
A trait for implicit lifetime types

Timur Doumler (papers@timur.audio)
Vittorio Romeo (vittorio.romeo@outlook.com)

Document #: P2674R1
Date: 2022-11-11
Project: Programming Language C++
Audience: Core Working Group, Library Working Group

Abstract

C++20 introduced the notion of implicit-lifetime types. There are certain operations that are
only valid for such types. We therefore need a way to check whether a type is implicit-lifetime, and
constrain on this property. This paper proposes a new type trait std::is_implicit_lifetime
to achieve this.

1 Motivation
C++20 introduced the notion of implicit-lifetime types [P0593R6]. This notion is defined in
[basic.types.general]/9:

Scalar types, implicit-lifetime class types ([class.prop]), array types, and cv-qualified versions
of these types are collectively called implicit-lifetime types.

and in [class.prop]/9:

A class S is an implicit-lifetime class if

— it is an aggregate or
— it has at least one trivial eligible constructor and a trivial non-deleted destructor.

There are certain operations that are only valid for implicit-lifetime types. In particular, in certain
situations the lifetime of an object of implicit-lifetime type can be implicitly started by operations
such as malloc, where otherwise the code would be undefined behaviour due to a violation of the
C++ object lifetime rules. Additionally, in C++23 we are adding the possibility to start the lifetime
of such objects explicitly with std::start_lifetime_as<T> [P2590R2].
Unfortunately, C++ lacks the ability to programmatically check whether a type is an implicit-
lifetime type, and to constrain functions using such operations to only be valid for such types. This
is particularly important to help catch a possible regression: if a type that was once implicit-lifetime
mistakenly loses that property as a part of a change, this silently turns previously correct code into
undefined behaviour.
To fix this issue, this paper proposes to add the type trait std::is_implicit_lifetime<T>. This
resolves NB comment GB-089 for C++23.
In addition, the proposed type trait will be very useful for adding container support for implicit
lifetime types [P1010R1].

1

mailto:papers@timur.audio
mailto:vittorio.romeo@outlook.com


2 Implementation considerations
With the definition of implicit-lifetime type that is currently in the C++ working paper [N4917], it
is possible to implement such a type trait as follows:

template<typename T>
struct is_implicit_lifetime : std::disjunction<

std::is_scalar<T>,
std::is_array<T>,
std::is_aggregate<T>,
std::conjunction<

std::is_trivially_destructible<T>,
std::disjunction<

std::is_trivially_default_constructible<T>,
std::is_trivially_copy_constructible<T>,
std::is_trivially_move_constructible<T>>>> {};

However, with the planned resolution of [CWG2605], which is necessary to fix an issue with
implicit-lifetime aggregates, the definition of implicit-lifetime class will change as follows in C++23:

A class S is an implicit-lifetime class if

— it is an aggregate whose destructor is not user-provided or
— it has at least one trivial eligible constructor and a trivial non-deleted destructor.

With this new definition, it will be impossible for users to implement this type trait themselves,
because it is impossible to programmatically check whether the destructor of an aggregate class
is user-provided. Therefore, the only option we see is to add the type trait to the C++ standard
library, and to implement it there as a “magic” metafunction.

3 Proposed wording
The proposed changes are relative to the C++ working paper [N4917].
In [meta.type.synop], add:

// [meta.unary.prop], type properties
template<class T> struct is_implicit_lifetime;

template<class T>
inline constexpr bool is_implicit_lifetime_v = is_implicit_lifetime<T>::value;

In [meta.unary.prop], add a row to Table 48:

Template Condition Preconditions
template<class T>
struct is_implicit_lifetime;

T is an implicit-lifetime type
([basic.types.general]).

T shall be an array type, a
complete type, or cv void.

Insert the following to [version.syn], header <version> synopsis:
#define ___cpp_lib_is_implicit_lifetime 20XXXXL // also in <type_traits>

2



Document history

— R0, 2022-10-14: Initial version.

— R1, 2022-11-11: Fixed preconditions wording; added feature test macro.

References

[CWG2605] Davis Herring. Core Issue 2605: Implicit-lifetime aggregates. https://www.open-std.
org/jtc1/sc22/wg21/docs/cwg_active.html#2605, 2022-06-27.

[N4917] Thomas Köppe. Working Draft, Standard for Programming Language C++. https:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/n4917.pdf, 2022-09-05.

[P0593R6] Richard Smith. Implicit creation of objects for low-level object manipulation. https:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0593r6.html, 2020-02-14.

[P1010R1] Mark Zeren and Chris Kennelly. Container support for implicit lifetime types. https:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1010r1.html, 2018-10-08.

[P2590R2] Timur Doumler and Richard Smith. Explicit lifetime management. https://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2590r2.pdf, 2022-07-15.

3

https://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#2605
https://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#2605
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/n4917.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/n4917.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0593r6.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0593r6.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1010r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1010r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2590r2.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2590r2.pdf

	1 Motivation
	2 Implementation considerations
	3 Proposed wording
	References

