______________________________________________________________________

  25   Algorithms library                     [lib.algorithms]

  ______________________________________________________________________

1 This clause describes components that C++ programs may use to  perform
  algorithmic  operations  on  containers  (_lib.containers_)  and other
  sequences.

2 The  following  subclauses  describe  components   for   non-modifying
  sequence operation, modifying sequence operations, sorting and related
  operations, and algorithms from the ISO C library,  as  summarized  in
  Table 1:

                   Table 1--Algorithms library summary

  +--------------------------------------------------------------------------+
  |                         Subclause                             Header(s)  |
  +--------------------------------------------------------------------------+
  |_lib.alg.nonmodifying_ Non-modifying sequence operations                  |
  |_lib.alg.modifying.operations_ Mutating sequence operations   <algorithm> |
  |_lib.alg.sorting_ Sorting and related operations                          |
  +--------------------------------------------------------------------------+
  |_lib.alg.c.library_ C library algorithms                      <cstdlib>   |
  +--------------------------------------------------------------------------+

  Header <algorithm> synopsis

  namespace std {
  // subclause _lib.alg.nonmodifying_, non-modifying sequence operations:
    template<class InputIterator, class Function>
      Function for_each(InputIterator first, InputIterator last, Function f);
    template<class InputIterator, class T>
      InputIterator find(InputIterator first, InputIterator last, const T& value);
    template<class InputIterator, class Predicate>
      InputIterator find_if(InputIterator first, InputIterator last,
                            Predicate pred);
    template<class ForwardIterator1, class ForwardIterator2>
      ForwardIterator1
        find_end(ForwardIterator1 first1, ForwardIterator1 last1,
                 ForwardIterator2 first2, ForwardIterator2 last2);
    template<class ForwardIterator1, class ForwardIterator2,
             class BinaryPredicate>
      ForwardIterator1
        find_end(ForwardIterator1 first1, ForwardIterator1 last1,
                 ForwardIterator2 first2, ForwardIterator2 last2,
                 BinaryPredicate pred);
    template<class ForwardIterator1, class ForwardIterator2>
      ForwardIterator1
        find_first_of(ForwardIterator1 first1, ForwardIterator1 last1,
                      ForwardIterator2 first2, ForwardIterator2 last2);
    template<class ForwardIterator1, class ForwardIterator2,
             class BinaryPredicate>
      ForwardIterator1
        find_first_of(ForwardIterator1 first1, ForwardIterator1 last1,
                 ForwardIterator2 first2, ForwardIterator2 last2,
                 BinaryPredicate pred);
    template<class InputIterator>
      InputIterator adjacent_find(InputIterator first, InputIterator last);
    template<class InputIterator, class BinaryPredicate>
      InputIterator adjacent_find(InputIterator first, InputIterator last,
                                  BinaryPredicate pred);
    template<class InputIterator, class T, class Size>
      void count(InputIterator first, InputIterator last, const T& value,
                 Size& n);
    template<class InputIterator, class Predicate, class Size>
      void count_if(InputIterator first, InputIterator last, Predicate pred,
                    Size& n);
    template<class InputIterator1, class InputIterator2>
      pair<InputIterator1, InputIterator2>
        mismatch(InputIterator1 first1, InputIterator1 last1,
                 InputIterator2 first2);
    template<class InputIterator1, class InputIterator2, class BinaryPredicate>
      pair<InputIterator1, InputIterator2>
        mismatch(InputIterator1 first1, InputIterator1 last1,
                 InputIterator2 first2, BinaryPredicate pred);
    template<class InputIterator1, class InputIterator2>
      bool equal(InputIterator1 first1, InputIterator1 last1,
                 InputIterator2 first2);
    template<class InputIterator1, class InputIterator2, class BinaryPredicate>
      bool equal(InputIterator1 first1, InputIterator1 last1,
                 InputIterator2 first2, BinaryPredicate pred);

    template<class ForwardIterator1, class ForwardIterator2>
      ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1,
                              ForwardIterator2 first2, ForwardIterator2 last2);
    template<class ForwardIterator1, class ForwardIterator2,
             class BinaryPredicate>
      ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1,
                              ForwardIterator2 first2, ForwardIterator2 last2,
                              BinaryPredicate pred);
    template<class ForwardIterator, class Size, class T>
      ForwardIterator  search(ForwardIterator first, ForwardIterator last,
                              Size count, const T& value);
    template<class ForwardIterator, class Size, class T, class BinaryPredicate>
      ForwardIterator1 search(ForwardIterator first, ForwardIterator last,
                              Size count, T value,
                              BinaryPredicate pred);
  // subclause _lib.alg.modifying.operations_, modifying sequence operations:
  // _lib.alg.copy_, copy:
    template<class InputIterator, class OutputIterator>
      OutputIterator copy(InputIterator first, InputIterator last,
                          OutputIterator result);
    template<class BidirectionalIterator1, class BidirectionalIterator2>
      BidirectionalIterator2
        copy_backward(BidirectionalIterator1 first, BidirectionalIterator1 last,
                      BidirectionalIterator2 result);
  // _lib.alg.swap_, swap:
    template<class T> void swap(T& a, T& b);
    template<class ForwardIterator1, class ForwardIterator2>
      ForwardIterator2 swap_ranges(ForwardIterator1 first1, ForwardIterator1 last1,
                                   ForwardIterator2 first2);
    template<class ForwardIterator1, class ForwardIterator2>
      void iter_swap(ForwardIterator1 a, ForwardIterator2 b);
    template<class InputIterator, class OutputIterator, class UnaryOperation>
      OutputIterator transform(InputIterator first, InputIterator last,
                               OutputIterator result, UnaryOperation op);
    template<class InputIterator1, class InputIterator2, class OutputIterator,
             class BinaryOperation>
      OutputIterator transform(InputIterator1 first1, InputIterator1 last1,
                               InputIterator2 first2, OutputIterator result,
                               BinaryOperation binary_op);
    template<class ForwardIterator, class T>
      void replace(ForwardIterator first, ForwardIterator last,
                   const T& old_value, const T& new_value);
    template<class ForwardIterator, class Predicate, class T>
      void replace_if(ForwardIterator first, ForwardIterator last,
                      Predicate pred, const T& new_value);
    template<class InputIterator, class OutputIterator, class T>
      OutputIterator replace_copy(InputIterator first, InputIterator last,
                                  OutputIterator result,
                                  const T& old_value, const T& new_value);
    template<class Iterator, class OutputIterator, class Predicate, class T>
      OutputIterator replace_copy_if(Iterator first, Iterator last,
                                     OutputIterator result,
                                     Predicate pred, const T& new_value);

    template<class ForwardIterator, class T>
      void fill(ForwardIterator first, ForwardIterator last, const T& value);
    template<class OutputIterator, class Size, class T>
      void fill_n(OutputIterator first, Size n, const T& value);
    template<class ForwardIterator, class Generator>
      void generate(ForwardIterator first, ForwardIterator last, Generator gen);
    template<class OutputIterator, class Size, class Generator>
      void generate_n(OutputIterator first, Size n, Generator gen);
    template<class ForwardIterator, class T>
      ForwardIterator remove(ForwardIterator first, ForwardIterator last,
                             const T& value);
    template<class ForwardIterator, class Predicate>
      ForwardIterator remove_if(ForwardIterator first, ForwardIterator last,
                                Predicate pred);
    template<class InputIterator, class OutputIterator, class T>
      OutputIterator remove_copy(InputIterator first, InputIterator last,
                                 OutputIterator result, const T& value);
    template<class InputIterator, class OutputIterator, class Predicate>
      OutputIterator remove_copy_if(InputIterator first, InputIterator last,
                                    OutputIterator result, Predicate pred);
    template<class ForwardIterator>
      ForwardIterator unique(ForwardIterator first, ForwardIterator last);
    template<class ForwardIterator, class BinaryPredicate>
      ForwardIterator unique(ForwardIterator first, ForwardIterator last,
                             BinaryPredicate pred);
    template<class InputIterator, class OutputIterator>
      OutputIterator unique_copy(InputIterator first, InputIterator last,
                                 OutputIterator result);
    template<class InputIterator, class OutputIterator, class BinaryPredicate>
      OutputIterator unique_copy(InputIterator first, InputIterator last,
                                 OutputIterator result, BinaryPredicate pred);
    template<class BidirectionalIterator>
      void reverse(BidirectionalIterator first, BidirectionalIterator last);
    template<class BidirectionalIterator, class OutputIterator>
      OutputIterator reverse_copy(BidirectionalIterator first,
                                  BidirectionalIterator last,
                                  OutputIterator result);
    template<class ForwardIterator>
      void rotate(ForwardIterator first, ForwardIterator middle,
                  ForwardIterator last);
    template<class ForwardIterator, class OutputIterator>
      OutputIterator rotate_copy(ForwardIterator first, ForwardIterator middle,
                                 ForwardIterator last, OutputIterator result);
    template<class RandomAccessIterator>
      void random_shuffle(RandomAccessIterator first, RandomAccessIterator last);
    template<class RandomAccessIterator, class RandomNumberGenerator>
      void random_shuffle(RandomAccessIterator first, RandomAccessIterator last,
                          RandomNumberGenerator& rand);

