Library defect report list

Doc. no. J16/00-0048
WG21 N1271
Date: 26 Oct 2000
Project: Programming Languege C++
Reply to: Matt Austern <austern@research.att.com>

C++ Standard Library Defect Report List (Revision 16)

Reference ISO/IEC | S 14882:1998(E)

Also see

Table of Contentsfor dl library issues.

Index by Section for al library issues.
Index by Statusfor dl library issues.
Library Active IssuesLigt

Library Closed IssuesLigt

This document contains only library issues which have been closed by the Library Working Group (LWG) after being
found to be defectsin the standard. That is, issueswhich have astatus of DR, TC, or RR. See"C++ Standard Library
Closed Issues Ligt" for issues closed as non-defects. Seethe"C++ Standard Library Active IssuesLigt” for active issues
and moreinformation. The introductory material in that document also applies to this document.

Revision History

R16: post-Toronto mailing. Added issues 3, 8, 9, 19, 26, 31, 61, 63, 86, 108, 112, 114, 115, 122, 127, 129, 134,
137, 142, 144, 146, 147, 159, 164, 170, 181, 199, 208, 209, 210, 211, 212, 217, 220, 222, 223, 224, 227. Reopened
issue 23. Reopened issue 187. Changed issue 2 to NAD, and moved it and issue 4 (aready classified asNAD) to
the closed issuesligt. Fixed atypoinissue 17. Fixed issue 70: signature should be changed both placesit appears.
Fixed issue 160: previous version didn't fix the bug in enough places.

R15: pre-Toronto mailing. Added notestoissues 2, 23, and 160 containing committee members suggestions that
those issues be reopened.

R14: post-Tokyo Il mailing; reflects committee actions taken in Tokyo. (00-0021R1/N1244)

R13 Unchanged from R12.

R12 added "and paragraph 5" to the proposed resol ution of issue 29.

R11 added potentid defects from Kona (99-0044/N1220), changed the proposed resolution of issue 4 to NAD, and
changed the wording of proposed resolution of issue 38.

Defect Reports

1. Clibrary linkage editing oversight
Section: 17.4.2.2 libusnglinkege Status: DR Submitter: Beman Dawes Date: 16 Nov 97

The change specified in the proposed resol ution below did not make it into the Standard. This change was accepted in
principle a the London meeting, and the exact wording below was accepted a the Morristown mesting.

Proposed Resolution:

Library defect report list

Change lib.usinglinkege paragraph 2 from:

It is unspecified whether a name from the Standard C library declared with externd linkage has either
extern"C" or extern "C++" linkage.

to:

Whether aname from the Standard C library declared with externd linkage has extern "C" or extern
"C++" linkage isimplementation defined. It is recommended that an implementation use extern "C++"
linkage for this purpose.

3. Atexit registration during atexit() call isnot described

Section: 18.3lib.support.start.term Status: DR Submitter: Steve Clanege Date: 12 Dec 97 M sg: lib-6500

We gppear not to have covered al the possihilities of exit processing with respect to aexit registration.

Example 1: (C and C++)

#i ncl ude <stdlib. h>
void f1() { }
void f2() { atexit(f1); }

int main()

{
atexit(f2); // the only use of f2

return 0; // for C conmpatibility
}

At program exit, f2 gets caled due to its registration in main. Running f2 causes f1 to be newly registered during the exit
processing. Isthisavalid program? If so, what are its semantics?

Interestingly, neither the C standard, nor the C++ draft standard nor the forthcoming C9X Committee Draft says directly
whether you can register afunction with atexit during exit processing.

All 3 standards say that functions are run in reverse order of their registration. Since f1 isregistered lagt, it ought to berun
first, but by thetimeit isregistered, it istoo late to be first.

If the program is valid, the standards are self-contradictory about its semantics.

Example 2: (C++ only)

void F() { static Tt; } // type T has a destructor

int main()

{
}

atexit(F); // the only use of F

Function F registered with atexit has alocd static varigblet, and Fis caled for the first time during exit processing. A loca
static object isinitialized the first time control flow passesthrough its definition, and al static objects are destroyed during
exit processing. Isthe code vaid? If so, what are its semantics?

Library defect report list

Section 18.3 "Start and termination” saysthat if afunction F isregistered with atexit before agtatic object tisinitialized, F
will not be caled until after t's destructor completes.

In example 2, function F is registered with aexit beforeitsloca gatic object O could possibly beinitidized. On that bes's,
it must not be called by exit processing until after O's destructor completes. But the destructor cannot be run until after Fis
called, since otherwise the object could not be constructed in the first place.

If the program is vdid, the standard is salf-contradictory about its semantics.

| plan to submit Example 1 as a public comment on the C9X CD, with a recommendation that the results be undefined.
(Alternative: make it unspecified. | don't think it is worthwhile to specify the case where f1 itsdlf registers additional
functions, each of which regsters ill more functions.)

I think we should resolve the situation in the whatever way the C committee decides.

For Example 2, | recommend we declare the results undefined.
Proposed Resolution:
Change section 18.3/8 from:

Firgt, objects with static storage duration are destroyed and functions registered by cdling atexit are
caled. Objects with static storage duration are destroyed in the reverse order of the completion of their
congtructor. (Automatic objects are not destroyed as aresult of caling exit().) Functions registered with
atexit are cdled in the reverse order of their registration. A function registered with atexit before an
object obj1 of dtatic storage duration isinitiaized will not be caled until obj1's destruction has

completed. A function registered with atexit after an object obj2 of satic torage durationisinitidized
will be called before obj2' s destruction garts.

to:

Firdt, objects with gatic storage duration are destroyed and functions registered by caling atexit are
cdled. Non-loca objects with static storage duration are destroyed in the reverse order of the completion
of their constructor. (Automatic objects are not destroyed as aresult of caling exit().) Functions
registered with aexit are caled in the reverse order of their registration, except that afunctioniscalled
after any previoudy registered functions that had aready been caled at thetime it was registered. A
function registered with atexit before anon-loca object obj1 of satic storage duration isinitiaized will
not be called until obj1’s destruction has completed. A function registered with atexit after anon-locd
object obj2 of dtetic sorage duration isinitiaized will be caled before obj2’ s destruction starts. A locdl
datic object obj3 is destroyed a the sametimeit would beif afunction calling the obj3 destructor were
registered with atexit at the completion of the obj3 congtructor.

Paper:

See 99-0039/N 1215, October 22, 1999, by Stephen D. Clamage for the analysis supporting to the proposed resolution.

5. String::compar e specification questionable
Section: 21.3.6.8 lib.gring::compare Status: DR Submitter: Jack Reeves Date: 11 Dec 97

At the very end of the basic_gtring class definition is the Signature: int compare(size type posl, size typenl, const charT*
s, Sze typen2 = npos) congt; In the following text thisis defined as. returns
basic_string<charT traits Allocator>(*this,pasl,nl).compare(basic_string<charT traits Allocator>(sn2);

Library defect report list

Since the congtructor basic_gtring(const charT* s, size_typen, congt Allocator& a= Allocator()) clearly requiresthat s!=
NULL and n < nposand further states that it throwslength_error if n == npos, it appears the compare() signature above
should always throw length error if invoked like so: str.compare(1, str.size()-1,); where's is some null terminated
character array.

This appearsto be atypo since the obviousintent isto alow either the cal above or something like: str.compare(l,
sr.size()-1, s, strlen(s)-1);

Thiswould imply that what was really intended was two signatures int compare(size_type posl, size typenl, const charT*

) const int compare(size_type posl, size typenl, const charT* s, Size type n2) congt; each defined in terms of the
corresponding congtructor.

Proposed Resolution:
Replace the compare signature in 21.3 lib.basic.gtring (at the very end of the basic_string synopsis) which reads:

i nt conpare(size_type posl, size_type nil,
const charT* s, size_type n2 = npos) const;

with:

i nt conpare(size_type posl, size_type nl,
const charT* s) const;
i nt conpare(size_type posl, size_type nl,
const charT* s, size_type n2) const;

Replace the portion of 21.3.6.8 lib.gring::compare paragraphs 5 and 6 which reed:

i nt conpare(size_type pos, size_type nl,
charT * s, size_type n2 = npos) const;
Returns:
basic_string<charT,traits, All ocator>(*this, pos, nl).conpare(
basi c_string<charT,traits, Allocator>(s, n2))

with:

i nt conpare(size_type pos, size_type nl,
const charT * s) const;
Returns:
basic_string<charT,traits, All ocator>(*this, pos, nl).conpare(
basic_string<charT,traits, Allocator>(s))

int conpare(size_type pos, size_type nil,
const charT * s, size_type n2) const;

Returns:

basic_string<charT,traits, All ocator>(*this, pos, nl).conpare(
basi c_string<charT,traits, Allocator>(s, n2))

Editors please note that in addition to splitting the signature, the third argument becomes congt, matching the existing
synopsis.

Rationale:

Whilethe LWG didikes adding Sgnatures, thisisacdear defect in the Standard which must be fixed. The same problem
was dso identified inissues 7 (item 5) and 87.

Library defect report list

7. String clause minor problems
Section: 21]ib.drings Status: DR Submitter: Matt Austern Date; 15 Dec 97

(1) In21.3.5.4 lib.gring::insert, the description of template <class Inputlterator> insert(iterator, Inputlterator, |nputlterator)
makes no sense. It refersto amember function that doesn't exigt. It dso talks about the return value of avoid function.

(2) Severd versionsof basic_string::replace don't appear in the class synopsis.

(3) basic_gtring::push_back appearsin the synopsis, but is never described elsewhere. In the synopsisits agument is const
charT, which doesn't makes much sense; it should probably be charT, or possible const charT&.

(4) basic_sgiring::pop_back ismissing.

(5) int compare(size_type pos, size typenl, charT* s, Size_type n2 = npos) make no sense. Firg, it'sconsgt charT* inthe
synopsisand charT* in the description. Second, given what it saysin RETURNS, leaving out the find argument will
aways result in an exception getting thrown. Thisis paragraphs 5 and 6 of 21.3.6.8 lib.giring::compare.

(6) Intable 37, in section 21.1.1 lib.char traits.require, thereés anote for X::move(s, p, n). It says" Copies correctly even
wherepisin[s stn)". Thisiscorrect asfar asit goes, but it doesn't go far enough;, it should aso guarantee that the copy is
correct even wheresinin [p, p+n). These are two orthogonal guarantees, and neither one follows from the other. Both
guarantees are necessary if X::moveis supposad to have the same sort of semantics as memmove (which was dearly the
intent), and both guarantees are necessary if X::moveis actudly supposed to be ussful.

Proposed Resolution:

ITEM 1. In 21.35.4 [lib.gtring::insext], change paragraph 16 to
EFFECTS: Equivaent to insert(p- begin(), basic_gtring(first, last)).

ITEM 2: Not adefect; the Standard is clear.. There are ten versions of replace() in the synopsis, and ten versionsin
21.35.6 [lib.gtring::replace].

ITEM 3: Change the declaration of push_back in the string synopsis (21.3, [lib.basic.gring]) from:
void push_back(const charT)

to
void push_back(charT)

Add thefallowing text immediately after 21.3.5.2 [lib.string::append], paragraph 10.

void basc_gtring::push_back(charT ¢);
EFFECTS: Equivaent to append(static_cast<size type>(1), ¢);

ITEM 4: Not adefect. The omission appears to have been deliberate.
ITEM 5: Duplicate; seeissue 5 (and 87).
ITEM 6: Intable 37, Replace:

"Copies correctly even wherepisin|[s, s+n)."

Library defect report list

with:

"Copies correctly even where the ranges [p, p+n) and [s, stn) overlap.”

8. Locale::global lacks guarantee
Section: 22.1.1.5ib.locdeddtics Status: DR Submitter: Matt Austern Date: 24 Dec 97

It appearsthere's an important guarantee missing from clause 22. We'retold that invoking locde:globa (L) setsthe C
locdeif L has aname. However, were not told whether or not invoking setlocale(s) setsthe globd C++ locde.

Theintent, | think, isthat it should not, but | can't find any such words anywhere.
Proposed Resolution:
Add asentence at the end of 22.1.1.5 [lib.locdedatics], paragraph 2:

No library function other than| ocal e: : gl obal () shdl affect thevauereurned byl ocal e() .

9. Operator new(0) calls should not yield the same pointer
Section: 18.4.1 lib.new.ddete Status: DR Submitter: Seve Clanege Date: 4 Jan 98

Scott Meyers, in acomp.std.c++ posting: | just noticed that section 3.7.3.1 of CD2 seemsto alow for the possibility that all
calsto operator new(0) yield the same pointer, an implementation technique specificaly prohibited by ARM 5.3.3 Was

this prohibition redly lifted? Does the FDIS agree with CD2 in the regard? [Issues list maintainer's note: the ISisthe

same]

Proposed Resolution:
Change the lagt paragraph of 3.7.3 from:

Any alocation and/or dedllocation functions defined in a C++ program shal conform to the semantics
specifiedin3.7.3.1and 3.7.3.2.

to:

Any dlocation and/or dedllocation functions defined in a C++ program, including the default versonsin
thelibrary, shal conform to the semantics specifiedin 3.7.3.1 and 3.7.3.2.

Change 3.7.3.1/2, next-to-last sentence, from :
If the size of the space requested is zero, the value returned shal not be anull pointer value (4.10).

to:

Library defect report list

Even if the Size of the space requested is zero, the request can fal. If the request succeeds, thevalue
returned shal be anon-null pointer value (4.10) pO different from any previoudy returned value pl,
unlessthat vaue pl was Snce passed to an operator delete.

5.3.4/7 currently reads.

When the vaue of the expression in adirect-new-declarator is zero, the dlocation function is called to
dlocate an array with no elements. The pointer returned by the new-expression is non-null. [Note: If the
library dlocation function is called, the pointer returned is distinct from the pointer to any other object.]

Retain the first sentence, and delete the remainder.
18.4.1 currently has no text. Add thefollowing:

Except where otherwise pecified, the provisions of 3.7.3 apply to thelibrary versions of operator new
and operator ddete.

To 18.4.1.3, add the following text:

The provisions of 3.7.3 do not apply to these reserved placement forms of operator new and operator
deete

Paper:

See 99-0040/N1216, October 22, 1999, by Stephen D. Clamage for the analysis supporting to the proposed resolution.

11. Bitset minor problems
Section: 23.35 lib.template.bitset Status: DR Submitter: Matt Austern Date: 22 Jan 93
(2) bitset<>::operator[] is mentioned in the class synopsis (23.3.5), but it is not documented in 23.3.5.2.

(2) Theclass synopsis only gives asingle signature for bitset<>::operator|], reference operator[](size t pos). This doesn't
meake much sense. It ought to be overloaded on congt. reference operator|](size t pos); bool operator[](size t pos) const.

(3) Bitsat'sstream input function (23.3.5.3) ought to skip al whitespace before trying to extract Osand 1s. The sandard
doesn't explicitly say that, though. This should go in the Effects clause.

Rationale:

The LWG believesItem 3isnot adefect. "Formatted input” implies the desired semantics. See 27.6.1.2
lib.igtream.formeatted.

Proposed Resolution:

ITEMS1AND 2

In the bitset synopsis (23.3.5, [lib.template bitset]), replace the member function

reference operator[](size_t pos);

Library defect report list

with the two member functions

bool operator[](size_t pos) const;
reference operator[](size_t pos);

Add the following text at the end of 23.3.5.2 [lib.bitset.members], immediately after paragraph 45:

bool operator[](size_t pos) const;
Requires posisvdid

Throws: nothing

Returns: t est (pos)

bitset<N>::reference operator[](size_t pos);

Requires. posisvalid

Throws: nothing

Returns: Anobject of type bi t set <N>: : r ef erence suchtha(*t hi s) [pos] == this-

>t est (pos),andsuchthat(*t hi s)[pos] = val isequivdenttot hi s- >set (pos, val);

13. Eosrefusestodie

Section: 27.6.1.2.3 lib.istream::extractors Status: DR Submitter : William M. Miller Date; 3 Mar 98

In 27.6.1.2.3, thereis areferenceto "eos', which isthe only onein thewhole draft (at least using Acrobat search), soit's
undefined.

