derived?2

Note that the arrows need not have a physical representation in memory and the order in which the sub-
objects appear in memory is unspecified.

Initialization of objects representing base classes can be specified in constructors; see 12.6.2.

10.1 Multiple base classes [class.mi]

A class can be derived from any number of base classes. For example, O

classA{/*..*}
classB {/*...* };
classC{/*...* };
class D : public A, public B, public C { /* ... */ };

The use of more than one direct base class is often called multiple inheritance.

The order of derivation is not significant except possibly for initialization by constructor (12.6.2)1for
cleanup (12.4), and for storage layout (5.4, 9.2, 11.1).

A class shall not be specified as a direct base class of a derived class more than once but it can bé&lan indi-
rect base class more than once.

classB {/*...* };
class D : public B, public B{/* ... */}; //ill-formed O

class L { public: int next; /*...*}; O
class A: publicL{/*...*};

class B : public L {/*...*/ };

class C : public A, public B { void f(); /... */}; I/ well-formed

For an object of clags, each distinct occurrence of a (non-virtual) base d¢laeghe class lattice o cor- [
responds one-to-one with a distinctsubobject within the object of typeé Given the clas€ defined 0O
above, an object of clagswill have two sub-objects of claksas shown below.

L L

A B
\ i /
In such lattices, explicit qualification can be used to specify which subobject is meant. For examplg, the
body of functionC::f could refer to a membeext of eachl subobject: O

void C::f() { A:next = B:inext; } // well-formed O

Without theA:: or B:: qualifiers, the definition o€::f above would be ill-formed because of ambigi3
ity.

The keywordvirtual can be added to a base class specifier. A single sub-object of the virtual baséliclass
is shared by every base class that specified the base class to be virtual. For example,

10.1 Multiple base classes DRAFT: 1 February 1995 Derived classes-30

classV {/*...*};

class A : virtual public V { /* ... */ };
class B : virtual public V { /* ... */ };
class C : public A, public B{/* ... */ };

Here clas< has only one sub-object of clagsas shown below.
\Y
A/ \B
\ C/

A class can have both virtual and nonvirtual base classes of a given type. O

classB {/*...* };

class X : virtual public B { /*... */ };

class Y : virtual public B { /* ... */ };

class Z : public B { /* ... */ };

class AA : public X, public Y, public Z { /* ... */ };

For an object of clasaA all virtual occurrences of base claBsn the class lattice 0AA correspond to O
a singleB subobject within the object of typ®A and every other occurrence of a (non-virtual) base Blass
in the class lattice ofA corresponds one-to-one with a distifcsubject within the object of typeA O
Given the clas®\A defined above, clashA has two sub-objects of claBs Z's B and the virtuaB shared
by X andY, as shown below.

10.2 Member Name Lookup [class.member.lookup]

Member name lookup determines the meaning of a nadiexpressiojin a class scope. Name lookuf
can result in arambiguity in which case the program is ill-formed. Foridrexpressionname lookup
begins in the class scopetbfs ; for aqualified-id name lookup begins in the scope of tlested-name-
specifiet Name lookup takes place before access control (11).

The following steps define the result of name lookup in a class scope. First, we consider every declaration
for the name in the class and in each of its base class sub-objects. A membgrimame sub-objedB

hidesa member namk in a sub-objecAif Ais a base class sub-object®f We eliminate from considera-

tion any declarations that are so hidden. If the resulting set of declarations are not all from sub-objects of
the same type, or the set has a nonstatic member and includes members from distinct sub-objects[Jthere is
an ambiguity and the program is ill-formed. Otherwise that set is the result of the lookup.

For example,

class A {
public:
int a;
int (*b)();
int f();
int f(int);
int g();

10-4 Derived classes DRAFT: 1 February 1995 10.2 Member Name Lookup

class B {

int a;

int b();
public:

int f();

int g;

int h();

int h(int);
I3

class C : public A, public B {};
void g(C* pc)
{

pc->a =1; [/ error: ambiguous: A::a or B::a
pc->b(); I/ error; ambiguous: A::b or B::b
pc->f(); /I error: ambiguous: A::f or B::f
pc->f(1); // error: ambiguous: A::f or B::f
pc->g(); // error: ambiguous: A::g or B::g
pc->g = 1; /I error: ambiguous: A::g or B::g
pc->h(); I/l ok

pc->h(1); // ok

}

4 If the name of an overloaded function is unambiguously found, overloading resolution also takesplace
before access control. Ambiguities can often be resolved by qualifying a name with its class name. For
example,

class A {
public:

int f();
I3

class B {
public:

int f();
I3

class C : public A, public B {
int f() { return A::f() + B::f(); }
I3

5 The definition of ambiguity allows a nonstatic object to be found in more than one sub-object. Wheén vir-
tual base classes are used, two base classes can share a common sub-object. For example,

class V { public: int v; };
class A {
public:
int a;
staticint s;
enum{e};
I3
class B : public A, public virtual V {};
class C : public A, public virtual V {};

10.2 Member Name Lookup DRAFT: 1 February 1995 Derived classes 49

class D : public B, public C { };

void f(D* pd)

pd->v++; [/l ok: only one ‘v’ (virtual)
pd->s++; I/l ok: only one ‘s’ (static)

inti =pd->e; // ok: only one ‘e’ (enumerator)
pd->a++; Il error, ambiguous: two ‘a’s in ‘D’

}

When virtual base classes are used, a hidden declaration can be reached along a path through the slib-object
lattice that does not pass through the hiding declaration. This is not an ambiguity. The identical use with
nonvirtual base classes is an ambiguity; in that case there is no unique instance of the name that hides all
the others. For example,

class V { public: int f(); intx;};
class W { public: int g(); inty;};
class B : public virtual V, public W

{
public:
intf(); intx;
intg(); inty;
5
class C : public virtual V, public W { };

class D : public B, public C { void glorp(); }; O

The names defined i and the left hand instance fare hidden by those B, but the names defined in
the right hand instance @are not hidden at all.

void D::glorp() O
{

X++; I ok: B::x hides V::x

f0; /I ok: B::f() hides V::f()

y++; /I error: B::y and C's W::y

a(); /I error: B::g() and C's W::g()
}

An explicit or implicit conversion from a pointer to or an Ivalue of a derived class to a pointer or referénce
to one of its base classes shall unambiguously refer to a unique object representing the base class. For
example,

class V {};

class A{};

class B : public A, public virtual V {};
class C : public A, public virtual V { };
class D : public B, public C { };

10-6 Derived classes DRAFT: 1 February 1995 10.2 Member Name Lookup

void g()

Dd;

B* pb = &d;

A* pa = &d; /I error, ambiguous: C's AorB's A ?
V* pv = &d; //fine: only one V sub-object

10.3 Virtual functions [class.virtual]

Virtual functions support dynamic binding and object-oriented programming. A class that declares or
inherits a virtual function is calledmolymorphic class

If a virtual member functionf is declared in a clad8ase and in a clas®erived , derived directly or
indirectly fromBase, a member functiomf with the same name and same parameter IBaas::vf s

declared, therDerived::vf is also virtual (whether or not it is so declared) anavierride§?

Base::vf . For convenience we say that any virtual function overrides itself. Then in any well-formed
class, for each virtual function declared in that class or any of its direct or indirect base classes there is a
uniquefinal overriderthat overrides that function and every other overrider of that function.

A virtual member function does not have to be visible to be overridden, for example, O
struct B { a

virtual void f(); a

h 0

struct D : B { O

void f(int); a

h O

struct D2 : D { a

void f(); a

|3 O

the functionf(int) in classD hides the virtual functiof() in its base clasB; D::f(int) is not a vir- 0

tual function. Howeverf() declared in clas®2 has the same name and the same parameter lidfl as
B:f() , and therefore is a virtual function that overrides the fundioff) even thougtB::f() is O
not visible in clas®2. O

A program is ill-formed if the return type of any overriding function differs from the return type oflihe
overridden function unless the return type of the latter is pointer or reference (possibly cv-qualified) to a
classB, and the return type of the former is pointer or reference (respectively) to ® slasls thaB is an
unambiguous direct or indirect base clas®phccessible in the class of the overriding function, and the
cv-qualification in the return type of the overriding function is less than or equal to the cv-qualification in
the return type of the overridden function. In that case when the overriding function is called as the final
overrider of the overridden function, its result is converted to the type returned by the (statically chosen)
overridden function. See 5.2.2. For example,

class B {};
class D : private B { friend class Derived; };
struct Base {
virtual void vf1();
virtual void vf2();
virtual void vf3();
virtual B* vf4();
void f();
2

24 A function with the same name but a different parameter list (see 13) as a virtual function is not necessarily virtual and does not
override. The use of thértual specifier in the declaration of an overriding function is legal but redundant (has empty semantics).
Access control (11) is not considered in determining overriding.

10.3 Virtual functions DRAFT: 1 February 1995 Derived classes ¥

struct No_good : public Base {

D* vf4(); Il error: B (base class of D) inaccessible
2
struct Derived : public Base {
void vf1(); /[l virtual and overrides Base::vf1()
void vf2(int); I/l not virtual, hides Base::vf2()
char vf3(); I error: invalid difference in return type only
D* vf4(); /I okay: returns pointer to derived class
void f();
2
void g()
{
Derived d;
Base* bp = &d; /l standard conversion:
/I Derived* to Base*
bp->vfl(); /I calls Derived::vfl()
bp->vf2(); /I calls Base::vf2()
bp->f(); /I calls Base::f() (not virtual)
B* p = bp->vf4(); // calls Derived::pf() and converts the
/I result to B*
Derived* dp = &d;
D* q = dp->vf4(); // calls Derived::pf() and does not
/I convert the result to B*
dp->vf2(); /I ill-formed: argument mismatch
}

That is, the interpretation of the call of a virtual function depends on the type of the object for which it is
called (the dynamic type), whereas the interpretation of a call of a nonvirtual member function depends
only on the type of the pointer or refe rence denoting that object (the static type). See 5.2.2.

Thevirtual specifier implies membership, so a virtual function cannot be a global (nonmember) (7.1.2)
function. Nor can a virtual function be a static member, since a virtual function call relies on a specific
object for determining which function to invoke. A virtual function can be declafedral in another

class. A virtual function declared in a class shall be defined or declared pure (10.4) in that class. O

Following are some examples of virtual functions used with multiple base classes:

struct A {
virtual void f();

h

struct B1: A{ // note non-virtual derivation
void f();
I3

struct B2 : A{
void f();

struct D : B1, B2 { // D has two separate A sub-objects
b

10-8 Derived classes DRAFT: 1 February 1995 10.3 Virtual functions

void foo()
{
D d;
/I A* ap = &d; // would be ill-formed: ambiguous
B1* blp = &d,;
A* ap=blp;
D* dp=4&d;

ap->f(); // calls D::B1:f
dp->f(); //ill-formed: ambiguous

}

In classD above there are two occurrences of clasmnd hence two occurrences of the virtual member
function A::f . The final overrider oB1::A::f is B1::f and the final overrider oB2::A::f is
B2::f

8 The following example shows a function that does not have a unique final overrider:

struct A {
virtual void f();

h

struct VBL1 : virtual A{ // note virtual derivation
void f();
3

struct VB2 : virtual A {
void f();
I3

struct Error : VB1, VB2 { //ill-formed
5

struct Okay : VB1, VB2 {
void f();
I3
BothVvB1:f andVB2:f overrideA:f butthere is no overrider of both of them in clessor . This
example is therefore ill-formed. Cla€kay is well formed, however, becau€kay::f is a final over-
rider.

9 The following example uses the well-formed classes from above.
struct VB1la : virtual A { // does not declare f
2
struct Da : VB1a, VB2 {
I3

void foe()

{
VBla* vblap = new Da;
vblap->f(); // calls VB2:f

}

10 Explicit qualification with the scope operator (5.1) suppresses the virtual call mechanism. For example,

class B { public: virtual void f(); };
class D : public B { public: void f(); };

void D::f() { /* ... */ B::f(); }

Here, the function call iD::f really does calB::f and notD::f

10.4 Abstract classes DRAFT: 1 February 1995 Derived classes—20

10.4 Abstract classes [class.abstract]

The abstract class mechanism supports the notion of a general concept, ssbtlaes,aof which only
more concrete variants, suchcgle andsquare , can actually be used. An abstract class can also be
used to define an interface for which derived classes provide a variety of implementations.

An abstract clasgs a class that can be used only as a base class of some other class; no objects of an
abstract class can be created except as sub-objects of a class derived from it. A class is abstract if it has at
least onegpure virtual function(which might be inherited: see below). A virtual function is specifiece [

by using apure-specifier(9.2) in the function declaration in the class declaration. A pure virtual function
need be defined only if explicitly called with thealified-idsyntax (5.1). For example,

class point { /* ... */ };

class shape { Il abstract class
point center;
...

public:
point where() { return center; }
void move(point p) { center=p; draw(); }
virtual void rotate(int) = 0; // pure virtual
virtual void draw() = 0; I/ pure virtual
...

h

An abstract class shall not be used as an parameter type, as a function return type, or as the tyijge of an
explicit conversion. Pointers and references to an abstract class can be declared. For example, O

shape x; /I error: object of abstract class
shape* p; Il ok

shape f(); I error

void g(shape); I error

shape& h(shape&); // ok

Pure virtual functions are inherited as pure virtual functions. For example,

class ab_circle : public shape {
int radius;
public:
void rotate(int) {}
/I ab_circle::draw() is a pure virtual

kh

Sinceshape::draw() is a pure virtual functiorab_circle::draw() is a pure virtual by default.
The alternative declaration,

class circle : public shape {
int radius;
public:
void rotate(int) {}
void draw(); // a definition is required somewhere O

I3
would make classircle nonabstract and a definition aifcle::draw() must be provided.

An abstract class can be derived from a class that is not abstract, and a pure virtual function may oveérride a
virtual function which is not pure.

Member functions can be called from a constructor of an abstract class; the effect of calling a pure virtual
function directly or indirectly for the object being created from such a constructor is undefined. O

11 Member access control [class.access]

A member of a class can be a

— private ;thatis, its name can be used only by member functions and friends of the class in which
it is declared.

— protected ; that is, its name can be used only by member functions and friends of the class in
which it is declared and by member functions and friends of classes derived from this class (see
11.5).

— public ; thatis, its name can be used by any function. a

Members of a class declared with the keywdabs areprivate by default. Members of a class
declared with the keywordsdruct orunion arepublic by default. For example,

class X {
inta; // X:ais private by default

h

struct S {
inta; // S:ais public by default
b

Access control is applied uniformly to all names. O

It should be noted that it iaccessto members and base classes that is controlled, notvils@éiity. O
Names of members are still visible, and implicit conversions to base classes are still considered, whéh those
members and base classes are inaccessible. The interpretation of a given construct is establishedlwithout
regard to access control. If the interpretation established makes use of inaccessible member names or base
classes, the construct is ill-formed. O

All access controls in this clause affect the ability of an entire function or member function to access @ class
member. In particular, access controls apply as usual to members accessed as part of a function refurn type,
even though it is not possible to determine the access privileges of that use without first parsing the rest of

the function. For example: O
class A { a
typedef int I; /I private member a

H0; U
friend | g(l); a
static | x; O

b 0
Azl Azf() { return O; } d
Azl g(A:l; a
Al g(A:l p) {return O; } a
Azl Aix=0; O

Here, all the uses of A::l are well-formed becafisé andA::x are members of clagsandg is a friend O
of classA. This implies, for example, that access checking on the first usel of must be deferred until O
it is determined that this use Af:l is as the return type of a member of class

11-2 Member access control DRAFT: 1 February 1995 11.1 Access specifiers

11.1 Access specifiers [class.access.spec]
Member declarations can be labeled byecess-specifigl0): g

access-specifier. member-specificatiqp

An access-specifiespecifies the access rules for members following it until the end of the class or until
anotheraccess-specifias encountered. For example,

class X {

inta; // X:ais private by default: ‘class’ used
public:

intb; // X:bis public

intc; // X::cis public
b

Any number of access specifiers is allowed and no particular order is required. For example,

struct S {

inta; // S:ais public by default: ‘struct’ used
protected:
intb; // S:bis protected
private:
intc; // S:cis private
public:
intd; // S:dis public
I3

The order of allocation of data members with separetess-specifidabels is implementation dependent
(9.2).

11.2 Access specifiers for base classes [class.access.base]

If a class is declared to be a base class (10) for another class usimgplice access specifier, the
public members of the base class are accessiblpuatic members of the derived class and
protected members of the base class are accessilpeosiscted members of the derived class. If al
class is declared to be a base class for another class uspmgtdeed access specifier, thaublic
andprotected members of the base class are accessihpeotiscted members of the derived class.
If a class is declared to be a base class for another class uspriydte access specifier, thaublic
andprotected members of the base class are accessilge\vate = members of the derived cldgs

In the absence of aaccess-specifiefor a base clasquublic is assumed when the derived class is
declaredstruct andprivate is assumed when the class is declatads . For example,

classB {/*...* };

class D1 : private B {/* ... */ };

class D2 : public B {/* ... */ };
classD3:B{/*...*} /[‘B’ private by default
struct D4 : public B { /* ... */ };

struct D5 : private B {/* ... */ };

struct D6 : B {/*...*/'}; [/ ‘B’ public by default
class D7 : protected B { /* ... */ };

struct D8 : protected B { /* ... */ };

HereB is a public base db2, D4, andD6, a private base dd1, D3, andD5, and a protected base BY
andD8. O

Because of the rules on pointer conversion (4.10), a static member of a private base class might belihacces-
sible as an inherited name, but accessible directly. For example,

2% As specified previously in 11, private members of a base class remain inaccessible even to derived clasdeadinledsclara-
tions within the base class declaration are used to grant access explicitly.

11.2 Access specifiers for base classes DRAFT: 1 February 1995 Member access contrel3 11

class B {
public:
int mi; // nonstatic member
static int si; // static member
b
lass D : private B {
3
class DD : public D {
void f();
b
void DD::f() {
mi = 3; [error: mi is private in D
si=3; / error: si is private in D
B b;
b.mi =3; /I okay (b.mi is different from this->mi)
b.si=3; Il okay (b.si is different from this->si) O
B:si=3; Il okay
B* bpl = this; // error: B is a private base class
B* bp2 = (B*)this; // okay with cast
bp2->mi=3; // okay: access through a pointer to B. O
}

A base class is said to be accessible if an invented public member of the base class is accessible. [f a base
class is accessible, one can implicitly convert a pointer to a derived class to a pointer to that base class
(4.10, 4.11). It follows that members and friends of a ckasan implicitly convert arX* to a pointer to a

private or protected immediate base clasX. of

11.3 Access declarations [class.access.dcl]

The access of a member of a base class can be changed in the derived class by memfjigalifigdtedin O

the derived class declaration. Such mention is calledcarss declaratian The base class member i§

given, in the derived class, the access in effect in the derived class declaration at the point of the acdéss dec-
laration. The effect of an access declaratioalified-id ; is defined to be equivalent to the declaratidn

using qualified-id; .5

For example,

class A {
public:
int z;
int z1;

k

class B : public A {
int a;
public:
intb, c;
int bf();
protected:
int x;
inty;

93) Access declarations are deprecated; mem$iag-declaration$7.3.3) provide a better means of doing the same things. In earlier
versions of the € language, access declarations were more limited; they were generalized and made equisiient teclara-
tions in the interest of simplicity. Programmers are encouraged taosirgg , rather than the new capabilities of access declarations,
in new code.

11-4 Member access control DRAFT: 1 February 1995 11.3 Access declarations

class D : private B {
intd;

public:
B::c; // adjust access to ‘B::c’
B::z; // adjust access to ‘A::z’
A::z1; I/ adjust access to ‘A::z1’

int e;
int df();
protected:
B::x; [/l adjust access to ‘B::x’
int g;
I3
class X : public D {
int xf();
2
int ef(D&);
int ff(X&);

The external functioef can use only the namesz, z1, e, anddf . Being a member dp, the function
df can use the namésc, z, z1, bf , x,y, d, e, df , andg, but nota. Being a member d, the function
bf can use the membess b, ¢, z, z1, bf , X, andy. The functionxf can use the public and protected
names fronD, that is,c, z, z1, e, anddf (public), andx, andg (protected). Thus the external function
ff has access only m z, z1, e, anddf . If Dwere a protected or private base clasX,off would have
the same privileges as before, ffutwould have no access at all. O

11.4 Friends [class.friend]

A friend of a class is a function that is not a member of the class but is permitted to use the private and pro-
tected member names from the class. The name of a friend is not in the scope of the class, and the friend is
not called with the member access operators (5.2.4) unless it is a member of another class. The following
example illustrates the differences between members and friends:

class X {

int a;

friend void friend_set(X*, int);
public:

void member_set(int);

h

void friend_set(X* p, inti) { p->a =1i;}
void X::member_set(inti) {a=i;}

void f()

{
X obj;
friend_set(&obj,10);
obj.member_set(10);

}

When afriend declaration refers to an overloaded name or operator, only the function specified by the
parameter types becomes a friend. A member function of aXlees be a friend of a cla¥s For exam-
ple,
class 'Y {
friend char* X::foo(int);
...
b

All the functions of a clasX can be made friends of a claédy a single declaration using ataborated-

11.4 Friends DRAFT: 1 February 1995 Member access control 15

type-specifie‘rf‘l) (9.2):

class 'Y {
friend class X;
...

h

Declaring a class to be a friend also implies that private and protected nhames from the class granting friend-
ship can be used in the class receiving it. For example,

class X {
enum { a=100 };
friend class Y;

h

class 'Y {
intv[X::a]; // ok, Y is afriend of X
b

class Z {
int v[X::a]; // error: X::ais private
2

A function declared asfaiend and not previously declared, is introduced in the smallest enclosing fbn-
class, non-function prototype scope that containsfribad declaration. For a class mentioned asl(a
friend and not previously declared, see 7.1.5.3.

A function first declared in a friend declaration has external linkage (3.5). Otherwise, it retains its previous
linkage (7.1.1). Natorage-class-specifieshall appear in théecl-specifier-seqf a friend declaration. O

A function of namespace scope can be definedfiiead declaration of a non-local class (9.9). Tha
function is theninline . A friend function defined in a class is in the (lexical) scope of the class in
which it is defined. A friend function defined outside the class is not.

Friend declarations are not affecteddrgess-specifier®.2).

Friendship is neither inherited nor transitive. For example,

class A {
friend class B;
int a;
h
class B {
friend class C;
h
classC {
void f(A* p)
p->a++; [/ error: Cis not a friend of A
Il despite being a friend of a friend
}
b

°%)Note that thelass-keyf theelaborated-type-specifiés required.

11-6 Member access control

DRAFT: 1 February 1995

class D : public B {

void f(A* p)
{

p->a++; [/ error: D is not a friend of A
I/ despite being derived from a friend

11.5 Protected member access

A friend or a member function of a derived class can access a protected static member, type or enutnerator

11.4 Friends

[class.protected]

constant of a base class; if the access is througlabfied-id the nested-name-specifienust name the O
derived class (or any class derived from that class).

A friend or a member function of a derived class can access a protected nonstatic member of a baSe class.
Except when forming a pointer to member, the access must be through a pointer to, reference to, ar object
of the derived class itself (or any class derived from that class). If the nonstatic protected member thus
accessed is also qualified, the qualification is ignored for the purpose of this access checking. If thelaccess
is to form a pointer to member (5.3.1), thested-name-specifishall name the derived class (or any class

derived from that class). For example,

class B {
protected:

h

inti;
static int j;

class D1 : public B {

}

class D2 : public B {

h

friend void fr(B*,D1*,D2*);
void mem(B*,D1*);

void fr(B* pb, D1* p1, D2* p2)

{

}

pb->i=1; //illegal

pl->i=2; /lillegal

p2->i = 3; [/ ok (access through a D2)

p2->B::i = 4; [/ ok (access through a D2, qualification ignored)
int B::* pmi_B = &B::i; Iillegal

int B::* pmi_B = &D2::i; // ok (type of &D2::i is "int B::*")
B:j=5; [/lillegal

D2:j=6; [/ ok (access through a D2)

void D2::mem(B* pb, D1* p1)

{

pb->i=1; //illegal
pl->i=2; /lillegal

i=3; Il ok (access through ‘this’)
B:i=4; // ok (access through ‘this’, qualification ignored)
j=5; /I ok (static member accessed by derived class function)

B:j=6; [/lilegal

O

oOoooo

OoOoo

1

11.5 Protected member access DRAFT: 1 February 1995 Member access controt-11

void g(B* pb, D1* p1, D2* p2)

pb->i=1; //illegal
pl->i=2; //illegal
p2->i=3; /lillegal

11.6 Access to virtual functions [class.access.virt]

The access rules (11) for a virtual function are determined by its declaration and are not affected by the
rules for a function that later overrides it. For example,

class B {
public:
virtual int f(); ad

class D : public B {

private:
int f(); O
I3
void f()
{
Dd;
B* pb = &d,;
D* pd = &d;

pb->f(); // ok: B::f() is public,
/I D::f() is invoked
pd->f(); // error: D::f() is private
}

Access is checked at the call point using the type of the expression used to denote the object for which the
member function is called¢ in the example above). The access of the member function in the class in
which it was defined§ in the example above) is in general not known.

