
mdspan::size_type should be
index_type

Document number: P2599R0

Date: 2022-06-07

Project: Programming Language C++, Library Evolution Working Group

Reply-to: Nevin “☺” Liber, nliber@anl.gov

Table of Contents

Introduction ... 1

Motivation and Scope ... 1

Impact On the Standard ... 2

Technical Specifications ... 2

Acknowledgements ... 3

References .. 3

Introduction
With the adoption of P2553R1, mdspan::size_type may now be a signed type.

size_type is no longer an appropriate name for this type and it should be changed to

index_type.

Motivation and Scope
Throughout the C++ standard, size_type stands for an unsigned type. mdspan and

its related class templates should be consistent with this.

When P2553R0 was proposed, extents::size_type was going to be constrained to

unsigned_integral. At the request of LEWG, that constraint was removed in

P2553R1 and adopted via electronic polling.

Now that it can be a signed type, size_type is no longer the correct name for this. It

should revert back to index_type, which was used in mdspan until P0009R11 when

the following change was made:

mailto:nevin@cplusplusguy.com
https://wg21.link/P2553R1
https://wg21.link/P2553R0
https://wg21.link/P2553R1
https://wg21.link/P0009R11

Change all the sizes

from ptrdiff_t to size_t and index_type to size_type, for consistency

with span and the rest of the standard library

In addition to extents, there are other class templates which take Extents as a

template parameter and adopt the size_type typedef from Extents into their

interface. Those class templates should also have their size_type typedefs changed to

index_type.

Specifically, the following class templates should replace their usage of size_type

with index_type:

• extents

• layout_left::mapping

• layout_right::mapping

• layout_stride::mapping

• mdspan

Impact On the Standard
Given that mdspan and its related classes are new class templates for C++23, the impact

should be minimal. This should be applied to P0009 and P2553 (if that is still under

LWG review) or the C++WD (if mdspan has already been adopted into the IS). Also,

no feature test macro should be necessary.

Technical Specifications

The only normative changes proposed here are in the spellings of size_type to

index_type, SizeT / SizeType to IndexType, OtherSizeT /

OtherSizeType to OtherIndexType and SizeTypes to IndexTypes. No

other normative wording changes are being proposed.

Both P0009 and P2553 are currently undergoing revisions as requested by LWG. If this

proposal is approved, the author will apply these spelling changes to both those

documents.

The drafts for these spelling changes can be found under https://github.com/nliber/cpp-

proposals-pub/tree/P2553-P0009-size_type-to-index_type, based on the drafts found

under https://github.com/mhoemmen/cpp-proposals-pub/tree/P2553-P0009-LWG-small-

group-20220531.

https://wg21.link/P0009
https://wg21.link/P2553
https://wg21.link/P0009
https://wg21.link/P2553
https://github.com/nliber/cpp-proposals-pub/tree/P2553-P0009-size_type-to-index_type
https://github.com/nliber/cpp-proposals-pub/tree/P2553-P0009-size_type-to-index_type
https://github.com/mhoemmen/cpp-proposals-pub/tree/P2553-P0009-LWG-small-group-20220531
https://github.com/mhoemmen/cpp-proposals-pub/tree/P2553-P0009-LWG-small-group-20220531

Acknowledgements

This was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative

effort of two U.S. Department of Energy organizations (Office of Science and the

National Nuclear Security Administration) responsible for the planning and preparation

of a capable exascale ecosystem, including software, applications, hardware, advanced

system engineering, and early testbed platforms, in support of the nation’s exascale

computing imperative. Additionally, this research used resources of the Argonne

Leadership Computing Facility, which is a DOE Office of Science User Facility

supported under Contract DE-AC02-06CH11357.

References
P0009 mdspan, Christian Trott et al.

P2553 Make mdspan size_type controllable, Christian Trott et al.

https://wg21.link/P0009
https://wg21.link/P2553

	Introduction
	Motivation and Scope
	Impact On the Standard
	Technical Specifications
	Acknowledgements
	References