Proposed Resolution:

In 27.6.1.2.3 lib.istream::extractors, replace "eos’ with "charT()"

14. Locale::combine should be const
Section: 22.1.1.3 liblocdemembers Status: DR Submitter: Nathan Myers Date: 6 Aug 98

locde::combineis the only member function of locale (other than congtructors and destructor) that is not const. Thereisno
reason for it not to be congt, and good reasons why it should have been congt. Furthermore, leaving it non-const conflicts
with 22.1.1 paragraph 6: "Aningance of alocdeisimmutable

History: this member function originally was a congtructor. it happened that the interface it specified had no corresponding
language syntax, S0 it was changed to amember function. As congiructors are never cond, therewasno "congt™ inthe
interface which was transformed into member "combine”. It should have been added at that time, but the omission was not
noticed.

Proposed Resolution:
In22.1.1[liblocale] and dsoin 22.1.1.3 [lib.localemembers], add "congt” to the declaration of member combine:

tenpl ate <cl ass Facet> | ocal e conbi ne(const | ocal e& other) const;

15. Locale::name requirement inconsistent

Library defect report list

Section: 22.1.1.3 liblocdemembers Status: DR Submitter: Nathan Myers Date: 6 Aug 98

locde:name() is described as returning a string that can be passed to aloca e constructor, but thereis no matching
constructar.

Proposed Resolution:

In 22.1.1.3 [lib.locdlememberg], paragraph 5, replace "l ocal e(name()) " with"l ocal e(name().c_str())".

16. Bad ctype byname<char> decl

Section: 22.2.1.4 liblocdectypebynamespecid Status: DR Submitter: Nathan Myers Date: 6 Aug 98

The new virtua members ctype_byname<char>::do_widen and do_narrow did not get edited in properly. Instead, the
member do_widen appears four times, with wrong argument ligts.

Proposed Resolution:

The correct declarations for the overloaded membersdo_nar r owanddo_w den should be copied from 22.2.1.3,
[lib.facet.ctype.specid].

17. Bad bool parsing

Section: 22.2.2.1.2 libfacet.num.get.virtuds Status: DR Submitter : Nathan Myers Date: 6 Aug 98

This section describes the process of parsing atext boolean vaue from the input stream. It does not say it recognizes either
of the sequences "true" or "false" and returns the corresponding bool vaue; instead, it saysit recognizes only one of those
seguences, and chooses which according to the received value of areference argument intended for returning the result, and
reports an error if the other sequenceisfound. (1) Furthermore, it claimsto get the names from the ctype<> facet rather than
the numpunct<> facet, and it examines the "booldphd’ flag wrongly; it doesn't define the value "loc”; and findly, it
computes wrongly whether to use numeric or "apha’ parsing.

| believe the correct dgorithmis"asif":

/1 in, err, val, and str are argunents.
err = 0;
const nunpunct<char T>& np = use_f acet <nunpunct <charT> >(str.getloc());
const string_type t = np.truenane(), f = np.fal senane();
bool tm= true, fm= true;
size_t pos = 0;
while (tm && pos < t.size() || fm&& pos < f.size()) {
if (in ==-end) { err = str.eofbit; }
bool matched = fal se;
if (tm && pos < t.size()) {

if (lerr & t[pos] == *in) matched = true;
else tm= fal se;

}

if (fm&& pos < f.size()) {
if (lerr & f[pos] == *in) matched = true;

else fm= fal se;

Library defect report list 10

}
if (matched) { ++in; ++pos; }
if (pos > t.size()) tm= false;
if (pos > f.size()) fm= fal se;
}
if (tm==fm]|| pos ==0) { err |= str.failbit; }
el se { val =tm }
return in;

Notice this works reasonably when the candidate strings are both empty, or equal, or when oneisasubstring of the other.
The proposed text below captures the logic of the code above.

Proposed Resolution:

In22.2.2.1.2 [libfacetnumgetvirtuas], in thefirst line of paragraph 14, change "&&" t0"&".

Then, replace paragraphs 15 and 16 asfollows:

Otherwise target sequences are determined "asif" by calling the membersf al senanme() and

t ruenane() of thefacet obtainedbyuse_f acet <nunpunct <char T> >(str.getloc()).
Successive charactersintherange[i n, end) (see[lib.sequenceregmts]) are obtained and matched

againg corresponding positions in the target sequences only as necessary to identify a unique match. The
input iterator i n iscomparedto end only when necessary to obtain a character. If and only if atarget
sequenceisuniquely matched, val is et to the corresponding value.

Thei n iterator is dways|eft pointing one position beyond the last character successfully matched. If

val issat, thenearissettostr. goodbi t;ortostr. eof bi t if, when seeking another character to
match, itisfoundthat (i n==end) . If val isnotset, thenerrissettostr.fail bit;orto
(str.failbit]|str.eofbit)ifthereasonfor thefalurewasthat (i n==end) . [Example: for
targetst r ue:"d' andf al se:"abb", theinput sequence"d' yieldsval ==t r ue and

err==str. eof bi t;theinput sequence"abc" yiddserr=str. fail bi t,withi n endingatthe'c
dement. For targetst r ue:"1" andf al se:"0", theinput sequence"1" yiddsval ==t r ue and
err=str. goodbi t.Forempty targets (""), any input sequenceyieldser r ==str. fai l bi t.--end
example]

18. Get(...bool&) omitted

Section: 22.2.2.1.1 libfacet.num.get. members Status: DR Submitter: Nathan Myers Date: 6 Aug 98

Inthelist of num_get<> non-virtual members on page 22-23, the member that parses bool vaues was omitted from the list
of definitions of non-virtual members, though it islisted in the class definition and the corresponding virtud islisted
everywhere appropriete.

Proposed Resolution:

Add at the beginning of 22.2.2.1.1 [lib.facet.num.get.members] ancther get member for bool&, copied from the entry in
22.2.2.1 [liblocdenum.get].

19. " Noconv" definition too vague

Library defect report list

Section: 22.2.1.5.2 lib.locae.codecvt.virtuds Status: DR Submitter: Nathan Myers Date: 6 Aug 98

Change the entry for noconv in the table under paragraph 4 in section 22.2.1.5.2 [lib.locae.codecvt.virtuds] to read:

noconv:i nternT andext er nT arethe sametype, and input sequenceisidentica to converted
sequence

Change the Note in paragraph 2 to normative text as follows:

If reeurnsnoconv,i nt er nT andext er nT are the same type and the converted sequenceisidentical
totheinput sequence[f rom from next) .t o_next issstequa tot o, thevdueof st at e is
unchanged, and there are no changesto thevauesin[to, to linmit).

11

20. Thousands _sep returnswrong type

Section: 22.2.3.1.2 libfacet.numpunct.virtuds Status: DR Submitter: Nathan Myers Date: 6 Aug 98

The synopsisfor numpunct<>::do_thousands sep, and the definition of numpunct<>::thousands_sep which cdlsit, specify

that it returns avalue of type char_type. Hereit is erroneoudly described as returning a"string_type''.
Proposed Resolution:

In 22.2.3.1.2 [lib.facet. numpunct.virtuas], above paragraph 2, change "string_type" to "char_type".

21. Codecvt_byname<> instantiations
Section: 22.1.1.1.1 liblocdecategories Status: DR Submitter: Nathan Myers Date: 6 Aug 98

In the second table in the section, captioned "Required ingantiations’, the ingtantiations for codecvt_byname<> have been
omitted. These are necessary to alow usersto construct alocae by name from facets.

Proposed Resolution:
Addin22.1.1.1.1 [liblocdecategories] to the table captioned "Required ingtantiations', in the category "ctype" thelines

codecvt _bynane<char, char, mbstate_t >,
codecvt _bynane<wchar _t, char, nbstate_t>

22. Member open vs. flags

Section: 27.8.1.7 libifdream.members Status: DR Submitter: Nathan Myers Date: 6 Aug 98

The description of basic_istream<>::0pen leaves unansvered questions about how it respondsto or changes flagsin the
error statusfor the stream. A drict reading indicates that it ignores the bits and does not change them, which confuses users
who do not expect eofbit and failbit to remain set after a successful open. There are three reasonable resolutions: 1) Satus
quo 2) fail if fail(), ignore eofbit 3) clear failbit and eofbit on call to open().

Library defect report list 12

Proposed Resolution:

In 27.8.1.7 [lib.ifsream.members] paragraph 3, _and_in 27.8.1.10 [lib.ofsream.members] paragraph 3, under open()
effects, add afootnote:

A successful open does not change the error state.

24. "do_convert" doesn't exist

Section: 22.2.1.5.2 lib.locae.codecvt.virtuds Status: DR Submitter: Nathan Myers Date: 6 Aug 98

The description of codecvt<>::do_out and do_in mentions asymbol "do_convert” which is not defined in the standard. This
isaleftover from an edit, and should be "do_in and do_out".

Proposed Resolution:

In 22.2.1.5 [lib.locae.codecvt], paragraph 3, change "do_convert” to "do_inor do_out". Also, In22.2.1.5.2
[lib.locale.codecvt.virtuds], change"do_convert()" to "do_in or do_out".

25. String operator << uses width() value wrong
Section: 21.3.7.9lib.gringio Status: DR Submitter: Nathan Myers Date: 6 Aug 98

In the description of operator<< applied to strings, the stlandard saysthat uses the smdler of oswidth() and str.sze(), to pad
"as described in stage 3" dsewhere; but thisisinconsstent, as this alows no possibility of space for padding.

Proposed Resolution:
Change 21.3.7.9 lib.gring.io paragraph 4 from:

"...wheren isthesmalerof os. wi dt h() andstr. si ze();.."
to:

"...wheren isthelarger of os. wi dt h() andstr. si ze();.."

26. Bad sentry example
Section: 27.6.1.1.2 lib.igream::sentry Status: DR Submitter: Nathan Myers Date: 6 Aug 98
In paragraph 6, the code in the example:

tenpl ate <class charT, class traits = char_traits<charT> >
basi c_i streanccharT,traits>::sentry(
basic_istreanckcharT,traits>& is, bool noskipws = false) {

int_type c;

Library defect report list

typedef ctype<charT> ctype_type;
const ctype_type& ctype = use_facet<ctype_type>(is.getloc());
while ((c = is.rdbuf()->snextc()) !=traits::eof()) {
if (ctype.is(ctype.space,c)==0) {
i s.rdbuf ()->sputbackc (c);
br eak;
}
}

}

failsto demongtrate correct use of the facilities described. In particular, it failsto use traits operators, and specifiesincorrect
semarntics. (E.g. it specifies skipping over thefirst character in the sequence without examining it.)

Proposed Resolution:
Remove the example above from 27.6.1.1.2 lib.istream::sentry paragraph 6.
Rationale:

The originaly proposed replacement code for the example was not correct. The LWG tried in Konaand again in Tokyo to
correct it without success. In Tokyo, animplementor reported that actua working code ran over one pagein length and

was quite complicated. The LWG decided that it would be counter-productive to include such alengthy example, which
might well still contain errors.

13

27. String::erase(range) yieldswrong iterator
Section: 21.35.5lib.gring::erase Status: DR Submitter: Nathan Myers Date: 6 Aug 98

The dring::erase(iterator firg, iterator last) is specified to return an element one place beyond the next element after the last
one erased. E.g. for the string "abede’, erasing the range ['b'..'d) would yield an iterator for dement '€, while 'd' has not
been erased.

Proposed Resolution:

In 21.3.5.5 [lib.gring::erasd, paragraph 10, change:

Returns: an iterator which pointsto the eement immediately following _last_prior to the element being
erased.

toread

Returns. an iterator which pointsto the element pointedto by _last_prior to the other elementsbeing
erased.

28. Ctype<char>isambiguous

Section: 22.2.1.3.2 [lib.facet.ctype.char.members] Status: DR Submitter: Nathan Myers Date: 6 Aug 98

Library defect report list 14

The description of the vector form of ctype<char>::is can be interpreted to mean something very different from what was
intended. Paragraph 4 says

Effects. The second form, for al *p in the range [low, high), assigns ved]p-low] to table()[(unsigned
char)*p].

Thisisintended to copy the vaue indexed from table()[] into the place identified in ved]].
Proposed Resolution:

Change 22.2.1.3.2 [lib.facet.ctype.char.members], paragraph 4, to read

Effects. The second form, for al *pin the range [low, high), assgnsinto vedp-low] thevaue
table()[(unsgned char)*p.

29. los base::init doesn't exist

Section: 27.3.1 lib.narrow.sream.objects Status: DR Submitter: Nathan Myers Date: 6 Aug 93

Sections 27.3.1 and 27.3.2 [lib.wide.stream.objects] mention afunctionios base::init, which is not defined. Probably it
means basic_ios<>::init, defined in 27.4.4.1 [lib.basic.ios.cons], paragraph 3.

Proposed Resolution:
[R12: modified to include paragrgph 5.]

In 27.3.1 [lib.narrow.stream.objects] paragrgph 2 and 5, change

ios_baseinit
to
badc_ios<char>::init

Also, mekeasmilar changein 27.3.2 [lib.wide.stream.objects] except it should reed

basic_ios<wchar_t>::init

30. Wrong header for LC _*
Section: 22.1.1.1.1 [liblocdecaegory] Status: DR Submitter: Nathan Myers Date: 6 Aug 98

Paragraph 2 impliesthat the C macros LC_CTY PE eic. are defined in <cctype>, where they arein fact defined d sawhereto
gppear in <clocae>.

Proposed Resolution:

In22.1.1.1.1 [lib.locde.category], paragraph 2, change " <cctype>" to read "'<clocade>".

Library defect report list

15

31. Immutablelocale values
Section: 22.1.1 [liblocde] Status: DR Submitter: Nathan Myers Date: 6 Aug 98

Paragraph 6, says"Aningance of _locde_is*immutable*; once afacet referenceis obtained fromit, ...". This has caused
some confusion, because locae varidbles are manifestly assgnable.

Proposed Resolution:
In22.1.1 [lib.local€] replace paragraph 6,

Aningance of locdeisimmutable; once afacet referenceis obtained from it, that reference remains
usable aslong asthe locale vaue itsdf exids.

with

Onceafacet reference is obtained from alocale object by caling use facet<>, that reference remains
usable, and the resullts from member functions of it may be cached and re-used, aslong assomelocae
object refersto that facet.

32. Pbackfail description inconsistent

Section: 27.5.2.4.4 lib.gtreambuf.virt.pback Status: DR Submitter: Nathan Myers Date: 6 Aug 98

The description of the required state before caling virtuad member basic_streambuf<>::pbackfal requirementsis

inconsistent with the condiitions described in 27.5.2.2.4 [lib.streambuf . pub.pback] where member sputbacke callsit.
Specificaly, the latter saysit cdls pbackfall if:

traits::eq(c,gptr()[-1]) isfase
where pbackfal daimsto require:
traits::.eq(* gptr(),traits::to_char_type(c)) returnsfase
It gppearsthat the pbackfail description iswrong.
Proposed Resolution:
In 27.5.2.4.4 [lib.streambuf.virt.pback], paragrgph 1, change:
"traits::eq(*gptr(),traits::to_char_type(c))"
to
"traits::eq(traits::to_char_type(c),gptr()[-1])"

Rationale:

Library defect report list 16

Note deliberate reordering of argumentsfor clarity in addition to the correction of the argument value.

33. Codecvt<> mentionsfrom_type

Section: 22.2.1.5.2 [lib.locdecodecvt.virtuads] Status: DR Submitter: Nathan Myers Date: 6 Aug 98

In the table defining the results from do_out and do _in, the specification for the result _error_ says
encountered afrom_type character it could not convert

but from_typeis not defined. This clearly isintended to be an externT for do_in, or an internT for do_out.

Proposed Resolution:

In22.2.1.5.2 [lib.locale.codecvt.virtuas], paragraph 4, replace the definition in the table for the case of _error_ with

encountered acharacterin[f r om f r om_end) that it could not convert.

34. Trueffalsename() not in ctype<>

Section: 22.2.2.2.2 [libfacet.num.get.virtuds] Status: DR Submitter: Nathan Myers Date: 6 Aug 98

In paragraph 19, Effects,, members truename() and fad sename are used from facet ctype<charT>, but it has no such
members. Notethat thisisalso aproblemin 22.2.2.1.2, addressed in (4).

Proposed Resolution:

IN22.2.2.2.2 [lib.facet.num.get.virtuals], paragraph 19, in the Effects: clause for member put(...., bool), replacethe
initidization of the string_type vaue sasfallows:

const nunpunct & np = use_facet <nunpunct <charT> >(I oc);
string _type s = val ? np.truename() : np.fal senanme();

35. No manipulator unitbuf in synopsis
Section: 274 [libiostreamsbasd Status: DR Submitter: Nathan Myers Date: 6 Aug 98

In 27.4.5.1, [libfmitflags.manip], we have a definition for amanipulator named "unitbuf”. Unlike other manipuletors, it's
not listed in sysopsis. Similarly for "nounitbuf™.