  // _lib.alg.partitions_, partitions:
    template<class BidirectionalIterator, class Predicate>
      BidirectionalIterator partition(BidirectionalIterator first,
                                      BidirectionalIterator last,
                                      Predicate pred);
    template<class BidirectionalIterator, class Predicate>
      BidirectionalIterator stable_partition(BidirectionalIterator first,
                                             BidirectionalIterator last,
                                             Predicate pred);
  // subclause _lib.alg.sorting_, sorting and related operations:
  // _lib.alg.sort_, sorting:
    template<class RandomAccessIterator>
      void sort(RandomAccessIterator first, RandomAccessIterator last);
    template<class RandomAccessIterator, class Compare>
      void sort(RandomAccessIterator first, RandomAccessIterator last,
                Compare comp);
    template<class RandomAccessIterator>
      void stable_sort(RandomAccessIterator first, RandomAccessIterator last);
    template<class RandomAccessIterator, class Compare>
      void stable_sort(RandomAccessIterator first, RandomAccessIterator last,
                       Compare comp);
    template<class RandomAccessIterator>
      void partial_sort(RandomAccessIterator first, RandomAccessIterator middle,
                        RandomAccessIterator last);
    template<class RandomAccessIterator, class Compare>
      void partial_sort(RandomAccessIterator first, RandomAccessIterator middle,
                        RandomAccessIterator last, Compare comp);
    template<class InputIterator, class RandomAccessIterator>
      RandomAccessIterator
        partial_sort_copy(InputIterator first, InputIterator last,
                          RandomAccessIterator result_first,
                          RandomAccessIterator result_last);
    template<class InputIterator, class RandomAccessIterator, class Compare>
      RandomAccessIterator
        partial_sort_copy(InputIterator first, InputIterator last,
                          RandomAccessIterator result_first,
                          RandomAccessIterator result_last,
                          Compare comp);
    template<class RandomAccessIterator>
      void nth_element(RandomAccessIterator first, RandomAccessIterator nth,
                       RandomAccessIterator last);
    template<class RandomAccessIterator, class Compare>
      void nth_element(RandomAccessIterator first, RandomAccessIterator nth,
                       RandomAccessIterator last, Compare comp);
  // _lib.alg.binary.search_, binary search:
    template<class ForwardIterator, class T>
      ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last,
                                  const T& value);
    template<class ForwardIterator, class T, class Compare>
      ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last,
                                  const T& value, Compare comp);

    template<class ForwardIterator, class T>
      ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last,
                                  const T& value);
    template<class ForwardIterator, class T, class Compare>
      ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last,
                                  const T& value, Compare comp);
    template<class ForwardIterator, class T>
      pair<ForwardIterator, ForwardIterator>
        equal_range(ForwardIterator first, ForwardIterator last, const T& value);
    template<class ForwardIterator, class T, class Compare>
      pair<ForwardIterator, ForwardIterator>
        equal_range(ForwardIterator first, ForwardIterator last, const T& value,
                    Compare comp);
    template<class ForwardIterator, class T>
      bool binary_search(ForwardIterator first, ForwardIterator last,
                         const T& value);
    template<class ForwardIterator, class T, class Compare>
      bool binary_search(ForwardIterator first, ForwardIterator last,
                         const T& value, Compare comp);
  // _lib.alg.merge_, merge:
    template<class InputIterator1, class InputIterator2, class OutputIterator>
      OutputIterator merge(InputIterator1 first1, InputIterator1 last1,
                           InputIterator2 first2, InputIterator2 last2,
                           OutputIterator result);
    template<class InputIterator1, class InputIterator2, class OutputIterator,
             class Compare>
      OutputIterator merge(InputIterator1 first1, InputIterator1 last1,
                           InputIterator2 first2, InputIterator2 last2,
                           OutputIterator result, Compare comp);
    template<class BidirectionalIterator>
      void inplace_merge(BidirectionalIterator first,
                         BidirectionalIterator middle,
                         BidirectionalIterator last);
    template<class BidirectionalIterator, class Compare>
      void inplace_merge(BidirectionalIterator first,
                         BidirectionalIterator middle,
                         BidirectionalIterator last, Compare comp);
  // _lib.alg.set.operations_, set operations:
    template<class InputIterator1, class InputIterator2>
      bool includes(InputIterator1 first1, InputIterator1 last1,
                    InputIterator2 first2, InputIterator2 last2);
    template<class InputIterator1, class InputIterator2, class Compare>
      bool includes(InputIterator1 first1, InputIterator1 last1,
                    InputIterator2 first2, InputIterator2 last2, Compare comp);
    template<class InputIterator1, class InputIterator2, class OutputIterator>
      OutputIterator set_union(InputIterator1 first1, InputIterator1 last1,
                               InputIterator2 first2, InputIterator2 last2,
                               OutputIterator result);
    template<class InputIterator1, class InputIterator2, class OutputIterator,
             class Compare>
      OutputIterator set_union(InputIterator1 first1, InputIterator1 last1,
                               InputIterator2 first2, InputIterator2 last2,
                               OutputIterator result, Compare comp);

    template<class InputIterator1, class InputIterator2, class OutputIterator>
      OutputIterator set_intersection(InputIterator1 first1, InputIterator1 last1,
                                      InputIterator2 first2, InputIterator2 last2,
                                      OutputIterator result);
    template<class InputIterator1, class InputIterator2, class OutputIterator,
             class Compare>
      OutputIterator set_intersection(InputIterator1 first1, InputIterator1 last1,
                                      InputIterator2 first2, InputIterator2 last2,
                                      OutputIterator result, Compare comp);
    template<class InputIterator1, class InputIterator2, class OutputIterator>
      OutputIterator set_difference(InputIterator1 first1, InputIterator1 last1,
                                    InputIterator2 first2, InputIterator2 last2,
                                    OutputIterator result);
    template<class InputIterator1, class InputIterator2, class OutputIterator,
             class Compare>
      OutputIterator set_difference(InputIterator1 first1, InputIterator1 last1,
                                    InputIterator2 first2, InputIterator2 last2,
                                    OutputIterator result, Compare comp);
    template<class InputIterator1, class InputIterator2, class OutputIterator>
      OutputIterator
        set_symmetric_difference(InputIterator1 first1, InputIterator1 last1,
                                 InputIterator2 first2, InputIterator2 last2,
                                 OutputIterator result);
    template<class InputIterator1, class InputIterator2, class OutputIterator,
              class Compare>
      OutputIterator
        set_symmetric_difference(InputIterator1 first1, InputIterator1 last1,
                                 InputIterator2 first2, InputIterator2 last2,
                                 OutputIterator result, Compare comp);
  // _lib.alg.heap.operations_, heap operations:
    template<class RandomAccessIterator>
      void push_heap(RandomAccessIterator first, RandomAccessIterator last);
    template<class RandomAccessIterator, class Compare>
      void push_heap(RandomAccessIterator first, RandomAccessIterator last,
                     Compare comp);
    template<class RandomAccessIterator>
      void pop_heap(RandomAccessIterator first, RandomAccessIterator last);
    template<class RandomAccessIterator, class Compare>
      void pop_heap(RandomAccessIterator first, RandomAccessIterator last,
                    Compare comp);
    template<class RandomAccessIterator>
      void make_heap(RandomAccessIterator first, RandomAccessIterator last);
    template<class RandomAccessIterator, class Compare>
      void make_heap(RandomAccessIterator first, RandomAccessIterator last,
                     Compare comp);
    template<class RandomAccessIterator>
      void sort_heap(RandomAccessIterator first, RandomAccessIterator last);
    template<class RandomAccessIterator, class Compare>
      void sort_heap(RandomAccessIterator first, RandomAccessIterator last,
                     Compare comp);