11.7 Multiple access [class.paths]

If a name can be reached by several paths through a multiple inheritance graph, the access is that of the path
that gives most access. For example,

class W { public: void f(); };
class A : private virtual W { };
class B : public virtual W { };
class C : public A, public B {
void f() { W:if(); } // ok

SinceW::f() is available taC::f() along the public path throud®) access is allowed. O

12 Special member functions [speciall

Some member functions are special in that they affect the way objects of a class are created, copied, and
destroyed, and how values can be converted to values of other types. Often such special functions are
called implicitly. Also, the compiler can generate instances of these functions when the programmét does
not supply them. Compiler-generated special functions can be referred to in the same way$ that
programmer-written functions are.

These member functions obey the usual access rules (11). For example, declaring a constructor
protected ensures that only derived classes and friends can create objects using it.
12.1 Constructors [class.ctor]

A member function with the same name as its class is called a constructor; it is used to initialize objécts of
its class type. For initialization of objects of class type see 12.6.

A constructor can be invoked forcanst , volatile or constvolatile object?’S) A constructor O
shall not be declaredonst , volatile , or constvolatile (9.4.2). A constructor shall not bel
virtual or static

Constructors are not inherited. a

A default constructofor a classX is a constructor of class that can be called without an argument. [
there is nouser-declared constructofor class X, a default constructor is implicitly declared. Afl

implicitly-declared default constructds apublic member of its class. A constructotiiwial ifitis 0O
an implicitly-declared default constructor and if: a
— its class has no virtual functions (10.3) and no virtual base classes (10.1), and a
— all the direct base classes of its class have trivial constructors, and O

— for all the nonstatic data members of its class that are of class type (or array thereof), each such class
has a trivial constructor.

Otherwise, the constructorn®n-trivial. a

An implicitly-declared default constructor for a classniplicitly-definedwhen it is used to create aril
object of its class type (3.7). A program is ill-formed if the class for which a default constructdr is

implicitly defined has: a
— a nonstatic data memberainst type, or a
— a nonstatic data member of reference type, or a

— a nonstatic data member of class type (or array thereof) with an inaccessible default constructar, or

— abase class with an inaccessible default constri@tor. a

29)y/olatile semantics might or might not be used.
When a default constructor for a derived class is implicitly defined, all the implicitly-declared default constructors for its bases and
members are also implicitly defined (and this recursively for the members’ base classes and members).

10

11

12

12-2 Special member functions DRAFT: 1 February 1995 12.1 Constructors

Box 48 h

O
Should it be specified more precisely at which point in the program the implicit definition is ill-forpied?
i.e. is something like this needed: "The declaration or expression causing the implicit definitioflis ill-
formed" ? 0 /@

OoOooom

A copy constructorfor a classX is a constructor that accepts one parameter of Xf{per of type O
const X& See 12.8 for more information on copy constructors.

12.6.2 describes the order in which constructors for base classes and non-static members are célled and
describes how arguments can be specified for the calls to these constructors.

A union member cannot be of a class type (or array thereof) that has a non-trivial constructor. [

No return type (not evevoid) can be specified for a constructor.réfurn statement in the body of(]
a constructor shall not specify a return value. It is not possible to take the address of a constructor.

A constructor can be used explicitly to create new objects of its type, using the syntax
class-name(expression-ligf;)
For example,

complex zz = complex(1,2.3);
cprint(complex(7.8,1.2));

An object created in this way is unnamed. 12.2 describes the lifetime of temporary objects. O

Some language constructs have special semantics when used during construction; see 12.6.2 and 12.7.

12.2 Temporary objects [class.temporary]

In some circumstances it might be necessary or convenient for the compiler to generate a temporarylobject.
Precisely when such temporaries are introduced is implementation dependent. For example,

class X {
...

public:
...
X(int);
X(const X&);
~X(;

ooooooodg

h

XH(X);

O

void g()

X a(l1);
X b =1(X(2));
a=f(a);

ooooOooo

}

Here, an implementation might use a temporary in which to con3(gt before passing it tf) using O

X's copy-constructor; alternatively§(2) might be constructed in the space used to hold the argumiént.
Also, a temporary might be used to hold the resufi(Xf2)) before copying it tdb using X's copy- 0O
constructor; alternativelyf() ’'s result might be constructed im. On the other hand, the expressian
a=f(a) requires a temporary for either the argunsent the result of(a) to avoid undesired aliasing of

a. Even if the copy constructor is not called, all the semantic restrictions, such as accessibility, shalllbe sat-
isfied.

When a compiler introduces a temporary object of a class that has a non-trivial constructor (12.1), it shall
ensure that a constructor is called for the temporary object. Similarly, the destructor shall be called for a
temporary with a non-trivial destructor (12.4). Ordinarily, temporary objects are destroyed as the last step

12.2 Temporary objects DRAFT: 1 February 1995 Special member functions 43

in evaluating the full-expression (1.8) that (lexically) contains the point where they were created. This is
true even if that evaluation ends in throwing an exception.

There are two contexts in which temporaries are destroyed at a different point then at the end of the full-
expression. The first context is when an expression appears as an initializer for a declarator defining an
object. In that context, the temporary that holds the result of the expression shall persist until the dabject’s
initialization is complete. The object is initialized from a copy of the temporary; during this copying] an
implementation can call the copy constructor many times; the temporary is destroyed as soon as it has been
copied. O

The second context is when a temporary is bound to a reference. The temporary bound to the refefénce or
the temporary containing the sub-object that is bound to the reference persists for the lifetime of th&lrefer-
ence initialized or until the end of the scope in which the temporary is created, which ever comes first. A
temporary holding the result of an initializer expression for a declarator that declares a reference persists
until the end of the scope in which the reference declaration occurs. A temporary bound to a refereite in a
constructor’s ctor-initializer (12.6.2) persists until the constructor exits. A temporary bound to a refédence
parameter in a function call (5.2.2) persists until the completion of the call. A temporary bound in alfunc-

tion return statement (6.6.3) persists until the function exits. O
In all cases, temporaries are destroyed in reverse order of creation. O
12.3 Conversions [class.conv]

Type conversions of class objects can be specified by constructors and by conversion functions.

Such conversions, often calleder-defined conversionare used implicitly in addition to standard conver-
sions (4). For example, a function expecting an argument ofXyq@n be called not only with an argu-

ment of typeX but also with an argument of tyewhere a conversion fror to X exists. User-defined
conversions are used similarly for conversion of initializers (8.5), function arguments (5.2.2, 8.3.5), func-
tion return values (6.6.3, 8.3.5), expression operands (5), expressions controlling iteration and selection
statements (6.4, 6.5), and explicit type conversions (5.2.3, 5.4).

User-defined conversions are applied only where they are unambiguous (10.2, 12.3.2). Conversions obey
the access control rules (11). As ever access control is applied after ambiguity resolution (3.4).

See 13.2 for a discussion of the use of conversions in function calls as well as examples below.

12.3.1 Conversion by constructor [class.conv.ctor]

A constructor declared without tifienction-specifieexplicit that can be called with a single parametér
specifies a conversion from the type of its first parameter to the type of its class. Such a constractor is
called a converting constructor. For example,

class X {
...
public:
X(int);
X(const char*, int =0);
2
void f(X arg) O
{ O
Xa=1; /l'a=X(1)
X b ="Jessie"; /I b=X("Jessie",0)
a=2; Il'a=X(2)
f3); 11(X(3))
}

A nonconverting constructor constructs objects just like converting constructors, but does so only where a
constructor call is explicitly indicated by the syntax. a

12-4 Special member functions DRAFT: 1 February 1995 12.3.1 Conversion by constructor

class Z { a
public: a

explicit Z(int); a

... a
h 0
Zal=1, I error: no implicit conversion a
Za3d=27(1); Il ok: explicit use of constructor a
Z a2(1); Il ok: explicit use of constructor a
Z* p = new Z(1); // ok: explicit use of constructor a

When no converting constructor for classaccepts the given type, no attempt is made to find other ddn-
structors or conversion functions to convert the assigned value into a type acceptable to a constructor for
classX. For example,

class X {

public:
X(int);
...

OoOoooo

k

class Y {

public:
Y(X);
...

I o o |

h

Ya=1; [illegal: Y(X(1)) not tried

12.3.2 Conversion functions [class.conv.fct]

A member function of a clagéwith a name of the form

conversion-function-id:
operator conversion-type-id

conversion-type-id:
type-specifier-seq conversion-declarafpr

conversion-declarator:
ptr-operator conversion-declaratgy

specifies a conversion froMto the type specified by thepnversion-type-id Such member functions are
called conversion functions. Classes, enumerationstygedlef-name shall not be declared in thygpe- O
specifier-seq Neither parameter types nor return type can be specified. A conversion operator isthever
used to convert a (possibly qualified) object (or reference to an object) to the (possibly qualified) same
object type (or a reference to it), or to a (possibly qualified) base class of that type (or a reference to it). If
conversion-type-iés void or cv-qualifiedvoid , the program is ill-formed.

Here is an example:

class X {
...
public:
operator int();

h

12.3.2 Conversion functions DRAFT: 1 February 1995 Special member functions 42

void f(X a)
{
inti=int(a);
i = (int)a;
i=a;
}
In all three cases the value assigned will be convertext:bperator int() . User-defined conver-
sions are not restricted to use in assignments and initializations. For example,

void g(X a, X b)
{

inti=(a)?1+a:0;
intj=(a&&b) ? a+b : i;

if (@) {// ...
}
}
3 The conversion-type-idin a conversion-function-idis the longest possible sequence aoinversion-
declaratos. This prevents ambiguities between the declarator operator * and its expression counterparts.
For example:

&ac.operator int*i; // syntax error:
I/l parsed as: '&(ac.operator int *) i’
/I not as: '&(ac.operator int)*i’

The * is the pointer declarator and not the multiplication operator.
4 Conversion operators are inherited.
5 Conversion functions can be virtual.

6 At most one user-defined conversion (constructor or conversion function) is implicitly applied to a single
value. For example,

class X {
...
public:
operator int();

h

class Y {

...
public:

operator X();
2

Y a;
inth=a; Il illegal:

/l a.operator X().operator int() not tried
int c = X(a); // ok: a.operator X().operator int()

7 User-defined conversions are used implicitly only if they are unambiguous. A conversion function in a
derived class does not hide a conversion function in a base class unless the two functions convert to the
same type. For example,

class X {
public:
...
operator int();

12-6 Special member functions DRAFT: 1 February 1995 12.3.2 Conversion functions

class Y : public X {

public:
...
operator void*();
I8
void f(Y& a)
if (a) { /I error: ambiguous
I
}
}
12.4 Destructors [class.dtor]

A member function of clasd named-~cl is called a destructor; it is used to destroy objects of ¢ype O
A destructor takes no parameters, and no return type can be specified for it (natidvin|It is not pos-

sible to take the address of a destructor. A destructor can be invokecbftsta, volatile orconst 0O
volatile objectf‘:’?) A destructor shall not be declarednst , volatile or constvolatile O
(9.4.2). A destructor shall not Iséatic O

If a class has naiser-declared destructpra destructor is declared implicitly. Aimplicitly-declared O
destructoris apublic member of its class. A destructortivial if it is an implicitly-declared destructor(

and if: 0
— all of the direct base classes of its class have trivial destructors and O

— for all of the non-static data members of its class that are of class type (or array thereof), ea¢h such
class has a trivial destructor. O
Otherwise, the destructorien-trivial . O

An implicitly-declared destructor ignplicitly-definedwhen it is used to destroy an object of its claSs
type (3.7). A program is ill-formed if the class for which a destructor is implicitly defined has: O

— a non-static data member of class type (or array thereof) with an inaccessible destructor, or 0O

— a base class with an inaccessible destr&éﬁor.

Box 49 g
Should it be specified more precisely at which point in the program the implicit definition is ill-forpiied?

I |

Bases and members are destroyed in reverse of their construction (see 12.6.1). Destructors for €lements
of an array are called in reverse order of their construction.

Destructors are not inherited. A destructor can be decléuteh! (10.3) or purevirtual (10.4); O

if any objects of that class or any derived class are created in the program, the destructor shall be
defined. If a class has a base class with a virtual destructor, its destructor (whether user- or imjlicitly-
declared) is virtual.

Some language constructs have special semantics when used during destruction; see 12.7. O

A union member cannot be of a class type (or array thereof) that requires a non-trivial destructor.d

2 y/olatile semantics might or might not be used.
When a destructor for a derived class is implicitly defined, all the implicitly-declared destructors for its bases and members are also
implicitly defined (and this recursively for the members’ base classes and members).

10

11

12

13

12.4 Destructors DRAFT: 1 February 1995 Special member functions 47

Destructors are invoked implicitly (1) when an automatic variable (3.7) or temporary (12.2, 8.5.3)
object goes out of scope, (2) for constructed static (3.7) objects at program termination (3.6), and (3)
through use of delete-expressiofb.3.5) for objects allocated bynew-expressiofb.3.4). Destructors

can also be invoked explicitly. delete-expressiomvokes the destructor for the referenced object and
passes the address of its memory to a deallocation function (5.3.5, 12.5). For example,

class X {
...
public:
X(int);
~X0:
2

void g(X*);

void f() /l common use:

{

X* p =new X(111); // allocate and initialize

9(p);
delete p; I/ cleanup and deallocate

}

Explicit calls of destructors are rarely needed. One use of such calls is for objects placed at specific
addresses using mew-expressiorwith the placement option. Such use of explicit placement and
destruction of objects can be necessary to cope with dedicated hardware resources and for writing memory
management facilities. For example,

void* operator new(size_t, void* p) { return p; }
void f(X* p);

static char buf[sizeof(X)];

void g() /I rare, specialized use:

X* p = new(buf) X(222); // use buf[]
Il and initialize

f(p);
p->X::~X(); Il cleanup

}

Invocation of destructors is subject to the usual rules for member functions, e.g., an object of the appropri-
ate type is required (except invokimiglete on a null pointer has no effect). When a destructor is
invoked for an object, the object no longer exists; if the destructor is explicitly invoked again for the same
object the behavior is undefined. For example, if the destructor for an automatic object is explicitly
invoked, and the block is subsequently left in a manner that would ordinarily invoke implicit destruction of
the object, the behavior is undefined.

The notation for explicit call of a destructor can be used for any simple type name. For example, O

int* p;

...

p->int::~int();
Using the notation for a type that does not have a destructor has no effect. Allowing this enables people to
write code without having to know if a destructor exists for a given type.

The effect of destroying an object more than once is undefined. This implies that that explicitly destroying
a local variable causes undefined behavior on exit from the block, because exiting will attempt to destroy
the variable again. This is true even if the block is exited because of an exception.

12-8 Special member functions DRAFT: 1 February 1995 12.5 Free store

12.5 Free store [class.free]
When an object is created withna@w-expressidb.3.4), anallocation functioifoperator new() for
non-array objects ooperator new[]() for arrays) is (implicitly) called to get the required storage
(3.7.3.2).

When a non-array object or an array of cl@igs created by amew-expressigrthe allocation function is
looked up in the scope of claBaising the usual rules.

When anew-expressiois executed, the selected allocation function will be called with the amount of space
requested (possibly zero) as its first argument.

Any allocation function for a classis a static member (even if not explicitly declastatic).

For example,

class Arena; class Array_arena;
struct B {

void* operator new(size_t, Arena*);
}.

truct D1 : B {
2

Arena* ap; Array_arena* aap;
void foo(int i)

{

new (ap) D1; // calls B::operator new(size_t, Arena*)

new D1]i]; /I calls ::operator new([](size_t)

new D1, [l ill-formed: ::operator new(size_t) hidden
}

When an object is deleted with adelete-expressigh.3.5), a deallocation function
(operator delete() for non-array objects ooperator delete[]() for arrays) is (implicitly)
called to reclaim the storage occupied by the object.

When an object is deleted bydalete-expressigrthe deallocation function is looked up in the scope of
class of the executed destructor (see 5.3.5) using the usual rules.

When adelete-expressiois executed, the selected deallocation function will be called with the address of
the block of storage to be reclaimed as its first argument and (if the two-parameter style is used) the size of
the block as its second argumg??t.

Any deallocation function for a clagsis a static member (even if not explicitly declasgdtic). For
example,

class X {
...
void operator delete(void*);
void operator delete[](void*, size_t);

2

class Y {
...
void operator delete(void*, size_t);
void operator delete[](void*);

2

9] |f the static class in thdelete-expressiois different from the dynamic class and the destructor is not virtual the size might be
incorrect, but that case is already undefined.

10

11

12.5 Free store DRAFT: 1 February 1995 Special member functions 492

Since member allocation and deallocation functionsséadc they cannot be virtual. However, the
deallocation function actually called is determined by the destructor actually called, so if the destructor is
virtual the effect is the same. For example,

struct B {
virtual ~B();
void operator delete(void*, size_t);
I3
struct D : B {
void operator delete(void*);
void operator delete[](void*, size_t);
2
void f(int i)
{
B* bp = new D;
delete bp; /I uses D::operator delete(void*)
D* dp = new D[i];
delete [] dp; // uses D::operator delete[](void*, size_t)
}
Here, storage for the non-array object of class deallocated bp::operator delete() , due to the

virtual destructor.

Access to the deallocation function is checked statically. Hence, even though a different one might actually
be executed, the statically visible deallocation function is required to be accessible. Thus in the example

above, ifB::operator delete() had beerprivate , the delete expression would have been ill-
formed.

12.6 Initialization [class.init]

EBox 50 ED
[This needs to be improved to talk about the behavior of all initializations; operator new cannot(iise an
Cinitializer-clause; temporary creation only uses default constructors. ™

When no explicit initialization is specified when creating a class object, if the class has a default congiructor
(12.1), the default constructor is used to initialize the object. If no default constructor exists for théliclass
and the class has a non-trivial constructor (12.1), the object shall be explicitly initialized. If the clas§lis an
aggregate (8.5.1), dnitializer-clausecan be used; otherwise, a call to a user-declared constructor shall be
specified. O

Arrays of objects of class type use constructors in initialization (12.1) just as do individual objects. f the
array is not explicitly initialized and the class has a default constructor, implicit initialization of the afray
elements occurs by calling the default constructor for each element of the array, in order of incigasing
addresses (8.3.4). If no default constructor exists for the class and the class has a non-trivial congtructor,
the array shall be explicitly initialized.

12.6.1 Explicit initialization [class.expl.init]

Objects of classes with user-declared constructors (12.1) can be initialized with a parenthesized expression
list. This list is taken as the argument list for a call of a constructor doing the initialization. Alternatively
for declarations, a single value is specified as the initializer usirgg tiperator. This value is used as th@
argument to a copy constructor (12.1, 12.8). Typically, that call of a copy constructor can be elimihated
(12.2). For example,

12-10 Special member functions DRAFT: 1 February 1995 12.6.1 Explicit initialization

class complex {
...

public:
complex();
complex(double);
complex(double,double);
...

I3
complex sqgrt(complex,complex);
complex a(1); [l initialize by a call of
/I complex(double)
complex b = a; /l initialize by a copy of ‘a’

complex ¢ = complex(1,2); // construct complex(1,2)
I/l using complex(double,double)
I/l copy itinto ‘c’

complex d = sqrt(b,c); /I call sgrt(complex,complex)

/I and copy the result into ‘d’
complex e; [l initialize by a call of

/I complex()
complex f = 3; /I construct complex(3) using

/I complex(double)
I/l copy itinto ‘f’
complexg={1,2}; /I error; constructor is required O

Overloading of the assignment operator (13.4.Bas no effect on initialization. See 8.5 for the distinctian
between the parenthesized anfibrms of initialization.

If an array of class objects is initialized with mmitializer-clause(8.5.1), eachassignment-expressidaa [
treated as an argument in a constructor call to initialize one element of the array, usifgritief initial- O
ization (8.5). If there are fewassignment-expressisiin theinitializer-clausethan elements in the array[d

the remaining elements are initialized using the default constructor for the class. If there is no defadlt con-
structor and thanitializer-clauseis incomplete, the array declaration is ill-formed. For example,

complex v[6] = { 1,complex(1,2),complex(),2 }; ad
Here,v[0] andv[3] are initialized withcomplex::complex(double) , V[1] is initialized with
complex::complex(double,double) , and v[2] , v[4] , and v[5] are initialized with
complex::complex()
The order in which static objects are initialized is described in 3.6.2 and 6.7. a
12.6.2 Initializing bases and members [class.base.init]

The definition of a constructor can specify initializers for direct and virtual base classes and for nohkstatic
members not inherited from a base class. This is most useful for class objects, constants, and references
where the semantics of initialization and assignment diffecto/initializer has the form

ctor-initializer:
meme-initializer-list

meme-initializer-list:
mem-initializer
mem-initializer, meme-initializer-list

meme-initializer:
I opt NESted-name-specifigrclass-name(expression-ligf,)
identifier (expression-ligf,)

The argument list is used to initialize the named nonstatic member or base class object. This (or for an
aggregate (8.5.1), initialization by a brace-enclosed list) is the only way to initialize noocstetic and

12.6.2 Initializing bases and members DRAFT: 1 February 1995 Special member functions-124

reference members. For example,

struct B1 { B1(int); /* ... */ };
struct B2 { B2(int); /* ... */ };

struct D : B1, B2 {

D(int);
B1 b;
const c;
I3
D::D(int a) : B2(a+1), B1(at+2), c(at+3), b(at4)
{r..*}%
D d(10);

If classX has a membeanof class typeMandMhas no default constructor, then a definition of a construdibr

for classXis ill-formed if it does not specify mem-initializerfor m O
O
EBOX 51 El]
0t needs to be made clear that the order specified below applies for user-declared constructors as wgll as for
Omplicitly-declared constructors. M

First, the base classes are initialized in declaration order (independent of the ander-ofitializes), then

the members are initialized in declaration order (independent of the ordeerofinitializes), then the

body ofD::D() is executed (12.1). The declaration order is used to ensure that sub-objects and members
are destroyed in the reverse order of initialization.

Virtual base classes constitute a special case. Virtual bases are constructed before any nonvirtual bases and
in the order they appear on a depth-first left-to-right traversal of the directed acyclic graph of base classes;
“left-to-right’ is the order of appearance of the base class names in the declaration of the derived class.

The class of aomplete objedfl.6) is said to be thmost deriveatlass for the sub-objects representing base
classes of the object. All sub-objects for virtual base classes are initialized by the constructor of the most
derived class. If a constructor of the most derived class does not spefp-énitializerfor a virtual base [
class then that virtual base class shall have a default constructomenyinitializes for virtual classes
specified in a constructor for a class that is not the class of the complete object are ignored. For example,

class V {

public:
V();
V(int);
...

2

class A : public virtual V {
public:

AQ;

A(int);

...
2

class B : public virtual V {
public:

B();

B(int);

...

12-12 Special member functions DRAFT: 1 February 1995 12.6.2 Initializing bases and members

class C : public A, public B, private virtual V {

public:
C0);
C(int);
...

h

AzA(Nt) V(@A) {7+ ... %}
B:B(inti) {/*...*/}
CaC(inti) { /... %}

V v(1); // use V(int)
A a(2); /l use V(int)
B b(3); // use V()
C c(4); /Il use V()

A mem-initializeris evaluated in the scope of the constructor in which it appears. For example,

class X {

int a;
public:

const int&r;

X0: (@) {}

oooooo O

initializesX::r to refer toX::a for each object of class

The identifier of actor-initializer's meme-initializerin a class’ constructor is looked up in the scope of the
class. It shall denote a nonstatic data member or the type of a direct or virtual base class. For thelpurpose
of this name lookup, the name, if any, of each class is considered a nested class member of that class. A
constructor'snem-initializer-listcan initialize a base class using any name that denotes that base clas&itype;

the name used can differ from the class definition. For example: O
struct A { AQ; }; a
typedef A global_A,; a
struct B { }; a
struct C: public A, public B { C(); }; O
C::C(): global_A() {} Il calls A() a

A base class type in @or-initializers mem-initializershall not designate both a direct non-virtual base
class and an inherited virtual base class. For example:

struct A { A(); };
struct B: public virtual A {};
struct C: public A, public B {C(); };

C:C(O: A){} I ill-formed: which A?