Proposed Resolution:
Add to the synopsis for <ios> in 27.4 [lib.iostreams.basd, after the entry for "nouppercase”, the prototypes:

i 0s_base& unitbuf(ios_base& str);
i 0s_base& nounit buf (i os_base& str);

Library defect report list 17

36. lword & pword storage lifetime omitted
Section: 27.4.2.5[lib.iosbasedorage] Status: DR Submitter: Nathan Myers Date: 6 Aug 98

In the definitions for ios_base::iword and pword, the lifetime of the Storage is specified badly, so that an implementation
which only keepsthe last value stored gppears to conform. In particular, it says:

The reference returned may become invalid after another call to the object'siword member with adifferent index ...
Thisisnot idle speculaion; at least one implementation was done thisway.

Proposed Resolution:

Addin 27.4.25 [lib.iosbasegtorage], in both paragraph 2 and aso in paragraph 4, replace the sentence:

The reference returned may become invaid after another cal to the object'siword [pword] member with
adifferent index, after acdl to its copyfmt member, or when the object is destroyed.

with:

The reference returned isinvalid after any other operations on the object. However, the value of the
storage referred to is retained, so that until the next call to copyfmt, caling iword [pword] with the same
index yields another reference to the same vaue.

substituting "iword" or "pword" as appropriate.

37. Leftover "global" reference
Section: 22.1.1[liblocde] Status: DR Submitter: Nathan Myers Date: 6 Aug 98
In the overview of locae semantics, paragraph 4, isthe sentence

If Facet isnot present in alocae (or, faling that, in the globd locae), it throws the standard exception
bad cast.

Thisis not supported by the definition of use facet<>, and represents semantics from an old draft.
Proposed Resolution:
In22.1.1 [libloca€], paragraph 4, delete the parenthesized expression

(or, failing thet, in the globd locae)

38. Facet definition incomplete

Section: 22.1.2 [liblocdeglobd templates] Status: DR Submitter: Nathan Myers Date: 6 Aug 98

Library defect report list 18

It has been noticed by Esa Pulkkinen that the definition of "facet” isincomplete. In particular, aclass derived from another
facet, but which does not defineamember _id _, cannot safely serve astheargument _F_ to use facet<F>(loc), because
thereis no guarantee that areference to the facet indtance sored in _loc_issdely convertibleto_F .

Proposed Resolution:

In the definition of std::use facet<>(), replace thetext in paragraph 1 which reads:
Get areferenceto afacet of alocade

with:

Requires. Facet isafacet classwhose definition contains the public static member i d asdefined in
(22.1.1.1.2, [liblocdefacet]).

[Kona: strike as overspecification the text " (not inherits)" from the original resolution, which read "... whose definition

contains (not i nherits) the public static member i d ..."]

39. istreambuf _iterator<>::operator++(int) definition garbled

Section: 24.5.34 [lib.istreambuf.iterator::opt++] Status: DR Submitter: Nathan Myers Date: 6 Aug 98

Following the definition of istreambuf_iterator<>::operator++(int) in paragraph 3, the standard contains three lines of
garbage text left over from a previous edit.

i streanmbuf _iterator<charT,traits> tnmp = *this;
sbuf _->sbunpc();
return(tnp);

Proposed Resolution:

In 24.5.3.4 [lib.istreambuf..iterator::0p++], delete the three lines of code a the end of paragraph 3.

40. Meaningless normative paragraph in examples
Section: 22.2.8 [libfacetsexamples] Status: DR Submitter: Nathan Myers Date: 6 Aug 98

Paragraph 3 of thelocale examplesis adescription of part of an implementation technique that has logt its referent, and
doesn't mean anything.

Proposed Resolution:

Delete 22.2.8 [lib.facetsexamples] paragraph 3 which begins " This initialization/identification system depends...", or (at the
editor's option) replace it with a place-holder to keep the paragraph numbering the same.

41. los_base needs clear (), exceptions()

Library defect report list 19

Section: 27.4.2 [lib.iosbasd Status: DR Submitter: Nathan Myers Date: 6 Aug 98

The description of ios_base::iword() and pword() in 27.4.2.4 [libiosmembersdtatic], say that if they fail, they "set badhit,
which may throw an exception”. However, ios_base offers no interface to set or to test badbit; those interfaces are defined
inbasic_ios<>.

Proposed Resolution:

Change the description in 27.4.2.5 [lib.iosmembersstorage] in paragraph 2, and dso in paragraph 4, asfollows. Replace
If the function failsit sets badbit, which may throw an exception.

with
If thefunction fails, and* t hi s isabasesub-objectof abasi ¢_i os<> object or sub-object, the effect
isequivdenttocdling basi c_i os<>: : set st at e(badbi t) onthederived object (which may

throw f ai | ur e).

[Kona: LWG reviewed wording; setstate(failbit) changed to setstate(badbid).]

42. String ctors specify wrong default allocator
Section: 21.3[lib.basc.dringl Status: DR Submitter: Nathan Myers Date: 6 Aug 98
Thebasic_string<> copy constructor:

0

basi c_string(const basic_string& str, size_type pos ,
Al locator());

size_type n = npos, const Allocator& a

specifies an Allocator argument default value that is counter-intuitive. The natura choice for athe dlocator to copy fromis
str.get_dlocator(). Though this cannot be expressed in default-argument notation, overloading suffices.

Alternatively, the other containersin Clause 23 (deque, ligt, vector) do not have thisform of congtructor, soitis
inconsistent, and an evident source of confusion, for basic_string<> to haveit, so it might better be removed.

Proposed Resolution:
In 21.3 [lib.basic.gring, replace the declaration of the copy congtructor asfollows:

basi c_string(const basic_string& str);
basi c_string(const basic_string& str, size_type pos, size _type n =
npos,
const Allocator& a = Allocator());
In 21.3.1 [lib.gtring.cong], replace the copy constructor declaration as above. Add to paragraph 5, Effects:
Inthefirst form, the Allocator value used iscopiedfrom st r. get _al | ocator ().

Rationale:

The LWG believes the condructor is actualy broken, rather than just an unfortunate design choice.

Library defect report list 20

The LWG considered two other possible resolutions.
A.In21.3[lib.basic.gring, replace the declaration of the copy congtructor as follows:
basi c_string(const basic_string& str, size type pos = 0,
size_type n = npos);
basi c_string(const basic_string& str, size_type pos,
size_type n, const Allocatoré& a);

In 21.3.1 [lib.gtring.cong], replace the copy constructor declaration as above. Add to paragraph 5, Effects:

Whenno Al | ocat or argument is provided, the string is congtructed using the value
str.get_allocator().

B. In21.3[lib.basic.gring), and dsoin 21.3.1 [lib.gring.cong], replace the declaration of the copy constructor asfollows:

basi c_string(const basic_string& str, size type pos = 0,
size_type n = npos);

The proposed resolution reflects the original intent of the LWG. It was dso noted by Pete Becker that thisfix "will causea
small amount of existing code to now work correctly."”

[Kona: issue editing snafu fixed - the proposed resolution now correctly reflects the LWG consensus.]

46. Minor Annex D errors

Section: D.7 depr.strstreambuf, depr.strstream Status: DR Submitter : Brendan Kehoe Date: 1 Jun 98

Seelib-6522, edit- 814.
Proposed Resolution:
Change D.7.1 depr.strstreambuf (since streambuf is atypedef of basic_streambuf<char>) from:
virtual streanbuf<char>* setbuf(char* s, streansize n);
to:
virtual streanmbuf* setbuf(char* s, streansize n);
In D.7.4 depr.strstream insert the semicolon now missing after int_type:
namespace std {
class strstream
public basic_iostreanxchar> {
public:
/'l Types
typedef char char _type;

typedef typenane char_traits<char>::int_type int_type
typedef typenane char_traits<char>::pos_type pos_type;

Library defect report list 21

47. Imbue() and getloc() Returns clauses swapped
Section: 27.4.2.3 lib.iosbaselocdes Status: DR Submitter: Matt Austern Date: 21 Jun 98

Section 27.4.2.3 specifies how imbue() and getloc() work. That section has two RETURNS dauses, and they make no
sense as sated. They make perfect sense, though, if you swap them. Am | correct in thinking that paragraphs 2 and 4 just
got mixed up by accident?

Proposed Resolution:

In 27.4.2.3 lib.iosbaselocdes swap paragraphs 2 and 4.

48. Use of non-existent exception constructor
Section: 27.4.2.1.1lib.ios falure Status: DR Submitter: Matt Austern Date: 21 Jun 98

274.2.1.1, paragraph 2, saysthat classfailureinitidizes the base class, exception, with exception(msg). Class exception
(see 18.6.1) has no such congtructor.

Proposed Resolution:

Replace 27.4.2.1.1 [lib.ios:falure], paragraph 2, with

EFFECTS: Congtructs an object of classf ai | ur e.

50. Copy constructor and assignment operator of ios base
Section: 27.4.2 lib.iosbaseStatus: DR Submitter: Matt Austern Date: 21 Jun 98

Aswritten, ios_base has acopy congtructor and an assignment operator. (Nothing in the standard says it doesn't have one,

and dl dasses have copy congtructors and assignment operators unless you take specific stepsto avoid them.) However,
nothing in 27.4.2 says what the copy congtructor and assignment operator do.

My guessisthat thiswas an oversight, that ios baseis, like basic_ios, not supposed to have a copy constructor or an
assgnment operator.

A LWG member [Jerry Schwarz] comments: Yes, its an oversight, but in the opposite sense to what you're suggesting. At
one point there was a definite intention that you could copy ios_base. It's an easy way to save the entire Sate of astream for
future use. Asyou note, to carry out that intention would have required a explicit description of the semantics (e.g. what
happensto theiarray and parray stuff). So | guess [remainder of comment disappeared into the black hole of email].

Proposed Resolution:
In27.4.2 lib.iosbase classios base, specify the copy constructor and operator= members as being private.

Rationale;

Library defect report list

The LWG bdievesthe difficulty of specifying correct semantics outweighs any benefit of dlowing ios_base objectsto be
copyable.

22

51. Requirement to not invalidate iterators missing

Section: 23.1 lib.container.requirements Status: DR Submitter: David Vandevoorde Date: 23 Jun 98

The std::sort dgorithm can in generd only sort a given sequence by moving around values. The list<>::sort() member on
the other hand could move around values or just update interna pointers. Either method can leave iteratorsinto the list<>
dereferencable, but they would paint to different things.

Does the FDIS mandate anywhere which method should be used for list<>::sort()?
A committee member [Matt Austern, lib-6528] comments.
| think you've found an omission in the standard.

Thelibrary working group discussed this point, and there was supposed to be agenera requirement saying that list, set,
map, multiset, and multimap may not invadidate iterators, or change the values that iterators point to, except when an
operation doesit explicitly. So, for example, insert() doesn't invalidate any iterators and erase() and remove() only
invaidate iterators pointing to the d ements that are being erasad.

| looked for that generd requirement in the FDI'S, and, while | found alimited form of it for the sorted associative
containers, | didn't find it for list. It looks likeit just got omitted.

Theintention, though, isthat list<>::sort does not invadidate any iterators and does not change the values that any iterator
pointsto. There would be no reason to have the member function otherwise.

Theissueslist maintainer [Beman Dawes| comments:

Thiswas USissue CD2-23-011; it was accepted in London but the change was not made due to an editing oversight. The
wording in the proposed resol ution below is somewhat updated from CD2-23-011, particularly the addition of the phrase
"or change the values of"

Proposed Resolution:
Add anew paragraph a the end of 23.1:

Unless otherwise specified (either explicitly or by defining afunction in terms of other functions),

invoking a container member function or passing a container as an argument to alibrary function shall
not invalidate iterators to, or change the vaues of, objects within that container.

52. Small I/O problems
Section: 27.4.3.2 lib.fpos.operations Status: DR Submitter: Matt Austern Date: 23 Jun 98

Firg, 27.4.4.1 lib.basic.iosconstable 89. Thisis pretty obvious: it should betitled "basic_ios<>() effects’, not "ios_base()
effects'.

Library defect report list 23

[The second item isaduplicate; seeissue 6 for resolution.]

Second, 27.4.3.2 lib.fpos.operations table 88 . There are a couple different things wrong with it, some of which I've dready
discussed with Jerry, but the most obvious mechanical sort of error isthat it uses expressionslike P(i) and p(i), without ever
defining what sort of thing "i" is.

(The other problem isthat it requires support for streampos arithmetic. Thisisimpossible on some systems, i.e. oneswhere
file position is acomplicated structure rather than just anumber. Jerry tells me that the intention was to require syntactic
support for streampos arithmetic, but that it wasn't actualy supposed to do anything meaningful except on platforms, like
Unix, where genuine arithmetic is possible.)

Proposed Resolution:

Change 27.4.4.1]ib.basic.ios.constable 89 title from "ios_basy() effects’ to "basc_ios<>() effects’.

53. Basic_iosdestructor unspecified
Section: 27.4.4.1 lib.basicioscons, 27.4.4.2 lib.besciosmembers Status: DR Submitter: Matt Austern Date: 23 Jun 93
Therés nothing in 27.4.4 saying what basic_ioss destructor does.
Theimportant question iswhether basic_ios::~basic_ios() destroys rdbuf().
Proposed Resolution:
Add after 27.4.4.1 |ib.bas c.ios.cons paragraph 2:
virtual ~basic_ios();
Notes: The destructor does not destroy r dbuf () .
Rationale;

The LWG reviewed the additiond question of whether or notr dbuf (0) may setbadbi t . Theanswer isclearly yes; it
may besetviacl ear () . See 27.4.4.2 lib.basc.iosmembers, paragraph 6.

[Kona: reviewed at length by the LWG, which removed from the original proposed resolution a footnote which incorrectly
said"r dbuf (0) doesnot setbadbi t".]

54. Basic_streambuf's destructor
Section: 27.5.2.1 lib.streambuf.cons Status: DR Submitter: Matt Austern Date:25 Jun 98

The class synopsisfor basic_streambuf shows a (virtua) destructor, but the standard doesn't say what that destructor does.
My assumption isthat it does nothing, but the standard should say so explicitly.

Proposed Resolution:

Library defect report list

Add after 27.5.2.1 lib.streambuf .cons paragraph 2:
virtual ~basic_streanbuf();

Effects: None

24

55. Invalid stream position is undefined
Section: 27 lib.input.output Status: DR Submitter: Matt Austern Date:26 Jun 98

Severd member functionsin clause 27 are defined in certain circumatances to return an “invalid stream position”, aterm
that is defined nowhere in the standard. Two places (27.5.2.4.2, paragraph 4, and 27.8.1.4, paragraph 15) contain across-
reference to adefinition in_lib.iostreams.definitions , a nonexistent section.

| suspect that the invalid stream position is just supposed to be pos_type(-1). Probably best to say explicitly in (for
example) 27.5.2.4.2 that the return value is pos_type(-1), rather than to use the term "invaid stream position”, define that
term somewhere, and then put in a cross-reference.

The phrase "invalid stream position" appears ten timesin the C++ Standard. In seven places it refersto areturn vaue, and it
should be changed. In three placesit refers to an argument, and it should not be changed. Here are the three places where
"invaid stream position” should not be changed:

27.7.1.3 [lib.stringbuf virtuals], paragraph 14

27.8.1.4[libfilebuf.virtuas], paragraph 14
D.7.1.3 [depr.dratreambuf.virtuas], paragraph 17

Proposed Resolution:

In 27.5.2.4.2 [lib.streambuf.virt.buffer], paragraph 4, change "Returns an object of class pos typethat stores aninvaid
stream position (_lib.iostreams.definitions)" to "Returnspos_t ype(of f _type(-1))".

In 27.5.2.4.2 [lib.gtreambuf .virt.buffer], paragraph 6, change "Returns an object of class pos_type that storesan invalid
stream position” to "Returnspos_t ype(of f _type(-1))".

In 27.7.1.3 [lib.gringbuf.virtuas], paragraph 13, change "the object stores an invalid stream position” to"thereturn vaueis
pos_type(off_type(-1))".