  // _lib.alg.min.max_, minimum and maximum:
    template<class T> const T& min(const T& a, const T& b);
    template<class T, class Compare>
      const T& min(const T& a, const T& b, Compare comp);
    template<class T> const T& max(const T& a, const T& b);
    template<class T, class Compare>
      const T& max(const T& a, const T& b, Compare comp);
    template<class InputIterator>
      InputIterator min_element(InputIterator first, InputIterator last);
    template<class InputIterator, class Compare>
      InputIterator min_element(InputIterator first, InputIterator last,
                                Compare comp);
    template<class InputIterator>
      InputIterator max_element(InputIterator first, InputIterator last);
    template<class InputIterator, class Compare>
      InputIterator max_element(InputIterator first, InputIterator last,
                                Compare comp);
    template<class InputIterator1, class InputIterator2>
      bool lexicographical_compare(InputIterator1 first1, InputIterator1 last1,
                                   InputIterator2 first2, InputIterator2 last2);
    template<class InputIterator1, class InputIterator2, class Compare>
      bool lexicographical_compare(InputIterator1 first1, InputIterator1 last1,
                                   InputIterator2 first2, InputIterator2 last2,
                                   Compare comp);
  // _lib.alg.permutation.generators_, permutations
    template<class BidirectionalIterator>
      bool next_permutation(BidirectionalIterator first,
                            BidirectionalIterator last);
    template<class BidirectionalIterator, class Compare>
      bool next_permutation(BidirectionalIterator first,
                            BidirectionalIterator last, Compare comp);
    template<class BidirectionalIterator>
      bool prev_permutation(BidirectionalIterator first,
                            BidirectionalIterator last);
    template<class BidirectionalIterator, class Compare>
      bool prev_permutation(BidirectionalIterator first,
                            BidirectionalIterator last, Compare comp);
  }

3 All  of  the  algorithms are separated from the particular implementa­
  tions of data structures and  are  parameterized  by  iterator  types.
  Because  of  this, they can work with program-defined data structures,
  as long as these data structures have iterator  types  satisfying  the
  assumptions on the algorithms.

4 Both   in-place   and   copying  versions  are  provided  for  certain
  algorithms.1) When such a version is  provided  for  algorithm  it  is
  _________________________
  1) The decision whether to include a copying version was usually based
  on  complexity  considerations.   When the cost of doing the operation
  dominates the cost of copy, the copying version is not included.   For
  example,  sort_copy  is not included since the cost of sorting is much
  more significant, and users might as well do copy followed by sort.

  called  algorithm_copy.   Algorithms that take predicates end with the
  suffix _if (which follows the suffix _copy).

5 The Predicate class is used whenever an algorithm expects  a  function
  object  that  when  applied  to the result of dereferencing the corre­
  sponding iterator returns a value testable as true.  In  other  words,
  if  an algorithm takes Predicate pred as its argument and first as its
  iterator argument, it  should  work  correctly  in  the  construct  if
  (pred(*first)){...}.  The function object pred is assumed not to apply
  any non-constant function through the dereferenced iterator.

6 The BinaryPredicate class is used  whenever  an  algorithm  expects  a
  function  object  that when applied to the result of dereferencing two
  corresponding iterators or to dereferencing an  iterator  and  type  T
  when  T is part of the signature returns a value testable as true.  In
  other words, if an algorithm takes BinaryPredicate binary_pred as  its
  argument  and  first1  and first2 as its iterator arguments, it should
  work correctly  in  the  construct  if  (pred(*first,  *first2)){...}.
  BinaryPredicate  always  takes  the  first  iterator type as its first
  argument, that is, in those cases when T value is part of  the  signa­
  ture,  it  should  work  correctly  in the context of if (pred(*first,
  value)){...}.  binary_pred shall not apply any  non-constant  function
  through the dereferenced iterators.

7 In  the  description  of the algorithms operators + and - are used for
  some of the iterator categories for which  they  do  not  have  to  be
  defined.  In these cases the semantics of a+n is the same is that of
    { X tmp = a;
      advance(tmp, n);
      return tmp;
    }
  and that of a-b is the same as of
    { Distance n;
      distance(a, b, n);
      return n;
    }

  +-------                 BEGIN BOX 1                -------+
  For  the  following  algorithms: reverse, rotate, random_shuffle, sta­
  ble_partition,  sort,  stable_sort  and  inplace_merge  the   iterator
  requirement can be relaxed to ForwardIterator.  These algorithms could
  then be dispatched upon the iterator category tags  to  use  the  most
  efficient  implementation  for  each  iterator  category.  We have not
  included the relaxation at this stage since it is not yet fully imple­
  mented.
  +-------                  END BOX 1                 -------+

  25.1  Non-modifying sequence operations         [lib.alg.nonmodifying]

  25.1.1  For each                                     [lib.alg.foreach]

  template<class InputIterator, class Function>
    Function for_each(InputIterator first, InputIterator last, Function f);

  Effects:
    Applies f to the result of dereferencing every iterator in the range
    [first, last).
  Requires:
    f shall not apply any non-constant function through the dereferenced
    iterator.
  Returns:
    f.
  Complexity:
    Applies f exactly last - first times.
  Notes:
    If f returns a result, the result is ignored.

  25.1.2  Find                                            [lib.alg.find]

  template<class InputIterator, class T>
    InputIterator find(InputIterator first, InputIterator last,
                       const T& value);

  template<class InputIterator, class Predicate>
    InputIterator find_if(InputIterator first, InputIterator last,
                          Predicate pred);

  Returns:
    The  first  iterator i in the range [first, last) for which the fol­
    lowing corresponding conditions hold: *i == value, pred(*i) == true.
    Returns last if no such iterator is found.
  Complexity:
    At most last - first applications of the corresponding predicate.

  25.1.3  Find End                                    [lib.alg.find.end]

  template<class ForwardIterator1, class ForwardIterator2>
    ForwardIterator1
      find_end(ForwardIterator1 first1, ForwardIterator1 last1,
               ForwardIterator2 first2, ForwardIterator2 last2);

  template<class ForwardIterator1, class ForwardIterator2,
           class BinaryPredicate>
    ForwardIterator1
      find_end(ForwardIterator1 first1, ForwardIterator1 last1,
               ForwardIterator2 first2, ForwardIterator2 last2,
               BinaryPredicate pred);

  Effects:
    Finds a subsequence of equal values in a sequence.

  Returns:
    The  last  iterator  i in the range [first1 + (last2-first2), last1)
    such that for any non-negative integer n < (last2-first2), the  fol­
    lowing   corresponding   conditions   hold:  *(i-n)  ==  *(last2-n),
    pred(*(i-n),*(last2-n)) == true.  Returns last1 if no such  iterator
    is found.
  Complexity:
    At  most last1 - first1 applications of the corresponding predicate.

  25.1.4  Find First                             [lib.alg.find.first.of]

  template<class ForwardIterator1, class ForwardIterator2>
    ForwardIterator1
      find_first_of(ForwardIterator1 first1, ForwardIterator1 last1,
                    ForwardIterator2 first2, ForwardIterator2 last2);

  template<class ForwardIterator1, class ForwardIterator2,
            class BinaryPredicate>
    ForwardIterator1
      find_first_of(ForwardIterator1 first1, ForwardIterator1 last1,
                    ForwardIterator2 first2, ForwardIterator2 last2,
                    BinaryPredicate pred);

  Effects:
    Finds a subsequence of equal values in a sequence.
  Returns:
    The first iterator i in  the  range  [first1,  last1-(last2-first2))
    such  that for any non-negative integer n < (last2-first2), the fol­
    lowing   corresponding   conditions   hold:   *i   ==   *(first2+n),
    pred(i,first2+n)  ==  true.   Returns  last1  if no such iterator is
    found.
  Complexity:
    Exactly  find_first_of(first1,last1,first2+n)  applications  of  the
    corresponding predicate.