Member functions (including virtual member functions, 10.3) can be called for an object under coristruc-
tion. Similarly, an object under construction can be the operand afgb&l operator (5.2.7) or of all
dynamic_cast (5.2.6). However, if these operations are performeddtorintializer (or in a function O
called directly or indirectly from ator-intializer) before all thenem-initializes for base classes have contd

pleted, the result of the operation is undefined. For example: a
class A { a

public: O

A(int); a

h 0

12.6.2 Initializing bases and members DRAFT: 1 February 1995 Special member functions-13

class B : public A { a

int j; a

public: O

int f(); a

B() : A(f()), [/l undefined: calls member function a

// but base A not yet initialized a

jE0) {} I/l well-defined: bases are all initialized a

; O

class C { a

public: a

C(int); O

3 O

class D : public B, C { a

inti; 0

public: O

D() : C(f()), // undefined: calls member function a

// but base C not yet initialized a

i(f0) { /Il well-defined: bases are all initialized a

; O

12.7 describes the result of virtual function caljgeid anddynamic_cast s during construction for O

the well-defined cases; that is, describegtbigmorphic behavioof an object under construction. O
12.7 Construction and destruction [Jclass.cdtor]

For an object of non-POD class type (9), before the constructor begins execution and after the deStructor
finishes execution, referring to any nonstatic member or base class of the object results in undefined’behav-
ior. For example, O

struct X { inti; };

struct Y : X{};

struct A{inta; };

struct B : public A {intj; Yvy;};

OoOodono

extern B bobj;

B* pb = &bobj; Il ok

int* p1 = &bobj.a; /I undefined, refers to base class member
int* p2 = &bobj.y.i; /I undefined, refers to member’'s member

OoOodono

A* pa = &bobj; /I undefined, upcast to a base class type
B bobj; I/ definition of bobj

oo

extern X xobj;
int* p3 = &xobj.i; /I Ok, X is a POD class
X xobj;

Oo0Ood

Example

struct W {iint j; };
struct X : public virtual W { };
struct Y {
int *p;
X X;
Y() : p(&x.)) // undefined, x is not yet constructed
{}

OooooOoooo O

12-14 Special member functions DRAFT: 1 February 1995 12.7 Construction and destruction

To explicitly or implicitly convert a pointer to an object of clas® a pointer to a direct or indirect basél
classB, the construction oK and the construction of all of its direct or indirect bases that directly or indi-
rectly derive fromB and which are also direct or indirect base classe®Yfshall have started and thé]
destruction of these classes shall not have completed, otherwise the computation results in uridefined
behavior. To form a pointer to a direct nonstatic member of an obgigen a pointer t, the construc- O

tion of X shall have started and the destructiorXafhall not have completed, otherwise the computatidn

results in undefined behavior. For example, O
struct A { }; a
struct B : virtual A {}; a
struct C: B {}; O
struct D : virtual A { D(A*); }; a
struct X { X(A*%); }; a
struct E: C, D, X{ a

E() : D(this), // undefined: upcast from E* to A* a
/I might use path E* -> D* -> A* a

// but D is not constructed a

/I D((C*)this), // defined: 0
/I E* -> C* defined because E() has started a

/I and C* -> A* defined because a

/I C fully constructed a

X(this) /l defined: upon construction of X, a
/I C/BIDI/A sublattice is fully constructed a

{} O
h 0

Member functions, including virtual functions (10.3), can be called during construction or destrddtion
(12.6.2). When a virtual function is called directly or indirectly from a constructor (including fronilits
ctor-initializer) or from a destructor, the function called is the one defined in the constructor or destructor’s
own class or in one of its bases, but not a function overriding it in a class derived from the constructor or
destructor’s class or overriding it in one of the other base classes of the complete object (1.6). If thelvirtual
function call uses an explicit class member access (5.2.4) and the object-expression’s type is neifher the
constructor or destructor’s own class or one of its bases, the result of the call is undefined. For example,

class V { O
public:
virtual void f(); O
virtual void g(); O
2
class A : public virtual V { 0
public:
virtual void f(); ad
2
class B : public virtual V { O
public: a
virtual void g(); O
B(V*, A%); 0
I3 0

®U)if X is itself a base class, not all classes derived Bare necessarily base classeXof

12.7 Construction and destruction DRAFT: 1 February 1995 Special member functions 425

class D : public A, B {
public:
virtual void f();
virtual void g();
D() : B((A%)this, this) {}

B::B(V*v, A* a) {
fQ); /I calls V::f, not A::f
g(); // calls B:g, not D::g
v->g(); // v is base of B, the call is well-defined, calls B::g
a->f(); // undefined behavior, a’s type not a base of B

OoOoOooOoOono OoOoOoodono

}

Thetypeid operator (5.2.7) can be used during construction or destruction (12.6.2). typeeh is O
used in a constructor (including in itsor-initializer) or in a destructor, or used in a function called
(directly or indirectly) from a constructor or destructor, if the operangpafid refers to the object under]
construction or destructiotypeid yields the typeinfo representing the constructor or destructor’s clags.

If the operand ofypeid refers to the object under construction or destruction and the static type dfl the
operand is neither the constructor or destructor’s class nor one of its bases, the tygseid of is unde- O
fined. O

Dynamic_cast s (5.2.6) can be wused during construction or destruction (12.6.2). Whed a
dynamic_cast is used in a constructor (including in @®r-initializer) or in a destructor, or used in &l
function called (directly or indirectly) from a constructor or destructor, if the operand of [the
dynamic_cast refers to the object under construction or destruction, this object is considered tdbe a
complete object that has the type of the constructor or destructor's class. If the operand @f the
dynamic_cast refers to the object under construction or destruction and the static type of the operand is
not a pointer to or object of the constructor or destructor's own class or one of its basel] the

dynamic_cast results in undefined behavior. O
Example O
class V { a

public: a

virtual void f(); O

I3 0

class A : public virtual V {}; a

class B : public virtual V { a

public: O

B(V*, A%); 0

I3 0

class D : public A, B { a

public: O

D() : B((A*)this, this) { } 0

I3 0

12-16 Special member functions DRAFT: 1 February 1995 12.7 Construction and destruction

B::B(V* v, A* a) { a
typeid(this); // type_info for B a

typeid(*v); // well-defined: *v has type V, a base of B a

/I yields type_info for B a

typeid(*a); // undefined behavior: type A not a base of B a
dynamic_cast<B*>(v); // well-defined: v of type V*, V base of B a

/l results in B* O

dynamic_cast<B*>(a); // undefined behavior, a

/[a has type A*, A not a base of B a

} g

12.8 Copying class objects [class.copy]

A class object can be copied in two ways, by initialization (12.1, 8.5), including for function argument
passing (5.2.2) and for function value return (6.6.3), and by assignment (5.17). Conceptually, théSe two
operations are implemented by a copy constructor (12.1) and copy assignment operator (13.4.3).

A copy constructofor a classX is a constructor whose first parameter is of ty&eor const X& and 0O
whose other parameters, if any, all have default arguments (8.3.6), so that it can be called with &lsingle
argument of typ&X. For exampleX::X(const X&) andX:: X(X&, int=1) are copy constructors. [

5Box 52 El]
Should the parameter of the implicitly-declared copy constructor havectyys volatile X&? See{d

[04-0193R1/N0O580R1. ™
class X { O
I ... a
public: a
X(int); O
X(const X&, int = 1); O
|3 0
X a(l); /I calls X(int); a
X b(a, 0); /I calls X(const X&, int); a
Xc=b; /I calls X(const X&, int); a
A constructor for a clasX whose first and only parameter is of type (optionally cv-qualifiéd$ ill- O
formed. 0
If there is nauser-declared copy constructa copy constructor is implicitly declar&H. O
If all bases and members of a clasbave copy constructors accepticgnst parameters, the implicitly- O
declared copy constructor fdrhas a single parameter of typenst X& , as follows: O
X::X(const X&) O
Otherwise it has a single parameter of t)qﬂrgz): O
X X(X&) ad
0
%) Thus the class definition O
struct X {
X(const X&, int);
h
causes a copy constructor to be implicitly-declared and the member function definition O
X::X(const X& x, inti=0){...}
is ill-formed because of ambiguity. O
62) In this case, programs that attempt initialization by copyirmpoét X objects are ill-formed. |

12.8 Copying class objects DRAFT: 1 February 1995 Special member functions-127

An implicitly-declared copy constructor igpablic member of its class. Copy constructors are not inhEr-
ited.

An implicitly-declared copy constructor isiplicitly definedwhen it is used to copy an object of its clags

type. g

EBOX 53 El]

[We need to refer to subclauses that describe when class copy takes place. Is the concept of trivial capy con-
CStructor needed? ™

A program is ill-formed if the class for which a copy constructor is implicitly defined has: O

— a nonstatic data member of class type (or array thereof) with an inaccessible copy constructor{Jor

— a base class with an inaccessible copy constrfor. O

Box 54 h

O
Should it be specified more precisely at which point in the program the implicit definition is ill-forpied?
i.e. is something like this needed: "The first declaration or expression that does a class copy calgking the
implicitly-declared copy constructor to be implicitly-defined is ill-formed" ? O

OoOooom

The semantics of the implicitly-declared copy constructor are thateafiberwise initializatioof the [
base classes and nonstatic data members; memberwise initialization implies that iKdakiasnem- O
ber (or array thereof) or base of a clss$1s copy constructor is used B§s implicitly-declared copy O
constructor for the initialization of the member or blakeObjects representing virtual base classes will
be initialized only once by the implicitly-declared copy constructor. See 12.6.1 for the order of initial-
ization of members and bases.

A copy assignment operatoperator= is a non-static member function of classvith exactly one O
parameter of typeX&or constX& . If there is nouser-declared copy assignment operatarcopy O
assignment operator is implicitly declared for cldsdf all bases and members of a clXdsave a copy O
assignment operators acceptiognst parameters, the implicitly-declared copy assignment operator
for X will have a single parameter of typenst X& , as follows: g

X& X::operator=(const X&) a
EBox 55 ED
Should the parameter of the implicitly-declared copy assignment operator havenngbeolatile n
[(X&? See 94-0193R1/N0O580R1. ™
Otherwise it will have a single parameter of tyt&§4):

X& X::operator=(X&) O

The implicitly-declared copy assignment operator for ckakas the return typ¥&; it returns the object for O
which the assignment operator is invoked, that is, the object assig?‘f’ d to
O

°3)When a copy constructor for a derived class is implicitly defined, all the implicitly-declared copy constructors for the bages and
gw%mbers are also implicitly defined (and this recursively for the members’ base classes and members).]
4 In this case, programs that attempt assignment by copying ofX¢obgcts will be ill-formed. O

Given the parameter type for the copy assignment operator, objects of a derived class type can be assigned to objects of &n accessi-
ble base class type. For example,

class X {
public:
int b;

b8
class Y : public X {
public:

intc;

ooooooaoo

10

11

12

12-18 Special member functions DRAFT: 1 February 1995 12.8 Copying class objects

An implicitly-declared copy assignment operator jgudlic of its class. Copy assignment operators are

not inherited. O

An implicitly-declared copy assignment operatoinglicitly definedwhen an object of its class type il
copied. O

EBOX 56 El]

We need to refer to subclauses that describe when class copy takes place. Is the concept of trivial copy
Cassignment operator needed? M

A program is ill-formed if the class for which a copy assignment operator is implicitly defined has: [0

— a nonstatic data memberainst type, or O
— a nonstatic data member of reference type, or O
— a nonstatic data member of class type (or array thereof) with an inaccessible copy assignmentlopera-
tor, or g
— a base class with an inaccessible copy assignment opee@ator O
Box 57 in

O
Should it be specified more precisely at which point in the program the implicit definition is ill-forpied?

OoOooom

implicitly-declared copy assignment operator to be implicitly-defined is ill-formed" ? O [

The semantics of the implicitly-declared copy assignment operator are that of memberwise assighment
of the base classes and nonstatic data members; memberwise assignment implies thatifraslass]
member (or array thereof) or base of a cddls copy assignment operator is usedyy implicitly- 0O
declared copy assignment operator for the assignment of the member M @bgcts representingd
gin)tuaI base classes will be assigned only once by a the implicitly-declared copy assignment opkrator

0

O

b
void f()
{
X x1;

Yyl

x1 =y1; /I1: ok

yl=x1; /I error

}
Online //1yl.b is assignedtal.b andyl.c is not copied. O

When a copy assignment operator for a derived class is implicitly defined, all the implicitly-declared copy assignment operators for
the bases and members are also implicitly defined (and this recursively for the members’ base classes and members). O

Copying one object into another using the copy constructor or the copy assignment operator does not change the layout(dr size of
either object. For example,

struct s {
virtual f();
...

oooo

b

struct ss : public s {

f0;
...

oooo

b
void f()
{
sa;

ss b;
a=b; /I really a.s::operator=(b)

oooog

i.e. is something like this needed: "The first expression that does a class assignment caudihg the

12.8 Copying class objects DRAFT: 1 February 1995 Special member functions-13

Box 58 0

0
U 0
00 This needs more work. See 94-0193R1/N0O580R1.

b=a; /I error
a.f(); /l calls s::f
b.f(); /I calls ss::f

(s&)b =a; //assigntob’ss part
/I really ((s&)b).s::operator=(a)
b.f(); /1 still calls ss::f
}

The calla.f() will invoke s::f() (as is suitable for an object of clas$10.3)) and the cab.f()
able for an object of class).

will call ss::f()

(as is suit-

oooooood

[|

13 Overloading [over]

When two or more different declarations are specified for a single name in the same scope, that name is
said to beoverloaded By extension, two declarations in the same scope that declare the same name but
with different types are calleoverloaded declarationsOnly function declarations can be overloaded;
object and type declarations cannot be overloaded.

When an overloaded function name is used, which overloaded function declaration is being referenced
is determined by comparing the types of the arguments at the point of use with the types of the parame-
ters in the overloaded declarations that are visible at the point of use. This function selection process is
calledoverload resolutiorand is defined in 13.2. For example,

double abs(double);

int abs(int);
abs(1); /I call abs(int);
abs(1.0); /I call abs(double);
13.1 Overloadable declarations [over.load]

Not all function declarations can be overloaded. Those that cannot be overloaded are specified here. A
program is ill-formed if it contains two such non-overloadable declarations in the same scope.

Certain function declarations that cannot be distinguished by overload resolution cannot be overloaded:

— Since for any typ&T,” a parameter of typ€l” and a parameter of type “referencelibaccept the
same set of initializer values, function declarations with parameter types differing only in this
respect cannot be overloaded.

E Box 59 B
O This restriction is hard to check across translation units. Moreover, ambiguities can be detegted just
0 fine at call time. Perhaps we should remove it. O
For example,

int f(int i)

{

...
}

int f(int& r) // error: function types
/I not sufficiently different
{

}

It is, however, possible to distinguish betwéesference tawonst T,” “reference tovolatile

T,” and plain“reference tal” so function declarations that differ only in this respect can be over-
loaded. Similarly, it is possible to distinguish betwegointer to const T ,” “pointer to
volatileT ;" and plain“reference tol” so function declarations that differ only in this respect

can be overloaded.

...

13-2 Overloading DRAFT: 1 February 1995 13.1 Overloadable declarations

— Function declarations that differ only in the return type cannot be overloaded.

— Member function declarations with the same name and the same parameter types cannot ke over-
loaded if any of them is static =~ member function declaration (9.5). The types of the impli€it
object parameters constructed for the member functions for the purpose of overload resalution
(13.2.1) are not considered when comparing parameter types for enforcement of this rule. I con-
trast, if there is ngtatic member function declaration among a set of member function declara-
tions with the same name and the same parameter types, then these member function declarations
can be overloaded if they differ in the type of their implicit object parameter. The following exam-
ple illustrates this distinction: O

class X {
static void f();
void f(); /I ill-formed
void f() const; /I ill-formed
void f() const volatile; // ill-formed
void g();
void g() const; /I Ok: no static g
void g() const volatile; // Ok: no static g

OoOoOooooooo

h
Function declarations that have equivalent parameter declarations declare the same function and there-
fore cannot be overloaded:

— Parameter declarations that differ only in the use of equivalent typgges are equivalent. A
typedef is not a separate type, but only a synonym for another type (7.1.3). For example,

typedef int Int;

void f(int i);

void f(Int i); // OK: redeclaration of f(int)
void f(int i) {/* ... */ }

void f(Inti) { /* ... */} /I error: redefinition of f(int)

Enumerations, on the other hand, are distinct types and can be used to distinguish overloaded func-
tion declarations. For example,

enumE {a};

void f(int i) { /* ... */ }
void f(E i) {/*..*}

— Parameter declarations that differ only in a poititeersus an arraf} are equivalent. That is, the
array declaration is adjusted to become a pointer declaration (8.3.5). Note that only the second and
subsequent array dimensions are significant in parameter types (8.3.4).

f(char*);

f(char[]); /l same as f(char*);
f(char[7]); /I same as f(char*);
f(char[9]); /I same as f(char*);
g(char(*)[10]);

g(char[5][10]); // same as g(char(*)[10]);
g(char[7][10]); // same as g(char(*)[10]);
g(char(®)[20]); // different from g(char(*)[10]);

— Parameter declarations that differ only in the presence or abseooestf and/orvolatile are
equivalent. That is, theonst andvolatile type-specifiers for each parameter type are ignored
when determining which function is being declared, defined, or called. For example,

13.1 Overloadable declarations DRAFT: 1 February 1995 Overloading 3

typedef const int cint;

int f (int);

int f (const int); /l redeclaration of f (int);
intf(int) {...} /I definition of f (int)
intf(cint){...} /I error: redefinition of f (int)

Only theconst andvolatile type-specifiers at the outermost level of the parameter type speci-

fication are ignored in this fashioopnst andvolatile type-specifiers buried within a parame-

ter type specification are significant and can be used to distinguish overloaded function declarations.

In particular, for any typd, “pointer toT,” “pointer toconst T,” and“pointer tovolatile ™ 0O
are considered distinct parameter types, asraference td,” “reference t@wonst T,” and“refer-
ence tovolatile T

— Two parameter declarations that differ only in their default initialization are equivalent. Consider the

following example
void f (int i, int j);

void f (int i, int j = 99); /I Ok: redeclaration of f (int, int)
void f (inti =88, int j = 99); /I Ok: redeclaration of f (int, int)
void f (); I/l Ok: overloaded declaration of f

void prog ()
{

f(1,2); // Ok: callf (int, int)

f(1); /I Ok: call f (int, int)
f0; /I Error: f (int, int) or f ()?
}
13.1.1 Declaration matching [over.dcl]

Two function declarations of the same name refer to the same function if they are in the same scope and

have equivalent parameter declarations (13.1). A function member of a derived clasmithe same
scope as a function member of the same name in a base class. For example,

class B {
public:
int f(int);
I3
class D : public B {

public:
int f(char*);
2

HereD::f(char*) hidesB::f(int) rather than overloading it.
void h(D* pd)
{

pd->f(1); I error:
/I D::f(char*) hides B::f(int)
pd->B::f(1); /I ok
pd->f("Ben"); /I ok, calls D::f
}

A locally declared function is not in the same scope as a function in a containing scope.

13-4 Overloading DRAFT: 1 February 1995 13.1.1 Declaration matching

int f(char*);
void g()
{

extern f(int);
f("asdf"); /I error: f(int) hides f(char*)
/I so there is no f(char*) in this scope

}

void caller ()

void callee (int, int);

{

void callee (int); // hides callee (int, int)
callee (88, 99); /Il error: only callee (int) in scope

)

Different versions of an overloaded member function can be given different access rules. For examgdlg,

class buffer {

private:
char* p;
int size;

protected:
buffer(int s, char* store) { size = s; p = store; }
...

public:
buffer(int s) { p = new char[size = s]; }
...

13.2 Overload resolution [over.match]

Overload resolution is a mechanism for selecting the best function to call given a list of expressions that are
to be the arguments of the call and a seaofidate functionthat can be called based on the context of the

call. The selection criteria for the best function are the number of arguments, how well the arguments
match the types of the parameters of the candidate function, and certain other properties of the candidate
function. The function selected by overload resolution is not guaranteed to be appropriate for the context.
Other restrictions, such as the accessibility of the function, can make its use in the calling contéxt ill-
formed.

Overload resolution selects the function to call in five distinct contexts within the language:
— Invocation of a function named in the function call syntax (5.2.2)

— Invocation of a function call operator, a pointer-to-function conversion function, or a reference-to-
function conversion function of a class object named in the function call syntax (13.2.1.1)

— Invocation of the operator referenced in an expression (5)

— Invocation of a constructor during initialization of a class object via a parenthesized expression list
(12.6.1)

— Invocation of a user-defined conversion during initialization from an expression (8.5, 8.5.3)

Each of these contexts defines the set of candidate functions and the list of arguments in its own unique
way. But, once the candidate functions and argument lists have been identified, the selection of the best
function is the same in all cases:

— First, a subset of the candidate functiesiiose that have the proper number of arguments and meet

13.2 Overload resolution DRAFT: 1 February 1995 Overloading 135

certain other conditiors-is selected to form a setwhble functions

— Then the best viable function is selected based on the implicit conversion sequences (13.2.3.1) needed
to match each argument to the corresponding parameter of each viable function.

If a best viable function exists and is unique, overload resolution succeeds and produces it as the result.
Otherwise overload resolution fails and the invocation is ill-formed.

13.2.1 Candidate functions and argument lists [over.match.funcs]

The following subclauses describe the set of candidate functions and the argument list submitted to over-
load resolution in each of the five contexts in which overload resolution is used. The source transforma-
tions and constructions defined in these subclauses are only for the purpose of describing the overload reso-
lution process. An implementation is not required to use such transformations and constructions.

The set of candidate functions can contain both member and non-member functions to be resolved against
the same argument list. So that argument and parameter lists are comparable within this heterogeneous set,
a member function is considered to have an extra parameter, callmptioit object parameterwhich
represents the object for which the member function has been called. For the purposes of overload resolu-
tion, both static and non-static member functions have an implicit object parameter, but constructors do not.

Similarly, when appropriate, the context can construct an argument list that contampliad object [
argumentto denote the object to be operated on. Since arguments and parameters are associated by posi-
tion within their respective lists, the convention is that the implicit object parameter, if present, is always
the first parameter and the implied object argument, if present, is always the first argument.

For non-static member functions, the type of the implicit object paraméiefésence tav X’ whereX is

the class that defines the member function @nig the cv-qualification on the member function declara-
tion. For example, for aonst member function of clas, the extra parameter is assumed to have type
“reference toconst X ”. For static member functions, the implicit object parameter is considered to
match any object (since if the function is selected, the object is discarded).

During overload resolution, the implied object argument is indistinguishable from other arguments. The
implicit object parameter, however, retains its identity since conversions on the corresponding argument
shall obey these additional rules:

— no temporary object can be introduced to hold the argument for the implicit object parameter
— no user-defined conversions can be applied to achieve a type match with it

— even if the implicit object parameter is raainst -qualified, an rvalue temporary can be bound to the
parameter as long as in all other respects the temporary can be converted to the type of the implicit
object parameter.

13.2.1.1 Function call syntax [over.match.call]

Recall from 5.2.2, that function callis a postfix-expressigrpossibly nested arbitrarily deep in parenthe-
ses, followed by an optionakpression-lisenclosed in parentheses:

(--(opt POstfix-expression) ...) oo (€Xpression-ligf,)

Overload resolution is required if thpostfix-expressiogields the name of a function, an object of class
type, or a set of pointers-to-function.

Subclauses 13.2.1.1.1 and 13.2.1.1.2, respectively, describe how overload resolution is used in the first two
cases to determine the function to call.