In 27.8.1.4 [libfilebuf virtuads], paragraph 13, change "returns an invaid stream position (27.4.3)" to "returns
pos_type(off_type(-1))"

In27.8.1.4 [libfilebuf.virtuals], paragraph 15, change "Otherwise returns an invalid stream position
(Uib.iostreams.definitions)" to "Otherwisereturnspos_t ype(of f _type(-1))"

In D.7.1.3 [depr.sratreambuf.virtuds], paragraph 15, change "the object stores an invaid stream position” to "the return
vadueispos_type(of f _type(-1))"

In D.7.1.3 [depr.gratreambuf.virtuas], paragraph 18, change "the object stores an invalid stream position” to “the return
vadueispos_type(off_type(-1))"

Library defect report list 25

56. Showmanyc'sreturn type
Section: 27.5.2 lib.greambuf Status: DR Submitter: Matt Austern Date:29 Jun 98

The classsummary for basic_streambuf<>, in 27.5.2, saysthat showmanyc has return type int. However, 27.5.2.4.3 says
that itsreturn typeis streamsize.

Proposed Resolution:

Changeshowmany c'sreturntypeinthe 27.5.2 lib.streambuf classsummary tost r eansi ze.

57. Mistakein char_traits

Section: 21.1.3.2 lib.char.traits.specidizationswechar.t Status: DR Submitter: Matt Austern Date:1 Jul 98

21.1.3.2, paragraph 3, says "The types streampos and wstreampos may be different if the implementation supports no shift
encoding in narrow-oriented iostreams but supports one or more shift encodings in wide-oriented streams’'.

That'swrong: the two are the same type. The <iosfwd> summary in 27.2 says that streampos and wstreampos are,
respectively, synonymsfor fpos<char_traits<char>::state type> and fpos<char_traits<wchar_t>::state type>, and, flipping
back to clause 21, we seein 21.1.3.1 and 21.1.3.2 that char_traits<char>::gtate type and char_traitscwchar_t>::state type
must both be mbstate t.

Proposed Resolution:

Remove the sentencein 21.1.3.2 lib.char traitsspecializationswehar.t paragraph 3 which begins " The types streampos and
wstreampos may be different..." .

59. Ambiguity in specification of gbump

Section: 27.5.2.3.1 lib.streambuf.get.area Status: DR Submitter: Matt Austern Date:28 Jul 98

27.5.2.3.1 saysthat basic_streambuf::gbump() "Advances the next pointer for the input sequence by n."

The graightforward interpretation isthat it isjust gptr() += n. An dternative interpretation, though, isthat it behaves asif it
calsshumpc ntimes. (Theissue, of course, iswhether it might ever call underflow.) Thereisasimilar anbiguity inthe
case of pbump.

[A LWG member reportsthat the AT& T implementation used the former interpretation.]
Proposed Resolution:

Change 27.5.2.3.1 lib.gtreambuf.get.area paragraph 4 gbump effects from:

Effects: Advancesthe next pointer for the input sequence by n.

to:

Library defect report list

Effects: Addsn to the next pointer for the input sequence.

Make the same changeto 27.5.2.3.2 lib.streambuf .put.area paragraph 4 pbump effects.

60. What isa formatted input function?
Section: 27.6.1.2.1 lib.istream.formatted.regmts Status: DR Submitter: Matt Austern Date:3 Aug 98

Paragraph 1 of 27.6.1.2.1 contains generd requirements for dl formatted input functions. Some of the functions defined in
section 27.6.1.2 explicitly say that those requirements apply ("Behaves like aformatted input member (as described in
27.6.1.2.1)"), but othersdon't. The question: is 27.6.1.2.1 supposed to gpply to everythingin 27.6.1.2, or only to those
member functionsthat explicitly say "behaves like aformatted input member”? Or to put it differently: are we to assume
that everything that appearsin asection called "Formatted input functions' redly is aformatted input function? | assume
that 27.6.1.2.1 isintended to apply to the arithmetic extractors (27.6.1.2.2), but | assumethat it is not intended to apply to
extractorslike

basi c_i stream& operator>>(basic_istream& (*pf)(basic_istreant));

basi c_i stream& oper at or >>(basi c_streambuf *);
Thereisasmilar ambiguity for unformatted input, formatted output, and unformatted output.

Comments from Judy Ward: It ssemslikethe problem isthat the basic_istream and basic_ostream operator <<()'sthet are
used for the manipulators and streambuf* arein the wrong section and should have their own separate section or be
modified to makeit clear that the "Common requirements' listed in section 27.6.1.2.1 (for basic_istream) and section
27.6.2.5.1 (for basic_ostream) do not apply to them.

Additiona comments from Dietmar Kihl: It appearsto be somewhat nonsensicd to consider the functions defined in
27.6.1.2.3 lib.istream::extractors paragraphs 1 to 5 to be "Formatted input function” but since these functions are defined in
asection labdled "Formatted input functions' it is unclear to me whether these operators are considered formatted input
functions which have to conform to the "common requirements' from 27.6.1.2.1 (lib.istream.formatted.regmts): If thisis

the case, al manipulators, not justws , would skip whitespace unlessnoski pws isset (... but setting noski pws usingthe
manipulaor syntax would aso skip whitespace :-)

Itisnot clear which functions are to be considered unformatted input functions. Aswritten, it seemsthat all functionsin
27.6.1.3 (lib.istream.unformatted) are unformatted input functions. However, it does not really make much senseto

construct asentry object for gcount () ,sync() , ... Alsoitisunclear what happenstothe gcount () ifeg. gcount (),
put back() ,unget (),orsync() iscdled: Thesefunctions don't extract characters, some of them even "unextract” a
character. Should this il bereflectedingcount () ?Of course, it could bereed asif after acdl togcount ()

gcount () return O (thelast unformatted input function, gcount () , didn't extract any character) and after acdl to

put back() gcount () returns- 1 (thelast unformatted input functon put back () did "extract”" back into the sream).
Correspondingly for unget () . Isthiswhat isintended? If so, this should be clarified. Otherwise, a corresponding

clarification should be used.

Proposed Resolution:

In 27.6.1.2.2 [lib.istream.formatted.arithmetic], paragraph 1. Change the beginning of the second sentence from "The
conversion occurs' to "These extractors behave as formatted input functions (as described in 27.6.1.2.1). After asentry
object is congtructed, the conversion occurs'

Library defect report list

In 27.6.1.2.3, [lib.istream::extractors], before paragraph 1. Add an effects clause. "Effects: None. This extractor does not
behave as aformetted input function (as described in 27.6.1.2.1).

In 27.6.1.2.3, [lib.istream::extractors], paragraph 2. Change the effects clause to "Effects: Calls pf(*this). This extractor
does not behave as aformatted input function (as described in 27.6.1.2.1).

In 27.6.1.2.3, [lib.istream::extractors], paragraph 4. Changethe effects clause to "Effects: Calls pf(*this). This extractor
does not behave as aformatted input function (as described in 27.6.1.2.1).

In 27.6.1.2.3, [lib.istream::extractors], paragraph 12. Change the first two sentences from "If shisnull, cals setstate(failbit),
which may throw ios_base::failure (27.4.4.3). Extracts charactersfrom *this..." to "Behaves as aformatted input function

(esdescribed in 27.6.1.2.1). If shisnull, cals setstate(failbit), which may throw ios_base:failure (27.4.4.3). After a sentry
object is congtructed, extracts characters from *this...".

In 27.6.1.3, [lib.istream.unformatted], before paragraph 2. Add an effects clause. "Effects. none. This member function
does not behave as an unformatted input function (as described in 27.6.1.3, paragraph 1)."

In 27.6.1.3, [lib.istream.unformaited], paragraph 3. Change the beginning of the first sentence of the effects clause from

"Extracts a character” to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After
congtructing a sentry object, extracts a character”

In 27.6.1.3, [lib.istream.unformatted], paragraph 5. Change the beginning of the first sentence of the effects clause from
"Extracts a character” to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After
congtructing a sentry object, extracts a character”

In 27.6.1.3, [lib.istream.unformatted], paragraph 5. Change the beginning of the first sentence of the effects clause from
"Extracts characters' to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After
congtructing a sentry object, extracts characters’

[No change needed in paragraph 10, because it refersto paragraph 7.]

In 27.6.1.3, [lib.istream.unformatted], paragraph 12. Change the beginning of the first sentence of the effects clause from

"Extracts characters' to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After
congructing a sentry object, extracts characters’

[No change needed in paragraph 15.]

In 27.6.1.3, [lib.istream.unformatted)], paragraph 17. Change the beginning of the first sentence of the effects clause from
"Extracts characters' to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After
constructing a sentry object, extracts characters'

[No change needed in paragraph 23]

In 27.6.1.3, [lib.istream.unformatted], paragraph 24. Change the beginning of the first sentence of the effects clause from
"Extracts characters' to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After
congtructing a sentry object, extracts characters’

In 27.6.1.3, [lib.istream.unformatted], before paragrgph 27. Add an Effects dause: "Effects: Behaves as an unformatted
input function (as described in 27.6.1.3, paragraph 1). After constructing a sentry object, reads but does not extract the
current input character.”

In 27.6.1.3, [lib.istream.unformatted], paragraph 28. Change the first sentence of the Effects clause from "If 'good() cals’
to Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After congtructing a sentry object, if

1good() calls"

27

Library defect report list

In 27.6.1.3, [lib.istream.unformatted], paragraph 30. Change the firgt sentence of the Effects clause from "If !good() cdls'
to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After congtructing a sentry object, if

1good() calls

In 27.6.1.3, [lib.istream.unformatted], paragraph 32. Change thefirst sentence of the Effects clause from "If !'good() cdls..."
to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After congtructing a sentry object, if
Igood() calls..." Add anew sentenceto the end of the Effects clause: "[Note: this function extracts no characters, so the
vaue returned by the next call to gcount() is0.]"

In 27.6.1.3, [lib.istream.unformatted], paragraph 34. Change the first sentence of the Effects clause from"If !good() calls'
to "Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After congtructing a sentry object, if
Igood() cdls'. Add anew sentence to the end of the Effects clause: "[Note: this function extracts no characters, so the value
returned by the next cdl to gcount() is0]"

In 27.6.1.3, [lib.istream.unformatted], paragraph 36. Change the first sentence of the Effects clause from"If !rdbuf() is' to
"Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1), except that it does not count the number
of characters extracted and does not affect the vaue returned by subsequent calls to gecount(). After congtructing a sentry
object, if rdbuf() is'

In 27.6.1.3, [lib.istream.unformatted], before paragraph 37. Add an Effects clause: "Effects. Behaves as an unformatted
input function (as described in 27.6.1.3, paragraph 1), except that it does not count the number of characters extracted and
does not affect the vaue returned by subsequent calsto geount()." Change the first sentence of paragraph 37 from "if
fail()" to "after congtructing a sentry object, if fail()".

In 27.6.1.3, [lib.istream.unformatted)], paragraph 38. Change the first sentence of the Effects clause from "If fail)" to
"Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1), except that it does not count the number
of characters extracted and does not affect the vaue returned by subsequent calls to gcount(). After congtructing a sentry
object, if fall()

In 27.6.1.3, [lib.istream.unformatted], paragraph 40. Change the first sentence of the Effects clause from "If fail()" to
"Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1), except that it does not count the number
of characters extracted and does not affect the value returned by subsequent callsto geount(). After constructing a sentry
object, if fall()

In 27.6.2.5.2 [lib.ostream.inserters.arithmetic], paragraph 1. Change the beginning of the third sentence from " The
formatting conversion” to "These extractors behave as formatted output functions (as described in 27.6.2.5.1). After the
sentry object is constructed, the conversion occurs'.

In 27.6.2.5.3 [lib.ostream.inserters], before paragraph 1. Add an effects clause: "Effects None. Does not behave asa
formatted output function (as described in 27.6.2.5.1).".

In 27.6.2.5.3 [lib.ostream.insarters], paragraph 2. Change the effects clause to "Effects: cals pf(*this). This extractor does
not behave as aformatted output function (as described in 27.6.2.5.1).".

In 27.6.2.5.3 [lib.ostream.inserters], paragraph 4. Change the effects clause to "Effects: cdls pf(*this). This extractor does
not behave as aformatted output function (as described in 27.6.2.5.1).".

In27.6.2.5.3 [lib.ostream.inserters], paragraph 6. Change the first sentence from "If " to "Behaves as aformatted output
function (as described in 27.6.2.5.1). After the sentry object is congtructed, if so".

In 27.6.2.6 [lib.ostream.unformetted], paragraph 2. Change the first sentence from "Inserts the character” to "Behaves asan
unformatted output function (as described in 27.6.2.6, paragraph 1). After constructing a sentry object, insertsthe
character”.

28

Library defect report list

In 27.6.2.6 [lib.ostream.unformatted)], paragraph 5. Change the first sentence from "Obtains characters' to "Behaves asan
unformatted output function (as described in 27.6.2.6, paragraph 1). After congtructing a sentry object, obtains characters'.

In 27.6.2.6 [lib.ostream.unformatted)], paragraph 7. Add anew sentence at the end of the paragraph: "Does not behave asan
unformatted output function (as described in 27.6.2.6, paragraph 1)."

Rationale:

See J16/99-0043==WG21/N1219, Proposed Resolution to Library 1ssue 60, by Judy Ward and Matt Austern. This proposed
resolution is section V1 of that paper.

61. Ambiguity in iostreams exception policy

Section: 27.6.1.3 lib.isream.unformatted Status: DR Submitter: Matt Austern Date:6 Aug 98

Theintroduction to the section on unformatted input (27.6.1.3) says that every unformatted input function catches al
exceptions that were thrown during input, sets badhbit, and then conditionaly rethrows the exception. That seems clear
enough. Severa of the specific functions, however, such as get() and read(), are documented in Some circumstances as
seiting eofbit and/or failbit. (The standard notes, correctly, that setting eofbit or failbit can sometimes result in an exception
being thrown.) The question: if one of these functions throws an exception triggered by setting failbit, isthis an exception
"thrown during input” and hence covered by 27.6.1.3, or does 27.6.1.3 only refer to alimited class of exceptions? Jugt to
make this concrete, suppose you have the following snippet.

char buffer[N;
istreamis;

i”s:exceptions(istream:failbit); /1 Throw on failbit but not on badbit.
is.read(buffer, N);

Now suppose we reach EOF beforeweve read N characters. What iostate bits can we expect to be set, and what exception
(if any) will be thrown?

Proposed Resolution:

In 27.6.1.3, paragraph 1, after the sentence that begins"'If an exception isthrown...", add the following parenthetical
comment: "(Exceptionsthrown from basi ¢c_i os<>: : cl ear () arenot caught or rethrown.)"

Rationale:

The LWG looked to two aternative wordings, and choose the proposed resolution as better Sandardese.

62. Sync'sreturn value

Section: 27.6.1.3 lib.isream.unformatted Status: DR Submitter: Matt Austern Date:6 Aug 98

The Effects clause for sync() (27.6.1.3, paragraph 36) saysthat it "calls rdbuf()->pubsync() and, if that function returns -1
... returnstraits::eof ()."

That looks suspicious, because traits:eof() is of type traits::int_type while the return type of sync() isint.

Library defect report list 30

Proposed Resolution:

In 27.6.1.3 lib.istream.unformatted, paragraph 36, change "returnst rai t s: : eof () " to"returns- 1".

63. Exception-handling palicy for unformatted output
Section: 27.6.2.6 lib.ostream.unformatted Status: DR Submitter: Matt Austern Date:11 Aug 98

Clause 27 details an exception-handling policy for formatted input, unformatted input, and formatted output. It says nothing

for unformatted output (27.6.2.6). 27.6.2.6 should either include the same kind of exception-handling policy asin the other
three places, or dseit should have afootnote saying that the omission is ddiberate.

Proposed Resolution:

In 27.6.2.6, paragraph 1, replace the last sentence ("In any case, the unformatted output function ends by destroying the
sentry object, then returning the val ue specified for the formatted output function.”) with the following text:

If an exception isthrown during output, theni os: : badbi t isturned on [Footnote: without causing an

i os::failuretobethrown]in*t hi s'serror sate. If (exceptions() & badbit) !'= 0then

the exception is rethrown. In any case, the unformatted output function ends by destroying the sentry
object, then, if no exception was thrown, returning the vaue specified for the formatted output function.

Rationale:

This exception-handling policy is consistent with that of formatted input, unformatted input, and formatted output.

64. Exception handlingin basi c_i st ream : oper at or >>(basi c_st r eanbuf *)

Section: 27.6.1.2.3 lib.igream::extractors Status: DR Submitter: Matt Austern Date:11 Aug 98

27.6.1.2.3, paragraph 13, isambiguous. It can be interpreted two different ways, depending on whether the second sentence
isread & an elaboration of thefirgt.