  25.1.5  Adjacent find                          [lib.alg.adjacent.find]

  +-------                 BEGIN BOX 2                -------+
  Should these be ForwardIterator?
  +-------                  END BOX 2                 -------+

  template<class InputIterator>
    InputIterator adjacent_find(InputIterator first, InputIterator last);

  template<class InputIterator, class BinaryPredicate>
    InputIterator adjacent_find(InputIterator first, InputIterator last,
                                BinaryPredicate pred);

  Returns:
    The  first  iterator  i  such that both i and i + 1 are in the range
    [first, last) for which the following corresponding conditions hold:

    *i == *(i + 1), pred(*i, *(i + 1)) == true.  Returns last if no such
    iterator is found.
  Complexity:
    Exactly find(first, last, value) - first applications of the  corre­
    sponding predicate.

  25.1.6  Count                                          [lib.alg.count]

  template<class InputIterator, class T, class Size>
    void count(InputIterator first, InputIterator last, const T& value,
               Size& n);

  template<class InputIterator, class Predicate, class Size>
    void count_if(InputIterator first, InputIterator last, Predicate pred,
                  Size& n);

  Effects:
    Adds  to  n the number of iterators i in the range [first, last) for
    which the following corresponding  conditions  hold:  *i  ==  value,
    pred(*i) == true.
  Complexity:
    Exactly last - first applications of the corresponding predicate.
  Notes:
    count  must  store  the  result into a reference argument instead of
    returning the result because the size type cannot  be  deduced  from
    built-in iterator types such as int*.

  25.1.7  Mismatch                                        [lib.mismatch]

  template<class InputIterator1, class InputIterator2>
    pair<InputIterator1, InputIterator2>
        mismatch(InputIterator1 first1, InputIterator1 last1,
                 InputIterator2 first2);

  template<class InputIterator1, class InputIterator2,
            class BinaryPredicate>
    pair<InputIterator1, InputIterator2>
        mismatch(InputIterator1 first1, InputIterator1 last1,
                 InputIterator2 first2, BinaryPredicate pred);

  Returns:
    A pair of iterators i and j such that j == first2 + (i - first1) and
    i is the first iterator in the range [first1, last1) for  which  the
    following corresponding conditions hold:
        !(*i == *(first2 + (i - first1))), pred(*i, *(first2 + (i - first1))) == false
    Returns  the  pair  last1  and  first2 + (last1 - first1) if such an
    iterator i is not found.
  Complexity:
    At most last1 - first1 applications of the corresponding  predicate.

  25.1.8  Equal                                          [lib.alg.equal]

  template<class InputIterator1, class InputIterator2>
    bool equal(InputIterator1 first1, InputIterator1 last1,
               InputIterator2 first2);

  template<class InputIterator1, class InputIterator2,
            class BinaryPredicate>
    bool equal(InputIterator1 first1, InputIterator1 last1,
               InputIterator2 first2, BinaryPredicate pred);

  Returns:
    true  if  for every iterator i in the range [first1, last1) the fol­
    lowing  corresponding  conditions  hold:  *i  ==  *(first2  +  (i  -
    first1)),  pred(*i,  *(first2  + (i - first1))) == true.  Otherwise,
    returns false.
  Complexity:
    At most last1 - first1 applications of the corresponding  predicate.

  25.1.9  Search                                        [lib.alg.search]

  template<class ForwardIterator1, class ForwardIterator2>
    ForwardIterator1
      search(ForwardIterator1 first1, ForwardIterator1 last1,
             ForwardIterator2 first2, ForwardIterator2 last2);

  template<class ForwardIterator1, class ForwardIterator2,
           class BinaryPredicate>
    ForwardIterator1
      search(ForwardIterator1 first1, ForwardIterator1 last1,
             ForwardIterator2 first2, ForwardIterator2 last2,
             BinaryPredicate pred);

  Effects:
    Finds a subsequence of equal values in a sequence.
  Returns:
    The first iterator i in the range [first1, last1 - (last2 - first2))
    such that for any non-negative integer n less than  last2  -  first2
    the  following corresponding conditions hold: *(i + n) == *(first2 +
    n), pred(*(i + n), *(first2 + n)) == true.  Returns last1 if no such
    iterator is found.2)

  _________________________
  2)  The  Knuth-Morris-Pratt algorithm is not used here.  While the KMP
  algorithm guarantees linear time, it tends to be slower in most  prac­
  tical  cases than the naive algorithm with worst-case quadratic behav­
  ior.  The worst case is extremely unlikely.  Most implementations will
  provide a specialization:
    char* search(char* first1, char* last1, char* first2, char* last2);
  that will use a variation of the Boyer-Moore algorithm for fast string
  searching.

  Complexity:
    At most (last1 - first1) * (last2 - first2) applications of the cor­
    responding predicate.

  template<class ForwardIterator, class Size, class T>
    ForwardIterator
      search(ForwardIterator first, ForwardIterator last, Size count,
             const T& value);

  template<class ForwardIterator, class Size, class T,
           class BinaryPredicate>
    ForwardIterator1
      search(ForwardIterator first, ForwardIterator last, Size count,
             T value, BinaryPredicate pred);

  Effects:
    Finds a subsequence of equal values in a sequence.
  Returns:
    The  first  iterator  i in the range [first, last - count) such that
    for any non-negative integer n less than count the following  corre­
    sponding conditions hold: *(i + n) == value, pred(*(i + n),value) ==
    true.  Returns last if no such iterator is found.
  Complexity:
    At most (last1 - first1) * count applications of  the  corresponding
    predicate.

  25.2  Mutating sequence operations      [lib.alg.modifying.operations]

  25.2.1  Copy                                            [lib.alg.copy]

  template<class InputIterator, class OutputIterator>
    OutputIterator copy(InputIterator first, InputIterator last,
                        OutputIterator result);

  Effects:
    Copies elements.  For each non-negative integer n < (last -  first),
    performs *(result + n) = *(first + n).
  Returns:
    result + (last - first).
  Requires:
    result shall not be in the range [first, last).
  Complexity:
    Exactly last - first assignments.

  template<class BidirectionalIterator1, class BidirectionalIterator2>
    BidirectionalIterator2
      copy_backward(BidirectionalIterator1 first,
                    BidirectionalIterator1 last,
                    BidirectionalIterator2 result);

  Effects:
    Copies  elements in the range [first, last) into the range [result -
    (last - first), result) starting from last -  1  and  proceeding  to
    first . 3) For each positive integer n <= (last -  first),  Performs
    *(result - n) = *(last - n).
  Requires:
    result shall not be in the range [first, last).
  Returns:
    result - (last - first).
  Complexity:
    Exactly last - first assignments.

  25.2.2  Swap                                            [lib.alg.swap]

  template<class T> void swap(T& a, T& b);

  Effects:
    Exchanges values stored in two locations.

  template<class ForwardIterator1, class ForwardIterator2>
    ForwardIterator2
      swap_ranges(ForwardIterator1 first1, ForwardIterator1 last1,
                  ForwardIterator2 first2);

  Effects:
    For  each  non-negative  integer  n  <  (last1  -  first1) performs:
    swap(*(first1 + n), *(first2 + n)).
  Requires:
    The two ranges [first1,  last1)  and  [first2,  first2  +  (last1  -
    first1)) shall not overlap.
  Returns:
    first2 + (last1 - first1).
  Complexity:
    Exactly last1 - first1 swaps.

  template<class ForwardIterator1, class ForwardIterator2>
    void iter_swap(ForwardIterator1 a, ForwardIterator2 b);

  Effects:
    Exchanges the values pointed to by the two iterators a and b.