The third case arises frompastfix-expressionf the form&F, whereF names a set of overloaded func-
tions. In the context of a function call, the set of functions name# &lyall contain only non-member

functions and static member functi§ifs And in this context usingF behaves the same as using the name
O
°8) |t F names a non-static member functi&@f,is a pointer-to-member, which cannot be used with the function call syntax. 0

13-6 Overloading DRAFT: 1 February 1995 13.2.1.1 Function call syntax

F by itself. Thus, (&F)(expression-ligf,) is simply (F)(expression-ligf,), which is discussed in
13.2.1.1.1. (The resolution &fF in other contexts is described in 13.3.)

13.2.1.1.1 Call to named function [over.call.func]

Of interest in this subclause are only those function calls in whicpdsiix-expressiomltimately con-
tains a name that denotes one or more functions that might be called. Rostfixaexpressigrperhaps
nested arbitrarily deep in parentheses, has one of the following forms:

postfix-expression:
postfix-expression id-expression
postfix-expression> id-expression
primary-expression

These represent two syntactic subcategories of function calls: qualified function calls and unqualified func-
tion calls.

In qualified function calls, the name to be resolved igleaxpressiorand is preceded by an or. oper-

ator. Since the construét>B is generally equivalent tfA).B , the rest of this clause assumes, without

loss of generality, that all member function calls have been normalized to the form that uses an object and

the. operator. Furthermore, this clause assumes thaidasigix-expressiothat is the left operand of the
operator has typécv T” whereT denotes a cla®. Under this assumption, tie-expressiornn the call

is looked up as a member functionTofollowing the rules for looking up names in classes (10). If a mem-

ber function is found, that function and its overloaded declarations constitute the set of candidate functions.

Because of the usual name hiding rules, these will all be declafedrithey will all be declared in the

same base class ®f The argument list is thexpression-listn the call augmented by the addition of the

left operand of the operator in the normalized member function call as the implied object argument.

In unqualified function calls, the name is not qualified by-anor . operator and has the more general
form of aprimary-expression The name is looked up in the context of the function call following the nor-
mal rules for name lookup. If the name resolves to a non-member function declaration, that function and its
overloaded declarations constitute the set of candidate functions. Because of the usual name hiding rules,
these will all be declared in the same block or namespace. The argument list is the sarerpasdssien-

list in the call. If the name resolves to a member function, then the function call is actually a member func-
tion call. If the keywordhis is in scope and refers to the class of that member function, then the function
call is transformed into a normalized qualified function call uéitigs) as thepostfix-expressioto the

left of the. operator. The candidate functions and argument list are as described for qualified function
calls above. If the keyworthis is not in scope or refers to another class, then name resolution found a
static member of some cla$s In this case, all overloaded declarations of the function namdactome
candidate functions and a contrived object of typgeecomes the implied object argur’r?@?)t The call is
ill-formed, however, if overload resolution selects one of the non-static member functioimstbfs case.

13.2.1.1.2 Call to object of class type [over.call.object]

If the primary-expressioii in the function call syntax evaluates to a class object of‘typ®&”, then the set
of candidate functions includes at least the function call operatdrs Biie function call operators @fare
obtained by ordinary lookup of the nagerator() in the context ofE).operator() . Because of
the usual name hiding rules, these will all be declared an they will all be declared in the same base
class ofT.

In addition, for each conversion function declared of the form

operator conversion-type-id() cv-qualifier,

O

%Y Note that cv-qualifiers on the type of objects are significant in overload resolution for both Ivalue and rvalue objects. |
An implied object argument must be contrived to correspond to the implicit object parameter attributed to member function&lduring
overload resolution. It is not used in the call to the selected function. Since the member functions all have the same implidit object

parameter, the contrived object will not be the cause to select or reject a function. |

13.2.1.1.2 Call to object of class type DRAFT: 1 February 1995 Overloading 438

where conversion-type-iddenotes the typépointer to function with parameters of typ,...Pn and
returningR’ or type“reference to function with parameters of tyik...Pn and returningR’, asurrogate
call functionwith the unique nameall-functionand having the form

R call-function (conversion-type-idF, P1 al, ...Pnan){returnF (al, ..,an); }

is also considered as a candidate function. Similarly, surrogate call functions are added to the set of candi-
date functions for each conversion function declared in an accessible base class provided the function is not
hidden withinT by another intervening declaratidh

If such a surrogate call function is selected by overload resolution, its body, as defined above, will be exe-
cuted to converE to the appropriate function and then to invoke that function with the arguments of the
call.

The argument list submitted to overload resolution consists of the argument expressions present in the func-
tion call syntax preceded by the implied object argurfiEnt. When comparing the call against the func-

tion call operators, the implied object argument is compared against the implicit object parameter of the
function call operator. When comparing the call against a surrogate call funtion, the implied object argu-
ment is compared against the first parameter of the surrogate call function. The conversion function from
which the surrogate call function was derived will be used in the conversion sequence for that parameter
since it converts the implied object argument to the appropriate function pointer or reference required by
that first parameter.

13.2.1.2 Operators in expressions [over.match.oper]

If no operand of the operator has a type that is a class or an enumeration, the operator is assumed to be a
built-in operator and interpreted according to clause 5. For example,

class String {
public:
String (const String&);
String (char?*);
operator char* ();
I
String operator + (const String&, const String&);

void f(void)
{

char* p="one" + "two"; // ill-formed because neither
[/l operand has user defined type
intl=1+1; /I Always evaluates to 2 even if
/I user defined types exist which
/I would perform the operation.

}

If either operand has a type that is a class or an enumeration, a user-defined operator function might be
declared that implements this operator or a user-defined conversion can be necessary to convert the bperand
to a type that is appropriate for a built-in operator. In this case, overload resolution is used to determine
which operator function is to be invoked to implement the operator. Therefore, the operator notation is first
transformed to the equivalent function-call notation as summarized in Table 8 (where @ denotes one of the
operators covered in the specified subclause).

O
"IINote that this construction can yield candidate call functions that cannot be differentiated one from the other by overload résolution
because they have identical declarations or differ only in their return type. The call will be ambiguous if overload resolution€annot
select a match to the call that is uniquely better than such undifferentiable functions. |

13-8 Overloading DRAFT: 1 February 1995 13.2.1.2 Operators in expressions

Table 8—relationship between operator and function call notation

[Subclause U Expressiond As member function LU As non-member functioldl

A341 @@ (®)-operator@ () operatgr@ (a) S
13.4.2 a@b (ag.operator@ (b) operatgn@ (a, b) 0
(13.4.3 azb (alloperator= (b) O a
t13.45 db] (a).Bperator[](b) U g
3.4.6 = (ayoperator-> () g E
3.4.7 (a).operator@ (0) operatan@ (a, 0) 0

Three sets of candidate functions are constructed as follows:

— If the first operand of the operator is an object or reference to an object aX,classoperator could be
implemented by a member operator functioiXofThe expression is transformed to a qualified function
call per column 3 of Table 8 and a set of candidate functions is constructed for the transformed call
according to the rules in 13.2.1.1.1. This set is designateddhwer candidates

— If the operator is either a unary or binary operator (13.4.1, 13.4.2, or 13.4.7), the operator could be
implemented by a non-member operator function. The expression is transformed to an unqualified
function call per column 4 of Table 8. The operator name is looked up in the context of the expression
following the usual rules for name lookup except that all member functions are ignored. Thus, if the
operator name resolves to any declaration, it will be to a non-member function declaration. That func-
tion and its overloaded declarations constitute the set of candidate functions designateentieenber
candiédz?tes Because of the name hiding rules, these will all be declared in the same block or name-
space”’.

BBox 60 O

O
Eﬁ motion is expected in Valley Forge that would eliminate all name hiding when resolving non-mgmber
[pperator names so that the non-member candidates would include all operators of the same narie with a
[declaration in any enclosing block or namespace. g

— In any case, a set of candidate functions, calledbthié-in candidates, is constructed. For the
binary operator or the unary operatd, the built-in candidates set is empty. For all other operators,
the built-in candidates include all of the built-in operators defined in 13.5 that, compared to the given
operator,

— have the same operator name, and

— accept the same number of operands, and
O

") Note that the look up rules for operators in expressions are different than the lookup rules for operator function names in alfunction
call as shown in the following example: |

struct A{};
void operator + (A, A);

struct B {
void operator + (B);
void f ();

h

Aa;
void B::f() {

operator+ (a,a); / ERROR - global operator hidden by member
a+a; /I OK - calls global operator+

}

OoOooo O gooogoo oOog

13.2.1.2 Operators in expressions DRAFT: 1 February 1995 Overloading 48

— accept operand types to which the given operand or operands can be converted according to
13.2.3.1.

For the built-in assignment operators, conversions of the left operand are restricted as follows:
— no temporaries are introduced to hold the left operand

— no user-defined conversions are applied to achieve a type match with it

For all other operators, no such restrictions apply.

If a built-in candidate is selected by overload resolution, any class operands are first converted to the appro-
priate type for the operator. Then the operator is treated as the corresponding built-in operator and inter-
preted according to clause 5. The set of candidate functions for overload resolution is the union of the
member candidates, the non-member candidates, and the built-in candidates. The argument list contains all
of the operands of the operator.

If the operator is the binary operator ,or the unary operator & and overload resolution is unsuccessful, then
the operator is assumed to be the built-in operator and interpreted according to clause 5.

13.2.1.3 Initialization by user-defined conversions [over.match.user]

Under the conditions specified in 8.5 and 8.5.3, a user-defined conversion can be invoked to conveért the
assignment-expressiaf aninitializer-clauseto the type of the object being initialized (which might bel&
temporary in the reference case). Overload resolution is used to select the user-defined conversion to be
invoked. Assuming thatcvl T” is the type of the object being initialized, the candidate functions @re
selected as follows:

— WhenT is a class type, the constructorsiadre candidate functions

— When the type of thassignment-expressia a class typécv S”, the conversion functions &and its [
base classes are considered. Those that are not hidden Sviahih yield type‘'cv2 T” or a type that O
can be converted to typgeev2 T,” for any cv2 that is the same cv-qualification as, or lesser du-
qualification thangvl, via a standard conversion sequence (13.2.3.1.1) are candidate functions

In both cases, the argument list has one argument, which @ssignment-expressiaf the initializer-
clause This argument will be compared against the first parameter of the constructors and against the
implicit object parameter of the conversion functions.

Because only one user-defined conversion is allowed in an implicit conversion sequence, special rules
apply when selecting the best user-defined conversion (13.2.3, 13.2.3.1).
13.2.1.4 Initialization by constructor [over.match.ctor]

When objects of classes with constructors are initialized with a parenthespedsion-lis{12.6.1), over-
load resolution selects the constructor. The candidate functions are all the constructors of the class of the
object being initialized. The argument list is theression-listvithin the parentheses of the initializer.

13.2.2 Viable functions [over.match.viable]

From the set of candidate functions constructed for a given context (13.2.1), a set of viable functions is cho-
sen, from which the best function will be selected by comparing argument conversion sequences for the
best fit (13.2.3). The selection of viable functions considers relationships between arguments and function
parameters other than the ranking of conversion sequences.

First, to be a viable function, a candidate function shall have enough parameters to agree in number With the
arguments in the list.

— If there aremarguments in the list, all candidate functions having exatfigrameters are viable.

— A candidate function having fewer themparameters is viable only if it has an ellipsis in its parameter
list (8.3.5). For the purposes of overload resolution, its parameter list is extended to the right with

13-10 Overloading DRAFT: 1 February 1995 13.2.2 Viable functions

ellipses so that there are exactiparameters.

— A candidate function having more thamparameters is viable only if then+1)-st parameter has a
default initializer (8.3.6). For the purposes of overload resolution, the parameter list is truncated on the
right, so that there are exacttyparameters.

Second, foiF to be a viable function, there shall exist for each argumemhglicit conversion sequence]
(13.2.3.1) that converts that argument to the corresponding paramg&tetfahe parameter has reference

type, the implicit conversion sequence includes the operation of binding the reference, and the fact that a
reference to nogenst cannot be bound to an rvalue can affect the viability of the function (see
13.2.3.1.4).

13.2.3 Best Viable Function [over.match.best]

Let ICS(F) denote the implicit conversion sequence that converistthargument in the list to the type of
thei-th parameter of viable functidh. Subclause 13.2.3.1 defines the implicit conversion sequences and
subclause 13.2.3.2 defines what it means for one implicit conversion sequence to be a better conversion
sequence or worse conversion sequence than another. Given these definitions, a viableRuristion
defined to be @etterfunction than another viable functid#® if for all argumentd, ICS(F1) is not a

worse conversion sequence thanilE3), and then

— for some argumenjt ICS(F1) is a better conversion sequence than(E5, or, if not that,
— F1 is a non-template function ai@ is a template function, or, if not that, O

— the context is an initialization by user-defined conversion (see 8.5 and 13.2.1.3) and the standdrd con-
version sequence from the return typd-tfto the destination type (i.e., the type of the entity being ifi-
tialized) is a better conversion sequence than the standard conversion sequence from the return type of

F2 to the destination type. For example, O
struct A { a
AQ); 0
operator int(); O
operator double(); a

ta 0
inti=a; /I a.operator int() followed by no conversion is better a
// than a.operator double() followed by a conversion a

I/l toint a

float x =a; // ambiguous: both possibilities require conversions, a
/I and neither is better than the other 0

If there is exactly one viable function that is a better function than all other viable functions, then it is the
one selected by overload resolution; otherwise the call is ill-fofthed

Examples:

O
") The algorithm for selecting the best viable function is linear in the number of viable functions. Run a simple tournament talfind a
functionWthat is not worse than any opponent it faced. Although another furkctiat Wdid not face might be better the#F can- O
not be the best function because at some point in the tourn&mneecbuntered another functi@such thaf was not better thaé.
Hence Wis either the best function or there is no best function. So, make a second pass over the viable functions toWerihethat
ter than all other functions.

13.2.3 Best Viable Function DRAFT: 1 February 1995 Overloading 31

void Fcn(const int*, short);
void Fen(int*, int);

inti;
shorts = 0;
Fen(&i, s); Il is ambiguous because
/I & -> int* is better than &i -> const int*
/I but s -> short is also better than s -> int
Fen(&i, 1L); /I calls Fen(int*, int), because
/I & -> int* is better than &i -> const int*
/l and 1L -> short and 1L -> int are indistinguishable
Fcn(&i,'c’); /I calls Fen(int*, int), because
/I & -> int* is better than &i -> const int*
/I and 'c’ -> int is better than 'c’ -> short
13.2.3.1 Implicit conversion sequences [over.best.ics]

An implicit conversion sequends a sequence of conversions used to convert an argument in a function
call to the type of the corresponding parameter of the function being called. The sequence of conversions is
governed by the rules for initialization of an object or reference by a single expression (8.5 and 8.5.3).

Implicit conversion sequences are concerned only with the type, cv-qualification, and lvalue-ness of the
argument and how these are converted to match the corresponding properties of the parameter. Other prop-
erties, such as the lifetime, storage class, alignment, or accessibility of the argument and whether or not the
argument is a bit-field are ignored. So, although an implicit conversion sequence can be defined for@ given
argument-parameter pair, the conversion from the argument to the parameter might still be ill-formed in the
final analysis.

Except in the context of an initialization by user-defined conversion (13.2.1.3), a well-formed implicit con-
version sequence is one of the following forms:

— astandard conversion sequends.2.3.1.1),
— auser-defined conversion sequel(ts.2.3.1.2), or
— anellipsis conversion sequen¢Es3.2.3.1.3).

In the context of an initialization by user-defined conversion (i.e., when considering the argument of a
user-defined conversion function; see 13.2.1.3), only standard conversion sequences and ellipsis conversion
sequences are allowed.

When initializing a reference, the operation of binding the reference to an object or temporary occurs after
any conversion. The binding operation is not a conversion, but it is considered to be part of a standard con-
version sequence, and it can affect the rank of the conversion sequence. See 13.2.3.1.4.

In all contexts, when converting to the implicit object parameter or when converting to the left operand of
an assignment operation only standard conversion sequences that create no temporary object for the result
are allowed.

If no conversions are required to match an argument to a parameter type, the implicit conversion sequence
is the standard conversion sequence consisting of the identity conversion (13.2.3.1.1).

If no sequence of conversions can be found to convert an argument to a parameter type or the conversion is
otherwise ill-formed, an implicit conversion sequence cannot be formed.

If several different sequences of conversions exist that each convert the argument to the parameter type, the
implicit conversion sequence is a sequence among these that is not worse than all the rest according to
13.2.3.2%. If that conversion sequence in not better than all the rest and a function that uses such an

) This rule prevents a function from becoming non-viable because of an ambiguous conversion sequence for one of its parameters.
Consider this example,

10

13-12 Overloading DRAFT: 1 February 1995 13.2.3.1 Implicit conversion sequences

implicit conversion sequence is selected as the best viable function, then the call will be ill-formed because
the conversion of one of the arguments in the call is ambiguous.

The three forms of implicit conversion sequences mentioned above are defined in the following subclauses.

13.2.3.1.1 Standard conversion sequences [over.ics.scs]

Table 9 summarizes the conversions defined in clause 4 and partitions them into four disjoint categories:
Lvalue Transformation, Qualification Adjustment, Promotion, and Conversion. Note that these categories
are orthogonal with respect to Ivalue-ness, cv-qualification, and data representation: the Lvalue Transfor-
mations do not change the cv-qualification or data representation of the type; the Qualification Adjustments
do not change the Ivalue-ness or data representation of the type; and the Promotions and Conversions do
not change the Ivalue-ness or cv-qualification of the type.

A standard conversion sequence is either the Identity conversion by itself or consists of one to four conver-
sions from the other four categories. At most one conversion from each category is allowed in a single
standard conversion sequence. If there are two or more conversions in the sequence, the conversions are
applied in the canonical ordef:value Transformation, Promotion, Conversion Qualification
Adjustment.

Each conversion in Table 9 also has an associated rank (Exact Match, Promotion, or Conversion). These
are used to rank standard conversion sequences (13.2.3.2). The rank of a conversion sequence is deter-
mined by considering the rank of each conversion in the sequence and the rank of any reference binding
(13.2.3.1.4). If any of those has Conversion rank, the sequence has Conversion rank; otherwise, if any of
those has Promotion rank, the sequence has Promotion rank; otherwise, the sequence has Exact Match rank.

class B;
class A{A (B&); };
class B { operator A (); };
classC{C (B&); }
f(A) {}
f(C){}
B b;
f(b); // ambiguous since b -> C via constructor and
/I'b -> A via constructor or conversion function.

If it were not for this rulef(A) would be eliminated as a viable function for the f{hl) causing overload resolution to sel§€t)
as the function to call even though it is not clearly the best choice. On the other hani@B)f awere to be declared théfb)
would resolved to thdfB) because the exact match wifB) is better than any of the sequences required to rf@gh.

13.2.3.11 DRAFT: 1 February 1995 Overloading 1313
Standard conversion sequences

Table 9—conversions

LConversion 0 Category 0 Rank O Subclausé‘%
ENO conversions required E Identity E E 0
U value-to-rvalue conversion U U U 41 U
| - . . E—
?Array_to_pomter conversion H Lvalue Transformation BExaCt Match 4.2 E
o =e |

[Function-to-pointer conversior] O O 4.3 O
'Ebuallflcatlon conversions H Qualification Adjustmer% o 4.4 E
[lntegral pro_motlons . O Promotion O promotion %2 45 O
LFloating point promotion U U O 46 U
= - t t t (il
Hntegral conversions 0 0 0 4.7
[Floating point conversions [a O 48 O
%Floatmg-lntegral conversions g B 49 U
CPointer conversions 0 Conversion o Conversion 4.10
LPointer to member conversions g 0 4110
= - N O

FBase class conversion 0 0 0 4.12 o
fBoolean conversions g g A 413 ©

13.2.3.1.2 User-defined conversion sequences [over.ics.user]

A user-defined conversion sequence consists of an initial standard conversion sequence followed by a
user-defined conversion (12.3) followed by a second standard conversion sequence. If the user-defined
conversion is specified by a constructor (12.3.1), the initial standard conversion sequence converts the
source type to the type required by the argument of the constructor. If the user-defined conversion is speci-
fied by a conversion function (12.3.2), the initial standard conversion sequence converts the source type to
the implicit object parameter of the conversion function.

The second standard conversion sequence converts the result of the user-defined conversion to the target
type for the sequence. Since an implicit conversion sequence is an initialization, the special rules for
initialization by user-defined conversion apply when selecting the best user-defined conversion for a user-
defined conversion sequence (see 13.2.3 and 13.2.3.1)

It should be noted that a conversion of an expression of class type to the same class type or to a base class
of that type is a standard conversion rather than a user-defined conversion in spite of the fact that a copy
constructor (i.e., a user-defined conversion function) is called.

13.2.3.1.3 Ellipsis conversion sequences [over.ics.ellipsis]

An ellipsis conversion sequence occurs when an argument in a function call is matched with the ellipsis
parameter specification of the function called.

13.2.3.1.4 Reference binding [over.ics.ref]

The operation of binding a reference is not a conversion, but for the purposes of overload resolution it is
considered to be part of a standard conversion sequence (specifically, it is the last step in such a sequence).

A standard conversion sequence cannot be formed if it requires binding a referencedostorto an

rvalue (except when binding an implicit object parameter; see the special rules for that case in 13.2.1). This
means, for example, that a candidate function cannot be a viable function if it has@nsbnreference
parameter (other than the implicit object parameter) and the corresponding argument is a temporary or
would require one to be created to initialize the reference (see 8.5.3).

13-14 Overloading DRAFT: 1 February 1995 13.2.3.1.4 Reference binding

Other restrictions on binding a reference to a particular argument do not affect the formation of a standard
conversion sequence, however. For example, a function witefarence tant ” parameter can be a
viable candidate even if the corresponding argument istarbit-field. The formation of implicit conver-

sion sequences treats ihe bit-field as arint Ivalue and finds an exact match with the parameter. If the
function is selected by overload resolution, the call will nonetheless be ill-formed because of the prohibi-
tion on binding a noronst reference to a bit-field (8.5.3).

A reference binding in general has no effect on the rank of a standard conversion sequence, but there is one
exception: the binding of a reference to a (possibly cv-qualified) class to an expression of a (possibly cv-
qualified) class derived from that class gives the overall standard conversion sequence Conversion rank.

13.2.3.2 Ranking implicit conversion sequences [over.ics.rank]

This clause defines a partial ordering of implicit conversion sequences based on the relatimitdrips
conversion sequen@ndbetter conversion If an implicit conversion sequence S1 is defined by these rules

to be a better conversion sequence than S2, then it is also the case thawB&éesanversion sequence

than S1. If conversion sequence S1 is neither better than nor worse than conversion sequence S2, S1 and
S2 are said to biadistinguishable conversion sequences

When comparing the basic forms of implicit conversion sequences (as defined in 13.2.3.1)

— A standard conversion sequence (13.2.3.1.1) is a better conversion sequence than a user-defined conver-
sion sequence or an ellipsis conversion sequence

— A user-defined conversion sequence (13.2.3.1.2) is a better conversion sequence than an ellipsis conver-
sion sequence (13.2.3.1.3)

Two implicit conversion sequences of the same form are indistinguishable conversion sequences unless one
of the following rules apply:

— Standard conversion sequer8e is a better conversion sequence than standard conversion sequence
S2if

— Slis a proper subsequenceS#, or, if not that,

— the dominant conversion &1 is better than the dominant conversionS& (by the rules defined
below), or, if not that,

— S1 andS2 differ only in their qualification conversion and they yield types identical except for cv-
qualifiers andS2 adds all the qualifiers th&1 adds (and in the same places) &2dadds yet more
cv-qualifiers thanS1, or the similar case with reference binding (see the definitiarfefence-
compatible with added qualificatidn 8.5.3).

— User-defined conversion sequendtis a better conversion sequence than another user-defined conver-
sion sequencé? if they contain the same user-defined conversion operator or constructor and i the
second standard conversion sequencdlofs better than the second standard conversion sequence of
u2.