Proposed Resolution:

Replace 27.6.1.2.3 lib.idream::extractors, paragraph 13, which begins "If the function inserts no characters ...” with:

If the function inserts no characters, it calsset st at e(f ai | bi t), which may throw

i 0s_base: : fail ure (27.4.4.3). If it inserted no characters because it caught an exception thrown
whileextracting charactersfrom sb andf ai | bi t isoninexcepti ons() (27.4.4.3), then the caught
exception is rethrown.

66. Strstreambuf::setbuf

Section: D.7.1.3 depr.sratreambuf.virtuds Status: DR Submitter: Matt Austern Date:18 Aug 98

Library defect report list 31

D.7.1.3, paragraph 19, says that strstreambuf::setbuf " Performs an operation that is defined separately for each class derived
from strstreambuf". Thisis obvioudy an incorrect cut-and-paste from basic_streambuf. There are no classes derived from
strstreambuf.

Proposed Resolution:

D.7.1.3 depr.drstreambuf .virtuals, paragraph 19, replace the setbuf effects clause which currently says " Performs an
operation that is defined separately for each class derived from srstreambuf” with:

Effects: implementation defined, except thatset buf (0, 0) hasno effect.

68. Extractorsfor char* should store null at end

Section: 27.6.1.2.3 lib.idream::extractors Status: DR Submitter: AngdikaLanger Date: 14 Jul 1998

Extractorsfor char* (27.6.1.2.3) do not store anull character after the extracted character sequence whereasthe
unformatted functions like get() do. Why isthis?

Jerry Schwarz: Thereis apparently an editing glitch. You'll notice that the last item of the list of what stops extraction
doesn't make any sense. It was supposed to be the line that said a null is stored.

Proposed Resolution:

27.6.1.2.3 lib.istream::extractors, paragraph 7, changethe lagt ligt item from:

A null byte (char T()) inthe next position, which may bethe first postion if no characterswere
extracted.

to become a new paragraph which reads:

Operator>> then storesanull byte (char T(')) inthe next position, which may be the first position if no
characters were extracted.

69. Must elementsof a vector be contiguous?
Section: 23.24 lib.vector Status: DR Submitter: Andrew Koenig Date: 29 Jul 1998
Theissueisthis:

Must the elements of avector be in contiguous memory?

(Please note that thisis entirely separate from the question of whether avector iterator is required to be a pointer; the
answer to that question is clearly "no," asit would rule out debugging implementations)

Proposed Resolution:

Add the following text to the end of 23.2.4 [lib.vector], paragraph 1.

Library defect report list 32

The dements of avector are stored contiguoudy, meaning thet if visavect or <T, Al | ocat or >
where T is sometype other thanbool , then it obeystheidentity&v[n] == &[0] + nfordl0 <=
n < v.size().

Rationale:

The LWG fedsthat asapracticd matter the answer isclearly "yes'. There was congderable discussion asto the best way
to express the concept of "contiguous', which is not directly defined in the sandard. Discussion included:

An operationa definition similar to the above proposed resolution is aready used for vaarray (26.3.2.3).
Thereisno need to explicitly consider a user-defined operator& because € ements must be copyconstructible (23.1
para 3) and copyconstructible (20.1.3) specifies requirements for operator& .

Thereisno issue of one-past-the-end because of language rules.

70. Uncaught_exception() missing throw() specification

Section: 18.6 lib.support.exception, 18.6.4 lib.uncaught Status: DR Submitter: Seve Clanage Date:

In article SE04@pratiquefr, Valentin Bonnard writes:

uncaught_exception() doesn't have a throw specification.

Itisintentionna ? Doesit means that one should be prepared to handle exceptions thrown from uncaught_exception() ?
uncaught_exception() is caled in exception handling contexts where exception safety is very important.

Proposed Resolution:

In 15.5.3 except.uncaught, paragraph 1, 18.6 lib.support.exception, and 18.6.4 lib.uncaught, add "throw()" to
uncaught_exception().

71. Do_get_monthname synopsis missing argument
Section: 22.25.1 [liblocdetimeget] Status: DR Submitter: Nathan Myers Date: 13 Aug 98

Thelocdefacet membert i me_get <>:: do_get _nont hnane isdesxribedin 22.2.5.1.2 [lib.locdetimeget.virtuas]

with five arguments, consistent with do_get weekday and with its specified use by member get_monthname. However, in
the synopsis, it is specified instead with four arguments. The missing argument isthe "end" iterator value,

Proposed Resolution:
In22.2.5.1 [liblocdetimeget], add an "end" argument to the declaration of member do_monthname asfollows.

virtual iter_type do_get _nonthname(iter_type s, iter_type end, ios_base&,
i os_base::iostate& err, tnt t) const;

74. Garbled text for codecvt : : do_nmax_| engt h

Library defect report list

Section: 22.2.1.5.2 lib.locdecodecvt.virtuds Status: DR Submitter: Matt Austern Date:18 Sep 1998

Thetext of codecvt :: do_max_| engt h's"Returns' clause (22.2.1.5.2, paragraph 11) is garbled. It has unbaanced
parentheses and aspurious n.

Proposed Resolution:

Replace 22.2.1.5.2 |ib.locale.codecvt.virtuas paragraph 11 with the following:

Returns: Themaximumvauethado_| engt h(state, from from.end, 1) canreturnfor
ayvdidrange[from from end) andst at eT vduest at e. The specidization
codecvt <char, char, nbstate_t>::do_max_| ength() returnsi.

33

75. Contradiction in codecvt : : | engt h'sargument types

Section: 22.2.15liblocdecodecvt Status: DR Submitter: Matt Austern Date: 18 Sep 98

The class synopsesfor classescodecvt <> (22.2.1.5) andcodecvt _byname<> (22.2.1.6) say that the first parameter of
the member functions| engt h anddo_| engt hisof type const st at eT& Themember function descriptions,

however (22.2.1.5.1, paragraph 6; 22.2.1.5.2, paragraph 9) say that thetypeisst at e T&. Either the synopsisor the
summary must be changed.

If (s believe) the member function descriptions are correct, then we must aso add text saying how do_| engt h changes
itsst at eT agument.

Proposed Resolution:

In22.2.1.5 [lib.locdecodecvt], and dso in 22.2.1.6 [lib.locale.codecvt.byname], changethe st at e T argument typeon
both member | engt h() andmemberdo_I engt h() from

const stateT&
to

stateT&

In22.2.1.5.2 [lib.locale.codecvt.virtuds], add to the definition for member do_| engt h aparagraph:

Effects Theeffect onthe st at e agumentis asif"itcdleddo_i n(state, from from end,
from to, to+max, to) forto pointingtoabuffer of a leestmax dements.

78. Typo: event_call_back
Section: 27.4.2 lib.iosbaseStatus: DR Submitter: Nico Josuttis Date: 29 Sep 98
typo: event_cal_back should be event_cdlback

Proposed Resolution:

Library defect report list

In the 27.4.2 lib.ios.base synopsis change "event_cal_back” to "event_callback™.

79. Inconsistent declaration of polar ()

Section: 26.2.1 lib.complex.synopsis, 26.2.7 lib.complex.vaue.ops Status: DR Submitter: Nico Josuttis Date: 29 Sep
1998

In26.2.1 lib.complex.synopsis polar is declared as follows:

t enpl at e<cl ass T> conpl ex<T> pol ar(const T&, const T&);
In26.2.7 lib.complex.value.opsit is declared as follows:
tenpl at e<cl ass T> conpl ex<T> pol ar(const T& rho, const T& theta = 0);
Thus whether the second parameter is optiond isnot clear.
Proposed Resolution:

In26.2.1 lib.complex.synopsis change:

tenpl at e<cl ass T> conpl ex<T> pol ar(const T&, const T&);
to:

tenpl at e<cl ass T> conpl ex<T> pol ar(const T& rho, const T& theta = 0);

80. Global Operatorsof complex declared twice

Section: 26.2.1 lib.complex.synopsis, 26.2.2 lib.complex Status: DR Submitter: Nico Josuttis Date: 29 Sep 1998

Both 26.2.1 and 26.2.2 contain declarations of global operators for class complex. This redundancy should be removed.
Proposed Resolution:

Reduce redundancy according to the genera style of the sandard.

83. String::nposvs. string::max_size()

Section: 21.3 lib.basic.gring Status: DR Submitter: Nico Josuttis Date: 29 Sep 1998

Many string member functions throw if sizeis getting or exceeding npos. However, | wonder why they don't throw if sizeis
getting or exceeding max_size() ingtead of npos. May be nposis known a compiletime, while max_size() isknown a

runtime. However, what happensif size exceeds max_size() but not npos, then ? It seemsthe standard lacks some
cdarifications here.

Proposed Resolution:

Library defect report list 35

After 21.3 [lib.basic.gring] paragraph 4 (“The functions described in this clause...”) add anew paragraph:

For any string operation, if asaresult of the operation, si ze() wouldexcesdmax_si ze() thenthe
operationthrows| engt h_error.

Rationale:

The LWG bdieveslength_error isthe correct exception to throw.

86. String constructorsdon't describe exceptions
Section: 21.3.1 lib.gtring.cons Status: DR Submitter: Nico Josuttis Date; 29 Sep 1998
The constructor from arange:

t enpl at e<cl ass I nputlterator>
basic_string(lnputlterator begin, Inputlterator end,
const Allocator& a = Allocator());

lacks athrows clause. However, | would expect that it throws according to the other condructorsif the numbers of
charactersin the range equals npos (or exceeds max_size(), see above).

Proposed resolution:
In 21.3.1 lib.gring.cons, Strike throws paragraphs for constructors which say "Throws. length_error if n == npos.”
Rationale:

Throws clausesfor length_error if n == npos are no longer needed because they are subsumed by the generd wording
added by the resolution for issue 83.

90. Incorrect description of operator >> for strings
Section: 21.3.7.9]ib.gring.io Status: DR Submitter: Nico Josuttis Date: 29 Sep 1998
The effect of operator >> for strings containe the following item:

i sspace(c, getloc()) istrueforthenext availableinput character c.
Hereget | oc() hastobereplacedby i s. get | oc() .
Proposed resolution:
In 21.3.7.9 lib.gring.io paragraph 1 Effects clause replace:

i sspace(c, getloc()) istruefor thenext availableinput character c.

with:

Library defect report list 36

i sspace(c,is.getloc()) istrueforthenext avalableinput character c.

106. Numeric library private membersareimplementation defined

Section: 26.35 lib.templatedicearay, ec. Status: DR Submitter: AFNOR Date: 7 Oct 98

Thisisthe only place in the whole standard where the implementation has to document something private.
Proposed Resolution:

Remove the comment which says"'// remainder implementation defined” from:

26.35 libtemplatedicearray
26.3.7 lib.template.gdicearay
26.3.8 lib.template mask.array
26.3.9 lib.template.indirect.array

108. Lifetime of exception::what() return unspecified
Section: 18.6.1 lib.exception para8, 9 Status: DR Submitter: AFNOR Date; 7 Oct 98

Thelifetime of the return vaue of exception::what() isleft unspecified. Thisissue hasimplications with exception sefety of
exception handling: some exceptions should not throw bad_aloc.

Proposed Resolution:
Addto 18.6.1 lib.exception paragraph 9 (exception::what notes clause) the sentence:

The return vaue remains vaid until the exception object from which it is obtained is destroyed or anon-
const member function of the exception object iscaled.

Rationale:

If an exception object has non-const members, they may be used to set internd state that should affect the contents of the
gring returned by what () .

110. istreambuf_iterator::equal not const

Section: 24.5.3 [lib.istreambuf .iterator], 24.5.3.5 [lib.istreambuf.iterator::equa] Status: DR Submitter: Nathan Myers
Date: 15 Oct 98

Member istreambuf_iterator<>::equad is not declared "congt”, yet 24.5.3.6 [lib.istreambuf.iterator::op==] says that
operator==, which iscong,, cdlsit. Thisis contradictory.

Proposed Resolution:

Library defect report list

In 24.5.3 [lib.igreambuf.iterator] and dso in 24.5.3.5 [lib.istreambuf.iterator::equd], replace:

bool equal (istreanbuf _iteratoré& b);
with:

bool equal (const istreanmbuf _iterator& b) const;

112. Minor typoin ost r eanbuf _i t er at or constructor

Section: 24.5.4.1 lib.ostreambuf.iter.cons Status: DR Submitter: Matt Austern Date: 20 Oct 98

Therequires dlausefor ost r eanbuf _i t er at or 'scongtructor fromanost r eam t ype (2454.1, paragraph 1) reads
"sisnot null". However, sisareference, and references can't be null.

Proposed Resolution:

In 24.5.4.1 lib.ostreambuf .iter.cons:

M ove the current paragraph 1, which reads "Requires. sisnot null.”, from thefirst condructor to the second constructor.
Insert anew paragraph 1 Requires clause for the first constructor reeding:

Requires: s. rdbuf () isnotnull.

114. Placement formsexamplein error twice

Section: 18.4.1.3 [lib.new.delete placement] Status: DR Submitter: Seve Clamage Date: 28 Oct 1998

Section 18.4.1.3 contains the following example:

[Exanpl e: This can be useful for constructing an object at a known address:
char pl ace[si zeof (Sonet hi ng)];
Sonet hi ng* p = new (place) Sonething();
-end exanpl e]

First code line: "place’ need not have any specid dignment, and the following congtructor could fail dueto misaligned
data

Second codeline: Arent the parens on Something() incorrect? [Dublin: the LWG believesthe () are correct]
Examples are not normative, but nevertheless should not show code that isinvdid or likey to fail.
Proposed Resolution:

Replacethe first line of codein the examplein 18.4.1.3 [lib.new.delete.placement] with:

voi d* place = operator new(sizeof (Sonething));

Library defect report list 38

115. Typoin strstream congructors
Section: D.7.4.1 [depr.grdtream.cong] Status: DR Submitter: Sleve Clamage Date: 2 Nov 1998
D.7.4.1 grdtream constructors paragraph 2 says.

Effects: Congtructs an object of class strstream, initidizing the base class with iostream(& sh) and
initializing sbwith one of the two congructors:

- If mode& app==0, then s shdl designate thefirst element of an array of n dements. The constructor is
strstreambuf(s, n,).

- If mode& app==0, then s shdl designate the first lement of an array of n eementsthat containsan
NTBSwhosefirst dement is designated by s. The congtructor is stratreambuf(s, n, st<td::strlen(s)).

Notice the second condition is the same as the firdt. | think the second condition should be "If mode& app==app", or
"mode& app!=0", meaning that the gppend bit is st.

Proposed Resolution:

In D.7.3.1 [depr.ogtrstream.cons| paragraph 2 and D.7.4.1 [depr.gtrstream.cong] paragraph 2, change thefirgt condition to
(node&app) ==0 and the second conditionto (node&app) ! =0.

119. Should virtual functions be allowed to strengthen the exception specification?

Section: 17.4.4.8 lib.reson.exception.handling Status: DR Submitter: Judy Ward Date: 15 Dec 1998

Section 17.4.4.8 lib.res.on.exception.handling states:

"Animplementation may strengthen the exception-specification for afunction by removing listed exceptions.”

The problem isthat if an implementation is dlowed to do thisfor virtua functions, then alibrary user cannot writeaclass
that portably derives from thet class.

For example, thiswould not compileif ios_base::falure::~failure had an empty exception specification:

#i ncl ude <i os>
#i ncl ude <string>

class D: public std::ios_base::failure {

public:
D(const std::string&);
~D(); /1 error - exception specification nust be conpatible with
/'l overridden virtual function ios_base::failure::~failure()
b

Proposed Resolution:

Change Section 17.4.4.8 lib.res.on.exception.handling from:

"may strengthen the exception-specification for afunction”

Library defect report list

to:

"may strengthen the exception-specification for anon-virtua function”.

39

122. streambuf/wstreambuf description should not say they are specializations
Section: 27.5.2 lib.greambuf Status: DR Submitter: Judy Ward Date: 15 Dec 1998
Section 27.5.2 describes the streambuf classes thisway:

The class streambuf is a pecidization of the template classbasic_streambuf specidized for the type char.

The class wstreambuf is a specidization of the template class basic_streambuf specialized for thetype
wchar_t.

Thisimplies that these classes must be template speciaizations, not typedefs.

It doesn't seem this was intended, since Section 27.5 has them declared astypedefs.
Proposed Resolution:

Remove 27.5.2 lib.streambuf paragraphs 2 and 3 (the above two sentences).
Rationale;

Thest r eambuf synopsisdready has adeclaration for the typedefs and that is sufficient.