  25.2.3  Transform                                  [lib.alg.transform]

  _________________________
  3)  copy_backward (_lib.copy.backward_) should be used instead of copy
  when last is in the range [result - (last - first), result).

  template<class InputIterator, class OutputIterator,
           class UnaryOperation>
    OutputIterator
      transform(InputIterator first, InputIterator last,
                OutputIterator result, UnaryOperation op);

  template<class InputIterator1, class InputIterator2,
           class OutputIterator, class BinaryOperation>
    OutputIterator
      transform(InputIterator1 first1, InputIterator1 last1,
                InputIterator2 first2, OutputIterator result,
                BinaryOperation binary_op);

  Effects:
    Assigns  through  every  iterator  i  in the range [result, result +
    (last1 - first1)) a new corresponding value equal to  op(*(first1  +
    (i  - result)) or binary_op(*(first1 + (i - result), *(first2 + (i -
    result))).
  Requires:
    op and binary_op shall not have any side effects.
  Returns:
    result + (last1 - first1).
  Complexity:
    Exactly last1 - first1 applications of op or binary_op
  Notes:
    result may be equal to first in  case  of  unary  transform,  or  to
    first1 or first2 in case of binary transform.

  25.2.4  Replace                                      [lib.alg.replace]

  template<class ForwardIterator, class T>
    void replace(ForwardIterator first, ForwardIterator last,
                 const T& old_value, const T& new_value);

  template<class ForwardIterator, class Predicate, class T>
    void replace_if(ForwardIterator first, ForwardIterator last,
                    Predicate pred, const T& new_value);

  Effects:
    Substitutes elements referred by the iterator i in the range [first,
    last) with new_value, when the  following  corresponding  conditions
    hold: *i == old_value, pred(*i) == true.
  Complexity:
    Exactly last - first applications of the corresponding predicate.

  template<class InputIterator, class OutputIterator, class T>
    OutputIterator
      replace_copy(InputIterator first, InputIterator last,
                   OutputIterator result,
                   const T& old_value, const T& new_value);

  template<class Iterator, class OutputIterator, class Predicate, class T>
    OutputIterator
      replace_copy_if(Iterator first, Iterator last,
                      OutputIterator result,
                      Predicate pred, const T& new_value);

  Effects:
    Assigns  to  every iterator i in the range [result, result + (last -
    first)) either new_value or *(first + (i  -  result))  depending  on
    whether the following corresponding conditions hold:
    *(first  + (i - result)) == old_value, pred(*(first + (i - result)))
    == true.
  Returns:
    result + (last - first).
  Complexity:
    Exactly last - first applications of the corresponding predicate.

  25.2.5  Fill                                            [lib.alg.fill]

  template<class ForwardIterator, class T>
    void fill(ForwardIterator first, ForwardIterator last, const T& value);

  template<class OutputIterator, class Size, class T>
    void fill_n(OutputIterator first, Size n, const T& value);

  Effects:
    Assigns value through all the iterators in the range [first, last)or
    [first, first + n).
  Complexity:
    Exactly last - first (or n) assignments.

  25.2.6  Generate                                    [lib.alg.generate]

  template<class ForwardIterator, class Generator>
    void generate(ForwardIterator first, ForwardIterator last,
                  Generator gen);

  template<class OutputIterator, class Size, class Generator>
    void generate_n(OutputIterator first, Size n, Generator gen);

  Effects:
    Invokes  the function object gen and assigns the return value of gen
    though all the iterators in the range [first, last) or [first, first
    + n).

  Requires:
    gen takes no arguments.
  Complexity:
    Exactly last - first (or n) invocations of gen and assignments.

  25.2.7  Remove                                        [lib.alg.remove]

  template<class ForwardIterator, class T>
    ForwardIterator remove(ForwardIterator first, ForwardIterator last,
                           const T& value);

  template<class ForwardIterator, class Predicate>
    ForwardIterator remove_if(ForwardIterator first, ForwardIterator last,
                              Predicate pred);

  Effects:
    Eliminates  all  the elements referred to by iterator i in the range
    [first, last) for which the following corresponding conditions hold:
    *i == value, pred(*i) == true.
  Returns:
    The end of the resulting range.
  Notes:
    Stable:   the relative order of the elements that are not removed is
    the same as their relative order in the original range.
  Complexity:
    Exactly last - first applications of the corresponding predicate.

  template<class InputIterator, class OutputIterator, class T>
    OutputIterator
      remove_copy(InputIterator first, InputIterator last,
                  OutputIterator result, const T& value);

  template<class InputIterator, class OutputIterator, class Predicate>
    OutputIterator
      remove_copy_if(InputIterator first, InputIterator last,
                     OutputIterator result, Predicate pred);

  Effects:
    Copies all the elements referred to by the iterator i in  the  range
    [first,  last)  for  which the following corresponding conditions do
    not hold: *i == value, pred(*i) == true.
  Returns:
    The end of the resulting range.
  Complexity:
    Exactly last - first applications of the corresponding predicate.
  Notes:
    Stable:  the relative order of the elements in the  resulting  range
    is the same as their relative order in the original range.

  25.2.8  Unique                                        [lib.alg.unique]

  template<class ForwardIterator>
    ForwardIterator unique(ForwardIterator first, ForwardIterator last);

  template<class ForwardIterator, class BinaryPredicate>
    ForwardIterator unique(ForwardIterator first, ForwardIterator last,
                           BinaryPredicate pred);

  Effects:
    Eliminates all but the first element from every consecutive group of
    equal elements referred to by the iterator i in  the  range  [first,
    last)  for  which the following corresponding conditions hold: *i ==
    *(i - 1) or pred(*i, *(i - 1)) == true
  Returns:
    The end of the resulting range.
  Complexity:
    Exactly (last - first) - 1 applications of the corresponding  predi­
    cate.

  template<class InputIterator, class OutputIterator>
    OutputIterator
      unique_copy(InputIterator first, InputIterator last,
                  OutputIterator result);

  template<class InputIterator, class OutputIterator,
           class BinaryPredicate>
    OutputIterator
      unique_copy(InputIterator first, InputIterator last,
                  OutputIterator result, BinaryPredicate pred);

  Effects:
    Copies  only the first element from every consecutive group of equal
    elements referred to by the iterator i in the  range  [first,  last)
    for  which  the following corresponding conditions hold: *i == *(i -
    1) or pred(*i, *(i - 1)) == true
  Returns:
    The end of the resulting range.
  Complexity:
    Exactly last - first applications of the corresponding predicate.

  25.2.9  Reverse                                      [lib.alg.reverse]

  template<class BidirectionalIterator>
    void reverse(BidirectionalIterator first, BidirectionalIterator last);

  Effects:
    For each non-negative integer i <= (last - first)/2, applies swap to
    all pairs of iterators first + i, (last - i) - 1.
  Complexity:
    Exactly (last - first)/2 swaps.

  template<class BidirectionalIterator, class OutputIterator>
    OutputIterator
      reverse_copy(BidirectionalIterator first,
                   BidirectionalIterator last, OutputIterator result);

  Effects:
    Copies  the range [first, last) to the range [result, result + (last
    - first)) such that for any non-negative integer i < (last -  first)
    the following assignment takes place:

  *(result + (last - first) - i) = *(first + i)

  Requires:
    The ranges [first, last) and [result, result + (last - first)) shall
    not overlap.
  Returns:
    result + (last - first).
  Complexity:
    Exactly last - first assignments.

  25.2.10  Rotate                                       [lib.alg.rotate]

  template<class ForwardIterator>
    void rotate(ForwardIterator first, ForwardIterator middle,
                ForwardIterator last);

  Effects:
    For each non-negative integer i < (last - first), places the element
    from  the position first + i into position first + (i + (last - mid­
    dle)) % (last - first).
  Notes:
    This is a left rotate.
  Requires:
    [first, middle) and [middle, last) are valid ranges.
  Complexity:
    At most last - first swaps.

  template<class ForwardIterator, class OutputIterator>
    OutputIterator
      rotate_copy(ForwardIterator first, ForwardIterator middle,
                  ForwardIterator last, OutputIterator result);

  Effects:
    Copies the range [first, last) to the range [result, result +  (last
    - first)) such that for each non-negative integer i < (last - first)
    the following assignment takes place:
      *(first + i) =  *(result + (i + (middle - first)) % (last - first))

  +-------                 BEGIN BOX 3                -------+
  Should this be:

  *(result + i) =  *(first + (i + (middle - first)) % (last - first))
  +-------                  END BOX 3                 -------+

  Returns:
    result + (last - first).
  Requires
    The ranges [first, last) and [result, result + (last - first)) shall
    not overlap.
  Complexity:
    Exactly last - first assignments.