Standard conversions are ordered by their ranks: an Exact Match is a better conversion than a Promotion,
which is a better conversion than a Conversion. Two conversions with the same rank are indistinguishable
unless one of the following rules applies:

— If classB is derived directly or indirectly from clags conversion oB* to A* is better than conversion
of B* to void*

— If classB is derived directly or indirectly from clagsand clas<C is derived directly or indirectly from
Bl

— conversion ofC* to B* is better than conversion 6f to A*

— Binding of an expression of tyf@to a reference of typB&is better than binding an expression of
typeCto a reference of typk&

13.2.3.2 DRAFT: 1 February 1995 Overloading 1315
Ranking implicit conversion sequences

— conversion oA::* toB::* is better than conversion &f:* to C::*

13.3 Address of overloaded function [over.over]

A use of a function name without arguments selects, among all functions of that name that are in scope, the
(only) function that exactly matches the target. The target can be O

— an object being initialized (8.5)

— the left side of an assignment (5.17)

— a parameter of a function (5.2.2)

— a parameter of a user-defined operator (13.4)

— the return value of a function, operator function, or conversion (6.6.3)

— an explicit type conversion (5.2.3, 5.4)

Non-member functions match targets of typeinter-to-functiori; member functions match targets of type
“pointer-to-member-functioh.

Note that iff() andg() are both overloaded functions, the cross product of possibilities must be consid-
ered to resolvf&g) , or the equivalent expressif(q)

For example,
int f(double);
int f(int);
(int (*)(int))&f; /Il cast expression as selector
int (*pfd)(double) = &f; /I selects f(double)
int (*pfi)(int) = &f; /I selects f (int)
int (*pfe)(...) = &f; /I error: type mismatch
The last initialization is ill-formed because f with type int(...) has been defined, and not

because of any ambiguity.

Note also that there are no standard conversions (4) of one pointer-to-function type or pointer-to-member-
function into another (4.10). In particular, eveBif a public base ddwe have

D* f();
B* (*p1)() = &f; /I error

void g(D*);
void (*p2)(B*) = &g; /I error

Note that if the target type is a pointer to member function, the function type of the pointer to member is
used to select the member function from a set of overloaded member functions. For example:

struct X {
int f(int);
static int f(long);

h

int (X::*pl)(int) = &xX:f;, /I OK
int (*p2)(int) = &X::f; // error: mismatch
int (*p3)(long) = &X::f; /I OK
int (X::*p4)(long) = &X::f; // error: mismatch
int (X::*p5)(int) = &(X::f); // error: wrong syntax for
/l pointer to member
int (*p6)(long) = &(X::f); // OK

13-16 Overloading DRAFT: 1 February 1995 13.4 Overloaded operators

13.4 Overloaded operators [over.oper]

A function declaration having one of the followingerator-function-id as its name declares aperator
function An operator function is said implementhe operator named in itgperator-function-id

operator-function-id:
operator operator

operator: one of

new delete new(] delete[]

+ - * / % A & | ~
| = < > 4= = *= /= %=
A= &= |F << >> >>= <<= == |I=
<= >= && || ++ - S>F >
0 10

The last two operators are function call (5.2.2) and subscripting (5.2.1).
Both the unary and binary forms of

+ - &
can be overloaded.

The following operators cannot be overloaded:

Fooon ?:
nor can the preprocessing symbiland## (16).

Operator functions are usually not called directly; instead they are invoked to evaluate the operators they
implement (13.4.1 - 13.4.7). They can be explicitly called, though. For example,

complex z = a.operator+(b); // complex z = a+b;
void* p = operator new(sizeof(int)*n);

The allocation and deallocation functiormgeratornew , operatornew[] , operatordelete
andoperator delete[] , are described completely in 12.5. The attributes and restrictions found in the
rest of this section do not apply to them unless explicitly stated in 12.5.

An operator function shall either be a non-static member function or, be a non-member function and have

at least one parameter whose type is a class, a reference to a class, an enumeration, or a referencelfo an enu-
meration. It is not possible to change the precedence, grouping, or number of operands of operators. The
meaning of the operators (unary)&, and, (comma), predefined for each type, can be changed for $pe-

cific types by defining operator functions that implement these operators. Operator functions are inherited

the same as other functions, but because an instampe@ftor= is automatically constructed for eachl

class (12.8, 13.4.3pperator= is never inherited by a class from its bases.

The identities among certain predefined operators applied to basic types (for exarapea+=1) need
not hold for operator functions. Some predefined operators, suech asquire an operand to be an lvalue
when applied to basic types; this is not required by operator functions.

An operator function cannot have default arguments (8.3.6).

Operators not mentioned explicitly below in 13.4.3 to 13.4.7 act as ordinary unary and binary operators
obeying the rules of section 13.4.1 or 13.4.2.

13.4.1 Unary operators [over.unary]

A prefix unary operator can be implemented by a non-static member function (9.4) with no parametéis or a
non-member function with one parameter. Thus, for any prefix unary op@a@xcan be interpreted as
eitherx.operator@() or operator@(x) . If both forms of the operator function have been declared,

the rules in 13.2.1.2 determine which, if any, interpretation is used. See 13.4.7 for an explanation of the
postfix unary operators+ and-- .

13.4.1 Unary operators DRAFT: 1 February 1995 Overloading 1317

The unary and binary forms of the same operator are considered to have the same name. Consequently, a
unary operator can hide a binary operator from an enclosing scope, and vice versa.
13.4.2 Binary operators [over.binary]

A binary operator can be implemented either by a non-static member function (9.4) with one paraméter or
by a non-member function with two parameters. Thus, for any binary op@ai@ycan be interpreted as

either x.operator@(y) or operator@(x,y) . If both forms of the operator function have been
declared, the rules in 13.2.1.2 determines which, if any, interpretation is used.

13.4.3 Assignment [over.ass]

An overloaded assignment operator shall be a non-static member function with exactly one parameter.
Because an instance gperator= is constructed for each class (12.8), it is never inherited by a derived
class. O

A copy assignment operataperator= is a non-static member function of clasawvith exactly one O

parameter of typ&&or const X& 12.8 describes the copy assignment operator.

13.4.4 Function call [over.call]

operator() shall be a non-static member function. It implements the function call syntax O
postfix-expression(expression-ligf;)

where thepostfix-expressiopvaluates to a class object and the possibly emygyession-listmatches the

parameter list of anperator() member function of the class. Thus, a &édirgl,arg2,arg3) is
interpreted as x.operator()(argl,arg2,arg3) for a class objectx of type T if
T::operator()(T1, T2, T3) exists and if the operator is selected as the best match function bylthe

overload resolution mechanism (13.2.3).

13.4.5 Subscripting [over.sub]

operator(] shall be a non-static member function. It implements the subscripting syntax a
postfix-expressior] expression]

Thus, a subscripting expressigfy] is interpreted as.operator[](y) for a class object of typeT
if T::operator()(T1) exists and if the operator is selected as the best match function by the ovétload
resolution mechanism (13.2.3).

13.4.6 Class member access [over.ref]

operator-> shall be a non-static member function taking no parameters. It implements class mémber
access usingr

postfix-expression> primary-expression

An expressionx->m is interpreted agx.operator->())->m for a class objeck of type T if
T::operator->() exists and if the operator is selected as the best match function by the overload reso-
lution mechanism (13.2). It follows thaperator-> must return either a pointer to a class that has a
membemor an object of or a reference to a class for wbjpdrator-> is defined.

13.4.7 Increment and decrement [over.inc]

The prefix and postfix increment operators can be implemented by a functionogadtador++ . If this

function is a member function with no parameters, or a non-member function with one class parameter, it
defines the prefix increment operator for objects of that class. If the function is a member function with

one parameter (which shall be of tyijs¢) or a non-member function with two parameters (the secand
shall be of typent), it defines the postfix increment operator for objects of that class. When the post-

fix increment is called, thimt argument will have value zero. For example,

13-18 Overloading DRAFT: 1 February 1995 13.4.7 Increment and decrement

class X {

public:
const X& operator++(); /I prefix ++a
const X& operator++(int); // postfix a++

h

class Y {

public:

2

const Y& operator++(Y&); /I prefix ++b
const Y& operator++(Y&, int); // postfix b++

void f(X a, Y b)

{
++a; // a.operator++();
a++; /I a.operator++(0);
++b; /I operator++(b);
b++; /I operator++(b, 0);
a.operator++(); /I explicit call: like ++a;
a.operator++(0); // explicit call: like a++;
operator++(b); Il explicit call: like ++b;
operator++(b, 0); // explicit call: like b++;
}

The prefix and postfix decrement operatersare handled similarly.

13.5 Built-in operators [over.built]

The built-in operators (5) participate in overload resolution (13.2.1.2) as though declared as specified in this
section. Fooperator, and unaryoperator& , a built-in operator is selected only if there are no user-
defined operator candidates. For all other built-in operators, since they take only operands with non-class
type, and operator overload resolution occurs only when an operand expression originally has class type,
operator overload resolution can resolve to a built-in operator only when an operand has a class type which
has a user-defined conversion to a non-class type appropriate for the operator.

In this section, the termpromoted integral typés used to refer to those integral types which are preserved
by integral promotion (including e.gint but excluding e.g.char). Similarly, the termpromoted
arithmetic typeaefers to promoted integral types plus floating types.

For every pairT, VQ), whereT is an arithmetic type, andQis eithervolatile or empty, there exist

VQT& operator++(VQ T&);
VQ T& operator--(VQ T&);
T operator++(VQ T&, int);
T operator--(VQ T&, int);

For every pair T, VQ), whereT is a cv-qualified or unqualified complete object type, &t@is either
volatile or empty, there exist

T*VQ& operator++(T*VQ&);
T*VQ& operator--(T VQ&);
T* operator++(T*VQ&, int);
T* operator--(T*VQ&, int);

For every cv-qualified or unqualified complete object typthere exists
T& operator*(T*);

10

11

12

13

14

13.5 Built-in operators DRAFT: 1 February 1995 Overloading 1319

For every function typé&, there exists
T& operator*(T*);

For every typd, there exist
T* operator&(T&);
T operator+(™);

For every promoted arithmetic typethere exist
T operator+(T);
T operator-(T);

For every promoted integral tyge there exists
T operator~(T);

For every quadrupleq T, CV], CV2), whereC is a class type€l is a complete object type or a function

type, andCV1andCV2arecv-qualifier-seg, there exists
CV12 & operator->*(CVl¢C, CV2TCY);

whereCV12is the union of£V1andCV2

For every pair of promoted arithmetic typeandR, there exist

LR operator*(L, R);
LR operator/(L, R);
LR operator+(L, R);
LR operator-(L, R);
bool operator<(L, R);
bool operator>(L, R);
bool operator<=(L, R);
bool operator>=(L, R);
bool operator== L, R);

bool operator!=(L, R);
whereLR is the result of the usual arithmetic conversions between typerdR.

For every pair of type¥§ andl, whereT is a cv-qualified or unqualified complete object type higda pro-
moted integral type, there exist

T* operator+(T™,)
T& operator[](T,)
T* operator-(™,)
T* operator+(I, T
T& operator[](I, T);

For every triple T, CV1, CV2), whereT is a complete object type, a@¥/1andCV2 arecv-qualifier-seq,
there exists

ptrdiff_t operator-(CV1lT, CV2T,

For every triple [, CV1, CV2), whereT is any type, an€V1andCV2arecv-qualifier-seg, there exist

bool operator<(CV1lT, CV2T,
bool operator>(CV1T, CV2T),
bool operator<=(CV1lT, CV2T),
bool operator>=(CV1T, CV2T),
bool operator==(CV1lT, CV2T),
bool operator!=(CV1lT, CV2T),

15

16

17

18

19

20

21

22

13-20 Overloading DRAFT: 1 February 1995 13.5 Built-in operators

For every quadrupleQ; T, CV1, CV2), whereC is a class typeTl is any type, an€CV1 and CV2 arecv-
qualifier-sec, there exist

bool operator== CV1TCH CV2 T C¥);
bool operator!=(CV1TCH CV2 T Cx);

For every pair of promoted integral tydeandR, there exist

LR operator%(L, R);
LR operator&(L, R);
LR operator®(L, R);
LR operator|(L, R);
L operator<<(L, R);
L operator>>(L, R);

whereLR s the result of the usual arithmetic conversions between kyprdR.

For every triple I, VQ, R), whereL is an arithmetic typeyQ is eithervolatile or empty, andR is a
promoted arithmetic type, there exist

VQ L& operator=(VQL&, R);

VQ L& operator*=(VQ L&, R);

VQ L& operator/=(VQ L&, R);

VQ L& operator+=(VQL&, R);

VQ L& operator-=(VQ L&, R);

For every pairT, VQ), whereT is any type ani¥/Qis eithervolatile or empty, there exists
T*VQ& operator=(T*VQ&, T*);

For every triple T, VQ, 1), whereT is a cv-qualified or unqualified complete object typ&) is either
volatile or empty, and is a promoted integral type, there exist

T*VQ& operator+=(T*VQ&, I);
T*VQ& operator-=(T™VQ&, I);

For every triplel(, VQ, R), whereL is an integral typeyQ is eithervolatile or empty, andR is a pro-
moted integral type, there exist

VQ L& operator%e=(VQ L&, R);
VQ L& operator<<=(VQL&, R);
VQ L& operator>>=(VQL&, R);
VQ L& operator&=(VQ L&, R);
VQ L& operator*=(VQ L&, R);
VQ L& operator|=(VQ L&, R);

For every pair of typek andR, there exists
R operator,(L, R);

There also exist

bool operator!(bool);
bool operator&&(bool, bool);
bool operator||(bool, bool);

14 Templates [temp]

A classtemplatedefines the layout and operations for an unbounded set of related types. For example, a
single class templateist might provide a common definition for list oft , list of float , and list of
pointers toShapes. A functiontemplatedefines an unbounded set of related functions. For example, a
single function templateort() might provide a common definition for sorting all the types defined by
theList class template.

A templatedefines a family of types or functions.

template-declaration:
template < template-parameter-list- declaration

template-parameter-list:
template-parameter
template-parameter-list template-parameter

Thedeclarationin atemplate-declaratiorshall declare or define a function or a class, define a static data
member of a template class, or define a template member of a classmplate-declarations a
declaration A template-declaratioms a definition (also) if itsleclarationdefines a function, a class, or a

static data member of a template class. There shall be exactly one definition for each template irJa pro-
gram. There can be many declarations. Multiple definitions of a template in a single compilation unit is a
required diagnostic. Multiple definitions of a template in different compilation units is a nonrequired diag-

nostic. a

EBOX 61 ED
[This — and all other requirements for unique definitions of templates in this clawsdl have to be{J
[tephrased to take the ODR into account when the ODR is completely defined. M

The name of a template obeys the usual scope and access control ndewplate-declaratiocan appear O

only as a global declaration, as a member of a namespace, as a member of a class, or as a member of a class
template. A member template shall notviual . A destructor shall not be a template. A local class

shall not have a member template.

A template shall not have C linkage. If the linkage of a template is something other thanH¢ thveC
behavior is implementation-defined.

A vector class template might be declared like this:

template<class T> class vector {
T*v;
int sz;

public:
vector(int);
T& operator[](int);
T& elem(int i) { return v[i]; }
...

2

The prefixtemplate <class T> specifies that a template is being declared and thgteanameTl will
be used in the declaration. In other wondsgtor is a parameterized type withas its parameter. A

14-2 Templates DRAFT: 1 February 1995 14 Templates

class template definition specifies how individual classes can be constructed much as a class definition
specifies how individual objects can be constructed.

A member template can be defined within its class or separately. For example:

template<class T> class string {

public:
template<class T2> compare(const T2&);
template<class T2> string(const string<T2>& s) { /* ... */ }
...
h
template<class T> template<class T2> string<T>::compare(const T2& s)
{
...
}
14.1 Template names [temp.names]

A template can be referred to byeanplate-id

template-id:
template-name< template-argument-list-

template-name:
identifier

template-argument-list:
template-argument
template-argument-list template-argument

template-argument:
assignment-expression
type-id
template-name

A template-icthat names a template class dass-namg9).

A template-idthat names a defined template class can be used exactly like the names of other defined
classes. For example:

vector<int> v(10);
vector<int>* p = &v;

Template-id that name functions are discussed in 14.9.

A template-idthat names a template class that has been declared but not defined can be used exactly like
the names of other declared but undefined classes. For example:

template<class T> class X; // X is a class template

X<int>* p; // ok: pointer to declared class X<int>
X<int>x; /I error: object of undefined class X<int>

The name of a template followed byads always taken as the beginning ofeaplate-idand never as a
name followed by the less-than operator. Similarly, the first non-nestisdtaken as the end of the
template-argument-ligather than a greater-than operator. For example:

14.1 Template names DRAFT: 1 February 1995 Templates 13

template<int i> class X { /* ... */ }

X< 1>2 >x1; /l syntax error
X<(1>2)>x2; Il ok

template<class T>class Y {/* ... */ }
Y< X<1> > x3; // ok

The name of a class template shall not be declared to refer to any other template, class, function[Jobject,
namespace, value, or type in the same scope. Unless explicitly specified to have internal linkage, a tem-
plate in namespace scope has external linkage (3.5). A global template name shall be unique in a pfdgram.

In atemplate-argumentan ambiguity between tgpe-idand anexpressions resolved to dype-id For 0O
example: O

template<class T> void f();
template<int I> void f();

void g()
{

f<int()>(); // “int()” is a type-id: call the first f()

OooOoo oOod

14.2 Name resolution [temp.res]

A name used in a template is assumed not to name a type unless it has been explicitly declared to refer to a
type in the context enclosing the template declaration or is qualified by the ketyperthme . For O
example:

/I no B declared here
class X;

template<class T> class Y {
class Z; // forward declaration of member class

void f() { 0
X* al; /I declare pointer to X
T* az; /l declare pointerto T
Y* a3; // declare pointer to Y
Z* a4; I/ declare pointer to Z

typedef typename T::A TA,
TA* a5; // declare pointerto T's A
typename T::A* a6; // declare pointerto T's A
T::A* a7;/l T::Ais not a type name:
/I multiply T::A by a7
B* a8; /I B is not a type name:
/I multiply B by a8

oOoooood

h

In a template, any use ofgaalified-namewhere the qualifier depends onesnplate-parameteran be pre- 0
fixed by the keywordypename to indicate that thqualified-namedenotes a type.

elaborated-type-specifier: O
O
typename i1, nested-name-specifier identifier full-template-argumengslist O
full-template-argument-list: O

< template-argument-list- t

14-4 Templates DRAFT: 1 February 1995 14.2 Name resolution

If a specialization of that template is generated ftenaplate-argumerdguch that theualified-namedoes 0O
not denote a type, the specialization is ill-formed. deelarationthat states thajualified-namenames a O
type, but gives no clue to what that type might be. quadified-nameshall include a qualifier containing a1
template parameter or a template class name.

Knowing which names are type names allows the syntax of every template declaration to be checked. Syn-

tax errors in a template declaration can therefore be diagnosed at the point of the declaration exactly as
errors for non-template constructs. Other errors, such as type errors involving template parameters, cannot
be diagnosed until later; such errors shall be diagnosed at the point of instantiation or at the point where

member functions are generated (14.3). Errors that can be diagnosed at the point of a template declaration,
shall be diagnosed there or later together with the dependent type errors. For example:

template<class T> class X {
...
void f(T t, int i, char* p)

{
t=1i; //typecheck at point of instantiation,
I or at function generation
p =i; [/l typecheck immediately at template declaration,
/! at point of instantiation,
I or at function generation
}

2
No diagnostics shall be issued for a template definition for which a valid specialization can be generdied.
Three kinds of names can be used within a template definition:

— The name of the template itself, the names oftémeplate-parametesr (14.6), and names declared
within the template itself.

— Names from the scope of the template definition.

— Names dependent ortemplate-argumen(L4.7) from the scope of a template instantiation.

For example:
#include <iostream> ad
using namespace std; ad

template<class T> class Set {

T p;
int cnt;
public:
Set();
Set<T>(const Set<T>&);
void printall()
for (inti = 0; i<cnt; i++)
cout << p[i] <<’\n’;
}
...
h
When looking for the declaration of a hame used in a template definition the usual lookup rules (9.3) are
first applied. Thus, in the example,is the local variablé declared inprintall , cnt is the member
cnt declared inSet , andcout is the standard output stream declareibgtream.h . However, not

every declaration can be found this way; the resolution of some names must be postponed until the actual
template-argumeris known. For example, the even though the naperator<< is known within the O
definition of sum() an a declaration of it can be found fipstream> , the actual declaration ofC]
operator<< needed to prinp[i] cannot be known until it is known what types (14.2.3). O

14.2 Name resolution DRAFT: 1 February 1995 Templates 5

If a name can be bound at the point of the template definition and it is not a function called in a way that
depends on template-parametefas defined in 14.2.3), it will be bound at the template definition pdint

and the binding is not affected by later declarations. For example: O
void f(int); a
template<class T> void g(T t) O
{ O

f(1); 11 f(int) 0
f(T(1)); // dependent O
f(t); /I dependent a
} O

void f(char);
void h()

f('a’); // will cause two calls of f(int) followed
I/l by a call of f(char)
}

I

14.2.1 Locally declared names [temp.local]

Within the scope of a class template or a specialization of a template the name of the template is equivalent
to the name of the template qualified by tbenplate-parameter Thus, the constructor f@et can be

referred to aset() or Set<T>() . Other specializations (14.5) of the class can be referred to by explic-

itly qualifying the template name with appropriédenplate-argumest For example:

template<class T> class X {
X*p; /l meaning X<T>
X<T>* p2;
X<int>* p3;

I3

template<class T> class Y;

class Y<int> {
Y* p; /l meaning Y<int>

I3
See 14.6 for the scope teimplate-parameter

A templatetype-parametecan be used in aglaborated-type-specifier~or example:

template<class T> class A {
friend class T;
class T* p;
class T; I/l error: redeclaration of template parameter T
/I (a name declaration, not an elaboration)
...

}

However, a specialization of a template for whidly@e-parameteused this way is not in agreement with
theelaborated-type-specifi€.1.5) is ill-formed. For example:

14-6 Templates

classC{/* ...
struct S { /* ...
union U {/* ...
enum E { /* ...

A<C> ac;
A<S> as;
A<U> au;
A<int> ai;

A<E> ae;

DRAFT: 1 February 1995 14.2.1 Locally declared names

Il ok
Il ok
I error: parameter T elaborated as a class,
/l but the argument supplied for T is a union
Il error; parameter T elaborated as a class,
// but the argument supplied for T is an int
I error: parameter T elaborated as a class,
/I but the argument supplied for T is an enumeration

14.2.2 Names from the template’s enclosing scope

[temp.encl]

If a name used in a template isn’t defined in the template definition itself, names declared in the scope
enclosing the template are considered. If the name used is found there, the name used refers to the name in
the enclosing context. For example:

void g(double);

void h();
template<class T> class Z {
public:
void f() {
g(1); // calls g(double)
h++; // error: cannot increment function
}
J5

void g(int); // not in scope at the point of the template

In this, a template definition behaves exactly like other definitions. For example:

/I definition, not considered for the call g(1)

void g(double);

void h();
class ZZ {
public:
void f() {
g(1); // calls g(double)
h++; // error: cannot increment function
}
5

void g(int); // not in scope at the point of class ZZ

/I definition, not considered for the call g(1)

14.2.3 Dependent names

[temp.dep]

Some names used in a template are neither known at the point of the template definition nor declared within
the template definition. Such names shall dependtemplate-argumerdnd shall be in scope at the point
of the template instantiation (14.3). For example:

14.2.3 Dependent names DRAFT: 1 February 1995 Templates 14

class Horse {/* ... */ };
ostreamé& operator<<(ostreamé&,const Horse&);

void hh(Set<Horse>& h)

{
h.printall();
}
In the call ofSet<Horse>::printall() , the meaning of the< operator used to primg[i] in the
definition of Set<T>::printall() (14.2), is

operator<<(ostream&,const Horse&);

This function takes an argument of tyigerse and is called from a template withemplate-parametef
for which thetemplate-argumeris Horse . Because this function depends demplate-argumerthe call
is well-formed.

A function calldepends om template-argumerif the call would have a different resolution or no resolut
tion if a type, template, or named constant mentioned itethplate-argumenvere missing from the pro-O
gram. Examples of calls that depend on an argumenftyape:

1) The function called has a parameter that dependsamtording to the type deduction rules (14.9.2).
For examplef(T) , f(Vector<T>) , andf(const T*) .