124. ctype byname<charT>::do_scan_is& do_scan not return type should be const char T*

Section: 22.2.1.2 lib.locdectypebyame Status: DR Submitter: Judy Ward Date: 15 Dec 1993

In Section 22.2.1.2 lib.locde.ctype.byame ctype byname<charT>::do_scan i) and do_scan not() are declared toreturn a
congt char* not acongt charT*.

Proposed Resolution:

Change Section 22.2.1.2 lib.locdectypebyanedo_scan_i s() anddo_scan_not () toregurnaconst char T*.

125. valarray<T>::operator!() return typeisinconsistent
Section: 26.3.2 lib.templatevaaray Status: DR Submitter: Judy Ward Date: 15 Dec 1998

In Section 26.3.2 lib.templatevaarray valarray<T>::operator!() is declared to return avalarray<T>, but in Section 26.3.2.5
lib.valarray.unary it is declared to return a vaarray<bool>. The latter gppearsto be correct.

Proposed Resolution:

Library defect report list

Changein Section 26.3.2 lib.templatevaarray the declaration of oper at or ! () sothat thereturntypeis
val ar ray<bool >.

126. typosin Effects clause of ctype::do_narrow()

Section: 22.2.1.1.2 lib.locdectypevirtuds Status: DR Submitter: Judy Ward Date: 15 Dec 1998

Proposed Resolution:

In Section 22.2.1.1.2 lib.locde.ctypevirtuas chenge:

do_wi den(do_narrow(c),0) == c
to:

do_wi den(do_narrow(c,0)) ==
and change:

(is(Mc) |] 'ctc.is(M do_narrowc),dfault))
to:

(is(Mc) || !ctc.is(M do_narrow(c,dfault)))

127. auto_ptr<> conversion issues
Section: 204.5|ib.auto.ptr Status: DR Submitter: Greg Colvin Date: 17 Feb 1999
There are two problems with the currentaut o__pt r wording in the sandard:

Firg,theaut o_pt r _ref definition cannot benested because aut o_pt r <Deri ved>: : aut o_ptr _ref isunrdaed
toaut o_ptr<Base>:: aut o_ptr _ref. Alsosubmitted by Nathan Myers, with the same proposed resol ution.

Second, thereisnoaut o_pt r assgnment operator tekinganaut o_pt r _r ef argumer.

| have discussed these problems with my proposal coauthor, Bill Gibbons, and with some compiler and library
implementers, and we believe that these problems are not desired or desirable implications of the standard.

25 Aug 1999: The proposed resolution now reflects changes suggested by Dave Abrahams, with Greg Colvin's
concurrence; 1) changed "assgnment operator” to "public assgnment operator”, 2) changed effects to specify use of
releass(), 3) made the conversonto auto_ptr_ref const.

2 Feb 2000: Lisa Lippincott comments: [The resolution of] thisissue states that the conversion from auto_ptr to
auto_ptr_ref should be congt. Thisis not acceptable, because it would dlow initidization and assgnment from _any _congt
auto_ptr! It dso introduces an implementation difficulty in writing this conversion function -- namely, somewhere dong
theline, acongt_cast will be necessary to remove that const so that releas() may be called. This may result in undefined
behavior [7.1.5.1/4]. The conversion operator does not have to be congt, because anon-congt implicit object parameter may
be bound to an rvalue[13.3.3.1.4/3] [13.3.1/5].

Library defect report list 41

Tokyo: The LWG removed the following from the proposed resolution:

In 20.4.5 lib.auto.ptr, paragraph 2, and 20.4.5.3 lib.auto.ptr.conv, paragraph 2, make the conversion to auto_ptr_ref const:
tenpl at e<cl ass Y> operator auto_ptr_ref<Y>() const throw();

Proposed Resolution:

In 20.4.5 lib.auto.ptr, paragraph 2, movetheaut o_pt r _r ef definition to namespace scope.

In 20.4.5 lib.auto.ptr, paragraph 2, add a public assgnment operator tothe aut o_pt r definition:
auto_ptr& operator=(auto_ptr_ref<xX>r) throw();

Also add the assignment operator to 20.4.5.3 lib.auto.ptr.conv:

auto_ptré& operator=(auto_ptr_ref<X> r) throw()

Ef fects: Calls reset(p.release()) for the auto_ptr p that r holds a
reference to.
Returns: *this.

129. Need error indication from seekp() and seekg()

Section: 27.6.1.3 lib.isream.unformatted and 27.6.2.4 lib.ostream.seeks Status: DR Submitter: AngdikalLanger Date:
February 22, 1999

Currently, the standard does not specify how seekg() and seekp() indicate failure. They are not required to st failbit, and
they can't return an error indication because they must return *this, i.e. the stream. Hence, it is undefined what happensiif
they fail. And they _can_fall, for ingtance, when afile sream is disconnected from the underlying file (is_open()==fdse)
or when awide character file stream must perform a state-dependent code conversion, etc.

The stream functions seekg() and seekp() should set failbit in the stream State in case of failure.
Proposed Resolution:

Add to the Effects: dause of seekg() in 27.6.1.3 lib.istream.unformatted and to the Effects: clause of seekp() in 27.6.2.4
lib.ostream.seeks:

In case of falure, thefunction calsset st at e(fai | bi t) (which may throw
i os_base: :failure).

Rationale:

Sdtting failbit isthe usud error reporting mechanism for streams

132. list::resize description usesrandom accessiterators

Section: 23.2.2.2lib.ligt.capacity Status: DR Submitter: Howard Hinnant Date: 6 Mar 99

Library defect report list

The description reads:
-1- Effects.
if (sz > size())
insert(end(), sz-size(), c);
else if (sz < size())
erase(begi n()+sz, end());
el se
; /1 do nothing
Obvioudly list::resize should not be specified in terms of random accessiterators.
Proposed Resolution:
Change 23.2.2.2 paragraph 1 to:
Effects:
if (sz > size())

insert(end(), sz-size(), c);
else if (sz < size())

{
iterator i = begin();
advance(i, sz);
erase(i, end());

}

[Dublin: The LWG asked Howard to discuss exception safety offline with David Abrahams. They had a discussion and
believe thereis no issue of exception safety with the proposed resolution.]

42

133. map missing get_allocator ()

Section: 23.3.1libmep Status: DR Submitter: Howard Hinnant Date: 6 Mar 99
Thetitlesaysit al.

Proposed Resolution:

Insert in 23.3.1 [lib.map], paragraph 2, after operator= in the map declaration:

al | ocator_type get_allocator() const;

134. vector constructorsover specified
Section: 23.2.4.1 lib.vector.cons Status: DR Submitter : Howard Hinnant Date: 6 Mar 99

The complexity description says: "It does at most 2N callsto the copy constructor of T and logN redllocationsif they are
just input iterators....".

Library defect report list

This gppearsto be overly regtrictive, dictating the precise memory/performance tradeoff for the implementor.
Proposed Resolution:
Change 23.2.4.1 lib.vector.cons, paragraph 1 to:

-1- Complexity: The constructor template <class Inputlterator> vector(Inputlterator first, Inputlterator last) makesonly N
cdlsto the copy congtructor of T (where N is the distance between first and last) and no redllocetions if iteratorsfirst and

lagt are of forward, bidirectional, or random access categories. It makes order N cdlsto the copy congtructor of T and order
logN redllocationsif they are just input iterators.

Rationale:

"a most 2N cals' is correct only if the growth factor is greater than or equal to 2.

137. Do use facet and has facet look in the global locale?
Section: 22.1.1liblocde Status: DR Submitter: AngdikaLanger Date: 17 Mar 1999
Section 22.1.1liblocde says:

-4- Inthe call to use facet<Facet>(loc), the type argument chooses afacet, making available al members of the named
type. If Facet isnot present in alocae (or, failing that, in the globd locde), it throws the standard exception bad_cast. A
C++ program can check if alocale implements a particular facet with the template function has facet<Facet>().

This contradicts the gpecification given in section 22.1.2 ib.locale.global templates:

template <class Facet> const Facet& use facet(const locde& loc);
-1- Get areferenceto afacet of alocde.

-2- Returns. areference to the corresponding facet of loc, if present.

-3- Throws. bad_cast if has facet<Facet>(loc) isfdse.
-4- Notes: The reference returned remains vaid leest aslong as any copy of loc exists

Proposed Resolution:

Remove the phrase:
(or, faling thet, in the globd locae)

from section 22.1.1.
Rationale;

Needed for consistency with the way locales are handled € sawhere in the standard.

139. Optional sequence oper ation table description unclear

Section: 23.1.1 |lib.sequenceregmts Status: DR Submitter: Andrew Koenig Date: 30 Mar 1999

Library defect report list

The sentence introducing the Optiona sequence operation table (23.1.1 paragraph 12) has two problems:

A. It says " The operaionsin table 68 are provided only for the containers for which they take constant time."

That could be interpreted in two ways, one of them being " Even though table 68 shows particular operations as being
provided, implementations are free to omit them if they cannot implement them in congtant time."

B. That paragraph says nothing about amortized congtant time, and it should.
Proposed Resolution:
Replace the wording in 23.1.1 paragraph 12 which begins " The operationsin table 68 are provided only..." with:

Table 68 lists sequence operations that are provided for some types of sequentia containers but not
others. An implementation shall provide these operations for al container types shown in the “container”
column, and shall implement them so asto take amortized constant time.

141. basic gring::find_last_of, find_last_not_of say posinstead of xpos

Section: 21.3.6.4 lib.gring::find.lagt.of, 21.3.6.6 lib.string::find.last.not.of Status: DR Submitter: Arch Robison Date:
28 Apr 99

Sections 21.3.6.4 paragraph 1 and 21.3.6.6 paragraph 1 surely have misprints where they say:
—Xpo0s <= pos andpos < size();

Surely the document meanttosay “xpos < si ze() "inboth places.

[Judy Ward also sent in thisissue for 21.3.6.4 with the same proposed resolution.]
Proposed Resolution:

Change Sections 21.3.6.4 paragraph 1 and 21.3.6.6 paragraph 1, the line which says:
—Xpos <= pos adpos < size();
to:

— Xpos <= pos andxpos < size();

142. lexicographical_compare complexity wrong

Section: 25.3.8 lib.dg.lex.comparison Status: DR Submitter: Howard Hinnant Date: 20 Jun 99

The lexicographica_compare complexity is specified as:
"At most min((lastl - first1), (last2 - first2)) gpplications of the corresponding comparison.”

Thebest | can doistwicethat expensive.

Library defect report list 45

Nicolai Josuttis commentsin lib-6862: You mean, to check for equality you have to check both < and > ? Yes, IMO you are
right! (and Matt states this complexity in his book)

Proposed Resolution:

Change 25.3.8 [lib.alg.lex.comparison] complexity to:

Atmost2*m n((lastl - firstl), (last2 - first2)) goplicationsof the correponding
comparison.

Change the example at the end of paragraph 3 to read:
[Example:
for (; firdl!=lastl && firg2 |=last2 ; ++firgtl, ++first2) {
if (*firstd <*first2) return true;
if (*firgt2 < *firstl) return false;
}
return firgtl == last1 & & firs2 = last2;

--end example]

144. Deque constructor complexity wrong
Section: 23.2.1.1 lib.deguecons Status: DR Submitter: Herb Sutter Date: 9 May 99

In 23.2.1.1 paragraph 6, the deque ctor that takes an iterator range gppears to have complexity requirementswhich are
incorrect, and which contradict the complexity requirements for insert(). | suspect that the text in question, below, was
taken from vector:

Complexity: If theiteratorsfirst and last are forward iterators, bidirectiond iterators, or random access
iterators the congtructor makes only N cdlsto the copy constructor, and performs no redllocations, where
N islast-first.

Theword "reallocations' does not redlly apply to deque. Further, dl of the following appears to be spurious:
It makes at most 2N calsto the copy constructor of T and log N redlocationsif they areinput iterators.1)

1) The complexity is grester in the case of input iterators because each element must be added
individualy: it isimpossible to determine the distance between first abd last before doing the copying.

This makes perfect sensefor vector, but not for deque. Why should degue gain an efficiency advantage from knowing in
advance the number of dementsto insert?

Proposed Resolution:

In 23.2.1.1 paragraph 6, replace the Complexity description, including the footnote, with the following text (which dso
correctsthe "abd" typo):

Complexity: Makes last - first callsto the copy constructor of T.

Library defect report list

146. complex<T> Inserter and Extractor need sentries
Section: 26.2.6 lib.complex.opsStatus: DR Submitter: Angdikalanger Date:12 May 99
The extractor for complex numbersis specified as:

template<class T, classcharT, classtraits>
basic_igream<charT, traits>&
operator>>(basic_istream<charT, traits>& is, complex<T>& X);

Effects: Extracts acomplex number x of the form: u, (u), or (u,v), whereuisthered part and v isthe
imaginary part (lib.istream.formetted).

Requires: The input values be convertibleto T. If bad input is encountered, calsis.setstate(ios: failbit)
(which may throw ios::failure (lib.iogtateflags).

Returns: is.

Isit intended that the extractar for complex numbers does not skip whitespace, unlike dl other extractorsin the standard
library do? Shouldn't asentry be used?

Theinserter for complex numbersis specified as:

template<class T, classcharT, classtraits>
basc_odream<charT, traits>&
operator<<(basic_ogtream<charT, traits>& 0, const complex<T>& X);

Effects: insarts the complex number x onto the stream o asiif it were implemented asfollows:.

template<class T, class charT, classtraits>

basic_ostream<charT, traits>&

operator<<(basc_ostream<charT, traits>& 0, const complex<T>& X)
{

basic_ostringstream<charT, traits> s,

sflagoflagy));

simbue(o.getloc());

s.precision(o.precision());

s<<'("<< xred() <<")" << x.imag() <<)}

return o << s.str();

}

Isitintended that the inserter for complex numbersignores the field width and does not do any padding? If, with the
suggested implementation above, the field width were set in the stream then the opening parentheses would be adjusted, but
the rest not, because the field width is reset to zero after each insertion.

I think that both operations should use sentries, for sake of consistency with the other inserters and extractorsin thelibrary.
Regarding the issue of padding in the inserter, | don't know what the intent was.

Proposed Resolution:
After 26.2.6 lib.complex.opsparagraph 14 (operator>>), add a Notes clause:

Notes. Thisextraction is performed as a series of smpler extractions. Therefore, the skipping of
whitespace is specified to be the same for each of the smpler extractions.

Rationale;

46

Library defect report list 47

For extractors, the note is added to make it clear that skipping whitespace follows an "al-or-none’ rule.

For inserters, the LWG believesthereis no defect; the standard is correct as written.

147. Library Introrefersto global functionsthat aren't global
Section: 17.4.4.3 lib.globd .functions Status: DR Submitter: Lois Goldthwaite Date: 4 Jun 99
The library had many globa functions until 17.4.1.1 [lib.contents] paragraph 2 was added:

All library entities except macros, operator new and operator delete are defined within the namespace std
or namespaces nested within namespace d.

It appears“globd function” was never updated in the following:

17.4.4.3 - Globd functions[lib.globa .functiong]

-1- It isungpecified whether any globa functionsin the C++ Standard Library are defined asinline
(dcl.fct.gpec).

-2- A cdl to aglobd function sgnature described in Clauses lib.language.support through lib.input.output
behaves the same asiif the implementation declares no additiona globa function Sgnatures*

[Footnote: A vdid C++ program aways calls the expected library globd function. Animplementation
may aso define additiona globa functions that would otherwise not be called by avaid C++ program. --
- end footnote]

-3- A globa function cannot be declared by the implementation astaking additiona default arguments.
17.4.4.4 - Member functions[lib.member.functions]

-2- Animplementation can declare additiona non-virtual member function sgnatures within aclass

-- by adding arguments with default values to amember function sgnature; The same
|atitude does not extend to the implementation of virtua or globa functions, however.

Proposed Resolution:
Change "globd" to "globa or non-membe™ in:

17.4.4.3[lib.globd .functions] section title,

17.4.4.3[lib.globd .functions] paral,

17.4.4.3 [lib.globa .functions] para2 in 2 places plus 2 placesin the footnote,
17.4.4.3[lib.globd .functions] para3,

17.4.4.4 [lib.member.functions| para2

Rationale:

Because operator new and delete are globd, the proposed resol ution was changed from "non-member” to "globa or non-
member.

Library defect report list

148. Functionsin the example facet BoolNames should be const
Section: 22.2.8 libfacetsexamples Status: DR Submitter: Jeremy Sek Date: 3 Jun 99

In 22.2.8 [lib.facetsexamples] paragraph 13, the do_truename() and do_fa sename() functionsin the example facet
BoolNames should be congt. The functions they are overridingin numpunct_byname<char> are cond.