  25.2.11  Random shuffle                       [lib.alg.random.shuffle]

  template<class RandomAccessIterator>
    void random_shuffle(RandomAccessIterator first,
                        RandomAccessIterator last);

  template<class RandomAccessIterator, class RandomNumberGenerator>
    void random_shuffle(RandomAccessIterator first,
                        RandomAccessIterator last,
                        RandomNumberGenerator& rand);

  Effects:
    Shuffles  the  elements in the range [first, last) with uniform dis­
    tribution.
  Complexity:
    Exactly (last - first) - 1 swaps.
  Notes:
    random_shuffle() can take  a  particular  random  number  generating
    function  object rand such that rand(n) (where n is a positive argu­
    ment of type RandomAccessIterator::distance) returns a randomly cho­
    sen  value  of  type RandomAccessIterator::distance) in the interval
    [0, n).

  +-------                 BEGIN BOX 4                -------+
  Can it accept an argument  that  yields  a  result  of  a  type  that,
  although  different  from  RandomAccessIterator::distance, can be con­
  verted to it?
  +-------                  END BOX 4                 -------+

  25.2.12  Partitions                               [lib.alg.partitions]

  template<class BidirectionalIterator, class Predicate>
    BidirectionalIterator
      partition(BidirectionalIterator first,
                BidirectionalIterator last, Predicate pred);

  Effects:
    Places all the elements in the range [first, last) that satisfy pred
    before all the elements that do not satisfy it.

  Returns:
    An  iterator i such that for any iterator j in the range [first, i),
    pred(*j) == true, and for any iterator k in  the  range  [i,  last),
    pred(*j) == false.
  Complexity:
    At  most  (last - first)/2 swaps.  Exactly last - first applications
    of the predicate is done.

  template<class BidirectionalIterator, class Predicate>
    BidirectionalIterator
      stable_partition(BidirectionalIterator first,
                       BidirectionalIterator last, Predicate pred);

  Effects:
    Places all the elements in the range [first, last) that satisfy pred
    before all the elements that do not satisfy it.
  Returns:
    An  iterator i such that for any iterator j in the range [first, i),
    pred(*j) == true, and for any iterator k in  the  range  [i,  last),
    pred(*j)  ==  false.   The  relative  order  of the elements in both
    groups is preserved.
  Complexity:
    At most (last - first) * log(last - first) swaps,  but  only  linear
    number  of  swaps  if  there is enough extra memory.  Exactly last -
    first applications of the predicate.

  25.3  Sorting and related operations                 [lib.alg.sorting]

1 All the operations in this section have two versions: one that takes a
  function object of type Compare and one that uses an operator<.

2 Compare  is  used as a function object which returns true if the first
  argument is less than the second, and false otherwise.   Compare  comp
  is  used  throughout for algorithms assuming an ordering relation.  It
  is assumed that comp will not apply any non-constant function  through
  the dereferenced iterator.

3 For  all  algorithms  that  take Compare, there is a version that uses
  operator< instead.  That is, comp(*i, *j) == true defaults to *i <  *j
  ==  true.   For the algorithms to work correctly, comp has to induce a
  total ordering on the values.

4 A sequence is sorted with respect to a  comparator  comp  if  for  any
  iterator  i  pointing  to  the sequence and any non-negative integer n
  such that i + n is a valid iterator pointing  to  an  element  of  the
  sequence, comp(*(i + n), *i) == false.

5 In the descriptions of the functions that deal with ordering relation­
  ships we frequently use a notion of equality to describe concepts such
  as  stability.   The  equality to which we refer is not necessarily an
  operator==, but an equality relation induced by  the  total  ordering.
  That is, two element a and b are considered equal if and only if !(a <
  b) && !(b < a).

  25.3.1  Sorting                                         [lib.alg.sort]

  25.3.1.1  sort                                              [lib.sort]

  template<class RandomAccessIterator>
    void sort(RandomAccessIterator first, RandomAccessIterator last);

  template<class RandomAccessIterator, class Compare>
    void sort(RandomAccessIterator first, RandomAccessIterator last,
              Compare comp);

  Effects:
    Sorts the elements in the range [first, last).
  Complexity:
    Approximately NlogN (where N == last -  first)  comparisons  on  the
    average.4)

  25.3.1.2  stable_sort                                [lib.stable.sort]

  template<class RandomAccessIterator>
    void stable_sort(RandomAccessIterator first, RandomAccessIterator last);

  template<class RandomAccessIterator, class Compare>
    void stable_sort(RandomAccessIterator first, RandomAccessIterator last,
                     Compare comp);

  Effects:
    Sorts the elements in the range [first, last).
  Complexity:
    It  does  at most N(logN)2 (where N == last - first) comparisons; if
    enough extra memory is available, it is NlogN.
  Notes:
    Stable:  the relative order of the equal elements is preserved.

  25.3.1.3  partial_sort                              [lib.partial.sort]

  template<class RandomAccessIterator>
    void partial_sort(RandomAccessIterator first,
                      RandomAccessIterator middle,
                      RandomAccessIterator last);

  template<class RandomAccessIterator, class Compare>
    void partial_sort(RandomAccessIterator first,
                      RandomAccessIterator middle,
                      RandomAccessIterator last,
                      Compare comp);
  _________________________
  4)   If   the   worst   case   behavior   is  important  stable_sort()
  (_lib.stable.sort_) or partial_sort() (_lib.partial.sort_)  should  be
  used.

  Effects:
    Places the first middle -  first  sorted  elements  from  the  range
    [first,  last) into the range [first, middle).  The rest of the ele­
    ments in the range [middle, last) are placed in an undefined  order.
  Complexity:
    It  takes approximately (last - first) * log(middle - first) compar­
    isons.

  25.3.1.4  partial_sort_copy                    [lib.partial.sort.copy]

  template<class InputIterator, class RandomAccessIterator>
    RandomAccessIterator
      partial_sort_copy(InputIterator first, InputIterator last,
                        RandomAccessIterator result_first,
                        RandomAccessIterator result_last);

  template<class InputIterator, class RandomAccessIterator,
           class Compare>
    RandomAccessIterator
      partial_sort_copy(InputIterator first, InputIterator last,
                        RandomAccessIterator result_first,
                        RandomAccessIterator result_last,
                        Compare comp);

  Effects:
    Places the first  min(last  -  first,  result_last  -  result_first)
    sorted   elements  into  the  range  [result_first,  result_first  +
    min(last - first, result_last - result_first)).
  Returns:
    The smaller of: result_last or result_first + (last - first)
  Complexity:
    Approximately (last - first) * log(min(last - first,  result_last  -
    result_first)) comparisons.

  25.3.2  Nth element                              [lib.alg.nth.element]

  template<class RandomAccessIterator>
    void nth_element(RandomAccessIterator first, RandomAccessIterator nth,
                     RandomAccessIterator last);

  template<class RandomAccessIterator, class Compare>
    void nth_element(RandomAccessIterator first, RandomAccessIterator nth,
                     RandomAccessIterator last,  Compare comp);

1 After nth_element the element in the position pointed to by nth is the
  element that would be in that position if the whole range were sorted.
  Also for any iterator i in the range [first, nth) and any iterator jin
  range [nth, last) it holds that: !(*i > *j) or comp(*i, *j) ==  false.
  Complexity:
    Linear on average.

  25.3.3  Binary search                          [lib.alg.binary.search]

1 All  of  the algorithms in this section are versions of binary search.
  They work on non-random access iterators minimizing the number of com­
  parisons,  which will be logarithmic for all types of iterators.  They
  are especially appropriate for random access  iterators,  since  these
  algorithms  do  a  logarithmic number of steps through the data struc­
  ture.  For non-random access iterators they execute a linear number of
  steps.

