
Improve the wording for Universal Character Names in

identifiers
Document #: P2620R2
Date: 2022-09-13
Programming Language C++
Audience: CWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Abstract

Reword how universal-character-names in identifiers are specified.

Revisions

Revision 2

The previous revision of this paper proposed to allow UCNs outside of string literals to refer
to basic character sets elements. However, we realized that we would not have a good model
for UCNs in identifiers that are keywords. Neither allowing UCNs in keywords, or disallowing
them seem desirable because of implementation burden and undue complexity.

It gets more challenging when considering macro names, contextual keywords and prepro-
cessing directives. However, there was consensus that the other wording changes operated
by this paper, ie moving the description of the UCNs handling in [lex.name] was desirable,
and this paper now only contain that wording change. This paper no longer contains any
design change and is retargeted at CWG.

Revision 1

• Fix typos

• Improve the wording by removing handling of UCNs from phase [lex.charset].

Wording

�? Separate translation [lex.separate]

4. The source file is decomposed into preprocessing tokens and sequences of whitespace
characters (including comments). A source file shall not end in a partial preprocessing token
or in a partial comment. Each comment is replaced by one space character. New-line charac-
ters are retained. Whether each nonempty sequence of whitespace characters other than

1

mailto:corentin.jabot@gmail.com

new-line is retained or replaced by one space character is unspecified. As characters from
the source file are consumed to form the next preprocessing token (i.e., not being consumed
as part of a comment or other forms of whitespace), except whenmatching a c-char-sequence,
s-char-sequence, r-char-sequence, h-char-sequence, orq-char-sequence, universal-character-name s
are recognized and replaced by the designated element of the translation character set.

The process of dividing a source file’s characters into preprocessing tokens is context-dependent.
[Example: See the handling of < within a #include preprocessing directive. —end example]

�? Character sets [lex.charset]

A universal-character-name designates the character in the translation character set whose UCS
scalar value is the hexadecimal number represented by the sequence of hexadecimal-digit s in
the universal-character-name. The program is ill-formed if that number is not a UCS scalar value.
If a universal-character-name outside the c-char-sequence, s-char-sequence, or r-char-sequence
of a character-literal or string-literal (in either case, including within a user-defined-literal)
corresponds to a control character or to a character in the basic character set, the program
is ill-formed. [Note: A sequence of characters resembling a universal-character-name in an
r-char-sequence does not form a universal-character-name. —end note]

�? Identifiers [lex.name]

identifier:
identifier-start
identifier identifier-continue

identifier-start:
nondigit
an element of the translation character set of class XID_Start
universal-character-name
designating an element of the translation character set of class XID_Start

identifier-continue:
digit
nondigit
an element of the translation character set of class XID_Continue
universal-character-name
designating an element of the translation character set of class XID_Continue

nondigit: one of
a b c d e f g h i j k l m
n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z _

digit: one of
0 1 2 3 4 5 6 7 8 9

The character classes XID_Start and XID_Continue are Derived Core Properties as described
by UAX #44.

2

universal-character-names are replaced by the designated element of the translation character
set.

The program is ill-formed if an identifier does not conform to Normalization FormC as specified
in ISO/IEC 10646. [Note: Identifiers are case-sensitive. —end note] [Note: In translation
phase 4, identifier also includes those preprocessing-token s differentiated as keywords in the
later translation phase 7. —end note]

3

	1 Abstract
	2 Revisions
	3 Wording
	4 Separate translation
	5 Character sets
	6 Identifiers