Proposed Resolution:

In 22.2.8 [lib.facetsexamples] paragraph 13, insert "congt” in two places:

string do_truenane() const { return "Qui Qui!'!"; }
string do_fal senane() const { return "Mais Non!"; }

150. Find_first_of saysinteger instead of iterator
Section: 25.1.4 lib.dgfindfirs.of Status: DR Submitter: Matt McClure Date: 30 Jun 99
Proposed Resolution:

Change 25.1.4 lib.dg.find.first.of paragrgph 2 from:

Returns. Thefirgt iterator i intherange [firstl, lastl) such that for some integer j in therange [first2,
last2) ...

to:

Returns: Thefirst iterator i in the range [firstl, lastl) such that for someiterator j in the range [first2,
last2) ...

151. Can't currently clear() empty container
Section: 23.1.1lib.ssguenceregmts Status: DR Submitter: Ed Brey Date: 21 Jun 99

For both sequences and assodiative containers, a.clear() has the semantics of erase(abegin(),aend()), which is undefined for
an empty container since erasx(ql,g2) requiresthat gl be dereferenceable (23.1.1,3 and 23.1.2,7). When the container is
empty, abegin() is not dereferencegble.

The requirement that g1 be unconditionaly dereferencegble causes many operationsto be intuitively undefined, of which
clearing an empty container is probably the most dire,

Since gl and 2 are only referenced in the range [gl, 92), and [g1, g2) isrequired to be avaid range, stating thet g1 and g2
must beiterators or certain kinds of iteratorsis unnecessary.

Proposed Resolution:

In23.1.1, paragraph 3, change:

Library defect report list 49

p and g2 denote vaid iteratorsto a, g and gl denote valid dereferencesbleiteratorsto a, [(1, g2) denotesa
vdidrange

to:

p denotes avdid iterator to a, ¢ denotes avaid dereferenceableiterator to a, [q1, g2) denotesavaid
rangeina

In 23.1.2, paragraph 7, change:
p and g2 are valid iterators to a, q and gl are vaid dereferencesbleiteratorsto a, [ql, 2) isavaid range
to

pisavdiditerator to g, gisavdid dereferencesbleiterator to g, [g1, g2) isavdid range into a

152. Typoin scan_i s() semantics

Section:: 22.2.1.1.2 liblocdectypevirtuds Status: DR Submitter: Dietmar Kiihl Date: 20 Jul 99

Thesemanticsof scan_i s() (paragraphs4 and 6) is not exactly described because thereisno functioni s() which only
takes a character as argument. Also, in the effects dlause (paragraph 3), the semantic is aso kept vague.

Proposed resolution:

In22.2.1.1.2 liblocdectypevirtuas paragraphs 4 and 6, change the returns dause from:

"..suchthati s(*p) would..."

to: "..suchthati s(m *p) would..."

154. Missing doubl e specifier for do_get ()

Section:: 22.2.2.1.2 lib.facet.num.get.virtuds Status: DR Submitter: Dietmar KiH Date: 20 Jul 99

Thetablein paragraph 7 for the length modifier does nat list the length modifier | to be applied if thetypeisdoubl e.
Thus, the standard asks the implementation to do undefined thingswhenusing scanf () (the missing length modifier for
scanf () whenscanning doubl esisactudly aproblem | found quite often in production code, too).

Proposed resolution:

In22.2.2.1.2 libfacet.num.get.virtuds, paragraph 7, add arow in the Length Modifier tableto say that for doubl e alength
modifier | isto be used.

Rationale:

The standard makes an embarrassing beginner's mistake.

Library defect report list 50

155. Typo in naming the class defining the classi ni t
Section:: 27.3 lib.iostream.objects Status: DR Submitter: Diegtmar Kihl Date: 20 Jul 99

There are conflicting statements about wheretheclass| ni t isdefined. According to 27.3 (lib.iostream.objects) paragraph
2itisdefined asbasi c_i os: : |1 ni t,accordingto 27.4.2 (lib.iosbass) itisdefined asi os_base: : I nit.

Proposed resolution:

Change 27.3 (lib.iostream.objects) paragraph 2from"basi c_ios:: I nit" to"i os_base::Init".

Rationale:

Although not gtrictly wrong, the standard was mideading enough to warrant the change.

156. Typoini mbue() description
Section:: 27.4.2.3 lib.iosbaselocdes Status: DR Submitter: Diegtmar Kihl Date: 20 Jul 99

Thereisasmall discrepancy between the declarations of i mbue() : in 27.4.2 (lib.iosbase) the argument is passed as
| ocal e const & (correct), in 27.4.2.3 (lib.iosbaselocdes) itispassed asl ocal e const (wrong).

Proposed resolution:

In 27.4.2.3 (lib.iosbaselocdes) changethei mbue argumentfrom”l ocal e const™ to "l ocal e const&".

158. Under specified semanticsfor set buf ()

Section:: 27.5.2.4.2 lib.greambuf.virt.buffer Status; DR Submitter: Dietmar Kihl Date; 20 Jul 99

The default behavior of set buf () isdescribed only for the situationthatgpt r() !'= 0 && gptr() !'= egptr():

namely to do nathing. What hasto be donein other situations isnot described athough thereisactualy only one
reasonable gpproach, namely to do nothing, too.

Since changing the buffer would amost certainly mess up most buffer management of derived classes unless these classes
do it themsdlves, the default behavior of set buf () should dways beto do nothing.

Proposed resolution:

Change 27.5.2.4.2 |ib.gtreambuf virt.buffer, paragraph 3, Default behavior, to: "Default behavior: Does nothing. Returns
this."

159. Strangeuseof under fl ow()

Library defect report list 51

Section:: 27.5.24.3 lib.greambuf.virt.get Status: DR Submitter: Dietmar Kihl Date: 20 Jul 99

The description of the meaning of theresult of shownanyc () seemsto berather strange: It usescdlstounder f | ow() .
Usngunder f | ow() isstrange because thisfunction only reads the current character but does not extract it, uf | ow()
would extract the current character. This should befixed to use sbunpc() instead.

Proposed resolution:

Change 27.5.2.4.3 lib.gtreambuf.virt.get paragraph 1, showrainyc() returnsclause, by replacing the word "supplied”
with the words "extracted from the streem”.

160. Typo: Use of non-existing function except i on()
Section:: 27.6.1.1 lib.istream Status: DR Submitter: Dietmar Kihl Date; 20 Jul 99

The paragraph 4 refersto the functionexcept i on() whichisnot defined. Probably, the referred function is
basi c_i os<>::exceptions().

Proposed resolution:

In 27.6.1.1 lib.istream, 27.6.1.3 lib.istream.unformaited, paragraph 1, 27.6.2.1 lib.ostream, paragraph 3, and 27.6.2.5.1
lib.ostream.formatted.regmts, paragraph 1, change"exception()" to "exceptions()".

[Noteto Editor: "exceptions" withan"s" isthe correct spelling.]

161. Typo:istream.iterator VS.istreanbuf _iterator
Section:: 27.6.1.2.2 lib.isream.formatted.arithmetic Status: DR Submitter: Dietmar Kihl Date: 20 Jul 99

The note in the second paragraph pretends that the first argument isan object of typei st ream_i t er at or . Thisis
wrong: Itisan object of typei st reanbuf _i t erat or.

Proposed resolution:
Change 27.6.1.2.2 lib.igream.formatted.arithmetic from:

Thefirst argument provides an object of theistream _iterator class...
to

Thefirst argument provides an object of the istreambuf_iterator class...

164. do_put() has apparently unused fill argument

Section:: 22.25.3.2 liblocdetimeput.virtuds Status: DR Submitter: AngdikalLanger Date: 23 Jul 99

Library defect report list 52

In[lib.locdetimeput.virtuas] the do_put() function is specified astaking afill character as an argument, but the

description of the function does not say whether the character isused a dl and, if o, in which way. The same holds for any
format control parameters that are accessible through theios base& argument, such as the adjustment or the field width. Is
sritime() supposed to use thefill character in any way? In any case, the specification of time_put.do_put() looks
inconsstent to me.

Isthe signature of do_put() wrong, or isthe effects clause incomplete?
Proposed resolution:

Add the following note after 22.2.5.3.2 |lib.locdetime.put.virtuals paragraph 2:

[Note: thef i | | argument may be used in the implementation-defined formats, or by derivations. A
space character is areasonable default for this argument. --end Note]

Rationale:

The LWG fdt that while the normative text was correct, users need some guidance on what to passforthef i | | argument
since the stlandard doesn't say how it's used.

168. Typo: formatted vs. unformatted

Section:: 27.6.2.6 lib.ostream.unformaited Status: DR Submitter: Diegtmar Kihl Date: 20 Jul 99

Thefirgt paragraph begins with a descriptions what hasto be done in *formatted* output functions. Probably thisisatypo
and the paragraph really want to describe unformatted output functions...

Proposed resolution:
In 27.6.2.6 lib.ostream.unformeatted paragraph 1, the first and last sentences, change the word "formatted” to "unfomatted”:

"Each unfor matted output function begins..."
"... value specified for the unformatted output function.”

169. Bad efficiency of over f1 ow() mandated

Section:: 27.7.1.3 lib.gringbuf.virtuas Status: DR Submitter: Dietmar Kihl Date: 20 Jul 99

Paragraph 8, Notes, of this section seemsto mandate an extremdly inefficient way of buffer handling for
basi c_st ri ngbuf , especiadly in view of therestrictionthatbasi ¢_ost r eammember functions are not alowed to
usexsput n() (see27.6.2.1lib.ostream): For each character to beinserted, anew buffer isto be created.

Of coursg, the resolution below reguires some handling of Smultaneous input and output sinceit isno longer possible to
updateegpt r () whenever eppt r () ischanged. A posshble solutionisto handlethisinunder f | ow() .

Proposed resolution:

In 27.7.1.3 lib.gringbuf .virtuas paragraph 8, Notes, insert thewords "at leest" asin the following:

Library defect report list

To make awrite position available, the function redlocates (or initialy alocates) an array object witha
sufficient number of elementsto hold the current array object (if any), plusat least one additiona write
position.

53

170. Inconsgtent definition of traits_type
Section:: 27.7.4 lib.gringgream Status: DR Submitter: Dietmar Kiihl Date: 20 Jul 99

Theclassssbasi c_stri ngst r eam(27.7.4, lib.gringdream), basi ¢_i stri ngst r eam(27.7.2, lib.igringgream),

andbasi c_ost ri ngst r eam(27.7.3, lib.ogringstream) are inconsistent in their definition of thetypet rai t s_t ype:

Fori stri ngstream thistypeisdefined, for the other two it isnot. This should be consistent.
Proposed resolution:

Tothedeclarationsof basi c_ost ri ngst r eam(27.7.3, lib.odringgream) andbasi ¢_st ri ngst r eam(27.7.4,
lib.stringstream) add:

typedef traits traits_type;

172. Inconsistent typesfor basi c_i stream : i gnore()

Section:: 27.6.1.3 lib.igream.unformatted Status: DR Submitter: Greg Comeau, Dietmar Kiihl Date: 23 Jul 99

In 27.6.1.1 (lib.igream) the functioni gnor e() getsanobject of type st r eansi ze asfirst argument. However, in
27.6.1.3 (lib.istream.unformatted) paragraph 23 the first argument isof type i nt .

Asfar as| can seethisisnot redly a contradiction because everything isconsgtent if st r eansi ze istypedef tobei nt .
However, thisisamost certainly not what was intended. The samething happenedtobasi ¢ _fi |l ebuf: : set buf ().

Darin Adler aso submitted this issue, commenting: Either 27.6.1.1 should be modified to show afirst parameter of typeint,
or 27.6.1.3 should be modified to show afirst parameter of type streamsize and use numeric_limits<streamsize>::max.

Proposed resolution:

In 27.6.1.3 (lib.isream.unformatted) paragraph 23 and 24, change both usesof i nt inthe description of i gnor e() to
streansi ze.

173. Inconsistent typesfor basic_fil ebuf:: set buf ()
Section:: 27.8.14 libfilebuf.virtuds Status: DR Submitter: Greg Comeau, Dietmar Kiihl Date: 23 Jul 99

In 27.8.1.1 (lib.igream) the function set buf () getsan object of type st r eansi ze assecond agument. However, in
27.8.1.4 (lib.istream.unformatted) paragraph 9 the second argument isof typei nt

Library defect report list

Asfar asl| can seethisisnot redly a contradiction because everything isconsistent if st r eansi ze istypedef tobei nt .
However, thisisamost certainly not what was intended. The samething happenedtobasi c_i stream :i gnore().

Proposed resolution:

In 27.8.1.4 (lib.istream.unformetted) paragraph 9, change dl usesof i nt inthedescription of set buf () to
streanmnsi ze.

174. Typo: OFF_T VS. POS_T
Section:: D.6 depr.iosmembers Status. DR Submitter: Dietmar Kihl Date: 23 Jul 99

According to paragraph 1 of thissection, st r eanpos isthetype OFF _T, the sametypeasst r eanof f . However, in
paragraph 6the st r eanpos getsthetype POS_ T

Proposed resolution:

Change D.6 depr.iosmembers paragraph 1 from "t ypedef OFF_T st reanpos; "to"t ypedef POS T
streanpos;"

175. Ambiguity for basi c_st reanbuf : : pubseekpos() and afew other functions.
Section:: D.6 depr.iosmembers Status. DR Submitter: Dietmar Kihl Date: 23 Jul 99

According to paragraph 8 of this section, themethodsbasi ¢c_st r eanmbuf : : pubseekpos(),

basi c_ifstream : open(),andbasi c_of stream : open "may" beoverloaded by averson of thisfunction
tekingthetypei os_base: : open_node aslagt aigument argument indead of i 0s_base: : opennode

(i os_base: : open_node isdefined in this section to be an dias for one of theintegra types). The clause specifies, that
the last argument has a default argument in three cases. However, this generates an ambiguity with the overloaded version
because now the arguments are absolutely identical if the last argument is not specified.

Proposed resolution:

In D.6 depr.iosmembers paragraph 8, remove the default argumentsfor basi ¢ _st r eanbuf : : pubseekpos(),
basi c_i fstream : open(),adbasi c_of stream : open().

176. exceptions() inios_base...?
Section:: D.6 depr.iosmembers Status: DR Submitter: Dietmar Kihl Date: 23 Jul 99

The"overload" for thefunctionexcept i ons() inparagraph 8 givestheimpression that thereis another function of this
function defined in classi os_base. However, thisisnot the case. Thus, it ishard to tell how the semantics (paragraph 9)
can beimplemented: "Cdl the corresponding member function specified in clause lib.input.output "

Proposed resolution:

Library defect report list

In D.6 depr.iosmembers paragraph 8, move the declaration of thefunctionexcept i ons() intoclassbasi c_i os.

55

181. make pair () unintended behavior

Section: 20.2.2 lib.pairs Status: DR Submitter: Andrew Koenig Date: 3 Aug 9
The claim has surfaced in Usenet that expressons such as
make_pai r("abc", 3)

areillega, notwithstanding their use in examples, because template instantiation tries to bind the first template parameter to
const char (&) [4],whichtypeisuncopyable.

| doubt anyone intended that behavior...
Proposed resaution:
In20.2 [lib.utility], paragraph 1 change the following declaration of make pair():

tenpl ate <class T1, class T2> pair<T1, T2> make_pair(const T1l& const
T2&);

to:
tenpl ate <class T1, class T2> pair<T1, T2> make_pair(T1, T2);

In 20.2.2 [lib.pairg] paragraph 7 and the line before change:

tenpl ate <class T1, class T2>
pai r<T1l, T2> nmke_pair(const T1l& x, const T2& vy);

to:

tenpl ate <class T1, class T2>
pai r<T1, T2> make_pair(Tl x, T2 y);

and add the following footnote to the effects clause:

According to 12.8 [class.copy], an implementation is permitted to not perform a copy of an argument,
thus avoiding unnecessary copies.

Rationale:

Two potentia fixes were suggested by Matt Austern and Dietmar Kihl, respectively, 1) overloading with array arguments,
and 2) use of areference traits class with apecidization for arrays. Andy Koenig suggested changing to pass by vaue. In
discussion, it appeared that this was amuch smaler change to the standard that the other two suggestions, and any
efficiency concerns were more than offset by the advantages of the solution. Two implementors reported thet the proposed
resolution passed their test suites.