2) The type of the actual argument depend$.offor examplef(T(1)) ,f(t) , f(g(t) , andf(&t)
assuming that has the typd. a

3) A callis resolved by the use of a conversiof taithout either an argument or a parameter of the called
function being of a type that dependedToas specified in (1) and (2). For example:

struct B { };
struct T:B{};
struct X { operator T(); };

void f(B);
void g(X x)

f(x); // meaning f(B(x.operator T()))

I/ so the call f(x) depends on T
}
This ill-formed template instantiation uses a function that does not depertdroplate-argument g

template<class T> class Z {
public:

void f() {

g(2); // g() not found in Z's context.
/l Look again at point of instantiation

}
I3
void g(int);

void h(const Z<Horse>& x)

x.f(); /I error: g(int) called by g(1) does not depend
I/l on template-parameter “Horse”

}
The callx.f() gives raise to the specialization:

14-8 Templates DRAFT: 1 February 1995 14.2.3 Dependent names

Z<Horse>::f() { g(1); }

The callg(1) would call g(int) , but since that call in no way depends on thmplate-argument
Horse and becausg(int) wasn't in scope at the point of the definition of the template, thex£gll
is ill-formed.

On the other hand:
void h(const Z<int>& y)

y.f(); // fine: g(int) called by g(1) depends
I/l on template-parameter “int”

}

Here, the caly.f() gives raise to the specialization:
Z<int>:f() { g(2); }

The callg(1l) callsg(int) , and since that call depends on theplate-argumerint , the cally.f()
is acceptable even thougfint) wasn't in scope at the point of the template definition.

A name from a base class can hide the nameeshplate-parameterFor example:

struct A {
struct B { /* ... */ };
int a;
int; 0O
2
template<class B, class a> struct X : A {
Bb;, //AsB
ab; //error: A’'s aisn’t a type name
I3

However, a name from @mplate-argumentannot hide a name declared within a templatengplate- 0
parametey or a name from the template’s enclosing scopes. For example:

int a;

template<class T> struct Y : T {
struct B { /* ... */ };

B b; /l The B defined in Y

void f(int i) { a =i; } // the global a;

Y* p; 11 Y<T> 0
h
Y<A>ya;

The memberd\::B , A::a , andA::Y of the template argumertdo not affect the binding of names it
Y<A>,

A name of a member can hide the name tehgplate-parameterFor example:

template<class T> struct A {
struct B { /* ... */ };

void f();
I3
template<class B> void A::f()
{

B b; /I A’s B, not the template parameter

}

14.2.4 DRAFT: 1 February 1995 Templates 149
Non-local names declared within a template

14.2.4 Non-local names declared within a template [temp.inject]

Names that are not template members can be declared within a template class or function. When a fémplate
is specialized, the names declared in it are declared as if the specialization had been explicitly declafed at its
point of instantiation. If a template is first specialized as the result of use within a block or class, hames
declared within the template shall be used only after the template use that caused the specialization. For
example:

/I Assume that Y is not yet declared ad

template<class T> class X {

friend class Y; O
I3
Y* pyl; Il ill-formed: Y is not in scope O
/I Here is the point of instantiation for X<C> O
void g()
{
X<C>*pc; // does not cause instantiation O
Y* py2; I/ ill-formed: Y is not in scope O
X<C>c; /I causes instantiation of X<C>, so O
/I names from X<C> can be used d
/I here on 0
Y* py3; Il ok O
}
Y* py4; Il ok O
14.3 Template instantiation [temp.inst]

A class generated from a class template is called a generated class. A function generated from a function
template is called a generated function. A static data member generated from a static data member template
is called a generated static data member. A class defined teithpdate-idas its name is called an explic-

itly specialized class. A function defined witheamplate-idas its name is called an explicitly specialized
function. A static data member defined withemplate-idas its name is called an explicitly specialized

static data member. A specialization is a class, function, or static data member that is either generated or
explicitly specialized.

The act of generating a class, function, or static data member from a template is commonly referred to as
template instantiation. O

14.3.1 Template linkage (Jtemp.linkage]

A function template has external linkage, as does a static member of a class template. Every functidn tem-
plate shall have the same definition in every translation unit in which it appears.

14.3.2 Point of instantiation [temp.point]

The point of instantiation of a template is the point where names dependenttemplete-argumerdare

bound. That point is immediately before the declaration in the nearest enclosing global or namespace scope
containing the first use of the template requiring its definition. This implies that names used in a template
definition cannot be bound to local names or class member names from the scope of the template use. They
can, however, be bound to names of namespace members. For example:

I/l void g(int); not declared here

template<class T> class Y {
public:

void f() { 9(1); }
I3

14-10 Templates DRAFT: 1 February 1995 14.3.2 Point of instantiation

void k(const Y<int>& h)

{
void g(int);
h.f(); // error: g(int) called by g(1) not found
1 local g() not considered
}
class C{
void g(int);
void m(const Y<int>& h)
h.f(); // error: g(int) called by g(1) not found
1 C::g() not considered
}
2

namespace N {
void g(int);

void n(const Y<int>& h)
h.f(); // N::g(int) called by g(1)

}

Names from both the namespace of the template itself and of the namespace containing the point oflinstan-
tiation of a specialization are used to resolve names for the specialization. Overload resolution is Used to

chose between functions with the same name in these two namespaces. For example: O
namespace NN { a
void g(int); a

void h(int); 0
template<class T> void f(T t) a

{ a

g(t); 0

h(t); 0

k(®); 0

} a

} a
namespace MM { a
void g(double); a

void k(double); a

a

/l instantiation point for NN:f(int) and NN::f(double) a

void m() a

a

NN:f(1); // indirectly calls NN::g(int), a

1l NN::h, and MM::k. O

NN:f(1.0); // indirectly calls MM::g(double), a

1 NN::h, and MM::k. O

} 0

} a

If a name is found in both namespaces and overload resolution cannot resolve a use, the program is ill-
formed. O

14.3.2 Point of instantiation DRAFT: 1 February 1995 Templates #4411

Each compilation unit in which the definition of a template is used in a way that require definition of &lspe-
cialization has a point of instantiation for the template. If this causes names used in the template definition
to bind to different names in different compilations, the one-definition rule has been violated and any use of
the template is ill-formed. Such violation does not require a diagnostic.

A template can be either explicitly instantiated for a given argument list or be implicitly instantiated. A
template that has been used in a way that require a specialization of its definition will have the specializa-
tion implicitly generated unless it has either been explicitly instantiated (14.4) or explicitly specialized
(14.5). A specialization will not be implicitly generated unless the definition of a template specialization is
required. For example:

template<class T> class Z {

void f();
void g();

I8

void h()
Z<int> a; / instantiation of class Z<int> required
Z<char>*p; //instantiation of class Z<char> not required
Z<double>* q; // instantiation of class Z<double> not required
a.f(); // instantiation of Z<int>::f() required
p->g(); // instantiation of class Z<char> required, and

/l instantiation of Z<char>::g() required
}
Nothing in this example requiretass Z<double> , Z<int>::g() , orZ<char>::f() to be instan-

tiated. An implementation shall not instantiate a function or a class that does not require instantiation.
However, virtual functions can be instantiated for implementation purposes.

If a virtual function is instantiated, its point of instantiation is immediately following the point of instantia-
tion for its class. O

The point of instantiation for a template used inside another template and not instantiated previous to an
instantiation of the enclosing template is immediately before the point of instantiation of the enclosing tem-
plate.

namespace N {
template<class T> class List {

public:
T* get();
...
b
}
template<class K, class V> class Map {
List<V> It;

V get(K);
..
b

void g(Map<char*,int>& m)
inti = m.get("Nicholas");

...
}

This allows instantiation of a used template to be done before instantiation of its user.

10

11
12

13

14-12 Templates DRAFT: 1 February 1995 14.3.2 Point of instantiation

Implicitly generated template classes, functions, and static data members are placed in the nariespace

where the template was defined. For example, a cétlgeft() from Map<char*,int>::get()

would placelist<int>::get() in Nrather than in the global space.

EBOX 62 B
Name injection from an implicitly generated template function specialization are under debate. Thai is, it
Cmight be banned. a

If a template for which a definition is in scope is used in a way that involves overload resolution or conver-
sion to a base class, the definition of a template specialization is required. For example:

template<class T>class B { /* ... */ };
template<class T> class D : public B<T> {/* ... */ };

void f(void*);
void f(B<int>*);

void g(D<int>* p, D<char>* pp)
f(p); // instantiation of D<int> required: call f(B<int>*)

B<char>* g = pp; // instantiation of D<char> required:
/I convert D<char>* to B<char>*

}

If an instantiation of a class template is required and the template is declared but not defined, the program is
ill-formed. For example:

template<class T> class X;

X<char> ch; // error: definition of X required O

Recursive instantiation is possible. For example:

template<int i> int fac() { return i>1 ? i*fac<i-1>() : 1; }
int fac<0>() { return 1, }

int ()
{

}

return fac<17>();

There shall be an implementation quantity that specifies the limit on the depth of recursive instantiatiohs.

The result of an infinite recursion in instantiation is undefined. In particular, an implementation is allowed
to report an infinite recursion as being ill-formed. For example:

template<class T> class X {
X<T>*p; /] ok
X<T*> a; // instantiation of X<T> requires
/I the instantiation of X<T*> which requires
/I the instantiation of X<T**> which ...

h

No program shall explicitly instantiate any template more than once, both explicitly instantiate and explic-
itly specialize a template, or specialize a template more than once for a giveneseplate-argumest
An implementation is not required to diagnose a violation of this rule.

14.3.2 Point of instantiation DRAFT: 1 February 1995 Templates 1413

14 An explicit specialization or explicit instantiation of a template shall be in the namespace in which théltem-
plate was defined. For example:

namespace N {
template<class T> class X {/* ... */ };
template<class T>class Y {/* ... */ };
template<class T> class Z {

void f(int i) { g(i); }
...
I3
class X<int> { /* ... */ }; I/ ok: specialization

I in same namespace

}

template class Y<int>; // error: explicit instantiation
1 in different namespace

template class N::Y<char*>; // ok: explicit instantiation

I in same namespace
class N::Y<double> { /* ... */ }; /] ok: specialization ad
I in same namespace ad
15 A member function of an explicitly specialized class shall not be implicitly generated from the generalltem-
plate. Instead, the member function shall itself be explicitly specialized. For example: a

template<class T> struct A {
void f() { /* ... */ }

I3
struct A<int> {
void f();
I8
void h()
{
A<int> a;
a.f(); // A<int>::f must be defined somewhere
}

void A<int>:f() {/* ... */ };
Thus, an explicit specialization of a class implies the declaration of specializations of all of its merbers.
The definition of each such specialized member which is used shall be provided in some translation unit.
14.3.3 Instantiation ofoperator->

1 If a template class has aperator-> , thatoperator-> can have a return type that cannot be derefer-
enced by> as long as thaiperator-> is neither invoked, nor has its address taken, isn’t virtual, nor is
explicitly instantiated. For example:

14-14 Templates DRAFT: 1 February 1995 14.3.3 Instantiation afperator->

template<class T> class Ptr {
...
T* operator->();

h

Ptr<int> pi; // ok
Ptr<Rec> pr; // ok

void f()
{
pi->m = 7; // error: Ptr<int>::operator->() returns a type
1 that cannot be dereference by ->
pr->m = 7; // ok if Rec has an accessible member m
/I of suitable type
}
14.4 Explicit instantiation [temp.explicit]

A class or function specialization can be explicitly instantiated from its template.
The syntax for explicit instantiation is:

explicit-instantiation:
template inst ;

inst:
class-key template-id
type-specifier-seq template-ifl parameter-declaration-clausé
EBOX 63 B
Syntax WG: please check this grammar. It ought to allow any declaration that is not a definition offa class
Cor function with aemplate-idas the name being declared. a
For example:

template class vector<char>;

template void sort<char>(vector<char>&);

A declaration of the template shall be in scope at the point of explicit instantiation. O

A trailing template-argumentan be left unspecified in an explicit instantiation or explicit specialization of
a template function provided it can be deduced from the function argument type. For example:

/l instantiate sort(vector<int>&):
/I deduce template-argument:
template void sort<>(vector<int>&);

The explicit instantiation of a class implies the instantiation of all of its members not previously explicitly
specialized in the compilation unit containing the explicit instantiation.

14.5 Template specialization [temp.spec]

A specialized template function, template class, or static member of a template can be declared by a decla-
ration where the declared name template-id that is:

specialization:
declaration

For example: O

14.5 Template specialization DRAFT: 1 February 1995 Templates 345

template<class T> class stream;
class stream<char>{ /* ... */ };
template<class T> void sort(vector<T>& v) { /* ... */ }

void sort<char*>(vector<char*>&) ;

Given these declarationstiream<char> will be used as the definition of streams abfar s; other
streams will be handled by template classes generated from the class template. Sionitadyar*>

will be used as the sort function for arguments of typetor<char*> ; othervector types will be
sorted by functions generated from the template.

A declaration of the template being specialized shall be in scope at the point of declaration of a spedializa-
tion. For example:

class X<int> { /* ... */ }; /] error: X not a template
template<class T> class X { /* ... */ };

class X<char*> { /* ... */ }; I/ fine: X is a template

If a template is explicitly specialized then that specialization shall be declared before the first use @f that
specialization in every translation unit in which it is used. For example:

template<class T> void sort(vector<T>& v) { /* ... */ }

void f(vector<String>& v)

{

sort(v); // use general template
I sort(vector<T>&), T is String

}

void sort<String>(vector<String>& v); // error: specialize after use
void sort<>(vector<char*>& v); // fine sort<char*> not yet used

If a function or class template has been explicitly specialized template-argumerlist no specialization
will be implicitly generated for thaemplate-argumeniist.

Note that a function with the same name as a template and a type that exactly matches that of a template is
not a specialization (14.9.4).

14.6 Template parameters [temp.param]

The syntax fotemplate-parametsris:

template-parameter:
type-parameter
parameter-declaration

type-parameter:
class identifier,,
class identifier,, = type-id
typename identifier,, ad
typename identifier,, = type-id ad
template < template-parameter-list- class identifier,,
template < template-parameter-list> class identifier,,, = template-name

For example:

14-16 Templates DRAFT: 1 February 1995 14.6 Template parameters

template<class T> class myarray { /* ... */ }; t

template<class K, class V, template<class T> class C = myarray>
class Map {

C<K> key;

C<V> value;

...
3

Default arguments shall not be specified in a declaration or a definition of a specialization. O

A type-parametedefines itsidentifier to be atype-namen the scope of the template declarationtype-
parametershall not be redeclared within its scope (including nested scopes). A notetypéate-
parametershall not be assigned to or in any other way have its value changed. For example:

template<class T, inti> class Y {
int T; // error: template-parameter redefined
void f() {
char T; /I error: template-parameter redefined
i++; I error: change of template-argument value

2
template<class X> class X; // error: template-parameter redefined
A template-parametethat could be interpreted as either garameter-declaratioror a type-parameter

(because itsdentifier is the name of an already existing class) is takentggeaparameter A template-
parameterhides a variable, type, constant, etc. of the same name in the enclosing scope. For example:

classT{/*...*};
int i

template<class T, T i> void f(T t)

{
Ttl=i I/l template-arguments T and i
“Tt2=:i; //globals Tandi
}
Here, the templatk has aype-parametecalledT, rather than an unnamed non-type parameter of €lass
There is no semantic difference betwetss andtypename in atemplate-parameter a

There are no restrictions on what can kemplate-argumertype beyond the constraints imposed by the
set of argument types (14.7). In particular, reference types and types contangjnglifiersare allowed. O
A non-referencetemplate-argumentannot have its address taken. When a non-referameplate-
arguments used as an initializer for a reference a temporary is always used. For example:

template<const X& x, int i> void f()

{
&x; Il ok
&i; // error: address of non-reference template-argument
int& ri = i; // error: non-const reference bound to temporary
const int& cri = i; // ok: reference bound to temporary
}
A non-typetemplate-parameteshall not be of floating type. For example: a
template<double d> class X; I error

template<double* pd> class X; // ok
template<double& rd> class X; // ok

10

14.6 Template parameters DRAFT: 1 February 1995 Templates 347

A default template-argumenis a type, value, or template specified aftein a template-parameterA [
defaulttemplate-argumentan be specified in a template declaration or a template definition. The sét of
defaulttemplate-argumentavailable for use with a template in a translation unit shall be provided bylthe
first declaration of the template in that unit. O

If a template-parametehas a default argument, all subsequenmtplate-parametsrshall have a defaultd
argument supplied. For example:

template<class T1 = int, class T2> class B; // error

The scope of eemplate-argumerdxtends from its point of declaration until the end of its template. In far-
ticular, atemplate-parametecan be used in the declaration of subseqtemplate-parameterand their
default arguments. For example:

template<class T, T* p, class U = T>class X { /* ... */ };
template<class T> void f(T* p = new T);

A template-parameterannot be used in preceditggnplate-parametersr their default arguments.

A template-parameteran be used in the specification of base classes. For example:

template<class T> class X : public vector<T> { /* ... */ };
template<class T>class Y : public T { /* ... */ };

Note that the use of template-parameteais a base class implies that a class usedersate-argument
must be defined and not just declared.

14.7 Template arguments [temp.arg]

The types of théemplate-argumestspecified in aemplate-idshall match the types specified for the tenfi
plate in itstemplate-parameter-listFor exampleyector s as defined in 14 can be used like this:

vector<int> v1(20);
vector<complex> v2(30);

typedef vector<complex> cvec; // make cvec a synonym
/I for vector<complex>
cvec v3(40); //v2 and v3 are of the same type

v1[3] =7,
v2[3] = v3.elem(4) = complex(7,8);

A non-type non-referencéemplate-argumenshall be aconstant-expressionf non-floating type, the O
address of an object or a function with external linkage, or a non-overloaded pointer to membefl The
address of an object or function shall be expresséd aglainf (for function only), or&X::f wheref is O
the function or object name. In the cas&&&f:f , X shall be a (possibly qualified) name of a classfand]
the name of a static memberXf A pointer to member shall be expressed.dsm whereX s a (possi- O
bly qualified) name of a class amdis the member name. In particular, a string literal (2.9.4)isan
acceptabléemplate-argumenbecause a string literal is the address of an object with static linkage. For
example:

template<class T, char* p> class X {
...
X(const char*q) { /* ... */ }

h
X<int,"Studebaker"> x1; // error: string literal as template-argument

char* p = "Vivisectionist";
X<int,p> x2; // ok

14-18 Templates DRAFT: 1 February 1995 14.7 Template arguments

Similarly, addresses of array elements and non-static class members are not acceptaipaizs
argument s. For example:

int a[10];
struct S {int m; static int s; } s;

X<&a[2],p> x3; // error: address of element

X<&s.m,p> x4; [/ error: address of member

X<&s.s,p> x5; [/ error: address of member (dot operator used) g
X<&S::s,p> x6; // ok: address of static member

Nor is a local type or an type with no linkage nhame an acceptabjgate-argumentFor example:

void f()
{
struct S {/*...* };
X<S,p> x3; /l error: local type used as template-argument
}
Similarly, a referenceemplate-parameterannot be bound to a temporary: a

template<const int& CRI) struct B { /* ... */ };
B<1> b2; // error: temporary required for template argument

intc=1,
B<c> bl; // ok

An argument to daemplate-parameteof pointer to function type shall have exactly the type specified by

thetemplateparameter. This allows selection from a set of overloaded functions. For example: O
void f(char); a
void f(int); a
template<void (*pf)(int)> struct A { /* ... */ }; a
A<&f> a; // selects f(int) a

A template has no special access rights tdeisplate-argumentypes. Atemplate-argumenshall be 0O
accessible at the point where it is used &srplate-argumentFor example:

template<class T> class X {/* ... */ }; O
class Y {
private:

struct S {/*...* };

X<S>x; [/l ok: Sis accessible O
3
X<Y::S>y; /l error: S not accessible O

In addition to the rules for non-refererteenplate-argumentsan argument for emplate-parametesf ref- [0
erence type shall not becanstant-expressionln particular, a temporary object is not an acceptable argu-
ment to aemplate-parametesf reference type.

When defaultemplate-argumentare used, éemplate-argumerlist can be empty. In that case the empty
<> brackets shall still be used. For example: O
template<class T = char> class String;

String<>* p; // ok: String<char>
String* q; // syntax error

14.7 Template arguments DRAFT: 1 February 1995 Templates 349

The notion of “array type decay” does not applitémplate-parametsr For example:

template<int a[5]> struct S { /* ... */ };
int v[5];

int*p=v;

S<v> x; /] fine

S<p>y; /l error

14.8 Type equivalence [temp.type]

Two template-id refer to the same class or function if themplatenames are identical and in the same
scope and thetemplate-argumeasthave identical values. For example,

template<class E, int size> class buffer;

buffer<char,2*512> x;
buffer<char,1024> vy;

declares< andy to be of the same type, and

template<class T, void(*err_fct)()> class list { /* ... */ }; O
list<int,&error_handlerl> x1;
list<int,&error_handler2> x2;

list<int,&error_handler2> x3;
list<char,&error_handler2> x4;

declarex2 andx3 to be of the same type. Their type differs from the typed aindx4 .

14.9 Function templates [temp.fct]

A function template specifies how individual functions can be constructed. A family of sort functions, for
example, might be declared like this:

template<class T> void sort(vector<T>&); g

A function template specifies an unbounded set of (overloaded) functions. A function generated from a
function template is called a template function, so is an explicit specialization of a function template. Tem-
plate arguments can either be explicitly specified in a call or be deduced from the function arguments.

14.9.1 Explicit template argument specification [temp.arg.explicit]

Template arguments can be specified in a call by qualifying the template function name by the list of
template-argumentexactly asemplate-argumestare specified in uses of a class template. For example:

void f(vector<complex>& cv, vector<int>& ci)

{
sort<complex>(cv); /I sort(vector<complex>)
sort<int>(ci); /I sort(vector<int>)

and

template<class U, class V> U convert(V v);
void g(double d)
{

inti = convert<int,double>(d); // int convert(double)
char ¢ = convert<char,double>(d); // char convert(double)

}

Implicit conversions (4) are accepted for a function argument for which the parameter has been fixed by
explicit specification ofemplate-argumest For example:

14-20 Templates DRAFT: 1 February 1995 14.9.1
Explicit template argument specification

template<class T> void f(T);

class complex {
...
complex(double);

2
void g()
f<complex>(1); // ok, means f<complex>((complex(1))

}
HBox 64 EE
gThere is a problem with the explicit qualification of member template functions. Consider: 0
O class X {
O public:
0 template<size_t> X* malloc();
0 ...
O I3
= 0
0 void f(X* p) H
O { Ey
§ X* pi = p->malloc<200>(); ny
0 :
Lrhere is no way of knowing that:malloc is a template name until after type checking. Consequerﬁ%,
E*his example cannot be syntax analysed. iy

O

One solution is “then do not do that.” Another is to provide some form of explicit qualification. Eor
[example:
O

O
Ebr
O
O

[The latter, use of the keywoteémplate , in general clashes with the usetefmplate for explicit
Cnstantiation (14.4).

X* pi = p-> templatename malloc<200>();

X* pi = p-> template malloc<200>();

L BoB

14.9.2 Template argument deduction [temp.deduct]

Template arguments that can be deduced from the function arguments of a call need not be explicitly speci-
fied. For example,

void f(vector<complex>& cv, vector<int>& ci)

{

sort(cv); /I call sort(vector<complex>)
sort(ci); // call sort(vector<int>)

and
void g(double d)
{

inti = convert<int>(d); // call convert<int,double>(double)
int ¢ = convert<char>(d); // call convert<char,double>(double)

14.9.2 Template argument deduction DRAFT: 1 February 1995 Templates 121

A template type argumefitor a template non-type argumentan be deduced from a function argument
composed from these elements:

T
cv-list T

T*

T&

T[integer-constarjt
class-template-namd >

type(*)(T)

type T:*

TM0

T()(T) O
typefi]

class-template-namé>

where(T) includes argument lists with more than one argument where at least one argument cditaiis a
and wherg() includes argument lists with arguments that do not contdin Also, these forms can be
used in the same way &ss for further composition of types. For example,

X<int>(*)(char[6]) t
is of the form

class-template-namd> (*)(typdi])
which is a variant of

type (*)(T)
wheretypeis X<int> andT ischar[6] . O

In addition, atemplate-parameteran be deduced from a function or pointer to member function argument
if at most one of a set of overloaded functions provides a unique match. For example:

template<class T> void f(void(*)(T,int));

void g(int,int);
void g(char,int);

void h(int,int,int);
void h(char,int);

int m()
{

f(&g); // error: ambiguous

f(&h); /I ok: void h(char,int) is a unique match
}

Template arguments shall not be deduced from function arguments involving constructs other than the ones
specified in here (14.9.2).

ox 65 B
[Can a templateemplate-parametdre deduced? and if so how? Spicer issue 3.19.