  25.3.3.1  lower_bound                                [lib.lower.bound]

  template<class ForwardIterator, class T>
    ForwardIterator
      lower_bound(ForwardIterator first, ForwardIterator last,
                  const T& value);

  template<class ForwardIterator, class T, class Compare>
    ForwardIterator
      lower_bound(ForwardIterator first, ForwardIterator last,
                  const T& value, Compare comp);

  Effects:
    Finds  the  first  position into which value can be inserted without
    violating the ordering.
  Returns:
    The furthermost iterator i in the range [first, last) such that  for
    any  iterator  j in the range [first, i) the following corresponding
    conditions hold: *j < value or comp(*j, value) == true

  +-------                 BEGIN BOX 5                -------+
  Should the range of i be changed to: [first, last]?
  +-------                  END BOX 5                 -------+

  Complexity:
    At most log(last - first) + 1 comparisons.

  25.3.3.2  upper_bound                                [lib.upper.bound]

  template<class ForwardIterator, class T>
    ForwardIterator
      upper_bound(ForwardIterator first, ForwardIterator last,
                  const T& value);

  template<class ForwardIterator, class T, class Compare>
    ForwardIterator
      upper_bound(ForwardIterator first, ForwardIterator last,
                  const T& value, Compare comp);

  Effects:
    Finds the furthermost position into  which  value  can  be  inserted
    without violating the ordering.

  Returns:
    The  furthermost iterator i in the range [first, last) such that for
    any iterator j in the range [first, i) the  following  corresponding
    conditions hold: !(value < *j) or comp(value, *j) == false

  +-------                 BEGIN BOX 6                -------+
  Should the range of i be changed to: [first, last]?
  +-------                  END BOX 6                 -------+

  Complexity:
    At most log(last - first) + 1 comparisons.

  25.3.3.3  equal_range                                [lib.equal.range]

  template<class ForwardIterator, class T>
    pair<ForwardIterator, ForwardIterator>
      equal_range(ForwardIterator first,
                  ForwardIterator last, const T& value);

  template<class ForwardIterator, class T, class Compare>
    pair<ForwardIterator, ForwardIterator>
      equal_range(ForwardIterator first,
                  ForwardIterator last, const T& value,
                  Compare comp);

  Effects:
    Finds  the  largest  subrange  [i,  j)  such  that  the value can be
    inserted at any iterator k in it.   k  satisfies  the  corresponding
    conditions:  !(*k  <  value)  && !(value < *k) or comp(*k, value) ==
    false && comp(value, *k) == false.
  Complexity:
    At most 2 * log(last - first) + 1 comparisons.

  25.3.3.4  binary_search                            [lib.binary.search]

  template<class ForwardIterator, class T>
    bool binary_search(ForwardIterator first, ForwardIterator last,
                       const T& value);

  template<class ForwardIterator, class T, class Compare>
    bool binary_search(ForwardIterator first, ForwardIterator last,
                       const T& value, Compare comp);

  Returns:
    true if there is an iterator i in the range [first last) that satis­
    fies the corresponding conditions: !(*i < value) && !(value < *i) or
    comp(*i, value) == false && comp(value, *i) == false.
  Complexity:
    At most log(last - first) + 2 comparisons.

  25.3.4  Merge                                          [lib.alg.merge]

  template<class InputIterator1, class InputIterator2,
           class OutputIterator>
    OutputIterator
      merge(InputIterator1 first1, InputIterator1 last1,
            InputIterator2 first2, InputIterator2 last2,
            OutputIterator result);

  template<class InputIterator1, class InputIterator2,
           class OutputIterator, class Compare>
    OutputIterator
      merge(InputIterator1 first1, InputIterator1 last1,
            InputIterator2 first2, InputIterator2 last2,
            OutputIterator result, Compare comp);

  Effects:
    Merges two sorted ranges [first1, last1) and  [first2,  last2)  into
    the range [result, result + (last1 - first1) + (last2 - first2)).

1 The  resulting  range  shall  not  overlap with either of the original
  ranges.
  Returns:
    result + (last1 - first1) + (last2 - first2).
  Complexity:
    At most (last1 - first1) + (last2 - first2) - 1 comparisons.
  Notes:
    Stable:  for equal elements in the two ranges, the elements from the
    first range always precede the elements from the second.

  template<class BidirectionalIterator>
    void inplace_merge(BidirectionalIterator first,
                       BidirectionalIterator middle,
                       BidirectionalIterator last);

  template<class BidirectionalIterator, class Compare>
    void inplace_merge(BidirectionalIterator first,
                       BidirectionalIterator middle,
                       BidirectionalIterator last, Compare comp);

  Effects:
    Merges  two  sorted  consecutive ranges [first, middle) and [middle,
    last), putting the result of the merge into the range [first, last).
  Complexity:
    When  enough additional memory is available, (last - first) - 1 com­
    parisons.  If no additional memory is available, an  algorithm  with
    complexity NlogN (where N is equal to last - first) may be used.
  Notes:
    Stable:  for equal elements in the two ranges, the elements from the
    first range always precede the elements from the second.

  25.3.5  Set operations on sorted              [lib.alg.set.operations]
       structures

1 This  section  defines  all  the basic set operations on sorted struc­
  tures.  They even work with multisets (_lib.multiset_) containing mul­
  tiple  copies  of equal elements.  The semantics of the set operations
  are generalized to multisets in a standard way by defining union()  to
  contain  the maximum number of occurrences of every element, intersec­
  tion() to contain the minimum, and so on.

  25.3.5.1  includes                                      [lib.includes]

  template<class InputIterator1, class InputIterator2>
    bool includes(InputIterator1 first1, InputIterator1 last1,
                  InputIterator2 first2, InputIterator2 last2);

  template<class InputIterator1, class InputIterator2, class Compare>
    bool includes(InputIterator1 first1, InputIterator1 last1,
                  InputIterator2 first2, InputIterator2 last2,
                  Compare comp);

  Returns:
    true if every element in the range [first2, last2) is  contained  in
    the range [first1, last1).  Returns false otherwise.
  Complexity:
    At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.

  25.3.5.2  set_union                                    [lib.set.union]

  template<class InputIterator1, class InputIterator2,
           class OutputIterator>
    OutputIterator
      set_union(InputIterator1 first1, InputIterator1 last1,
                InputIterator2 first2, InputIterator2 last2,
                OutputIterator result);

  template<class InputIterator1, class InputIterator2,
           class OutputIterator, class Compare>
    OutputIterator
      set_union(InputIterator1 first1, InputIterator1 last1,
                InputIterator2 first2, InputIterator2 last2,
                OutputIterator result, Compare comp);

  Effects:
    Constructs a sorted union of the elements from the two ranges.
  Requires:
    The  resulting  range  shall not overlap with either of the original
    ranges.
  Returns:
    The end of the constructed range.

  Complexity:
    At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.
  Notes:
    Stable:  if an element is present in both ranges, the one  from  the
    first range is copied.

  25.3.5.3  set_intersection                      [lib.set.intersection]

  template<class InputIterator1, class InputIterator2,
           class OutputIterator>
    OutputIterator
      set_intersection(InputIterator1 first1, InputIterator1 last1,
                       InputIterator2 first2, InputIterator2 last2,
                       OutputIterator result);

  template<class InputIterator1, class InputIterator2,
           class OutputIterator, class Compare>
    OutputIterator
      set_intersection(InputIterator1 first1, InputIterator1 last1,
                       InputIterator2 first2, InputIterator2 last2,
                       OutputIterator result, Compare comp);

  Effects:
    Constructs  a  sorted  intersection  of  the  elements  from the two
    ranges.
  Requires:
    The resulting range shall not overlap with either  of  the  original
    ranges.
  Returns:
    The end of the constructed range.
  Complexity:
    At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.
  Notes:
    Stable,  that  is,  if an element is present in both ranges, the one
    from the first range is copied.

  25.3.5.4  set_difference                          [lib.set.difference]

  template<class InputIterator1, class InputIterator2,
           class OutputIterator>
    OutputIterator
      set_difference(InputIterator1 first1, InputIterator1 last1,
                     InputIterator2 first2, InputIterator2 last2,
                     OutputIterator result);

  template<class InputIterator1, class InputIterator2,
           class OutputIterator, class Compare>
    OutputIterator
      set_difference(InputIterator1 first1, InputIterator1 last1,
                     InputIterator2 first2, InputIterator2 last2,
                     OutputIterator result, Compare comp);

  Effects:
    Constructs a sorted difference of the elements from the two  ranges.
  Requires:
    The  resulting  range  shall not overlap with either of the original
    ranges.
  Returns:
    The end of the constructed range.
  Complexity:
    At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.

