
N. Josuttis et. al.: P2644R0: Final Fix of Broken Range-based for Loop

 1

Project: ISO JTC1/SC22/WG21: Programming Language C++
Doc No: WG21 P2644R0
Date: 2022-09-28
Reply to: Nicolai Josuttis (nico@josuttis.de)

Co-authors: Herb Sutter, Titus Winter, Hana Dusíková, Fabio Fracassi, Victor Zverovich,
Bryce Adelstein Lelbach, Peter Sommerlad

Audience: EWG, CWG
Issues: cwg900, cwg1498, ewg120

Previous: http://wg21.link/P2012

Final	Fix	of	Broken	Range‐based	for	Loop,	
Rev	0	
This paper summarizes the fix for the still open issues cwg900, cwg1498, ewg120. The issue is a bug that
is 13 years old now, applies to one of the most important control structures of Modern C++, and leads to
confusion and ill-formed programs due to unexpected undefined behavior and effort for teaching and
training.

We agreed on going the path proposed here with http://wg21.link/P2012. But while that paper went in the
right direction, some people wanted to have a broader fix.

Because until now, no additional things were proposed for C++23, we fall back to the proposed
improvement that was highly agreed on. This fix will not disable future broader fixes.

Tony	Table:	

 Before After

for (auto e : getTmp().getRef()) BROKEN OK

for (auto e : getVector()[0]) BROKEN OK

for (auto valueElem : getMap()["key"]) BROKEN OK

for (auto e : get<0>(getTuple())) BROKEN OK

for (auto e : getOptionalColl().value()) BROKEN OK

for (char c : get<string>(getVariant())) BROKEN OK

for (auto s : std::span{arrOfConst()}.last(2)) BROKEN OK

for (auto e : std::span(getVector().data(), 2)) BROKEN OK

for (auto e: co_await coroReturningRef()) BROKEN OK

// assume getValue() returns value by reference:
for (char c : getData().value)
for (char c : getData().getValue())

OK

BROKEN

OK

OK

This means that this paper fixes unexpected and surprising behavior of containers, tuples, optionals,
variants, spans, getters that return references, and even coroutines that yield references.
As the last row of the table demonstrates, the proposed solution especially helps not to run into the trap of
UB when switching from direct member access to getters.

See https://www.godbolt.org/z/WPjnx3Mja for the full example of the broken code.
For the example of the broken code using coroutines, see
https://twitter.com/hankadusikova/status/1542244987882115075?s=20&t=E0y0Prm_RmNeHOZdBuzLVw

N. Josuttis et. al.: P2644R0: Final Fix of Broken Range-based for Loop

 2

Background	
This fix was discussed in detail a lot according to http://wg21.link/P2012.

See https://wiki.edg.com/bin/view/Wg21telecons2021/EWG-2021-01-28 which resulted in the following
vote:

There is a problem to be solved with range-based for loops and lifetime of temporaries.

SF F N A SA
17 10 2 0 0

However, when discussing the final wording, some attendees wanted a more broad solution. Therefore,
the proposed solution was not accepted yet.
See https://wiki.edg.com/bin/view/Wg21telecons2021/EWG-2021-09-29.

So far such alternative was not proposed yet and C++23 is about to be shipped without an improvement
of the situation.

Because we have this bug now for 13 years and this affects even beginners, we suggest to finally accept
the proposed fix as discussed.

For more details, see http://wg21.link/P2012.

Q&A	
The three key questions are answered here. For more details, see http://wg21.link/P2012.

Do	we	have	evidence	that	this	is	a	major	problem	in	practice?	
We see this problem in practice. Even the authors of this paper ran into this problem. We also know that
in all trainings explaining this problem takes significant time.

In addition, more and more style guides warn about using the range-based for loop due to this problem:

 See for example the categorization of the range-based for loop as only “Conditionally
Safe” in “Embracing Modern C++ Safely” by Rostislav Khlebnikov and John Lakos
(Bloomberg, 2018).

 https://abseil.io/tips/107 gives a warning about using the range-based for loop that way
(without explaining that the problem is the way the loop is defined).

 The new MISRA standard will constrain using the range-based for loop:
 Rule 000389 : A for-range-initializer shall contain at most one function call

Is	existing	code	broken	by	the	fix?	
It is possible, but we do not expect that this fix will break existing code. So we did a research.

Here is the result of a check in a very very large code base (Google):

We were able to cobble together a rough analysis: which destructors are invoked on the right
hand side of the ":" in a RBF. Running that over a random subset of our codebase, we infer that
there are perhaps 10K d'tors in that position. Reducing those and grouping by the relevant types,
we can find 0 instances of types in that place that would be a problem. If there were instances
that escaped this analysis, we expect that it's on the order of <1 instance per 100MLoC.

But we found something interesting by doing the check: The current definition of the range-based for
loop makes code already unnecessary complex, because the result continues as follows:

Many (most?) of the d’tors we can find in that location are for utilities that were written specifically
to avoid the bug you’re proposing to address.

So, it seems the current problem of the range-based for loop causes significant drawback in existing
code. The person doing the check with the code base summarizes:

Which is to say, for comparison: every deprecation and removal and "nobody will be hurt by this"
change that WG21 has made in the past few years (std::random, std::bind1st, changing
converting constructor behavior for variant) is 10x+ harder to adopt than this change, as near as
we can tell.

N. Josuttis et. al.: P2644R0: Final Fix of Broken Range-based for Loop

 3

How	about	all	the	workaround	with	the	initializing	range‐based	
for	loop?	
Workaround will not help as long as programmers don’t see and understand the problem. However, this
problem only sometimes visible (UB) and highly counter-intuitive.

C++ standard should not programmers pay the price for details only experts understand. Especially not in
the basic control structure. Experts can still have the behavior they want.

Proposed	Wording	
(All against N4917)

In 6.7.7 Temporary objects [class.temporary]

5 There are three four contexts in which temporaries are destroyed at a different point than the
end of the full-expression.

...

7 The fourth context is when a temporary object is created in the for-range-initializer of a range-
based for statement. Such a temporary object persists until the completion of the statement.

In 8.6.5 The range‐based for statement [stmt.ranged] add before Example 1:

[Note: The lifetime of temporaries that would be destroyed at the end of the full-expression of the
/for-range-initializer/ is extended to cover the entire loop (class.temporary).]

Add a new section in Annex C:

Affected subclause: 6.7.7 [also 8.6.5] [class.temporary] and [stmt.ranged]
Change: The lifetime of temporary objects in the for‐range‐initializer is extended until the end of the loop.
Rationale: Because when the range‐base‐initializer is a reference to a temporary object, the loop operates
on destroyed objects.
Effect on original feature: The lifetime of a temporary object in the for‐range‐initializer might be
extended until the end of the range‐based for loop.
 [Example1:
 for (auto e : getValue().getRef()) { // lifetime of returned getValue() extended
 ...
 } // until here
 ‐‐ end example]

Feature	Test	Macro	

Provide a new value for __cpp_range_based_for

Acknowledgements	
Thanks to a lot of people who helped ad gave support again and again to come to finally get this proposal
done.

Rev0:		
First initial version after several versions of http://wg21.link/P2012.