Template arguments of an explicit instantiation or explicit specialization are deduced (14.4, 14.5) according
to these rules specified for deducing function arguments.

Note that a major array bound is not part of a function parameter type so it can’t be deduced from an argu-
ment:

template<int i> void f1(int a[10][i]);
template<int i> void f2(int a[i][20]); O

8

14-22 Templates DRAFT: 1 February 1995 14.9.2 Template argument deduction

void g(int v[10][20]) ad
f1(v); /I ok: i deduced to be 20 ad
f1<10>(v); // ok
f2(v); /[error: cannot deduce template-argument i

f2<10>(v); // ok
}

Nontype parameters shall not be used in expressions in the function declaration. The type of the function
template-parameteshall match the type of themplate-argumerdxactly. For example: O
template<char c>class A {/* ... */ };

template<int i> void f(A<i>); // error: conversion not allowed
template<int i> void f(A<i+1>); // error: expression not allowed

Every template-parametespecified in theemplate-parameter-lisshall be either explicitly specified or{]
deduced from a function argument. If functtemplate-argumestare specified in a call they are specified
in declaration order. Trailing arguments can be left out of a list of exj@iiplate-argumest For exam-
ple,

template<class X, class Y, class Z> X f(Y,2);

void g()
f<int,char*,double>("aa",3.0);
f<int,char*>("aa",3.0); // Z is deduced to be double
f<int>("aa",3.0); // Y is deduced to be char*, and
/I Z is deduced to be double
f("aa",3.0); // error X cannot be deduced
}

A template-parameterannot be deduced from a default function argument. For example:

template <class T> void f(T =5, T =7);

void g()
f(1); /I fine: call f<int>(1,7)
f0; [l error: cannot deduce T
f<int>(); // fine: call f<int>(5,7)

}

If a template parameter can be deduced from more than one function argument the deduced témplate
parameter shall the same in each case. For example:

template<class T> void f(T x, Ty) {/*... */ }

struct A{/*...*};
structB: A{/*...*};

intg(A a, B b)

f(a,a); //ok: Tis A
f(b,b); //ok: TisB
f(a,b); // error T could be A or B
f(b,a); // error: T could be A or B

14.9.3 Overload resolution DRAFT: 1 February 1995 Templates 14£3

14.9.3 Overload resolution [temp.over]

A template function can be overloaded either by (other) functions of its name or by (other) template func-
tions of that same name. Overloading resolution for template functions and other functions of the same
name is done in the following three steps:

1) Look for an exact match (13.2) on functions; if found, call it.

2) Look for a function template from which a function that can be called with an exact match can be gener-
ated; if found, call it.

3) Look for match with conversions. For arguments to ordinary functions and for arguments to a template
function that corresponds to parameters whose type does not depend on a gedplege-parameter
the ordinary best match rules apply. For template functions, only the following conversions listed
below applies. After the best matches are found for individual arguments, the intersection rule
(_over.match.argg is used to look for a best match; if found, call it.

ox 66 B
[Rephrase to match Clause 13.

For arguments that correspond to parameters whose type depends on a deduced template parameter, the fol-
lowing conversions are allowed:

— For a parameter of the forB<params>, whereparams is a template parameter list containing
one or more deduced parameters, an argument of type “class deriveB<4params>" can be
converted tdB<params>. Additionally, for a parameter of the forBkparams>* , an argument
of type “pointer to class derived froBxparams> " can be converted tB<params>* . Similarly [
for references:

— A pointer (reference) can be converted to a more qualified pointer (reference) type, according to the
rules in 4.10 (conv.ref).

— "“array of T” to “pointerto T.”
— “function ...” to “pointer to function to”

If no match is found the call is ill-formed. In each case, if there is more than one alternative in the fir&t step
that finds a match, the call is ambiguous and is ill-formed.

A match on a template (step (2)) implies that a specific template function with parameters that exactly
match the types of the arguments will be generated (14.3). Not even trivial conversions (13.2) will be
applied in this case.

EBOX 67 B
This maybe too strict. See the proposal for a more general overloaded mechanism in NQO2ZD/94
Hissue 3.9). a

The same process is used for type matching for pointers to functions (13.3) and pointers to members.

Here is an example:

)it would be nice if an argument of typd‘B::* whereB is a base ob<params>" could be converted t@ D<params>::*
Unfortunately this would require an unbounded search of possible instantiations.

Ooog

10

11

14-24 Templates DRAFT: 1 February 1995 14.9.3 Overload resolution

template<class T> T max(T a, T b) { return a>b?a:b; };

void f(int a, int b, char c, char d)

{

int m1 = max(a,b); // max(int a, int b)

char m2 = max(c,d); // max(char a, char b)

int m3 = max(a,c); // error: cannot generate max(int,char)
}

For example, adding
int max(int,int);

to the example above would resolve the third call, by providing a function that could be called for
max(a,c) after using the standard conversiortoér toint forc.

Here is an example involving conversions on a function argument involwedhjplate-parametededuc-
tion:

template<class T> struct B { /* ... */ };
template<class T> struct D : public B<T>{/* ... */ };
template<class T> void f(B<T>&);

void g(B<int>& bi, D<int>& di)

{

f(bi); 1/ (bi)

f(di); 1/ f((B<int>&)di)
}

Here is an example involving conversions on a function argument not involvietnhplate-parameter
deduction:

template<class T> void f(T*,int); // #1
template<class T> void f(T,char); // #2

void h(int* pi, int i, char c)

{
f(pi,i); 11 #1: f<int>(pi,i)
f(pi,c); /I #2: f<int*>(pi,c)
f(i,c); M #2: f<int>(i,c);
f(i,i); [/ #2: f<int>(i,char(i))
}

The template definition is needed to generate specializations of a template. However, only a function tem-
plate declaration is needed to call a specialization. For example,

template<class T> void f(T); /I declaration
void g()

f("Annemarie"); // call of f<char*>

}

The call off is well formed because of the the declaratioh,cind the program will be ill-formed unless a
definition off is present in some translations unit.

In case a call has explicitly qualifigeémplate-argumestand requires overload resolution, the explicit
qualification is used first to determine the set of overloaded functions to be considered and overload resolu-
tion then takes place for the remaining arguments. For example:

14.9.3 Overload resolution DRAFT: 1 February 1995 Templates 1425

template<class X, class Y> void f(X,Y*); /] #1
template<class X, class Y> void f(X*,Y); [/ #2

void g(char* pc, int* pi)

(0,0); /I error: ambiguous: f<int,int>(int,int*)

1l or f<int,int>(int*,int) ?
f<char*>(pc,pi); // #1: f<char*,int>(char*,int*)
f<char>(pc,pi); // #2: f<char,int*>(char*,int*)

14.9.4 Overloading and specialization [temp.over.spec]

A template function can be overloaded by a function with the same type as a potentially generated function.
For example:

template<class T> T max(T a, T b) { return a>b?a:b; }
int max(int a, int b);

int min(int a, int b);
template<class T> T min(T a, T b) { return a<b?a:b; }

Such an overloaded function is a specialization but not an explicit specialization. The declaration simply
guides the overload resolution. This implies that a definitiomak(int,int) and min(int,int)
will be implicitly generated from the templates. If such implicit instantiation is not wanted, the explicit
specialization syntax should be used instead:

template<class T> T max(T a, T b) { return a>b?a:b; }

int max<int>(int a, int b);

Defining a function with the same type as a template specialization that is called is ill-formed. For exam-
ple:

template<class T> T max(T a, T b) { return a>b?a:b; }
int max(int a, int b) { return a>b?a:b; }

void f(int x, int y)

{
max(x,y); // error: duplicate definition of max()
}
If the two definitions ofnax() are not in the same translation unit the diagnostic is not required. If a sepa-
rate definition of a functiomax(int,int) is needed, the specialization syntax can be used. If the con-

versions enabled by an ordinary declaration are also needed, both can be used. For example:

template<class T> T max(T a, T b) { return a>b?a:b; }
int max<>(int a, intb) { /* ... */ }

void g(char x, inty)
{

}

int max(int,int);

max(x,y); // error: no exact match, and no conversions allowed

void f(char x, inty)
{

}

max(x,y); // max<int>(int(x),y)

14-26 Templates DRAFT: 1 February 1995 14.9.4 Overloading and specialization

An explicit specialization of a function template shallibbne or static only if it is explicitly
declared to be, and independently of whether its function template is. For example:

template<class T> void f(T) { /* ... */ }
template<class T> inline T g(T) {/* ... */ }

inline void f<>(int) { /* ... */ } // ok: inline
int g<>(int) { /* ... */ } // ok: not inline

OoOoOoogo oo

14.10 Member function templates [temp.mem.func]

A member function of a template class is implicitly a template function witkethplate-parametsrof its
class as iteemplate-parametsr For example,

template<class T> class vector {
T*v;
int sz;

public:
vector(int);
T& operator[](int);
T& elem(int i) { return v[i]; }
...

b
declares three function templates. The subscript function might be defined like this:

template<class T> T& vector<T>::operator[](int i)

if (i<0 || sz<=i) error("vector: range error");
return V[i];

}

The template-argumenfior vector<T>::operator[]() will be determined by the vector to which
the subscripting operation is applied.

vector<int> v1(20);
vector<complex> v2(30);

v1[3]=7; Il vector<int>::operatorf]()
v2[3] = complex(7,8); [/ vector<complex>::operator[]()

14.11 Friends [temp.friend]

A friend function of a template can be a template function or a non-template function. For example,

template<class T> class task {
...
friend void next_time();
friend task<T>* preempt(task<T>*);
friend task* prmt(task?®); /I task is task<T>
friend class task<int>;
...

h

Here,next_time() andtask<int> become friends of atask classes, and eatask has appropri-
ately typed functionpreempt() andprmt() as friends. Thereempt functions might be defined as a
template.

template<class T> task<T>* preempt(task<T>*t) { /* ... */ }

A friend template shall not be defined within a class. For example:

14.11 Friends DRAFT: 1 February 1995 Templates 27

class A {
friend template<class T> B; Il ok
friend friend template<class T> f(T); // ok O

friend template<class T> BB { /* ... [*}; // error
friend template<class T> ff(T){ /* ... /* } // error

I3
Note that d&riend declaration can add a name to an enclosing scope (14.2.4).

O

(Box 68

O .
rhe syntax above isn't allowed by the grammar. The grammar allows only:

d
a

Us what has been used in the examples up until now a better syntax? | think so, because the templa
ter specification is part of the type of what is being defined. However, allowing that requires a
rgrammar change. Making

template<class T> friend B;

aram-
nor

D SRR, B 5

B template<class T>

Catype-specifiemight simplify the grammar while achieving the desired effect.

g

HBox 69

Orhere is no way of declaring a specialization of a static member without also defining it. For exampl

template<class T> class X {
static T s;

k

X<int> s; // definition, can’t just declare

&b L 0B

OoooooOod

One answer to this is to do nothing and hope there is little real need for a solution. Another answeris to

Ontroduce a separate keyword to indicate specialization; see Spicer 6.18 .

S22

14.12 Static members and variables [temp.static]

Each template class or function generated from a template has its own copies of any static variables or
members. For example,

template<class T> class X {
static T s;
...

h

X<int> aa;
X<char*> bb;

HereX<int> has a static membsrof typeint andX<char*> has a static membesrof typechar* .

Static class member templates are defined similarly to member function templates. For example,

template<class T> T X<T>:is = 0;
int X<int>::s = 3;

Similarly,

14-28 Templates DRAFT: 1 February 1995 14.12 Static members and variables

template<class T> f(T* p)

{
static T s;
...

h

void g(int a, char* b)

f(&a); /I call f<int>(int*) g
f(&b); /I call f<char*>(char**) t

}
Heref<int>(int*) has a static membesrof typeint andf<char*>(char**) has a static memberC]

s of typechar* .

15 Exception handling [except]

Exception handling provides a way of transferring control and information from a point in the execution of
a program to aexception handleassociated with a point previously passed by the execution. A handler
will be invoked only by ahrow-expressiomvoked in code executed in the handlersblockor in func-

tions called from the handlerts/-block

try-block:

try compound-statement handler-seq
handler-seq:

handler handler-seg
handler:

catch (exception-declaration) compound-statement

exception-declaration:
type-specifier-seq declarator
type-specifier-seq abstract-declarator
type-specifier-seq

throw-expression:
throw assignment-expressigp

A try-block is a statemen{6). A throw-expressions of typevoid . A throw-expressions sometimes
referred to as &hrow-point” Code that executestlrow-expressiofis said to“throw an exceptiofi;code
that subsequently gets control is call€dhandler”

A goto , break , return , orcontinue statement can be used to transfer control outtof-block or
handler, but not into one. When this happens, each variable declaredrinliteck will be destroyed in
the context that directly contains its declaration. For example,

lab: try {
T1t1;
try {
T2 t2;
if (condition
goto lab;
} catch(...) { /* handler 2 */ }
}catch(...) {/* handler 1 */ }

Here, executingjoto lab; will destroy firstt2 , thentl . Any exception raised while destroyit®
will result in executinghandler 2 any exception raised while destroyity will result in executing
handler 1

15.1 Throwing an exception [except.throw]

Throwing an exception transfers control to a handler. An object is passed and the type of that object deter-
mines which handlers can catch it. For example,

throw "Help!";

15-2 Exception handling DRAFT: 1 February 1995 15.1 Throwing an exception

can be caught bylandlerof somechar* type:

try {
}

catch(const char* p) {
/l handle character string exceptions here
}

...

and

class Overflow {
...

public:
Overflow(char,double,double);

h

void f(double x)

{
...

throw Overflow('+',x,3.45e107);
}

can be caught by a handler

try {
...

f(1.2);
I...

catch(Overflow& 00) {
/I handle exceptions of type Overflow here
}

When an exception is thrown, control is transferred to the nearest handler with an appropriateeaype;
est means the handler whosey-block was most recently entered by the thread of control and not yet
exited;"appropriate typeis defined in 15.3.

The operand of throw shall be of a type with no ambiguous base classes. That is, it shall be possible to
convert the value thrown unambiguously to each of its base cf&ses.

A throw-expressiofnitializes a temporary object of the static type of the operartdrofv , ignoring the O
top-levelcv-qualifiers of the operand’s type, and uses that temporary to initialize the appropriately-typed
variable named in the handler. If the static type of the expression thrown is a class or a pointer or reference
to a class, there shall be an unambiguous conversion from that class type to each of its accessible base
classes. Except for that restriction and for the restrictions on type matching mentioned in 15.3 and the use
of a temporary variable, the operandiufow is treated exactly as a function argument in a call (5.2.2) or

the operand of eeturn statement.

The memory for the temporary copy of the exception being thrown is allocated in an implementation-
defined way. The temporary persists as long as there is a handler being executed for that exception. In par-
ticular, if a handler exits by executinglaow; statement, that passes control to another handler for the
same exception, so the temporary remains. If the use of the temporary object can be eliminated without
changing the meaning of the program except for the execution of constructors and destructors associated
with the use of the temporary object (12.2), then the exception in the handler can be initialized directly with
the argument of the throw expression.

")\t the value thrown has no base classes or is not of class type, this condition is vacuously satisfied. |

15.1 Throwing an exception DRAFT: 1 February 1995 Exception handling 13

A throw-expressiomvith no operand rethrows the exception being handled without copying it. For exam-
ple, code that must be executed because of an exception yet cannot completely handle the exception can be
written like this:

try {
...

catch (...) { // catch all exceptions
I/l respond (partially) to exception

throw; Il pass the exception to some
/I other handler

}

The exception thrown is the one most recently caught and not finished. An exception is considered caught
when initialization is complete for the formal parameter of the corresponding catch clause, or when
terminate() orunexpected() is entered due to a throw. An exception is considered finished when
the corresponding catch clause exits.

If no exception is presently being handled, executingh@w-expressionwith no operand calls
terminate() (15.5.1).
15.2 Constructors and destructors [except.ctor]

As control passes from a throw-point to a handler, destructors are invoked for all automatic objects con-
structed since thiey-blockwas entered.

An object that is partially constructed will have destructors executed only for its fully constructed sub-
objects. Should a constructor for an element of an automatic array throw an exception, only the constructed
elements of that array will be destroyed. If the object or array was allocatetim-@xpressigrthe stor-

age occupied by that object is sometimes deleted also (5.3.4).

The process of calling destructors for automatic objects constructed on the path tiigivioak to a
throw-expressiois called”stack unwinding
15.3 Handling an exception [except.handle]

The exception-declaratiom a handlerdescribes the type(s) of exceptions that can cause that handler to be
executed. Thexception-declaratioshall not denote an incomplete type.

A handlerwith typeT, const T, T&, orconst T&is a match for ahrow-expressiomwith an object of
typeE if

[1] T andE are the same type, or
[2] T is an accessible (4.10) base clask af the throw point, or

[3] T is a pointer type ank is a pointer type that can be converted tby a standard pointer conver-
sion (4.10) at the throw point.

15-4 Exception handling DRAFT: 1 February 1995 15.3 Handling an exception

EBOX 70 El]
[The intent was and is to require no run-time access or ambiguity checking. d
O O

Lparagraph 3 of 15.1 says that we can't throw an object that would require the handler mechanisi to do
%imbiguity checks.

EPoint [2] above says, in particular, that an object with a private class can be thrown if and onl)%]f the
[thrower has access to that base. This implies no violation of access, because the thrower could havel thrown
Ethe private class directly. El]
BThis implies that an exception can be caught by a private class (the access check, like the ambigu%ﬂ check
[is done at the throw point). This does not require a run-time access check. It does, however, requii that a
Cbbject of a class with a private base class is transmitted to the catch point together with an indicatdn if it
Eban be caught by its private base class. El]
Ht has been suggested that this should be simplified by prohibiting the throw of an object of a clasgjlrvith a
[private base class. It has also been suggested that run-time access checks should be requirgfl In the
Cabsence of a proposal for change, the text will be clarified along the lines in this box. M

For example,

class Matherr { /* ... */ virtual vf(); };

class Overflow: public Matherr { /* ... */ };
class Underflow: public Matherr { /* ... */ };
class Zerodivide: public Matherr { /* ... */ };

void f()
try {
}

a0;

catch (Overflow 00) {
...
}

catch (Matherr mm) {
...
}

}

Here, theOverflow handler will catch exceptions of tyg@verflow and theMatherr handler will
catch exceptions of typdatherr and all types publicly derived frodatherr including Underflow
andZerodivide

The handlers for &y-blockare tried in order of appearance. That makes it possible to write handlers that
can never be executed, for example by placing a handler for a derived class after a handler for a correspond-
ing base class.

A ... in a handler'sexception-declaratioiunctions similarly to... in a function parameter declara-
tion; it specifies a match for any exception. If present, a handler shall be the last handler fortits [
block

If no match is found among the handlers fdryablock the search for a matching handler continues in a
dynamically surroundingy-block O

An exception is considered handled upon entry to a handler. The stack will have been unwound at that
point. O

15.3 Handling an exception DRAFT: 1 February 1995 Exception handling %

If no matching handler is found in a program, the functesminate() (15.5.1) is called. Whether or]
not the stack is unwound before calltegminate() is implementation-defined.
15.4 Exception specifications [except.spec]

A function declaration lists exceptions that its function might directly or indirectly throw by using an
exception-specificatioas a suffix of its declarator.

Box 71
O

a
O
Should it be possible to use more general typestifpids in exception-specificati@? In the absence ¢f_
[Ca proposal for change, this box will be removed. a

exception-specification:
throw (type-id-lisy)

type-id-list:
type-id
type-id-list , type-id

An exception-specificatioshall appear only on a function declarator in a declaration or definition. CAn
exception-specificatioshall not appear in a typedef declaration. For example:

void f() throw(int); /I OK
void (*fp) throw (int); I OK
void g(void pfa() throw(int)); // OK
typedef int (*pf)() throw(int); //ill-formed

oOooo

If any declaration of a function has arception-specificatiqrall declarations, including the definition, ofl
that function shall have axception-specificatiowith the same set @ype-ics. If a virtual function has an
exception-specificatigrall declarations, including the definition, of any function that overrides that virtual
function in any derived class shall haveexteption-specificatioat least as restrictive as that in the bage
class. For example:

struct B {
virtual void f() throw (int, double);
virtual void g();

I3

struct D: B {
void f(); /I ill-formed
void g() throw (int); Il OK

2

The declaration ob::f is ill-formed because it allows all exceptions, whei@as allows onlyint and
double . Similarly, any function or pointer to function assigned to, or initializing, a pointer to function
shall have amxception-specificatioat least as restrictive as that of the pointer or function being assigned

to or initialized. For example: O
void (*pf1)(); /I no exception specification O

void (*pf2) throw(A); a

void f() g

{ O

pfl = pf2; // ok: pfl is less restrictive a

pf2 = pfl; [/ error: pf2 is more restrictive a

} g

In such an assignment or initializatiexception-specificatianon return types and parameter types shall
match exactly. O

10

11

15-6 Exception handling DRAFT: 1 February 1995 15.4 Exception specifications

ox 72 E |
(Orhis is needlessly restrictive. We can safely relax this restriction if needed. M
In other assignments or initializatiorexception-specificatianshall match exactly. O

ox 73 E |
(Orhis is needlessly restrictive. We can safely relax this restriction if needed. M

Calling a function through a declaration whaseeption-specificatiors less restrictive that that of thel
function’s definition is ill-formed. No diagnostic is required.

Types shall not be defined @xception-specificatian O

An exception-specificationan include the same class more than once and can include classes related by
inheritance, even though doing so is redundant. ekoeption-specificatiortan include classes with

ambiguous base classes, even though throwing objects of such classes is ill-formed (15.1). An exgdeption
specification can include identifiers that represent incomplete types. An exception can also include the

name of the predefined claXsnexpected . g
EBOX 74 El]
rhe nameXunexpected is under discussion and will change. The exact meaning of “predefined” ant a
[possible standard library specification of clXsmexpected is also being defined. [l

If a classX is in thetype-id-listof the exception-specificationf a function, that function is said &dlow
exception objects of classor any class publicly derived frodd Similarly, if a pointer typé’™* is in the
type-id-listof the exception-specificationf a function, the function allows exceptions of tyge or that
are pointers to any type publicly derived frafh. O

Whenever an exception is thrown and the search for a handler (15.3) encounters the outermost black of a
function with anexception-specificatigrthe functionunexpected() is called (15.5.2) if thexception-
specificationdoes not allow the exception. For example,

class X {};
class Y {};
class Z: public X { };
class W {};

void f() throw (X, Y)
{

intn=0;

if (n) throw X(); /I OK

if (n) throw Z(); I/l also OK

throw W(); I will call unexpected()

}

The functionunexpected() may throw an exception that will satisfy tleeception-specificatiofor [
which it was invoked, and in this case the search for another handler will continue at the call of the fumction
with this exception-specificatio(see 15.5.2), or it may call terminate. O

An implementation shall not reject an expression merely because when executed it throws or mighflthrow
an exception that the containing function does not allow. For example,

12

13

15.4 Exception specifications DRAFT: 1 February 1995 Exception handling 13

extern void f() throw(X, Y);
void g() throw(X)
{

f0); /1 OK
}

the call tof is well-formed even though when callédmight throw exceptiotY thatg does not allow.

A function with noexception-specificatiomllows all exceptions. A function with an emptyception-
specificationthrow() , does not allow any exceptions.

An exception-specificatiois not considered part of a function’s type.

15.5 Special functions [except.special]
The exception handling mechanism relies on two functi@rsjinate() and unexpected() , for O
coping with errors related to the exception handling mechanism itself (18.6).

15.5.1 Theterminate() function [except.terminate]

Occasionally, exception handling must be abandoned for less subtle error handling techniques. For exam-
ple,

— when a exception handling mechanism, after completing evaluation of the object to be thrown, calls a
user function that exits via an uncaught excepﬁ&n,

— when the exception handling mechanism cannot find a handler for a thrown exception (see 15.3),00
— when the exception handling mechanism finds the stack corrupted, or
— when a destructor called during stack unwinding caused by an exception tries to exit using an exception.