Library defect report list

189. setprecision() not specified correctly

Section: 27.4.2.2 lib.fmtflagssate Status: DR Submitter: Andrew Koenig Date: 25 Aug 99

27.4.2.2 paragraph 9 daimsthat setprecision() setsthe precision, and includes a parenthetica note saying thet it isthe
number of digits after the decimal point.

Thisclam isnot drictly correct. For example, in the default floating-point output format, setprecision sets the number of
significant digits printed, not the number of digits after the decima point.

| would like the committee to look at the definition carefully and correct the statement in 27.4.2.2
Proposed resolution:

Remove from 27.4.2.2 lib.fmtflags.gtate, paragraph 9, the text " (number of digits after the decimal point)”.

56

193. Heap operations description incorrect

Section: 25.3.6 lib.dg.heap.operations Status: DR Submitter: Markus Mauhart Date: 24 Sep 99

25.3.6 [lib.alg.heap.operations] states two key properties of aheap [ah), the first of themis
(1) *aisthelargest dement"
I think thisisincorrect and should be changed to the wording in the proposed resolution.

Actudly there are two independent changes:

A-"part of largest equivalence dass' instead of "largest”, cause 25.3 [lib.alg.sorting] assarts "strict weak
ordering” for al its sub clauses.

B-Take 'an oldest' from that equivalence class, otherwise the hegp functions could not be used for a
priority queue as explained in 23.2.3.2.2 [lib.priqueue.memberg] (where assumethat a"priority queue”
respects priority AND time).

Proposed Resolution:

Change 25.3.6 [lib.alg.heap.operations] property (1) from:

(1) *aisthelargest dement
to:

(1) Thereisno eement greater than* a

195. Should basi c_i stream : sentry'sconstructor ever set eofbit?

Section: 27.6.1.1.2 libigream::sentry Status: DR Submitter: Matt Austern Date:13 Oct 99

Library defect report list

Supposethati s. fl ags() & ios_base: : ski pws isnonzero. What should basi ¢c_i streamx>: : sentry's
congructor do if it reaches eof while skipping whitespace? 27.6.1.1.2/5 suggestsit should set failbit. Should it set eofbit as
well? The standard doesn't seem to answer that question.

On the one hand, nothing in 27.6.1.1.2 [lib.istream::sentry] saysthatbasi c_i st reank>: : sent r y should ever set
eofhit. On the other hand, 27.6.1.1/4 [lib.istream] saysthat if extractionfromast r eanbuf "returnstrai t s: : eof (),
then the input function, except as explicitly noted otherwise, completesits actionsand doesset st at e(eof bit) " .So
the question comes down to whether basi ¢ _i st r eanx>: : sent r y'scongructor isan input function.

Comments from Jerry Schwarz:

It was always my intention that eofbit should be set any timethat avirtua returned something to indicate
eof, no matter what reason iostream code had for caling the virtud.

The mativation for thisisthat | did not want to require streambufs to behave consistently if their virtuals
are called after they have signdled eof.

The dassic caseisastreambuf reading from aUNIX file EOF isn't redly astate for UNIX file
descriptors. The convention isthat aread on UNIX returns O bytesto indicate "EOF", but thefile
descriptor isn't shut down in any way and future reads do not neccessarily aso return O bytes. In
particular, you can read from tty'son UNIX even &fter they have signdled "EOF". (It isn't dways
understood that 2D on UNIX isnot an EOF indicator, but an EOL indicator. By typing a"ling"

consigting solely of D you cause aread to return 0 bytes, and by convention thisisinterpreted as end of
file)

Proposed Resolution:
Add a sentence to the end of 27.6.1.1.2 paragraph 2:

Ifi s. rdbuf ()->sbunpc() oris.rdbuf()->sgetc() retunstraits::eof (),thefunction
cdlssetstate(failbit | eofbit) (whichmaythrowi os_base::fail ure).

199. What doesal | ocat e(0) return?

Section: 20.1.5 lib.alocator.requirements Status: DR Submitter : Matt Austern Date: 19 Nov 99

Suppose that A isadassthat conformsto the Allocator requirements of Table 32, and a isan object of class A What should
bethergurnvadueof a. al | ocat e(0) ? Three reasonable possibilities: forbid the argument O, return anull pointer, or
require that the return vaue be a unique non-null pointer.

Proposed Resolution:
Addanotetothe al | ocat e row of Table32: “[Note: If n == 0, thereturn vaueis unspecified. --end note]"
Rationale:

A key to understanding thisissue isthat the ultimate use of adlocate() isto congtruct an iterator, and that iterator for zero
length sequences must be the container's past-the-end representation. Since this dready implies specid case code, it would
be over-specification to mandate the return vaue.

Library defect report list

208. Unnecessary restriction on past-the-end iterators
Section: 24.1 lib.iterators Status: DR Submitter: Stephen Cleary Date: 02 Feb 00
In24.1 paragraph 5, itisstated ". . . Dereferenceable and past-the-end vaues are dways non-singular.”

This places an unnecessary restriction on past-the-end iterators for containers with forward iterators (for example, asingly-
linked ligt). If the past-the-end va ue on such a container was awell-known singular vaue, it would till satisfy dl forward
iterator requirements.

Removing this restriction would dlow, for example, asingly-linked list without a"footer" node.

Thiswould have an impact on existing code that expects past-the-end iterators obtained from different (generic) containers
being not equdl.

Proposed Resolution:
Change 24.1 [lib.iterators] paragraph 5, the lagt sentence, from:
Dereferencegble and past-the-end vaues are dways non-singular.
to:
Dereferencegble vaues are dways non-angular.
Rational:

For somekinds of containers, including singly linked lists and zero-length vectors, null pointers are perfectly reasonable
past-the-end iterators. Null pointers are clearly singular.

58

209. basic_string declarationsinconsistent
Section: 21.3 lib.basc.gring Status: DR Submitter: Igor Stauder Date: 11 Feb 00

In Section 21.3 [lib.basic.gtring] the basic_string member function declarations use a consistent style except for the
fallowing functions:

voi d push_back(const charT);
basi c_string& assign(const basic_string&);
voi d swap(basic_string<charT,traits, All ocator>&);
- push_back, assign, swap: missing argument name
- push_back: use of congt with charT (i.e. POD type passed by value not by reference - should be charT or const charT&)
- swap: redundant use of template parametersin argument basic_string<charT traits, Allocator>&
Proposed Resolution:
In Section 21.3 [lib.basic.gring] change the basic_string member function declarations push_back, assign, and swap to:

voi d push_back(charT c);

Library defect report list 59

basi c_string& assign(const basic_string& str);
voi d swap(basic_string& str);

Rationale:

Although the standard isin general not consstent in declaration style, the basic_string declarations are consistent other than
the above. The LWG fdlt that this was sufficient reason to merit the change.

210. distancefirst and last confused
Section: 25lib.agorithms Status: DR Submitter: LisaLippincott Date: 15 Feb 00

In paragraph 9 of section 25 [lib.agorithms], it iswritten:

In the description of the algorithms operators + and - are used for some of the iterator categories for
which they do not have to be defined. In these cases the semantics of [...] ab isthe same as of

return di stance(a, b);
Proposed Resolution:
Onthelast line of paragraph 9 of section 25 [lib.dgorithms] change" a- b" to" b- a" .
Rationale;

There are two waysto fix the defect; change the description to b-aor change the return to distance(b,@). The LWG preferred
the former for consistency.

211. operator>>(istream&, string&) doesn't set failbit
Section: 21.3.7.9]ibgring.io Status: DR Submitter: Scott Snyder Date: 4 Feb 00

The description of the stream extraction operator for std::string (section 21.3.7.9 [lib.string.io]) does not contain a
requirement that failbit be set in the case that the operator failsto extract any characters from theinput stream.

Thisimpliesthat the typical congtruction

std::istreamis;
std::string str;

while (is >> str) ... ;
(which testsfailbit) is not required to terminate at EOF.

Furthermore, thisisinconsistent with other extraction operators, which do include this requirement. (See sections 27.6.1.2
[lib.istream.formatted] and 27.6.1.3 [lib.istream.unformaited], where this requirement is present, either explicitly or
implicitly, for the extraction operators. It is aso present explicitly in the description of getline (istream&, string&, charT) in
section 21.3.7.9 [lib.string.io] paragraph 8.)

Library defect report list 60

Proposed Resolution:
Insert new paragraph after paragraph 2 in section 21.3.7.9 [lib.string.io):

If the function extracts no characters, it cdlsis.setdate(ios:falbit) which may throw ios_base::failure
(274423).

212. Empty range behavior unclear for several algorithms
Section: 25.3.7 libadgminmax Status: DR Submitter: Nico Josuttis Date: 26 Feb 00

The standard doesn't specify what min_element() and max_element() shall return if the range is empty (first equalslast).

The usud implementations return last. This problem seems aso gpply to partition(), stable_partition(), next_permutation(),
and prev_permutation().

Proposed Resolution:
In 25.3.7 - Minimum and maximum [lib.dg.min.max], paragraphs 7 and 9 append: Returnslast if firg==last.
Rationale:

The LWG looked in some detall at all of the above mentioned agorithms, but believes that except for min_dement() and
max_eement() it isaready clear that last isreturned if first == ladt.

217. Facets example (Classifying Japanese characters) containserrors
Section: 22.2.8 lib.facetsexamples Status: DR Submitter: Martin Sebor Date: 29 Feb 00
The examplein 22.2.8, paragraph 11 contains the following errors:

1) The member function "My::JCtype::is_kanji()' is non-congt; the function must be const in order for it to be cdlableona
congt object (areference to which which iswhat std::use facet<>() returns).

2) Infilefilt.C, the definition of "JCtype:id must be qudified with the name of the namespace "My

3) Inthe definition of “loc' and subsequently inthe call to use facet<>() in main(), the name of the facet is misgpelled: it
should read "My::JCtype rather than "My::JCTyp€.

Proposed Resolution:
Replace the "Classifying Japanese characters' examplein 22.2.8, paragraph 11 with the following:

#i ncl ude <l ocal e>
nanmespace My {
usi ng nanmespace std;
class JCtype : public locale::facet {
public:
static locale::id id; /1l required for use as a new |l ocal e facet
bool is_kanji (wchar_t c¢) const;

Library defect report list

JCtype() {}
pr ot ect ed:
~JCtype() {}

}

[l file: filt.C

#i ncl ude <i ostreanp

#i ncl ude <l ocal e>

#i ncl ude "j ctype" /1l above

std::locale::id My::JCtype::id,; /[l the static JCtype nenber
decl ared above.

int main()
{
usi ng nanespace std,;
typedef ctype<wchar _t> wctype;
|l ocale loc(locale(""), /1l the user's preferred locale...
new My::JCtype); /1 and a new feature ...
wchar _t ¢ = use_facet<wctype>(loc).widen('!");
if (luse_facet<My::JCtype>(loc).is_kanji(c))
cout << "no it isn't!" << endl;
return O;
}

61

220. ~ios_base() usage valid?
Section: 27.4.2.7 lib.iosbasecons Status: DR Submitter: Jonathan Schilling, Howard Hinnant Date 13 Mar 00
The pre-conditions for theios_base destructor are described in 27.4.2.7 paragraph 2:

Effects: Destroys an object of cdassios base. Cdls each regigtered calback par (fn,index) (27.4.2.6) as

(*fn)(erase_event,*thisindex) at such timethat any ios_base member function called from within fn has
well defined results.

But what isnot clear is. If no callback functions were ever registered, does it matter whether theios_base memberswere
ever initidized?
For ingtance, does this program have defined behavior:

#i ncl ude <i os>

class D: public std::ios_base { };
int min() { Dd; }

It ssemsthat registration of acallback function would surely affect the state of anios_base. That is, when you register a
calback function with anios _base, theios base must record that fact somehow.

But if after congtruction theios_baseisin an indeterminate state, and that Sate is not made determinate before the
destructor is called, then how would the destructor know if any callbacks had indeed been registered? And if the number of
calbacksthat had been registered isindeterminate, then is not the behavior of the destructor undefined?

By comparison, the basic_ios class description in 27.4.4.1 paragraph 2 makes it explicit that destruction before initidization
resultsin undefined behavior.

Proposed Resolution:

Library defect report list 62

Modify 27.4.2.7 paragraph 1 from
Effects. Eachios_base member has an indeterminate value after congtruction.
to
Effects Eachios_base member has an indeterminate value after condruction. These members must be

initidlized by calling basic_ios:init. If anios_base object is destroyed before these initidizations have
taken place, the behavior is undefined.

222. Arethrowclauses necessary if athrow isalready implied by the effects clause?

Section: 17.3.1.3 lib.gructure.specifications Status: DR Submitter: Judy Werd Date: 17 Mar 00

Section 21.3.6.8 describes the basic_string::compare function thisway:

21.3.6.8 - basic_string::conpare [lib.string::conpare]

i nt conpare(size_type posl, size_type nil,
const basic_string<charT,traits, Allocator>& str ,
size_type pos2 , size_type n2) const;

-4- Returns:

basic_string<charT,traits, All ocator>(*this, posl, nl).conpare(
basic_string<charT,traits, All ocator>(str, pos2,n2))

and the constructor that'simplicitly called by the above is defined to throw an out-of-range exception if pos> dr.size(). See
section 21.3.1 paragraph 4.

On the other hand, the compare function descriptions themsdves don't have " Throws: * clauses and according to 17.3.1.3,
paragraph 3, elements that do not apply to afunction are omitted.

So it seemsthereis an inconsstency in the standard -- are the "Effects’ clauses correct, or are the "Throws' clauses
missing?

Proposed Resolution:

In 17.3.1.3 [lib.gtructure.specifications] paragraph 3, the footnote 148 attached to the sentence " Descriptions of function
semantics contain the following elements (as appropriate).”, insert the word "further" so that the foot note reads:

To save space, itemsthat do not apply to afunction are omitted. For example, if afunction does not
specify any further preconditions, there will beno ** Requires’ paragraph.

Rationale;

The standard is somewhat inconsistent, but afailure to note a throw condition in athrows clause does not grant permission
not to throw. Theinconsstent wording isin afootnote, and thus non-normetive. The proposed resolution from the LWG
clarifiesthe footnote.

Library defect report list

223. reverse algorithm should useiter_swap rather than swap
Section: 25.2.9 lib.da.reverse Status: DR Submitter: Dave Abrahams Date: 21 Mar 00
Shouldn't the effects say "appliesiter_swap to dl pairs..."?

Proposed Resolution:

In25.2.9 lib.dg.reverse replace:

Effects For each non-negative integer i <= (last - first)/2, applies swap to al pairs of iteratorsfirst +1i,
(last-i)- L.

with:

Effects. For each non-negative integer i <= (last - first)/2, appliesiter_swap to dl pairs of iteratorsfirst +
i, (last-i)- 1.

63

224. clear() complexity for associative containersrefersto undefined N

Section: 23.1.2 lib.asociativeregmts Status: DR Submitter: EdBrey Date: 23 Mar 00

In the associative container requirementstablein 23.1.2 paragraph 7, acdlear() has complexity "log(size()) + N". However,
the meaning of N isnot defined.

Proposed Resolution:

In the associative container requirementstable in 23.1.2 paragraph 7, the complexity of aclear(), change "log(sz&()) + N"
to"linearinsi ze() "

Rationale:

It'sthe"log(size())", not the"N", that isin error: there's no difference between O(N) and O(N + log(N)). Thetextinthe
standard is probably an incorrect cut-and-paste from therange verson of er ase.

227. ¢d::swap() should require CopyConstructible or DefaultConstructible arguments
Section: 25.2.2 libadg.swvap Status: DR Submitter: Dave Abrahams Date: 09 Apr 00
25.2.2 reads.

tenpl ate<class T> void swap(T& a, T& b);

Requires Type T isAssgnable (_lib.container.requirements).
Effects Exchanges vaues stored in two locations.

The only reasonable** generic implementation of swap requires congtruction of anew temporary copy of one of its
aguments:

Library defect report list

tenpl ate<class T> void swap(T& a, T& b);
{ T tmp(a);
z t,mO;
}
But atype which is only Assignable cannot be swapped by thisimplementation.

**Y es, theré's a0 an unreasonable implementation which would require T to be DefaultCongtructible instead of
CopyCondtructible. I don't think thisisworthy of consideration:

tenpl ate<class T> void swap(T& a, T& b);
{

a,

1 Il'g""

mp
b
t

oo~

mp;
}

Proposed Resolution:
Change 25.2.2 paragraph 1 from:

Requires: Type T isAssignable (23.1).
to:

Requires. Type T is CopyCondructible (20.1.3) and Assgnable (23.1)