  25.3.5.5  set_symmetric_difference      [lib.set.symmetric.difference]

  template<class InputIterator1, class InputIterator2,
           class OutputIterator>
    OutputIterator
      set_symmetric_difference(InputIterator1 first1, InputIterator1 last1,
                               InputIterator2 first2, InputIterator2 last2,
                               OutputIterator result);

  template<class InputIterator1, class InputIterator2,
           class OutputIterator, class Compare>
    OutputIterator
      set_symmetric_difference(InputIterator1 first1, InputIterator1 last1,
                               InputIterator2 first2, InputIterator2 last2,
                               OutputIterator result, Compare comp);

  Effects:
    Constructs  a  sorted  symmetric difference of the elements from the
    two ranges.
  Requires:
    The resulting range shall not overlap with either  of  the  original
    ranges.
  Returns:
    The end of the constructed range.
  Complexity:
    At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.

  25.3.6  Heap operations                      [lib.alg.heap.operations]

1 A heap is a particular organization of elements in a range between two
  random access iterators [a, b).  Its two key properties are:

  (1)*a is the largest element in the range and

  (2)*a may be  removed  by  pop_heap(),  or  a  new  element  added  by
    push_heap(), in O(logN) time.

2 These properties make heaps useful as priority queues.

3 make_heap()  converts a range into a heap and sort_heap() turns a heap
  into a sorted sequence.

  25.3.6.1  push_heap                                    [lib.push.heap]

  template<class RandomAccessIterator>
    void push_heap(RandomAccessIterator first, RandomAccessIterator last);

  template<class RandomAccessIterator, class Compare>
    void push_heap(RandomAccessIterator first, RandomAccessIterator last,
                   Compare comp);

  Requires:
    The range [first, last - 1) shall be a valid heap.
  Effects:
    Places the value in the location last - 1 into  the  resulting  heap
    [first, last).
  Complexity:
    At most log(last - first) comparisons.

  25.3.6.2  pop_heap                                      [lib.pop.heap]

  template<class RandomAccessIterator>
    void pop_heap(RandomAccessIterator first, RandomAccessIterator last);

  template<class RandomAccessIterator, class Compare>
    void pop_heap(RandomAccessIterator first, RandomAccessIterator last,
                  Compare comp);

  Requires:
    The range [first, last) shall be a valid heap.
  Effects:
    Swaps the value in the location first with the value in the location
    last - 1 and makes [first, last - 1) into a heap.
  Complexity:
    At most 2 * log(last - first) comparisons.

  25.3.6.3  make_heap                                    [lib.make.heap]

  template<class RandomAccessIterator>
    void make_heap(RandomAccessIterator first, RandomAccessIterator last);

  template<class RandomAccessIterator, class Compare>
    void make_heap(RandomAccessIterator first, RandomAccessIterator last,
                   Compare comp);

  Effects:
    Constructs a heap out of the range [first, last).
  Complexity:
    At most 3 * (last - first) comparisons.

  25.3.6.4  sort_heap                                    [lib.sort.heap]

  template<class RandomAccessIterator>
    void sort_heap(RandomAccessIterator first, RandomAccessIterator last);

  template<class RandomAccessIterator, class Compare>
    void sort_heap(RandomAccessIterator first, RandomAccessIterator last,
                   Compare comp);

  Effects:
    Sorts elements in the heap [first, last).
  Complexity:
    At most NlogN comparisons (where N == last - first).
  Notes:
    Not stable.

  25.3.7  Minimum and maximum                          [lib.alg.min.max]

  template<class T> const T& min(const T& a, const T& b);
  template<class T, class Compare>
    const T& min(const T& a, const T& b, Compare comp);

  Returns:
    The smaller value.
  Notes:
    Returns the first argument when their arguments are equal.

  template<class T> const T& max(const T& a, const T& b);
  template<class T, class Compare>
    const T& max(const T& a, const T& b, Compare comp);

  Returns:
    The larger value.
  Notes:
    Returns the first argument when their arguments are equal.

  template<class InputIterator>
    InputIterator min_element(InputIterator first, InputIterator last);

  template<class InputIterator, class Compare>
    InputIterator min_element(InputIterator first, InputIterator last,
                              Compare comp);

  Returns:
    The first iterator i in the range [first, last) such  that  for  any
    iterator  j  in  the range [first, last) the following corresponding
    conditions hold: !(*j < *i) or comp(*j, *i) == false
  Complexity:
    Exactly max((last - first) - 1, 0) applications of the corresponding
    comparisons.

  template<class InputIterator>
    InputIterator max_element(InputIterator first, InputIterator last);
  template<class InputIterator, class Compare>
    InputIterator max_element(InputIterator first, InputIterator last,
                              Compare comp);

  Returns:
    The  first  iterator  i in the range [first, last) such that for any
    iterator j in the range [first, last)  the  following  corresponding
    conditions hold: !(*i < *j) or comp(*i, *j) == false.
  Complexity:
    Exactly max((last - first) - 1, 0) applications of the corresponding
    comparisons.

  25.3.8  Lexicographical comparison            [lib.alg.lex.comparison]

  template<class InputIterator1, class InputIterator2>
    bool
      lexicographical_compare(InputIterator1 first1, InputIterator1 last1,
                              InputIterator2 first2, InputIterator2 last2);

  template<class InputIterator1, class InputIterator2, class Compare>
    bool
      lexicographical_compare(InputIterator1 first1, InputIterator1 last1,
                              InputIterator2 first2, InputIterator2 last2,
                              Compare comp);

  Returns:
    true if the sequence of  elements  defined  by  the  range  [first1,
    last1)  is  lexicographically  less  than  the  sequence of elements
    defined by the range [first2, last2).
    Returns false otherwise.
  Complexity:
    At most min((last1 - first1), (last2 - first2)) applications of  the
    corresponding comparison.

  25.3.9  Permutation generators        [lib.alg.permutation.generators]

  template<class BidirectionalIterator>
    bool next_permutation(BidirectionalIterator first,
                          BidirectionalIterator last);

  template<class BidirectionalIterator, class Compare>
    bool next_permutation(BidirectionalIterator first,
                          BidirectionalIterator last, Compare comp);

  Effects:
    Takes  a  sequence defined by the range [first, last) and transforms
    it into the next permutation.  The  next  permutation  is  found  by
    assuming  that  the  set  of  all  permutations is lexicographically

    sorted with respect to operator< or comp.   If  such  a  permutation
    exists, it returns true.  Otherwise, it transforms the sequence into
    the smallest permutation, that is, the ascendingly sorted  one,  and
    returns false.
  Complexity:
    At most (last - first)/2 swaps.

  template<class BidirectionalIterator>
    bool prev_permutation(BidirectionalIterator first,
                          BidirectionalIterator last);

  template<class BidirectionalIterator, class Compare>
    bool prev_permutation(BidirectionalIterator first,
                          BidirectionalIterator last, Compare comp);

  Effects:
    Takes  a  sequence defined by the range [first, last) and transforms
    it into the previous permutation.  The previous permutation is found
    by  assuming  that  the set of all permutations is lexicographically
    sorted with respect to operator< or comp.
  Returns:
    true if such a permutation exists.   Otherwise,  it  transforms  the
    sequence  into  the  largest  permutation, that is, the descendingly
    sorted one, and returns false.
  Complexity:
    At most (last - first)/2 swaps.

  25.4  C library algorithms                         [lib.alg.c.library]

1 Header <cstdlib> (partial, Table 2):

                    Table 2--Header <cstdlib> synopsis

                    +--------------------------------+
                    |   Type           Name(s)       |
                    +--------------------------------+
                    |Functions:   bsearch   qsort    |
                    +--------------------------------+

2 The contents are the same as the Standard C library.

  [Note: For the Standard C library function:

  void qsort(void* base, size_t nmemb, size_t size,
             int (*compar)(const void*, const void*));

  the  function  argument  compar  shall   have   extern   "C"   linkage
  (_dcl.link_).  Also, since compar() may throw an exception, qsort() is
  allowed to propagate the exception  (_lib.res.on.exception.handling_).

   --end note]

  SEE ALSO: ISO C subclause 7.10.5.