In such cases,

void terminate();

is called; terminate() calls the function given on the most recent call aof
set_terminate() (_lib.exception.terminatg.
15.5.2 Theunexpected() function [except.unexpected]

If a function with anexception-specificatiothrows an exception that is not listed in teeception-
specification the function

void unexpected();

is called; unexpected() calls the function given on the most recent call af
set_unexpected() (_lib.exception.unexpecteil

Theunexpected() function shall not return, but it can throw (or re-throw) an exception. If it throwd a
new exception which is allowed by the exception specification which previously was violated, then the
search for another handler will continue at the call of the function whose exception specification was vio-
lated. If it throws or rethrows an exception an exception which is not allowed bgxtieption-
specificationthen the following happens: if ttexception-specificatiodoes not include the name of thél
predefined exceptioiXunexpected then the functiorterminate() is called, otherwise the thrown]
exception is replaced by an implementation-defined object of theXiypexpected and the search forO
another handler will continue at the call of the function wle®eption-specificatiowas violated. O

O
"TEor example, if the object being thrown is of a class with a copy constiigctomate() will be called if that copy constructor O
exits with an exception duringtrow . a

15-8 Exception handling DRAFT: 1 February 1995 15.5.2 Thanexpected() function

Thus, anexception-specificatiorguarantees that only the listed exceptions will be thrown. If fhe
exception-specificatiomncludes the namé&unexpected then any exception not on the list may bé
replaced byXunexpected within the functionunexpected()

15.6 Exceptions and access [except.access]

The parameter of a catch clause obeys the same access rules as a parameter of the function in which the
catch clause occurs.

An object can be thrown if it can be copied and destroyed in the context of the function in which thelfhrow
occurs.

16 Preprocessing directives [cpp]

A preprocessing directive consists of a sequence of preprocessing tokens that begi#spréfiracessing

token that is either the first character in the source file (optionally after white space containing no new-line
characters) or that follows white space containing at least one new-line character, and is ended by the next
new-line charactef®

preprocessing-file:

group,,
group:
group-part
group group-part
group-part:
pp-tokeng,, new-line
if-section
control-line
if-section:
if-group elif-groupg,, else-group,, endif-line
if-group:
#if constant-expression new-line grouyp
ifdef identifier new-line groug,
ifndef identifier new-line groug,
elif-groups:
elif-group
elif-groups elif-group
elif-group:
elif constant-expression new-line grgyp
else-group:
else new-line group,
endif-line:
endif new-line

O
) Thus, preprocessing directives are commonly cédlieds’” These'lines’ have no other syntactic significance, as all white spaces
equivalent except in certain situations during preprocessing (s#eti@acter string literal creation operator in 16.3.2, for example)

16-2 Preprocessing directives DRAFT: 1 February 1995 16 Preprocessing directives

control-line:
include pp-tokens new-line
define identifier replacement-list new-line
define identifier Iparen identifier-lisy,,) replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokeng,, new-line
#pragma pp-tokeng, new-line
new-line
Iparen:

the left-parenthesis character without preceding white-space

replacement-list:
pp-tokeng,

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

The only white-space characters that shall appear between preprocessing tokens within a preprocessing
directive (from just after the introducimgpreprocessing token through just before the terminating new-line
character) are space and horizontal-tab (including spaces that have replaced comments or possibly other
white-space characters in translation phase 3).

The implementation can process and skip sections of source files conditionally, include other source files,
and replace macros. These capabilities are callegrocessingbecause conceptually they occur before
translation of the resulting translation unit.

The preprocessing tokens within a preprocessing directive are not subject to macro expansion unless other-
wise stated.

16.1 Conditional inclusion [cpp.cond]

The expression that controls conditional inclusion shall be an integral constant expression except that: it
shall not contain a cast; identifiers (including those lexically identical to keywords) are interpreted as
described beIov@,g) and it may contain unary operator expressions of the form

defined identifier
or
defined (identifier)

which evaluate td if the identifier is currently defined as a macro name (that is, if it is predefined or if it
has been the subject oftdefine preprocessing directive without an intervenihgndef directive with
the same subiject identifier), zero if it is not.

Each preprocessing token that remains after all macro replacements have occurred shall be in the lexical
form of a token (2.5).

Preprocessing directives of the forms

#if constant-expression new-line grgyp
elif constant-expression new-line group

check whether the controlling constant expression evaluates to nonzero.

O
") Because the controlling constant expression is evaluated during translation phase 4, all identifiers either are or are not magto names
— there simply are no keywords, enumeration constants, and so on. O

16.1 Conditional inclusion DRAFT: 1 February 1995 Preprocessing directives 18

Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the controlling
constant expression are replaced (except for those macro names modifiedéfingee unary operator),

just as in normal text. If the toketefined is generated as a result of this replacement process or use of
thedefined unary operator does not match one of the two specified forms prior to macro replacement,
the behavior is undefined. After all replacements due to macro expansion deflrited unary operator

have been performed, all remaining identifiers are replaced with the pp-nOmémed then each prepro-

cessing token is converted into a token. The resulting tokens comprise the controlling constant expression
which is evaluated according to the rules of 5.19 using arithmetic that has at least the ranges spectified in
18.2, except thaint andunsignedint act as if they have the same representation as, respectively,
long andunsigned long . This includes interpreting character constants, which may involve convert-

ing escape sequences into execution character set members. Whether the numeric value for these character
constants matches the value obtained when an identical character constant occurs in an expression (other
than within a#if or#elif directive) is implementation-definé&? Also, whether a single-character char-

acter constant may have a negative value is implementation-defined.

Preprocessing directives of the forms

ifdef identifier new-line groug,
ifndef identifier new-line grougy

check whether the identifier is or is not currently defined as a macro name. Their conditions are equivalent
to#if defined identifierand#if !defined identifierrespectively.

Each directive’s condition is checked in order. If it evaluates to false (zero), the group that it controls is
skipped: directives are processed only through the name that determines the directive in order to keep track
of the level of nested conditionals; the rest of the directives’ preprocessing tokens are ignored, as are the
other preprocessing tokens in the group. Only the first group whose control condition evaluates to true
(nonzero) is processed. If none of the conditions evaluates to true, and thetfelse adirective, the

group controlled by théelse is processed; lacking#else directive, all the groups until théendif

are skipped:

16.2 Source file inclusion [cpp.include]
A #include directive shall identify a header or source file that can be processed by the implementation.
A preprocessing directive of the form

#include < h-char-sequence new-line

searches a sequence of implementation-defined places for a header identified uniquely by the specified
sequence between thkeand> delimiters, and causes the replacement of that directive by the entire contents
of the header. How the places are specified or the header identified is implementation-defined.

A preprocessing directive of the form
include " g-char-sequence new-line

causes the replacement of that directive by the entire contents of the source file identified by the specified
sequence between tHedelimiters. The named source file is searched for in an implementation-defined
manner. If this search is not supported, or if the search fails, the directive is reprocessed as if it read

#include < h-char-sequence new-line

with the identical contained sequence (includingharacters, if any) from the original directive.

O
8v) Thus, the constant expression in the follow#ily directive andf statement is not guaranteed to evaluate to the same valug in
these two contexts. O

#if'z - = =25 O
if (z-'a’ = = 25) 0

81) As indicated by the syntax, a preprocessing token shall not folleisa or #endif directive before the terminating new-lined
character. However, comments may appear anywhere in a source file, including within a preprocessing directive. O

16-4 Preprocessing directives DRAFT: 1 February 1995 16.2 Source file inclusion

A preprocessing directive of the form

include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokartduafeer

in the directive are processed just as in normal text. (Each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens.)The directive resulting after all replacements shall
match one of the two previous fors.The method by which a sequence of preprocessing tokens between
a< and a> preprocessing token pair or a pair'ofharacters is combined into a single header name prepro-
cessing token is implementation-defined.

There shall be an implementation-defined mapping between the delimited sequence and the external source
file name. The implementation shall provide unique mappings for sequences consisting of one or more
nondigits (2.7) followed by a period | and a singleondigit The implementation may ignore the distinc-

tions of alphabetical case and restrict the mapping to six significant characters before the period.

%ox 75 g
[Does this restriction still make sense fe+€ [

A #include preprocessing directive may appear in a source file that has been read because of a
#include directive in another file, up to an implementation-defined nesting limit{see??2>>>).

The most common uses#ihclude preprocessing directives are as in the following:

#include <stdio.h>
#include "myprog.h"

This example illustrates a macro-repladéttiude directive:

#if VERSION= =1

#define INCFILE "versl.h"
#elif VERSION= =2

#define INCFILE "vers2.h" [* and so on*/
#else

#define INCFILE "versN.h"
#endif
#include INCFILE

16.3 Macro replacement [cpp.replace]

Two replacement lists are identical if and only if the preprocessing tokens in both have the same number,
ordering, spelling, and white-space separation, where all white-space separations are considered identical.

An identifier currently defined as a macro without use of Iparemifgect-likemacro) may be redefined by
another#define preprocessing directive provided that the second definition is an object-like macro defi-
nition and the two replacement lists are identical.

An identifier currently defined as a macro using Iparefufation-likemacro) may be redefined by another
#define preprocessing directive provided that the second definition is a function-like macro definition
that has the same number and spelling of parameters, and the two replacement lists are identical.

The number of arguments in an invocation of a function-like macro shall agree with the number of parame-
ters in the macro definition, and there shall existseprocessing token that terminates the invocation.

A parameter identifier in a function-like macro shall be uniquely declared within its scope.
O

82) Note that adjacent string literals are not concatenated into a single string literal (see the translation phases in 2.1); thus, Bn expan-
sion that results in two string literals is an invalid directive. |

10

16.3 Macro replacement DRAFT: 1 February 1995 Preprocessing directives 1%

The identifier immediately following thdefine is called themacro name There is one name space for
macro names. Any white-space characters preceding or following the replacement list of preprocessing
tokens are not considered part of the replacement list for either form of macro.

If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a preprocessing
directive could begin, the identifier is not subject to macro replacement.

A preprocessing directive of the form

define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the ma%%:m@meeplaced by
the replacement list of preprocessing tokens that constitute the remainder of the directive. The replacement
list is then rescanned for more macro names as specified below.

A preprocessing directive of the form

define identifier Iparen identifier-lis,,) replacement-list new-line

defines a function-like macro with parameters, similar syntactically to a function call. The parameters are
specified by the optional list of identifiers, whose scope extends from their declaration in the identifier list
until the new-line character that terminates #taefine preprocessing directive. Each subsequent
instance of the function-like macro name followed by as the next preprocessing token introduces the
sequence of preprocessing tokens that is replaced by the replacement list in the definition (an invocation of
the macro). The replaced sequence of preprocessing tokens is terminated by the natiepngcessing

token, skipping intervening matched pairs of left and right parenthesis preprocessing tokens. Within the
sequence of preprocessing tokens making up an invocation of a function-like macro, new-line is considered
a normal white-space character.

The sequence of preprocessing tokens bounded by the outside-most matching parentheses forms the list of
arguments for the function-like macro. The individual arguments within the list are separated by comma
preprocessing tokens, but comma preprocessing tokens between matching inner parentheses do not separate
arguments. If (before argument substitution) any argument consists of no preprocessing tokens, the behav-
ior is undefined. If there are sequences of preprocessing tokens within the list of arguments that would oth-
erwise act as preprocessing directives, the behavior is undefined.

16.3.1 Argument substitution [cpp.subst]

After the arguments for the invocation of a function-like macro have been identified, argument substitution
takes place. A parameter in the replacement list, unless precedetidné preprocessing token or fol-

lowed by a## preprocessing token (see below), is replaced by the corresponding argument after all macros
contained therein have been expanded. Before being substituted, each argument’s preprocessing tokens are
completely macro replaced as if they formed the rest of the translation unit; no other preprocessing tokens
are available.

16.3.2 Thet operator [cpp.stringize]

Each# preprocessing token in the replacement list for a function-like macro shall be followed by a parame-
ter as the next preprocessing token in the replacement list.

If, in the replacement list, a parameter is immediately preceded thyraprocessing token, both are
replaced by a single character string literal preprocessing token that contains the spelling of the preprocess-
ing token sequence for the corresponding argument. Each occurrence of white space between the
argument’s preprocessing tokens becomes a single space character in the character string literal. White
space before the first preprocessing token and after the last preprocessing token comprising the argument is
deleted. Otherwise, the original spelling of each preprocessing token in the argument is retained in the

character string literal, except for special handling for producing the spelling of string literals and character

O
83) Since, by macro-replacement time, all character constants and string literals are preprocessing tokens, not sequences poSsibly con-
taining identifier-like subsequences (see 2.1.1.2, translation phases), they are never scanned for macro names or parameters.(]

16-6 Preprocessing directives DRAFT: 1 February 1995 16.3.2 THeoperator

constants: & character is inserted before edctand\ character of a character constant or string literal
(including the delimiting" characters). If the replacement that results is not a valid character string literal,
the behavior is undefined. The order of evaluatiot ahd## operators is unspecified.

16.3.3 The## operator [cpp.concat]

A ## preprocessing token shall not occur at the beginning or at the end of a replacement list for either form
of macro definition.

If, in the replacement list, a parameter is immediately preceded or followed#bypeeprocessing token,
the parameter is replaced by the corresponding argument’s preprocessing token sequence.

For both object-like and function-like macro invocations, before the replacement list is reexamined for
more macro names to replace, each instance##f greprocessing token in the replacement list (not from

an argument) is deleted and the preceding preprocessing token is concatenated with the following prepro-
cessing token. If the result is not a valid preprocessing token, the behavior is undefined. The resulting
token is available for further macro replacement. The order of evaluatighaferators is unspecified.

16.3.4 Rescanning and further replacement [cpp.rescan]

After all parameters in the replacement list have been substituted, the resulting preprocessing token
sequence is rescanned with all subsequent preprocessing tokens of the source file for more macro names to
replace.

If the name of the macro being replaced is found during this scan of the replacement list (not including the
rest of the source file’s preprocessing tokens), it is not replaced. Further, if any nested replacements
encounter the name of the macro being replaced, it is not replaced. These nonreplaced macro name prepro-
cessing tokens are no longer available for further replacement even if they are later (re)examined in con-
texts in which that macro name preprocessing token would otherwise have been replaced.

The resulting completely macro-replaced preprocessing token sequence is not processed as a preprocessing
directive even if it resembles one.

16.3.5 Scope of macro definitions [cpp.scope]

A macro definition lasts (independent of block structure) until a corresporflindef directive is
encountered or (if none is encountered) until the end of the translation unit.

A preprocessing directive of the form

undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. Itis ignored if the specified identi-
fier is not currently defined as a macro name.

The simplest use of this facility is to definéraanifest constaritas in
#define TABSIZE 100
int table[TABSIZE];

The following defines a function-like macro whose value is the maximum of its arguments. It has the
advantages of working for any compatible types of the arguments and of generating in-line code without the
overhead of function calling. It has the disadvantages of evaluating one or the other of its arguments a sec-
ond time (including side effects) and generating more code than a function if invoked several times. It also
cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.

16.3.5 Scope of macro definitions DRAFT: 1 February 1995 Preprocessing directives—¥6

5 To illustrate the rules for redefinition and reexamination, the sequence
#define x 3
#define f(a) f(x * (a))
#undef x
#define x 2
#define g f
#define z z[0]
#define h o(~

#define m(a) a(w)
#define w 0,1
#define t(a) a

fly+1) + f(f(2)) % t(t(g)(0) + t)(1);
g(x+(3,4)-w) | h5) & m

(f*m(m);
results in
f2* (y+1)) + (2 * (2 * (z[0])))) % #(2 * (0)) + t(2);
f(2* (2+(3,4)-0,1)) [f(2 * (~5)) & f(2*(0,1))"m(0,1);
6 To illustrate the rules for creating character string literals and concatenating tokens, the sequence
#define str(s) #s
#define xstr(s) str(s)
#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \
X ## s, X #i# 1)
#define INCFILE(n) vers##n [* from previoustinclude example*/

#define glue(a, b) a##b
#define xglue(a, b) glue(a, b)

#define HIGHLOW "hello"
#define LOW LOW ", world"
debug(1, 2);

fputs(str(strncmp("abc\0d”, "abc", \4’) /* this goes away */
==0) str(: @\n), s);

#include xstr(INCFILE(2).h)

glue(HIGH, LOW);

xglue(HIGH, LOW)

results in
printf("x" "1" "= %d, x" "2" "= %s", x1, x2);
fputs("strncmp(\"abc\0d\", \"abc\", '\\4') = =0"" @\n", s);
#include "vers2.h" (after macro replacement, before file access)

"hello";
"hello" ", world"

or, after concatenation of the character string literals,
printf("x1= %d, x2= %s", x1, x2);

fputs("strncmp(\"abc\0d\", \"abc\", '\\4’) = =0: @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello”;

"hello, world"

Space around theand## tokens in the macro definition is optional.

7 And finally, to demonstrate the redefinition rules, the following sequence is valid.

16-8 Preprocessing directives DRAFT: 1 February 1995 16.3.5 Scope of macro definitions

#define OBJ_LIKE (1-1)
#define OBJ_LIKE [* white space */ (1-1) /* other */
#define FTN_LIKE(@) (a)
#define FTN_LIKE(a)([* note the white space */\
a /* other stuff on this line
*/)
But the following redefinitions are invalid:
#define OBJ_LIKE 0) I* different token sequenc¥
#define OBJ_LIKE @a-1)r different white space/
#define FTN_LIKE(b) (a) /* different parameter usagé/
#define FTN_LIKE(b) (b) /* different parameter spelling/
16.4 Line control [cpp.line]

The string literal of &line directive, if present, shall be a character string literal.

The line numberof the current source line is one greater than the number of new-line characters read or
introduced in translation phase 1 (2.1) while processing the source file to the current token.

A preprocessing directive of the form
#line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a source line
that has a line number as specified by the digit sequence (interpreted as a decimal integer). The digit
sequence shall not specify zero, nor a number greater than 32767.

A preprocessing directive of the form
line digit-sequence” s-char-sequengg’ new-line

sets the line number similarly and changes the presumed name of the source file to be the contents of the
character string literal.

A preprocessing directive of the form
line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokdins aftar

the directive are processed just as in normal text (each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens). The directive resulting after all replacements
shall match one of the two previous forms and is then processed as appropriate.

16.5 Error directive [cpp.error]
A preprocessing directive of the form
error pp-tokeng,, new-line
causes the implementation to produce a diagnostic message that includes the specified sequence of prepro-
cessing tokens.
16.6 Pragma directive [cpp.pragma]
A preprocessing directive of the form
pragma pp-tokeng, new-line

causes the implementation to behave in an implementation-defined manner. Any pragma that is not recog-
nized by the implementation is ignored.

16.7 Null directive DRAFT: 1 February 1995 Preprocessing directives +®

16.7 Null directive [cpp.null]

A preprocessing directive of the form

new-line

has no effect.

16.8 Predefined macro names [cpp.predefined]
The following macro names shall be defined by the implementation:

__LINE_ _The line number of the current source line (a decimal constant).

__FILE_ _The presumed name of the source file (a character string literal).

__DATE__The date of translation of the source file (a character string literal of the form
"Mmm dd yyyy" , where the names of the months are the same as those generatedduyirtree
function, and the first character dfl is a space character if the value is less than 10). If the date of
translation is not available, an implementation-defined valid date shall be supplied.

__TIME_ _The time of translation of the source file (a character string literal of the"fdirmm:ss"
as in the time generated by thectime function). If the time of translation is not available, an
implementation-defined valid time shall be supplied.

__STDC__Whether__STDC__is defined and if so, what its value is, are implementation dependent.

___cplusplus The name__cplusplus is defined (to an unspecified value) when compiling+a C
translation unit.

The values of the predefined macros (except fotINE_ _and__FILE_) remain constant throughout
the translation unit.

None of these macro names, nor the identdfifined , shall be the subject oftalefine or a#undef
preprocessing directive. All predefined macro names shall begin with a leading underscore followed by an
uppercase letter or a second underscore.

	1 - General
	1.1
	1.2
	1.3
	1.4
	1.5
	1.6
	1.7
	1.8

	2 - Lexical conventions
	2.1
	2.2
	2.3
	2.4
	2.5
	2.6
	2.7
	2.8
	2.9
	2.9.1
	2.9.2
	2.9.3
	2.9.4
	2.9.5

	3 - Basic concepts
	3.1
	3.2
	3.3
	3.3.1
	3.3.2
	3.3.3
	3.3.4
	3.3.5
	3.3.6
	3.3.7
	3.3.8
	3.3.9

	3.4
	3.5
	3.6
	3.6.1
	3.6.2
	3.6.3

	3.7
	3.7.1
	3.7.2
	3.7.3
	3.7.3.1
	3.7.3.2

	3.7.4
	3.7.5

	3.8
	3.8.1
	3.8.2
	3.8.3
	3.8.4

	3.9

	4 - Standard conversions
	4.1
	4.2
	4.3
	4.4
	4.5
	4.6
	4.7
	4.8
	4.9
	4.10
	4.11
	4.12
	4.13

	5 - Expressions
	5.1
	5.2
	5.2.1
	5.2.2
	5.2.3
	5.2.4
	5.2.5
	5.2.6
	5.2.7
	5.2.8
	5.2.9
	5.2.10

	5.3
	5.3.1
	5.3.2
	5.3.3
	5.3.4
	5.3.5

	5.4
	5.5
	5.6
	5.7
	5.8
	5.9
	5.10
	5.11
	5.12
	5.13
	5.14
	5.15
	5.16
	5.17
	5.18
	5.19

	6 - Statements
	6.1
	6.2
	6.3
	6.4
	6.4.1
	6.4.2

	6.5
	6.5.1
	6.5.2
	6.5.3

	6.6
	6.6.1
	6.6.2
	6.6.3
	6.6.4

	6.7
	6.8

	7 - Declarations
	7.1
	7.1.1
	7.1.2
	7.1.3
	7.1.4
	7.1.5
	7.1.5.1
	7.1.5.2
	7.1.5.3

	7.2
	7.3
	7.3.1
	7.3.1.1
	7.3.1.2
	7.3.1.3
	7.3.1.4

	7.3.2
	7.3.3
	7.3.4

	7.4
	7.5

	8 - Declarators
	8.1
	8.2
	8.3
	8.3.1
	8.3.2
	8.3.3
	8.3.4
	8.3.5
	8.3.6

	8.4
	8.5
	8.5.1
	8.5.2
	8.5.3

	9 - Classes
	9.1
	9.2
	9.3
	9.4
	9.4.1
	9.4.2

	9.5
	9.5.1
	9.5.2

	9.6
	9.7
	9.8
	9.9
	9.10

	10 - Derived classes
	10.1
	10.2
	10.3
	10.4

	11 - Member access control
	11.1
	11.2
	11.3
	11.4
	11.5
	11.6
	11.7

	12 - Special member functions
	12.1
	12.2
	12.3
	12.3.1
	12.3.2

	12.4
	12.5
	12.6
	12.6.1
	12.6.2

	12.7
	12.8

	13 - Overloading
	13.1
	13.1.1

	13.2
	13.2.1
	13.2.1.1
	13.2.1.1.1
	13.2.1.1.2

	13.2.1.2
	13.2.1.3
	13.2.1.4

	13.2.2
	13.2.3
	13.2.3.1
	13.2.3.1.1
	13.2.3.1.2
	13.2.3.1.3
	13.2.3.1.4

	13.2.3.2

	13.3
	13.4
	13.4.1
	13.4.2
	13.4.3
	13.4.4
	13.4.5
	13.4.6
	13.4.7

	13.5

	14 - Templates
	14.1
	14.2
	14.2.1
	14.2.2
	14.2.3
	14.2.4

	14.3
	14.3.1
	14.3.2
	14.3.3

	14.4
	14.5
	14.6
	14.7
	14.8
	14.9
	14.9.1
	14.9.2
	14.9.3
	14.9.4

	14.10
	14.11
	14.12

	15 - Exception handling
	15.1
	15.2
	15.3
	15.4
	15.5
	15.5.1
	15.5.2

	15.6

	16 - Preprocessing directives
	16.1
	16.2
	16.3
	16.3.1
	16.3.2
	16.3.3
	16.3.4
	16.3.5

	16.4
	16.5
	16.6
	16.7
	16.8

